-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.cpp
998 lines (763 loc) · 26.1 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
#include <Arduino.h>
#include <WiFi.h>
#include <WiFiUdp.h>
#include <esp_wifi.h>
#include <SPI.h>
//#define DEBUG_PRINT_ENCODE
//#define DEBUG_PRINT_DECODE
#define CC1101_GDO0 (26)
#define CC1101_GDO2 (25)
#define HSPI_CS (15)
#define HSPI_SCLK (14) // for doc
#define HSPI_MISO (12) // for doc
#define HSPI_MOSI (13) // for doc
#define TEST_INPUT (17)
#define SIGNAL_CLEAR_CHANNEL_ASSESMENT CC1101_GDO0
#define SYNCWORD_DET_SENT_TX_SENT CC1101_GDO2
#define NUM_OF_REMOTES (3)
#define REMOTE_ADDR_LEN (3)
#define NUM_OF_BLINDS_PER_REMOTE (5) // they have 5 ch
#define BLIND_ADDR_LEN (3)
static const int spiClk = 500000;
byte address = 0x00;
SPIClass * hspi = NULL;
static const uint8_t flash_table_encode[] = {0x08, 0x02, 0x0d, 0x01, 0x0f, 0x0e, 0x07, 0x05, 0x09, 0x0c, 0x00, 0x0a, 0x03, 0x04, 0x0b, 0x06};
static const uint8_t flash_table_decode[] = {0x0a, 0x03, 0x01, 0x0c, 0x0d, 0x07, 0x0f, 0x06, 0x00, 0x08, 0x0b, 0x0e, 0x09, 0x02, 0x05, 0x04};
static uint8_t gIndex[3] = {1, 1, 1};
static uint8_t remote_addr[NUM_OF_REMOTES][REMOTE_ADDR_LEN] = {
{0x62, 0x0B, 0x0D}, // idx0 = NAPPALI
{0x1A, 0x01, 0x0D}, // idx1 = GYSZOBA
{0x00, 0x00, 0x00}, // idx2 = HALO
};
static uint8_t remote_blind_id[NUM_OF_REMOTES][NUM_OF_BLINDS_PER_REMOTE][BLIND_ADDR_LEN] = {
{ {0xB0, 0xA4, 0x35}, {0xBE, 0xA3, 0x35}, {0x9F, 0xA4, 0x35}, {0xC3, 0xA3, 0x35}, {0x00, 0x00, 0x00} },
{ {0xC2, 0xA3, 0x35}, {0xDF, 0xAC, 0x2A}, {0x00, 0x00, 0x00}, {0x00, 0x00, 0x00}, {0x00, 0x00, 0x00} },
{ {0xC6, 0xA3, 0x35}, {0x00, 0x00, 0x00}, {0x00, 0x00, 0x00}, {0x00, 0x00, 0x00}, {0x00, 0x00, 0x00} },
};
static uint8_t msg_buffer[64];
static uint8_t remotes[32][3];
uint8_t scan_check_if_addr_remote(uint8_t* msg)
{
uint8_t all_match = 1;
if( memcmp(&msg[6], &msg[9], 3) )
{
all_match = 0;
}
if( memcmp(&msg[6], &msg[12], 3) )
{
all_match = 0;
}
if( memcmp(&msg[9], &msg[12], 3) )
{
all_match = 0;
}
return all_match;
}
void scan_remote_add(uint8_t* msg)
{
uint32_t i;
uint8_t empty[3] = {0, 0, 0};
for( i = 0; i < 32; i++ )
{
if( (memcmp(&remotes[i][0], empty, 3) == 0) && (memcmp(&remotes[i][0], empty, 3) == 0) && (memcmp(&remotes[i][0], empty, 3) == 0) )
{
break;
}
if( memcmp(&remotes[i][0], &msg[6], 3) == 0 )
{
i = 60;
break;
}
}
if( i < 32 )
{
memcpy(&remotes[i][0], &msg[6], 3);
}
}
static void print_msg(uint8_t* msg)
{
uint8_t i;
for( i = 0; i < 8 ; i++ )
{
Serial.printf("0x%02X ", msg[i]);
}
}
static uint8_t count_bits(uint8_t byte)
{
uint8_t i;
uint8_t ones = 0;
uint8_t mask = 1;
for( i = 0; i < 8; i++ )
{
if( mask & byte )
{
ones += 1;
}
mask <<= 1;
}
return ones & 0x01;
}
