-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernels.py
362 lines (321 loc) · 12.1 KB
/
kernels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
#/*******************************************************************************************/
#/* This file is part of the training material available at */
#/* https://github.com/jthies/PELS */
#/* You may redistribute it and/or modify it under the terms of the BSD-style licence */
#/* included in this software. */
#/* */
#/* Contact: Jonas Thies ([email protected]) */
#/* */
#/*******************************************************************************************/
from time import perf_counter
import numpy as np
import scipy
import numba
import sellcs
import sys
import os
have_c_kernels = False
have_RACE = False
try:
import kernels_cpu as cpu
have_c_kernels=True
print('Using C kernels on CPU')
except:
print('Failed to import/compile C kernels, you may need to adjust "make.inc".\n')
if '-use_RACE' in sys.argv or 'USE_RACE' in os.environ:
import race_mpk
print('RACE is loaded and available.')
have_RACE = race_mpk.have_RACE
# for benchmarking numpy/scipy implementations,
# uncomment this line instead of the above:
#import kernels_numpy as cpu
try:
from numba import cuda
from numba.cuda import is_cuda_array
import kernels_gpu as gpu
except:
print('Could not load cuda module and/or kernels')
gpu = cpu
cuda = None
def available_gpus():
if cuda is None or (os.environ.get('USE_CPU')=="1" or os.environ.get('USE_CPU')=="True"):
return 0
if cuda.is_available()==False:
return 0
return len(cuda.gpus)
def compile_all():
n=10
x=np.ones(n,dtype='float64')
y=np.ones(n,dtype='float64')
a=numba.float64(1.0)
b=numba.float64(1.0)
A1=scipy.sparse.csr_matrix(scipy.sparse.rand(n,n,0.6))
A2=sellcs.sellcs_matrix(A1, C=1, sigma=1)
# compile CPU kernels:
init(x,a)
z = clone(x)
s=dot(x,y)
axpby(a,x,b,y)
spmv(A1,x,y)
spmv(A2,x,y)
# compile GPU kernels:
if available_gpus()>0:
x = to_device(x)
tmp = from_device(x)
y = to_device(x)
A1 = to_device(A1)
tmp= from_device(A1)
A2 = to_device(A2)
tmp = from_device(A2)
init(x,a)
z = clone(x)
s=dot(x,y)
axpby(a,x,b,y)
spmv(A1,x,y)
spmv(A2,x,y)
diag_spmv(A1,x,y)
reset_counters()
def memory_benchmarks(type):
if type=='cpu':
return cpu.memory_benchmarks()
elif type=='gpu':
return gpu.memory_benchmarks()
else:
raise('type should be "cpu" or "gpu"')
# total number of calls
calls = {'spmv': 0, 'axpby': 0, 'dot': 0, 'init': 0}
# total elapsed time in seconds
time = {'spmv': 0.0, 'axpby': 0.0, 'dot': 0.0, 'init':0.0}
# total loaded data in GB
load = {'spmv': 0.0, 'axpby': 0.0, 'dot': 0.0, 'init':0.0}
# total stored data in GB
store = {'spmv': 0.0, 'axpby': 0.0, 'dot': 0.0, 'init':0.0}
# total floating point operations [GFlop]
flop = {'spmv': 0.0, 'axpby': 0.0, 'dot': 0.0, 'init':0.0}
# which benchmark to use for predicting memory bandwidth achievable by an operation.
# Benchmark values are currently hard-coded into kernels_cpu.py and kernels_gpu.py for Sapphire Rapids and A100, resp.
bench_map = {'spmv': 'triad', 'axpby': 'triad', 'dot': 'load', 'init': 'store'}
def reset_counters():
for k in calls.keys():
calls[k] = 0.0
time[k] = 0.0
load[k] = 0.0
store[k] = 0.0
flop[k] = 0.0
def same_array(x,y):
'''
returns 1 if the C pointer of the two arrays is identical, 0 otherwise
'''
if hasattr(x,'__cuda_array_interface__'):
return int(x.__cuda_array_interface__['data'][0]==y.__cuda_array_interface__['data'][0])
elif hasattr(x,'__array_interface__'):
return int(x.__array_interface__['data'][0]==y.__array_interface__['data'][0])
else:
return False
def to_device(A):
'''
If a GPU is found, this creates CUDA arrays and copies data to the device.
