-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathK-matrix.jl
2110 lines (1739 loc) · 69.3 KB
/
K-matrix.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.19.40
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ 2a5d2458-9958-4c9b-a183-d7029b6360c9
# ╠═╡ show_logs = false
begin
using StaticArrays
using Plots
using LaTeXStrings
using PlutoUI
using Parameters
using LinearAlgebra
using PlutoTeachingTools
using CalculusWithJulia
end
# ╔═╡ 9ade0bbc-0b04-4e6d-92cf-54062b638cfe
md"""
# Practical K-Matrix Applications
This educational material introduces the K-matrix formalism, focusing on its practical application in describing scattering amplitude observables. The K-matrix approach provides a robust framework for analyzing scattering processes, essential for understanding resonance phenomena in hadron physics. One of the main challenges in employing this formalism lies in the initial estimation of the bare parameters, which requires a thorough comprehension of the underlying principles and mechanics of the model.
On the figure below one can find illustration of the ab->cd scattering process with resonance which has mass $m_{0}$ and width $Г_{0}$. This process can be described with K-matrix:
$K_{ij} = \frac{g_i g_j}{m_0^2-s}$
where $g_{i} g_j$ indicates different possible channels of the scattering process and $s=m^{2}$. K-matrix has to be real and symmetric by construction.
Then, one can introduce transition T-matrix:
$T = [I -i K \rho]^{-1} K$
where $I$ is identity matrix of three dimensions and $\rho$ being a diagonal matrix of phase space factors $\rho=Diag(\rho_i)$.
"""
# ╔═╡ 437d3bf9-cf44-40a8-97bc-8aee4b62d069
RobustLocalResource("", joinpath("..","figures","1x1_scattering.png"))
# ╔═╡ e8ba4b4e-2d21-4bfe-bf32-02969f9b2970
md"""
The provided examples are designed to facilitate this understanding by illustrating the connection between the K-matrix parameters and observable quantities.
**Exapmle 1 (3x3 one pole):** The connection between the K-matrix and the multichannel Breit-Wigner model, demonstrating the generation of resonance widths.
**Example 2 (2x2 two poles):** The analysis of a 2x2 problem highlighting the dynamics of weakly coupled resonances.
**Example 3 (1x1 two poles):** The examination of a single-channel production amplitude involving two interfering resonances.
These examples provide insights into estimating parameters, understanding resonance behavior, and interpreting observable phenomena within the K-matrix framework.
"""
# ╔═╡ cb9fdca3-db42-4501-a2fe-c3ff099b2d83
TableOfContents()
# ╔═╡ a4750e66-b448-479e-a5dd-b9aec0f3a857
aside(RobustLocalResource("", joinpath("..","figures","3x3_scattering.png")))
# ╔═╡ c2a0a8bc-c1e6-4a48-91dc-590ca79383ff
md"""
## Example 1: Multichannel Breit-Wigner Model and Resonance Widths
The first example explains the relationship between the K-matrix and the multichannel Breit-Wigner (BW) model. It demonstrates how resonance widths are generated within this framework, offering insight into the dynamic nature of resonances. This example is pivotal for appreciating how the K-matrix formalism can be used to describe complex resonance structures in multichannel scattering processes.
"""
# ╔═╡ 798f53e9-d871-42d1-a81c-d35adc7ece21
md"""
### Setup
Let's consider 3 coupled channels, the scattering amplitude T is a 3x3 matrix:
$T = \begin{pmatrix}
T_{1\to1} & T_{1\to2} & T_{1\to3}\\
T_{2\to1} & T_{2\to2} & T_{2\to3}\\
T_{3\to1} & T_{3\to2} & T_{3\to3}\\
\end{pmatrix}$
We model it with the simplest **one-pole** K-matrix.
$K = \frac{1}{m_0^2-s}
\begin{pmatrix}
g_1^2 & g_1 g_2 & g_1 g_3\\
g_2 g_1 & g_2^2 & g_2 g_3\\
g_3 g_1 & g_3 g_2 & g_3^2\\
\end{pmatrix}$
and $\rho=\text{Diag}(\rho_1,\rho_2,\rho_3)$
"""
# ╔═╡ 1215bc85-4760-473b-93d0-5d6a8952e27e
question_box(md"""