static void calc_parity(uint8_t* msg)
{
uint8_t i;
uint8_t p = 0;
for( i = 0; i < 4; i++ )
{
uint8_t a = count_bits( msg[0 + i*2] );
uint8_t b = count_bits( msg[1 + i*2] );
p |= a ^ b;
p <<= 1;
}
msg[7] = (p << 3);
}
void add_r20_to_nibbles(uint8_t* msg, uint8_t r20, uint8_t start, uint8_t length)
{
uint8_t i;
for( i = 0; i < 8; i++ )
{
uint8_t d = msg[i];
uint8_t ln = (d + r20) & 0x0F;
uint8_t hn = ((d & 0xF0) + (r20 & 0xF0)) & 0xFF;
msg[i] = hn | ln;
r20 = (r20 - 0x22) & 0xFF;
}
}
void sub_r20_from_nibbles(uint8_t* msg, uint8_t r20, uint8_t start, uint8_t length)
{
uint8_t i;
for(i = start; i < length; i++)
{
uint8_t d = msg[i];
uint8_t ln = (d - r20) & 0x0F;
uint8_t hn = ((d & 0xF0) - (r20 & 0xF0)) & 0xFF;
msg[i] = hn | ln;
r20 = (r20 - 0x22) & 0xFF;
}
}
void xor_2byte_in_array_encode(uint8_t* msg, uint8_t xor0, uint8_t xor1)
{
uint8_t i;
for( i = 1; i < 4; i++ )
{
msg[i*2 + 0] = msg[i*2 + 0] ^ xor0;
msg[i*2 + 1] = msg[i*2 + 1] ^ xor1;
}
}
void xor_2byte_in_array_decode(uint8_t* msg, uint8_t xor0, uint8_t xor1)
{
uint8_t i;
for( i = 0; i < 4; i++ )
{
msg[i*2 + 0] = msg[i*2 + 0] ^ xor0;
msg[i*2 + 1] = msg[i*2 + 1] ^ xor1;
}
}
void encode_nibbles(uint8_t* msg)
{
uint8_t i;
for( i = 0; i < 8; i++ )
{
uint8_t nh = (msg[i] >> 4) & 0x0F;
uint8_t nl = msg[i] & 0x0F;
uint8_t dh = flash_table_encode[nh];
uint8_t dl = flash_table_encode[nl];
msg[i] = ((dh << 4) & 0xFF) | ((dl) & 0xFF);
}
}
void decode_nibbles(uint8_t* msg, uint8_t len)
{
uint8_t i;
for( i = 0; i < len; i++ )
{
uint8_t nh = (msg[i] >> 4) & 0x0F;
uint8_t nl = msg[i] & 0x0F;
uint8_t dh = flash_table_decode[nh];
uint8_t dl = flash_table_decode[nl];
msg[i] = ((dh << 4) & 0xFF) | ((dl) & 0xFF);
}
}
uint8_t calc_exp_parity(uint16_t cnt, uint8_t* msg)
{
uint16_t num;
uint8_t input_arr[8];
num = (0x00 - (cnt * 0x708F)) & 0xFFFF;
// copy message bytes to a buffer
memcpy(input_arr, msg, 8);
// clear parity position
input_arr[7] = 0;
// overwrite first 2 with the calculated magic from msg cnt/index
input_arr[0] = num >> 8;
input_arr[1] = num & 0xFF;
calc_parity(input_arr);
return input_arr[7];
}
void msg_decode(uint8_t* msg)
{
#ifdef DEBUG_PRINT_DECODE
Serial.print("decode_nibbles: ");
#endif
decode_nibbles(msg, 8);
#ifdef DEBUG_PRINT_DECODE
print_msg(msg);
Serial.println();
Serial.print("sub_r20_from_nibbles: ");
#endif
sub_r20_from_nibbles(msg, 0xFE, 0, 2);
#ifdef DEBUG_PRINT_DECODE
print_msg(msg);
Serial.println();
Serial.printf("xor_2byte_in_array: %x %x", msg[0], msg[1]);
#endif
xor_2byte_in_array_decode(msg, msg[0], msg[1]);
#ifdef DEBUG_PRINT_DECODE
print_msg(msg);
Serial.println();
Serial.print("sub_r20_from_nibbles: ");
#endif
sub_r20_from_nibbles(msg, 0xBA, 2, 8);
#ifdef DEBUG_PRINT_DECODE
print_msg(msg);
Serial.println();
#endif