On the CPU, we check if '-numa' is set on the command-line, and if so,
copy the data arrays with correct first-touch initialization.
'''
if available_gpus()>0:
return gpu.to_device(A)
else:
if '-numa' in sys.argv:
A = copy(A)
return A
def from_device(A):
if available_gpus()>0:
return gpu.from_device(A)
else:
return A
def to_host(A):
if cuda and is_cuda_array(A):
return A.copy_to_host()
elif type(A)==scipy.sparse.csr_matrix or type(A)==sellcs.sellcs_matrix:
if available_gpus()>0:
A.indptr = A.cu_indptr.copy_to_host()
A.data = A.cu_data.copy_to_host()
A.indices = A.cu_indices.copy_to_host()
return A
def spmv(A, x, y):
t0 = perf_counter()
if cuda and is_cuda_array(x):
if not hasattr(A, 'cu_data'):
print('PerfWarning: copying matrix data to device in spmv call. Manually call kernels.to_device(A) to avoid this.')
A = to_device(A)
run_on = gpu
data = A.cu_data
indptr = A.cu_indptr
indices = A.cu_indices
else:
run_on = cpu
data = A.data
indptr = A.indptr
indices = A.indices
if type(A)==scipy.sparse.csr_matrix:
run_on.csr_spmv(data, indptr, indices, x, y)
elif type(A)==sellcs.sellcs_matrix:
run_on.sell_spmv(data, indptr, indices, A.C, x, y)
else:
raise TypeError('spmv wrapper only implemented for scipy.sparse.csr_matrix or sellcs.sellcs_matrix')
t1 = perf_counter()
time['spmv'] += t1-t0
calls['spmv'] += 1
load['spmv'] += 12*A.nnz+8*(A.shape[0]+A.shape[1])
store['spmv'] += 8*A.shape[0]
flop['spmv'] += 2*A.nnz
def diag_spmv(A, x, y):
if cuda and is_cuda_array(x):
gpu.vscale(A.cu_data, x, y)
else:
cpu.vscale(A.data.reshape(x.size), x, y)
def mpk_get_perm(mpk_handle, N):
if not have_RACE:
raise AssertionError('RACE is not available, you may need to add the -use_RACE flag and/or install the RACE library.')
return race_mpk.csr_mpk_get_perm(mpk_handle, N)
def mpk_setup(A, power, cacheSize, split):
if not have_RACE:
raise AssertionError('RACE is not available, you may need to add the -use_RACE flag and/or install the RACE library.')
if type(A)==scipy.sparse.csr_matrix:
data = A.data
indptr = A.indptr
indices = A.indices
mpk_handle=race_mpk.csr_mpk_setup(indptr, indices, data, power, cacheSize, split)
return mpk_handle
def mpk_free(mpk_handle):
if not have_RACE:
raise AssertionError('RACE is not available, you may need to add the -use_RACE flag and/or install the RACE library.')
race_mpk.csr_mpk_free(mpk_handle)
def mpk(mpk_handle,k,x,y):
#t0 = perf_counter()
race_mpk.csr_mpk(mpk_handle, k, x, y)
#t1 = perf_counter()
def mpk_neumann_apply(polyHandle, x, y):
t0 = perf_counter()
k= polyHandle.k
race_mpk.csr_mpk_neumann_apply(polyHandle.mpkHandle, k, x, y)
t1 = perf_counter()
time['spmv'] += t1-t0
calls['spmv'] += 2*k+1
if calls['spmv']>0:
load['spmv'] += (k+1)*(12*polyHandle.A1.nnz)-2*k*8*(polyHandle.A1.shape[1])+(2*k+1)*8*(polyHandle.A1.shape[0]+polyHandle.A1.shape[1])
store['spmv'] += (2*k+1)*8*polyHandle.A1.shape[0]
flop['spmv'] += (k+1)*2*polyHandle.A1.nnz-(2*k*2*polyHandle.A1.shape[1])
def clone(v):
w = None
if cuda and is_cuda_array(v):
w = cuda.device_array(shape=v.shape,dtype=v.dtype)
else:
w = np.empty_like(v)
# first-touch initialization
cpu.init(w,0.0)
return w
def permute_csr(X, perm):
if type(X) == scipy.sparse.csr_matrix:
data, indices, indptr = cpu.permute_csr_arrays(perm, X.data, X.indptr, X.indices)
A = scipy.sparse.csr_matrix((data, indices, indptr), shape=X.shape)
return A
else:
print("Error: permute_csr only applicable for scipy csr matrices. Retrning unpermuted matrix")
return X
def copy(X):
'''
Copy a vector or matrix (csr_matrix or sellcs_matrix)
that may live on a GPU, and assure first-touch initialization
on the CPU.
