From 10fefa198f6a4628a8fd2f910e26a02563d6a508 Mon Sep 17 00:00:00 2001 From: hippocookie Date: Mon, 1 Jul 2024 19:58:53 +0800 Subject: [PATCH] rebuild docs --- docs/.buildinfo | 2 +- docs/.doctrees/advanced/ONNXLive.doctree | Bin 33870 -> 33884 bytes docs/.doctrees/advanced/coding_ddpg.doctree | Bin 161141 -> 161155 bytes docs/.doctrees/advanced/cpp_autograd.doctree | Bin 67538 -> 67552 bytes .../advanced/cpp_cuda_graphs.doctree | Bin 27016 -> 27030 bytes docs/.doctrees/advanced/cpp_export.doctree | Bin 61402 -> 61416 bytes docs/.doctrees/advanced/cpp_extension.doctree | Bin 160710 -> 160724 bytes docs/.doctrees/advanced/cpp_frontend.doctree | Bin 192930 -> 192944 bytes docs/.doctrees/advanced/ddp_pipeline.doctree | Bin 76956 -> 76970 bytes docs/.doctrees/advanced/dispatcher.doctree | Bin 84988 -> 85100 bytes .../dynamic_quantization_tutorial.doctree | Bin 41584 -> 41598 bytes .../advanced/extend_dispatcher.doctree | Bin 83063 -> 83077 bytes docs/.doctrees/advanced/generic_join.doctree | Bin 76603 -> 76617 bytes .../advanced/neural_style_tutorial.doctree | Bin 74766 -> 74780 bytes .../numpy_extensions_tutorial.doctree | Bin 25185 -> 25199 bytes docs/.doctrees/advanced/pendulum.doctree | Bin 145856 -> 145870 bytes docs/.doctrees/advanced/privateuseone.doctree | Bin 62432 -> 62446 bytes .../advanced/rpc_ddp_tutorial.doctree | Bin 55421 -> 55491 bytes .../advanced/semi_structured_sparse.doctree | Bin 93986 -> 94000 bytes docs/.doctrees/advanced/sharding.doctree | Bin 54160 -> 54174 bytes .../static_quantization_tutorial.doctree | Bin 71675 -> 71689 bytes .../super_resolution_with_onnxruntime.doctree | Bin 51843 -> 51857 bytes .../advanced/torch-script-parallelism.doctree | Bin 38437 -> 38451 bytes .../torch_script_custom_classes.doctree | Bin 76385 -> 76553 bytes .../advanced/torch_script_custom_ops.doctree | Bin 157564 -> 157760 bytes .../advanced/usb_semisup_learn.doctree | Bin 46358 -> 46372 bytes .../Intro_to_TorchScript_tutorial.doctree | Bin 64019 -> 64033 bytes .../audio_data_augmentation_tutorial.doctree | Bin 3956 -> 3970 bytes .../beginner/audio_datasets_tutorial.doctree | Bin 3893 -> 3907 bytes ...udio_feature_augmentation_tutorial.doctree | Bin 3959 -> 3973 bytes ...audio_feature_extractions_tutorial.doctree | Bin 3968 -> 3982 bytes .../beginner/audio_io_tutorial.doctree | Bin 3837 -> 3851 bytes .../audio_resampling_tutorial.doctree | Bin 4198 -> 4212 bytes .../basics/autogradqs_tutorial.doctree | Bin 50993 -> 51007 bytes .../basics/buildmodel_tutorial.doctree | Bin 43962 -> 43976 bytes .../beginner/basics/data_tutorial.doctree | Bin 47208 -> 47222 bytes docs/.doctrees/beginner/basics/index.doctree | Bin 27456 -> 27470 bytes docs/.doctrees/beginner/basics/intro.doctree | Bin 27203 -> 27217 bytes .../basics/optimization_tutorial.doctree | Bin 45105 -> 45119 bytes .../basics/quickstart_tutorial.doctree | Bin 42538 -> 42552 bytes .../basics/saveloadrun_tutorial.doctree | Bin 22894 -> 22908 bytes .../beginner/basics/tensorqs_tutorial.doctree | Bin 41218 -> 41232 bytes .../basics/transforms_tutorial.doctree | Bin 22887 -> 22901 bytes .../bettertransformer_tutorial.doctree | Bin 33718 -> 33732 bytes .../beginner/blitz/autograd_tutorial.doctree | Bin 61277 -> 61291 bytes .../beginner/blitz/cifar10_tutorial.doctree | Bin 54846 -> 54860 bytes .../blitz/data_parallel_tutorial.doctree | Bin 37687 -> 37701 bytes docs/.doctrees/beginner/blitz/index.doctree | Bin 17778 -> 17792 bytes .../blitz/neural_networks_tutorial.doctree | Bin 49520 -> 49534 bytes .../beginner/blitz/tensor_tutorial.doctree | Bin 33941 -> 33955 bytes .../beginner/chatbot_tutorial.doctree | Bin 181504 -> 181518 bytes docs/.doctrees/beginner/colab.doctree | Bin 19433 -> 19447 bytes .../beginner/data_loading_tutorial.doctree | Bin 61275 -> 61289 bytes .../beginner/dcgan_faces_tutorial.doctree | Bin 113675 -> 113689 bytes .../ddp_series_fault_tolerance.doctree | Bin 41488 -> 41502 bytes .../beginner/ddp_series_intro.doctree | Bin 14777 -> 14791 bytes .../beginner/ddp_series_multigpu.doctree | Bin 47852 -> 47866 bytes .../beginner/ddp_series_theory.doctree | Bin 24523 -> 24537 bytes .../deep_learning_60min_blitz.doctree | Bin 29345 -> 29359 bytes .../beginner/deeplabv3_on_android.doctree | Bin 58058 -> 58072 bytes .../beginner/deeplabv3_on_ios.doctree | Bin 58266 -> 58280 bytes ...y_seq2seq_hybrid_frontend_tutorial.doctree | Bin 139415 -> 139429 bytes docs/.doctrees/beginner/dist_overview.doctree | Bin 65571 -> 65585 bytes .../beginner/examples_autograd/index.doctree | Bin 7220 -> 7234 bytes .../polynomial_autograd.doctree | Bin 16390 -> 16404 bytes .../polynomial_custom_function.doctree | Bin 19481 -> 19495 bytes .../beginner/examples_nn/dynamic_net.doctree | Bin 14756 -> 14770 bytes .../beginner/examples_nn/index.doctree | Bin 10010 -> 10024 bytes .../examples_nn/polynomial_module.doctree | Bin 14641 -> 14655 bytes .../examples_nn/polynomial_nn.doctree | Bin 16670 -> 16684 bytes .../examples_nn/polynomial_optim.doctree | Bin 14846 -> 14860 bytes .../beginner/examples_tensor/index.doctree | Bin 7062 -> 7076 bytes .../examples_tensor/polynomial_numpy.doctree | Bin 12893 -> 12907 bytes .../examples_tensor/polynomial_tensor.doctree | Bin 14411 -> 14425 bytes docs/.doctrees/beginner/fgsm_tutorial.doctree | Bin 71984 -> 71998 bytes ...tuning_torchvision_models_tutorial.doctree | Bin 3956 -> 3970 bytes .../flava_finetuning_tutorial.doctree | Bin 31521 -> 31535 bytes .../autograd_tutorial_old.doctree | Bin 26459 -> 26473 bytes .../beginner/former_torchies/index.doctree | Bin 15334 -> 15348 bytes .../former_torchies/nnft_tutorial.doctree | Bin 39233 -> 39247 bytes .../parallelism_tutorial.doctree | Bin 30566 -> 30580 bytes .../tensor_tutorial_old.doctree | Bin 24867 -> 24881 bytes .../beginner/former_torchies_tutorial.doctree | Bin 6840 -> 6854 bytes .../beginner/hta_intro_tutorial.doctree | Bin 65744 -> 65758 bytes .../beginner/hta_trace_diff_tutorial.doctree | Bin 18303 -> 18317 bytes .../beginner/hybrid_frontend/index.doctree | Bin 9395 -> 9409 bytes ..._frontend_through_example_tutorial.doctree | Bin 49616 -> 49630 bytes .../beginner/hybrid_frontend_tutorial.doctree | Bin 5829 -> 5843 bytes .../hyperparameter_tuning_tutorial.doctree | Bin 65341 -> 65355 bytes docs/.doctrees/beginner/introyt.doctree | Bin 15460 -> 15474 bytes .../introyt/autogradyt_tutorial.doctree | Bin 91713 -> 91727 bytes .../beginner/introyt/captumyt.doctree | Bin 72945 -> 72959 bytes docs/.doctrees/beginner/introyt/index.doctree | Bin 24215 -> 24229 bytes .../introyt/introyt1_tutorial.doctree | Bin 86974 -> 86988 bytes .../introyt/modelsyt_tutorial.doctree | Bin 68920 -> 68934 bytes .../introyt/tensorboardyt_tutorial.doctree | Bin 41665 -> 41679 bytes .../introyt/tensors_deeper_tutorial.doctree | Bin 130309 -> 130323 bytes .../beginner/introyt/trainingyt.doctree | Bin 45498 -> 45512 bytes .../knowledge_distillation_tutorial.doctree | Bin 115388 -> 115402 bytes .../beginner/nlp/advanced_tutorial.doctree | Bin 53149 -> 53163 bytes .../nlp/deep_learning_tutorial.doctree | Bin 56251 -> 56265 bytes docs/.doctrees/beginner/nlp/index.doctree | Bin 21824 -> 21838 bytes .../beginner/nlp/pytorch_tutorial.doctree | Bin 36908 -> 36922 bytes .../nlp/sequence_models_tutorial.doctree | Bin 40530 -> 40544 bytes .../nlp/word_embeddings_tutorial.doctree | Bin 53584 -> 53598 bytes docs/.doctrees/beginner/nn_tutorial.doctree | Bin 136112 -> 136126 bytes ...port_simple_model_to_onnx_tutorial.doctree | Bin 44849 -> 44863 bytes docs/.doctrees/beginner/onnx/index.doctree | Bin 12337 -> 12351 bytes .../beginner/onnx/intro_onnx.doctree | Bin 26764 -> 26778 bytes .../onnx/onnx_registry_tutorial.doctree | Bin 80595 -> 80609 bytes docs/.doctrees/beginner/profiler.doctree | Bin 53121 -> 53135 bytes docs/.doctrees/beginner/ptcheat.doctree | Bin 36989 -> 37003 bytes .../beginner/pytorch_with_examples.doctree | Bin 80998 -> 81012 bytes .../beginner/saving_loading_models.doctree | Bin 86020 -> 86034 bytes docs/.doctrees/beginner/t5_tutorial.doctree | Bin 59931 -> 59945 bytes .../beginner/template_tutorial.doctree | Bin 25619 -> 25633 bytes .../text_sentiment_ngrams_tutorial.doctree | Bin 55015 -> 55029 bytes .../torchtext_custom_dataset_tutorial.doctree | Bin 70815 -> 70829 bytes .../transfer_learning_tutorial.doctree | Bin 48805 -> 48819 bytes .../beginner/translation_transformer.doctree | Bin 53318 -> 53332 bytes docs/.doctrees/beginner/vt_tutorial.doctree | Bin 46879 -> 46893 bytes docs/.doctrees/distributed/home.doctree | Bin 83281 -> 83295 bytes docs/.doctrees/environment.pickle | Bin 4156098 -> 4210998 bytes docs/.doctrees/index.doctree | Bin 242463 -> 242477 bytes .../FSDP_adavnced_tutorial.doctree | Bin 73847 -> 73861 bytes .../intermediate/FSDP_tutorial.doctree | Bin 55492 -> 55506 bytes .../intermediate/TP_tutorial.doctree | Bin 85181 -> 85195 bytes ...ograd_saved_tensors_hooks_tutorial.doctree | Bin 62088 -> 62102 bytes .../ax_multiobjective_nas_tutorial.doctree | Bin 70709 -> 70723 bytes .../char_rnn_classification_tutorial.doctree | Bin 69810 -> 69824 bytes .../char_rnn_generation_tutorial.doctree | Bin 58430 -> 58444 bytes .../custom_function_conv_bn_tutorial.doctree | Bin 54410 -> 54424 bytes ..._function_double_backward_tutorial.doctree | Bin 30465 -> 30479 bytes .../intermediate/ddp_series_minGPT.doctree | Bin 34625 -> 34639 bytes .../intermediate/ddp_series_multinode.doctree | Bin 31392 -> 31406 bytes .../intermediate/ddp_tutorial.doctree | Bin 51681 -> 51695 bytes .../dist_pipeline_parallel_tutorial.doctree | Bin 46900 -> 46914 bytes docs/.doctrees/intermediate/dist_tuto.doctree | Bin 99919 -> 99933 bytes .../dqn_with_rnn_tutorial.doctree | Bin 87196 -> 87210 bytes ...dynamic_quantization_bert_tutorial.doctree | Bin 82122 -> 82136 bytes .../.doctrees/intermediate/ensembling.doctree | Bin 33778 -> 33792 bytes .../flask_rest_api_tutorial.doctree | Bin 59211 -> 59225 bytes ...alignment_with_torchaudio_tutorial.doctree | Bin 3943 -> 3957 bytes .../intermediate/forward_ad_usage.doctree | Bin 37954 -> 37968 bytes .../intermediate/fx_conv_bn_fuser.doctree | Bin 39765 -> 39779 bytes .../fx_profiling_tutorial.doctree | Bin 42866 -> 42880 bytes .../intermediate/inductor_debug_cpu.doctree | Bin 103377 -> 103391 bytes .../intermediate/jacobians_hessians.doctree | Bin 59861 -> 59875 bytes .../intermediate/mario_rl_tutorial.doctree | Bin 89706 -> 89720 bytes .../memory_format_tutorial.doctree | Bin 72602 -> 72616 bytes .../intermediate/mnist_train_nas.doctree | Bin 20311 -> 20325 bytes .../model_parallel_tutorial.doctree | Bin 53808 -> 53822 bytes .../neural_tangent_kernels.doctree | Bin 47102 -> 47116 bytes .../nvfuser_intro_tutorial.doctree | Bin 3553 -> 3567 bytes ...ptimizer_step_in_backward_tutorial.doctree | Bin 53708 -> 53722 bytes .../intermediate/parametrizations.doctree | Bin 73709 -> 73723 bytes .../intermediate/per_sample_grads.doctree | Bin 39534 -> 39548 bytes ...ocess_group_cpp_extension_tutorial.doctree | Bin 43230 -> 43244 bytes .../intermediate/pruning_tutorial.doctree | Bin 73945 -> 73959 bytes ...antized_transfer_learning_tutorial.doctree | Bin 59906 -> 59920 bytes .../intermediate/realtime_rpi.doctree | Bin 53426 -> 53440 bytes .../intermediate/reinforcement_ppo.doctree | Bin 128701 -> 128715 bytes .../reinforcement_q_learning.doctree | Bin 65113 -> 65127 bytes .../intermediate/rpc_async_execution.doctree | Bin 79235 -> 79249 bytes .../rpc_param_server_tutorial.doctree | Bin 88990 -> 89004 bytes .../intermediate/rpc_tutorial.doctree | Bin 84012 -> 84026 bytes ...led_dot_product_attention_tutorial.doctree | Bin 60093 -> 60107 bytes .../seq2seq_translation_tutorial.doctree | Bin 111617 -> 111631 bytes .../spatial_transformer_tutorial.doctree | Bin 31948 -> 31962 bytes ...eech_recognition_pipeline_tutorial.doctree | Bin 4011 -> 4025 bytes .../tensorboard_profiler_tutorial.doctree | Bin 94331 -> 94345 bytes .../intermediate/tensorboard_tutorial.doctree | Bin 43303 -> 43317 bytes .../text_to_speech_with_torchaudio.doctree | Bin 3955 -> 3969 bytes .../intermediate/tiatoolbox_tutorial.doctree | Bin 108211 -> 108225 bytes .../torch_compile_tutorial.doctree | Bin 77877 -> 77891 bytes .../torch_export_nightly_tutorial.doctree | Bin 113056 -> 113070 bytes .../torch_export_tutorial.doctree | Bin 125824 -> 125838 bytes .../intermediate/torchrec_tutorial.doctree | Bin 34748 -> 34762 bytes .../intermediate/torchserve_with_ipex.doctree | Bin 110252 -> 110266 bytes .../torchserve_with_ipex_2.doctree | Bin 104496 -> 104510 bytes .../intermediate/torchvision_tutorial.doctree | Bin 83211 -> 83225 bytes .../prototype/backend_config_tutorial.doctree | Bin 42230 -> 42244 bytes .../distributed_rpc_profiling.doctree | Bin 3555 -> 3569 bytes .../fx_graph_mode_ptq_dynamic.doctree | Bin 39003 -> 39017 bytes .../fx_graph_mode_ptq_static.doctree | Bin 53340 -> 53354 bytes .../fx_graph_mode_quant_guide.doctree | Bin 31614 -> 31628 bytes .../gpu_quantization_torchao_tutorial.doctree | Bin 54492 -> 54506 bytes .../graph_mode_dynamic_bert_tutorial.doctree | Bin 69790 -> 69804 bytes .../inductor_cpp_wrapper_tutorial.doctree | Bin 20697 -> 20711 bytes .../prototype/ios_coreml_workflow.doctree | Bin 24353 -> 24367 bytes .../prototype/ios_gpu_workflow.doctree | Bin 32881 -> 32895 bytes .../prototype/maskedtensor_adagrad.doctree | Bin 38885 -> 38899 bytes .../maskedtensor_advanced_semantics.doctree | Bin 39700 -> 39714 bytes .../prototype/maskedtensor_overview.doctree | Bin 67916 -> 67930 bytes .../prototype/maskedtensor_sparsity.doctree | Bin 68328 -> 68342 bytes docs/.doctrees/prototype/nestedtensor.doctree | Bin 58001 -> 58015 bytes .../prototype/nnapi_mobilenetv2.doctree | Bin 29210 -> 29224 bytes .../prototype/numeric_suite_tutorial.doctree | Bin 80130 -> 80144 bytes .../prototype/prototype_index.doctree | Bin 53045 -> 53059 bytes .../prototype/pt2e_quant_ptq.doctree | Bin 82730 -> 82744 bytes .../prototype/pt2e_quant_qat.doctree | Bin 51747 -> 51761 bytes .../prototype/pt2e_quant_x86_inductor.doctree | Bin 52626 -> 52640 bytes .../prototype/pt2e_quantizer.doctree | Bin 103241 -> 103255 bytes .../prototype/semi_structured_sparse.doctree | Bin 78570 -> 78584 bytes .../prototype/skip_param_init.doctree | Bin 20712 -> 20726 bytes .../prototype/torchscript_freezing.doctree | Bin 20956 -> 20970 bytes .../tracing_based_selective_build.doctree | Bin 37961 -> 37975 bytes docs/.doctrees/prototype/vmap_recipe.doctree | Bin 26613 -> 26627 bytes .../prototype/vulkan_workflow.doctree | Bin 33386 -> 33400 bytes docs/.doctrees/recipes/amx.doctree | Bin 29960 -> 29974 bytes .../android_native_app_with_custom_op.doctree | Bin 84617 -> 84631 bytes docs/.doctrees/recipes/bundled_inputs.doctree | Bin 27548 -> 27562 bytes .../recipes/compiling_optimizer.doctree | Bin 12336 -> 12350 bytes .../compiling_optimizer_lr_scheduler.doctree | Bin 23734 -> 23748 bytes docs/.doctrees/recipes/cuda_rpc.doctree | Bin 21443 -> 21457 bytes .../recipes/deployment_with_flask.doctree | Bin 35873 -> 35887 bytes .../distributed_checkpoint_recipe.doctree | Bin 36491 -> 36505 bytes .../recipes/distributed_device_mesh.doctree | Bin 28716 -> 28730 bytes .../distributed_optim_torchscript.doctree | Bin 32340 -> 32354 bytes .../recipes/distributed_rpc_profiling.doctree | Bin 3551 -> 3565 bytes docs/.doctrees/recipes/fuse.doctree | Bin 22754 -> 22768 bytes .../inference_tuning_on_aws_graviton.doctree | Bin 131680 -> 131694 bytes .../intel_extension_for_pytorch.doctree | Bin 78493 -> 