}
void msg_encode(uint8_t* msg, uint8_t xor0, uint8_t xor1)
{
#ifdef DEBUG_PRINT_ENCODE
Serial.print("encode: ");
print_msg(msg);
Serial.println();
#endif
calc_parity(msg);
#ifdef DEBUG_PRINT_ENCODE
Serial.print("parity: ");
print_msg(msg);
Serial.println();
#endif
add_r20_to_nibbles(msg, 0xFE, 0, 8);
#ifdef DEBUG_PRINT_ENCODE
Serial.print("r20 nibbles: ");
print_msg(msg);
Serial.println();
#endif
xor_2byte_in_array_encode(msg, xor0, xor1);
#ifdef DEBUG_PRINT_ENCODE
Serial.print("xor nibbles: ");
print_msg(msg);
Serial.println();
#endif
encode_nibbles(msg);
#ifdef DEBUG_PRINT_ENCODE
Serial.print("encode nibbles: ");
print_msg(msg);
Serial.println();
#endif
}
void spi_write_cmd(uint8_t cmd)
{
hspi->beginTransaction(SPISettings(spiClk, MSBFIRST, SPI_MODE0));
digitalWrite(HSPI_CS, LOW);
hspi->transfer(cmd);
digitalWrite(HSPI_CS, HIGH);
hspi->endTransaction();
}
void spi_write_reg(uint8_t addr, uint8_t value)
{
hspi->beginTransaction(SPISettings(spiClk, MSBFIRST, SPI_MODE0));
digitalWrite(HSPI_CS, LOW);
hspi->transfer(addr);
hspi->transfer(value);
digitalWrite(HSPI_CS, HIGH);
hspi->endTransaction();
}
uint8_t spi_read_reg(uint8_t addr)
{
uint8_t reg;
hspi->beginTransaction(SPISettings(spiClk, MSBFIRST, SPI_MODE0));
digitalWrite(HSPI_CS, LOW);
hspi->transfer(addr);
reg = hspi->transfer(0x00);
digitalWrite(HSPI_CS, HIGH);
hspi->endTransaction();
return reg;
}
void spi_read_burst(uint8_t addr, uint8_t* data, uint8_t len)
{
uint8_t i;
hspi->beginTransaction(SPISettings(spiClk, MSBFIRST, SPI_MODE0));
digitalWrite(HSPI_CS, LOW);
hspi->transfer(addr);
for( i = 0; i < len; i++ )
{
data[i] = hspi->transfer(0x00);
}
digitalWrite(HSPI_CS, HIGH);
hspi->endTransaction();
}
void spi_write_burst(uint8_t addr, uint8_t* data, uint8_t len)
{
uint8_t i;
hspi->beginTransaction(SPISettings(spiClk, MSBFIRST, SPI_MODE0));
digitalWrite(HSPI_CS, LOW);
hspi->transfer(addr);
for( i = 0; i < len; i++ )
{
hspi->transfer(data[i]);
}
digitalWrite(HSPI_CS, HIGH);
hspi->endTransaction();
}
static void cc1100_tx(uint8_t* msg, uint8_t len)
{
uint8_t i;
uint8_t marcstate;
uint32_t ts;
uint32_t timeout = 1000;
spi_write_cmd(0x36); // idle for flushing
spi_write_cmd(0x3A); // flush RX fifo
spi_write_cmd(0x3B); // flush TX fifo
spi_write_cmd(0x34); // back to RX for listening clear channel
Serial.print("cc1100_tx...");
Serial.print("waiting for clear channel...");
ts = millis();
//while( (digitalRead(SIGNAL_CLEAR_CHANNEL_ASSESMENT) == LOW) )
while( (digitalRead(SIGNAL_CLEAR_CHANNEL_ASSESMENT) == LOW) && ((millis()-ts) < timeout) );
{
delay(5);
}
if( digitalRead(SIGNAL_CLEAR_CHANNEL_ASSESMENT) != LOW )
{
Serial.printf("cleared %d\r\n", millis()-ts);
}
else
{
Serial.printf("TIMEOUT!! %d\r\n", millis()-ts);
//elero_cc1100_init();
}
Serial.println("spi transmit start");
spi_write_burst(0x7F, msg, len);
Serial.println("spi transmit end");
delayMicroseconds(10);
Serial.println("cc1100_tx.tx");
spi_write_cmd(0x35);
Serial.println("cc1100_tx.waiting tx state");
ts = millis(); do
{
marcstate = spi_read_reg(0xF5);
delay(5);
}
//while( marcstate != 0x13 );
while( (marcstate != 0x13) && ((millis()-ts) < timeout) );
Serial.printf("cc1100_tx.waiting non tx state %x\r\n", marcstate);
ts = millis(); do
{
marcstate = spi_read_reg(0xF5);
delay(5);
}
//while( (marcstate == 0x13) );
while( (marcstate == 0x13) && ((millis()-ts) < timeout) );
Serial.printf("done %x\r\n", marcstate);
}
static void generate_msg_down(uint8_t* msg, uint8_t* addr, uint8_t index, uint8_t channel, uint8_t button_pressed)
{
uint16_t code;
memset(msg, 0, 28);
msg[ 0] = 0x1B; // msg_len
msg[ 1] = index; // pck cnt
msg[ 2] = 0x44; // pck_info = STOP
msg[ 3] = 0x10; // pck_inf2 = STOP
msg[ 4] = 0x00; // hop_info = 0
msg[ 5] = 0x01; // sys_addr = 1
msg[ 6] = (channel == 1)?(0x11):(channel); // source_group = 0x11
msg[ 7] = addr[0]; // source addr[0]
msg[ 8] = addr[1]; // source addr[1]
msg[ 9] = addr[2]; // source addr[2]
msg[10] = addr[0]; // backward addr[0]
msg[11] = addr[1]; // backward addr[1]
msg[12] = addr[2]; // backward addr[2]
msg[13] = addr[0]; // forward addr[0]
msg[14] = addr[1]; // forward addr[1]
msg[15] = addr[2]; // forward addr[2]
msg[16] = 0x01; // dest_count = 1
msg[17] = (channel == 1)?(0x11):(channel); // dest = TODO (ch1=0x11(?) ch2=0x02 ch3=0x03 ch4=0x03)
msg[18] = 0x00;
msg[19] = 0x03;
code = (0x00 - (index * 0x708F)) & 0xFFFF;
msg[20] = (code >> 8) & 0xFF;
msg[21] = code & 0xFF;
msg[22] = (button_pressed) ? (0x40) : (0x00);
msg_encode(&msg[20], (code >> 8) & 0xFF, code & 0xFF);
}
static void generate_msg_stop(uint8_t* msg, uint8_t* addr, uint8_t index, uint8_t channel, uint8_t* blind_id)
{
uint16_t code;
memset(msg, 0, 30);
msg[ 0] = 0x1D; // msg_len
msg[ 1] = index; // pck cnt
msg[ 2] = 0x6A; // pck_info = STOP
msg[ 3] = 0x10; // pck_inf2 = STOP
msg[ 4] = 0x00; // hop_info = 0
msg[ 5] = 0x01; // sys_addr = 1
msg[ 6] = (channel == 1)?(0x11):(channel); // source_group = 0x11
msg[ 7] = addr[0]; // source addr[0]
msg[ 8] = addr[1]; // source addr[1]
msg[ 9] = addr[2]; // source addr[2]
msg[10] = addr[0]; // backward addr[0]
msg[11] = addr[1]; // backward addr[1]
msg[12] = addr[2]; // backward addr[2]
msg[13] = addr[0]; // forward addr[0]
msg[14] = addr[1]; // forward addr[1]
msg[15] = addr[2]; // forward addr[2]
msg[16] = 0x01; // dest_count = 1
msg[17] = blind_id[0]; // dest = TODO
msg[18] = blind_id[1];
msg[19] = blind_id[2];
msg[20] = 0x00;
msg[21] = 0x03;
code = (0x00 - (index * 0x708F)) & 0xFFFF;
