-
Notifications
You must be signed in to change notification settings - Fork 18
/
utils.py
175 lines (143 loc) · 6.09 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import torchvision.utils as vutils
import torch
import torch.nn.functional
# print arguments
def print_args(args):
print("################################ args ################################")
for k, v in args.__dict__.items():
print("{0: <10}\t{1: <30}\t{2: <20}".format(k, str(v), str(type(v))))
print("########################################################################")
# torch.no_grad warpper for functions
def make_nograd_func(func):
def wrapper(*f_args, **f_kwargs):
with torch.no_grad():
ret = func(*f_args, **f_kwargs)
return ret
return wrapper
# convert a function into recursive style to handle nested dict/list/tuple variables
def make_recursive_func(func):
def wrapper(vars):
if isinstance(vars, list):
return [wrapper(x) for x in vars]
elif isinstance(vars, tuple):
return tuple([wrapper(x) for x in vars])
elif isinstance(vars, dict):
return {k: wrapper(v) for k, v in vars.items()}
else:
return func(vars)
return wrapper
@make_recursive_func
def tensor2float(vars):
if isinstance(vars, float):
return vars
elif isinstance(vars, torch.Tensor):
return vars.data.item()
else:
raise NotImplementedError("invalid input type {} for tensor2float".format(type(vars)))
@make_recursive_func
def tensor2numpy(vars):
if isinstance(vars, np.ndarray):
return vars
elif isinstance(vars, torch.Tensor):
return vars.detach().cpu().numpy().copy()
else:
raise NotImplementedError("invalid input type {} for tensor2numpy".format(type(vars)))
@make_recursive_func
def tocuda(vars):
if isinstance(vars, torch.Tensor):
return vars.cuda()
elif isinstance(vars, str):
return vars
else:
raise NotImplementedError("invalid input type {} for tensor2numpy".format(type(vars)))
def save_scalars(logger, mode, scalar_dict, global_step):
scalar_dict = tensor2float(scalar_dict)
for key, value in scalar_dict.items():
if not isinstance(value, (list, tuple)):
name = '{}/{}'.format(mode, key)
logger.add_scalar(name, value, global_step)
else:
for idx in range(len(value)):
name = '{}/{}_{}'.format(mode, key, idx)
logger.add_scalar(name, value[idx], global_step)
def save_images(logger, mode, images_dict, global_step):
images_dict = tensor2numpy(images_dict)
def preprocess(name, img):
if not (len(img.shape) == 3 or len(img.shape) == 4):
raise NotImplementedError("invalid img shape {}:{} in save_images".format(name, img.shape))
if len(img.shape) == 3:
img = img[:, np.newaxis, :, :]
img = torch.from_numpy(img[:1])
return vutils.make_grid(img, padding=0, nrow=1, normalize=True, scale_each=True)
for key, value in images_dict.items():
if not isinstance(value, (list, tuple)):
name = '{}/{}'.format(mode, key)
logger.add_image(name, preprocess(name, value), global_step)
else:
for idx in range(len(value)):
name = '{}/{}_{}'.format(mode, key, idx)
logger.add_image(name, preprocess(name, value[idx]), global_step)
class DictAverageMeter(object):
def __init__(self):
self.data = {}
self.count = 0
def update(self, new_input):
self.count += 1
if len(self.data) == 0:
for k, v in new_input.items():
if not isinstance(v, float):
raise NotImplementedError("invalid data {}: {}".format(k, type(v)))
self.data[k] = v
else:
for k, v in new_input.items():
if not isinstance(v, float):
raise NotImplementedError("invalid data {}: {}".format(k, type(v)))
self.data[k] += v
def mean(self):
return {k: v / self.count for k, v in self.data.items()}
# a wrapper to compute metrics for each image individually
def compute_metrics_for_each_image(metric_func):
def wrapper(depth_est, depth_gt, mask, *args):
batch_size = depth_gt.shape[0]
results = []
# compute result one by one
for idx in range(batch_size):
ret = metric_func(depth_est[idx], depth_gt[idx], mask[idx], *args)
results.append(ret)
return torch.stack(results).mean()
return wrapper
def compute_metrics_for_each_image_tf(metric_func):
def wrapper(depth_est, depth_gt, mask, depth_interval, *args):
batch_size = depth_gt.shape[0]
results = []
# compute result one by one
for idx in range(batch_size):
ret = metric_func(depth_est[idx], depth_gt[idx], mask[idx], depth_interval[idx], *args)
results.append(ret)
return torch.stack(results).mean()
return wrapper
@make_nograd_func
@compute_metrics_for_each_image
def Thres_metrics(depth_est, depth_gt, mask, thres):
assert isinstance(thres, (int, float))
depth_est, depth_gt = depth_est[mask], depth_gt[mask]
errors = torch.abs(depth_est - depth_gt)
err_mask = errors > thres
return torch.mean(err_mask.float())
@make_nograd_func
@compute_metrics_for_each_image_tf
def Thres_metrics_tfversion(depth_est, depth_gt, mask, depth_interval):
#assert isinstance(depth_interval, (int, float))
#print('in tf version:', depth_est.shape, depth_gt.shape, mask.shape)
depth_interval = depth_interval.type(torch.float32)
depth_est, depth_gt = depth_est[mask], depth_gt[mask]
errors = torch.abs(depth_est - depth_gt)
err_mask = errors > depth_interval
return torch.mean(err_mask.float())
# NOTE: please do not use this to build up training loss
@make_nograd_func
@compute_metrics_for_each_image
def AbsDepthError_metrics(depth_est, depth_gt, mask):
depth_est, depth_gt = depth_est[mask], depth_gt[mask]
return torch.mean((depth_est - depth_gt).abs())