**E1.Q1:** When $K$ is degenerate and has rank 1, the expression for T is simple. Figure it out for 3x3 matrix.
**Advanced option:** Can you prove it for general case?
""")
# ╔═╡ 7b717c8f-1fb8-4892-a250-c77e5e088445
aside(tip(md"$T = [1-iK\rho]^{-1}K$"))
# ╔═╡ 1273bd41-9986-4b9f-9e06-b3bed7ab65f0
answer_box(
md"$T_{ij} = \frac{g_i g_j}{m_0^2-s-ig_1^2 \rho_1-ig_2^2 \rho_2-ig_3^2 \rho_3}$
This is expression known as the [Flatte formula](https://inspirehep.net/literature/108884)
")
# ╔═╡ 6d5acd0c-dbcf-4d0a-a94c-76ac59006fc8
md"""
## Comparison to Breit-Wigner
Let's compare to the BW parametrization
$\text{BW} = \frac{m_0\Gamma_0}{m_0^2-s-im_0 \Gamma_0}$
"""
# ╔═╡ fe35af83-4910-48e4-b9de-5b8a1f85fb72
md"""
Cross section of certain channel calculated as
$\frac{\mathrm{d}\sigma}{\mathrm{d}m} = \frac{1}{J_i} |T_{ij}|^2 \frac{\mathrm{d}\Phi_j}{\mathrm{d}m}$
with
- the flux $J_i$ set to 1, and
- the $\mathrm{d}\Phi_j / \mathrm{d}m = 2m\rho_j$ is a phase space per certain energy, and
- the $\rho_j$ is zero below the threshold of the j channel.
"""
# ╔═╡ 3fde6651-a704-4757-b282-3a7cfcd36f6e
md"""
Let's setup couplings for three channels, that we can adjust:
- g₁ = $(@bind g1_T1 Slider(range(0,4,101), default=1.2, show_value=true)) GeV for the first channel,
- g₂ = $(@bind g2_T1 Slider(range(0,4,101), default=0.5, show_value=true)) GeV for the second channel, and
- g₃ = $(@bind g3_T1 Slider(range(0,4,101), default=1.6, show_value=true)) GeV for the third channel.
- m₀ = $(@bind M Slider(range(0,10,101), default=5.3, show_value=true)) GeV/c² pole of the K-matrix.
"""
# ╔═╡ 59ceb096-1cc0-4c69-b56f-476710dd698e
question_box(md"""
**E1.Q2:** Which parameter is needed to be changed in order to see difference between BW and K-matrix formalism?
""")
# ╔═╡ 1410b82a-0017-4ef3-adf8-1f4da66393a4
answer_box(
md" $g_{2}$ and $g_{3}$
")
# ╔═╡ ad74e82b-b2f4-4b8d-99ea-2fe295bb018d
md"""
### Calculation of the width
We can relate the approximate width to coupling using the Breit-Wigner expression, $1/(m_0^2-s-im_0\Gamma_0)$, where $\Gamma_0$ gives the width of the peak.
Hence
```math
\begin{align}
\Gamma_0 = \frac{g_1^2 \rho_1 (m_0) + g_2^2 \rho_2(m_0)+g_3^2 \rho_3(m_0)}{m_0}\\
\end{align}
```
"""
# ╔═╡ cf9bf7ac-905f-4112-a7f4-36c536d33918
question_box(md"""
**E1.Q3:** Let's assume that we know cross-section distribution and can measure FWHM of it. How is it possible to estimate K-matrix parameters $g_{i}$?
""")
# ╔═╡ 87fc0818-273b-4d0b-814a-058365ee07a0
answer_box(
md" $g_{i}\approx\sqrt\frac{Г_{0}m_{0}}{\rho_{i}(m_0)}$
")
# ╔═╡ 915f987d-9bb5-4e0b-9cf0-f52e3937695a
md"""
## Example 2: The 2x2 Problem with Weakly Coupled Resonances
In the second example, we explore the 2x2 problem, focusing on scenarios with weakly coupled resonances. This case study sheds light on the interactions between resonances in a two-dimensional parameter space, emphasizing the effects of weak coupling. It is an essential exploration for understanding how resonance coupling influences scattering amplitudes and observable resonance characteristics.
"""
# ╔═╡ 2486eb34-a858-4ea9-99e1-f17627589461
RobustLocalResource("", joinpath("..","figures","2x2_scattering.png"))
# ╔═╡ 1663348b-ed67-4851-9365-9641e6379fcd
md"""
The K-matrix for such case consists of two terms:
$K =K^{(1)}+K^{(2)}
= \frac{1}{m_{(1)}^2-s}
\begin{pmatrix}
g_1^2 & g_1 g_2\\
g_2 g_1 & g_2^2
\end{pmatrix} +
\frac{1}{m_{(2)}^2-s}
\begin{pmatrix}
h_1^2 & h_1 h_2\\
h_2 h_1 & h_2^2
\end{pmatrix}$
"""
# ╔═╡ 74e06991-79a2-4711-8bc7-c8656249641f
md"""
### The case of not coupled resonances
"""
# ╔═╡ c7e615fa-62aa-4de2-8ef4-2df8534b2c06
question_box(md"""
**E2.Q1:** Let's start with setting off-diagonal parameters described coupling to zeros $g_{2}=h_{1}=0$. Then K-matrix would be What would be
$K =
\begin{pmatrix}
\frac{g_1^2}{m_{(1)}^2-s} & 0\\
0 & \frac{h_2^2}{m_{(2)}^2-s}
\end{pmatrix}$
How will the T-matrix look like?