msg[22] = (code >> 8) & 0xFF;
msg[23] = code & 0xFF;
msg[24] = 0x10;
msg_encode(&msg[22], (code >> 8) & 0xFF, code & 0xFF);
}
static void generate_msg_up(uint8_t* msg, uint8_t* addr, uint8_t index, uint8_t channel, uint8_t button_pressed)
{
uint16_t code;
memset(msg, 0, 30);
msg[ 0] = 0x1B; // msg_len
msg[ 1] = index; // pck cnt
msg[ 2] = 0x44; // pck_info
msg[ 3] = 0x10; //(index == 0)?(0x12):(0x10); // pck_inf2
msg[ 4] = 0x00; // hop_info = 0
msg[ 5] = 0x01; // sys_addr = 1
msg[ 6] = (channel == 1)?(0x11):(channel); // source_group = 0x11
msg[ 7] = addr[0]; // source addr[0]
msg[ 8] = addr[1]; // source addr[1]
msg[ 9] = addr[2]; // source addr[2]
msg[10] = addr[0]; // backward addr[0]
msg[11] = addr[1]; // backward addr[1]
msg[12] = addr[2]; // backward addr[2]
msg[13] = addr[0]; // forward addr[0]
msg[14] = addr[1]; // forward addr[1]
msg[15] = addr[2]; // forward addr[2]
msg[16] = 0x01; // dest_count = 1
msg[17] = (channel == 1)?(0x11):(channel);// dest = TODO
msg[18] = 0x00;
msg[19] = 0x03;
code = (0x00 - (index * 0x708F)) & 0xFFFF;
msg[20] = (code >> 8) & 0xFF;
msg[21] = code & 0xFF;
msg[22] = (button_pressed) ? (0x20) : (0x00);
msg_encode(&msg[20], (code >> 8) & 0xFF, code & 0xFF);
}
void elero_send_msg_down(uint8_t remote_index, uint8_t channel)
{
uint8_t i;
uint8_t* r_addr = remote_addr[remote_index];
generate_msg_down(msg_buffer, r_addr, gIndex[remote_index], channel, 1);
gIndex[remote_index]++;
Serial.println("BUTTON DOWN -- PRESS msg generated:");
for( i = 0; i < 28; i++ )
{
Serial.printf("0x%02X ", msg_buffer[i]);
}
Serial.println();
for( i = 0; i < 3; i++ )
{
cc1100_tx(msg_buffer, 28);
delay(10);
}
delay(100);
generate_msg_down(msg_buffer, r_addr, gIndex[remote_index], channel, 0);
gIndex[remote_index]++;
Serial.println("BUTTON DOWN -- RELEASE msg generated:");
for( i = 0; i < 28; i++ )
{
Serial.printf("0x%02X ", msg_buffer[i]);
}
Serial.println();
for( i = 0; i < 3; i++ )
{
cc1100_tx(msg_buffer, 28);
delay(10);
}
}
void elero_send_msg_stop(uint8_t remote_index, uint8_t channel)
{
uint8_t i;
uint8_t* r_addr = remote_addr[remote_index];
uint8_t* blind_id = remote_blind_id[remote_index][channel-1];
generate_msg_stop(msg_buffer, r_addr, gIndex[remote_index], channel, blind_id);
gIndex[remote_index]++;
Serial.println("BUTTON STOP PRESS msg generated:");
for( i = 0; i < 30; i++ )
{
Serial.printf("0x%02X ", msg_buffer[i]);
}
Serial.println();
cc1100_tx(msg_buffer, 30);
delay(10);
}
void elero_send_msg_up(uint8_t remote_index, uint8_t channel)
{
uint8_t i;
uint8_t* r_addr = remote_addr[remote_index];
generate_msg_up(msg_buffer, r_addr, gIndex[remote_index], channel, 1);
gIndex[remote_index]++;
Serial.println("UP: button pressed");
for( i = 0; i < 28; i++ )
{
