Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

推理过程卡死,没有返回也不报错 #649

Open
Zurry59 opened this issue Jan 15, 2025 · 0 comments
Open

推理过程卡死,没有返回也不报错 #649

Zurry59 opened this issue Jan 15, 2025 · 0 comments

Comments

@Zurry59
Copy link

Zurry59 commented Jan 15, 2025

using transformers chat, demo如下:from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info

default: Load the model on the available device(s)

model = Qwen2VLForConditionalGeneration.from_pretrained(
"/home/azurengine/lzz/llm/qwen2_VL/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)

We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.

model = Qwen2VLForConditionalGeneration.from_pretrained(

"Qwen/Qwen2-VL-7B-Instruct",

torch_dtype=torch.bfloat16,

attn_implementation="flash_attention_2",

device_map="auto",

)

default processer

processor = AutoProcessor.from_pretrained("/home/azurengine/lzz/llm/qwen2_VL/Qwen2-VL-7B-Instruct")

The default range for the number of visual tokens per image in the model is 4-16384.

You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.

min_pixels = 2562828

max_pixels = 12802828

processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)

messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]

Preparation for inference

text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cpu")

Inference: Generation of the output

generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant