diff --git a/.github/workflows/virtual-environments.yml b/.github/workflows/virtual-environments.yml index 356736eb7caf..03f16bd2f014 100644 --- a/.github/workflows/virtual-environments.yml +++ b/.github/workflows/virtual-environments.yml @@ -48,11 +48,10 @@ jobs: dotnet test ./Tests/bin/Release/QuantConnect.Tests.dll --filter "FullyQualifiedName=QuantConnect.Tests.Python.PythonPackagesTests.TensorflowProbabilityTest" --blame-hang-timeout 120seconds --blame-crash # Run Hvplot Python Package Test dotnet test ./Tests/bin/Release/QuantConnect.Tests.dll --filter "FullyQualifiedName=QuantConnect.Tests.Python.PythonPackagesTests.HvplotTest" --blame-hang-timeout 120seconds --blame-crash - # Run Stellargraph Python Package Test - dotnet test ./Tests/bin/Release/QuantConnect.Tests.dll --filter "FullyQualifiedName=QuantConnect.Tests.Python.PythonPackagesTests.StellargraphTest" --blame-hang-timeout 120seconds --blame-crash # Run Keras Python Package Test dotnet test ./Tests/bin/Release/QuantConnect.Tests.dll --filter "FullyQualifiedName=QuantConnect.Tests.Python.PythonPackagesTests.KerasTest" --blame-hang-timeout 120seconds --blame-crash - # Run Scikeras Python Package Test - dotnet test ./Tests/bin/Release/QuantConnect.Tests.dll --filter "FullyQualifiedName=QuantConnect.Tests.Python.PythonPackagesTests.ScikerasTest" --blame-hang-timeout 120seconds --blame-crash # Run Transformers - dotnet test ./Tests/bin/Release/QuantConnect.Tests.dll --filter "FullyQualifiedName=QuantConnect.Tests.Python.PythonPackagesTests.Transformers|XTransformers" --blame-hang-timeout 120seconds --blame-crash \ No newline at end of file + dotnet test ./Tests/bin/Release/QuantConnect.Tests.dll --filter "FullyQualifiedName=QuantConnect.Tests.Python.PythonPackagesTests.Transformers" --blame-hang-timeout 120seconds --blame-crash + dotnet test ./Tests/bin/Release/QuantConnect.Tests.dll --filter "FullyQualifiedName=QuantConnect.Tests.Python.PythonPackagesTests.XTransformers" --blame-hang-timeout 120seconds --blame-crash + # Run Shap + dotnet test ./Tests/bin/Release/QuantConnect.Tests.dll --filter "FullyQualifiedName=QuantConnect.Tests.Python.PythonPackagesTests.ShapTest" --blame-hang-timeout 120seconds --blame-crash \ No newline at end of file diff --git a/Algorithm.CSharp/QuantConnect.Algorithm.CSharp.csproj b/Algorithm.CSharp/QuantConnect.Algorithm.CSharp.csproj index 96dfa80733c1..28df0f8d7d81 100644 --- a/Algorithm.CSharp/QuantConnect.Algorithm.CSharp.csproj +++ b/Algorithm.CSharp/QuantConnect.Algorithm.CSharp.csproj @@ -34,7 +34,7 @@ portable - + diff --git a/Algorithm.Framework/QuantConnect.Algorithm.Framework.csproj b/Algorithm.Framework/QuantConnect.Algorithm.Framework.csproj index 724dc6a0a8da..b3ce44c5f62a 100644 --- a/Algorithm.Framework/QuantConnect.Algorithm.Framework.csproj +++ b/Algorithm.Framework/QuantConnect.Algorithm.Framework.csproj @@ -29,7 +29,7 @@ LICENSE - + diff --git a/Algorithm.Python/ObjectStoreExampleAlgorithm.py b/Algorithm.Python/ObjectStoreExampleAlgorithm.py index 66596110f9cf..9b0d727a5265 100644 --- a/Algorithm.Python/ObjectStoreExampleAlgorithm.py +++ b/Algorithm.Python/ObjectStoreExampleAlgorithm.py @@ -49,7 +49,7 @@ def Initialize(self): history = pd.read_csv(StringIO(values), header=None, index_col=0, squeeze=True) history.index = pd.to_datetime(history.index) - for time, close in history.iteritems(): + for time, close in history.items(): self.SPY_Close.Update(time, close) else: @@ -59,7 +59,7 @@ def Initialize(self): # we're pulling the last year's worth of SPY daily trade bars to fee into our indicators history = self.History(self.SPY, timedelta(365), Resolution.Daily).close.unstack(0).squeeze() - for time, close in history.iteritems(): + for time, close in history.items(): self.SPY_Close.Update(time, close) # save our warm up data so next time we don't need to issue the history request diff --git a/Algorithm.Python/QuantConnect.Algorithm.Python.csproj b/Algorithm.Python/QuantConnect.Algorithm.Python.csproj index 7aff8c778c32..a85124fe1c7e 100644 --- a/Algorithm.Python/QuantConnect.Algorithm.Python.csproj +++ b/Algorithm.Python/QuantConnect.Algorithm.Python.csproj @@ -39,7 +39,7 @@ - + diff --git a/Algorithm.Python/SetHoldingsRegressionAlgorithm.py b/Algorithm.Python/SetHoldingsRegressionAlgorithm.py index 1504d128e7f2..a5bdd4f12d54 100644 --- a/Algorithm.Python/SetHoldingsRegressionAlgorithm.py +++ b/Algorithm.Python/SetHoldingsRegressionAlgorithm.py @@ -34,6 +34,6 @@ def OnData(self, data): ''' if not self.Portfolio.Invested: self.SetHoldings("SPY", 0.1) - self.SetHoldings("SPY", np.float(0.20)) + self.SetHoldings("SPY", float(0.20)) self.SetHoldings("SPY", np.float64(0.30)) self.SetHoldings("SPY", 1) diff --git a/Algorithm/QuantConnect.Algorithm.csproj b/Algorithm/QuantConnect.Algorithm.csproj index b2c0eb72d113..f4d57c620f85 100644 --- a/Algorithm/QuantConnect.Algorithm.csproj +++ b/Algorithm/QuantConnect.Algorithm.csproj @@ -29,7 +29,7 @@ LICENSE - + diff --git a/AlgorithmFactory/Python/Wrappers/AlgorithmPythonWrapper.cs b/AlgorithmFactory/Python/Wrappers/AlgorithmPythonWrapper.cs index 6d12891204b8..36ff9b2b4d47 100644 --- a/AlgorithmFactory/Python/Wrappers/AlgorithmPythonWrapper.cs +++ b/AlgorithmFactory/Python/Wrappers/AlgorithmPythonWrapper.cs @@ -782,7 +782,7 @@ public void OnEndOfDay() // Only throws if there is an error in its implementation body catch (PythonException exception) { - if (!exception.Message.StartsWith("OnEndOfDay()")) + if (!exception.Message.Contains("OnEndOfDay() missing 1 required positional argument")) { _baseAlgorithm.SetRunTimeError(exception); } @@ -810,7 +810,7 @@ public void OnEndOfDay(Symbol symbol) // Only throws if there is an error in its implementation body catch (PythonException exception) { - if (!exception.Message.StartsWith("OnEndOfDay()")) + if (!exception.Message.Contains("OnEndOfDay() takes 1 positional argument but 2 were given")) { _baseAlgorithm.SetRunTimeError(exception); } diff --git a/AlgorithmFactory/QuantConnect.AlgorithmFactory.csproj b/AlgorithmFactory/QuantConnect.AlgorithmFactory.csproj index 1d71dfc20eca..ed7f9b869cae 100644 --- a/AlgorithmFactory/QuantConnect.AlgorithmFactory.csproj +++ b/AlgorithmFactory/QuantConnect.AlgorithmFactory.csproj @@ -28,7 +28,7 @@ LICENSE - + diff --git a/Common/QuantConnect.csproj b/Common/QuantConnect.csproj index f1d8936a626f..0a428884df08 100644 --- a/Common/QuantConnect.csproj +++ b/Common/QuantConnect.csproj @@ -34,7 +34,7 @@ - + diff --git a/DockerfileLeanFoundation b/DockerfileLeanFoundation index 244ccbee0c5a..f4892051f0ab 100644 --- a/DockerfileLeanFoundation +++ b/DockerfileLeanFoundation @@ -26,13 +26,13 @@ RUN apt-get update && apt-get install -y dotnet-sdk-6.0 && \ apt-get clean && apt-get autoclean && apt-get autoremove --purge -y && rm -rf /var/lib/apt/lists/* # Set PythonDLL variable for PythonNet -ENV PYTHONNET_PYDLL="/opt/miniconda3/lib/libpython3.8.so" +ENV PYTHONNET_PYDLL="/opt/miniconda3/lib/libpython3.11.so" # Install miniconda -ENV CONDA="Miniconda3-py38_23.1.0-1-Linux-x86_64.sh" +ENV CONDA="Miniconda3-py311_24.1.2-0-Linux-x86_64.sh" ENV PATH="/opt/miniconda3/bin:${PATH}" RUN wget -q https://cdn.quantconnect.com/miniconda/${CONDA} && \ - bash ${CONDA} -b -p /opt/miniconda3 && rm -rf ${CONDA} + bash ${CONDA} -b -p /opt/miniconda3 && rm -rf ${CONDA} && conda config --set solver classic # Install java runtime for h2o lib RUN wget https://download.oracle.com/java/17/latest/jdk-17_linux-x64_bin.deb \ @@ -45,221 +45,225 @@ ENV PIP_DEFAULT_TIMEOUT=120 # Install all packages RUN pip install --no-cache-dir \ - cython==0.29.36 \ - pandas==1.5.3 \ - scipy==1.10.1 \ - numpy==1.23.5 \ - wrapt==1.14.1 \ - astropy==5.2.2 \ - beautifulsoup4==4.12.2 \ - dill==0.3.7 \ - jsonschema==4.19.1 \ - lxml==4.9.3 \ - msgpack==1.0.7 \ - numba==0.56.4 \ - xarray==2023.1.0 \ - plotly==5.17.0 \ - jupyterlab==3.4.4 \ - tensorflow==2.13.1 \ + cython==3.0.9 \ + pandas==2.1.4 \ + scipy==1.11.4 \ + numpy==1.26.4 \ + wrapt==1.16.0 \ + astropy==6.0.0 \ + beautifulsoup4==4.12.3 \ + dill==0.3.8 \ + jsonschema==4.21.1 \ + lxml==5.1.0 \ + msgpack==1.0.8 \ + numba==0.59.0 \ + xarray==2024.2.0 \ + plotly==5.20.0 \ + jupyterlab==4.1.5 \ + tensorflow==2.16.1 \ docutils==0.20.1 \ cvxopt==1.3.2 \ gensim==4.3.2 \ - keras==2.13.1 \ - lightgbm==4.1.0 \ - mpi4py==3.1.5 \ + keras==3.0.5 \ + lightgbm==4.3.0 \ nltk==3.8.1 \ graphviz==0.20.1 \ - cmdstanpy==1.2.0 \ - copulae==0.7.8 \ - featuretools==1.27.0 \ - PuLP==2.7.0 \ - pymc==5.6.1 \ + cmdstanpy==1.2.1 \ + copulae==0.7.9 \ + featuretools==1.30.0 \ + PuLP==2.8.0 \ + pymc==5.10.4 \ rauth==0.7.3 \ - scikit-learn==1.3.2 \ - scikit-multiflow==0.5.3 \ - scikit-optimize==0.9.0 \ - aesara==2.9.2 \ - tsfresh==0.20.1 \ - tslearn==0.6.2 \ + scikit-learn==1.4.1.post1 \ + scikit-optimize==0.10.0 \ + aesara==2.9.3 \ + tsfresh==0.20.2 \ + tslearn==0.6.3 \ tweepy==4.14.0 \ - PyWavelets==1.4.1 \ - umap-learn==0.5.3 \ - fastai==2.7.13 \ - arch==5.6.0 \ - copulas==0.9.2 \ + PyWavelets==1.5.0 \ + umap-learn==0.5.5 \ + fastai==2.7.14 \ + arch==6.3.0 \ + copulas==0.10.1 \ creme==0.6.1 \ cufflinks==0.17.3 \ gym==0.26.2 \ - ipywidgets==8.1.1 \ + ipywidgets==8.1.2 \ deap==1.4.1 \ - cvxpy==1.4.1 \ - pykalman==0.9.5 \ + pykalman==0.9.7 \ + cvxpy==1.4.2 \ pyportfolioopt==1.5.5 \ - pmdarima==2.0.3 \ - pyro-ppl==1.8.6 \ - riskparityportfolio==0.4 \ + pmdarima==2.0.4 \ + pyro-ppl==1.9.0 \ + riskparityportfolio==0.5.1 \ sklearn-json==0.1.0 \ - statsmodels==0.13.5 \ - QuantLib==1.31.1 \ - xgboost==2.0.0 \ - dtw-python==1.3.0 \ - gluonts==0.13.7 \ + statsmodels==0.14.1 \ + QuantLib==1.33 \ + xgboost==2.0.3 \ + dtw-python==1.3.1 \ + gluonts==0.14.4 \ gplearn==0.4.2 \ - jax==0.4.13 \ - jaxlib==0.4.13 \ + jax==0.4.25 \ + jaxlib==0.4.25 \ keras-rl==0.4.2 \ - pennylane==0.32.0 \ - PennyLane-Lightning==0.32.0 \ - pennylane-qiskit==0.32.0 \ - qiskit==0.44.2 \ - neural-tangents==0.6.2 \ + pennylane==0.35.1 \ + PennyLane-Lightning==0.35.1 \ + pennylane-qiskit==0.35.1 \ + qiskit==1.0.2 \ + neural-tangents==0.6.5 \ mplfinance==0.12.10b0 \ - hmmlearn==0.3.0 \ - catboost==1.2.2 \ + hmmlearn==0.3.2 \ + catboost==1.2.3 \ fastai2==0.0.30 \ scikit-tda==1.0.0 \ - ta==0.10.2 \ - seaborn==0.13.0 \ - optuna==3.4.0 \ + ta==0.11.0 \ + seaborn==0.13.2 \ + optuna==3.5.0 \ findiff==0.10.0 \ - sktime==0.24.0 \ + sktime==0.27.1 \ hyperopt==0.2.7 \ bayesian-optimization==1.4.3 \ - pingouin==0.5.3 \ - quantecon==0.7.1 \ - matplotlib==3.7.3 \ + pingouin==0.5.4 \ + quantecon==0.7.2 \ + matplotlib==3.7.5 \ sdeint==0.3.0 \ - pandas_market_calendars==4.3.1 \ - dgl==1.1.2 \ - ruptures==1.1.8 \ - simpy==4.0.2 \ + pandas_market_calendars==4.4.0 \ + dgl==2.1.0 \ + ruptures==1.1.9 \ + simpy==4.1.1 \ scikit-learn-extra==0.3.0 \ - ray==2.7.1 \ - "ray[tune]"==2.7.1 \ - "ray[rllib]"==2.7.1 \ + ray==2.9.3 \ + "ray[tune]"==2.9.3 \ + "ray[rllib]"==2.9.3 \ fastText==0.9.2 \ - h2o==3.44.0.1 \ + h2o==3.46.0.1 \ prophet==1.1.5 \ - torch==2.1.0 \ - torchvision==0.16.0 \ - ax-platform==0.3.3 \ + torch==2.2.1 \ + torchvision==0.17.1 \ + ax-platform==0.3.7 \ alphalens-reloaded==0.4.3 \ pyfolio-reloaded==0.9.5 \ - altair==5.1.2 \ - stellargraph==1.2.1 \ - modin==0.22.3 \ - persim==0.3.1 \ - ripser==0.6.4 \ - pydmd==0.4.1.post2308 \ - EMD-signal==1.5.2 \ - spacy==3.7.2 \ + altair==5.2.0 \ + modin==0.26.1 \ + persim==0.3.5 \ + ripser==0.6.8 \ + pydmd==1.0.0 \ + spacy==3.7.4 \ pandas-ta==0.3.14b \ - pytorch-ignite==0.4.12 \ + pytorch-ignite==0.4.13 \ tensorly==0.8.1 \ - mlxtend==0.23.0 \ - shap==0.43.0 \ + mlxtend==0.23.1 \ + shap==0.45.0 \ lime==0.2.0.1 \ - tensorflow-probability==0.21.0 \ + tensorflow-probability==0.24.0 \ mpmath==1.3.0 \ tensortrade==1.0.3 \ - polars==0.19.11 \ - stockstats==0.5.4 \ - autokeras==1.1.0 \ + polars==0.20.15 \ + stockstats==0.6.2 \ + autokeras==2.0.0 \ QuantStats==0.0.62 \ hurst==0.0.5 \ - numerapi==2.16.1 \ + numerapi==2.18.0 \ pymdptoolbox==4.0-b3 \ - fuzzy-c-means==1.6.3 \ - panel==1.2.3 \ - hvplot==0.9.0 \ - line-profiler==4.1.1 \ + panel==1.3.8 \ + hvplot==0.9.2 \ + line-profiler==4.1.2 \ py-heat==0.0.6 \ py-heat-magic==0.0.2 \ - bokeh==3.1.1 \ - tensorflow-decision-forests==1.5.0 \ - river==0.14.0 \ + bokeh==3.3.4 \ + tensorflow-decision-forests==1.9.0 \ + river==0.21.0 \ stumpy==1.12.0 \ - pyvinecopulib==0.6.3 \ + pyvinecopulib==0.6.4 \ ijson==3.2.3 \ - jupyter-resource-usage==0.7.2 \ + jupyter-resource-usage==1.0.2 \ injector==0.21.0 \ openpyxl==3.1.2 \ xlrd==2.0.1 \ - mljar-supervised==1.0.2 \ + mljar-supervised==1.1.6 \ dm-tree==0.1.8 \ - lz4==4.3.2 \ - ortools==9.7.2996 \ + lz4==4.3.3 \ + ortools==9.9.3963 \ py_vollib==1.0.1 \ - tensorflow-addons==0.21.0 \ thundergbm==0.3.17 \ yellowbrick==1.5 \ livelossplot==0.5.5 \ gymnasium==0.28.1 \ - interpret==0.4.4 \ - DoubleML==0.7.0 \ - jupyter-bokeh==3.0.7 \ - imbalanced-learn==0.11.0 \ - scikeras==0.12.0 \ - openai==1.3.5 \ - lazypredict==0.2.12 \ - fracdiff==0.9.0 \ - darts==0.24.0 \ - fastparquet==2023.8.0 \ - tables==3.8.0 \ - dimod==0.12.3 \ - dwave-samplers==1.0.0 \ + interpret==0.5.1 \ + DoubleML==0.7.1 \ + jupyter-bokeh==4.0.0 \ + imbalanced-learn==0.12.0 \ + openai==1.14.3 \ + lazypredict-nightly==0.3.0 \ + darts==0.28.0 \ + fastparquet==2024.2.0 \ + tables==3.9.2 \ + dimod==0.12.14 \ + dwave-samplers==1.2.0 \ python-statemachine==2.1.2 \ pymannkendall==1.4.3 \ - Pyomo==6.6.2 \ - gpflow==2.9.0 \ - pyarrow==13.0.0 \ - dwave-ocean-sdk==6.1.1 \ + Pyomo==6.7.1 \ + gpflow==2.9.1 \ + pyarrow==15.0.1 \ + dwave-ocean-sdk==6.9.0 \ chardet==5.2.0 \ - stable-baselines3==2.1.0 \ + stable-baselines3==2.2.1 \ Shimmy==1.3.0 \ - pystan==3.7.0 \ + pystan==3.9.0 \ FixedEffectModel==0.0.5 \ - tick==0.7.0.1 \ - transformers==4.34.0 \ - Rbeast==0.1.16 \ - langchain==0.0.341 \ - tensorflow-ranking==0.5.3 \ - pomegranate==1.0.3 \ - tigramite==5.2.3.1 \ - MAPIE==0.7.0 \ - mlforecast==0.9.3 \ - functime==0.8.4 \ + transformers==4.38.2 \ + Rbeast==0.1.19 \ + langchain==0.1.12 \ + pomegranate==1.0.4 \ + MAPIE==0.8.3 \ + mlforecast==0.12.0 \ + functime==0.9.5 \ tensorrt==8.6.1.post1 \ - x-transformers==1.26.0 \ - Werkzeug==2.3.8 + x-transformers==1.27.19 \ + Werkzeug==3.0.1 \ + TPOT==0.12.2 \ + llama-index==0.10.19 \ + mlflow==2.11.1 \ + ngboost==0.5.1 \ + pycaret==3.3.0 \ + control==0.9.4 \ + pgmpy==0.1.25 \ + mgarch==0.3.0 \ + jupyter-ai==2.12.0 \ + keras-tcn==3.5.0 \ + neuralprophet[live]==0.8.0 \ + Riskfolio-Lib==6.0.0 \ + fuzzy-c-means==1.7.2 \ + EMD-signal==1.6.0 \ + dask[complete]==2024.3.1 RUN conda install -c conda-forge -y cudatoolkit=11.8.0 && conda install -c nvidia -y cuda-compiler=12.2.2 && conda clean -y --all ENV XLA_FLAGS=--xla_gpu_cuda_data_dir=/opt/miniconda3/ ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/miniconda3/pkgs/cudatoolkit-11.8.0-h6a678d5_0/lib/:/opt/miniconda3/lib/python3.8/site-packages/nvidia/cudnn/lib/:/opt/miniconda3/lib/python3.8/site-packages/tensorrt_libs/ ENV CUDA_MODULE_LOADING=LAZY +# mamba-ssm & causal requires nvidia capabilities to be installed. iisignature requires numpy to be already installed +RUN pip install --no-cache-dir mamba-ssm==1.2.0.post1 causal-conv1d==1.2.0.post2 iisignature==0.24 + # Install dwave tool RUN dwave install --all -y # Install 'ipopt' solver for 'Pyomo' -RUN conda install -c conda-forge ipopt==3.14.13 \ +RUN conda install -c conda-forge ipopt==3.14.14 \ && conda clean -y --all -# We install need to install separately else fails to find numpy -RUN pip install --no-cache-dir Riskfolio-Lib==4.4.2 iisignature==0.24 - # Install spacy models RUN python -m spacy download en_core_web_md && python -m spacy download en_core_web_sm RUN conda install -y -c conda-forge \ - openmpi=4.1.6 \ + openmpi=5.0.2 \ && conda clean -y --all # Install PyTorch Geometric RUN TORCH=$(python -c "import torch; print(torch.__version__)") && \ CUDA=$(python -c "import torch; print('cu' + torch.version.cuda.replace('.', ''))") && \ pip install --no-cache-dir -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html \ - torch-scatter==2.1.2 torch-sparse==0.6.18 torch-cluster==1.6.3 torch-spline-conv==1.2.2 torch-geometric==2.4.0 + torch-scatter==2.1.2 torch-sparse==0.6.18 torch-cluster==1.6.3 torch-spline-conv==1.2.2 torch-geometric==2.5.1 # Install nltk data RUN python -m nltk.downloader -d /usr/share/nltk_data punkt && \ @@ -267,16 +271,6 @@ RUN python -m nltk.downloader -d /usr/share/nltk_data punkt && \ python -m nltk.downloader -d /usr/share/nltk_data stopwords && \ python -m nltk.downloader -d /usr/share/nltk_data wordnet -# Install ppscore -RUN wget -q https://cdn.quantconnect.com/ppscore/ppscore-master-ce93fa3.zip && \ - unzip -q ppscore-master-ce93fa3.zip && cd ppscore-master && \ - pip install . && cd .. && rm -rf ppscore-master && rm ppscore-master-ce93fa3.zip - -# Install DX Analytics -RUN wget -q https://cdn.quantconnect.com/dx/dx-master-69922c0.zip && \ - unzip -q dx-master-69922c0.zip && cd dx-master && \ - pip install . && cd .. && rm -rf dx-master && rm dx-master-69922c0.zip - # Install Pyrb RUN wget -q https://cdn.quantconnect.com/pyrb/pyrb-master-250054e.zip && \ unzip -q pyrb-master-250054e.zip && cd pyrb-master && \ @@ -291,9 +285,8 @@ RUN wget -q https://cdn.quantconnect.com/ssm/ssm-master-646e188.zip && \ RUN wget -q https://cdn.quantconnect.com/ta-lib/ta-lib-0.4.0-src.tar.gz && \ tar -zxvf ta-lib-0.4.0-src.tar.gz && cd ta-lib && \ ./configure --prefix=/usr && make && make install && \ - wget -q https://cdn.quantconnect.com/ta-lib/TA_Lib-0.4.18.zip && \ - unzip -q TA_Lib-0.4.18.zip && cd ta-lib-TA_Lib-0.4.18 && \ - python setup.py install && cd ../.. && rm -rf ta-lib && rm ta-lib-0.4.0-src.tar.gz + cd .. && rm -rf ta-lib && rm ta-lib-0.4.0-src.tar.gz && \ + pip install --no-cache-dir TA-Lib==0.4.28 RUN echo "{\"argv\":[\"python\",\"-m\",\"ipykernel_launcher\",\"-f\",\"{connection_file}\"],\"display_name\":\"Foundation-Py-Default\",\"language\":\"python\",\"metadata\":{\"debugger\":true}}" > /opt/miniconda3/share/jupyter/kernels/python3/kernel.json