Serial.printf("0x%02X ", msg_buffer[i]);
}
Serial.println();
for( i = 0; i < 3; i++ )
{
cc1100_tx(msg_buffer, 28);
delay(10);
}
delay(100);
generate_msg_up(msg_buffer, r_addr, gIndex[remote_index], channel, 0);
gIndex[remote_index]++;
Serial.println("UP: button release");
for( i = 0; i < 28; i++ )
{
Serial.printf("0x%02X ", msg_buffer[i]);
}
Serial.println();
for( i = 0; i < 3; i++ )
{
cc1100_tx(msg_buffer, 28);
delay(10);
}
}
static void elero_spi_init(void)
{
pinMode(HSPI_CS, OUTPUT);
digitalWrite(HSPI_CS, HIGH);
pinMode(CC1101_GDO0, INPUT);
pinMode(CC1101_GDO2, INPUT);
hspi = new SPIClass(HSPI);
hspi->begin();
delay(10);
}
static void elero_cc1100_init()
{
Serial.printf("[cc1100] 0xf0 = %x\r\n", spi_read_reg(0xF0));
Serial.printf("[cc1100] 0xf1 = %x\r\n", spi_read_reg(0xF1));
spi_write_cmd(0x30); delayMicroseconds(50);
spi_write_cmd(0x36); delayMicroseconds(50);
spi_write_reg(0x0B, 0x08); delayMicroseconds(15);
spi_write_reg(0x0C, 0x00); delayMicroseconds(15);
spi_write_reg(0x0D, 0x21); delayMicroseconds(15);
spi_write_reg(0x0E, 0x71); delayMicroseconds(15);
spi_write_reg(0x0F, 0x7A); delayMicroseconds(15);
spi_write_reg(0x10, 0x7B); delayMicroseconds(15);
spi_write_reg(0x11, 0x83); delayMicroseconds(15);
spi_write_reg(0x12, 0x13); delayMicroseconds(15);
spi_write_reg(0x13, 0x52); delayMicroseconds(15);
spi_write_reg(0x14, 0xF8); delayMicroseconds(15);
spi_write_reg(0x0A, 0x00); delayMicroseconds(15);
spi_write_reg(0x15, 0x43); delayMicroseconds(15);
spi_write_reg(0x21, 0xB6); delayMicroseconds(15);
spi_write_reg(0x22, 0x10); delayMicroseconds(15);
spi_write_reg(0x18, 0x18); delayMicroseconds(15);
spi_write_reg(0x17, 0x3F); delayMicroseconds(15);
spi_write_reg(0x19, 0x1D); delayMicroseconds(15);
spi_write_reg(0x1A, 0x1C); delayMicroseconds(15);
spi_write_reg(0x1B, 0xC7); delayMicroseconds(15);
spi_write_reg(0x1C, 0x00); delayMicroseconds(15);
spi_write_reg(0x1D, 0xB2); delayMicroseconds(15);
spi_write_reg(0x23, 0xEA); delayMicroseconds(15);
spi_write_reg(0x24, 0x2A); delayMicroseconds(15);
spi_write_reg(0x25, 0x00); delayMicroseconds(15);
spi_write_reg(0x26, 0x1F); delayMicroseconds(15);
spi_write_reg(0x29, 0x59); delayMicroseconds(15);
spi_write_reg(0x2C, 0x81); delayMicroseconds(15);
spi_write_reg(0x2D, 0x35); delayMicroseconds(15);
spi_write_reg(0x2E, 0x09); delayMicroseconds(15);
spi_write_reg(0x00, 0x06); delayMicroseconds(15);
spi_write_reg(0x02, 0x09); delayMicroseconds(15);
spi_write_reg(0x07, 0x8C); delayMicroseconds(15);
spi_write_reg(0x08, 0x45); delayMicroseconds(15);
spi_write_reg(0x09, 0x00); delayMicroseconds(15);
spi_write_reg(0x06, 0x3C); delayMicroseconds(15);
spi_write_reg(0x04, 0xD3); delayMicroseconds(15);
spi_write_reg(0x05, 0x91); delayMicroseconds(15);