""")
# ╔═╡ a223cbff-88b0-4a28-af53-c139e7b9108a
tip(md"For single resonance:
$T =
\frac{1}{m_{(1)}^2-s-ig_1^2\rho_1-ig_2^2\rho_2}
\begin{pmatrix}
g_1^2 & g_1g_2\\
g_2g_1 & g_2^2
\end{pmatrix}$
")
# ╔═╡ 9d9a89ed-76f3-4e76-a3cc-0d33c747fbb5
answer_box(md"""
In that case, the T-matrix would be simply:
$T =
\begin{pmatrix}
\frac{g_1^2}{m_{(1)}^2-s-ig_1^2\rho_1} & 0\\
0 & \frac{h_2^2}{m_{(2)}^2-s-ih_2^2\rho_2}
\end{pmatrix}$
""")
# ╔═╡ 729c86ab-cf81-48bf-82be-b89cf28eaee6
md"""
### Demonstration
- g₂ = $(@bind g2_T2 Slider(range(-1,3,81), default=0.0, show_value=true)) GeV for the first channel,
- h₁ = $(@bind h1_T2 Slider(range(-1,3,81), default=0.0, show_value=true)) GeV for the second channel, and
"""
# ╔═╡ 0f2ade1e-6958-4ebd-942a-c844bf3dbb99
md"""
### The case of weak coupling for one of the resonances
"""
# ╔═╡ a7a68629-bf6f-435e-9a97-de9a02a31160
question_box(md"""
**E2.Q2:** Let's find the first expansion term to reflect on how a weakly coupled resonances show up in the second channel. For that put $g_2=\epsilon$, $h_1 = 0$.
Then,
$K^{(1)} = \frac{1}{m_{(1)}^2-s}
\begin{pmatrix}
g_1^2 & g_1 \epsilon\\
\epsilon g_1 & \epsilon^2
\end{pmatrix}
\approx \frac{1}{m_{(1)}^2-s}
\begin{pmatrix}
g_1^2 & g_1 \epsilon\\
\epsilon g_1 & 0
\end{pmatrix}$
In this case the T-matrix will become:
""")
# ╔═╡ a1558b96-576f-4661-b357-c9f036c0167d
answer_box(md"""
The T-matrix in that case would be:
$T \approx
\begin{pmatrix}
\frac{g_1^2}{m_{(1)}^2-s-ig_1^2\rho_1} & \frac{g_1\epsilon}{m_{(1)}^2-s-ig_1^2\rho_1}\\
\frac{\epsilon g_1}{m_{(1)}^2-s-ig_1^2\rho_1} & \frac{h_2^2}{m_{(2)}^2-s-ih_2^2\rho_2}
\end{pmatrix}$
One can notice that:
(1) $T^{(0)}_{11}=T^{(\epsilon)}_{11}$ and $T^{(0)}_{22}=T^{(\epsilon)}_{22}$
(2) $\frac{T^{(\epsilon)}_{12}}{T^{(\epsilon)}_{11}}=\frac{\epsilon}{g_{1}}$
(here $T^{(0)}$ and $T^{(\epsilon)}$ indicate previous and this case respectively)
Hence one will see effects of channel couplings only when $g_{2}$ will be in order of $g_{1}$
""")
# ╔═╡ fff6f9f5-b002-46ea-b6ff-1ecf32357ea9
md"""
### The case of weak coupling for both resonances
"""
# ╔═╡ 8b53b1cc-520b-48e4-b2b1-6ad6ebe443e2
question_box(md"""
**E2.Q3:** Let's , finally, put $g_2=h_1=\epsilon$.
What will we see for the off-diagonal terms of T-matrix?
""")
# ╔═╡ 1e7ebcaf-dd83-40fb-9bd8-2e48a1911bfa
answer_box(md"""
$T_{12}=T_{21}=\frac{g_1\epsilon}{m_{(1)}^2-s-ig_1^2\rho_1}+\frac{h_2\epsilon}{m_{(2)}^2-s-ih_2^2\rho_2}=(BW_{g_{1}}+BW_{h_{2}})\epsilon$
""")
# ╔═╡ 0e899f67-adec-4837-9993-c9fe22f788d1
md"""
## Example 3: Single-Channel Production Amplitude with Interfering Resonances
The third example examines a single-channel problem featuring two prominent resonances. The focus is on the production amplitude and the investigation of interference effects between resonances. This scenario is critical for comprehending how overlapping resonances interact within the K-matrix formalism, affecting the overall scattering amplitude and observable patterns in the data.