78507 bytes ...ntel_neural_compressor_for_pytorch.doctree | Bin 44911 -> 44925 bytes .../recipes/mobile_interpreter.doctree | Bin 38093 -> 38107 bytes docs/.doctrees/recipes/mobile_perf.doctree | Bin 47377 -> 47391 bytes .../recipes/model_preparation_android.doctree | Bin 18545 -> 18559 bytes .../recipes/model_preparation_ios.doctree | Bin 24151 -> 24165 bytes .../recipes/profile_with_itt.doctree | Bin 38779 -> 38793 bytes .../recipes/ptmobile_recipes_summary.doctree | Bin 13285 -> 13299 bytes docs/.doctrees/recipes/quantization.doctree | Bin 37347 -> 37361 bytes .../recipes/recipes/Captum_Recipe.doctree | Bin 31232 -> 31246 bytes .../recipes/recipes/amp_recipe.doctree | Bin 78078 -> 78092 bytes .../recipes/recipes/benchmark.doctree | Bin 106459 -> 106473 bytes .../recipes/changing_default_device.doctree | Bin 14192 -> 14206 bytes .../recipes/defining_a_neural_network.doctree | Bin 31002 -> 31016 bytes .../recipes/dynamic_quantization.doctree | Bin 47604 -> 47618 bytes docs/.doctrees/recipes/recipes/index.doctree | Bin 59501 -> 59585 bytes .../recipes/loading_data_recipe.doctree | Bin 33290 -> 33304 bytes .../module_load_state_dict_tips.doctree | Bin 42245 -> 42259 bytes .../recipes/recipes/profiler_recipe.doctree | Bin 77471 -> 77613 bytes .../recipes/reasoning_about_shapes.doctree | Bin 17292 -> 17306 bytes .../recipes/save_load_across_devices.doctree | Bin 28423 -> 28437 bytes ...g_and_loading_a_general_checkpoint.doctree | Bin 27913 -> 27927 bytes ...g_and_loading_models_for_inference.doctree | Bin 31277 -> 31291 bytes ...saving_multiple_models_in_one_file.doctree | Bin 26831 -> 26845 bytes .../recipes/recipes/swap_tensors.doctree | Bin 55668 -> 55682 bytes .../recipes/tensorboard_with_pytorch.doctree | Bin 25466 -> 25480 bytes .../recipes/recipes/timer_quick_start.doctree | Bin 55782 -> 55796 bytes .../recipes/recipes/tuning_guide.doctree | Bin 135973 -> 135987 bytes ..._parameters_from_a_different_model.doctree | Bin 26471 -> 26485 bytes .../recipes/what_is_state_dict.doctree | Bin 34051 -> 34065 bytes .../recipes/zeroing_out_gradients.doctree | Bin 32652 -> 32666 bytes docs/.doctrees/recipes/recipes_index.doctree | Bin 97071 -> 97067 bytes .../recipes/script_optimized.doctree | Bin 51701 -> 51715 bytes .../torch_compile_backend_ipex.doctree | Bin 16387 -> 16401 bytes ...ser_defined_triton_kernel_tutorial.doctree | Bin 34765 -> 34779 bytes docs/.doctrees/recipes/torch_logs.doctree | Bin 18764 -> 18778 bytes .../recipes/torchscript_inference.doctree | Bin 25943 -> 25957 bytes .../torchserve_vertexai_tutorial.doctree | Bin 22068 -> 22082 bytes .../recipes/zero_redundancy_optimizer.doctree | Bin 26062 -> 26076 bytes .../yi_jing_01_chien.jpg | Bin 0 -> 6614 bytes .../profiler_recipe.py | 263 ++++++------ .../profiler_recipe.ipynb | 64 +-- docs/_images/yi_jing_01_chien1.jpg | Bin 0 -> 6614 bytes docs/_sources/recipes/recipes/index.rst.txt | 2 +- .../recipes/recipes/profiler_recipe.rst.txt | 331 +++++++-------- docs/_sources/recipes/recipes_index.rst.txt | 2 +- .../FreightSans/freight-sans-bold-italic.woff | Bin 0 -> 39560 bytes .../freight-sans-bold-italic.woff2 | Bin 0 -> 31812 bytes .../fonts/FreightSans/freight-sans-bold.woff | Bin 0 -> 32396 bytes .../fonts/FreightSans/freight-sans-bold.woff2 | Bin 0 -> 25672 bytes .../FreightSans/freight-sans-book-italic.woff | Bin 0 -> 33944 bytes .../freight-sans-book-italic.woff2 | Bin 0 -> 26832 bytes .../fonts/FreightSans/freight-sans-book.woff | Bin 0 -> 31612 bytes .../fonts/FreightSans/freight-sans-book.woff2 | Bin 0 -> 25120 bytes .../freight-sans-light-italic.woff | Bin 0 -> 29304 bytes .../freight-sans-light-italic.woff2 | Bin 0 -> 22720 bytes .../freight-sans-medium-italic.woff | Bin 0 -> 19420 bytes .../freight-sans-medium-italic.woff2 | Bin 0 -> 16000 bytes .../FreightSans/freight-sans-medium.woff | Bin 0 -> 32072 bytes .../FreightSans/freight-sans-medium.woff2 | Bin 0 -> 25460 bytes docs/_static/js/vendor/anchor.min.js | 9 + docs/_static/js/vendor/bootstrap.min.js | 7 + docs/_static/js/vendor/popper.min.js | 5 + docs/advanced/ONNXLive.html | 86 ++-- docs/advanced/coding_ddpg.html | 86 ++-- docs/advanced/cpp_autograd.html | 86 ++-- docs/advanced/cpp_cuda_graphs.html | 86 ++-- docs/advanced/cpp_export.html | 86 ++-- docs/advanced/cpp_extension.html | 86 ++-- docs/advanced/cpp_frontend.html | 86 ++-- docs/advanced/ddp_pipeline.html | 86 ++-- docs/advanced/dispatcher.html | 86 ++-- .../dynamic_quantization_tutorial.html | 86 ++-- docs/advanced/extend_dispatcher.html | 86 ++-- docs/advanced/generic_join.html | 86 ++-- docs/advanced/neural_style_tutorial.html | 86 ++-- docs/advanced/numpy_extensions_tutorial.html | 86 ++-- docs/advanced/pendulum.html | 86 ++-- docs/advanced/privateuseone.html | 86 ++-- docs/advanced/rpc_ddp_tutorial.html | 86 ++-- docs/advanced/semi_structured_sparse.html | 86 ++-- docs/advanced/sharding.html | 86 ++-- .../static_quantization_tutorial.html | 86 ++-- .../super_resolution_with_onnxruntime.html | 86 ++-- docs/advanced/torch-script-parallelism.html | 86 ++-- .../advanced/torch_script_custom_classes.html | 86 ++-- docs/advanced/torch_script_custom_ops.html | 86 ++-- docs/advanced/usb_semisup_learn.html | 86 ++-- .../Intro_to_TorchScript_tutorial.html | 86 ++-- .../audio_data_augmentation_tutorial.html | 86 ++-- docs/beginner/audio_datasets_tutorial.html | 86 ++-- .../audio_feature_augmentation_tutorial.html | 86 ++-- .../audio_feature_extractions_tutorial.html | 86 ++-- docs/beginner/audio_io_tutorial.html | 86 ++-- docs/beginner/audio_resampling_tutorial.html | 86 ++-- docs/beginner/basics/autogradqs_tutorial.html | 86 ++-- docs/beginner/basics/buildmodel_tutorial.html | 86 ++-- docs/beginner/basics/data_tutorial.html | 86 ++-- docs/beginner/basics/index.html | 86 ++-- docs/beginner/basics/intro.html | 86 ++-- .../basics/optimization_tutorial.html | 86 ++-- docs/beginner/basics/quickstart_tutorial.html | 86 ++-- .../beginner/basics/saveloadrun_tutorial.html | 86 ++-- docs/beginner/basics/tensorqs_tutorial.html | 86 ++-- docs/beginner/basics/transforms_tutorial.html | 86 ++-- docs/beginner/bettertransformer_tutorial.html | 86 ++-- docs/beginner/blitz/autograd_tutorial.html | 86 ++-- docs/beginner/blitz/cifar10_tutorial.html | 86 ++-- .../blitz/data_parallel_tutorial.html | 86 ++-- docs/beginner/blitz/index.html | 86 ++-- .../blitz/neural_networks_tutorial.html | 86 ++-- docs/beginner/blitz/tensor_tutorial.html | 86 ++-- docs/beginner/chatbot_tutorial.html | 86 ++-- docs/beginner/colab.html | 86 ++-- docs/beginner/data_loading_tutorial.html | 86 ++-- docs/beginner/dcgan_faces_tutorial.html | 86 ++-- docs/beginner/ddp_series_fault_tolerance.html | 86 ++-- docs/beginner/ddp_series_intro.html | 86 ++-- docs/beginner/ddp_series_multigpu.html | 86 ++-- docs/beginner/ddp_series_theory.html | 86 ++-- docs/beginner/deep_learning_60min_blitz.html | 86 ++-- docs/beginner/deeplabv3_on_android.html | 86 ++-- docs/beginner/deeplabv3_on_ios.html | 86 ++-- ...ploy_seq2seq_hybrid_frontend_tutorial.html | 86 ++-- docs/beginner/dist_overview.html | 86 ++-- docs/beginner/examples_autograd/index.html | 86 ++-- .../polynomial_autograd.html | 86 ++-- .../polynomial_custom_function.html | 86 ++-- docs/beginner/examples_nn/dynamic_net.html | 86 ++-- docs/beginner/examples_nn/index.html | 86 ++-- .../examples_nn/polynomial_module.html | 86 ++-- docs/beginner/examples_nn/polynomial_nn.html | 86 ++-- .../examples_nn/polynomial_optim.html | 86 ++-- docs/beginner/examples_tensor/index.html | 86 ++-- .../examples_tensor/polynomial_numpy.html | 86 ++-- .../examples_tensor/polynomial_tensor.html | 86 ++-- docs/beginner/fgsm_tutorial.html | 86 ++-- ...inetuning_torchvision_models_tutorial.html | 86 ++-- docs/beginner/flava_finetuning_tutorial.html | 86 ++-- .../autograd_tutorial_old.html | 86 ++-- docs/beginner/former_torchies/index.html | 86 ++-- .../former_torchies/nnft_tutorial.html | 86 ++-- .../former_torchies/parallelism_tutorial.html | 86 ++-- .../former_torchies/tensor_tutorial_old.html | 86 ++-- docs/beginner/former_torchies_tutorial.html | 86 ++-- docs/beginner/hta_intro_tutorial.html | 86 ++-- docs/beginner/hta_trace_diff_tutorial.html | 86 ++-- docs/beginner/hybrid_frontend/index.html | 86 ++-- ...rid_frontend_through_example_tutorial.html | 86 ++-- docs/beginner/hybrid_frontend_tutorial.html | 86 ++-- .../hyperparameter_tuning_tutorial.html | 86 ++-- docs/beginner/introyt.html | 86 ++-- .../beginner/introyt/autogradyt_tutorial.html | 86 ++-- docs/beginner/introyt/captumyt.html | 86 ++-- docs/beginner/introyt/index.html | 86 ++-- docs/beginner/introyt/introyt1_tutorial.html | 86 ++-- docs/beginner/introyt/modelsyt_tutorial.html | 86 ++-- .../introyt/tensorboardyt_tutorial.html | 86 ++-- .../introyt/tensors_deeper_tutorial.html | 86 ++-- docs/beginner/introyt/trainingyt.html | 86 ++-- .../knowledge_distillation_tutorial.html | 86 ++-- docs/beginner/nlp/advanced_tutorial.html | 86 ++-- docs/beginner/nlp/deep_learning_tutorial.html | 86 ++-- docs/beginner/nlp/index.html | 86 ++-- docs/beginner/nlp/pytorch_tutorial.html | 86 ++-- .../nlp/sequence_models_tutorial.html | 86 ++-- .../nlp/word_embeddings_tutorial.html | 86 ++-- docs/beginner/nn_tutorial.html | 86 ++-- .../export_simple_model_to_onnx_tutorial.html | 86 ++-- docs/beginner/onnx/index.html | 86 ++-- docs/beginner/onnx/intro_onnx.html | 86 ++-- .../beginner/onnx/onnx_registry_tutorial.html | 86 ++-- docs/beginner/profiler.html | 86 ++-- docs/beginner/ptcheat.html | 86 ++-- docs/beginner/pytorch_with_examples.html | 86 ++-- docs/beginner/saving_loading_models.html | 86 ++-- docs/beginner/t5_tutorial.html | 86 ++-- docs/beginner/template_tutorial.html | 86 ++-- .../text_sentiment_ngrams_tutorial.html | 86 ++-- .../torchtext_custom_dataset_tutorial.html | 86 ++-- docs/beginner/transfer_learning_tutorial.html | 86 ++-- docs/beginner/translation_transformer.html | 86 ++-- docs/beginner/vt_tutorial.html | 86 ++-- docs/distributed/home.html | 86 ++-- docs/genindex.html | 104 ++--- docs/index.html | 86 ++-- docs/intermediate/FSDP_adavnced_tutorial.html | 86 ++-- docs/intermediate/FSDP_tutorial.html | 86 ++-- docs/intermediate/TP_tutorial.html | 86 ++-- ...autograd_saved_tensors_hooks_tutorial.html | 86 ++-- .../ax_multiobjective_nas_tutorial.html | 86 ++-- .../char_rnn_classification_tutorial.html | 86 ++-- .../char_rnn_generation_tutorial.html | 86 ++-- .../custom_function_conv_bn_tutorial.html | 86 ++-- ...tom_function_double_backward_tutorial.html | 86 ++-- docs/intermediate/ddp_series_minGPT.html | 86 ++-- docs/intermediate/ddp_series_multinode.html | 86 ++-- docs/intermediate/ddp_tutorial.html | 86 ++-- .../dist_pipeline_parallel_tutorial.html | 86 ++-- docs/intermediate/dist_tuto.html | 86 ++-- docs/intermediate/dqn_with_rnn_tutorial.html | 86 ++-- .../dynamic_quantization_bert_tutorial.html | 86 ++-- docs/intermediate/ensembling.html | 86 ++-- .../intermediate/flask_rest_api_tutorial.html | 86 ++-- ...ed_alignment_with_torchaudio_tutorial.html | 86 ++-- docs/intermediate/forward_ad_usage.html | 86 ++-- docs/intermediate/fx_conv_bn_fuser.html | 86 ++-- docs/intermediate/fx_profiling_tutorial.html | 86 ++-- docs/intermediate/inductor_debug_cpu.html | 86 ++-- docs/intermediate/jacobians_hessians.html | 86 ++-- docs/intermediate/mario_rl_tutorial.html | 86 ++-- docs/intermediate/memory_format_tutorial.html | 86 ++-- docs/intermediate/mnist_train_nas.html | 86 ++-- .../intermediate/model_parallel_tutorial.html | 86 ++-- docs/intermediate/neural_tangent_kernels.html | 86 ++-- docs/intermediate/nvfuser_intro_tutorial.html | 86 ++-- .../optimizer_step_in_backward_tutorial.html | 86 ++-- docs/intermediate/parametrizations.html | 86 ++-- docs/intermediate/per_sample_grads.html | 86 ++-- .../process_group_cpp_extension_tutorial.html | 86 ++-- docs/intermediate/pruning_tutorial.html | 86 ++-- .../quantized_transfer_learning_tutorial.html | 86 ++-- docs/intermediate/realtime_rpi.html | 86 ++-- docs/intermediate/reinforcement_ppo.html | 86 ++-- .../reinforcement_q_learning.html | 86 ++-- docs/intermediate/rpc_async_execution.html | 86 ++-- .../rpc_param_server_tutorial.html | 86 ++-- docs/intermediate/rpc_tutorial.html | 86 ++-- ...scaled_dot_product_attention_tutorial.html | 86 ++-- .../seq2seq_translation_tutorial.html | 86 ++-- .../spatial_transformer_tutorial.html | 86 ++-- .../speech_recognition_pipeline_tutorial.html | 86 ++-- .../tensorboard_profiler_tutorial.html | 86 ++-- docs/intermediate/tensorboard_tutorial.html | 86 ++-- .../text_to_speech_with_torchaudio.html | 86 ++-- docs/intermediate/tiatoolbox_tutorial.html | 86 ++-- docs/intermediate/torch_compile_tutorial.html | 86 ++-- .../torch_export_nightly_tutorial.html | 86 ++-- docs/intermediate/torch_export_tutorial.html | 86 ++-- docs/intermediate/torchrec_tutorial.html | 86 ++-- docs/intermediate/torchserve_with_ipex.html | 86 ++-- docs/intermediate/torchserve_with_ipex_2.html | 86 ++-- docs/intermediate/torchvision_tutorial.html | 86 ++-- docs/objects.inv | Bin 14145 -> 14227 bytes docs/prototype/backend_config_tutorial.html | 86 ++-- docs/prototype/distributed_rpc_profiling.html | 86 ++-- docs/prototype/fx_graph_mode_ptq_dynamic.html | 86 ++-- docs/prototype/fx_graph_mode_ptq_static.html | 86 ++-- docs/prototype/fx_graph_mode_quant_guide.html | 86 ++-- .../gpu_quantization_torchao_tutorial.html | 86 ++-- .../graph_mode_dynamic_bert_tutorial.html | 86 ++-- .../inductor_cpp_wrapper_tutorial.html | 86 ++-- docs/prototype/ios_coreml_workflow.html | 86 ++-- docs/prototype/ios_gpu_workflow.html | 86 ++-- docs/prototype/maskedtensor_adagrad.html | 86 ++-- .../maskedtensor_advanced_semantics.html | 86 ++-- docs/prototype/maskedtensor_overview.html | 86 ++-- docs/prototype/maskedtensor_sparsity.html | 86 ++-- docs/prototype/nestedtensor.html | 86 ++-- docs/prototype/nnapi_mobilenetv2.html | 86 ++-- docs/prototype/numeric_suite_tutorial.html | 86 ++-- docs/prototype/prototype_index.html | 86 ++-- docs/prototype/pt2e_quant_ptq.html | 86 ++-- docs/prototype/pt2e_quant_qat.html | 86 ++-- docs/prototype/pt2e_quant_x86_inductor.html | 86 ++-- docs/prototype/pt2e_quantizer.html | 86 ++-- docs/prototype/semi_structured_sparse.html | 86 ++-- docs/prototype/skip_param_init.html | 86 ++-- docs/prototype/torchscript_freezing.html | 86 ++-- .../tracing_based_selective_build.html | 86 ++-- docs/prototype/vmap_recipe.html | 86 ++-- docs/prototype/vulkan_workflow.html | 86 ++-- docs/recipes/amx.html | 86 ++-- .../android_native_app_with_custom_op.html | 86 ++-- docs/recipes/bundled_inputs.html | 86 ++-- docs/recipes/compiling_optimizer.html | 86 ++-- .../compiling_optimizer_lr_scheduler.html | 86 ++-- docs/recipes/cuda_rpc.html | 86 ++-- docs/recipes/deployment_with_flask.html | 86 ++-- .../distributed_checkpoint_recipe.html | 86 ++-- docs/recipes/distributed_device_mesh.html | 86 ++-- .../distributed_optim_torchscript.html | 86 ++-- docs/recipes/distributed_rpc_profiling.html | 86 ++-- docs/recipes/fuse.html | 86 ++-- .../inference_tuning_on_aws_graviton.html | 86 ++-- docs/recipes/intel_extension_for_pytorch.html | 86 ++-- .../intel_neural_compressor_for_pytorch.html | 86 ++-- docs/recipes/mobile_interpreter.html | 86 ++-- docs/recipes/mobile_perf.html | 86 ++-- docs/recipes/model_preparation_android.html | 86 ++-- docs/recipes/model_preparation_ios.html | 86 ++-- docs/recipes/profile_with_itt.html | 86 ++-- docs/recipes/ptmobile_recipes_summary.html | 86 ++-- docs/recipes/quantization.html | 86 ++-- docs/recipes/recipes/Captum_Recipe.html | 86 ++-- docs/recipes/recipes/amp_recipe.html | 86 ++-- docs/recipes/recipes/benchmark.html | 86 ++-- .../recipes/changing_default_device.html | 86 ++-- .../recipes/defining_a_neural_network.html | 86 ++-- .../recipes/recipes/dynamic_quantization.html | 86 ++-- docs/recipes/recipes/index.html | 88 ++-- docs/recipes/recipes/loading_data_recipe.html | 86 ++-- .../recipes/module_load_state_dict_tips.html | 86 ++-- docs/recipes/recipes/profiler_recipe.html | 386 +++++++++--------- .../recipes/reasoning_about_shapes.html | 86 ++-- .../recipes/save_load_across_devices.html | 86 ++-- ...ving_and_loading_a_general_checkpoint.html | 86 ++-- ...ving_and_loading_models_for_inference.html | 86 ++-- .../saving_multiple_models_in_one_file.html | 86 ++-- docs/recipes/recipes/swap_tensors.html | 86 ++-- .../recipes/tensorboard_with_pytorch.html | 86 ++-- docs/recipes/recipes/timer_quick_start.html | 86 ++-- docs/recipes/recipes/tuning_guide.html | 86 ++-- ...ing_parameters_from_a_different_model.html | 86 ++-- docs/recipes/recipes/what_is_state_dict.html | 86 ++-- .../recipes/zeroing_out_gradients.html | 86 ++-- docs/recipes/recipes_index.html | 88 ++-- docs/recipes/script_optimized.html | 86 ++-- docs/recipes/torch_compile_backend_ipex.html | 86 ++-- ...e_user_defined_triton_kernel_tutorial.html | 86 ++-- docs/recipes/torch_logs.html | 86 ++-- docs/recipes/torchscript_inference.html | 86 ++-- .../recipes/torchserve_vertexai_tutorial.html | 86 ++-- docs/recipes/zero_redundancy_optimizer.html | 86 ++-- docs/search.html | 86 ++-- docs/searchindex.js | 2 +- 548 files changed, 11711 insertions(+), 11744 deletions(-) create mode 100644 docs/_downloads/26d49aeeb9c710e27197fda28b7c3516/yi_jing_01_chien.jpg create mode 100644 docs/_images/yi_jing_01_chien1.jpg create mode 100644 docs/_static/fonts/FreightSans/freight-sans-bold-italic.woff create mode 100644 docs/_static/fonts/FreightSans/freight-sans-bold-italic.woff2 create mode 100644 docs/_static/fonts/FreightSans/freight-sans-bold.woff create mode 100644 docs/_static/fonts/FreightSans/freight-sans-bold.woff2 create mode 100644 docs/_static/fonts/FreightSans/freight-sans-book-italic.woff create mode 100644 docs/_static/fonts/FreightSans/freight-sans-book-italic.woff2 create mode 100644 docs/_static/fonts/FreightSans/freight-sans-book.woff create mode 100644 docs/_static/fonts/FreightSans/freight-sans-book.woff2 create mode 100644 docs/_static/fonts/FreightSans/freight-sans-light-italic.woff create mode 100644 docs/_static/fonts/FreightSans/freight-sans-light-italic.woff2 create mode 100644 docs/_static/fonts/FreightSans/freight-sans-medium-italic.woff create mode 100644 docs/_static/fonts/FreightSans/freight-sans-medium-italic.woff2 create mode 100644 docs/_static/fonts/FreightSans/freight-sans-medium.woff create mode 100644 docs/_static/fonts/FreightSans/freight-sans-medium.woff2 create mode 100644 docs/_static/js/vendor/anchor.min.js create mode 100644 docs/_static/js/vendor/bootstrap.min.js create mode 100644 docs/_static/js/vendor/popper.min.js diff --git a/docs/.buildinfo b/docs/.buildinfo index 3f746d2..62cc9b6 100644 --- a/docs/.buildinfo +++ b/docs/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 3b14579695da9b0e5b20ee702e2a3d1f +config: ba51abc8dad17399953f2a24e939f1ec tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/.doctrees/advanced/ONNXLive.doctree b/docs/.doctrees/advanced/ONNXLive.doctree index 4c470ba63a28e928506c0c0fc6c4f93027b0d70c..df2c888df24118909df92cd43882aab8d7fc8363 100644 GIT binary patch delta 41 xcmX@t!E~pCiKT&cYT!ne07gdt$)Su&dlg$~G_zEgZ@{5u)bdxhO^AdHNBN^Kx85y@nGBU}O F006Cg5552Z delta 34 qcmZpE&H42eCrbnCRFjP?MvROulg$~Gn$sEE(-|4Jr!z9ilmGzG(F#}q diff --git a/docs/.doctrees/advanced/cpp_autograd.doctree b/docs/.doctrees/advanced/cpp_autograd.doctree index a4a45f751af8b495914bff53c6a211a79e6f5ddb..10751e0484c99d6e48442badefa72d4c9672c9d5 100644 GIT binary patch delta 54 zcmccA&+?$3WkUiZWANleMkT(2%98w|9jLf`5-ObI6RsT4ro?&MIgUJ(rR&8xy H3}OcWAFvY- delta 44 xcmaFR&vL1sWkUiZqwC~EMy1UY8LR$HZ(w8OANsf-(0G8h>{Cg(CL@fB2-ANsUjO$G8h@%Cg(CLZJx`R|8FvXAN%C_tED)nPGw|d0D)FB#;s;d G^NIoXUl9-h diff --git a/docs/.doctrees/advanced/cpp_frontend.doctree b/docs/.doctrees/advanced/cpp_frontend.doctree index 6a819d1d8d65877ac11e892c303497b84f1eb659..76e72856039fef284feef6f5228cffe7bb52b8e7 100644 GIT binary patch delta 49 zcmZ4Vn0v!xZk7htso@)0G8h?yC+9LM@fB2-5 delta 30 mcmZ2=lV#3L7M2FqspmJc7%?)sPBv#$YEEa|p3cbVtPKFGj|qYR diff --git a/docs/.doctrees/advanced/dispatcher.doctree b/docs/.doctrees/advanced/dispatcher.doctree index 0c5954414e82b707e4024d227b56ba473a0786e4..070f373637dd8fd4eb802cbc6ebc7dd031ce62aa 100644 GIT binary patch delta 295 zcmew}o%PKOR+a|VsZ1MLY8V*Uz+tY`0Jg@1ebrnF9JoHBK} NGXofGy~nuR833yX7JmQ$ diff --git a/docs/.doctrees/advanced/generic_join.doctree b/docs/.doctrees/advanced/generic_join.doctree index cfe452cf127972a9b7552e0c86b098200b4fdd1c..f30943cc9746a63c54beb24e06134477f14548a0 100644 GIT binary patch delta 45 zcmdmejpgJu7M2FqsdqQB>|kUJp1hY)iLaotB)=#*LpM1iGcQrM`99|kVcoxGP(srfDA_P30TF`59!{R`;; diff --git a/docs/.doctrees/advanced/neural_style_tutorial.doctree b/docs/.doctrees/advanced/neural_style_tutorial.doctree index 5b000cdac8d8b393c0c094b73a04a0db405f91a5..95442ca485b746c49a66616b79b0be14abb6056b 100644 GIT binary patch delta 45 zcmeA>!7}Fr3rhp*RN0LzMvROxlg$~G_zEgZ@{5u)bdxhO^AdHNBN?|xGBR#e0sv9} B4r%}Z delta 30 mcmbPpf~D^S3rhp*RQ`=DMvRPplg$~Gn$sD#r!z8cRRRE)BM9~Y diff --git a/docs/.doctrees/advanced/numpy_extensions_tutorial.doctree b/docs/.doctrees/advanced/numpy_extensions_tutorial.doctree index b741645766395bd899fdc5da4b17a77ff14f249f..35fa2ae6cf0793505a3873e3d71c13fced03f9b5 100644 GIT binary patch delta 41 xcmaEOgz^0mMwSNFsVN&-j2IacCYv)V@fB2-&m10w?n zOux^`=&;p;@xXu4sp~DlLJS$|85+JXnKQ()%w;AQmMBe55NDqr@Rw0=@()L&t({Ef FmH+`)A%6e> delta 84 zcmX^2nd87`4weSisk|Fmj2IamCz~@WZBA!g_HX)IPDV-2sf-Ma3?Q&opYi$s=?^#< lS*NNniE>VzY6%u*n0!%QdisR_jDphz?LSY4dSL^-lnx9Sa5k diff --git a/docs/.doctrees/advanced/rpc_ddp_tutorial.doctree b/docs/.doctrees/advanced/rpc_ddp_tutorial.doctree index 7b66e8232976bdf9d2001bb9b4e845aeeaff675c..95b4367201f40a7b8420d1304a23453546efc3d1 100644 GIT binary patch delta 157 zcmeynf%))8W|julsXI2ZtYc&hpX^wp#8*&Rl3$dZp_`nMnU|=$`6^>}6=M<>naO-7 hj5klK`6Yx)HhZ(&gbI1wvML*ni({4D%y%MR004`&JFEZz delta 82 zcmX@Sk@@ciW|julsYM%E)-f`APCmF^Y4c;o>?+0(5Oea!^~Rew)%+5IbF(*lOsJ5D Ra5sNkZzO>vv;PE(000!;CW`<7 diff --git a/docs/.doctrees/advanced/semi_structured_sparse.doctree b/docs/.doctrees/advanced/semi_structured_sparse.doctree index 256ca0bed107e53f9f29028f5d8458206cc59e7e..f640d882071275fcfe84f9227d4e1408b5482133 100644 GIT binary patch delta 45 zcmZ21}YWMn*<3jkn~ B4;=si delta 30 mcmdmRk9E;KR+a|VsXQB5j2IdHCz~@WHK#LfPiJI2nF|1*%L%Cf diff --git a/docs/.doctrees/advanced/sharding.doctree b/docs/.doctrees/advanced/sharding.doctree index f3afc936881683fc9c77d85372d8e2fdf52d3c2b..91e3985baba5506a62a664a385f3551db0d66bf6 100644 GIT binary patch delta 41 xcmbQRoO#}IW|julsgpOdBr!7jPfll4;wz{u$uCOI&`r+B%uCeW+{ws(2>>VT4nqI{ delta 26 icmbQYoO!}>W|julsjVAXk{B5sC#N$iZJy4^ehC12%Lu^$ diff --git a/docs/.doctrees/advanced/static_quantization_tutorial.doctree b/docs/.doctrees/advanced/static_quantization_tutorial.doctree index 0d1692aa653c4406262e4b95c01c28a4683ba284..f9fe218313326099e9bc1f1b89674728e953dc04 100644 GIT binary patch delta 75 zcmeypo~3gG3rhp*RK|@g(-;|(C(mY7;wz{u$uCOI&`r+B%uCeWyqD4OpTyKJ;tXI= cJ4GXdHLHq^fgwXWtAcHEW0=8KH^!~v0Ly$BMF0Q* delta 60 zcmeC&!18-N3rhp*RF;h_(-;{;C(mY7+I*VP@t;KP6pakltSUAJh79Sf3LrK0u{Z+| OOis+z*&4vOQyc(h{1U_f diff --git a/docs/.doctrees/advanced/super_resolution_with_onnxruntime.doctree b/docs/.doctrees/advanced/super_resolution_with_onnxruntime.doctree index 02640eec5a4fdea2ca33c470689548ccc8bc7b64..33dc30c8a3c033e7b1e14ba29e57732b5a12afd0 100644 GIT binary patch delta 41 xcmZpk$~1-i1OOFE4VwS} delta 26 icmbO@mAQE;GfM;O)QXKPMvRP6lg$~GHm5Ucodf`Iw+I;k diff --git a/docs/.doctrees/advanced/torch-script-parallelism.doctree b/docs/.doctrees/advanced/torch-script-parallelism.doctree index 3ec153a55d40393b04390bce36be28ce05abe6c1..279f5efa19d8de1e26ace6496bf0ff9a8e35f5aa 100644 GIT binary patch delta 41 xcmZ3whH3K}CYA=)sTvzu3K$vVCzmoR@fB2-gy%?iS+)Nsm9RuJZz9?!(6ygAjXl8dnuiy@mCU2U|n%1j0szq%lRgRu#VKCoGvYO4J23p1GyqoenKb|a delta 231 zcmeCY#`5qA3rhp*RECW#ZH$Z|lMf0hO%G&YRG++{l6~__#_Ix%WgxN5ABDcEL70<2 z3WZM2f3Li`->Q;}u^J=`6!PBO;`&hw&h^>+slcCO^54nIV7a}O_e2;Ip-Rm*Gxh&w zVN8Q_Q>K_&z;$|W7Cn1K5nZv0~k#HI8Au# ULB<1&2&F(rs%+P0X1u2k0H~i`9smFU diff --git a/docs/.doctrees/advanced/torch_script_custom_ops.doctree b/docs/.doctrees/advanced/torch_script_custom_ops.doctree index b5afd57fa35023d1860bfca3e8d126d5598967f5..3636b552ecfe2bda4c3ec6fe877f01c6d176344e 100644 GIT binary patch delta 442 zcmex!j`P3;PL>ANssA>zbTKlANsYM%Ex)>P)CMQ-aP5=0cQF!wu#x)v@Q6T>0iPe^yUubjBTE1yWBTM!MkT(2%98w|9jLf`5-Oc5Ue|Z4|O$}=R delta 24 fcmZpY|02iIz&bT^BTE1yW8~yeMy1WIjDL9nW0?o( diff --git a/docs/.doctrees/beginner/audio_datasets_tutorial.doctree b/docs/.doctrees/beginner/audio_datasets_tutorial.doctree index 06070db0e2c0bddc8acf9676fff2351d5ba325b6..7022fbd3c0cd7607115304740d9a1c3a3e31a0e9 100644 GIT binary patch delta 39 vcmdlgcUX?4fpx0IMiwtd#<sw^fd%fpx0ZMiwtd#(>HGj7pp98ISM+0AAh)R{#J2 diff --git a/docs/.doctrees/beginner/audio_feature_augmentation_tutorial.doctree b/docs/.doctrees/beginner/audio_feature_augmentation_tutorial.doctree index aa236ba3c6b6d428907b04466b7605752f233d38..500c525ab3b9cecac34d76d7061ae8a2fe658a15 100644 GIT binary patch delta 38 tcmew^*DBA_z&f>RBTE1yW7gzQMkT(2%98w|9jLf`5-NogMd;s<&3~K-Y delta 23 ecmZpb|1QVUz&bT&BTE1yW6b1GMy18AjC=rFO$O-z diff --git a/docs/.doctrees/beginner/audio_feature_extractions_tutorial.doctree b/docs/.doctrees/beginner/audio_feature_extractions_tutorial.doctree index 16bae9607e5a55aa83a3e41be9163cb40d994838..0811da361e02c14af9580bc4179ae1b953c4e4f0 100644 GIT binary patch delta 39 ucmZpW?~`X~V4d2$ktKkUF>`V#qY__1Wl4Tfa)xelMrK~3?&fkvPCfwhGYlU9 delta 24 fcmeB^Z;)qcV4YgJktKkUF?w<+qtfP9MovBeS;GdM diff --git a/docs/.doctrees/beginner/audio_io_tutorial.doctree b/docs/.doctrees/beginner/audio_io_tutorial.doctree index 22496071ec14a2d068999c3e43cdbd2bba6102b0..a5fbeec2eab524218f93791ff1cf4aa68e680904 100644 GIT binary patch delta 40 vcmew>+bzf1z&e$IeX delta 25 hcmeB{`zy=Zz&iC4-$qt@MnwzcBSyx=$>xkodxkoo6{L@90dS$E(o{) diff --git a/docs/.doctrees/beginner/basics/buildmodel_tutorial.doctree b/docs/.doctrees/beginner/basics/buildmodel_tutorial.doctree index c3f5a8fd4875cae3c18b9a0f8f3be6b56b9cd2a7..924f8a8a1178b5f64dd8b4c7069dfd61127febae 100644 GIT binary patch delta 41 xcmdmWo$17NCYA=)se3oF7%?&?PBv#$;wz{u$uCOI&`r+B%uCeW9Lbot3IISG4$}Yt delta 26 icmX?cooUx~CYA=)sp~hg7%?&iPc~;%+MLdqxC#J@s0mR3 diff --git a/docs/.doctrees/beginner/basics/data_tutorial.doctree b/docs/.doctrees/beginner/basics/data_tutorial.doctree index 28ce14b797db89c0894fc4744ca66c91a83d1035..73ccf2a4d6b69701c82756757e98c9f019fa4a46 100644 GIT binary patch delta 41 xcmaFyf$7@^CYA=)so5J@j2IcCCz~@W@fB2-c&v>6$LCmS#-@fB2-lE delta 30 mcmX?ijq$)WMwSNFsiqrQv>6#)CmS#-O@1gOwYiG%N+tlSWeTVO diff --git a/docs/.doctrees/beginner/basics/intro.doctree b/docs/.doctrees/beginner/basics/intro.doctree index a383152655d333e43611a7c450136591d6682c2e..75e9edf0e3efd9fa757cc138876fa48cb073d7dd 100644 GIT binary patch delta 41 xcmX?nh4JDQMwSNFscsutj2Ib%Cz~@W@fB2-q>RdkGx? diff --git a/docs/.doctrees/beginner/basics/optimization_tutorial.doctree b/docs/.doctrees/beginner/basics/optimization_tutorial.doctree index e53b4d0fb47bd66ca1d4152e173ca9c1dee6ea32..0447efc7f3b0dca9c212b04e86f46e9552a4bac7 100644 GIT binary patch delta 41 xcmdn^fNB2&CYA=)sU{m)j2Ib{Cz~@W@fB2-duWU^B5TuCog7H;wz{u$uCOI&`r+B%uCeWe3bEHBLF^r57Gbt delta 26 icmX@o&a|zaiKT&c>gtUw^B5U}Cog7H+I*SuV}4z&OP delta 26 icmX@JhI!u_W|julsm2>wj2IdHCz~@WZBA!=dIbP{{s}Vx diff --git a/docs/.doctrees/beginner/blitz/data_parallel_tutorial.doctree b/docs/.doctrees/beginner/blitz/data_parallel_tutorial.doctree index d7c84dc371056097bc69c3a208e303d19cf2abf1..5f021eca7305369def1c70fa3ac5a60026d247fa 100644 GIT binary patch delta 45 zcmdnKjOpkyCYA=)sa6|Vj2Ib{Cz~@W@fB2- delta 26 icmX@QjA{EaCYA=)sX7~3j2Ib1Cz~@WZBA#rHxU4N+X&16 diff --git a/docs/.doctrees/beginner/blitz/index.doctree b/docs/.doctrees/beginner/blitz/index.doctree index 121a4f4bc818fd650a53b939757b98d09cc18ac9..3c6ad0f98b030e5643aa3114833f7000903d3900 100644 GIT binary patch delta 49 zcmey=#n{lz$kM<%wR9tkCL?3eWIaYDzJkh<{G#Lx-Qxkodxkoo6{M^4*&pwnh2W! diff --git a/docs/.doctrees/beginner/blitz/tensor_tutorial.doctree b/docs/.doctrees/beginner/blitz/tensor_tutorial.doctree index fde6b9d69983c09259d5a8a8bb5d0e9c4c8daa18..3ffaf7226fc77941c1779df3bcd4a2fb65316e63 100644 GIT binary patch delta 41 xcmbQ*$+WnWiKT&c>WqynMvROxlg$~G_zEgZ@{5u)bdxhO^AdG8M>5(p0{|D%4R-(l delta 26 hcmZ47$uzZ-iKT&cYS%^xkoo6{L>ngMc72lW5| diff --git a/docs/.doctrees/beginner/chatbot_tutorial.doctree b/docs/.doctrees/beginner/chatbot_tutorial.doctree index efc0ae6b7088ffab5fe7d3917571d8a4b0775192..3ab9ea0cdc29ca44dbf860772479a1900a75046e 100644 GIT binary patch delta 49 zcmZqZ;_mC>W@%uZYPpfch>_8AvN@wtb2?*tIwRxubVjD-hXJj;3I_lH diff --git a/docs/.doctrees/beginner/colab.doctree b/docs/.doctrees/beginner/colab.doctree index b9d1dc77bcc107cea5b696f60a45dbc0874b59b5..abb3e9ef9c81fd31b4a0e92197af23908014e679 100644 GIT binary patch delta 41 xcmaDko$>p0MwSNFsc$y2;8%qQ0RECW#MvRQnlg$~G_zEgZ@{5u)bdxhO^AdG8M=~z?$2paC4+9uX YH&kL&oBZKFJ4@@7#wlCP8L#XH06exBIsgCw delta 73 zcmbRFgRT1q8%qQ0ROO8Kz+A diff --git a/docs/.doctrees/beginner/ddp_series_fault_tolerance.doctree b/docs/.doctrees/beginner/ddp_series_fault_tolerance.doctree index eedb451ab2df95b8b3a820cddeb9c52a90fdede5..8a83158a827dcfc637269fddcb30f96fee8e3ad6 100644 GIT binary patch delta 41 xcmbPmglXOpCYA=)slpps&a*QnPQJpf#8*&Rl3$dZp_`nMnU|=$`5U{`EC4$#4?zF` delta 26 icmbPtglWPNCYA=)sjM4W&a*QHPrkygw3&rNY8C*0zX-qp diff --git a/docs/.doctrees/beginner/ddp_series_intro.doctree b/docs/.doctrees/beginner/ddp_series_intro.doctree index 3bb56395100aeb7653819f7cd417370ee4c7f468..e1a4bd2124276109929a176ca6de4ba68cf794be 100644 GIT binary patch delta 39 vcmdm4e7u;YfpzMhjVxRojNy~{Ih6PcDogT)h4>14$ delta 26 icmcb)pYim5MwSNFsRuT){9$MGn#{Pr4Rs&TM1PF diff --git a/docs/.doctrees/beginner/deeplabv3_on_android.doctree b/docs/.doctrees/beginner/deeplabv3_on_android.doctree index 4769ab3d5d28f36b7a2d4918eb5b2d6a8ab89278..4ced127a84a45d6ce654f45df90cd090f96fb17f 100644 GIT binary patch delta 41 xcmX?gl=;R{W|julsb@E`R53C}Pp)TF;wz{u$uCOI&`r+B%uCeWypU1zAplT?53&FN delta 30 mcmca{l=;+AW|julsrxswR53F8POfKEnjB;#y!jBL*h2ui=L=c@ diff --git a/docs/.doctrees/beginner/deeplabv3_on_ios.doctree b/docs/.doctrees/beginner/deeplabv3_on_ios.doctree index c304b62ba796fa4f3f3ac9e6d5514606fd8664a4..c1f2082709d2712a23d147b8f39888d13bb95efa 100644 GIT binary patch delta 41 xcmbProO#7@W|julsdG276frV}PcCOv;wz{u$uCOI&`r+B%uCeWJd=^}5db9jLf`5-OY`R&Hv=5iZMWdUk_JGYI1&2 SVo7Fx-W0zK#ti1tBs~D~_Z5)< delta 52 zcmdnkz_Pf3WkVbzqub48{!R(j+|q D-02Vx diff --git a/docs/.doctrees/beginner/examples_autograd/index.doctree b/docs/.doctrees/beginner/examples_autograd/index.doctree index 3b21fb5298baaa3a779d30813e8fcaf63b14eb0b..ead20c962071719d99bd7448ba4e803335ec8c4b 100644 GIT binary patch delta 39 vcmdmDama$Dfpx0+Mixg##<Fgj7po!7|%!n0Af@Jf&c&j diff --git a/docs/.doctrees/beginner/examples_autograd/polynomial_autograd.doctree b/docs/.doctrees/beginner/examples_autograd/polynomial_autograd.doctree index fce2ca591b04e872964dbb3a66ac0f2687f49827..edda95dbaaa74adaaebe09be68c2160c9d769c18 100644 GIT binary patch delta 42 xcmZo`V4Tvx$lAa-RzpU{xXI>>N}JOe*V+L9ek2I6 diff --git a/docs/.doctrees/beginner/examples_autograd/polynomial_custom_function.doctree b/docs/.doctrees/beginner/examples_autograd/polynomial_custom_function.doctree index a5e2ab8ecb009bdba79f7b3546850001ca292cb6..a16cdab925fab12cb4f58462b795b747297f4cea 100644 GIT binary patch delta 41 xcmbO^gK_x`MwSNFsWKZ`j2Ib#)!