diff --git a/DockerfileLeanFoundationARM b/DockerfileLeanFoundationARM index ebb437f73eef..fa4fbd6cb770 100644 --- a/DockerfileLeanFoundationARM +++ b/DockerfileLeanFoundationARM @@ -12,7 +12,7 @@ CMD ["/sbin/my_init"] # Install OS Packages: # Misc tools for running Python.NET and IB inside a headless container. RUN add-apt-repository ppa:ubuntu-toolchain-r/test && apt-get update \ - && apt-get install -y git libgtk2.0.0 cmake bzip2 curl unzip wget python3-pip python3-opengl zlib1g-dev \ + && apt-get install -y git libgtk2.0.0 bzip2 curl unzip wget python3-pip python3-opengl zlib1g-dev \ xvfb libxrender1 libxtst6 libxi6 libglib2.0-dev libopenmpi-dev libstdc++6 openmpi-bin \ r-base pandoc libcurl4-openssl-dev \ openjdk-11-jdk openjdk-11-jre bbe \ @@ -29,10 +29,10 @@ RUN wget https://dot.net/v1/dotnet-install.sh && \ ENV DOTNET_ROOT="/root/.dotnet" # Set PythonDLL variable for PythonNet -ENV PYTHONNET_PYDLL="/opt/miniconda3/lib/libpython3.8.so" +ENV PYTHONNET_PYDLL="/opt/miniconda3/lib/libpython3.11.so" # Install miniconda -ENV CONDA="Miniconda3-py38_23.1.0-1-Linux-aarch64.sh" +ENV CONDA="Miniconda3-py311_24.1.2-0-Linux-aarch64.sh" ENV PATH="/opt/miniconda3/bin:${PATH}" RUN wget -q https://cdn.quantconnect.com/miniconda/${CONDA} && \ bash ${CONDA} -b -p /opt/miniconda3 && rm -rf ${CONDA} @@ -47,175 +47,171 @@ RUN apt-get update && apt-get install -y alien dpkg-dev debhelper build-essentia ENV PIP_DEFAULT_TIMEOUT=120 # Install numpy first to avoid it not being resolved when installing libraries that depend on it next -RUN pip install --no-cache-dir numpy==1.23.5 +RUN pip install --no-cache-dir numpy==1.26.4 + +# Install newer (than provided by ubuntu) cmake required by scikit build process +RUN conda install -c conda-forge cmake==3.28.4 && conda clean -y --all # The list of packages in this image is shorter than the list in the AMD images # This list only includes packages that can be installed within 2 minutes on ARM RUN pip install --no-cache-dir \ - cython==0.29.36 \ - pandas==1.5.3 \ - scipy==1.10.1 \ - numpy==1.23.5 \ - wrapt==1.14.1 \ - astropy==5.2.2 \ - beautifulsoup4==4.12.2 \ - dill==0.3.7 \ - jsonschema==4.19.1 \ - lxml==4.9.3 \ - msgpack==1.0.7 \ - numba==0.56.4 \ - xarray==2023.1.0 \ - plotly==5.17.0 \ - jupyterlab==3.4.4 \ - tensorflow==2.13.1 \ + cython==3.0.9 \ + pandas==2.1.4 \ + scipy==1.11.4 \ + numpy==1.26.4 \ + wrapt==1.16.0 \ + astropy==6.0.0 \ + beautifulsoup4==4.12.3 \ + dill==0.3.8 \ + jsonschema==4.21.1 \ + lxml==5.1.0 \ + msgpack==1.0.8 \ + numba==0.59.0 \ + xarray==2024.2.0 \ + plotly==5.20.0 \ + jupyterlab==4.1.5 \ + tensorflow==2.16.1 \ docutils==0.20.1 \ gensim==4.3.2 \ - keras==2.13.1 \ - lightgbm==4.1.0 \ - mpi4py==3.1.5 \ + keras==3.0.5 \ + lightgbm==4.3.0 \ nltk==3.8.1 \ graphviz==0.20.1 \ - cmdstanpy==1.2.0 \ - copulae==0.7.8 \ - featuretools==1.27.0 \ - PuLP==2.7.0 \ - pymc==5.6.1 \ + cmdstanpy==1.2.1 \ + copulae==0.7.9 \ + featuretools==1.30.0 \ + PuLP==2.8.0 \ + pymc==5.10.4 \ rauth==0.7.3 \ - scikit-learn==1.3.2 \ - scikit-multiflow==0.5.3 \ - scikit-optimize==0.9.0 \ - aesara==2.9.2 \ - tsfresh==0.20.1 \ - tslearn==0.6.2 \ + scikit-learn==1.4.1.post1 \ + scikit-optimize==0.10.0 \ + aesara==2.9.3 \ + tsfresh==0.20.2 \ + tslearn==0.6.3 \ tweepy==4.14.0 \ - PyWavelets==1.4.1 \ - umap-learn==0.5.3 \ - fastai==2.7.13 \ - arch==5.6.0 \ - copulas==0.9.2 \ + PyWavelets==1.5.0 \ + umap-learn==0.5.5 \ + fastai==2.7.14 \ + arch==6.3.0 \ + copulas==0.10.1 \ cufflinks==0.17.3 \ gym==0.26.2 \ - ipywidgets==8.1.1 \ + ipywidgets==8.1.2 \ deap==1.4.1 \ - cvxpy==1.4.1 \ - pykalman==0.9.5 \ - pyro-ppl==1.8.6 \ + pykalman==0.9.7 \ + cvxpy==1.4.2 \ + pyro-ppl==1.9.0 \ sklearn-json==0.1.0 \ - dtw-python==1.3.0 \ - gluonts==0.13.7 \ + dtw-python==1.3.1 \ + gluonts==0.14.4 \ gplearn==0.4.2 \ - jax==0.4.12 \ - pennylane==0.32.0 \ - PennyLane-Lightning==0.32.0 \ - pennylane-qiskit==0.32.0 \ + jax==0.4.25 \ + pennylane==0.35.1 \ + PennyLane-Lightning==0.35.1 \ + pennylane-qiskit==0.35.1 \ mplfinance==0.12.10b0 \ - hmmlearn==0.3.0 \ - ta==0.10.2 \ - seaborn==0.13.0 \ - optuna==3.4.0 \ + hmmlearn==0.3.2 \ + ta==0.11.0 \ + seaborn==0.13.2 \ + optuna==3.5.0 \ findiff==0.10.0 \ - sktime==0.24.0 \ + sktime==0.27.1 \ hyperopt==0.2.7 \ bayesian-optimization==1.4.3 \ - matplotlib==3.7.3 \ + matplotlib==3.7.5 \ sdeint==0.3.0 \ - pandas_market_calendars==4.3.1 \ - ruptures==1.1.8 \ - simpy==4.0.2 \ + pandas_market_calendars==4.4.0 \ + ruptures==1.1.9 \ + simpy==4.1.1 \ scikit-learn-extra==0.3.0 \ - ray==2.7.1 \ - "ray[tune]"==2.7.1 \ - "ray[rllib]"==2.7.1 \ + ray==2.9.3 \ + "ray[tune]"==2.9.3 \ + "ray[rllib]"==2.9.3 \ fastText==0.9.2 \ - h2o==3.44.0.1 \ + h2o==3.46.0.1 \ prophet==1.1.5 \ - Riskfolio-Lib==4.0.3 \ - torch==2.1.0 \ - torchvision==0.16.0 \ - ax-platform==0.3.3 \ + Riskfolio-Lib==6.0.0 \ + torch==2.2.1 \ + torchvision==0.17.1 \ + ax-platform==0.3.7 \ alphalens-reloaded==0.4.3 \ pyfolio-reloaded==0.9.5 \ - altair==5.1.2 \ - stellargraph==1.2.1 \ - modin==0.22.3 \ - persim==0.3.1 \ - ripser==0.6.4 \ - pydmd==0.4.1.post2308 \ - EMD-signal==1.5.2 \ - spacy==3.7.2 \ + altair==5.2.0 \ + modin==0.26.1 \ + persim==0.3.5 \ + ripser==0.6.8 \ + pydmd==1.0.0 \ + EMD-signal==1.6.0 \ + spacy==3.7.4 \ pandas-ta==0.3.14b \ - pytorch-ignite==0.4.12 \ + pytorch-ignite==0.4.13 \ tensorly==0.8.1 \ - mlxtend==0.23.0 \ - shap==0.43.0 \ + mlxtend==0.23.1 \ + shap==0.45.0 \ lime==0.2.0.1 \ mpmath==1.3.0 \ - polars==0.19.11 \ - stockstats==0.5.4 \ + polars==0.20.15 \ + stockstats==0.6.2 \ QuantStats==0.0.62 \ hurst==0.0.5 \ - numerapi==2.16.1 \ + numerapi==2.18.0 \ pymdptoolbox==4.0-b3 \ - panel==1.2.3 \ - hvplot==0.9.0 \ + panel==1.3.8 \ + hvplot==0.9.2 \ py-heat==0.0.6 \ py-heat-magic==0.0.2 \ - bokeh==3.1.1 \ - river==0.14.0 \ + bokeh==3.3.4 \ + river==0.21.0 \ stumpy==1.12.0 \ - pyvinecopulib==0.6.3 \ + pyvinecopulib==0.6.4 \ ijson==3.2.3 \ - jupyter-resource-usage==0.7.2 \ + jupyter-resource-usage==1.0.2 \ injector==0.21.0 \ openpyxl==3.1.2 \ xlrd==2.0.1 \ - mljar-supervised==1.0.2 \ + mljar-supervised==1.1.6 \ dm-tree==0.1.8 \ - lz4==4.3.2 \ - ortools==9.6.2534 \ + lz4==4.3.3 \ + ortools==9.9.3963 \ py_vollib==1.0.1 \ thundergbm==0.3.17 \ yellowbrick==1.5 \ livelossplot==0.5.5 \ gymnasium==0.28.1 \ - interpret==0.4.4 \ - DoubleML==0.7.0 \ - jupyter-bokeh==3.0.7 \ - imbalanced-learn==0.11.0 \ - scikeras==0.12.0 \ - openai==1.3.5 \ - lazypredict==0.2.12 \ - fracdiff==0.9.0 \ - darts==0.24.0 \ - fastparquet==2023.8.0 \ - tables==3.8.0 \ - dimod==0.12.3 \ - dwave-samplers==1.0.0 \ + interpret==0.5.1 \ + DoubleML==0.7.1 \ + jupyter-bokeh==4.0.0 \ + imbalanced-learn==0.12.0 \ + openai==1.14.3 \ + lazypredict-nightly==0.3.0 \ + darts==0.28.0 \ + fastparquet==2024.2.0 \ + tables==3.9.2 \ + dimod==0.12.14 \ + dwave-samplers==1.2.0 \ python-statemachine==2.1.2 \ pymannkendall==1.4.3 \ - Pyomo==6.6.2 \ - gpflow==2.9.0 \ - pyarrow==13.0.0 \ - dwave-ocean-sdk==6.1.1 \ + Pyomo==6.7.1 \ + gpflow==2.9.1 \ + pyarrow==15.0.1 \ + dwave-ocean-sdk==6.9.0 \ chardet==5.2.0 \ - stable-baselines3==2.1.0 \ + stable-baselines3==2.2.1 \ Shimmy==1.3.0 \ FixedEffectModel==0.0.5 \ - transformers==4.34.0 \ - langchain==0.0.341 \ - tensorflow-ranking==0.5.3 \ - pomegranate==1.0.3 \ - tigramite==5.2.3.1 \ - MAPIE==0.7.0 \ - mlforecast==0.9.3 \ - x-transformers==1.26.0 \ - Werkzeug==2.3.8 + transformers==4.38.2 \ + langchain==0.1.12 \ + pomegranate==1.0.4 \ + MAPIE==0.8.3 \ + mlforecast==0.12.0 \ + x-transformers==1.27.19 \ + Werkzeug==3.0.1 # Install dwave tool RUN dwave install --all -y # Install 'ipopt' solver for 'Pyomo' -RUN conda install -c conda-forge ipopt==3.14.13 \ +RUN conda install -c conda-forge ipopt==3.14.14 \ && conda clean -y --all # We install need to install separately else fails to find numpy @@ -224,8 +220,8 @@ RUN pip install --no-cache-dir iisignature==0.24 # Install spacy models RUN python -m spacy download en_core_web_md && python -m spacy download en_core_web_sm -RUN conda install -y -c conda-forge \ - openmpi=4.1.6 \ +RUN conda config --set solver classic && conda install -y -c conda-forge \ + openmpi=5.0.2 \ && conda clean -y --all # Install nltk data @@ -234,16 +230,6 @@ RUN python -m nltk.downloader -d /usr/share/nltk_data punkt && \ python -m nltk.downloader -d /usr/share/nltk_data stopwords && \ python -m nltk.downloader -d /usr/share/nltk_data wordnet -# Install ppscore -RUN wget -q https://cdn.quantconnect.com/ppscore/ppscore-master-ce93fa3.zip && \ - unzip -q ppscore-master-ce93fa3.zip && cd ppscore-master && \ - pip install . && cd .. && rm -rf ppscore-master && rm ppscore-master-ce93fa3.zip - -# Install DX Analytics -RUN wget -q https://cdn.quantconnect.com/dx/dx-master-69922c0.zip && \ - unzip -q dx-master-69922c0.zip && cd dx-master && \ - pip install . && cd .. && rm -rf dx-master && rm dx-master-69922c0.zip - # Install Pyrb RUN wget -q https://cdn.quantconnect.com/pyrb/pyrb-master-250054e.zip && \ unzip -q pyrb-master-250054e.zip && cd pyrb-master && \ @@ -254,17 +240,6 @@ RUN wget -q https://cdn.quantconnect.com/ssm/ssm-master-646e188.zip && \ unzip -q ssm-master-646e188.zip && cd ssm-master && \ pip install . && cd .. && rm -rf ssm-master && rm ssm-master-646e188.zip -# Due to conflicts install 'pomegranate' virtual environment package -RUN python -m venv /Foundation-Pomegranate --system-site-packages && . /Foundation-Pomegranate/bin/activate \ - && pip install --no-cache-dir \ - pomegranate==0.14.8 \ - mxnet==1.9.1 \ - nbeats-keras==1.8.0 \ - nbeats-pytorch==1.8.0 \ - neuralprophet[live]==0.6.2 \ - && python -m ipykernel install --name=Foundation-Pomegranate \ - && deactivate - RUN echo "{\"argv\":[\"python\",\"-m\",\"ipykernel_launcher\",\"-f\",\"{connection_file}\"],\"display_name\":\"Foundation-Py-Default\",\"language\":\"python\",\"metadata\":{\"debugger\":true}}" > /opt/miniconda3/share/jupyter/kernels/python3/kernel.json # Install wkhtmltopdf and xvfb to support HTML to PDF conversion of reports diff --git a/Engine/QuantConnect.Lean.Engine.csproj b/Engine/QuantConnect.Lean.Engine.csproj index 48cba3c79f08..45871b80bcdd 100644 --- a/Engine/QuantConnect.Lean.Engine.csproj +++ b/Engine/QuantConnect.Lean.Engine.csproj @@ -42,7 +42,7 @@ - + diff --git a/Indicators/QuantConnect.Indicators.csproj b/Indicators/QuantConnect.Indicators.csproj index e6ef9ae9ec93..8aceac03f435 100644 --- a/Indicators/QuantConnect.Indicators.csproj +++ b/Indicators/QuantConnect.Indicators.csproj @@ -31,7 +31,7 @@ - + diff --git a/Report/QuantConnect.Report.csproj b/Report/QuantConnect.Report.csproj index 877463b21b5b..0dd77fa7b918 100644 --- a/Report/QuantConnect.Report.csproj +++ b/Report/QuantConnect.Report.csproj @@ -41,7 +41,7 @@ LICENSE - + diff --git a/Research/QuantConnect.Research.csproj b/Research/QuantConnect.Research.csproj index 800d71bda52a..d4e375064bc5 100644 --- a/Research/QuantConnect.Research.csproj +++ b/Research/QuantConnect.Research.csproj @@ -33,7 +33,7 @@ - + diff --git a/Tests/Python/AlgorithmPythonWrapperTests.cs b/Tests/Python/AlgorithmPythonWrapperTests.cs index a4b99d6db795..f2b406c9482c 100644 --- a/Tests/Python/AlgorithmPythonWrapperTests.cs +++ b/Tests/Python/AlgorithmPythonWrapperTests.cs @@ -35,7 +35,7 @@ public void Setup() _baseCode = File.ReadAllText(Path.Combine("./RegressionAlgorithms", "Test_AlgorithmPythonWrapper.py")); } - [Test] + [TestCase("")] [TestCase("def OnEndOfDay(self): pass")] [TestCase("def OnEndOfDay(self, symbol): pass")] public void CallOnEndOfDayDoesNotThrow(string code) diff --git a/Tests/Python/PandasConverterTests.BackwardsCompatibility.cs b/Tests/Python/PandasConverterTests.BackwardsCompatibility.cs index db274b27501b..448774b40a44 100644 --- a/Tests/Python/PandasConverterTests.BackwardsCompatibility.cs +++ b/Tests/Python/PandasConverterTests.BackwardsCompatibility.cs @@ -31,10 +31,15 @@ public partial class PandasConverterTests [Test, TestCaseSource(nameof(TestDataFrameNonExceptionFunctions))] public void BackwardsCompatibilityDataFrameDataFrameNonExceptionFunctions(string method, string index, bool cache) { - if(method == ".to_orc()" && OS.IsWindows) + if(method == ".to_orc()") { - // not supported in windows - return; + if (OS.IsWindows) + { + // not supported in windows + return; + } + // orc does not support serializing a non-default index for the index; you can .reset_index() to make the index into column(s) + method = $".reset_index(){method}"; } if (cache) SymbolCache.Set("SPY", Symbols.SPY); diff --git a/Tests/Python/PandasConverterTests.cs b/Tests/Python/PandasConverterTests.cs index 1ffbc4066c10..fb3c25bf6ff0 100644 --- a/Tests/Python/PandasConverterTests.cs +++ b/Tests/Python/PandasConverterTests.cs @@ -1081,7 +1081,7 @@ public void BackwardsCompatibilityDataFrame_groupby(string index, bool cache = f import pandas as pd def Test(df, other, symbol): df = pd.concat([df, other]) - df = df.groupby(level=0).mean() + df = df.groupby(level=0).mean(numeric_only=True) data = df.lastprice.loc[{index}] if data is 0: raise Exception('Data is zero')").GetAttr("Test"); @@ -1153,9 +1153,6 @@ def Test(dataFrame, symbol): [TestCase("items", "'SPY'", true)] [TestCase("items", "symbol")] [TestCase("items", "str(symbol.ID)")] - [TestCase("iteritems", "'SPY'", true)] - [TestCase("iteritems", "symbol")] - [TestCase("iteritems", "str(symbol.ID)")] public void BackwardsCompatibilityDataFrame_items(string method, string index, bool cache = false) { if (cache) SymbolCache.Set("SPY", Symbols.SPY); @@ -1457,7 +1454,7 @@ public void BackwardsCompatibilityDataFrame_pivot_table(string index, bool cache import pandas as pd def Test(dataFrame, symbol): df = dataFrame.reset_index() - table = pd.pivot_table(df, index=['symbol', 'time']) + table = pd.pivot_table(df, index=['symbol', 'time'], aggfunc='first') data = table.lastprice.unstack(0) data = data[{index}] if data is 0: @@ -1526,7 +1523,7 @@ public void BackwardsCompatibilityDataFrame_pipe(string index, bool cache = fals import pandas as pd def Test(dataFrame, other, symbol): def mean_by_group(dataframe, level): - return dataframe.groupby(level=level).mean() + return dataframe.groupby(level=level).mean(numeric_only=True) df = pd.concat([dataFrame, other]) data = df.pipe(mean_by_group, level=0) @@ -1723,7 +1720,7 @@ public void BackwardsCompatibilityDataFrame_rolling(string index, bool cache = f dynamic test = PyModule.FromString("testModule", $@" def Test(dataFrame, symbol): - data = dataFrame.rolling(2).sum() + data = dataFrame.rolling(2).sum(numeric_only=True) data = data.lastprice.unstack(0) data = data[{index}] if data is 0: @@ -1785,7 +1782,7 @@ def Test(dataFrame, symbol): [TestCase("'SPY'", true)] [TestCase("symbol")] [TestCase("str(symbol.ID)")] - public void BackwardsCompatibilityDataFrame_slice_shift(string index, bool cache = false) + public void BackwardsCompatibilityDataFrame_shift(string index, bool cache = false) { if (cache) SymbolCache.Set("SPY", Symbols.SPY); @@ -1794,7 +1791,7 @@ public void BackwardsCompatibilityDataFrame_slice_shift(string index, bool cache dynamic test = PyModule.FromString("testModule", $@" def Test(dataFrame, symbol): - data = dataFrame.slice_shift().lastprice.unstack(0) + data = dataFrame.shift().lastprice.unstack(0) data = data[{index}] if data is 0: raise Exception('Data is zero')").GetAttr("Test"); @@ -1954,7 +1951,7 @@ def Test(dataFrame, symbol): [TestCase("'SPY'", true)] [TestCase("symbol")] [TestCase("str(symbol.ID)")] - public void BackwardsCompatibilityDataFrame_tshift(string index, bool cache = false) + public void BackwardsCompatibilityDataFrame_series_shift(string index, bool cache = false) { if (cache) SymbolCache.Set("SPY", Symbols.SPY); @@ -1965,7 +1962,7 @@ public void BackwardsCompatibilityDataFrame_tshift(string index, bool cache = fa from datetime import timedelta as d def Test(dataFrame, symbol): series = dataFrame.droplevel(0) - data = series.tshift(freq=d(1))").GetAttr("Test"); + data = series.shift(freq=d(1))").GetAttr("Test"); Assert.DoesNotThrow(() => test(GetTestDataFrame(Symbols.SPY), Symbols.SPY)); } @@ -2668,26 +2665,6 @@ def mean_by_group(dataframe, level): } } - [TestCase("'SPY'", true)] - [TestCase("symbol")] - [TestCase("str(symbol.ID)")] - public void BackwardsCompatibilitySeries_pop(string index, bool cache = false) - { - if (cache) SymbolCache.Set("SPY", Symbols.SPY); - - using (Py.GIL()) - { - dynamic test = PyModule.FromString("testModule", - $@" -def Test(dataFrame, symbol): - data = dataFrame.lastprice.pop({index}) - if data is 0: - raise Exception('Data is zero')").GetAttr("Test"); - - Assert.DoesNotThrow(() => test(GetTestDataFrame(Symbols.SPY), Symbols.SPY)); - } - } - [TestCase("'SPY'", true)] [TestCase("symbol")] [TestCase("str(symbol.ID)")] @@ -2873,7 +2850,7 @@ def Test(dataFrame, symbol): [TestCase("'SPY'", true)] [TestCase("symbol")] [TestCase("str(symbol.ID)")] - public void BackwardsCompatibilitySeries_slice_shift(string index, bool cache = false) + public void BackwardsCompatibilitySeries_shift(string index, bool cache = false) { if (cache) SymbolCache.Set("SPY", Symbols.SPY); @@ -2883,7 +2860,7 @@ public void BackwardsCompatibilitySeries_slice_shift(string index, bool cache = $@" def Test(dataFrame, symbol): series = dataFrame.lastprice - data = series.slice_shift() + data = series.shift() data = data.loc[{index}] if data is 0: raise Exception('Data is zero')").GetAttr("Test"); @@ -3026,26 +3003,6 @@ def Test(dataFrame, symbol): } } - [TestCase("'SPY'", true)] - [TestCase("symbol")] - [TestCase("str(symbol.ID)")] - public void BackwardsCompatibilitySeries_tshift(string index, bool cache = false) - { - if (cache) SymbolCache.Set("SPY", Symbols.SPY); - - using (Py.GIL()) - { - dynamic test = PyModule.FromString("testModule", - $@" -from datetime import timedelta