"""
# ╔═╡ 27f0ae17-b61c-49c5-b4fc-6de5d2ddda94
md"""
### Scattering amplitude
"""
# ╔═╡ 8b92df7f-d97b-43fa-8ac3-fed8ee974f5f
md"""
For this case K-matrix will become just a function of s:
$K = \frac{g^2}{m_{(1)}^2-s}+
\frac{h^2}{m_{(2)}^2-s}$
$T = [1-iK\rho ]^{-1} K$
If K is zero for $s=s_\text{z}$, T is zero.
"""
# ╔═╡ edef417d-b0e4-4cad-bf63-462a8d7e861f
question_box(md"""
**E3.Q1:** Why does it have 0?
""")
# ╔═╡ 53ad2e4e-0268-4488-9891-815922d8a8db
aside(tip(md"For explanation let's have a look at K-matrix in these case."))
# ╔═╡ 91db142a-109f-414a-8d2c-9d3cd92bae40
md"""
### Production amplitude
The difference between production and scattering is that now one replace K-matrix with vector:
$A = [1-iK\rho]^{-1}
\begin{pmatrix}
\frac{\alpha_1 g}{m_{(1)}^2-s}\\
\frac{\alpha_2 h}{m_{(2)}^2-s}
\end{pmatrix}$
Where $a_1$ and $a_2$ are production factors which might be complex.
"""
# ╔═╡ 12a615bb-97b8-4fde-bd66-ac7083970e0e
RobustLocalResource("", joinpath("..","figures", "1x1_production.png"), cache=false)
# ╔═╡ f9dad52e-d6a2-46c4-a5b3-91a50c9425c1
md"""
Production couplings
- α₁ = $(@bind α1_E3 Slider(range(0.01,2,61), default=1.0, show_value=true))
- |α₂| = $(@bind α2_E3 Slider(range(-1,2,61), default=1.0, show_value=true))
- Arg(α₂) = $(@bind ϕ2_E3 Slider(range(0,2π,100), default=0.0, show_value=true))
"""
# ╔═╡ cf9733b3-bdc9-4e58-a7f3-87845eb907da
question_box(md"""
**E3.Q2:** What can the complexity of a production factor lead to?
How the plot above will change?
""")
# ╔═╡ 3019d77e-a41e-4fa5-a0bf-b91d3d72e96f
md"""
## Implementation
"""
# ╔═╡ 25758574-5da4-4fbe-946d-d55f6210b7e2
theme(:wong2, frame=:box, grid=false, minorticks=true,
guidefontvalign=:top, guidefonthalign=:right,
foreground_color_legend=nothing,
xlim=(:auto, :auto), ylim=(:auto, :auto),
lab="", xlab="Mass of system [GeV]")
# ╔═╡ ae68a0e2-46ce-4186-97b3-4b03b5f2d8ce
begin
struct TwoBodyChannel
m1::Complex{Float64}
m2::Complex{Float64}
L::Int
end
TwoBodyChannel(m1, m2; L::Int=0) = TwoBodyChannel(m1, m2, L)
#
function ρ(ch::TwoBodyChannel, m; ϕ=-π / 2)
ch.L != 0 && error("not implemented")
sqrt(cis(ϕ) * (m - (ch.m1 + ch.m2))) * cis(-ϕ / 2) *
sqrt(m + (ch.m1 + ch.m2)) *
sqrt((m^2 - (ch.m1 - ch.m2)^2)) /
m^2
end
end
# ╔═╡ 0360447c-c6c7-4ba6-8e5f-a20d5797995b
begin
struct Kmatrix{N,V}
poles::SVector{V,NamedTuple{(:M, :gs),Tuple{Float64,SVector{N,Float64}}}}
nonpoles::SMatrix{N,N,Float64}
end
function Kmatrix(_poles)
V, N = length(_poles), length(first(_poles).gs)
poles = map(_poles) do p
(; M=p.M, gs=SVector{N}(p.gs))
end |> SVector{V}
nonpoles = SMatrix{N,N}(fill(0.0, (N,N)))
return Kmatrix(poles, nonpoles)
end
#
amplitude(K::Kmatrix, m) =
sum((gs * gs') ./ (M^2 - m^2) for (M, gs) in K.poles) + K.nonpoles
#
npoles(X::Kmatrix{N,V}) where {N,V} = V
nchannels(X::Kmatrix{N,V}) where {N,V} = N
#
end
# ╔═╡ fb45f5a8-15c4-4695-b36b-f21aab1e3d80
begin
struct ProductionAmplitude{N,V}
T::Tmatrix{N,V}
αpoles::SVector{V,<:Number}
αnonpoles::SVector{N,<:Number}
end
#
npoles(X::ProductionAmplitude{N,V}) where {N,V} = V
nchannels(X::ProductionAmplitude{N,V}) where {N,V} = N
detD(X::ProductionAmplitude, m; ϕ=-π / 2) = detD(X.T, m; ϕ)
channels(X::ProductionAmplitude) = channels(X.T)
#
ProductionAmplitude(T::Tmatrix{N,V}) where {N,V} =
ProductionAmplitude(T, SVector{V}(ones(V)), SVector{N}(ones(N)))
#
function amplitude(A::ProductionAmplitude, m; ϕ=-π / 2)
@unpack T, αpoles, αnonpoles = A
P = αnonpoles
for (α, Mgs) in zip(αpoles, A.T.K.poles)
@unpack M, gs = Mgs
P += α .* gs ./ (M^2 - m^2)
end
D⁻¹ = inv(Dmatrix(T, m; ϕ))