#Qj7oe3l_mK_$r-xI8JT&Bx|?Gd_o)H^_A(5$ delta 24 gcmZ4CH_MNufpseXMix^>Mz6_Mj7poc8270H0A5!IGXMYp diff --git a/docs/.doctrees/beginner/examples_nn/polynomial_module.doctree b/docs/.doctrees/beginner/examples_nn/polynomial_module.doctree index 1b1790bf3c39dffc90b343b53b9a887ca49cb037..2eea15edbe8dc72a006368f3f3072930d5bc80df 100644 GIT binary patch delta 39 vcmdm3w7-a@fpx0MMiwJR#+1qCj7oe3l_mK_$r-xI8JT&Bx|<^zZa0BVc}?*IS* diff --git a/docs/.doctrees/beginner/examples_nn/polynomial_nn.doctree b/docs/.doctrees/beginner/examples_nn/polynomial_nn.doctree index 5e1fb7ead12d97e95ca6e004976580c0dd7d8103..8244241793c6b172e7ce7ce56c9df1b257586c2f 100644 GIT binary patch delta 41 xcmbQ&#JHx3k)?rks^Uf#BSyxA$>xkodm{0{{y94NCw3 delta 26 icmZ3}#5k{sk)?rks_;e@BSyxc$>xkoo6{MO+5-S=7YE4z diff --git a/docs/.doctrees/beginner/examples_nn/polynomial_optim.doctree b/docs/.doctrees/beginner/examples_nn/polynomial_optim.doctree index 4bdce1722f11977b337766e3bd9a1aeee2ca7a6f..87d0e430d682d8806b56f1ab716869a24d52da86 100644 GIT binary patch delta 40 vcmexY+*88Zz&e%DY9p&5BV+Ppb4De;g36NoqT~$SmO$j7po+8CeVgaXbfr diff --git a/docs/.doctrees/beginner/examples_tensor/polynomial_tensor.doctree b/docs/.doctrees/beginner/examples_tensor/polynomial_tensor.doctree index b210d047e4671df936694a855130d5f7b0d12969..c121092367e4d839043e02b1dc0432ce6aeae355 100644 GIT binary patch delta 39 vcmX?IaI=7=fpx0iMiwJR#*E44j7oe3l_mK_$r-xI8JT&Bx|<^zKbZjl74!|* delta 24 gcmcavaJqn{fpx0GMiwJR#;D2Wj7po+89$i;0C3v~RsaA1 diff --git a/docs/.doctrees/beginner/fgsm_tutorial.doctree b/docs/.doctrees/beginner/fgsm_tutorial.doctree index 6b779f31ff3bf37775253768e71d2116e29862f6..694b02cd235806ed1da8cbd7248206bc46b41b17 100644 GIT binary patch delta 45 zcmdn6iDlm=7M2FqsUjO$j2Ib1CYv)V@fB2-1}YWMsT94ggeD B4u}8% delta 30 mcmdnDiDknk7M2Fqscairj2Ic+CYv)VHK#LfPiJJjE)D>h5D63j diff --git a/docs/.doctrees/beginner/finetuning_torchvision_models_tutorial.doctree b/docs/.doctrees/beginner/finetuning_torchvision_models_tutorial.doctree index 4a51e8d40de18a1874c45ec5dcbcfca701db3657..ae15a6cc7e53a5d936815a9a31ec8e6f37019397 100644 GIT binary patch delta 39 ucmew&*CfxjBTE`1WA5Z^MkT(2%98w|9jLf`5-Oas>&v^j|aSfdS delta 24 gcmZpY|02iIz&bT^BTE`1WBlZ7My1WO8K3h40A>r?4tW3o delta 26 icmZ4gjd9^OMwSNFsbU*hj2Ib%CYv)VZBA!AQ3(KoW(fBH diff --git a/docs/.doctrees/beginner/former_torchies/autograd_tutorial_old.doctree b/docs/.doctrees/beginner/former_torchies/autograd_tutorial_old.doctree index 80b89c6ca4c8190204d3f0f16a4f38d30d81a361..d97deb3186b97bc4922f4c8066e3dfe28222c946 100644 GIT binary patch delta 41 xcmcb8j`8I=MwSNFsc{=wj2IbnCYv)V@fB2-{-vCyfpzN3jV!i|j4_j)7?t=6DogT9RMl94wV1^ delta 26 icmX@ViRs`bCYA=)sb(8lj2IciCYv)VZBA!=F&zMYy$KTl diff --git a/docs/.doctrees/beginner/former_torchies/parallelism_tutorial.doctree b/docs/.doctrees/beginner/former_torchies/parallelism_tutorial.doctree index 706999fb6ee9835e9c335aabc6a4180779b91776..df3b68b0187d05beb0b713f73d334a42ac7c3178 100644 GIT binary patch delta 41 xcmaF%j`7PoMwSNFshJyDj2IcSCz~@W@fB2-! delta 26 icmezJj`7($MwSNFsnHu*j2IbXCz~@WZBA$8Edv0NXbA%V diff --git a/docs/.doctrees/beginner/former_torchies/tensor_tutorial_old.doctree b/docs/.doctrees/beginner/former_torchies/tensor_tutorial_old.doctree index 1422c2bffcd844efb97f87d05dd312934b64e7d5..559d40de964f531aecbbb7b05fe7e5b19fb67cff 100644 GIT binary patch delta 41 xcmZ2{h;ic~MwSNFscIWpj2IcSCYv)V@fB2-`e0Bu?a+5i9m diff --git a/docs/.doctrees/beginner/hta_intro_tutorial.doctree b/docs/.doctrees/beginner/hta_intro_tutorial.doctree index f6868ccc8813156543c644bb39a32d77f59dcb62..447cbe3bb7d96978b3fb7d3b7fa33e907177f52f 100644 GIT binary patch delta 63 zcmcc6$a1fdWkU`lW8~yqMkT(2%98w|9jLf`5-Oc@sdH=+xo??K2*eN}nY5Dmj PdHE%&#Z#t=Fzx{W(mfVU delta 52 zcmccD$a0~PWkU`lqxa-oMy1I`AH+9rVGRE#9y_InGc7;ABrm@twRpqRf%yA E03zQK*zJkh<{G#Lx-QuxrwMKV diff --git a/docs/.doctrees/beginner/hybrid_frontend/index.doctree b/docs/.doctrees/beginner/hybrid_frontend/index.doctree index 0219b69b2710f10acbcb85384e9df1a7ac798f1a..cbb0fd8f17500690421792b69cde4e812b4aedd8 100644 GIT binary patch delta 43 zcmdn&dC-%kfpzM(jV!i|j4_j)7?t=6DogTgA0rMvROdlg$~G_zEgZ@{5u)bdxhO^AdG8M>3Wl001d}oXMvRPAlg$~GHm5U|9{>P?#|c0H diff --git a/docs/.doctrees/beginner/hybrid_frontend_tutorial.doctree b/docs/.doctrees/beginner/hybrid_frontend_tutorial.doctree index ec191d4b99cf92ede9b1f238993bf9318d3f63c2..a3fcfce34c668c14a431313294bb5232c4341ae5 100644 GIT binary patch delta 39 vcmX@Ads&yIfpzMMjVuw2jPa9W8I|}7DogToyC1>a+XJqCj>TdqPU19(LL8K3O delta 24 gcmexV@uY&Kfpu!+MwXM@j1H5}aVu^9$6aCo0EONO_5c6? diff --git a/docs/.doctrees/beginner/introyt/autogradyt_tutorial.doctree b/docs/.doctrees/beginner/introyt/autogradyt_tutorial.doctree index d52faeee9f550a66ba19a0a2830347b822e40e3c..2f430147fff8e6f77305e7a0719703f307a4e1b3 100644 GIT binary patch delta 45 zcmX?jhV}dzR+a|VsjVAXj2Ib{CYv)V@fB2-1}YWMq7i0swT0 B54`{Y delta 30 mcmX?qhV|eXR+a|VspT74j2Ib1CYv)VHK#LfPiJI&kpcj$s|rZ~ diff --git a/docs/.doctrees/beginner/introyt/captumyt.doctree b/docs/.doctrees/beginner/introyt/captumyt.doctree index a0373234083016454dd3b4009aebcfe81e1d08d0..898250b8dfc48aa5d96c3e8164b230a2b80397f9 100644 GIT binary patch delta 45 zcmeykljZ+T7M2FqseBt*j2IciCz~@W@fB2-1}YWMrHn4FGG( B4%z?! delta 30 mcmeyrljY-17M2FqsSF!gj2Ia`Cz~@WHK#LfPiJJDAq@biLJ4L7 diff --git a/docs/.doctrees/beginner/introyt/index.doctree b/docs/.doctrees/beginner/introyt/index.doctree index 7946149269ecc9b6f7a2dec530103d690dfe6090..b492b556051d3dff19df37d150b4e64b69176fba 100644 GIT binary patch delta 45 zcmbQfmvQM{MwSNFsk1h+=rS^fOg3Uv;wz{u$uCOI&`r+B%uCdrypctAb0MQzEC6BN B4-x1}YWMoVY0svMp B4r2fS delta 30 mcmX@JoOR!FR+a|VsVo~=j2Ib%CYv)VHK#LfPiJII4FUj}-3adh diff --git a/docs/.doctrees/beginner/introyt/modelsyt_tutorial.doctree b/docs/.doctrees/beginner/introyt/modelsyt_tutorial.doctree index b8cdbcae8c537d2bfc969a12cf08d8b301ce2b56..055d592d06c0132507992fda8741f2d306dabe0c 100644 GIT binary patch delta 49 zcmdlni{;oX7M2FqsUjO$j2IacCYv)V@fB2-$i)F_w7M2Fqscairj2Ib%CYv)VHK#LfPiJJj&kX>UTnPLC diff --git a/docs/.doctrees/beginner/introyt/tensorboardyt_tutorial.doctree b/docs/.doctrees/beginner/introyt/tensorboardyt_tutorial.doctree index 8b57b0e0faafb2e0306453d13c0bb5ca651faaca..38d28b39c7a464b3b7066ec3578125f73aad50a2 100644 GIT binary patch delta 41 xcmX?jlP6nCZl0CYA=)se3oF7%?(NPBv#$;wz{u$uCOI&`r+B%uCeW9Lbot0RTev4(R{@ delta 26 icmX@{m}%EzCYA=)sp~hg7%?(>Pc~;%+MLdqxB&o+k_l%3 diff --git a/docs/.doctrees/beginner/knowledge_distillation_tutorial.doctree b/docs/.doctrees/beginner/knowledge_distillation_tutorial.doctree index 157986e2f26fe4aa175bda92885bceef0a94305c..d8611a1f3492554e6c758e4db206feb88faea4be 100644 GIT binary patch delta 45 zcmdnf%6_Vqouz?w>XnTwMvRPUlg$~G_zEgZ@{5u)bdxhO^AdHNBN?|xGBPF~1OR4z B4^#jE delta 30 mcmX@r%D$(Souz?w>amS1MvRORlg$~Gn$sD#r!z7p9|QoRZVBK3 diff --git a/docs/.doctrees/beginner/nlp/advanced_tutorial.doctree b/docs/.doctrees/beginner/nlp/advanced_tutorial.doctree index 5619b43c869f9f0145700e6137875d38c06ab143..6f0e61e4d64e0df24a0a947626061f18b5debdab 100644 GIT binary patch delta 41 xcmbO`pLz9sW|julsS7r;7%?)&Og3j!;wz{u$uCOI&`r+B%uCeW9LeZ%4geyB4iEqU delta 26 icmZ2IpLyc&R2dlqCTlS&@fB2-4iYGBR$DWMm2# F0sxie4;=si delta 39 vcmdnDoMXds4weSislFRoj2IbRCYv)VO`pidDBN7d*j~lRxV?&z$wdeN`1cDR diff --git a/docs/.doctrees/beginner/onnx/export_simple_model_to_onnx_tutorial.doctree b/docs/.doctrees/beginner/onnx/export_simple_model_to_onnx_tutorial.doctree index cc9fa6521dd1f8d9fdd981d31164fc4678d76266..af82ec247de84136e86e2c6ecbf15e265cca1061 100644 GIT binary patch delta 41 xcmdmZk7@rsCYA=)sU{m)j2IaUCYv)V@fB2-oj7pP}*d;cXFrL-}0ED~Y delta 26 icmbPrk+J6@BTED8)W(f0MvROelg$~GHm5Thrvm_drU*R% diff --git a/docs/.doctrees/beginner/onnx/onnx_registry_tutorial.doctree b/docs/.doctrees/beginner/onnx/onnx_registry_tutorial.doctree index 4c15db1ff4049f605a9fc32277e50eb98422c4ec..f5833c23757c58563d1122079c4aec929e3289ab 100644 GIT binary patch delta 54 zcmccomF3}AmJMc%j7gKt8I|}7DogTxkod delta 26 icmeC5&)hhlnWcesYS~5>BSuEY$>xkoo6{LJ&H(^%5(p6h diff --git a/docs/.doctrees/beginner/ptcheat.doctree b/docs/.doctrees/beginner/ptcheat.doctree index 7e311accb2f546790b9183dd6ca59725ecf419a2..d55b4e3ecad42e4e70f06f3cce8512e3273d3c9b 100644 GIT binary patch delta 41 xcmeynfT?>S6H5c@)P{{LL5z%klfxO6_zEgZ@{5u)bdxhO^AdG8S2D8n0{|{B4g>%I delta 26 icmeBP$n`8F;|N3m diff --git a/docs/.doctrees/beginner/text_sentiment_ngrams_tutorial.doctree b/docs/.doctrees/beginner/text_sentiment_ngrams_tutorial.doctree index f6a67be33025d0d4f1410e3fef81d883b1b09a7e..c78dd84dcc8c35e60980da0bddda89a6ac02b6fd 100644 GIT binary patch delta 41 xcmaF9mig;iW|julsjoJ&7%?)YPBv#$;wz{u$uCOI&`r+B%uCeW9Ld;s6#z&B4`cuU delta 26 icmeymmihTwW|julsdqNA7%?)2Pc~;%+MLeVcNGASISJwb diff --git a/docs/.doctrees/beginner/torchtext_custom_dataset_tutorial.doctree b/docs/.doctrees/beginner/torchtext_custom_dataset_tutorial.doctree index 01fec5b7e7f407c68c565799e851fe99af62e3c5..25e3ce1425a3dabb676cee298525b34ef20e4737 100644 GIT binary patch delta 45 zcmbQgl4b2m7M2FqsWux~j2Ia+CYv)V@fB2-1}YWMp&`1^`kg B4f_B9 delta 30 mcmZ3xl4br%7M2Fqsd^h(j2IcCCYv)VHK#LfPiJIw69xd5Y6yn_ diff --git a/docs/.doctrees/beginner/transfer_learning_tutorial.doctree b/docs/.doctrees/beginner/transfer_learning_tutorial.doctree index 950204309d4151b30883f1e92e8e7b2cb0b91fa8..189f2d9da32e67f8d39d5bd37ea55df55997865c 100644 GIT binary patch delta 41 xcmZ4bmud4~CYA=)sVg?J7%?&?PBv#$;wz{u$uCOI&`r+B%uCeW9Leaj7XU(R4&DF& delta 26 icmdn|mucx=CYA=)sk1h+7%?&iPc~;%+MLelvljr2HVIq+ diff --git a/docs/.doctrees/beginner/translation_transformer.doctree b/docs/.doctrees/beginner/translation_transformer.doctree index 612c92968c3a0830d083c185de666f8dcd699c18..3637a415aad148f845d90ed3bae66fb5cdae15fd 100644 GIT binary patch delta 41 xcmX@MfceS-W|julsh%5Ij2Ic?CYv)V@fB2-XCYA=)sY)AJj2Ib%CYv)V@fB2-&7l|Sw*Syr|rTb4sx4qAoXQLv3IM_I{12}urMoAK;S@6NO)X~Ie?W6lX2 z80-a)F<`L4fNj8u=xl@G4(^VFBXi`SmE_}qyW_~={@+)*W_qT3w%7XX{XakWShLk# zRsDUhUcGwt>Q&VZhu(AS0S6vH|EoW4qjP+RgXxD&+fPs|v{~RaTBA z3n@2N9IO;d$#i!TA4_yssz_xL*>Wu2OJ9nmE4gf}N7Pxa*A6R}lC0{pMqD*2Nfz>b znf`ihlAuwh4_nD!D54H847jCICgqkvV{KwFTd2hQ6WOd=8m!k2TwE{LCb&B*ZoZr; zuzm)Hj(eICi>la?I0JWCzQ&SxLeF*3n1{S2|Yc|8_^h* zH#(UdGA&>3#Ny>jqLN9*if%rc$#yR}qoF^f>m#QnsF6SUak*D1Eb()tM)-%!z6$ zQ>dpG*G}}y&)znHJe-w8lLF)E{>0JCrgBHHaswHXlX`l2ZLZ%Z`Rm5A)!O8Wn=57^ zNac7jQAtD0Y7^q>Sv>(UE>ufNH(svx^<^M!M%!xknGL% z+95pcp`PG_s^m-X7=B&sEn1N5Jz zi88|^$t5?LDT2AO;8f6GDO3iFy3`R1VvISAZ*FaJaj>81Fm$ECEWUo2?9Wq4 zVTleVTdS)!PCTjC&WQ~qO0m8|7EMx)Wh=2Isnd7m7B9`8zHG@E>9exQrK!dJeWhG( zG5*(|k8O=ra>c&>zNNd${nVdhg<>U^%j7d)Y$~xV2JKvqG2t?FXExJI{ViR{FY8&d zBv#H;-0or`xefgv{f=oKL*Yn$P_JD%YPAd1rK`Sb#Om4_3E~1h*M5?#Zfyc%dnN7W z&=@nsm?ATa$5V73*)p}wBZq~7NGi2%j;fn~C{a6{eF+MuH;| z)T^~=1TpPqi}7Cc)_j8ae5B~)N;xnsGMO~h&N#X?>mf95PT`O6nveW6P^K?dN=f} zw(!54Q^;aNwkm1paceUDJ?zn;Z0H9mTge1qk0y{Y*xj2gB)6gbI#3QMcoG9VlJUMAhDV-rPWo8>>Ii^KWZgK-PZGA;IG!%o6a4+roY1(m z$5_kro-*sYQlU_}zUMmm?)vLsC0t+U1)Y8uBi+tQ9EN3KN4&4PYu8}BQcC2@=r>Fm z++G_e@-T8PN?*)Nj;Ctb;4Pk{FHEoDucio_05)DBMRr;3@M@*6`^;{bjr_amt?A2n z-iax27Tz<-Ixc-Y&&cd=2qf9xf|b)5L!fbB!d2pZ*#y2Qm^c}| zIhQC6q7ie649xd~iV#Nj#ff>$qF|NqnZkw*BzPmY_%grzeiukUzmjyVUS*W zAm{pr(jVr~r$8s9t&UO14a+Sf+1KK01OP zB_TznN?B4lp^7PdA>$6HKb>wS%{>as|6*nD2!R%9IX< zNioA>-TojifpKI!o1Vgk1D`PW1^1zEs1w)SD(Ar@rdsuA**w7ThGW^}SiSaw@oe^e zKesLQo>SCZ&c4YU`cB| zeXM%JM+u6S$NoKft z%T40Ov*K0QBJ4S5DkmvPv-0|U^HD!Cy7H00TXNOlE5wpjSu9W|6r(bGk$zA5J_U(0 zRZc>zd^OIZN+Bua{$O4&r-B|=i&9cm)-sp_{{PT~0L2k!({ZJFW-w^Egm?}!4Kwii zr3dg*oFJw!(Y(TwCd&=cZ(5_g-TXDX}Nuw6Jm8{QihR>S*gto#mG9MF`c z?=h55z$7mNZ%zePn5-zBPG`6(^wQh-ABA+0Yg=KSGfAwSBIkz6?sM2=(2*t?w`6%q zF`vTsD)Gt)%JVPtSsGXU>0CO`>z>H0nm!oMpdPA&>G3<$ckw?SOn;F7kx2LQ{Com| zK3+=52?T#JlU0<(R61TQreOYJ;A92_)hLXoGUT&20eyi{pFQSNyiN74iYW){?Xu@o=#vY9<| zaG6vY72U?4&tL%b^El&D?Vy)GBM9Iot|4-~oM^FPHd7I@c)R(6RE3;rTVG<*&5af! z2>poBI*Y;3&y|zoke&*8VGM>46!f)x*-gM_K_(r0$pKMEmSu$vz+ceE8eVYzGC*3h z2|P!0JY>7@@1SgsMsNvONh~t(p<9&X;zk{fh6$SA&7#`5*AM1IAyAqm4Eo5{iNz;etmaxk?Qr)e*WVhXDmP{xcg z2~P&h`BY}0N7;6mXF=nbtm1PHW}DWpeB*=z4v$~Q^@v5t@x%%pBV*QJpc~@V3@~QLY zpY6nA&dH}bITyCLgAv%-k%oorz*fPCl@gUrxPHQf*n$NUoCVHi#^tgjMvs(3&FS=^ zX`O_#0jjeHxhUfWu%{C_=Q?_Jy;Dh)VBWI~PNm>LRKYmPs`7Ez*UO5Xm0Pwrl3_F# z&7&S5EXWMJFsHffT(@fD`Yntb*E?GkqHFnQuXV^Jz>#t(Nm1$81jSX3hYEJ_B8%i_ zBy%Ag<%*Nc7BEXbSCG@gl0;xvrBrpnOyVZblVDgeJ8;OV?i*yh#cbGhfRr^?rqAgT zT$CRn|1@gg7$t%fCtZ1|S^YiRt8mb75dyU$n^jfyKz3FqlIbpDm~-xVtTd#7I!D+1 z`De3wt~UjSSI9hz#DTL}YsZ|GuxfkZQiDXec{DBwvctQwlPQBtnB8uw$GIYt%{slV zQ%sc0kQkC7_UTGGQE_&F4N?8ewf|};eUF47s zSyf1`A`QYGNdbW86dxf#yqze`y5iXrSc`#$s|wBz*Fon*%b=;b-^Ns3cqdd>*&(jZ zy=e93)!owaD9=5g)kHOejRcuM0>z0Z`XM$mU&LXvye0_>Te9TBG!PU}UxluMPJ(PO zmNPhzM9c!Awit3&J@o|H5Rwzr6*wpGxxBjriifGZd2i^N=PdMXO+21AzpH1#{CV?P zwa_JKQK1|I>a)};HE5%#%x|ilQw`2TFK|JW?SIuZy7f5aYYJ7ggpe`)vcFI<8h{C) z^-?q3c*nm;ZMC*g;j)OD`nwVduUiraY!4cBR$ z17+vbQ_YVx;-LDCM&h+Ia;{o>ja_w<*ic#eUsL&J61ZOF*&T~Zg12ryRlWj)5hI@( z#ncY-om0&|$%I(eMFg|f$>iDEQMt?Pfuf{r1gj*~fcDa|bfQkFjDl$T%85Q2u#ues ztT1Y8P>yINMg_Txy5>9Qo_nq{Z(gUh^WLqr&c$RLuxiUVosvG zIAW?JW;ASKWVniW-Tbq1Hj{*BkgRs*of5Mz@_VPa$AV@EYI4S>H00wVucMrB9m}Rj z5Com7CwNmeO@bZ`+hN4MhW`nh7`mpfev6@edliL9g#S9Wo&Pv*YkAy9Q z*UoOco+9#IfHl(c>4+KF*`3Q}5oUrl0W7`3+;BEd%Ao`eMqdR3rF-Z>Xr6LaBH7joZJm{l+43i9dd=DfGOMT zHJ7bh=WJN9ezkMX>h&uwUU$KYRjW3y-m>MqI{)%aU6e#fG()tyqh4 z>(*V6%}{)ZEHhE8B<7)uFa;c6Ou==IhGbsr^!4dCF%g}>bFtM{;Uwoz5RU?(Vty0h z%bvquke`76mBXS3+#1@v z85;dHW}VERz}Pek3o(UXlAAj&ZmIsZ{#9^cz{}Sv-s3D3U%&_WB5cjCoMg zH?n7WWb`(n6sIp5BZG4015V#wmdD)Aj^;g6T&4=1SZ#c1@VA+n<*-DU6=sb8o z;IZUiUwc96v&^qgdDAziZ((I7(b~0^3NC=h(8F9}8=O^K#%R5fIYy)`9$ALiWnJ!v zl3qpcI;mCDx21Va)6rGfQg?Glm?~cxtMm-gEcwD$kk#V323;F3*ZH`(%#;=6vBZu= z>`WF>09Dbsj+QTzr2^L2)WV?THPv5{bkjtQLWUNc+x@1w3$GO_XcEgJYy!MKq?*Sf z99K_AvUlVbRpTU$pKLLWaIvbzqLej$vK$k3B5()3rV3WpMWHE4ghIp-hJ;AIDlH{R zML0c)u7e@V@7>fStN?NmBgg_mmf|Z!(F9_c_suO{e%UrV1_A{sWE0Yg?iKuS6SJT+mR}XL6Vik7`nl``Je+1V9H*m}c9s!CCLvl{Vt^I$qv zZmLy|EeNZ3Mx8W8gsQUNAEnFk#mjf`Po0i)Rtu3+1hOWUvsCDMj8B zu%;+^Xkg@V6tv(dUry0q5Q{#NW*v#>T!e076(|ST0_qD>A!-c)SU!S`5DAux#fc22ckv#_<_4^=&oYR9Nn@CtSx7r|JFEyR z>Z|#q+!~%LalLe7QPDbQ}Y6?dK#m&J$71E?IeL~t1hPfGtjqr%HFhF442$gGQkXFeC{_Z&Q zoe)E^)A~rG(&$wiSFWU%!?+WXPToUgYkZ1f@E*qB9FF%0{^ZkD?<4xpkLo`^hCgMw zM~%N9GyZ-Ye|t~R10vD;1SLNyleL+~T$`^Xu{M;962bQ}TAt0J-cKLNMQm20 zmzI_>Ji0p*Gz`ZP?~fUcm~qZ1V<{JosKgGJ+#P({AV(s4$>Z*XjfMpbw!TZ_X0_T| zo5bgKECLh*!=(q(f)~y9#1n2P&_dW@m{nj)1h8IGn=ICGq3?MV_BeR)^r|fu4%6e) zhf}0iZ9E!<4|#V%;Fhw66amjMEQQgeJ%s=;W#LJASY%IL^?ZGlyY!iox|-a?{8 zc0z%)Majr~Jf2lpWHgUC=JAm6J`CWyXf9Nn*D5NO$NZ--;>55@gq*Wv9Ci#5Py;ZT zF`i@js9rl(26D$zDHs9>|3PRro2c~{tC(q8cuU2k0gwDz0$$n8Wx(YU225BHun1wM zP?Y(R>a%2oU?~BuU$0@gghnwQDjusKU>wS~x3JTwd!mREkM#j4!g}oz6eQ2X_l+XQ z$s!aq!E8%f^<(_cz%fJ-c03e4Mp%;7R3eULpJE!Xj#o@T%uQt%+!xd?M%|08?~}sF zWpBmZyPR|Ra!GOzh6dp1mZrjg#<+r zviJ`QK+(;|`A7hn5oAh$&sUfP&_DIsak{m@4)j&nBiT63%lZ%o3CUFKK~x?{LtGwa z>WqCXh`Er@?}QtWv>AA*D=Su(x^dWrc?f=GJC>7GJsUS{xN;pjDW>ZU{AI&Dso znIbj5)wU&L`l`;FOy~2c#Z>{U3&kNDV^mVoJuuEVGNV2Yy+T>|+!(wwEZLDHv4E*7923 zh6xX8h8#L>2HHsBmAKIdg{&m_%o#==^J~=>=xUhiVEr>L(KP_-wn$J7%-lVgLvjD1 zfpNb4zWhb_EnA$7C*pZ{d`WcN3U%0e?G!~US6GOGq97^c$wKw%Mz@8GdI(7%b0tE^ zbJl1xSJesNrNUr^+JJtS7!@9;GUc~a5vflM6m#XX80$hu zS29aB6rXOwW1mL^05r-mnhB(8F_0R1_GAT%bwqRr+T0-<(+D9( ztBf>!Q#+reC9ZELx5T(Q<+g+v;7`=K$i_kgh?N=x@<|qC-mCc7;~Ke+v2v~1vTBp@ zQgf?Fv1Zs}Q(I!?2MmM(p)Z#TRTz)Vm=!w5sOA(Yv#>^l7ZZ3XJf>Jcb;7)<*A^?z zAhJ1IK!m2deJTEnw;okbQbmL`vA9!i>gv{8Dgnq}VNWuHo~B!@0JfavF$d%E+8Aq9 z)fjK!1Z4&mW23OKMIrqet)Q72m)5G0!D5~{v&iJvZrY00SKl;V@?9|%#Qb454z{k; zW~p4LPYg+H&+Jr#!Lc-^iqK#xukbxHQx#0lqci7B?KDp^NB%Mkj=F)|n8OEr+lIGx z9s1bt$66%k@{j-;Xu)abhqhHBvp-yj2)AXR@3mTO=-7sM#f(wQ2M(X^(K2?Ng&?C= zJzS@f{aESfLlmaTilvHaY!KlSG`NG=)LaM`ZCT8lbF(g0h_)AC*4t0^G-3j~0Pl`-8cymMLR2nJWcR{_cRS5k~+r ztwiv-3dT&W3DsZd$E-W}PRD41TCcrE)+v95MnE*4nq^`l%w`=~LstR0EWzaf?l1z) z8W@F3hz&92OK2sg4|JpHZZ6)-!PPPsjG@5j*Dy@5?!&wyY)YW)WASzLs|se9aTq9E zUc`*3P&CyGw{>B`sPR;z(<&nk-&;v^N@neF9jI){Q!KHu=ZM=?)#i7xr4-|63rpLo z4Wpl;(vWxGv4oAR@KwX6;ev$8u2mUgE10h58xM#*&^|`3w(%ib1G9hCr`4F=Jad({ zyqaIrr)gHgCMPuH(q=wbj_6QvF*h*H4pp^nF66P8qq=}Se9JMPTU2^xJ7D%!n*&Vy zBiy1~bX{0}%phZxGNZ@zMO02V7&BE$J97*{^spyeK1$?Z&drc1a}o+OTs{^a49F4I z8s*szhKmd{6*$+DaBU#Q#`v%{FU#-&@V%pIN(x^DIiazcQw+jZUmM4nZ)iYeR;hMZ{O|-jXJ={F#mD(igF|>Sxq44b(8v6y^*Q|E58~cDP_} zf~k7RoV7N1`x1nR^E}oJehGEtv$;kkaRO60!l~mkxwQ1U^3J4FelG0~r^-%xMZ9*Q_)Up4!leF)Zqr z3rx>rQKE`yg)}y^fM}(7WdV$%u-^OQl!>}QhOHf#wv}llsIgH`)h;IE6{&LP>$H|Hev;#ALrNSOG^chA_9`}&zyh>63KCD*V zfUUjIGJI{ilwj6QF!!(#zIL?5_^swFxJNOtaV(K?r+CRn6JvqO>WPU|f;x)nt}s=Y z;S7gd!WC@J-gw*D4o|c9pJfvzC;C_>!nsQ1F{R)X#Ia(eM8sL%a))Z`hZ(#WjVUx5 zF5vbyeFobq;8|r>sNDgW8v)b~up^Fim-aQtH~eZ(mBjDgZy~o z3{13hg_ck-SLZDTDV?sqN-kglb*}Dww#x_$Pi(G~fz_t`hupQIM`D--Wq3igQWaAY za`%%511(`RgYEti;}sJvQetQjpZUb;3bZ7b4&30*L__AqJVkE!GlgI3dEP|K=CM@0 z;iiRVO_Jn*3R-YwyYI-}XMQ2mNkrmk@SC+8_goc0)SwIiF$0MlsvNnvbQ-eCs<=>uG3C(;m3u=K8% zNP;Ga62ffDW%{FDyF~VQ`3tXkj`etIXFdzBQZy=GzH%|Y#1TQ*&4vXcZ0lq;e1+$$ z*G{)S*C28TQ^4sGJld~e**ajclbZxAq(Gaeh6@i-NAReimsy`@U5{3jap(@3Q!_=6 zIBk23Y!(=vx*=&<#kM2Kx=NVKex|R+M^7?h3}4MjlJW9aIyRYCgFiI=_e8f8HdC>% zxdn5YQLG|9V6HgW&MrPO3%{G@%P|sx{Dq@l39VlIqpl6Nah1&wg^6cWqWZ5ol}EqS zl?XK`<~xlZJX>s`i22$Ok0(u1h=?5rBby5I#sN~7d@2!7BP7*SJBEi%hn+AzP_LaJ ziI%@YHBn3gtt^Ap@{RoUn^$0|NLpnvG0dF6i#xhO>>k5=yVSD=WW!h1JO&Cj;FFRu)D5$G zebn~MC@B-Z3)W}h!+~OfHd4~luqY8zBVWS{gtuUIq@PyXcx;y@P8l^cmqIh95atUP z|DYLLpqw5OyDdtb(n<*Z zFuRrNI_5NquV%z?WLO%VOJi;kvt^C|K1!16CJEERfN#-T@2-(Wc|{E zYDYIdWMMMEOM!VuHNMOc0}<7Yck(1;RT~aEzVtA4-imz8Z9?Rq-B6bY?~ibf0)~iD z#F@sl)w@g^igD1-LA99;r65~r`u@R9->0)%QJ@hPf;90seH2dPy7tmDtF;*-+MMJE zqdz}q24{y%x1M9KA}moi)^S(EcGRgvZuT^f?X{mylY4Yv?e_7Vk+?K1YdG(igAX`h?TUYU|A(_*pYvXC${{lK&DS38-LBq! z>!!bXQ+4VWN$&`i`t}!o?9EiE?+*Ui+o)3CU;PR1w<`66R0~NBLZd~S_rQZGYUuJvjRO;t1T<48bsolT2!dtFV!%xrg zW~o~C9{i+tuX?xlp+~)G>fOHVD(`6Z?v*ni^>*sizr?-sRqBstO!CSq_2*4Ddxxl6 z{xWyD_bK)6ujl^WdyP(&e&NkfIsf{O<=(gSyC;6{J*rb*xx!ndQ~SQ=ZBePe9kRyz zJDvLWH@vt?{qNiU?7c~*atEwE$a}9&{qEh~29-K+u-p5yN*y$Js`rvkedA#7`zm$t z>W_M>RqBv~@AMwmscql!-mFrG9`reHpGqBe_*vcyI`x;lw^XIZ)qm>EQK|80m4DKy z@BFhjO{EUM>A$>lRO*N?-RHeur6!(zwb!dslbm0Bd6k-cUze9ssVT49?)^=tK6Iux zUZtj9{h;@2o%-C@y-g}Lt$T|1NtK#@z)EjGr@r<(?+q$7mjC-{W1TQX@r<^e)h;XJ7VSt5S2WdC2>j zPVM=c_imLs_UeE4vMP1_Z@%d5Rw?J$H+j=#f5RbfI{7~w&sC{Y-gvopno6B|-yH8C^}Ts-ihDm& z@4AloZ|~xI-&OCrzwt}&bd~Dy zUgP~yr+&N5`-w`$9y!!IMWvRw7kCAgT6)g!y%joj*Dmitm0EUC&ikE8UEmhHCsk_2 zVOMxp>D1j63vd5}H$$aXe)V~8NTpWYb*1+wm0CUNn_j<8{lm|_lT~WXch2!{ zQmM7qRlH|a>Z0-g=H01N&-Z$LDs}N4GrfCMYTeJi?|nt3)_?aP@AWFR;iG%Je^9B7 z-*}(*SC!iI9}juAsnlzK_-SvkN^Snd1Kvq0wdG5Pc>k_aTYKN_{ZglPf7?r{)Md$E zdPl0(yzIO8c%N7AE`Q@y-g7$jx0k(-snnIlYrK+5z3%b9cnekP^&gnzEl{bemc7pV zPnEiQ(m~#bb!yQZZ;eiUhJ%@`-@7&$ItM7p;N#6j(5LGB@R8s ztEyD*vB!CyPQ`b6hbd~4a~}1+quwRIbbvQmzx&naz3J**>gD6TZ7Svd^Em8#4;*}F@p zR(;c(s8ZD%PWN7?QUec8_AXJWormA<{a&R8zyCkp#VWPyrt7@*Ds{)4LGKxrdh2g* z@g}QO?Qi#bSE|(8?)j;AgHC;Nyf;p9;?7f__Wn)1yYs6LdRM5_U8&!B|E*F(81Z5% z_4b3l?yb_PtG0MY>C{teyz^A*9cQldzNAxs?|PqAsk{5Oc~7WRJ@<3(3o3O_rN=u% zrQUhodET&2y?eFyPL;a%sr$WMD)p|RmELTXdUtuM_f?(x(?59!E85?4cg4F-y}R#U zKI=_TsrP>8Vy|1J-Z$?o?@*n(X~_GrO5NY}H*c>_-FubyqDnn*)VsWQ=+w~nyc<>O z{U7{i?_8Doz{w|j^K`2Jx88i6`lsJ}Z&#@Yj~Vd3r&D*&_pVW?56=9)H&fB~!JDu1 zZq@I8@ec2KmHN=6!@Nm4b#2yrmr6bK=Z|>fRV@$y`Zn*a>fIx^zTZ1sz57V_4zI4> zedKF@@~&5@kDhdeH$|sz>Ggi9QXh+b)jL+Fvb(*zb?OiQ;9aCrkM8RB{-9Ei-SP(S zLX~>_6K8p8m3m^_Q{EDldh&*%cYwnA@yd_9SJb;tJigNVAC>y#mbu;uD)p&}hk5_2 zQlCEgv);#b>bmQ_9-aE@Oz({<^_lCwm8_Vo9^ z>U~YUd*;cXdB>^Lb065|{fA0DfAR;tL7jT+D(@32^}>=LdmmD%7jK#DeNd%dTD#MG zn@+vu``$mR)MqCh<^8=*CI95TN2k8_UGG$t`rML|cZ5Ryx!ZPoN9okVANMjU=gUXF z>^-7W)vtMib!<~T2>Qs4OBd%eR{>YMNXqxTz?`qm-8^0w>Ll6BtKb!y{v-ibPu z`KouMPJMfkceYA>`?Q(fES37s@E^RVRqFePf71JvPJR0G-VT-e!STzyhjeQFnclzX zRQ9#i8cx5bIC{9O=?IbZ%Gwbk>Xx=-;ldn#);IhiSP?mx+(mcS-(25Z?_%?7+IKlq zEcMwJD%FSBl)Fs^!%1tn`Fb+N!92o;tcyd~;g2|WkJePkU+2-4P1vrad}n3_*vvJ= zCirc>J;dhxZ8IDJHnq(#GbqEx_8Dp?NygFLCVb)r!N7Y5%#{|A$+3 zdO#g0c`Trk`5K$w1~citW^^nHnU@nb#5^!V^_*1>8Ry zHImiTJX<&ODT;*?_O}p^v)bdXX{UJ0y;+Q*T^bi{h}3Ho+Mg{*7-DXzcC0ws6jixP zr>8%INKEb9SI>!J-Idj2*>dCB6F9^iVXT8l3Zx9uLIg><6dZ)7;UXFOTuV78H(EQ& zG&lXXSj$#Ep{GaQ{=~075^*K8x3|Zm)eOC7u0>72Im8@!ZSV{+-(K4cM+^3yVzvo3 zJ0kEEF#vEz^R*mo1n0QAB^P6X`;ObOvNosjdrOy|wiEyHuPpB1D^d`41_{FXBEu!J zaw!OWRaXR(inVvKvrk+d6lX~a{HCJ@Vl2h9R_*joDr2#Hyj%+rt8MJ0J`<|~w{kts z$D%ue%IpmI+C`CTq_ttzn9Dn$`V7&b>Buw)bw7SrsZ;}(2kQ|#d$sr zE9$JNPBpuGQx@+GG@_p=FSZ>=f+TjmXksTC{DvQ)E87 zCjF85Wt0QMn*zSt6iRIEijsn)qXGnVb}lAA?-gHKse&;?UcOox!yT=;Ub2k3TM6^=T;z*V!FkVN=Mx>3szTif%MK*Y5fRdNq`DTZZhb7 zH( zyddZ{VpUm*#*ICaqeqz^7Mb`r!w}ty933R;zpaRPF~s69qH0M)^DsKu@YfUr%6M<6 zw02n~C+7%GhT+5c4UO+_YBaWiF=W(?(V2nsufd->vz}Hha$YEeyqhbLH7i~lssiCJ z!?pw3CFVcGUl6LMrv77q8De2NVS8pPmgv12?e|Z~uA=H8UobnYf_D@{k+Y_2#RD$% z)1oUTb3YFIVnee@z)EssoWRCxtP`HoftcIgaDKQ`tUp`m#Q|Ax2*7VgE`QsrBy!;x zDE@YyrEtVsd6r8rJC2Tf)s15o8_$tyt4im#`+)G+*Yv)}rn-6muN~)C4H3Cis7Jr| zw1W?Bs!WmRneUfp^M(!Gy%~OFI-)HTS)TWJzr47a6W%|TVTc8sMO2qVEKV(K$Ib!aq}VZWcB%(5WecQ>x#!Zh4vQ9jzZkI`_Nv}m{?79|{2wwJU4?ZXo`nw-{Q z897A!FnSZ$&J6eM26i&oXOFC?L|+*N^m>M<`!Of}5U=y_Cd6^0Zt@0M9li>^_-aAf?TW7$-nA7at; zQTvxZWWc1o`ebi{1&vM+dcWGZja1qwSJ}q#DQH!l~k-mq(Is{2#vZiJ%M-gT& zj*h?;P6#ES$&lVsZr8vdCZe-)i0$Kvs_C>QX?aW;6BpgHTj!H<^2O-H)wH$Jc-V(F z^u&f{I{Qbqi#CkH6=RKYfxxTBhH{8d3$u>W_UTL>*6-q}g zj{Nj>O1A15>pJ|7RCh*e8L)@g9y5~SFum1^vS3k7-T8d?K)G8?YLMccuN8PbQa3Wm zYD^~bTA{YjE5-h2qagNLJvM&RuelgZJ#!0HM52B7D4^BH^)`Omr_p5>)dNqMLac*k zqhlRndlE^`7MgA>9Dsm>DRa0725#0~9Kp9ORoHo^feo%^AAO zjvbY60CsWMBQ7eEgOBAMrP_IoIQb}>z$q8iN;ZSjdiVz{F9GE>!OE*ocvj10LRl3S z{=SJ@f}R|mEuF-{OTryu4WCpG9Wj^1K}eeMmivaX6f-W)1IBq{0(MgdS%>^c6AyeE zTIOw~FPaEa1lx=Wqr4V1HY7XR)oO8;L(q3}V|H=dO+)K7Q7I~97a}SFY0*5mfDy+D z(#b`<6#w)P+p!zfvakZCr~y+rmY1D@pxt7YOPTT{aUD5M5K%d>Q6V5AISl7LHDooN zoI>^*?u;N?T*obSe4>mspwX7*sLb2c5^=}aq~6u`K_e47uaaryuF=rSH%G6;I2f+| zx!IBvdQmYTKO=MVC?ISSQWj%{^PLcpG+1FVNkeQ)dsstAlOSu7_MvfBl%%(natndV zxW=H}hZv*Q3Pv?mE8~ca04%*mD65q>t^|SB6SJn0K+$YP%3LO=-42jy|D&wQe=>k* z8F810p$uwgseatPw4~lFtKDJk%Ql@6W>%s@3))x04YtM;9?hDfNKsf)1V(+slLE)hlr^4c21G->aFth7lO*&IayZ&;=d1H74U&EJrdnjdx0v9()CV)yR@vQe5< zZj1b+h9VF=#LgiJ+X4|jRMV$j+8k(-dC3CpvkfZ1B3!YMbvc^xy5EbLwSEs@30GYjps%F}m0EeudWcP}oTG(c5M%VbHWXGuNy~ z2bs1;(Ud?cmKu7n4CylePW`(h_(#`b`vE%Q;YLCsTEj2Ms4!$tlH}qFc zPd(dIO0RIXY{LobW;G3r@*kR*8N_*R#2ZBEpdrLyh#e{zmdDzd=Ime_2I)_!;$CI6 z##OG30GRInT?hTLyGi~<6dH~yW|6Bn8k`G17j|p;h<#n=$8-=E7iOzwZoOrVWu2axKL2VtMLq(|YCH+}E|P150Ghd1TX)F?%=xaEfpM%tg&Q)*pbQwNeV zwV-AFk`c@=z=#@R=U|2vXRZF_$^P=2`i4LCCgQN%?4Z=7OI8lCb2|xr=ziqmVr^=( zk+tg(J2rI8fSJ)j*Va=nY!sz)(B&=*?m&`_9Gb}^W1w#Fm_H1rvW7aKOB*G|m64Jf zEzIW2{UWu0>VO7qf;U|TA}M*b+eKeS+zf%WNq-0QSi^$E@Ru4Sj-!(1P%4+5`8DB`{wZOJH8#fv8z~b&czBV(bn_eiJ-DGSG_f zY062fojY&@5ziZ1Kt?#Qw8YX^rhBu*jnRB!VMVx^xL2*(gxi1Us`~%}S*5huogEv< zj|2UO4tQ+ssWuU?iYsC#am$v-x&63I2F{Lbj#JcasFDlhZSO>rrh$ENU$~rYVn~uO>N`z|iF-W5!qW`LV>A=f)D4j|nhM0_G#A zEzKyp?TxOkOo|O>Ev=n0)Hf6tA9k!27th0Wn2INRwf4+RYUA5AL>P2mcmbM$Ff%jn>lD?R70WA^i72L zv}9;?H9{s>5%;A+Hj7XgBCCpHuJfYBP65a=ksp19M8h^6uv`IiW{QyEd|=5+WjLN zHOtK89+adH<{@?yV_3e~y@Q>QNjE`d5RjE9%T9lS&4oOIw~b6z8;)QjMyP&4_eqAO z$u>{e@@QN-QME9LRy)h;M7RPw+b#2Ui$JP!5hr%W%b8u+9*x5y-GV%Q&9<0YeTevT zTJTqL#rQxOa{&6cC|t;@Ym9)c*3NN;t%)%CNiOT5+TlALXkNQdiX&Dli9GyZ6}>Uo z)BqzOGX(0I-HTfQkyZiSPD+v%n)k1!IXS%pcAsv_7(X1VTtOH)`f~4%RIHp&6tOS6 z62~j?jNch#2S62Z0sty%F2^&UVW|T474(aeE|ExXV`l9Bwu)@GZWv(bmqYBn*|2)W zHY-U>u=59YF(BBx9(VkG-L>e{j2X$Gqu2oFpBp94j=kgE&%ZRc;s?#k}nFLg2j*X8)>_YLd z14>H)kb4c}{tBPQwT`;Mjf~P*Wyi61V9?Q(=VQj)IeaYj_=5!)JIDcx9$B1~o`N9- z7Z6rSDs+rKdbYK!D<&6VIzlTUumdE*eRdQz!w|dTo+QIsbipRHZu(D7joj@^k!&Gv zKHc74>qb#3PSdJrB&%Z^*6$t=kt^J4)C`8Ymg^mUS?w zSz5AO$s?dlHvFsIL=8fN3y?E7R*eabJnOANXslz?2`v8WP9RX&w+Y)-h$bBJ_KYRH zbcg^muOTi-ZY3ecU|;z_#@!)Kq;HHMQaOzkO_rZ?r)9;$|3x(i71vu0!yc> zQMM(##-*+DiEm@kalnn2-7Kz?ReffDt3m}_#hXAtwn1D=AkgdCas|^@4y315otnGx zz8xu=TJr+kmWhNBp)d1Jb%l(rBnOz*` zf;L&n+MrOqDlLytKt?08&3gG*$@7I4)n=xIn#Q)H4_b{bnULbkWCQ)!?WjwFTd!l{TUoSv2`m#c0Mwq6%~oCzaqsUh!m z9gtx=XxR=LEF0&F89I@)VQ9C#$}RHlhiT)Gcga|in%{T8?p9J`&&fG!#g_KQRtTZx zLUm|+;nn|>%mll5EHQh%0AmI2Gw=v;7;w8YMR%v1Lo7LqtHv;Sm!26u@3O_=^DbQ$ zKJStx-1T7{-`j$=vv}4pq%AqE0|=e4K^RG4;0i8;$tvzU3q#q`#o-zDn($0mD&!^% z+S7TpVX}783_`-fRNFy|E$INQu;Icq!;(&T+deBm zsJxpKA#;mH3zu6!s#&YEEs+Smgv%_1KO_#J1j1D|(>f%k} z>(gz+k-VfMZi+!D9P33l50_aG91^q;m~d4Kb=kx-A9WM%^Rm;2`+R3IC72cth_vLw zkmXAFm1AkXal=>wGp>VByjQzH=fmk!DbSr1F$6+m8Mc^a z$7IEemF;nH-Jo1ZIyFpQHrM>OvBd5x#uAwS7GRn>n~!$y(fp>HK(<#CSS01aQgPPx z5(TAPC9b0Qz5TNhc+R*ZNhKv>`7xmfB&}SORm@SORn2SOW7U0VYg$IZ+FJ zE>XsP?A*tWqxdMi1dB}jAyD?@01R?){A>qwy~-W47Hf%lAdycZR0BKaNb@9Bgyy2~ zCD?HALzdo%V$eC_AME=rTfF%bCic9A;Z_K;_#Hf;{A%(E(+% zHD!4hq0ge{v8Fn<#k>90Lc@ZN(7niKAa2q=BeR}|ymxlMRKwcB<*+WUX~WHCnM(6| z&PfJ`{WFrl%rY0Wa2^n@)8lR^E7F73j1ncp2UM!P{B>x)jf^KX>$W)gd45#@12E+6 z8cQuWdn|$Z>R1AE@K}n2ylyOUW`Y3Iq(*#HO_c6-LPJ18Q3R>8L%O^oq7a%8G*9t| zyza5YyF)wRonZiSKX0;>!B(BVlI!kbp-%hP0QAKm4Zt6dB_{9ffXQ?8Xfu$*#h^IG z0*kfMc8MasA%wGbwEx$cmHFaWV(B}^5||su5}0$x5}0{o3Cw%}rl}*0@;K2{fAc6% zTgdx$nXXkv6cN-XZF|h**j~jfwz$ay^q7&~6FRrle{Ua4jQ`$P0&`6VQgESZ)ElwL zG2?H9f4a$S#RBYe+=7s&cwWru`w$sc-Y*vZkT-J-`MX=5DVlNzG6;{&xn&;WKIGjx zmZakOu>@w)SOW8|u>@xPSegXAbu4k_@Ug_1`dH%3^4 ziaxX^Hc+YJ-c8spF3cFQ$KchTr&zIAK4@^HS6@bKShJ!7eez;YjXGHG*s;_+caJ47 z7j+;jCrNWv{;o_EE7e?lvo)7>X0QJApIYx?Y9K9R#Bjv2-=ssh_2VIq9T{-UJu715$=8gYu9+w6+N zSh<)+R1oI-*zQy=@J7U@CmiOLPJpN89g63Ks|bTJi9&xhlfs~!uI9u#)8=r+#Z6r~ zbeIgCvBUP{mFYO90tR`S)tZ&A2v;fD1|_g5liWrV>Jp3x4eX+jbr}0q*9BvM^0mk_RxtmzFgn7S%l&3-+~1h_g}H8}4J?ihH~(2*!KC41wOV-xmO^;EkySjT@_@t&D2ZeV*ZT@vz^bZ=i#~SE$UBJ8qc{x$y0p*5 zx#Vz$86Ct6$5otMmtz`~#GCJzu9oRcsOk@-mW{#u?oH4GMJ2%pdah041wYi}dF%%WH#Gs@p~1-L;F{`b#VIDmkeZyQCPkEWl`e;~1i~$r=o4{7BN9?6I)r87H0^ zL!1ah2^(oJ0-2*6)0kn{=v!D$r>+&8I9-a6{1yCcGhy+c1p3%WXUaO|Z-~10mv;Z? z7?Ok&B!A?uX`L}{H;o%s4%wy?g&V*+7L3_M`9vmLj+tk;@B?4OifYq%=+l_5wi0a8 zX(n28g31`uq%vFPmdyED2Mylj3u&5gOLg>WbLC_y67shh2~%vx3F?|e$#h?Y?zm0j zX4SI4y6As&&|;e;f8_7T4g3AowCg2Q`5OT;lYzkw_|+vpDu0`OIQxqaO}4WS6h_}C zI-svrziiSnzOD^PdXrupp=H{{ZU3(_DnBHsY(+s6CLdkhlxJkPhrADtB`|LrOJM%F z17TD?85Uuy&bgx7k!Udmi@Yfu;h3r5VpMUAqB?vDBGGcDd%o=` znKtZfp&wRA8!|@;WbJ65?@Hs~J!468b35o^8^ne(R9G8g+iX%0t?aw`0^HziM5gsR>3Z z)(?$3&E{Bb_tyP7R{zWYPYJ8m#%J=$Y&GSk>fS2MEWNe(=gsxa^)7D%r+LGWw^{vF zP=7tB{`#HzOB!J(1Q=MjTSQ8Vnbog->qFJrq!L0~aBzDfyCX4JuH$wdcD#f~UPA94 z{4-P=k2?u*WKbm`s8|guYKKr1Uj6PmkyAUYlBr<#T>W~KJ_coKlQI9QRZq&N`J~b z0Z%~8T>R8d-HN-~(wo;gguen9Dtt8x(y75nPri&ItelmXtyM?}3b1Zplhu!Svg@t5@D12S{eZ;Xigx522l zZl&wBN#yZIzRWMMa(Hxx!=eqHRk&h@>%Ww<3aZ@Mgu7<5SvTuY<7`4qGHnG@Pc!A5 zEnTn9Cpd@hh{&PigE`c-+3g1haAp*k1eKe?(P0(ZuX!$7^mc25h-~r zn3CmPy%>$>JFEES3Fo!O8JJEXkLGmNZP~isxdQjVIqR^Yrkdz?o%Iw@YSR{_B2Mi? z5vl!1Fty!GW6)K04mR-fHY+(0a5Q4x-Qm#Cj1kDU@j5KaY5G(|n!X%N(;Blcs-8;$ zD9&Yhcfid%7w3!BO4-rsYtYF=7ju-=1B$K$ck(v@seBtWNTOCF*PG`+@!`#6|y44bf_^zePPn++^!$NJc zqgBNzo)wYedxKkh&gz}TY=K!Xd@kuG9c(x((a2~M)HWx_dvZj)(}G**bkRav*y5#a zq_8$xO+y$nON^{}F z=f&_dpAj0CB{x@bba2jf_PsQ;?*lcP=25DX^WcJrJlGk`gSpZSl{yC#2Wn7bvT73; zrT|C3AtL(ogV7rnq5+sI5o7wgGMgxu;TW>qP92uzG+iB$rgAV%F>Nuoqe)JC8mQ{H zG^fjpNY^1DG|Cpz>RYOquHi}$X!Uh&qQvIBe1dz~mJ6NUY9?E8sznU!zINp4Bddec zxHBS+p9*ff>1K=Ve(tS%pL?4vbbc8)y0=6`_nHvsUU}e?uRQqnJ@-7h=WUMa4_2P5M8R%ov6z5SWt7jJCCH7f&0_hdwL zk9LS|&s{^qcfHeQ+;q-Xj!tCY=w6J7Zc#A03H;;E#j%YxD)R+L^W}(WwgjV@vZ9*G z6r5LXecLOy-n!@gPuY-~-f~>ui-_y*f^kjUck4%o?|5YR#m9$lYY=<;6-Tr$BBFRO zqUn3?zh(HjXZL>i{=LuLwfBX$?|tsQHnaRPaCEX82t%4 z$_)<;zxl(j+}j{(_A8F)oQR0NAB9MLehW)2@^FloM8vo{7~^5X z&%ghbTko>lQ9k4-u8fG{@n94a)Y3{r|1)23G<^}#yg3-nSzltsz1VZ-BYWQYn9arr^>A7%5oz7mj@B-|d_EhixLC~3x^RqFN(ke|5;{!$O2M&- zX_JqGy@`S40S4pX8-(j9t3nb)G{LpkR%o%lCm|NQuf4Wzt>sU)Ut0*U?9UeCYa?aK z9Vl2kOvFWOs2xIUa`g=+cz47r{4ccQG-vcowHlFd*rYepmuXyRXpx6wd~l?Mi&%=K z!5EL(D4Z_K?RCti70Y%RIoc;9qMZ|rwtJQ97WGt>xxU2Ibh)#_Ib*T2K9fgKigO{v zahD}bwGPX2nqG`Z(?12%G)1i3Y;Y^&Ms84tO>a4_FGs{REg09ht?a3?8~me{zdZh3&$KSbd=pnc@a|s>k5e!PEukEaIFUF5!JxyJ7jV+D?cAh z-^5ib*RI&$?78RNdmm|t?6F^QMAIW8O0`2I#@+dA=oHTGN`cl`@)awFM2!?orP*TB zK{-y0!-(&tTd?HVa_X#DlwgMT)7_pyK3aL(b4 zeB}LGJ6`jVcfJ@D98BSdpT2qc`Ma=a05i_%b}q-UkOien8njynH& zi%7#KgK3y|agM^4wz&N{SpIyio=mBAiQdbXQJB+;d|9suaX%H7B(536y($lMWp8C zU}}z%Jws{PJrCWq@1+J8QOjH$=lv0JUK)&Z!a4bZ!vf~dv$!h9w?`vF_^)6H$EjJ0 zu&SA9B`3ues#-u^&bDVFV*X(;<}QVKl{jCU#r;Uo&YEhTc@7%J(D21LC0~q4NhO$) zQxzo?^j9imoi*9Q4rifrg`4S5SDY;f{b-8(2wR9#@vVqdJRD3#kQo0wB7}bohH#8# zBo9Z==Sh9xAb^~!-tp%e!LZQvuhHcGy!}0trBA&~F@k~~D*iC14uWx+G zQB9l@ZKm{%U{pb3bxcGEbAusFz5=KEc2|qb9b80=qh+kfkj9ssG4mp#x+56XY|&h> z^|;HtOX%(fleJAgj`j42SU(+%b^7oV&+NJ5UM!>TdGDip>ksU?ZOG=LUj~kDWkhs| zV06c=f#a1QNykH(5OP8;XBI}^pg98aa?G!di1`D-m``E0*m}AK06RYtS>Z|`VR-TJ zeNW!(tXa3>@)b6dLzdw*#3R!1#b6r7%PnR$O#PT6$wfqRK`@daC39Uw2(JwR0b^AW zG0T_;+3c8Lyx@GJ>WN)Gq@^_s)pu-W`lid3h~Ote$cl zABu=08;s+4p@P{Kl{JMDZqeWh1lt7QpS0UCC^JX>iHN9ohd_N%A&cEnnIx?jCS6Rf z6WPHsJRyEDXvYU+=BPg#5%u)oh_91d0U3Vk@!{uh!W?hU{SAXkxFVc_uSBF^YA^*s zO6CUvDw@@8%KKR)M!RG9YGKf z>T|SIY+NP4Fa5egb!)Y^VQ6ZdjUzoWBGS(UBb{!B!|^C2o11oRVZZPt>jlmaEB48K$%0id|9R0Zw(VrHKUd~pX zy^r4j5w^M9_>!Z#G$N{lg0=4)Aq|q1JZ{o22&-*Qj`wvD@%|{7i_%Nt@QLMx1?)g_ z_SB!)Q@hdTXuFIYZGS|xKMzJbOR`nEF#XJ#R+%`;YDAQm2cv9kS-waXMh2{$9PiB$ z@fL&e9(QTJup{fHuslOs3p3d)U!L(BU<2}U%x{l~`OILF|?qg#IQZWBEi?PjgvkmksH?Of}dZd+bDj$eQ<)Oja&%SxLD+4{bXI!pnM{<(08Loxmca+ zbyKt#7UwFh&L{cFO6%O6nI!yR*z|?ym8Q7)j!JTRh9lB*N;`VGcwFifw(f`f2gQ|h z4e_ZHM0jdG-w>C|BVu|Q77pZ!;U7kd{C6nW91-&yRviyrndS_?`KjG6+`Z>rPwal~ zhTYHHcD~&QeBN_z@=8V?Rzt_71G(_`l z)a*o`Qp4g)+ngNl*%9$R8H{&^6gO_h`MIL}vv7nLM?`p4Fv24x!j)+pX@bGPbt`sv z@Xf*TT@exAw}bH=v+t<~_P+0iy&rmZ_ls}kAxyFl+c4W@ZM{TTk!CJ~CktFh}*4Y7UphXLd0|eh~&tc0d6lKIJBW zqn?t2&xx!d=>bmQKKpW`aXZ;l%xKga$| zMC{K7W1q=6z3s>4d1uC0wx`O&N6l+TGs`Co%6cP=Uvww3vrmhymQTw{xd#+0XAXbc(% z&d!m~kBI!XVB~XnNXSNcsI{|U#TG7|D|XsrPTQOu?`tCBT^x*e)$Zr+eC58+3_pLv z@WXH2`<`21rR=@sGy9%+Y~Ld{@R5>&r5?L?@1qaxefD8z^M(y_|H{L64-dV~&-xmj zDme#MN94ds!5lcRa}My>ykW)xyHTT7#;M*Ck?MaBrusE&_z_Wvr5-3`aV$MnENKA0 zkd6R$HXuqz9Fi=y7Roqro7@rC!s$#zr1O`-be^)RQ0;~Kq=PPT)vFjO8i;DJO+uF8 zG!!DzkPN0_z8cnlcEfvd+G@5NdyKQGpWX02d7d>J{;&_rZk-OwaayjANXwDI>oGhc zjxIn@#)=KvF9S#S)`;jnAI#|RlzAdDk6n%38wI@W(v1tD8AlViCFthZV8bQSir^#{-#o)FN3ofga@F3 z%n0>xT2F~c>tBLtU377tPH#e}2hk=kZ%Dbl)&73Deo|yqHff^HigJpUMWpB#!4$2z zB#|uiW^h9OBIhEvT;_kJ2a1cFfi(W1c?Nk&bFG9o?cY;sl?3-p!VAfl3({Zt(CJ+Ri}-M6@_uxWlrXrfVY7yw zLo?N3PL+Bn_&BGSDwnC_)?h2!Q#x!CKL5RbblV6lIIwzRAF0t8#`Kn+M(nPxUP7&MHwQ1AF z`M#&$g)hb_Ib=q(N$D-Yl+3oF!;R$+y-hxjb$UdsTZ6Hle=*G^=@c#M>U_RT*FXui zMi2Qtb1TY&`6M=b<_py_bQ+v-%)@9ag~+vWx}Au0PYSkuY^40YOAL=t7F%$G2!1%# zren3u?O2g(<8=2#r2FvT_73*Uw;{9B!knseB2sm5FjcSTJ}bu(=8JF^Qn%?KG2#Y< zMa$v|5D$XWSRwG_dvI3Z#B6j1tO0f*EM!H427NU@#JP1zL~gw=m|ItbTIPNBuHoD6 zMeNTo`-5N8fS9p8pL}G`Eq4vyaUUY!;OOLo&)%1w+xNuVZC&uHeTDPs%7}bg7R;xU zw%|t547P|Ef}?i9_zp&)N^tyr5%KQ{#y>|nrFknMlmR!U;4X&Y+dgKuRok2#ZzUq$ zLxS<1D5K2K7r7_%3cB@_hx4$_q&Dgh`8oERB4U3a7&~@KQ8W(U@;ZFi6Nq0_7ft;9 zh8ua{CAyE_8K)hV^Ag9)<(E1+pRq4&MyL)*L83k_tF=k4B{Kb?vAV zXDv@{+)rq?K=W%3?O6t`>Ez^T@)iSfI%CP8@%ZFPaKYn_1M$}Sl-x1)@<@sHKSP-V z9rC2Shb}r%^&19zeG^=P;af%O^8Eq!|Ofbc(qfqR0!Dm=;mNuBcqf{s7!Q_ZMm>kT5 zlbJjU7ZBFv_kH{Wdp>x>o=?A(pL^#Q(H^b{r{LI#6kHih!Gf-0sZc3Y28*t~N>*G~ zjn(eHOe-HAu7vY9QB1RSD`!&yY6BAnargFMK9NI=g>Y4}01I0$MyrZbye1;W{}$Y8 zXNRTO=SpXr;7B!bdbdWT_ljV8m$atWY)f`-pR=}#OBie_M^K*A)*F$w{|=^YzDXOM z*l1D2mim~^T+wi?W(VasEyakm#DZyAX3?U%p*+CFA`MQR=775q)xha{Q$+e!1=Dw& z4vATa^SwbJER|MPYx}$$b1fp~qk=In=z@xu;}wNtxiBNvBMc_%;@I4QrL-Em57*d1<~&C~y{c z=t2?sLn4!h|>pZgv^edzPcKvnj{jE?