as d -def Test(dataFrame, symbol): - series = dataFrame.lastprice.droplevel(0) - data = series.tshift(freq=d(1))").GetAttr("Test"); - - Assert.DoesNotThrow(() => test(GetTestDataFrame(Symbols.SPY), Symbols.SPY)); - } - } - [TestCase("'SPY'", true)] [TestCase("symbol")] [TestCase("str(symbol.ID)")] diff --git a/Tests/Python/PythonPackagesTests.cs b/Tests/Python/PythonPackagesTests.cs index c035228f54b2..b7e55ec92196 100644 --- a/Tests/Python/PythonPackagesTests.cs +++ b/Tests/Python/PythonPackagesTests.cs @@ -23,6 +23,142 @@ namespace QuantConnect.Tests.Python [TestFixture, Category("TravisExclude")] public class PythonPackagesTests { + [Test] + public void Pgmpy() + { + AssertCode(@" +def RunTest(): + from pgmpy.base import DAG + G = DAG() + G.add_node(node='a') + G.add_nodes_from(nodes=['a', 'b'])"); + } + + [Test] + public void Control() + { + AssertCode(@" +def RunTest(): + import numpy as np + import control + + num1 = np.array([2]) + den1 = np.array([1, 0]) + num2 = np.array([3]) + den2 = np.array([4, 1]) + H1 = control.tf(num1, den1) + H2 = control.tf(num2, den2) + + H = control.series(H1, H2)"); + } + + [Test] + public void PyCaret() + { + AssertCode(@" +from pycaret.datasets import get_data +from pycaret.classification import setup + +def RunTest(): + data = get_data('diabetes') + s = setup(data, target = 'Class variable', session_id = 123)"); + } + + [Test] + public void NGBoost() + { + AssertCode(@" +def RunTest(): + from ngboost import NGBRegressor + + from sklearn.model_selection import train_test_split + from sklearn.metrics import mean_squared_error + import pandas as pd + import numpy as np + + #Load Boston housing dataset + data_url = ""http://lib.stat.cmu.edu/datasets/boston"" + raw_df = pd.read_csv(data_url, sep=""\s+"", skiprows=22, header=None) + X = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) + Y = raw_df.values[1::2, 2] + + X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) + + ngb = NGBRegressor().fit(X_train, Y_train) + Y_preds = ngb.predict(X_test) + Y_dists = ngb.pred_dist(X_test) + + # test Mean Squared Error + test_MSE = mean_squared_error(Y_preds, Y_test) + print('Test MSE', test_MSE) + + # test Negative Log Likelihood + test_NLL = -Y_dists.logpdf(Y_test).mean() + print('Test NLL', test_NLL)"); + } + + [Test] + public void MLFlow() + { + AssertCode(@" +def RunTest(): + import mlflow + from mlflow.models import infer_signature + + import pandas as pd + from sklearn import datasets + from sklearn.model_selection import train_test_split + from sklearn.linear_model import LogisticRegression + from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score + + + # Load the Iris dataset + X, y = datasets.load_iris(return_X_y=True) + + # Split the data into training and test sets + X_train, X_test, y_train, y_test = train_test_split( + X, y, test_size=0.2, random_state=42 + ) + + # Define the model hyperparameters + params = { + ""solver"": ""lbfgs"", + ""max_iter"": 1000, + ""multi_class"": ""auto"", + ""random_state"": 8888, + } + + # Train the model + lr = LogisticRegression(**params) + lr.fit(X_train, y_train) + + # Predict on the test set + y_pred = lr.predict(X_test) + + # Calculate metrics + accuracy = accuracy_score(y_test, y_pred)"); + } + + [Test] + public void TPOT() + { + AssertCode(@" +def RunTest(): + from tpot import TPOTClassifier + from sklearn.datasets import load_digits + from sklearn.model_selection import train_test_split + + digits = load_digits() + X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, + train_size=0.75, test_size=0.25) + + pipeline_optimizer = TPOTClassifier(generations=5, population_size=2, cv=5, + random_state=42, verbosity=2) + pipeline_optimizer.fit(X_train, y_train) + print(pipeline_optimizer.score(X_test, y_test)) + pipeline_optimizer.export('tpot_exported_pipeline.py')"); + } + [Test, Explicit("Needs to be run by itself to avoid hanging")] public void XTransformers() { @@ -60,14 +196,14 @@ public void Functime() @" import polars as pl from functime.cross_validation import train_test_split -from functime.feature_extraction import add_fourier_terms +from functime.seasonality import add_fourier_terms from functime.forecasting import linear_model from functime.preprocessing import scale from functime.metrics import mase def RunTest(): # Load commodities price data - y = pl.read_parquet(""https://github.com/descendant-ai/functime/raw/main/data/commodities.parquet"") + y = pl.read_parquet(""https://github.com/functime-org/functime/raw/main/data/commodities.parquet"") entity_col, time_col = y.columns[:2] # Time series split @@ -200,31 +336,6 @@ def RunTest(): classifier('We are very happy to introduce pipeline to the transformers repository.')"); } - [Test] - public void Tick() - { - AssertCode( - @" -import numpy as np - -from tick.dataset import fetch_hawkes_bund_data -from tick.hawkes import HawkesConditionalLaw -from tick.plot import plot_hawkes_kernel_norms - -def RunTest(): - timestamps_list = fetch_hawkes_bund_data() - - kernel_discretization = np.hstack((0, np.logspace(-5, 0, 50))) - hawkes_learner = HawkesConditionalLaw( - claw_method=""log"", delta_lag=0.1, min_lag=5e-4, max_lag=500, - quad_method=""log"", n_quad=10, min_support=1e-4, max_support=1, n_threads=4) - - hawkes_learner.fit(timestamps_list) - - plot_hawkes_kernel_norms(hawkes_learner, - node_names=[""P_u"", ""P_d"", ""T_a"", ""T_b""])"); - } - [Test] public void FixedEffectModel() { @@ -275,8 +386,8 @@ def RunTest(): schools_code = """""" data { int J; // number of schools - real y[J]; // estimated treatment effects - real sigma[J]; // standard error of effect estimates + array[J] real y; // estimated treatment effects + array[J] real sigma; // standard error of effect estimates } parameters { real mu; // population treatment effect @@ -580,7 +691,7 @@ def RunTest(): ); } - [Test] + [Test, Explicit("Should be run by itself to avoid matplotlib defaulting to use non existing latex")] public void ShapTest() { AssertCode( @@ -680,7 +791,7 @@ public void IgniteTest() import ignite def RunTest(): - assert(ignite.