return D⁻¹ * P
end
end
# ╔═╡ 1072afe6-bad7-4de3-9ad2-6dcef2b924bb
begin
struct Tmatrix{N,V}
K::Kmatrix{N,V}
channels::SVector{N,TwoBodyChannel}
end
#
function Dmatrix(T::Tmatrix{N,V}, m; ϕ=-π / 2) where {N,V}
𝕀 = Matrix(I, (N, N))
iρv = 1im .* ρ.(T.channels, m; ϕ) .* 𝕀
K = amplitude(T.K, m)
D = 𝕀 - K * iρv
end
detD(T::Tmatrix, m; ϕ=-π / 2) = det(Dmatrix(T, m; ϕ))
amplitude(T::Tmatrix, m; ϕ=-π / 2) = inv(Dmatrix(T, m; ϕ)) * amplitude(T.K, m)
#
npoles(X::Tmatrix{N,V}) where {N,V} = V
nchannels(X::Tmatrix{N,V}) where {N,V} = N
channels(X::Tmatrix) = X.channels
end
# ╔═╡ 0ff7e560-37ca-4016-bc01-741322402679
T1 = let
# thhree channels
channels = SVector(
TwoBodyChannel(1.1, 1.1),
TwoBodyChannel(2.2, 2.2),
TwoBodyChannel(1.3, 1.3))
# one bare pole
MG = [(M, gs=[g1_T1, g2_T1, g3_T1])]
#
K = Kmatrix(MG)
T = Tmatrix(K, channels)
end;
# ╔═╡ ce2c280e-6a55-4766-a0f9-941b448c41c9
begin
Γv_T1 = map(zip(T1.K.poles[1].gs, T1.channels)) do (g, ch)
m0 = T1.K.poles[1].M
Γi = g^2*ρ(ch, m0) / m0
round(Γi, digits=2)
end |> real
Markdown.parse("The sum: $(round(sum(Γv_T1), digits=2)) GeV = $(join(string.(Γv_T1), " + ")*" GeV"), that corresponds to $(join(string.(round.(100*Γv_T1./sum(Γv_T1), digits=1)) .*"%", ", ")), respectively.")
end
# ╔═╡ a6fd628c-86db-4d3f-836b-ff376cac7f1d
T2 = let
# two channels
channels = SVector(
TwoBodyChannel(1.1, 1.1),
TwoBodyChannel(1.3, 1.3))
# two bare pole
g1_T2 = 2.1
h2_T2 = 2.5
MG = [
(M=4.3, gs=[g1_T2, g2_T2]),
(M=6.3, gs=[h1_T2, h2_T2])]
#
K = Kmatrix(MG)
T = Tmatrix(K, channels)
end;
# ╔═╡ fbfc0e6c-775e-4025-ad06-e3f6e291ec52
let
plot(title=["Scattering cross section" ""], yaxis=nothing,
layout=grid(2,1, heights=(0.5,0.5)), size=(700,500))
plot!(2.6, 8, sp=1, lab="Tₖ[1,1]") do e
A = amplitude(T2, e)[1,1]
phsp = real(ρ(T2.channels[1], e)) * e
abs2(A) * phsp
end
vline!(sp=1, [T2.K.poles[1].M])
plot!(2.6, 8, sp=2, lab="Tₖ[2,2]") do e
A = amplitude(T2, e)[2,2]
phsp = real(ρ(T2.channels[1], e)) * e
abs2(A) * phsp
end
vline!(sp=2, [T2.K.poles[2].M])
plot!(2.6, 8, sp=2, lab="Tₖ[1,2]") do e
A = amplitude(T2, e)[1,2]
phsp = real(ρ(T2.channels[1], e)) * e
abs2(A) * phsp
abs2(A) * phsp
end
end
# ╔═╡ babfbc1f-7beb-44d1-b3c8-75309e8b817c
T3 = let
# one channels
channels = SVector(
TwoBodyChannel(1.1, 1.1))
# two bare pole
MG = [
(M=4.3, gs=[2.1]),
(M=6.3, gs=[2.5])]
#
K = Kmatrix(MG)
T = Tmatrix(K, channels)
end;
# ╔═╡ 8556c8f4-89e4-4544-ad73-4da8b43a7051
p = let
f1(x)=1/(T3.K.poles[1].M-x)
f2(x)=1/(T3.K.poles[2].M-x)
f3(x)=f1(x)+f2(x)
plot(title="K-matrix parameter")
plot!(rangeclamp(f1), 3, 7, lab="First pole, K1")
plot!(rangeclamp(f2), 3, 7, lab="Second pole, K2")
plot!(rangeclamp(f3), 3, 7, lab="Total")
vline!([T3.K.poles[1].M, T3.K.poles[2].M], linestyle=:dash)
hline!([0], color=:black, size=(400,300), leg=:top)
end;
# ╔═╡ e9c0d423-793d-4997-a0fd-5c67b41fffb2
answer_box(
TwoColumn(md"There are two poles because of which both K-matrix have asymptotics which interfere and results in 0 between them", plot(p))
)
# ╔═╡ ff61d6e1-5681-4d15-8164-62baee4613ba
A_E3 = ProductionAmplitude(T3, SVector{2}(α1_E3, α2_E3*cis(ϕ2_E3)), SVector{1}(0));
# ╔═╡ 7b4fa73c-1075-4271-8d2f-1668d98904ab
let
plot(title="Scattering cross section", yaxis=nothing)
plot!(2.6, 8, lab="Tₖ") do e
A = amplitude(T3, e)[1,1]
phsp = real(ρ(T3.channels[1], e)) * e
abs2(A) * phsp
end
vline!([T3.K.poles[1].M, T3.K.poles[2].M])
end
# ╔═╡ ebf8b842-99ce-40e8-9bf4-931471879bf9
function productionpole(T::Tmatrix, m, iR::Int; ϕ=-π / 2)
@unpack M, gs = T.K.poles[iR]
P = gs ./ (M^2 - m^2)
return inv(Dmatrix(T, m; ϕ)) * P