@ehZ< zFV;_NWsL)$E@#Sm!v+Lf+mdrqm=YZSUn1gvXE1(sRPu%@j#P%dy`_rlJ6jBsL76$~ z3A3Wj&UXc)mIv+A+7llx9c+Hc6dQxw+T`O{kB*3Sb}-i0n0A(&w=Km&FgrlWp7fYD zmn}6Tu7%TiYD7A}8cgSTZRs>A>t2D_Fuirl>3Z#otqrb{sFiW5Pm4(P!NK#{^P5`K zq?8)~SDtx>3~xeo96$A08k}}3N3M<2ePKkpuWQ%Z!mmC>1P9VaD%VLg+!);SmIK?w zfHis5CtZ83;F?=%^r#=M-dL=X-t;R+N~*s%T>zYW1g;C7%S^ep?Q1~_RlwxK$es2R z+BFb&+OIIXqY6%Cp(@xp#RU^aYo@zgDPi@#TEckSwRHJu^Brb$HW>}0P#>p#`$$_% zIRCqYY46&yEmJHKtq6$5l|<}710JJtaUPeQCbHs4CcFK@7vq%tT|`O_4W{Hc9?`v~ zuuld%3Cd~#0KKLc zJNPP2Hq%?eQFDzJ@Mu-ax$upMTsSwF3tej0UOq+JW})&Bid-homy}qh6C2h!!WZL| z{4^pZ^MWZ^BKJJ8Pyr&v-ZH`5#at)&#S7F%P@dEF>xi_?52kIopiSO;PLv5EQpT(|vaVGt8xOM@L3vKwyoj{T44zn?;7=Qq!1Zo9Z8t<< zZjSr(h`4VJZj&C9{Tqw8Gmq^L(`#egbal$rA~`^8GCD2HsahG4s^^2L3b~AKU6K~E z45#6>5owqdOv9112T{z3%EDh}v)?xd#}|)??_I(8)(FR_9Of_1i<8=|z52M+iH1@v zNUpd7t4SrC4_rY4jzHQ>)^w`dXjRI&kc-HL@xlH6cxlYCleyXDn6x8HFlB+=U_qHV z>gyt+ers^stz3=yU3a0cn?!7Tm6pQzp~sdFg((3^pV;V&Arv+&wVX}bsMPrXarYi@ zaurAZxG+L-S2-shj8H&~0?9_k#>xnktY9#AoHV=pq@Bm?%rZgJV&em26Nhvx1`Cr+ zFxUnhIFr#iopU;;a}KZy&N-g#e^u9e)6=ito9XJEnV&y@e?DF{^WLkjs&937b*duy zuN$QNBkQAfrtc3`_6Z?20q)x3m007ctt}Cf@{U1D*J~{_^_V&-HJ|=Uvzpqkt{gvVwUQ37{IG*(W5yhX*Oa*!mJ+=MASWw}d3XZS^Sb z>%UH%e{_(X|ENCaJM^P#5PpshtoeR3%plfhaWN9F)Db)wGgqc06oN3-hd=md%u-{<6Z2i<+p&>|a`!TZGf_Xf%PZS{GdsO)+~ z8Dr!d#NST`$=|v4`AbmC!LdgyG^U_)h9&MGJY}l4Sn5%mzR?%N|DOlR|DWpfKV1f$ z+L+!CE2+>2P<}0y>l*J7ufwMeZr-@EKCj~g2W};#N9u!1;DeCZ`%5d~6#OgVNWc6r$#f}Y(GqOw7o)TXh2g%p( z>ho2}S~GC{eMeq+fo{EpG#9Y0yh0rQ%OE*Cz7~i6j_;)H>0Sz_9b{sGmAw#)k*^So zX~AOD-fuR$7`kUz8`SoGD^HYag1z5MZH12B`}G+Vd%qJLag_yP;#C%q6c)-+FI3BE zzqk93T2Rp5?zq4b$g2vksp^l3v+Hg3 z^Q@}T;C0WL{dCCNGYDGFU9N_DWYomX-`G@^jlLlMCrlsQbm%L!8jGLCb9)+2)(#we-_a}X9eDdgNAGw< z<#xROoOp8v$=mGuyiKcK!Sh$vBd%n{zeb!c9wetftIz4HgKm{#UA_GDjRUuosqch1 zr~@~@6+C9RqDsH`p;fMWY~YqB2Cfh3dr*`}-m?cOZ(n_R19u6+lsyK)6@xCssU(9{ zji~-a;L3|q8%P$)P5ZQ zWG#);ICzG?MMiqxzIp4ab9Zjoyl$J*+gI$y?Oe!8Ajb3>N1`lg5E$>bRhd8iJy2i9 z8C8dKMZ2aWG`ORo+EJ|+iQ8uf$?d%Q+^&=dd}JPPxP^|Xjxe=BN$fuNh&`uN!AUu9 zfa|F4erLsc$OYde9Dh}+Mi3Ibw-wH- zWxF6jKwsq@Ra`3yB;Pj%Dc{uk@{JTr-7f5ysa#k6PQ1K4NM6$QEv=n`ZIo!+Rplr2 zjClIZAbEPECQmoC4;ixX%Kppy7kG22UffUJ z*BJGwB114&J9b8m*~EhK(EWLLcYpa6y?y=VVZD8rO{CxTmQW?j=%3TXKPB%B_}7c> ztB2I8C6ZiuWWnvsmUH8hqM{6oeOoFFCKpVW$46!=!)OE($2-`ZP z&^h+Fmk82XY_`1_@CopHY>3~U`uvXBkS@TX;d#z>?9D<`+VDf-Z;>^BLqq%xtIyxq z4LLZ(v<>3&U()AnO6^t5sjNLE4wqYVcua`H-`3}F;x_+Y5JYiYLve0HYK(k?I9=Z` zPA{#`X}vrQ7qXdAo5%muXQ2&GE~GM1$=lUOq#k#W9Gy^~qpDtBIh0uSJMmH&Brg-| z^AhUe6@Eg`h^H$D$qCS6Gx2`a#JtYo5WzAu@)8AL0!^kdO;WF|K z;`AF00?+r25b8=md?W8zK^91So#^3hGXe3SXz#y5pD2i3VtyKOLyRJbFnlYe>)XR z)9|;~VQD{>Heu-;Ed48%3Rv>6G!(zskEJK^x2v)AN-XtbX%aqtHuE)|DSo%*at-?|YORvY${aD(GrB7k02TQNR(wngKdMsUw zr5|JI9awrNmL9}X21_5p(#u%-FDy+!d-)=k#$oBZSQ>?;qgYyi@BI-=S7GV6aqwp= zmL_89BUm~COY5+-1WPWKUW296v2;F`UV-%9h^6o2Z+o!x5|&C>dIOfO!cs4mZpG58 zuyik$j>B&s!_xoaZ_i=r3@m*HOMk}FH?j0XEDd1kBrN?FOF1l!9}j<4VCi@)y&FqO zEd2pXug1~`u(Tda|AM6pu=EWqxmcQnr2>|2!P1pj`U{qB#?l@v-HoNWSb86p-ioDX zu=FgJK82;5u=I5-?Z(neSh^iczsAxRvGfltU4*4}$mQw%H2FwCh^1?>gqiHU zrC7p@?p^{*nC0C236?Mqxc74`VK!~A6HAzj+7k(-G4HeYar_N)C40|d3G)nl@52&i z=k@Yf!pyebA}nE!Snp&kVNO=>S6IS)sNO?Z!mOj-S}b9%PVZ}2!km`g)mXxekKX@b z2{R>nKgAMe3-s>666V|UN?5`yb)JVMOcv*fjBl7^&HE<)b~TnnHZn~1Ow zLCn22EMdTJ?~Pc(u+`pqSi)e?-XF1qA(y@NSi+FT-bO58s9*0HEMdS~Zw!_&aIAMB zmN4k5cLkO(bg3uek77tq?_2mA2D|hwz!HXr^nQaS46Nua!4ifb^j2dD1N(VXv4lbK zyw_q01I&4!#u5fo^ZpA<7>3My0!tXw%libDFhrJjCYCVRlsAAS4BO~FwTT`9F{P8gZBe0VY~wG zFqSY@fcGMn@Xo#WA6UZM>fV)D!W-M(Yp{ejp1t{4!u!GALM-9kS?^XX;eAr?+gQST zo8HA(!ds4>xT=Wv2EA+WH@s`-J&z^4vF5d73Gaq^cVY?eM|t9s6W%%UZouF0_Khd5 z(BKUfuOENI+aBKKSi)Nq-dHT*Ed=jJSi-aR-YhKP$#w5GEa4e(?_4b5X>0FKSi-Z+ z-byUt$ziV>OL#WdTZSb(_v(qmt9Y!`JBq*IK~C>?Si%F7-tkz%V}IU1u!QI1ybodt zPn&s*v4m%}yf#yjSQ6fGd1x`$S>@bL2RE`jx}%iIxW%0rSkddht-osB7M5N86gvkEwnm}9JRWbYLxRkmcqd3KaK?P>Q5~>?>q3h4PB-o~ zF>{`RdQWB7tf_a2Es2rvA<2J=AklCf#s`M%L6?jZS zl#rxb#iIt+Wo$Myu=d%KXgXNSR_FF*@yMsM0Ir=DG0?qCN>C{F!LB>}m@U8n1Gk6a zqGxEo#o~Jc_kOlYOu=26=<;Ps=JH7)QWB1HV4N$6D+dzcZ$cv6>_mw)$nRk@r$K&~ zEs3T>zAy+2i}7)S6KSLg3}__0gea&P-x0*0WUIgw;*%4d6o*{2-T+);8YAK0P#6pD z$JlIX;2yLk(R6SZRD)XuWe}u&E`zXEB3Kv3+ONQfmzYv;7FX%0@$NlDXjA=Ci|+~R_F2vHT~AFwPHNGF z6=0L;Y%&$@s?)hb60#-eef20ddm8A&ZAmm8^ij~9J2T?Un~G-j1A=K8TL{x8IU1W} zz=f|oIe%Nsu2<9lB3lw+{ac(B9SRMe6iBm33lfrxVYa;oa#8A_J+ruJZ0zi5f$cPQ zo;Vo_$+>eK9)&kufYWZu}a{vVT-mn+$pTLO0b7r zmu6*Mf`r8?fwg`|M9)g)&!ore*s>Ywu{<&nKL@>aB)?jVzwH;=bdH2#% z8q!CE&(DRPk!Ih^meEwRV{isp#f#Q0zK314rrrl_NyrZAep?cRO#JHt1aM+6TPqJbs6vX&)8 zZf*FDFZ$fO&z{&7816tg|86)xuN=Fo{8}wfGi+pB0+%vTCrO_Vt>-z#R(NS33vEfr zo@X9G+UQN0I((B6KG^iE1zOBI1l9Fy(M+M5BA^ny)duJqHVYa+Z?h%Q8i1&M;UE;* zssup#I|R_RRKO@5AGQiifjl_@c@}-aXwo938uzt2`k)dBvO>UU#IgWojpFiJDus|FDHo z`Z@n6NLZ{E*)DF3+Aek_bNL>1!L3~Vfb^PZnqEgIXm3<-p*1jvU9Z-_X4{gGraeQD zX!vTv1iVcOhq^M3yWj0B71Oz_+D%5iKzOWU3uS8O6BBp@47o~5t~6X$v+LJzSz$|} z>A0M*35>Cl91Y_T!RMK(q4#6-55XAD6PJSP>NH4wYm z>}Vjmwj`Pk;zSihj2#q$E%FTl>SnfBra(;!0Y!Xi(3IH>XwY0|OCk)7g;yXQ3mVic zNJuW46b?J;ksQZn0f$ZZTTeqh6F)@L8%y2(UG+=SSL|=A$o?X9Y9?u98 zvED|*2fNXb={J*$ihQ9wA^rZ4EuX1=!HuipLu+^6V^^#x_S?23q{V;JmV|6~1aC9j zovqh7W_7BVf-Gs^V&Kw?+T_9y$sEQV-z=|wY@!Refm1#KH=0GXv+LF@Vw5cjX%Th$ zKwB&pticrwT((^91pSWFmn-ERh^wE=cfm}a_Ci#Y%s(UiPG>8?v^g(GxPb)8K!79) zkPHL>9|%tx=zZuiHd7j~i)~3518cD-MziMjt!{57)d#5VhJ&;!e4%HA(S>YTOfedh zfRoR_3jic|(VEx}cGVgZTLp>Mjb?Kd^}=a57}+2LD{c#Sq>7#0P65)rsaiMtguv)y zYs3_clTi(iBxGypwIv}3MzWM<4vf}qb{cLeqazAi ztuR1}EI^PZI=m_n{~8(3qiiLa8qf3uEp-bHVbHANP&1f^*<5G_^MD``+o&74GfbW4 zl zZS|vsUZeM1N5(`Utoogh_yt=8QzS+uazR2*-L3d3yIM{8M{G%im2c6@$&Qj*p9KlY zMU%YNX&5RTuNR1$HezwEHoT7!#vfzVmW7Rt2wPQ)bupDUOq5LX&5=dkP7 za5>wSMALDpKFhBh9jbmnIP7K%VTwcTL;juYdNuv;vL(@c{cm#jLsFok+Z$>RqpBW| z{;y{XVXpryZ~-#_b5|WFQ?I}m(0xnrxhoK$f z4mifHwA#-jFiRo?ap=Nh7^@a7a@N9aXvlA(9uxG=uUxD6I2)*F8$&tkU90#nc3qlX zy&y=$Dzx$Qg6S($g>E}?E@WbZNP{CHk~Bf9P@P5NuL#It zCp5-))LKk=9$bC%`A=5!pRDkY2a`JW4*OU(OB$#{Y)Ld7)RQP(LT3rqt9oQZ++E6w z1roobQz13{h5$X8ExKvToST5ll(3ygyvqg}@E!x_d^STGoO5kSG#$=U#K|L!6OH%& zf^M}FVk1z(Nl37cxiDagr!`dGrv&aMwjxZyT|}psND_%HN|MCXnHUBFBoQ~s^(K2h zn=cLHb8Sg99pmb$M4dTCo-KqaKDFlVzRw#nJR5 z0`3O3T1Av@T&655S+e1iCY==wxq zx+0s+!MT3zgbd?5LiP!^3QUo$#0`u?HYH`yz9Xn@DD!2D9q+BC$#P}VZ|pOeA;fDMbO!7ZgR z;8X|&QxS*;0qX5BlpzR&y-X^(8wJwL?z?Q}G_(7bEeT`5t;hd`0`b$9I~yPdZ4BD9 zZ>B=c_>M3>HqjW*U-QJu^9keAAT)pwAqwB@#Dlg5~=S=?-$C@mRESmkL6KMq_A0fWSSMtrSymPfK(KQbCyCWG3A~ z-ZRGAs@yri+m9lVk^NE+>;61Gm^oAb~gwi?q1NXL=Zw87ESf0b+_!D zY_>Fb-(gE446jA=mpurr`B;#UT&%S9FZ~t0$;YDbZ`L=W8q*ZwyoCehcj6P zn7pcI0KHOWE${1WxS|aarLDJ?_do2qH0%13AYrkVXX|cE*_bP)DI|m66Qp{2!&9`l zm#D4(jxDyKipx_IJr(Z!CQjV>dXsB7zh?8Gss0zXBxIBNDWMm)hGRY7ntDM#P3Js> z`(Cknb#@i|7Qr-aZe!+BT1zNTN$ey3U^?6hgRb8u_3n2vn*|M}34%mR8i*h2a!keT z-j^JQS6iBOcI@Fyg5$@ znln0EIG$||WqpWxfh?m4}84bh}?5Z^&-fv4H3n6s>jDCf%8Fo^$9L&l7`EL=Gq=tWaESm!jo*{xnOZ-d!!u%FD4+BFFcmG#WrmeQxkAaC*Tf_L{zx*^(IHJxojRZ)t_KXLbi-KgkGaZuNl?q zhgJD?TXs0B-M#6~a6Xe-FA`SgvxPLpYNmn}tg`RvEhW2rE;YQ)W%HrowZ@i27%z(v zN)B?=U@b^UE}AsRO*?P>cG05K8C+Sd^r-4uRXP4OvY0oq)of}p(-R(~9l%yCIFvK@ z2=8=1n+wfeO131zNLhd_?S&Q)EJ#Q$nzhVxVlXdE!EWt-7uGlzEm|VhIpvtA9Gx)v zfQ;yUY~7n0(Fv7#Bktb<*D!bNEOn)%HR*2DBW!LoV|qxCXyG_LmYkzhCv^ISTt3u@ zwWp-^&$9(JRr@&KC6fGTUHoU*m1|o5Z(9iW`!xoz>)exQ`7NI_0`3HI>ca zv51omj##eqPo%2T3+A_k<*(SfFvaqeL|V!s)=)(Qs$4%#iuE%80IJ@ae$Hl0!}%u! zQrxOc!w)&c`Ljyz7WWdtF@9dNW*b8j>8{gtHIHFesHu6hEeYA2M%a>&BOrl2s1cAF zwFL>u1$E#SB&06tjKj8z6O5ZF8`)@>_6fCbrkuyFSF^=+wj{#(w}4Pu0qu8MkdRz_ z-ge&(xq!$bn~!bnJ~sIgxbz>~mcT85==dU6Rray3X2TV2X((;IeeA2)b!pahg&@&F z_iU8h$5zMs>IXD(Jj52yP?d0z&{kY6AtaWnb0i95lp~QQsP=1^U4aYD*-)W*BiOkfcy!Y9}URE zf`mnvW{uByzyL2!zqz+0|>x z9wA6rDBHIGI;GMUVDW|2j;GAFx_i=aAux{%c$jJka&)@kxj*kyLTCwFMW*c|Dcc7u z$oOEvG3&gP1ok~El4vdE6gFoXcnfVw$S!Xl;os;{YI!xD+e#gzAIe1yw;SQYC&n2P zhhTjpI5!Q;32@Of6c}|dgvbK6v6W<)yYHnhxbSzrk+amxWf`oemwT(jOB@cd-RB1!;URROTui zX^rbncI_G>x7(5kBVsWLm-BcUuPsPOE{+p|#4a^jdr>ngBRe+o)vMO6*yNA!A$O|Q zi)1XHW9!<~SZ2ym8@Nn%b?!-J{n0zZ!TL0t56x^oN!pHE@ooGS#7P%)r;5(L6b!Zw zLXd(#=crTl=vPSfKVyq*s`^QZeZW}~ID@5kRC@~k=rf3;Yz8!)AF?GO8_7!qTciD= zN!y`mtaG8~6#3VwD-D4Y`3iwEZb7r=8zx$ev{DAX=ihwp)<;sMAOlkhN@qk z#`|k$1>7F@O)P_if0*@qT5qwZ?mdPd{5kQ+#Gr)?~34feEVM5dt$rT|u~&&4vcn zO|~SO4i+rv?G@_}ke3Aq z5GHygdBlQ3r3qqY<%o5JZ?T!v;Qod!iKfFnbA7hZ3)wCaT;C&xlX&ZUAU9!XzF6~3 zf^o>gW;w>Q;LK3KCtQUWo;#eqgAgysr>}3hk@YuQeUF7ra+2jQwj`Pk8RNjl+@=9i z`@qHt?0U5(Gsl)hSpOEzqVzXuW8Z>==gZ zRbevxhOoPjExIXo^B|NA1Vc{-yeBKX<3>tlCZdm~ce7d206kz!!WdBN1@nnGaTh%o zgqP zFh*wJ%t1mP$iXCVpsck{!M(KP!Zks)F|ofUpa$4_G6iaBBFM{Az*%D;5A08ZJhTZ- zS$He*Xg%hS+01Dm{=k-mY+&EDB_Z7@C~-5@U0ot1U5sOL5;N~Aq}cY zP`1M?A8vnQ03Ni$ve2P37L~{5u zARz~=_o{MeJ;XQIjA_Vy)s}>8n_njIgVU!WskJlZ7kUFzUh)qpq9-DJ`6= z3r#7=i>db8#$OS(e`CvUitPdn3FfC62L55pg@Z_4xg_upHyU6$zrw$U>tEPRX}JE8 zK#4m7*6?ZWr1jZkZzcs{ZUD5sX?GtW7ixLYuMiA#7Byy0q4js=$*`9~oI##r$Q9%6 z156?|QD(9^&~!e{mV|6elWj@J(Uy=O)M#6$McXcgOkL3>Lf;35?-WYCy}5kI@rr$m zEM*g0L#7QDk`xI3Dh(5k*AstQ13jP3gk~(~+LDmQQU@mMj(74p*bm?1bhv#v7)=AT z)NVHB9l|KjmdzBSDTzJETatLIAf>P3=GZJ~2xSC`7CJQ}RzRlb&Qu}PAmq=a-P_or znQC`r0>Ks>XeNIPyH-u1H`GK6>HZ_{eRhYYC8YAEs3zs zEyi)_3Q!MbK|*ptV~hm}$puXgEl5Z%K4|L@BNs6Jf2_6B|K$rh++u2>v$`*v>PdGx zuP>$Gd>JjfW8$9_TEDPF%JaVrRk){;EZC#iGlRZxAM(Y_Uu+F*(Pvi(R{h%f+@NnvTn~ zQx}VLey{~7b}xz$b5LwosNlrEMhIQQ7SI%-DYX9&Q+3*l*iU;A`q=z7HVYa|SK5+j zI!v=p^I^g*rQW;?4hl4-uBgLMwO=K;-p3Zy6s{Qr7h)yZj5{Iq2%8NJvWIL*G#|3l z7dzX<=AS>-Us^TRtF3ER%~uJsFR=wRhm3akh|Q$Jrmt^#qWJS{HZ;gSV@smxkTFga z|CTL;DIB#=6#t4{ucrT>+mZ&lDssar&pT%o0;%GmBT-BYbh?;#ucs|7z+!W7~Dv_|DX$sEiU_Ss{v$K7Y&5?%Y z2W?3-A5Gjsg23rr!QQF?nns@xn%`jyZjL5yJt618uB#cE|I6k`L-XslB$|%q1d*K* zmy2U^L`1znNd1E?lqpgZDb*vKRH~H);{Vw7Yq|2CT zVsVo^`|`9zr%0z<8PkF$r4MZmn+Xl3*|sE_4%2AN(G#5EQ0_P>PY8~6Y%xq5Oq>61u)>x^(;+w=*T(QLNwv4{KoBmt;10+5;DF{{87kd(szb-d>_`x( zm#`IM3hEgNTu#HIDAn@;3@?U~B}uZ1b6Js0L%*BNp@zO|OQPxMPgxlx1{JyQis=r> zMO6$%Ta9~(5WJZ!oGF4+WvWn-`>w*BhEbW#gND&{wj`R4(edYJA%>-sE)+^|t#_V- zXW(!T6{3a1N!4&zjJj_VY9D5cYl_;O#3jgYlK4$ZZt+}gRB((BuvyW-d(4(Z)4?0P zwp1+TT|7u|iRyePPY9H6vc)h3r425HA|J_p$cNT`zQ(RtgWxN+B$^IEJ6w_P6Z@*U zQfIdcLg*R6@K?4drZ9}bEAM@9T@r5QA}<;ce_~gy0r7iV5@8_1djbYq0diY`mYFR` zNG=k#vkQMW;q$HCO;`(eh$>-7;Mg36dJ|dDc4XbXZq`|kH?Rwi%s_JMo=sDwi%YO>(Z=nu^`dHZHBh3a6Lbr7q^N+{;B$i z+W0oMh|z6aQzslR%2#uuHSsO%nl2 zKC1qP_8~(SUfF+n{{n9gSbBNHu3gwBcJ1o-j;DRc6Y=Mv_@hFw`$?kn@3xw_9%}Xu zz@JUtUE=QoY-v7QqS9kRJ5=!B)x2}MHgnSvyHV*v(nEnY(<$0YE5nFgYD=Q|rZbE> zMg`|`@FS`I@dlaAM{KnaZ8knz!fb}omGh7k{*N`Kn7M0L)ey28uBrzStHSMJYRr2| zr9l(;j?AhFk+-=Qo|Utl9E%YSS)2+`u zKer{(#O{GSuIXD+1rY}Ee76r~_g&74{GJlttq*y@HQpneJfCePrhd(gL@)7(M>LSf zBt)R{dDNVobJ=WY{_z@H62@Rz+}!jXH?G59WhpRF>Y zyE&gNze~qut&pEQOssVU&N98;jJ{%GqC2+_uIszxEyt{EWo)IFO+QUQ#9h>HXy}aa z0NzFuqEtu54UYgLa8iU16gvvK{D*Djjz;|fHaXM2VPpdRJt2qI72L>q7OgpuV8K|U99HJgS23lfrxW-YkQ-k7=sx9?NV z_FSK{Dg%y|7=WXeA?mzKe#e=@>IUz3ytc8{OKfo1>q~Z`3WYa8 zixAOEai`fzC;f`0wj{zv#Zii8+O$w_K|*q|$aZezZ`2$!6qa7&+^g7e*TMy-3Dayp z)i&(WKs((R6ecuJ6HU zS^^w6cZIoP#6saVH{++gfk>3@-gG#|IO99Q@nyCOOmRFp0Wl9r2FPPhGKj^vLLdX) z$RQataDT*RO9S`&wj`Pk?t~!W9$vqRN>~*20>L%nRIa0M3fII+@;$s(6PKRoIClLS zF0Zg9VT_CQct2)C4t(NDkbku|3_m15PGL)93dmRh1l-F?h<<(2w2)o52F5%=qLqWc zIK+}ILI{gOXxX_LjFSFMC*ahW7n)HcbzQ>Y3Zv8pGFV< zqqY_MAe(@WLG=Sd;8L~_rU;CNBW}P&jQ+FidNuuDVoM^de~USfToIrqWClW@2e;?a&^v*b zSLlR))v-u_OrU&{Es!ZF;}dwF4>L{5?o;-_)I2RnNG^VF+e!F6@P^j*z^842079iqsppr^ zA9(qNgNOScfo&RCW!}2MIsE)P2CjbR;hUZqc=uHU|51iWa+KXvoj-ZMt@Op0u`!G` zL{ve&zIY$IF3seMf<#ODV*h9jT%{1foY3ucckhNJH4J_Nck@#s=IHX!iJSVbQwQ)) z5+uB7pIDBQ_~pCaBBGPzGmG8q-ooNF*}W?v#nj@Rg`(RVI>tU+{J3DDGCBkYHtw&b z@de(P835WVdi(mz!+Rmh4bufv0ESn0VzL; z`q16|chr))mV9y>?KWEyvQxQ*5N_Oj+&9SSTV2RDCLA!d$wC@ZouFAwmrvb+7+6CR+;*)n4 zdfm?OnWa(kQDj#)QqW9!3t?!(t3Qk2UkEW+Khj`yr$#I`$DTlvK!M3Xfl2r=iE``q z^mkihkloo|1&P>Uv*F(H=xrcL!6|g7dPCC|I)*dX!vMFTgNACbs+&a#Ai>#nNpZ0K^nZYI7Yr4G9SC> zSSgLUZ16rA%`UdqOpWFQ=ZTN1`FSvZ!2(@Z)#m&^BHPlLhls&t_=s+w;SUO!^XX^Ph@%pXLHD!?bs zMXUMLn%4K(jA)pBN04Zp^EUm0JcI%Q3@DtOQ;}C)L@L*Kk3e|E8I4(l*4CEFGoZT@ zJSP2+cU3%U5d35C5d5Dl3E6D^Y)eAAd1MHj;ltO3FU>%fuo=+W=qa`&nhwomk>gG@=Ufkjiit{&9PKBqUANq4II zr{(z92&c=~5}M*P9fv%@A+#dmFzIusLA8&~g$7kokZ9d_*IvzcGa4CZ?`2OTf%?Xl8|E=f&9-nmND|ge2%RLQ$whoC+5@adNnKf zq%8?)1>{RuKv-o3VqMaLgyiB<+tpFz0v4f%w|MV%ZK@Naq0$MOO^^@i#rMD#+@mk zrMG#NWH5W&tP5jMjxv_v>V9lG7}Jjk(K1_jQ$**(e$5_;=?14IE8LqU5xI`dlZNTl zwj`R4>B0)8baBpsY|{|Oscx1Z#&?A52iPhwMfPNgEXj}*GMIt;7@I8(-1pj&XgatX zE8rGjLp7BNl8mRokAyS#%5RlhVFLTA=3F_vq4<~O2Gb@Z`5If5rbeC=zFc20~Rype>Z_R>)1Q79 zdEgNUH{0n_{1<;ZB_=J3i^u+&Y-+(Pn>3FtFRi%dBu^4}hE3LrJQR$j<|OPSHglTQ zohV4OaN;XnGo`y14GX7STPXRV+T2Y)BFxsa)neKYRQYpC2Q9dVV+}!e9lfVs%jQXg zYLzVs*)(5AXgAtNf8|y;3zvebC&dV5D%hnJ59@k&)>H`f9=3W+QGXQ-<0wM)R2jie z1v|XrA;>4rvs4*|ZU!EkNzDxQ*pg_v87yB%Gc*^yx9(gQ#rlBG8oKCW8bW{MT{sO6 zSCYUsYEItDZDu;B^c{MQHU0m|xD$RbzaA)JMHNteNb(H2a%o zOF|+)*_MQl{FGXO4dYk(t@mlpUeE!Td=@$@Iy)g67j96((ZH2!wr(fH3vN#u?&0N2 zotO%)%UN*h^3xYO1-OJ<2;We&sIWo7lg{F2m4xfT^j7G1c?^T;6`lT>*n{S z-F@mDP5w+nX*XLmLp7F1CSdwc9QfLh3o$OcR!yNDwj^Xb+DVu+dY+}`^{Vc*%IYIR zpv)G;6oGmvzpi7~tf6qVEs3V1uuN>-gToKkhI$-~#}D^~)Q%?TVw^%Qv)2vn>sx$J zcz%Gb5>q^v(WbvI6Xh5P$pjYwsoP8nne?g5V{Gm;%-?HEqUo5o!wHyt4sy|MbBm?$ zIXv|lVf8h(D5hAoC15WJKr&TOTLt?IC`*_)Zsed*pXis!l2H(gv3c~C78C=If-84HQ516V7MaG z;U-T_o=%;qtGC`0*{o=I9B)fPwwqakL~OgUovEFoxakryM})>Jh&|wR76O#xc8=;? z@;)V4*RvI23TrZvs+w?A0ZKvsAlfOc1xrb^R=1YTnTGNzTM}WEEjn1)M^oFkAR)P^ z(?{Fd8e_?+kF82mJE^_ow3l74W(5UX5@G#YKtSR@PEeY9To+o@7J-HuWy*?Q+&4_qTcpPPmWQxaxL{&oC zxCzH0cJ&%4FWHi4Iw+W|o)!?X#}T*mdpg`M5p|6M`YNk1^laf6`Un=GZ-Bcvns>seh1={71OZn(Fw6k z0b#ZCV|_`$E@SJ#v@M=e-4=!EVJuCQ13b-SSPrf0T+C)n!+4P((ZX?Q`bHHUIP4{E za)$@08t)M*TiL>!qB0{9(mWjC3V75o*vw`_!(f9g3E9rp6O4@>z9w$Rl$Oo~>4NKQ zi*m@yk#7({d)Z={0yHUsDoU<+yr)@+E0fZn~Eq~o>$USi;iNN#Zln-dMSep?b@)GTLEq*CfyEl5Z% z$SbuVA!qY6@vtBvxwzZblk;bj<7;go$1X@&`vzzD`^Vex&TFUh`cf)e4DKuJOBcJH zHITAO96@){TZqhKjmI`Oo{ zkUnKM>@PVO&KCClL>db$JDFSxk_?6hagz@SwzX`jO&gSx=n^a^eU|CU6R-?g{4zt*JLD>3_o zjOPxv?o5s6#6)j3+i+$M*-k2KYX;TNW=AuqTWv{5gQ^3ib+0?;jKzvSm`v?UEyMm|LjA+RHry$X~o_0D!?RL9Lz0U4@uBS$O zs_`Cy@Ljg-rXb9~h~CI!5_zoCc)rDELxbQOwj^ZZ`Km1m*&CA~{4@5(j4j}{vzz6< z*4_dh$*xzkf?>8Kq!myXY5}3N0-8%&kdRz_!**umFC9#4?MC#P1-V|_FHL0@2I~UO zp-1i?xaWp}C!Qa;=GlR3Kj3WMwCO@;;F*v3iIBv9ZY{wQ1KgE7a`2WT_m`Dn#9LQc zN?5~2HM*BVrPNzWSjnzSGs1HOiPnt!81 zf3qbaoAJNcl8~JVS<|38ld}iI1w`K4-`dXP#MOOphZrUb!QN!L(1Qz(B6Zrf&V0I8 z4O#5%sPq(fvn7qTNtC!=PjP@#p^G<&#CWQaoXiMj7x>FS0FGGCO=3k{OagYt6^7+0wxM`#&wXb5<16 zUG8${4e3G&1AHOE6}$^QYA;*wWrA@5TVJLvbxs1h-7XhmT~?S)21jRLnAQELlh~|i z(4A;YqUr5&ZUrZS+D1GORX|q*J?WrNRsl5ogkapj7TgrZlR~Xg_{ar3`-DL@g3eb* zb3L0Q4b8Q-B$|#UV~L}eErcmDwU;=0*!61q_iRao^=~nykh2o~=gR4Bqi?5ahJoK=}rp%4nt=XF*lD37wyi#9wIzTO1o zVRl`bu{|J2v~Ys55aQXvMPkTUii*Z4nJd$zbnKFaa!&Y;H9xS!_$9=~i;m#vEEn2zclOmaN5%?DcO*WlAC6 zsciTSVSOQ6bW^P7!I?)#9qY*R35LZ<5ORMFWEUXlYQvK6AamuD1N;KoWHQ^(#-9TfqQUlWf zz&y$p%M_SNvOS1CEN1EXVKxIAG!NL42t#Axhe}tL8lwdX$wi$})4C6>TEngy8-oRq zYKMqc#MN$<{WV$Ex7etdTGrBpTmi2d8G}WQY6pqd#P!bi8*Jt@tNW@T(ZbGm9xYbK zyFGbG6djJ1WBL(c_7}EVOfj2Zg;{85q@5|a!X>!(^(^bJ@gX(v-BxKY4HKE<; zzWby)m`0p3E*pMBh|YOk^JXZr6-FW&xBoPg&5{P_G+Pp3KrOm!+2d0WU_nB1QK!eZ zJzjl^G^;utzIK3t_bD0KCN>d8YoSY91n5a4Z3s|< zdk0%9rhuM`C+LM#aCoE#gFfv8p~UI=;EYMAvya$2zKzYEhWjmoL<_yE+3GCny!G3i z&RkD#Ix7BZop%YNr`Sp`#b{1wX62=eu(L0D^_3}Is3+O1Xn1_kmV|7Fj}xSgcA=)J zz=;^G#au2EYHabZ5nSJ43up@0^blNP-Gn&QkosRX7aCGuwCLth?C-+W3b@*}!A<4GrCi~yJ3F?m zbUL6XFFK`OIQkYDJMG^qn@rA%#>^g23H3IaX0z+kOn-(T(UL)9fp_9)kZGLAGSdaA z%;1(BW>8g^PV~pr*_=a+-q1c|$igf8FYjOA%|UAIyLPS3yY9wRv9o*Eu72-$`0?U? zs%d29iBd)PlSFZyt@f@59=rqaXOnlA_`3iq^?U|}jK_)N&q}Rj|F?S5Y|HH~MoUw9 zqR3K9+6AN1Sfct}4l`Z#Ec+c79m zs6j?NCz-Azh8ox+Z?)A@bc^&E6fN?YC90vqf7g?u(%!UwrSe3f8MMR)n^r{KtC&?IGZ zga{Fx>D{S3NJUGVC{^fY@qA z1K6QA0BQDOlMiBT3Hc#FN+5r-B0oe*ss24^B>EWjWm}wNgZP3iiExA9=+ST4a{fUM zsRaqi#Z+5C{Q1X|tv%j0p?baf<>ziV{M?O-eS0@nCKt!AY|P{WC9F5On8mJ3n_Ns6 zBw8}LAdmk95hFz`DEiYhKTh+C5?outWJ`)>%LeaL2k~0AGNOG}P4VRuDVmB{FNCdE zJhepWO_He!