__version__ == '0.4.12')" + assert(ignite.__version__ == '0.4.13')" ); } @@ -1294,7 +1405,7 @@ def RunTest(): print('Number of variables =', solver.NumVariables())"); } - [Test] + [Test, Explicit("Requires old version of TF, addons are winding down")] public void TensorflowAddons() { AssertCode( @@ -1499,7 +1610,7 @@ def RunTest(): print(sorted(Counter(y_resampled).items()))"); } - [Test, Explicit("Has issues when run along side the other tests")] + [Test, Explicit("Requires keras < 3")] public void ScikerasTest() { AssertCode( @@ -1560,22 +1671,6 @@ def RunTest(): models,predictions = clf.fit(X_train, X_test, y_train, y_test)"); } - [Test] - public void Fracdiff() - { - AssertCode( - @" -import numpy as np -from fracdiff import fdiff - -def RunTest(): - a = np.array([1, 2, 4, 7, 0]) - fdiff(a, 0.5) - # array([ 1. , 1.5 , 2.875 , 4.6875 , -4.1640625]) - np.array_equal(fdiff(a, n=1), np.diff(a, n=1)) - # True"); - } - [Test] public void Darts() { @@ -1769,34 +1864,6 @@ def RunTest(): ); } - [Test] - public void ScikitMultiflowTest() - { - AssertCode( - @" -from skmultiflow.data import WaveformGenerator -from skmultiflow.trees import HoeffdingTree -from skmultiflow.evaluation import EvaluatePrequential - -def RunTest(): - # 1. Create a stream - stream = WaveformGenerator() - stream.prepare_for_use() - - # 2. Instantiate the HoeffdingTree classifier - ht = HoeffdingTree() - - # 3. Setup the evaluator - evaluator = EvaluatePrequential(show_plot=False, - pretrain_size=200, - max_samples=20000) - - # 4. Run evaluation - evaluator.evaluate(stream=stream, model=ht) - return 'Test passed, module exists'" - ); - } - [Test] public void ScikitOptimizeTest() { @@ -2101,39 +2168,6 @@ import clr ); } - [Test] - public void Tigramite() - { - AssertCode(@" -import numpy as np -from tigramite.pcmci import PCMCI -from tigramite.independence_tests.parcorr import ParCorr -import tigramite.data_processing as pp -from tigramite.toymodels import structural_causal_processes as toys - -def RunTest(): - # Example process to play around with - # Each key refers to a variable and the incoming links are supplied - # as a list of format [((var, -lag), coeff, function), ...] - def lin_f(x): return x - links = {0: [((0, -1), 0.9, lin_f)], - 1: [((1, -1), 0.8, lin_f), ((0, -1), 0.8, lin_f)], - 2: [((2, -1), 0.7, lin_f), ((1, 0), 0.6, lin_f)], - 3: [((3, -1), 0.7, lin_f), ((2, 0), -0.5, lin_f)], - } - data, nonstat = toys.structural_causal_process(links, - T=1000, seed=7) - # Data must be array of shape (time, variables) - print (data.shape) - (1000, 4) - dataframe = pp.DataFrame(data) - cond_ind_test = ParCorr() - pcmci = PCMCI(dataframe=dataframe, cond_ind_test=cond_ind_test) - results = pcmci.run_pcmciplus(tau_min=0, tau_max=2, pc_alpha=0.01) - pcmci.print_results(results, alpha_level=0.01) -"); - } - [Test, Explicit("Sometimes hangs when run along side the other tests")] public void AxPlatformTest() { @@ -2202,37 +2236,35 @@ def RunTest(): /// /// The module we are testing /// The module version - [TestCase("pulp", "2.7.0", "VERSION")] - [TestCase("pymc", "5.6.1", "__version__")] + [TestCase("pulp", "2.8.0", "VERSION")] + [TestCase("pymc", "5.10.4", "__version__")] [TestCase("pypfopt", "pypfopt", "__name__")] - [TestCase("wrapt", "1.14.1", "__version__")] - [TestCase("tslearn", "0.6.2", "__version__")] + [TestCase("wrapt", "1.16.0", "__version__")] + [TestCase("tslearn", "0.6.3", "__version__")] [TestCase("tweepy", "4.14.0", "__version__")] - [TestCase("pywt", "1.4.1", "__version__")] - [TestCase("umap", "0.5.3", "__version__")] - [TestCase("dtw", "1.3.0", "__version__")] + [TestCase("pywt", "1.5.0", "__version__")] + [TestCase("umap", "0.5.5", "__version__")] + [TestCase("dtw", "1.3.1", "__version__")] [TestCase("mplfinance", "0.12.10b0", "__version__")] [TestCase("cufflinks", "0.17.3", "__version__")] - [TestCase("ipywidgets", "8.1.1", "__version__")] - [TestCase("astropy", "5.2.2", "__version__")] - [TestCase("gluonts", "0.13.7", "__version__")] + [TestCase("ipywidgets", "8.1.2", "__version__")] + [TestCase("astropy", "6.0.0", "__version__")] + [TestCase("gluonts", "0.14.4", "__version__")] [TestCase("gplearn", "0.4.2", "__version__")] - [TestCase("featuretools", "1.27.0", "__version__")] - [TestCase("pennylane", "0.32.0", "version()")] + [TestCase("featuretools", "1.30.0", "__version__")] + [TestCase("pennylane", "0.35.1", "version()")] [TestCase("pyfolio", "0.9.5", "__version__")] - [TestCase("altair", "5.1.2", "__version__")] - [TestCase("modin", "0.22.3", "__version__")] - [TestCase("persim", "0.3.1", "__version__")] - [TestCase("pydmd", "0.4.1.post2308", "__version__")] + [TestCase("altair", "5.2.0", "__version__")] + [TestCase("modin", "0.26.1", "__version__")] + [TestCase("persim", "0.3.5", "__version__")] + [TestCase("pydmd", "1.0.0", "__version__")] [TestCase("pandas_ta", "0.3.14b0", "__version__")] [TestCase("tensortrade", "1.0.3", "__version__")] [TestCase("quantstats", "0.0.62", "__version__")] - [TestCase("autokeras", "1.1.0", "__version__")] - [TestCase("panel", "1.2.3", "__version__")] + [TestCase("panel", "1.3.8", "__version__")] [TestCase("pyheat", "pyheat", "__name__")] - [TestCase("tensorflow_decision_forests", "1.5.0", "__version__")] - [TestCase("tensorflow_ranking", "0.5.3.dev", "__version__")] - [TestCase("pomegranate", "1.0.3", "__version__")] + [TestCase("tensorflow_decision_forests", "1.9.0", "__version__")] + [TestCase("pomegranate", "1.0.4", "__version__")] public void ModuleVersionTest(string module, string value, string attribute) { AssertCode( diff --git a/Tests/QuantConnect.Tests.csproj b/Tests/QuantConnect.Tests.csproj index 76025ef053f5..be02ff925f57 100644 --- a/Tests/QuantConnect.Tests.csproj +++ b/Tests/QuantConnect.Tests.csproj @@ -32,7 +32,7 @@ - +