end
# ╔═╡ 9a2e8210-c140-4689-bb16-2aab3c3b2aaa
productionnonpole(T::Tmatrix{N,K}, m; ϕ=-π / 2) where {N,K} =
inv(Dmatrix(T, m; ϕ)) * ones(N)
#
# ╔═╡ 474e5d19-b537-42d2-9e92-2a26996cee2d
const iϵ = 1e-7im
# ╔═╡ 3e76dfec-e83c-46df-8838-b299a7aaa5e3
let
m0 = T1.K.poles[1].M
plot(title="Scattering cross section 1 → 1", yaxis=nothing)
# K-matrix
plot!(2.6, 8, lab="Tₖ[1,1]") do e
A = amplitude(T1, e)[1,1]
phsp = real(ρ(T1.channels[1], e)) * e
abs2(A) * phsp
end
vline!([m0], lab="m₀ (K-matrix pole)")
# BW
N_peak = abs2(amplitude(T1, m0+iϵ)[1,1])
plot!(2.6, 8, lab="BW") do e
Γ0=sum(Γv_T1)
A = m0*Γ0/(m0^2-e^2-1im*m0*Γ0)
phsp = real(ρ(T1.channels[1], e)) * e
N_peak * abs2(A) * phsp
end
vline!(map(T1.channels) do ch
real(ch.m1+ch.m2)
end, lab="thresholds", ls=:dash)
end
# ╔═╡ 35b9a451-5fac-46e2-97bb-ebc19d4b3418
function productionpole(A::ProductionAmplitude{N,V}, m, iR::Int; ϕ=-π / 2) where {N,V}
αnonpoles = SVector{N}(zeros(N))
αpoles = zeros(Complex{Float64}, V)
αpoles[iR] = A.αpoles[iR]
A = ProductionAmplitude(A.T, SVector{V}(αpoles), αnonpoles)
return amplitude(A, m; ϕ)
end
# ╔═╡ b90a1c10-8e57-4b2a-b48a-ccb78010a4f5
let
plot()
plot!(title="Production cross section", 2.6, 8, sp=1, lab="Total production", yaxis=nothing) do e
A = amplitude(A_E3, e)[1]
phsp = real(ρ(T3.channels[1], e)) * e
abs2(A) * phsp
end
map([1,2]) do ind
plot!(2.6, 8, sp=1, fill=0, alpha=0.2, lab="from R$(ind)") do e
A = productionpole(A_E3, e, ind)[1]
phsp = real(ρ(T3.channels[1], e)) * e
abs2(A) * phsp
end
end
vline!([T3.K.poles[1].M, T3.K.poles[2].M])
plot!()
end
# ╔═╡ 2aef1bd5-7a81-417b-a090-77644fc5f640
function productionnonpole(A::ProductionAmplitude{N,V}, m; ϕ=-π / 2) where {N,V}
@unpack T, αnonpoles = A
αpoles = SVector{V}(zeros(V))
A = ProductionAmplitude(T, αpoles, αnonpoles)
return amplitude(A, m; ϕ)
end
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
CalculusWithJulia = "a2e0e22d-7d4c-5312-9169-8b992201a882"
LaTeXStrings = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Parameters = "d96e819e-fc66-5662-9728-84c9c7592b0a"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
PlutoTeachingTools = "661c6b06-c737-4d37-b85c-46df65de6f69"
PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
[compat]
CalculusWithJulia = "~0.1.4"
LaTeXStrings = "~1.3.1"
Parameters = "~0.12.3"
Plots = "~1.39.0"
PlutoTeachingTools = "~0.2.14"
PlutoUI = "~0.7.58"
StaticArrays = "~1.9.3"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.10.2"
manifest_format = "2.0"
project_hash = "6ae51dbecc45796d31d4f3f87590513ec17217d5"
[[deps.AbstractPlutoDingetjes]]
deps = ["Pkg"]
git-tree-sha1 = "0f748c81756f2e5e6854298f11ad8b2dfae6911a"
uuid = "6e696c72-6542-2067-7265-42206c756150"
version = "1.3.0"
[[deps.Accessors]]
deps = ["CompositionsBase", "ConstructionBase", "Dates", "InverseFunctions", "LinearAlgebra", "MacroTools", "Markdown", "Test"]
git-tree-sha1 = "c0d491ef0b135fd7d63cbc6404286bc633329425"
uuid = "7d9f7c33-5ae7-4f3b-8dc6-eff91059b697"
version = "0.1.36"
[deps.Accessors.extensions]
AccessorsAxisKeysExt = "AxisKeys"
AccessorsIntervalSetsExt = "IntervalSets"
AccessorsStaticArraysExt = "StaticArrays"
AccessorsStructArraysExt = "StructArrays"
AccessorsUnitfulExt = "Unitful"
[deps.Accessors.weakdeps]
AxisKeys = "94b1ba4f-4ee9-5380-92f1-94cde586c3c5"
IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
StructArrays = "09ab397b-f2b6-538f-b94a-2f83cf4a842a"
Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.BitFlags]]
git-tree-sha1 = "2dc09997850d68179b69dafb58ae806167a32b1b"
uuid = "d1d4a3ce-64b1-5f1a-9ba4-7e7e69966f35"
version = "0.1.8"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9e2a6b69137e6969bab0152632dcb3bc108c8bdd"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+1"
[[deps.Cairo_jll]]
deps = ["Artifacts", "Bzip2_jll", "CompilerSupportLibraries_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "a4c43f59baa34011e303e76f5c8c91bf58415aaf"
uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a"
version = "1.18.0+1"
[[deps.CalculusWithJulia]]
deps = ["Base64", "Contour", "ForwardDiff", "HCubature", "IntervalSets", "JSON", "LinearAlgebra", "PlotUtils", "Random", "RecipesBase", "Reexport", "Requires", "Roots", "SpecialFunctions", "SplitApplyCombine", "Test"]
git-tree-sha1 = "df0608635021120c3d2e19a70edbb6506549fe14"
uuid = "a2e0e22d-7d4c-5312-9169-8b992201a882"
version = "0.1.4"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra"]
git-tree-sha1 = "575cd02e080939a33b6df6c5853d14924c08e35b"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.23.0"
weakdeps = ["SparseArrays"]
[deps.ChainRulesCore.extensions]
ChainRulesCoreSparseArraysExt = "SparseArrays"
[[deps.CodeTracking]]
deps = ["InteractiveUtils", "UUIDs"]
git-tree-sha1 = "c0216e792f518b39b22212127d4a84dc31e4e386"
uuid = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
version = "1.3.5"
[[deps.CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "59939d8a997469ee05c4b4944560a820f9ba0d73"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.4"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "PrecompileTools", "Random"]
git-tree-sha1 = "67c1f244b991cad9b0aa4b7540fb758c2488b129"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.24.0"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "eb7f0f8307f71fac7c606984ea5fb2817275d6e4"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.4"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "Requires", "Statistics", "TensorCore"]
git-tree-sha1 = "a1f44953f2382ebb937d60dafbe2deea4bd23249"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.10.0"
weakdeps = ["SpecialFunctions"]
[deps.ColorVectorSpace.extensions]
SpecialFunctionsExt = "SpecialFunctions"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "fc08e5930ee9a4e03f84bfb5211cb54e7769758a"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.10"
[[deps.Combinatorics]]
git-tree-sha1 = "08c8b6831dc00bfea825826be0bc8336fc369860"
uuid = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
version = "1.0.2"
[[deps.CommonSolve]]
git-tree-sha1 = "0eee5eb66b1cf62cd6ad1b460238e60e4b09400c"
uuid = "38540f10-b2f7-11e9-35d8-d573e4eb0ff2"
version = "0.2.4"
[[deps.CommonSubexpressions]]
deps = ["MacroTools", "Test"]
git-tree-sha1 = "7b8a93dba8af7e3b42fecabf646260105ac373f7"
uuid = "bbf7d656-a473-5ed7-a52c-81e309532950"
version = "0.3.0"
[[deps.Compat]]
deps = ["TOML", "UUIDs"]
git-tree-sha1 = "c955881e3c981181362ae4088b35995446298b80"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "4.14.0"
weakdeps = ["Dates", "LinearAlgebra"]
[deps.Compat.extensions]
CompatLinearAlgebraExt = "LinearAlgebra"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "1.1.0+0"
[[deps.CompositionsBase]]
git-tree-sha1 = "802bb88cd69dfd1509f6670416bd4434015693ad"
uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b"
version = "0.1.2"
weakdeps = ["InverseFunctions"]
[deps.CompositionsBase.extensions]
CompositionsBaseInverseFunctionsExt = "InverseFunctions"
[[deps.ConcurrentUtilities]]
deps = ["Serialization", "Sockets"]
git-tree-sha1 = "6cbbd4d241d7e6579ab354737f4dd95ca43946e1"
uuid = "f0e56b4a-5159-44fe-b623-3e5288b988bb"