&)V?!YBoC>Hm|ZJA=}v*1aI8xl=Uj{WQk%`(@>F%d56&IV9RET)|4u= zsy0{j{&**w1r4EpCH2PTqpUjjp6?93Y3A{e1omVqCE{_jx&y!+Q7JkzwwUk z6vfohzrt1)IT~MXOG38K%WO%=(U@$Iqeb70B^S-=B~GLbTiWgyr&Dv7wF(ld7qQb9 zz$iJbOgIhs+LpZJu;gKtD595mmx+n-5*9{!AtA1vh;s@^A5kH!e zm$EC@l$^9BAsgn&wj^Z3B&ZwEFfB+(E@B8eU@8rI~f!mV|^dXG;PN z3ZR^1wWVu&mTzn|lt=HnTE+3v3XTu3rHaN8rK^YIeeAk49PhRzA#prlOTx$T>&N~- zXp)DoduHIpE2Em^Qxzz`$QCRbN))gjl%HeQr9t^=TM`n=Pui03p?p6`+Vb9&pgeT* zEdw{dLv59xtU&o^wqVgvqJZ_F`~$l#4a(ozl8{jT%9ex=!2J(y{of+$z~P8 zuT~(OySg!cHwsn{!V}naX%Nn_B_Sc4X-mR~a9c|u9J`{_mCiXwuetH)HP;-v? zA60PN%$6#;DWY`saNNMIOT%%!EeVO^T3Zr6j{k0jqxDjG+mUPDJ8=CY11~;4aBaxV z`DF#g%h)nSqlmKALvbIwE)B(^AQ9W2H9oTb%z@|cJ9^E{FI{ovz%?&`|3B~_4nKV5;r>TR`$wL- z_sG-lRWXQqfsptSTPPM1%XB2Z&#qBJ;ybn^nvTTeLw7wn@Zf=gw}1HMXK#w>oMPS~ zJdRt_7>`UF1InUhoT}sT3U-Ye9{*@M9@Ycz)`6R!IC{l(NAG<5ktd$})*;o zqxO{aejZy+Q@tCkj;~`^t|@u7EeY8>uCOJ6-Zg2FpdQq^H2EqPBqSH)qgs%Vy13M~ zbMt2!J6k)`m~iNxw+%e^?BR#*IsDwshhMn$@N@4{IxO#RmHEcaY?Px79VM(c-zc-| z((L*=K_a&EX#9L*!jYSvg7vQ>k3V+!xvP#m{^G!c*C?tiN4-GS|2SJ*L)FI3F5btk zP}A=twj^X*d59ot^z35fz~cvAe&)KvAAC;Lf7S1#_WxmvV5;`GdBvC5HEMeQye$c1 zy<2-vBmD%UAAD;_@$z?4{2$mduoNFLjrc9QMosa*5+qvKp^VCA7q5j|*Wi7r`mBCH z3Z1&PG4lYeZ!V8cWV6ZLJ{P`Dc9);S^5D%L2U&XFgQ~nvYB$}@L;h_Aj?uH$z>MOsJ;&-yyH&y%yRD9me zl=O+szp^XU)c!_W5=~coJE(n|dua*N{iHIg@*H2c4TU9|?p z<+dc64g~h`c)P17oE5hE0YUH{wh*Qeh|ZrbHtp9N!h`I3HT~ajOCqd)i#eN|_R+|0 zK|*rTBv-c0_ndBiD{Nq>txIJ9TzHt;oejhYR7#g;_#wLkFOM_zvZ zX<7{oXO%)-6a#F0Quq@co6Cx3qTQ zWhR|Sgkx+kKYf#bI`R7Zj=b=~z&jsNOwAjOaVbPBiqqFM#>+=h>#e{nW7nmb)?z`T zg%hT+144rp%_@2BE9VBiDz*2*c&rojWsbRtI>v|9d39 zKeLrB8sDRAa;EqWO@MGZyocBoYVf{fOQMzVjzxI)xW#nQ?a?6~UG*#y=IQ5h{Wf1s z(J)V8lQV^RM8X$Rhk7ErQVr^Hwj{z(Tg(&WRD%Wr3lfrxCizY$zx={MJeNgRm4eB@ z%TGT`TZ#kMTn$@_^i(mkGUr1Y!Z)*_Fg2mLb3+^0HEQ;=-j+nuk(+b$iUUUuUgNAz z6;pV#6)spFIe6ER`^)4Ft7z4GnGhnuV9 z!2a9%qXN))3n7#$-rQY8aa@!1&l37)8U1sb_@_LqH z^5hQ45tq%n`6V5xLb|iCBn?k<{a5#ID$fl+f{Xkvc5;yYduOo(QGIYf3*StH--MtL z*#hJO?kUuH5kfcR@C@Xo^b^AG%U z%zF59EdDtT{|tveZg~XkRdu<&#qR#|{sI3h5ARF?-?=R4eCVD`uA~3D^04l7R~O7A zt}VCwmH9thS00fq^>ny-x2ykrFl%tNfeDNk315xMr}jxZ@GbNx@`2%c%iAC?lbbIr zxy&teyV*UL<+6L0tj=|oFgIIa31)g<5`^ID>`rG>$-o>6OTyYqXS>|}i}M9AKa2r< z{#R%qI0SW-I#LWX_L-C&A~mByb%>uD3>R=)dsAyW#I}KZpFMp46^HMA=*SbHOHA`C zo#9fj9G+&QJ42MMUT2tO*QIraCkqm>onbQ$6&}0={K!MMzw_`TH^9Q`;rp&s#uYeJ zsK4O*_-t_vRU5aky@6e!rr-6pB&6H0mLQ5-*tT9gojmaHTVH6+&<0sH3HEhHejks#W*G8oOe+)6;vQ!N* zuO;ia!4@ky#1K}48e*vNSdfrhP#0-ILN?*~gV6;HbboE_KsVv#=kLUQu1D@4xaWoe z{iud_MrFAB0$Z}^J^&@GH{5-eU63x(f31humyB2NKfegI(-orONp?VbRBU1nAY)MS5KF*O?#;#FQ|6)O+gp&tGFgrTf+SyUtz`^$& zz2e@1w?B0Bj?l^0Rh4(Xp#h#=8IXQpl7!M7d0-Z7(0Zd*HD4g@?KwY)_%c8DcZD9 z$a>D&PuX>8Ms-AxXrZ$e<3lfrx z0o$J1AM)0;cE}q>p&b>g@^)6nxSQCpMB5TdRd0;DfnAqoMb`=vEga*<4qSWpzmVWf+uV$^=#=o^1}NM-S}>`1%w|G1k*P*#-Y}F_VTa< z9AWP5(^rM2u&dNCm?%iJu!EmUh7Ed!3ur>cPAZ>I^{Fb3eT#IxoGrMixwnz7lf;v+ zE*Y2ZmF$W&jh}8yLR$SY0g{?sZs2p_^K1Wnvq1kJy(#WRH_Zk769*fnaHTxd%o zjERM(E1hL(ixwm#7vvFGkdR!E%V$ACa`ATCj@@_JA8)P8J__>8`WJN+Q}=q>;VOuT zkn;fBK%%W0C9CJQ-^Z>?v*)`7i5B+iqqgTLiv5Dn8K~+9q{@%6#WPf8d1RuPqlohQ zP5qg<8iEyK*;_U8APc zV{A!COaHqqvT`6IWCt}6QG2r>A-SNg)PjW6#eu=-0uI)^y|u&PS#%Z2S?NNA=)CMx zD!~Wn;EnR&&`pmVddFkx==rAhVD#L;wx{S`1{G0n^jy!bOEdqqf2)z1B?? zOL@28q_fWU?sUP~9^5rn`W)V;)F)lSR*@kb25Y>8hEZP3E5sd2>(Wp98*?wb*1s%aw_Aj&*Hssaqn7bH08LL2)Uct!kHpBHIb@t z2S7>gd3Zw__k6{Pbwc;ji~%eD14aBz9|YL5(U40P3<3GSE{M~ zFtY5PzbxdvOpzLLnCf`}?h}wxXki5o;X$ zqOBi6s5h7&wPk&5B>~hS(q!EHpz$~BN3BeCUa}{jD`mSBILg%zs3V!SxiOOiO_h*c zqeF6`^(B+p^=f^|1X~ia6^|7p8h#XG+>SzOkBe^8mcH%SI#d+&$Arb%Y=I2Tx;#En zLXOb=@xz7aj?Y=_+BHPZv?XDTi1qTs%+=}LyCDP%=6(=8AAqyMk9nh_Q}ay%Y8P8h zQ=n!gx>P<9vP##gwW5pJjA)o$BuK>0G#c18{E=wkW)V3DJkYH!WSh+Hagxp(+)fxp zoK>kzXDL%EIHdyquHwS@j!?RiBnu5-Wr$cCC{&AB8$3{I4hFI7Y?U27h!J~D7{tm; z6BtwpoqS01B2=8*D-@jU^c9>G3a(*TZ?TnCj(TshB_TV5{k9~et4HR|(X!t{Bo}oC z3F|It;;LLvZ>cD{BWMkfd$l(-P(;2##(j{j8q+RlQlhh(FU*Vzd}&?J^K1sRuICv+ zq7_{ad8$*^?1vy=1@wD&=W{(Gp55vd>y*Y`j(dsJ{zJCZrfQ#>a0Bj=$Q`UxxXG^6 z9$oX_WAmVC{@b=BWUKh5EeY8+3IArcP1_ar@oP(Y(0|_X`_IC1)kq?qlYNZa(kyp+ zJlx|IJOzDvLAQ){cI}#FjIt#mEra??3s|LP(2U7~gyiBS+j*NmL4ToD6LjjECd0lN zgwY4DC*`clqzZ-f?li=(tzKyL9<9vH*RxTI?uJmvdK2Ka?7B3gS|v!tcJz&(0FS$% zJ5_X29l27`!KjhvD2goWkE!)`vqd#jYk6E^A8?cu96_&MOzDl+Wmm50xx?=Y;ueHa`{VC0L?!mEWg55fGL*q5*UCt>n2ml&T96PS;0R1L+op? zev!?R2J7c+Ni-eS`KMLEDq=YW0h2`Y^y4Fke1Wp@R|M+s+2WgmdXfZHiS{I#tYlup z^fzpdG)#YKOQPwRPC9)to=t!?Mwmr7fn8TSbLHq)2(9U_Z_F%0bMML%Xmk^k%YZEn znknq+HE1TayB~}l&`cU5r)!YIwxm@2OT1hNGvHDW-d2(;ILpsBTe>_Xwg}*&>=k zG(&+X;1RKkSkt+Q&4vcn4Ynkj4%WmAV3Eyrx^m8XXHO0W%KgRAR6X(y0_Z>4VwnOo z5oYVaSF$UYOego`z%kt)kpS>R?D{oip0FhmM#iFJlzl5L&sdOCNSf1uoNw9tndc51{#HTaQq`D3X z5j_F@0lP*`k>9l?Ar1IjghiwGREC`vrE&j9()h4#&GJfzCemFIfqjl;SEwm`h%Jfc zEBsYa3ip2`g`do3-qgfV;So`M=Cdo*6h7CML|EY#vv4_)rw+@4gyf=0GmpykC1qi~ z@+$#<5nG9-z}L9cbOF0k4gBr4B*JR9Ku&^BGkyyal8XV`bq9YHXJ%_xagwWDx7QK5 ziSgjnzI3rWxNx!DS>c?y)Y+KMmcYSZnMoHfQ~Y`Fla+;?+t}zuTOA5tZ(-*ac3qmW z-6%-JIwf91vla@Osu1fPO-onYs&S18pzB(sFkiuuE z@5~RqLk9+S`a77Rl*Pw~UiMFmR8x#f2>diC)_WHJJdb}~#6SN9fBxSk|J~Y%ySAPs@J)GFkC=vg3q?L*BPrGwo#`(-d8LA%2Bph(ftaF zSFc|=#I8&0S6&h%V*8cGpV6G)pJj?YArbWg+3kq!T)Q*Bk&e)Z$8(n zVjzDe^>1MdV5m$K{EaLL+|2;*Ym6-dW|#v=<7l8YbOj*9+tW_)WM zi{TW$F62=BsNzsO#>OSuv{0;i4#j)fb!lew9zmjo4#i~B9|X975I1xjqdkl9K0qsq#eBL0Cg!TC zmm{7NFu!7pWC{$Nhb3TAk|zz6pR=piK>3L+iI#z~x!28$1``8H)pG)6(vHSB;aYcu zhm;AFoa9LZWjwoj4U{pqB#c3^-d7vHGN0~(J5pjzOGGbdmu7?-hG&;Z(J zOCk)Ag;Op4a%!FyBqSH)URaQjT#$2VK|*rzpzVSV~*Q6Ev?@guf~hUzT0Cwi+n z@iiltSiaA$SyS$JY)Qyw^1p;nT%T_3;Y<-1kmoswMn2c+77F5As@ki^y+qI)_lCxJ zpqizZC)2HC#D{o`xwHQYHU}C+{~-Og?(+8x|I{PJS1r0-;>Me^JDqV=<=1+V0GP)X z-?VMa49+`NxD*H^1(#Y&NwE3QU~p_n$d)o&kZAa!?Fp5e`Y>zmiMXB^^#b8@9$P3= zd?w0k`N&mF^H|5OU&Cd!Er~EL7QTXXH>iU>TIkiaZ*wm_75*P}r6Tl<^m~vkq`7_zzzh68 z?o!3`?5Z{WK4VKlTKY!_qBzISwnG}eCff`Ab1_5**TP#z6CduF&ReWjC+|6b{gXVxOi7+%4Ly{cTsGqbT zA-QPQs5ago)z<7yWl9mvIN~{3$CuffHMNcj!6@cRo;2I|0=s(6Ha;szv~ctqyDsm# zU44#lG{`eK~42MF0n`OldSNgY55oI$~7(j)Ru&_{UZcaqerrFzRkN1 z#A_&G_!;Hml>V3inS5ch9Q^SK-{RdQL~RfpX^2c<*RCNl)|NyV5sMB@_KDQ`EJ#Q$ zn$;(c#H;TS*WRmsCsSC%)}(3M93`&2$6R+`$*xwjfpY|j7WRE@sMEk3Q5%~2h%~#K zEuyJr+bNiU?-}Zc2s+s{Ys%eaOG29V#e`3zySy=oLflXven?1M&lbiMiLnBST7&#G z?7B59-eyZ8jDIY;A&$3l%Y6+tu9ZH1@ zA40jN_!PTd%?h5hB@x!Y1%%QH=op3t3CYDXwucRn3%JL3UuzH4oB;ieNVpJWwH0}8 z*X44!g0L!=Np&bj=l!j6!sfSZ#G;K21+I6(=2z^xGz0s&Ako6{^msq(9i;Wji)=d( z2RT-+<+^WE3!m`D#<;ec(#uZ5&xr?FvIM`Fb8U~X1Bg?OcAz!;v212ERN8Dw$Obo3 zkZAaUgT*^U_O+l{_&dv(Fv$mTbw0gUWH;1XNtydGfqN!f8HO#YyaX~I!gRKh@Y&yo z#so_~#9b&2LLP(lX>8s!te4u7Xgb#IYqF`13@FH1wPW=PrNb+So)Jq3( za}xeeBl@YttGMJJ@T!^5TsAA3`J7-&LYhyLfSa;nHy{Ujth$!NWiLpczBi4NNENZT zmk6r!*}|DN?2uI5B*sQ0mJ)|7jn#bE|UQw+XCIvE?-d%Sr61@S99YeuGe45r@@3!DdFo@1vyrILEc| zq0h#M^t5T1=sM8TgfiZQACk_Gu*Edh`4~z~n}*yN$vvs8J~ta+SFLII$F?M73;6+o z6xTv*-9$Wl$AP3aMZ8hM>2u4*(x+`k;7rg61DrV$yxeY>^e2%&$K1cbe#{y zH7V6qpr1(JyV#7I>iamcI;D4f7qe^Bw0)5+31e+rFG`JpgiRT@$ITWaj#h>r5(IB! zOJfSbSWM7V&5dUISF-EYz<7%w(LyJ9@&zJzVC{%x(eIGLA7Tq_s_-cZ3Lyv^U$rBW zy_?N~ruTboNytXJsiVkMFVcMEs3TBHv;yR z#3dpXBl$DIaRyre({?kma#=?2yG~`-s%d_SEs3z^Ev6W9mO^fW1qsPTlV&NEJX^}P zSLIhi-(@S&6#W|6w>sFBYT)m*CDC-X!=eCYErv*R>mX#HemO&XOh8=67RVHc@qWHy zh(8ybt@vto?HVFi*^&q&V$qhWnxj|t+8CwIm9?#AmfIpkOyTo5{fQOjkAQ{~t5RQ6#C9}AF^ z^v{zHTd_>+<38eo?mnjkCma-5%kpPp>=%*XmfLpi3eeoOtDgb$A8d6M4KuOV1enX% z@AV}?L9`c(X6tuaa>?wcw!%o@kJyrsJ(RZEF@ zPA21A+!zmCYkCm8d5_Oivci)F%4~M^+F&%pmPFG*nI(d6Ks>`eaO|Yl2`#WFu3GI^ z398j>K@EG!@@xpsB_b~-1*dhFf>y9O(NKG>Es3V1wrB^QB*P;e(2XQPF?-Wp5Y5BQ z?oH=&SzIP{_Tt`YM|D*0p;N_^Q zyip(t*>@lzp`ZgKKqn-u#$^l%fk^Ta^8(_iy!7j?_g;7Ubw7H^rfAqg0>vUe*06*{ zKx7pJvVr4_GtT%8BO{7BZlihcC611MI^({4=iXCQx2sN7cb%KAhL4|ilCJ7=&pH2d z&OP_sEvYyqsBLF+LQvbPOComEl44c3gv|vDVyaxsC(9pZ$$%YtkPyRK6Mq?z`CG*G zS+**o;yPEJnhCPNRJ#KwL|wVq50;B&VW|e}LQ%31pr2y1Mu2`omqhG9PY`#BLp2x{ zYzCIK0-hsaZ?Hv*3fM$>zqsJZJ+Fsmn6I;&C!oBhOCmBT+S7y+oo$lhGAvQA@AI8S z5%dD$@;kOvQE{0hwr7jYo6>b`u86n%FS~sL%&#Pg&?&>FuW28*v|0j1myFe>40_&l zo;*c8AA5OR$^7_47xDwSJn}=7JeA!zQSu~R63Y6=>yl7)C4`zYOtl43T;M2AgM{J& ziwqhh6c@X6hpTpV>o2XUZrQ~xXSeXcwygs%Uo)`xmVsR_9(d3)lE$Twg2QzmRp{4Y z(V};3n_KJ_w=QRc9~@_d;En1?A7Qse%>6P+A~dEnf4SlK+7K>I>GVbw`WVB?m26QX zsuk)swc%TGMB>V3cI!mZ8+1u1U#cKhO|RQHHf@wmxkB1&+i(+_ZS(3mV)7tcq^Ov{ zrCWBJNtY)A%Khx-2`D>sN%%q0h>0Izt3&;d8%vg~ zG7h}D0|M;8Blj2=uDZlH@bptdd#>@sgxm++;QC#*n86k&#BCH@-(qBTM+oRjSnXZ;PkQKHRX>yl7z@=FAy*%5RmoDGCyemP)- zv58&F#Hy>unyp4JBS zLZnQ#cu|o$Ml9aL`EXGYko<*QNYlw?g22?FOColdjD|(L~ zv!eY3A$*E0c~l5b@{HVSICtx#Nx?aR^9eRb1kT4KiO|gM?NN$*jV)(X%||H3eU05X zQSw)HNhqKBiY^H?Izy-rX>^8Zrv?ed1r8-NNGM&ruA4vGW5i#yc8qw6voF={@F66L zU0KE|xG*!HH}l49NY&uwmBKJ5WCS>aXh;%V(eoiiO`7B%tD;KpzCa6x#sH@@NWnea&C&Fq&>qxL8pBXvd)yl;2z2G=XEC~(-6l=x+gCt@AOC$saNs-(O z3}ogg?uQlTp3L;ozHFYZUet=R({)Lx&@u;6Z}zyFOfh)|WaKHLm1T<)6|D%pUKhJ@ z5(v_|B>Zr24A$mC^*0!fG)O2eM(PS;_cyCr+uxkzO#KYL^xVMiM+csIbpNiMzu0@v zIcLCJ(81dt7`X1U2k(5`6P$9rZg2AtTi9T$6GAuYZ608^MU3oTNunja4Nk1NXBXI7 z4m;YweT>fhcWhB3sT8e3msH%|1tN0)?hqn8n?u-K|S?3;RF5zbyIcERE$ zIB~+6Z&~Oua4YO3L}!34T~u_YCc1&UWU&kClW_Wk!yU!w$7~h|Mn6Oahb^Vg{q!Qw zJ_X1~>`e-DAbSwI7f!=H3rYNA9{w>O|2R|rVGV;$99C`i=cIoRhrgDxuypfd{j=Mw znVn{LwgAhm=E32&mCf@iW}#dxb+|Hb?QgRT-#aOo9)qRL8Sh)C_}(g*RY)B=3T6dP zFk4slzI?pz<#e_yRhoZB?MtRLIxCKw7gw~3m8QUMZgdK^AdD3sU&q?oRX z6|&`dVlH={bDVa%2e$UQhE$&CN}n;!zK*<^Dv2dL9p{_@3#>XM5OYgq08DHVxp*ep z`=51D>s6K6uV*trpt)9;MC{OvSyh5A z?usg$A6oH);(La0Jk1s*DjZ{Bt4%F01c=YGnWce}|g? zcQ)@)H9ss-mTeP_{~NnWqVfMDNwhHJpFMvrTuoDeGF3%xfKc5jPWr)l`A)A2H#zp@ zi*-)EO&W;Puh~kAiqn~5zFi0=mq&;U5pG^tenu12sgkrsvnTOEv?Pj#!&10=QiujmlQ6~*q7eg_%w~`n zzyw_qu^YezXU;XwuV!K5AY~NH4X&%F`uYs;{E`WK|6q5UYarr#VIE=&nT!`weco`; zB${X*?`EqmYIs}gM+h$C2?|cE2v4junl8D_B&OBSB4WiGez#eBeEA&w#~UTIC?NXRu+ zU#UyNkGe)_NL80G6V)K0xQJ5dFWwZkOo)bzKsE{cHG)ayzW~ zX^>D{yia$yA-I5|?)ugibrX$>y4jWO9%s*OcMH1X)6E$?2$4M%$etI7iH%{mMNDj@ zB+n%+7IZ7@rU?*N=#q#GM0^F^9cIMcnVR86*bqU0o8f8^9u85m&f36eqL`xJ{sk zW^qI&ru5wU8&C08xW6dS9!lZ%9c*5Sh5Y4hYaxeFaP>rqL!g5eF`KRBsDYw+h1-+Z zJQ7PdQI|yQu|lit>ahVW3W)x4wpya1f9QqVWo+IE>PvM=_)*s=|ELNQW}F%%6c;g# zgBuoZKfzXDRQm`m+-_nwNnl^EOColK*Vbn}K3w|%U2`W}h^VTsU%0)G-7eApJ-Q_P z`q%Io<#t%x(;%U^7_OT?*oE864~Heyp)26Sh8@}?_EVS0Wi#RghZL;IyDF(*!-g){>V)Kt>bKuww?!=N8ffz;WdEAS13<^622qI(Lg(-nNx9+*xiFyG5&fIzcQmqcV}w7ZJ2*e$Gt)tKwE<_0e; z{)dQ2hAmB0M8+j>?T*-+Ex93nl47?_z_?tJXkk||{DOkmDpm68*8LWhdL3J^s7f7? zfMs5?eWJ~)*^LryeoB{wGVMDsQqDG z5`ML7q{S+;Mpx1xp}2@C0~jMuGPwxWh2|j(_IjT085+WO*b0qm2yovh9L6u+|<-Bmjuo`|O3xX?}T1{s+Pn3O(E(vA% zQ*=qFK!}jP9Rp#)_AtBK`|*~$%f_M#?12~i$3;z`n)fXojPwgMpEkDUqB`mcj-%S0 zD9j=`OpEp1f@u;*FJ^N?tmz_M63Uul>d>4>>7*~7qM`pGqEliE6BQjdjE1H-MRwZ+ zi@Yw0$XICiX%n1oYkewTP05oOJa_~=M@a5q%M=xoiH^gViYMYBpJ6voP`Oo-2<_aO zUuc_hVaYTzo1l!Df^rrdDiDxHguH_~e~B%0RGq^qDv~!iL|^a*>s&&TiWk@{5WPRA zOG0_W(+FMII7{0bg3=3*I|RLe*!%}us;Jl;k;rD|(>~(c>;?%E-$XUCtNFUc%n^%W z=+I4)I`uWG@=t8ZqN;L4B8?nSb^e~+C{gEcbV(?~{CtY9% zbTOGzFqRcy$D4ON8~6qq#p&H~<@b{lPDdkdxGUf$UTPq7*bEQ@Ia!y4G7yAD16^ex z*zakOP+T;~47KC$G;wJn?EWZmntiUyZAq!Nj`mdtz{x4hKQEg;~yWIijDJ#WfO_h@x&#%~=5aaoUB+ex;>s(98=gruIf>mM(d2kt63PL_ND@si;76LNT*ziWs#Ob>pG8%E zF1taZ^0RbF#IEv5SXIKJQeaIf@C~&7%h_T@g<`T@QNn^!Xg%p8Yz7E4m+6x5L!;57 zs7?u^n+6HRMT1UBH+LMpss!hY8W)yQeLcQml=l&u#LaAVMm32saO@3ml7!=k1t&I; zYN&K0yJcbv+jL39j>1^DJIQbgApXVnKKSU>2VQ;FV`{n2y6e-&Wt)?M3Nah4Pan;0 zil0*yBc;@*cbJ-#Wdn{3B!}CQ>W4BC{J6o58@|KejpRfv)c5Qa5T!$tKvhqf) zHKkNmoP+PNYAfs|45q8u(nW>lXk3{l3bFD6BBUf*nd6N zv1`}Lar)dsVQ%eJSpIvmrUbs_0n52CYrU>Uf-lS}v&lsTc`7c%N)`&9+pZ|aeQXv8 z#=W{Elq2ROiDnM5{l<{2F$Tx<=hj?;SIE@(qLqd;*D<6T&CFd|&F43@_oPZ0GgHr!PDM+K^3y<5 z`ns-$f=%gP+2o>{(rLCS)kvD`5=ttglIq*izp(itw)9WBB;vFsc{Ad%)CSCas$9vY zJ&;><-oq5(4{Q;mqBku7J%>kI)2bBlTQ(a6tpCv^;Rj1&?4*WYn5$@zP+T-fD0RzH zGgq%#oIF2O7I(Ee7oo%7gY(KpFQf6Cnu}>9WgVX=^`(=Yg4^2O!@WM5b{(g%c_9`w zOP56a*f~SoTI80P>&<+zkF3?0+2Ccwu8l2hRL4I);oR(18@MxyTjKo}vw0!dU8GCG zkDZ3=D(}a!x&{fw#W3A4W*1*Bu3LO*>Wz7#Da(6f-dy+cHv5W(a))yv-n_nIep8{? zn}vJtobUR@4SHus`%Su9t`vJax~c`ZJqb#vTl<49!Mh3UAa@IVymeRKUEYMN@2K{& zg^ane=Hk1v(2YN-YxlOf{NK9f5?0jE?Sp36p=qJ9MqZ^@mdDAv)=)cdocoenuzQj% zV{oVvvNkH%eU9B02}O_Ul2Ae5VOm%)c1RmsJL14Pwz$Cn3$Ysk{06%%0`Tj)Box4}>5{MkuCx^3lU;yexlN^1%o|Jd#SO-3#)r&o zcTdF-gI0fOGWR_f-gmBRPMRo$ZUpaNbrq{_UH_9V2?g)(bxGLpK2{grrgq|@DPJdk z677%+h1%}B2v^AV%D(&LMz7jC?z}hUy1g5a&1@>9db4S96|SUsVk3%$u&)11Ftgm* z;^SQL@hym)WnwbQEn*81WrP%$?0wH;qpW4yPHne}PYiP~x{->!pB9l3z;Oryy zbq&9DW5=az0fV~+A!wu6(avs*bPcO?NvPPdLYIUMsnt?QN4b!KUwZPlBgcUg&K?CH zSFt4u#!yJs2*XdZ+aef#T$hBxaHB2>8^cRlis4unLk#R57$>S zx^h2+kGHPd{b)10U0YlJuGb!UzjlbmabjKLXm-~-_Cu*sZ?f9A&_KjJK0ep=@jtPJ z3ifd!Tq7U>I0bQZfUg6IjlBov}EbxGKWeo+fi?R7pA2cFqAc*C88J6{^S_sOCD z2L`v@>c#Q{E|#m=k_BTaBy5D`N_JZW%jJ?pD_5?q=_#41O3+Hv(Vj<`mtMgZF`_zQ ztM4Fc9Jx+Eflr5%38E)y5Niu>OK zPNVTZL|k^UrHP8mxJ1^=4FTgtcH0Du=Ou|2hNWThBO1*PLKAUA=p`^~Rtk(hK`$T{e_;z16^lvsA+=S(RcO5V zBfEWq%kOka#E#3Tr5CoZ2n59Q1d%wgw>h~h$#<;LiLUN)Zzu%Evl}K59H&bnb_m9= zF=3$?Owu{?a^7y4K1MK>vIUCj784S1#G~K{R`=PH`?fk&C%l;5Izi<9x+G#pWTe=u z7L+2@K0p+5Y$2keFiP%G3rm8!+3gbjXLL#U^{=tMMhxvxf!Omt@dXurfY+TS+ z&gT8QKm*@EE$?9q997Gc;YJ7KE4jX$G;O|!#$RSLKs5eET@uRDzkr}MJ2{))o)T%k zu_yzl^_OAoKq_xsuu*>JGyb}7B2+(Qiy0NF<6y_A;4_(0d?uZ_YdTK+9-9#Y*>`kF z_#xAXZz@Eht7?!?Tr>!gy6eX#e5l8S%Ru0mm+qobFgI3w_vQpVMyMRV=P_1=+Z@=JS^Ac!dqqw8w{@y zx)Hp6?6wHJy^=%=GcVXcUar8t;DCan_YubC+t?yTRHxiPUc-s488xW9h21hyuBA&t z`ObF4r`bu?k?j@8Ek*&u)v@(HKdhg}u@=d!>X?>47O?IItqU z&gg-Skj2s_k4mk2FQWS{V2dB@zC_j5bSQ-u%EeMSDYz8d9nZm~Q6=kZ9Vm>2R zOP=nomh}Gy9hm+i8Tt$7JdA9)*ZrAnMD4EdH&Q5cRchZ2+6s9)fRejYeB3QQcEHE~ z-wQMSO7Jbry#27l-f@`t@8TW|3|m3sL)jeh!Mau%7VoqNr6XZCL?6WaRJZq9t=ui+ zoXLxq*%AeZIw4u3KK_gBwn%*Yf+W$xK7OKIMKNl4Dui=9rSD}RICJkj>+x+GK_e+>Z(Gi}`}T4HIjv;oewk-L4*2NRe7 zaHgM)i;Bf{zD_>UFA%stvc--H+^hsd9KkBwQj&qgD3EV=k~-NV`6f{Qj?EB(@_%(n z#17>#j)yH+XskA2BC90U_z^z~e+@x9zKun2?C5J(%%Ln+}acm|CP{-<$ z@B^iheyI!&+gr2*BEn-AU2K$D-2hu|Eupl3T&3jSe{S;B$!B#|66q5yr-kFrKYRY4gYS%ZY)Vx_Jic2K^%wLy8f zU19T>XYTWEBz}V}PO#Alu^L6<*V%0mGkQ&uXkjFt3hTu4skCX#Ggelm3(0?a)MNw%8F>Y)ujC$OU)FVl8jB*3_KZFWDRr#s6HFgz}u9B6iJ=(qsPCEEVA*ML3Gd zf8L4Zdxm%%eMNKfTw?Op*u-Yw1ujptc_BbdW;acMn4n7{b|A*J6^%690hou+GJ%3T zMKIpY7ALB6j87DbNy!gwX4x>VjsD2ekq&rRj(}XBSfNu zElE@)#w6ta=42;wLSXnPyJZ5yhb4&?_6sMAQkGegYxZSn+CDu^tb>!%8jDJ$ly4R* z>W>hREo`+!1>_Xx;xnv`yobwgE_TznoR`Ld0ol&i1Od?&)q-<{wm_U7<-7>L-*K|qvQP2QV*#Zs}G)O2e zzNVY<+9SPuYe#zS5yMa*H=wu=lcu;l)_{9+eRoIacDVzX!*uy`%sMmK(I=VPEcP6B(7f~lP;2fi@o|p$I1fJFx_Rl2CL9<9 zPEfmQz@3+`IjwgB2HOP4sy!o(B+w`iDcBrwC|tn(Ui(`dY%VJ1VVzbsEzYWk>d2x( z3a)_2mW};;ZXDWklc$Tz{gWGPQfw)MJ2oM0qhND6yDbuIJ|ank2Aif{awM;i7;CT6 z7F!!GTH{^pZuuXg?QLO;8BwJc9Q=T5#>FV1r;?(Xk7e3RKTc?;=l&JViJjVapR0j`4|Zg_&BHDQ@ts)DC(9b^R5#xKVXI36^{!S5UNYxFYKQGP`}E?pJk5 zDD&Toh=rNI?)s2P%QCPVbWOI`3v;+6Sr_+Ps7rdtev;vOG3HFNxCG| zFdr@AkTUO>;^zsAi@m+DNi~g@1OI{(pYZQ1p>Ui}^?8zHE5iF|MVGU+7S)PQgtBlA z&#*Akasi+1!4wzi_$(M&AU+euYk@+yXX4zI-7 zzs_cbn9slJl2GP@QCI_eWj;9m)F7d_XiyK(9T3&-820R6sC|Hjad;)JM7#c0;=|bO z5-a%gp<4m!UjssA1z32~Afc?_GTq^u-~tM&6OVv8cvu;v=_8Fz8>F6rK4PIs;GcRwZO5#|X4&Q?gIJvr5?e6KYH!Zod8L%TUWsS~?!v!*C zS2k~!`#;v7>jmwktP#DbjTy7A($oKezrugk@N^2Uh=S2zn{`BYzS!Bn-5S=D&1B3% z|2AukO~d|TyEOuq5Ol&BN}2wP!6qu%3eYYV@|)mSBTK0bkP??*GbXfV!+Y=|aF=_= zfUM29?!hNNxoIhharW{b>BoA z`y5*V5tVHnmq0U5I{ps}M-`v88dY)sQ8pt4iHCJbsK~n$!ECy3z|qf@?0SF*X1?t0 zY+k5>UO0Mzz$DGQx_L|7TWLtrOXn=`&49gsB}fnAU+I}${O zb{v~20_|vB60t*joP_pFkG~cQbKyY!YTkP?fmQ!i1n?ZTpiw<@Is$lRjb|1L;>s1l zr>$@mI?rVDK`=W*mqhHC&6Jp(<#Wdn)Ed2vxcx0#*r>S8K-|vqI9?s(KE&pPAh$-B zMC{0oUsLQ$E;rZ16l;)&(Z`6+C)ol;MF&pf2afWBqflS^IJs$3nf6r!wK=vhF5`M@uDxj)}ih~Lb5{e5P z?P-uuT;S+mgM{MZD&36RuJ+At?b_I>{_+DJWb6r8xxcv8oKfqWlS~UK8&z{gu-hWG zeWWB2TFq(h0(>b`%>w)u6i?3p`QEzXX)~6-V^ztmD!awvnx*ffG3K72YYxi2(HsuR zz2A8#T)<4tHLZ2;V^*g&8EdKq(>UPEJp5tRy?_{)Ny zB;0x^xgiNcmEAPaaY>hi>J*CzQ?qMG@^~R5UrfPmc)m3e-bV<-y=+0E!hk0aB^^!( z3U{+xCMevYOCoj@ro-;?u533f=In$;*aZ{*l7~Mk8;T|0g{^hpM2x<~7BebF$BBL9 zE}w9qo8VKN>n8amknLkLLLl3%OCmC4+OvBT*T5(UMjF|$>Uq!$h|qqvR8bLvjSO(& zljN#SRs28M?Gs>rAW5{a*EoGqCL_k4vwOvjA#)6I>|D9pCt|j-Aq#5-!;eto{S+ZO zazk^nbkd1irzKKSlB5(Q2?uZ`Z8?