spi_write_reg(0x7E, 0xC2);
delayMicroseconds(40);
spi_write_cmd(0x34);
Serial.print("Waiting for clear channel...");
while( digitalRead(SIGNAL_CLEAR_CHANNEL_ASSESMENT) == LOW );
Serial.println("channel cleared");
}
void setup()
{
Serial.begin(921600);
delay(100);
pinMode(TEST_INPUT, INPUT_PULLUP);
elero_spi_init();
elero_cc1100_init();
Serial.println("[elero] inited");
}
uint8_t sync_det_prev = 0;
uint8_t rx_fifo[256];
uint32_t tx;
uint8_t state;
//#define ELERO_MSG_JUST_MY_REMOTES
void loop()
{
uint8_t sync_det = digitalRead(SYNCWORD_DET_SENT_TX_SENT);
uint8_t bytes_in_fifo;
uint8_t pck_len;
uint8_t i;
//if( digitalRead(SIGNAL_CLEAR_CHANNEL_ASSESMENT) == LOW )
{
if( (sync_det_prev != LOW) && (sync_det == LOW) )
{
delayMicroseconds(50);
bytes_in_fifo = spi_read_reg(0xFB);
if(bytes_in_fifo)
{
uint8_t calc_par;
pck_len = spi_read_reg(0xFF);
bytes_in_fifo--,
spi_read_burst(0xFF, rx_fifo, bytes_in_fifo);
spi_write_cmd(0x36); // idle for flushing
spi_write_cmd(0x3A); // flush RX fifo
spi_write_cmd(0x3B); // flush TX fifo
spi_write_cmd(0x34); // back to RX for listening clear channel
if( scan_check_if_addr_remote(rx_fifo) )
{
scan_remote_add(rx_fifo);
}
#ifdef ELERO_MSG_JUST_MY_REMOTES
uint8_t myremote = 0;
for( i = 0; i < 2; i++ )
{
if( (memcmp(&rx_fifo[6], &my_remotes[i][0], 3) == 0) && (memcmp(&rx_fifo[9], &my_remotes[i][0], 3) == 0) && (memcmp(&rx_fifo[12], &my_remotes[i][0], 3) == 0) )
{
myremote = 1;
}
}
if( myremote )
{
#endif
Serial.printf("[%7d] len=%2d ", millis(), pck_len);
Serial.printf("cnt=%3d ", rx_fifo[0]);
Serial.printf("0x%02X ", rx_fifo[1]); // pck_info
Serial.printf("0x%02X ", rx_fifo[2]); // pck_info2
Serial.printf("0x%02X ", rx_fifo[3]); // hop
Serial.printf("0x%02X ", rx_fifo[4]); // addr_sys
Serial.printf("0x%02X ", rx_fifo[5]); // src_grp
Serial.printf("src=[%02X%02X%02X] ", rx_fifo[6], rx_fifo[7], rx_fifo[8]); // source addr
Serial.printf("bwd=[%02X%02X%02X] ", rx_fifo[9], rx_fifo[10], rx_fifo[11]); // backward addr
Serial.printf("fwd=[%02X%02X%02X] ", rx_fifo[12], rx_fifo[13], rx_fifo[14]); // fwd addr
Serial.printf("[0x%02X ", rx_fifo[15]); // destination count
Serial.printf("0x%02X] ", rx_fifo[16]); // destination
Serial.printf("payl={");
for( i = 0; i < (pck_len-17); i++ )
{
Serial.printf("0x%02X ", rx_fifo[17+i]);
}
Serial.printf("} ");
//Serial.printf("| CRC=%d LQI=%x RSSI=%d | ", (rx_fifo[bytes_in_fifo-2] & (0x80)) == 0x80, rx_fifo[bytes_in_fifo-2] & (~0x80), rx_fifo[bytes_in_fifo-1]);
if( pck_len == 0x1B ) // len=27
{
msg_decode(&rx_fifo[19]);
Serial.printf("| payl_dec=");
// non-encrypted part of payload
Serial.printf("{0x%02X 0x%02X} ", rx_fifo[17], rx_fifo[18]);
// always 0 (contains the key that gets eliminated during decrypt) - printing for checking the encrypt process