version = "2.4.1"
[[deps.ConstructionBase]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "260fd2400ed2dab602a7c15cf10c1933c59930a2"
uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9"
version = "1.5.5"
weakdeps = ["IntervalSets", "StaticArrays"]
[deps.ConstructionBase.extensions]
ConstructionBaseIntervalSetsExt = "IntervalSets"
ConstructionBaseStaticArraysExt = "StaticArrays"
[[deps.Contour]]
git-tree-sha1 = "d05d9e7b7aedff4e5b51a029dced05cfb6125781"
uuid = "d38c429a-6771-53c6-b99e-75d170b6e991"
version = "0.6.2"
[[deps.DataAPI]]
git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.16.0"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "0f4b5d62a88d8f59003e43c25a8a90de9eb76317"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.18"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
git-tree-sha1 = "9e2f36d3c96a820c678f2f1f1782582fcf685bae"
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
version = "1.9.1"
[[deps.Dictionaries]]
deps = ["Indexing", "Random", "Serialization"]
git-tree-sha1 = "573c92ef22ee0783bfaa4007c732b044c791bc6d"
uuid = "85a47980-9c8c-11e8-2b9f-f7ca1fa99fb4"
version = "0.4.1"
[[deps.DiffResults]]
deps = ["StaticArraysCore"]
git-tree-sha1 = "782dd5f4561f5d267313f23853baaaa4c52ea621"
uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
version = "1.1.0"
[[deps.DiffRules]]
deps = ["IrrationalConstants", "LogExpFunctions", "NaNMath", "Random", "SpecialFunctions"]
git-tree-sha1 = "23163d55f885173722d1e4cf0f6110cdbaf7e272"
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
version = "1.15.1"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.9.3"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.EpollShim_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "8e9441ee83492030ace98f9789a654a6d0b1f643"
uuid = "2702e6a9-849d-5ed8-8c21-79e8b8f9ee43"
version = "0.0.20230411+0"
[[deps.ExceptionUnwrapping]]
deps = ["Test"]
git-tree-sha1 = "dcb08a0d93ec0b1cdc4af184b26b591e9695423a"
uuid = "460bff9d-24e4-43bc-9d9f-a8973cb893f4"
version = "0.1.10"
[[deps.Expat_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl"]
git-tree-sha1 = "4558ab818dcceaab612d1bb8c19cee87eda2b83c"
uuid = "2e619515-83b5-522b-bb60-26c02a35a201"
version = "2.5.0+0"
[[deps.FFMPEG]]
deps = ["FFMPEG_jll"]
git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8"
uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a"
version = "0.4.1"
[[deps.FFMPEG_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "PCRE2_jll", "Zlib_jll", "libaom_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"]
git-tree-sha1 = "466d45dc38e15794ec7d5d63ec03d776a9aff36e"
uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5"
version = "4.4.4+1"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.4"
[[deps.Fontconfig_jll]]
deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "21efd19106a55620a188615da6d3d06cd7f6ee03"
uuid = "a3f928ae-7b40-5064-980b-68af3947d34b"
version = "2.13.93+0"
[[deps.Format]]
git-tree-sha1 = "9c68794ef81b08086aeb32eeaf33531668d5f5fc"
uuid = "1fa38f19-a742-5d3f-a2b9-30dd87b9d5f8"
version = "1.3.7"
[[deps.ForwardDiff]]
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions"]
git-tree-sha1 = "cf0fe81336da9fb90944683b8c41984b08793dad"
uuid = "f6369f11-7733-5829-9624-2563aa707210"
version = "0.10.36"
weakdeps = ["StaticArrays"]
[deps.ForwardDiff.extensions]
ForwardDiffStaticArraysExt = "StaticArrays"
[[deps.FreeType2_jll]]
deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Zlib_jll"]
git-tree-sha1 = "d8db6a5a2fe1381c1ea4ef2cab7c69c2de7f9ea0"