'''
if cuda and is_cuda_array(X):
Y = cuda.device_array_like(X)
Y[:] = X[:]
return Y
elif type(X) == np.ndarray:
return cpu.copy_vector(X)
elif type(X) == scipy.sparse.csr_matrix or type(X) == sellcs.sellcs_matrix:
data, indices, indptr = cpu.copy_csr_arrays(X.data, X.indptr, X.indices)
if type(X) == scipy.sparse.csr_matrix:
A = scipy.sparse.csr_matrix((data, indices, indptr), shape=X.shape)
elif type(X) == sellcs.sellcs_matrix:
permute = cpu.copy_vector(X.permute)
unpermute = cpu.copy_vector(X.unpermute)
A = sellcs.sellcs_matrix(A_arrays=(data, indices, indptr, permute, unpermute,X.nnz), shape=X.shape, C=X.C, sigma=X.sigma)
if hasattr(X, 'cu_data'):
A.cu_data = X.cu_data.copy()
if hasattr(X, 'cu_indices'):
A.cu_indices = X.cu_indices.copy()
if hasattr(X, 'cu_indptr'):
A.cu_indptr = X.cu_indptr.copy()
return A
def init(v, val):
t0 = perf_counter()
if cuda and is_cuda_array(v):
gpu.init(v,val)
else:
cpu.init(v,val)
t1 = perf_counter()
calls['init'] += 1
time['init'] += t1-t0
store['init'] += 8*v.size
def axpby(a,x,b,y):
t0 = perf_counter()
if cuda and is_cuda_array(y):
gpu.axpby(a,x,b,y)
else:
cpu.axpby(a,x,b,y)
t1 = perf_counter()
time['axpby'] += t1-t0
calls['axpby'] += 1
load['axpby'] += (2-same_array(x,y))*8*x.size
store['axpby'] += 8*x.size
flop['axpby'] += 2*x.size
def dot(x,y):
t0 = perf_counter()
if cuda and is_cuda_array(y):
s = gpu.dot(x,y)
else:
s = cpu.dot(x,y)
t1 = perf_counter()
time['dot'] += t1-t0
calls['dot'] += 1
load['dot'] += (2-same_array(x,y))*8*x.size
flop['dot'] += 2*x.size
return s
def perf_report(type):
'''
After running a solver, print a performance summary of the
kernels in this module (dot, axpby, spmv...). The argument 'type'
should be either 'cpu' or 'gpu', dependning on which hardware you
ran. It is used to get some benchmark values from files cpujson or
gpu.json. You should either adjust these files to match your system,
or remove them to skip printing the roofline upper bounds.
'''
bench = memory_benchmarks(type)
print('Hardware assumed for Roofline Model: %s'%(bench['label']))
have_bench = True
if bench['label'] == 'undefined':
have_bench = False
print('(roofline values will be skipped -- use cpu.json and/or gpu.json to provide memory bandwidth data)')
else:
print('(note that the hardware info is taken from [cpu|gpu].json, if does not match your system,\n'+
'you may want to update those files or delete them to skip the roofline prediction)')
if type == 'cpu':
nthreads = numba.get_num_threads()
print('Number of threads: %d'%(nthreads))
# total measured time
t_tot = 0
# model prediction
t_mod = 0
# total number of functions called
total_calls = 0
print('--------\t-----\t---------------\t---------------\t---------------')
print('kernel \tcalls\t bw_estimate \t t_meas \t t_meas/call ')
print('========\t=====\t===============\t===============\t===============')
for kern in ('dot', 'axpby', 'spmv'):
if calls[kern]>0:
t_tot += time[kern]
total_calls += calls[kern]
print('%8s\t%5d\t%8.4g GB/s\t%8.4g s \t%8.4g s \t'%
(kern, calls[kern], (load[kern]+store[kern])*1e-9/time[kern], time[kern], time[kern]/calls[kern]))
print('--------\t-----\t---------------\t---------------')
print('%8s\t \t \t \t %8.4g s '%('Total',t_tot))
print('--------\t-----\t---------------\t---------------')