Serial.printf("{0x%02X 0x%02X} ", rx_fifo[19], rx_fifo[20]);
// useful payload
for( i = 0; i < 5; i++ )
{
Serial.printf("0x%02X ", rx_fifo[21+i]);
}
calc_par = calc_exp_parity(rx_fifo[0], &rx_fifo[19]);
// + 1 last byte as parity
Serial.printf(" {0x%02X} %c {0x%02X}", rx_fifo[26], (rx_fifo[26] == calc_par)?('='):('?'), calc_par);
}
if( pck_len == 0x1C ) // len=28
{
msg_decode(&rx_fifo[20]);
Serial.printf("| payl_dec=");
// non-encrypted part of payload
Serial.printf("{0x%02X 0x%02X 0x%02X} ", rx_fifo[17], rx_fifo[18], rx_fifo[19]);
// always 0 (contains the key that gets eliminated during decrypt) - printing for checking the encrypt process
Serial.printf("{0x%02X 0x%02X} ", rx_fifo[20], rx_fifo[21]);
// useful payload
for( i = 0; i < 5; i++ )
{
Serial.printf("0x%02X ", rx_fifo[22+i]);
}
// + 1 last byte as parity
Serial.printf(" {0x%02X} ", rx_fifo[27]);
}
if( pck_len == 0x1D ) // len=29
{
msg_decode(&rx_fifo[21]);
Serial.printf("| payl_dec=");
// non-encrypted part of payload
Serial.printf("{0x%02X 0x%02X 0x%02X 0x%02X} ", rx_fifo[17], rx_fifo[18], rx_fifo[19], rx_fifo[20]);
// always 0 (contains the key that gets eliminated during decrypt) - printing for checking the encrypt process
Serial.printf("{0x%02X 0x%02X} ", rx_fifo[21], rx_fifo[22]);
// useful payload
for( i = 0; i < 5; i++ )
{
Serial.printf("0x%02X ", rx_fifo[23+i]);
}
// + 1 last byte as parity
Serial.printf(" {0x%02X} ", rx_fifo[28]);
}
if( pck_len == 0x1E ) // len=29
{
msg_decode(&rx_fifo[22]);
Serial.printf("| payl_dec=");
// non-encrypted part of payload
Serial.printf("{0x%02X 0x%02X 0x%02X 0x%02X 0x%02X} ", rx_fifo[17], rx_fifo[18], rx_fifo[19], rx_fifo[20], rx_fifo[21]);
// always 0 (contains the key that gets eliminated during decrypt) - printing for checking the encrypt process
Serial.printf("{0x%02X 0x%02X} ", rx_fifo[22], rx_fifo[23]);
// useful payload
for( i = 0; i < 5; i++ )
{
Serial.printf("0x%02X ", rx_fifo[24+i]);
}
// + 1 last byte as parity
Serial.printf(" {0x%02X} ", rx_fifo[29]);
}
Serial.println();
#ifdef ELERO_MSG_JUST_MY_REMOTES
}
#endif
}
}
}
sync_det_prev = sync_det;
if( digitalRead(TEST_INPUT) == LOW )
{
if( (millis()-tx) > 2000 )
{
uint8_t remote = 0;
uint8_t channel = 1;
tx = millis();
elero_send_msg_down(remote, channel);
delay(2000);
elero_send_msg_stop(remote, channel);
}
}
/*
static uint32_t remote_disp_ts = 0;
if( (millis()-remote_disp_ts) >= 2000 )
{
remote_disp_ts = millis();
Serial.write(27); // ESC command
Serial.print("[2J"); // clear screen command
Serial.write(27);
Serial.print("[H"); // cursor to home command
for( i = 0; i < 32; i++ )
{
Serial.printf("{0x%02X 0x%02X 0x%02X} \r\n", remotes[i][0], remotes[i][1], remotes[i][2]);
}
}
*/
}