%cj%57<*xt$Ji$M2RUG$Yt{Rz=;c4q{^&0UWS zP)k^y?8}pFS#{q;1n00d71hZ^7_8wFVS~dzl5j~;K+*eTHX{VGgf5BLA)C6in$Kex z6y6y;j~Mn60=0rITvVWrPILix7!E}}$mPyfuqpz5fXxHJ=t5l*evC8*S89BQaan_e z;v%L@bAq_?)_`2wa4ui;x^%#Ew2v#=6sO``t z;YUrw8uTayBZsyvc5h*wq`7L}=<9y4F~Kq;lZZTMs;FVOe_ro`;8aUgZtF69ZmAhyFcV z+=!~Rj)0B5=hE4j->@4b`u%kS{Wf*Eue6z(iZxlC`48T%a=^5*M!@3Kvk%ezCRTb>e~RpBT8|akyj?b{Pyj zuzTpiEuLtQo9zbHb~ehv-Y+C<6j)cW+aiv?LXrp#tj(`vA3wP5)BE>4x&P(e`}b_w zziZpUd$$~T^eV%-CC+y-a>KXLwMuM7L{z$U6zn6l@2|6Urv^YpcB@4Fd0i4JQ^_KN z&8{m<+5hsE{VzW;^z@d2n{FSv=i2?R+&J)*cYBQ$@(yBh2V1nLn1pnLpJ6vh;J8(n zMC@=JgAr)(xvK}B**kFW;|HF8YG}_j`(J*_6Njwu*ASH5Yyml-oJVt$m)H#wP+rg_ z5g8QiEOGk4bBp6e!!NKgU!1rHvhqHkYMv|Ng}lS z2+hlNmv0~A^b-c?eBkB>_V2rC@H02<-*>N9+u^UFs{hKCJgTaXgcN=L0;=mjv0Eg% z{=F^< zRxR@a#s4|N*v{5SR2av&X<#zdm!)v7Vz*4-Tp>xcE|iW8(|+v()N6$;T~xgukqA`h z73>CyIt#ialy|JtC844vg4%>=sX?NK3mNt`NGM%=;81!F7_eX1+5x+w(7}_5_^VIqvX%7aQ|nQy20!8os~CZi`s?^O8hp z&}jbfeOSQZwU+ZGMvHH=#fqpxS^qqT2H$V88zg%CcU=<7L;ek+X!baK*uc}<4?KLG z$6hVxOH}xu*vv;&xX5M~1Y|G2XSYZ+{u^Bqv1@$X(34P}lEsflc0<|2t9tSjF)%ha zCxaw$!;%=BMXi1YyG4S*G+h$0V=xQj_rV=o2e;ii_|P*0yC20EKD2$;z$;e`?7MAX z$4)OW(SCwxEny4J@|d$JT8r2%613i@OCol(X4+_7_4J_iU?ZFwy^IL;u!UtI6i}%$ z*)0-;I(13Jj?jA$p@HYFMrRs&ZqMMWTLxd)GkDj|foHFsy*#xEuEMyml*%k#v|jc6QSQ=B>IUVu#s|fp*pl2jyqGdn#oc z&Rd>2@YvP?>yE&%+2AJ#+p}!Jqrx^mk(QY{9PffWQ{bLrH%@?iLYIUeIE|r{8jWGj zu0cX^@vLt0B)EXlnAzIV*on);oOq_1mIp+`RbkF*6*xsDaGlB$cRY5G4Oy_s35gqx z#|GJL5exf?BoR6uYwpfJDO1flirH<}iSD^+_A-QdaIA!xFK?>2TioD0v^HxNdC!^V z^uIZsyeU`8!-}#^6-nw8`hr;~7fYSRR4L=9b}V@r{obZEn>@xl_sSg^)9f=#ULmNk zw$Sry-wV3RXY9ve79Uf^$1&n#8hpHUH~Xw<-Wn8gCfw&Sj{jBH&{Ysa zLqDV-_M=1L0)p6Ctqo#houCC%;!p(f^rE@dZopa$#>2ZRDL7yW=^6#B_p{p~0qebz zL}f}F+&@{WCoJ`@ju55A54VCM@f| ziO@X37Lx-_z%cnSc7p_(M|4TV4~@O7X5UU&@#JQyL5?!L-kS)`Yiu#2LL(O$1h~!D z*ew!lzN$;YkBvrZpt1|>l{82wE*9zvVh@qt+1hh&r`r=&PLeTr|Fr{qb_ZBqZmpYY z4F5!PQVk($qg3Mvc3Z@>-XTe}B-NOmyAh6Ao^w_ImHo4GGe?1Vlh&@4H$2aE&z4)e zwm)|~Jc7fZ_=TJ33g^D!X~~iAJ#om#@#EkSNG#M!z-e!=-zDiDzh__I z4gco%X7maRV>EeBiOGpl%E0U6|?iAZ(GR zC{Gt#o~RIsWx4^gwP|*PB$BK}1-9-e;G>3izdE?(G0?16r#0WBHm_$3$I)g$mwzq0 zL88s8bV(?S{v-ktX3@H7}8^o}p@2-=o?;&lZ8B_JAz-adv}5?Vr^p(E_!< z^2E^1L27ruN45VOTZE`;mlpBGLQLbxHX3&PgY1F4V{ZyABN!ii^0q?}-D~y|{nR9b(!Q*0x{24@v{x z-X`b;G>F8NF^vS|>XZ2a{f@zIkr>1bNunj=0XxITVhe531#K)Ms%9prH{sC2SMiTeT3TYVGF|1{(^voIwreCqWw-?5-rgFO%Dt_ z@?5a?YagNZEw&&m?FS4FwzFF#+TW^6!moXePD1rF7~C{SC@!#{(IBC?z>+upYvd&K`C<~<80>#$(DI(&kSn-lwAa}N6Kv%|(ne*p*Vt_l`~I3F z(ZX(XG;C}fcyN@jk+!@k_Rd5!D%X{Ke1N4HBLHRF{PElOcqq+5M%n zwBB>akn<%feDWuoll&3;l?o3?P$sY&Bnls^OColK&w$OWIEu?%X+w*hXR{k7FfGs}5j#vXhxXhxuMg0`*b0uu*{$mC%6w*B@p#NC3K2mqhFUO>q$!y!vsNO%0gJvO?ZL zIJU4wiwcJpBDT=M5s_GJ*eLXU>;{RJ->pkRg`)EisAi8sVVo}(>kjOD zXy}F)J%PgVK0@W2Y(Y564;YblvKu7I@6aU?yYeTZ@^N}1Xk|yx3kbw^won`(0){kO z*$omPuF)mo2STGyS7`x8JPi_xi=(9=p+{h8_cwEKsi579qjBICKQNJjryhlHd2q{~ z1Fw7qEVZO@A9p}dahdxrX7&lV-B{*Oq&#ZEL2D6<hIGf z5n27(+1x~XIa25VE9eD8;vTkCQIU|@LclodPIij~ihfBVw3HBkRX#ir$H~Ee)q7YW$8Cy`1CTnMWWv?>XJ~V{smnUs<%Ou-l%O7C3Ol)C5mxQtf?DI8%RJMQ> zSq&13i{I(ig#{N-VZXGs6?Xq-KAe*dm;ue*;Fj5EUDce_R*2fD%zgs9En-?TC5g~5 z-u!a|h6NnEU^!o+uP$bb73`}-g<+NT_p=)$dVH@g3FRCM5sGFHp6hNt_bf-M`zAuu z%@&gbO~Cr}47))BO-h$U?9dDg2ql*DB`W+zHuD^X2c(AE*bNeeU#CkVc7=}~tX&-K zF@EnORQ@w;K{(0}$Qz$zH%OHKIb9O5EB~ndd+&l{>*%&9^*yTn8*CAxsy(cF`gL}T zMDPEqOCqw~wTGsoF>e`=yZ*eD0q-MJ|8Lonu+$$=CjB3Fi$wkZSCR_lA>%CN`jl2C&W#P^T}A2H=u z-gR8wKE<>83vJ*cwk}xS6;SrPfZZaof%A1qC>ucSYXGQh0LLmCBor6Zbt8>E0PSn- z0CdL1h2n<12^9`wNw!?c=JP3e^d??s>WMkIyWAn@Rcy3^O-u;eXbAdAc3Z@_J}yb{ zL$`K+IA&GJESXnSv*m2XEPJ$Q`JSQA?qmxYQK8n@M4yKjTREzFbRWBEqThS!>$mws z{PD|+sf@T(d-1ZRi&iJ+pW#(8eT-WEJGQ7%wLBq_M~;%|Y*(rzI3kLEh21()^d4Oj zDn7l8ST(x_aQYInD_and$YW%UbUsxsn`I+a$QV@!E7{5>qpMnw=lc2_g7;HIa)7Of zs7NLg8C#O1lq6|Ok_1VTwj@a<2|@YCY|aSEKhz}=JIWImmx|?b(iDd@_iZvt)q)Sp zpcfFaqpoRAW=gsYYf>Uz%T-cxMQ|C$ZlB>AU>bSwCZiYPW^Z;g=3NA_`mZ8p zA7l#}6|)(MwB$4?I8D}a8jM;Sn-hZC#kwS7M{OD$PH&ca%}h2`F^!VhT{6pXe7OjN zJ};~DA|h603mFx$=?OU6+~qRqav6+QiOmPWtEfvNcDzO|E*8@HYB^i<;Zyqn@wl5U zL{vORfd{!<*veDM_Z{qZiT*#MOTw>zjbX1EIpYvOgM{MZPTjOeae)K9L*ioNp>P2c z$mbmn=RbxmBMvPRYL7I}S(I6yDx}TKLSsd0oyfnJY$~LBvuR_AnTFwKv4A;vrN=bR z&nB0*uUTO%UcJ;4uX2yN1N$GajVagxiWU`_jmdYEeVE|a{HI`=0d`8sD z($zBUSy;bBj8C|>IRhi&a@OgI&TKMYuJk6M3v%R0mZTiXE+L1=!yP#Y#53895s0Vj zl87DR$;*2C@@6lLWHIkZyJ?UcQ^EYo_@{JCxa+w*$Rq^ z@_7l)VFQ(U(A)a(Wo!T^dQ+?&rjY6@I%)>uZCFtetYIPAVy@N9KdjGsl zGYMmO`8&3LBVuVSgCcfq9@lAWA=xRlkW5J>B!v>7fAQ!**12nRK;q3SY_5q_?9sIf z-KG7bY}8kPz#h-CJWmjoAF~CF3d`t3jpAv^^M~w)iDtj2OG3ra?;tqM&Z)<>ft@W^ zzUGC2JVhvmUDur4m_$2ke8Ok<6pq8$jT1Ny(J*c7 z5Cpxz)OimfI+ZPARBxG zvBioC(By>MPt=}W}_~N$Y5!ws3$KjnJ{XFT5X$I z*-$L4GZq(n`-%l9MwE?gA#ey_Mg0-t_z+wAs5qViv+c+|j9Vr5P+fAkhfBGWp{H~_ zz~+g7daooAI-CeCuj}TGXI-!{C8{wCjpfB|F|nRDR^zlE)C7(5Q{Bm8SMo!}Ql^Xx zUb0YCD|uZ`j|8Il_iT+tMe!`CKS;@-@PL9jGld{nvJ(XZ)6A4{{R;|aP_zRIvmB6#jk?aJrem)(-ch^@^TBnXKcl|+tYw?z#8osvX& z4EyOtp8E*lzCHWy!8ri5xTWwkyoxZ1f6T)_=Hnk|4AwBX*$#S>eu<*xz4(2Gdvkgr z-#5>W)*Y29=s26o%Zu7i^1M=pg{&q_F?Qeu@%3I65u?NG?KCr@=2G^)n($B+1&R)5 zqRIQ>OwWrcdxEp}ouHfAlc3k!Jn=DKe4Hsh&W4Y-?tb=FO}L+3V3aLn%#CwPWx!M1 z2zl{muy>dV!tw48w{1}c9JIv<0Vh1p{Pj?RFT|O%TN`JNhNU^BVx}q=q8gQAV6v6_ zx*J?BXDd0l3l?HF3N9aEw?%@>Ws*c_a0#Cf*G^_<`xUxIoYD5juc^J93RjqQL&1{|sS{roH z(#>bbyCV<0xWHHJp^s7h_p?Qfs{RRTG=cgq)4|{lcI!mZcj=N)`PA)*RkO>YN3ZNN zOL7XjjLA+QFrjZDK3`^w7ZsmlVASsLmlVmE?G^zry~<{Sz_eGFMC>q4SZ$VjQhj2~ z9tcptbA)D)EmBlyCMIC{De@E!%1_wM6HtDnOTrI|Mw+2A6%3UcBor4FDM-_61ZRli zP1RmTa$zae*MlqW7C}bc3!V+D!?ImnupO*Wfpx<$y!Lj4{GX#?O}(C*{Y5pb`LJTu zl_=RQC6e{Jlp_(WP4G%&8;$B5C$YIBb~j#^gdcGYqfvH;36%y3#l&;-0XQJ8^d5D6)I?y zJuhdsMNDp)B%zT#Yv*HPJ+58zr8N#~Jb8@1Uto(GQLPs2V}$jB<+^p;b?nxOqI+~n zD6cXRt7hk8r@0m1MFm5ymKLR`RVgrhDD}4YnP$4jSQE6^jP*;z@iw*^qT+a(Ti;E= z>JG64R4gfjs*n_;EX4?4Qg#cQFM_b8OColJKUlN2u-YwFfQqb6tdEy)dvzq&6`CbX z&C@-pQYsCbYhZ!&dNXfy!8}M6k}z+F9s_-}mKWJ7jcP3)tXYldsw4?2LDTW7M4Aog zK#m4{DoMI3u?<3H1kba%CpPu0E(yO)X>{i*Bfw5VgM{K@sjeV)M)0H7W(22+87|`j zx2(I+xS)_O%2jpC&5hYKERJtCdsE;@X|FHje&%KZzhH|TY`jABMw!6R*liJ0J19xC zFcX+@p;?iEXbD`@Xc|6^dm~JPcQIOw-PWA(0a3U$GtrH_!e$ZRH7SbzNmcZx1)NcA zRtO#=bV(?uJ5rKp`tWa>4=S9%4@lHR_nt~&6QU7|u#SD(B4F7sR-{H<`B? z$D=9)<2Dki-)(0zM8I67OCokK-=lIltip&?&gYN|VRenj@v24GuUETd!wd4EkwWk{ zvlSH;{CBGi4U01%s6X(EU0$}Fo)sL_CN{A7BsNjeCE>RTjYLZ2V%SYLv?z zE_PC@aI~6xselqf@A`J#X&6C zMTFWL<$=%Y3asvkd9CnzEv8S^F9TuW&oKW9xyZUm4o>v`3p($UCUu zAF_pxs9$w}j&1!ty8ohR{Hx`HY%|MT0| z`i2J@m-{X1d||Ndj9I(3P?!rjZ8dNDjpr!$i3driuQ*>ej6GRI`+81m*C!lod=(=4m@)e z3}ro-TjZ&o_^~y@a^`a=2IsO{B+h)6E{PbO88MhXux-b{p4~=QwlaH;0r!0yFn80D z0T-P;$BReZHxZl5*)Hos93yXR z&hiT~&jDr7z`L)9vl}FF`v_eUu`7Pq;Fdi@dp_fdsc?-Ueu)a7%Vs`mM=4D`;7+mA z*ew!`&(XHko-nnguNo_WE>K3L0cq@3-a_N^tb zA9Q6~+hra*%N^rRUUswL3brvJZKKJ{47)92T`5VTg^So`&7W&5E5J#@`Mg|EE3ZH* znHeKv_L;DWxsWF3OGWz$y7*SMN+PP?IuUk(O19;qSBGs_-&Vu6tzMNWU&CgHAhbo7 zgz~&A5#;7gd!mQTSuodt9Zay}1DvERkEAuSy<&}&ybnj72ZB!HaTbg5I|TI!whE$x zdP)K|EP()U!YT@olmgToXoAb8Xma})nWa z51NYo1)CKD-_LYO#17xwv*#L@X3N!7KD(JSK-1SpR3BFjil?Y zuEM&_UZ2adeu)q-WUC>n_s$W^PlXVEfaNA2>CkWqk`#jAdoG(Rg6~4yQCvZ7bxtfR5{3OT%csSj!Y;=|20twd)0%30kL9~X;*-DFQ4eys5 z#6e_f4fY9AaDJQ=**+x#_KpdWlR{)=G@(ZF5jL~LNG{VQ5xbGpUN`0GmTMm%Xjij^ zhzeT$d#FCeZkOo)6S^cK>tFkfqH#;BC2%{qsm+wv#(I+@@)V(Xlr2wGD8?tckRR|F z!huMu2Ja$SFp`-s?Q_q=`SwYP?bJpmrxb#e1rJ9EgvLEZWM!;dyFrKdT^nc*5 z@Sin2or3dVAt7k9j_A%8JNvg=!+NqAC=&EMQn6Z~pqDYXGM@s>ns;bTsEaquF05v$eLghSXw2R9D~ARRcA#Ix`^D#Z@*%srY; z9n!X9%sbGGUeQHT)#nh&L#oeVl|X}p;sUEl8YGl|U#^>w+f~9vP&W%V=&%xqcGx(A z)&fsB#FW3mjuF8{KR9VW- zpS<1P`EIxO3$}>Cp+Sh+sN4G)yDbt44oVU&?Dj^igd26&XUz>B1zPHB^qR3ZH)s4n z)My=*C^{V2+E8=Wqu8wyg^tiAp}gcsNuv2jv0PFpSNp^?AuKsq1n0CGczA8GN@S4ZwgWz?#E{WLjI&*Qg3}>V&l(1Y5M@qp> zD=_(0J2_(5$a>Ae2*YRz2)pZ0-n{x9gHnZhITrL)c(a_jHokbx_A>9h5v;(SL>rzsgoXRD|c$ zLs*m#9oRQfWcRYUBFOI2B@sKar!+)1XputXUm>nPVT&IX*V&D64O^e^BQ{e6*6-_* z@WZMx_Ef`H>;p7NC@x}3%xmYlJ=Le$2WTRbZi#DHRDS||JiA?D1!HtcMApA{wneIZ z9u&w^gyLMbJW;(hLJjaNcH;z(`I1CvPSo5Qpd5z3Eo*?C&8h(g&#tL@;EGe;iH5UM z7dsWp5W6PCG7S=n3#=V!kWd~ys9V7jTtGqa+13^WCp!z+1|NTL;Qkv2wrw4}|5neK zJGaWM1b&*0b8vtVGB&CN-pp=`#Dg2_$AjiifX!NEmgMSmxI7WIz;sr-yG2<8SN6i4 z>tbz;@3z=zKS4KpmaUSA>bFixz@<+P=dcUL=G5_;Ysi~_j`64*h`4g@7TgcMd@fj3Ajr-+&SxJDMtUx=7C`J zD_s(?V>E49FK7TZu=L_hLNx)$i&MQ95v${FZO)K^bVE?9hmCK7%OrA{tmTsU)Uj+n z2wqclNyLuVF%Dj0k-t%^2hUI<{58bt{cHiF`qi;6R)WL&NWGWM1wm?|E{WKYaz}Hk z>n?V7o+2(8wm4C7i7?hnu^T6FT&_#P4~Iswuf_|QVQP?2Tx`>g*!FngBdr}TOmfBx zi+kWQB)B2YG`+h=bC2YqvC(kh9(G&Ar0$d?Ldyr?!v*as&2WgZFnR4u zDBW+-Q}?nZi>O6wgovQBeOnhQvERjRl&JGXU3KctRSdt-EWp*Zd2c%5ev8`tK3lNp z+U&O5C))fjyHTReH+4y?!V|NRV}msqb`ZqahW7HCbp+b**-Y;q>wQ_uxyPNn7}s> znUi8eW^zIv_gj{H$y;V~*?`UbC$bqJE_1vtiP)i``%EnS3YEW%&3M!pb!0-+bg3gO zWw%JQy;zq-?Ajg%8}G?2%+8mn@m@CbQ8hkX?3EX-lTIPWZj5@=}{2j!k*%|QIB~XAWh$s)o zyHqxL!<_#iqA={XxH8{y5a2xA5G)R7w@t7(OqWFLSPWm3?>0M2DK7}_x2XM7+3ZL4 zff0$6-9AzKDeOjx+GpvKh+XYR!3n9xC1p4+&a3#E?@{$_Y!RZWexx`i6=p024@CJF zvzsN#zetyaU-=q+vFgsTThSn)xQMGeAG5?X`;6sgszj4L-!rs@PqH-{)fUFW22isP zZf&=DA@=ZbcGJWjHcApL?BK^PFP6*3(rO_sdU;>b(EkuM`~X|bs2U!Z$OAXYE|(jk z;(OU`6BXaBOF|j@9f(r1yZp(E0EG3p06qkf;8zfrzh?^;6_+WAl*?H?biTyqfS|Ka zmqhI7j9dvP&Gf=ad;Wc3wGR-9A+``vkrz{PhAqR>;D+16EI+p zh-sA5JtkbgM=Ai}uOT+0J`-1xd~Cw$8j^y;WDSP|sS#{02vSGtlJFy?(eJC&0Xr-W z5{iqsQirkPqA25%N*2aXq}iscso*O|kWEfl ziE1%3q{Y~ZlT$^)G0V2#bdYzYu3&09Z?i6m7_A7;XCJXBUoIMD(>K6YU!&1{fh|B( zG>(GOM!5)g1O*JQpJBI3{P#&+5`N8dEYapd^^q8sHApBfu#eOrp}4@6C>kUb7yY{P z(t-=vhVZS{E-RXL;H3wK?%Oi-$nO2G+&J*mqx*O5bZ+YK#IRg`0-WDAdlY>9mTfS> zmM$c1w7Tej*liK}{=brhMu)FGy)tZI@6LnQ-{R4q<$Q@coZ8=<44dds-rXK>h0Y{) zgG7Q1bT9lGYJ1G_)}i@o>2nWTOG^1kmO>h)Zyu*x0e3}jV>d`_ z;5t-Y*kN|zD^Ybr-0^<@f{SCr)!guH)clidMQ}8K7WKZ*u^S|se^i%*vipY-yk>{M z*)cIcjKYf&1we&68j&w5=V`p*!wud@}v0WIK0?0;o9NI?4+T@rrK zG~%5Kndr0{Bor6T51F&crMAPwrMCW}!8_q%;M#3HPO0GV+qwCn4Nh>W;4n!JyY%7W z0;8(`-Xix~v_|{^N2gJ(aiqBK*5<(GS>;lH)-@5MvED#Mu$|-RU(j_uE<-;_z^BTkrhyXf}AYuEff>Kc!0|MuWoM z^90wo2XB6CVB3p>U%bjV%^1AznuFKhG;rN>`*(ldi$;X^5vRRuk)uWciPO6%PP^DG z632g0mxLcDj(yr(s00wZd<_zci{>YQXfDIBu%E?S| zLqW{vP%AjdZk|}dpd_J@a%q<$+@l1T5y5P9QUdh$9y_)z5cwuVt!Mh*qcq|JFpnK74DQeHOlKqAmo0Svq0e7 zIq*??HO$5DY}v(CA8o?9U3RkDA+90paP+25?7H|qw8@in%|k^yG>=1yc1NIvh2_24 zZaD((u`a?*q#19#Q(vPJE@dkrs$;@bsl$QoR%&e7&Tf@><|@=%Sa~pZ&zwtL&5^g( zH=Xa~#Z6~N`wbq)+u@i>!N*(Uskz0X{T;9_34?6Cb%+@8LjSyn1q@SM5Tac-IJgH?ygb z>dmG*U^{rvSh5{p)Yt-hTMZH_ zMq!4nK|*nXBODD9iVIvxp+Q1%@!z`ZIRqE5I%aZfSH~RNo?0&sk`$*nEQjHf`1^`t z#>{&cbLKX?i(`(xlWTIpkxvNPXmQL`c3UK)nIuVsjy1w3JT-DeyCOI8Lp^YQQ5F_t z`U-Ki572+lL+P{@C!$qYQxY3MoylxDnMz8@lR_zUn18me*s6bAP~TRXe#y{?3$S{z z(4$pLeT}+Z$CfOrZbvxv6ROT0cB91gOkENxns(}vP%#}r}j?lkjB;2Ul? zarm~?sK%#vvH2k;bvq&vmcfQcbN=!bCzu09<~-3g`h$7R1Jw6kWUi^f{2z36797lN z7G*FWYs_A4ri;C>r9We4d{^rDAJ$69@ujF1b%L-cQ`%Eal!pUtT?T20+NG--74cux zC80vp^N4y_sfllR7#pT4^SYo=$(Bq^%e>Jb>?K6&*KFaUqIGl)TBhUAo8+w1iKYAU8 z@N6Mjdx#oDbiqFf<&)V=5m+balJLXI2}d>;Dm%aqMT3OmBChOUIYa<498=jr%COI& zG~kHT^t!&HIGWs(EQoR3Jjfnao8@Y+_;K(7S zc8f%fow_8HFLodj&F+kk6#1WD-}oKs+hVgGUEdMy#wQUkz0>XPuQTO)v}7>KT;K|*m6R}5VEp;W0C>aHbujW!N)E-8!D za#gC7>NP8HP=L`@f~&Vv#*%E8EdEr2#;S)x2xI2_*zD`w3AlmDmC~+e$-A}S&Lc<4 zq>vJd&>2U{urcpkHlHL4oF+-Uonq-~wosf{8nD@ICA&eQ#pSvrlv^!BAX*+v*RxsY zs5@YXTbbP;QFos%3BS5E0-=hf=sFrC6c=&D(v!%D9^>hvbV;1Qx5QkZO`G0{S1aOg zFhV}cMj)!y%<_-Hv0RjroWr$#$hmD2s^tGLn;~LVJ0*!0hQedS;Myn_3^;i7bU8C4 z{;_z~CEi>={58blpV*>D#o`z_1czikDUKx-!$a}+bYGRG_5Z+Tg6RM6bV(?GdIceD zb`T9l08onplz0t+`Y*PChXxdYMu9rOW`Y1Upi824K!Fn}j|vBhyoNxHyC<&kh4Luy zBG;n=ff~(bf&g`tE{Pa{vS&Mo+dY)mgWPWshchMrWc%;2YuC!DgSmymTyavE7$4;G zX5PPkWlG>%o)(>@EbrFURPgMl&A7d_O!mFL-gdaN_^DP>PA(BOG`Rh#R7MhZ42uKE z#9%|H%r4o`FmZ;iLez*isY}9deH^veKA^HR?A0|$C@wHd(;%U^z{O!2Bor6pb!R69 z7qH&%*4D1~`@ovBljp->jcDg`@~FMq+nXw7H_Ic3PdD1dgf6TJs2Gd$aNlpXE1R~T zh&6&RpHwL4>17bPZSDfW8`%aH>@-3%jTQ)QW4A@3@pY0!3-ikfnDnnInZn)awHg7> zF&aI=7B-?{t%(Ut=lg1SvK6Ir`N!DJ6J0-|OG5eEg9umia!I@A8-_(KPd8*aU!wkB z!>0Y~dnT=2i_@|KN^#IEIXH8i@42TDr?2~#u5N<+I%Jj;+M*iE)C5+>a1K@oEzYwI zxETCvx)Q0*>Z`gWVl)_BpQBE<_3Y48U!%<&wxc;YD+z{Hy+d#RtgAMq`9J8Ah+Xp& zZErFSyXW$kOoCoOG-kzy#-xPp4shZ(_NTxV385#j+b1D(rY?!tahdE%B#f2SN?+Bt z^eOli#O5NlU{M3sl!OflrZ~wWaz@a(fXx9x=X_lfv7>XM@|utY&o>l`@&iOJ&lWl= za)}zRa=1>WJ!xrxmu1=f5FER7NyLuhc$J?Ac^G|+7~RSiC@Mx15@i>fFweS)-8wTNzEEKv7rP7xjWo~$%K2GGe!^sHY%8m4R7oAcO3SP!^D4Zyg;3E z1=J8>l%&&?>othvFXNlSf=PJ2eUj3J^0J1x;CjJb*q2eyT)@<@{1Dsk0Q zbx9~EIR!CkUU>vZyGOQH%syYAW`Bn|U&CfSs?LWc%Cc>u@DH+^BnofSB@w&AkDt8~ zE*cZpzRocgWioJgk@&lD!A7%`&X)Zn-iB`@NE_MWMg?i6ypc?>m`u6cCQX-H0$!EP z3IVUAOComgMlLQE(s`(o!R73p>QLPz z{f6BZv8rE75}`R>^Y_G$fqAi#c||o_&Q|>0obMU>?J@T?CwnFewcuc34===Pr?8tQ z`kg3AgzC4M8`?3GODsym8pEA!|v21@C|osZjdV`;L^XO;+r6J4x1r@(3!dIFwKP$EYJk%!o=6GR@+B@sI! zlb01>z${8{sRC@)gxyQz9G&1-5Sf2w3lv_1A@-q>yn5a zop;&(;+({axkxDmyJ|&7A`MnXKy!U6Ulk~dUHth86#{*p% zW!@rWR8A>lrX!;~sQ_f8YX*MG=91XLkS>YXZ6VR#2lsMI+?^~`tTHTBYiz-bdZb?< zz7y_`Yh(bccLm=POPgqrAs1qC}&;ZxU2GFaaOni!?=nw#_(bp z?I#H4*=)h1I_pUZ*9pbQ0#`x`&Xa<3XOuzFT)^gtpgB*MMC@ozStC$`eNQPEA{H{R zy|-X)@C^(@-a))R%oZ&wUQ-hi7ufQYf?=TGEh%}kwX0@iE@iVo0BYAI;Ri^gBBqLJ zSR~LOp|}{Q+XW~tuoQGiT>MhEAZ3^KX0^7ociNg_DcvJWdj}u7cHog~hi={KUb2M6 zKDZTe@TR8^?%3*yY`HJE^}hSr78L9ULi9%Uz8&ngh{4|_NwlyYb!59)srGraXW8Fj zAlb(jDxw16!egi&LE9v7>}EGf^!So43FWdcAQa868XbLpHJg{`Jd1vMeKDQttmacC z-{sSxZy_lE$rdjvD90o^ZT@5?Rl^^F=?82k2u%N>OColdPHC(5nkCqKlh1B84Y9;d z90pr9~1-Hl~~_U==OG4?zf1>3O4&u(HN2Fv)d=p@B{2diP|sJCE-`QMv|!VOiV#E zNGL9D*Y$rp&%C;|dFBZRo_=uX={pDS-F@J(tp^_4e&E%sh9289@YJLGckLX!{qCX1 zZ}ga3?n`cVxs{Dru%!us8)cW*u-hUAwndWA$S$>ySU*af(r7G!i3*Pjt(x!AXFto9 zE}|x_kqLQ3ho}?LVEGWcS)$Yj>MJ#LieC5d(W#ea%T-KEQbw1#!N~Tey8UyFVK1Sw z|B)?qRAnEXSnqHLX>&*7<=?Y;Ae#S@E(sN>_UV#P@e=VrqYl+?WE35qqu4Xry8A!oWl`7m10xM8UsWhzL^O{SPAE5c%#a3KY^GS%c z=)yyjsWKcu4O~NNCb@<^0uI;2d2eU)L(J(mN#g$t=iSAYHmdeRPEUT3-5^o#^SUII zw?3;&LU}8K9H+PHW@OXcTfD?nD&9aGI9#gtB0A?mww|Jz$8=bfWZ&5(&ylQ_D=?)R zHf$PX^FgfUC%Pn*)ifBe=;Afr**LP?OqE3L;|-(08{b%s@7hq+E7cTE31jS+t5*3t?6l*)XL8APvx+G#({;+|)w}TgX)$V+W z3V)W(JV)VY(h=xW>;{R#pU@@YSGYz;X7@rj*XxBsqoH<{_W1pK?;5b~z_}++P#k>x z!GZgIlTY7s`=jr(H5H7m5Vui(^j&sa1lTtviO{iN^LzKv&OP8u%EI1_qvFc{=1qS3<^Cn_4_6IZzWgur34 z8z*pd>XL{b4skL}Zzvr8rwE6|7AHC!MVFrtIJUDJCva@lB@sIuQ!kNwu9w5^S7RBh z(k#K;C474O`>>Y~oM+j>MFr<*`>bZztYpG|L&cq~V6|D|DK-xTqbGDpM8-%v#XWX$ zu@|J7GxQK6a!b0jv8fRs~^ElVB=TCcO&AZWcNNra}u zp~DQ_+UiJIQ-ym6O1?`|YagJJ|CcRYR3(o}$T}))@&Yc1R)58AmuU4Dx+Ihj{7jdG zs-z;e8Us+p1!m(KBor4o;L;$WxOhW%SYeN(yIMPvK5a?1Tq$Kcs}-1+6&qPs*%!LF z_prN%L3-EXV&N7YAR99gntl{a+Pe2-D& z!))P#qX~@L%H|UaxUH{Y2_}7?)acpVy@>cc$QCjxKF8Yb0Xvp} zOL>E?yws`^;4SyFxgcom&?ON&TI20dC2z-EVU~Nm5sN-XWWK@{C@L}&oWLbH>J=Q> z>Qn=PFSA=Gh`g#xB6dXVPGa?{#a<|CzDEoWvPFoBfzx@E`qEVSgY0IB@_(XBB6j6Z zSS**8z#+CGGSKzN0nZVPF^|NQ62Zk+xF|;~Lvwf{9x;;LJOO36E(t#<8rif;$T3&b zAfdRJuWMa)LVo+ebbKr~D4(`6y8*sgk(9L_;l0;Oz zC8p=+(`ak58zkEAMAe1u@tB?a=|zVfHs`ATEBj~XW{x`SFu3jQc=!X(p`QbPh;L8B zev&wUmVoS0C%2ZH*q>zGd*bV3*GaU6w|OJy-+F7OBXXB_9j>=o$g7dd$NU8vSQ!S zP@X3>Hn&s;b?*RDE3Q2pt#gZLr!!_e+pH;_W_PwwFiZ0~Q{`-0@KY%j0l_va;eQ0D zo@dW>in2BFe_P#d5|C-pM=zWDWDK9M%Yma=i$cyq62YHrK1Bxlo ze0M38@pE^QpF4Y+LEf0@r8&$0Y8h^D7n?5OJg(X|gY5blVOGzHkLSh57sba*;$xTi z*dspniH}#|qp|4^T=&_7cRt>4HPiH^C%ESR72v~f?zx8qhtgVaYOS@7cQr4~bW=sz z---Tj(TF!y=GUUpX3Zw=p`n&LGN##Qmb`B(lh3b>?o^?pD+TB2cwd?00lVA>eN8Ig;r4m{h@`A$y)Od6sk1QG>RJuhPO+Hp zEN-lAF34zR2~#;)e9RUfr;3l$#m8LnaRz*Z+R(Ux9j^>+zkdJAH)A-6(}>OiM(P;R zORY7cX)frgY9?Fkfd6@nLInzZ4#&v~*B7zE^WGdE9hnZLs@)=K49Gf8^Sy5GXoJ8a zceIK6hL`^7AwLLj!tnh~wSXlH5@v%~Td{BI} zi;qjh$A`qnhsDQ7;3L%NhaG(2dFcA$wDlCUU&q$J(pp=u$+OK0gqYCSgsVNA2$b$g zl{!k$w|Os5t;ML#@KhSu!L*x$m=TElBVWf8ro5S?B73}P=+rB zbm)mYEOFz5G{{q3_mE~M>0&*v!}gR~0fUTiy|A#2;$yS;_=NcQr1;n(KCXt3aMQyB zAmcQ>ZP0!l)B9EnO|Q*5##MH)P}qnWeTVofK#?K^gWP??#tGj)02g&k z|L3iRub%C!ABBS2|LCSuZ9hyFRo`RCPpuyGG=^xY*hI?j#q#bYCAN z6@A4Lj;>F2AC#+NkPJ-~^HmveWv?xK5(*!%M%0uBb*zUyxPmM%9(9!ZvLOcX9bpFl zAwIq@K7J@Z{!@JX1U^DdW6Hs69v|BG1!oLn*n3A}9F86YcIw#3?^Q?Ht2!k8bBdnuk};a)rl8G>S%UkvRz%ZZw0ySUj!nDJqjQ1gpW{I#=>=EgZJO+ zz!Im=jsQOD;Bn*;EiI(Z@R)tq#tv}=MMo!$`>IeHme`!=e+7~A4Ge;mKSSvK_vZ;k+r3KgJd5<#nJ{S zyLF^89n~@%C?^p*-a{*wN*6n`kOOw~h?}n9FY=|MJuksDuGtIKAK1Jvxl55ZGQ&*bJ`i_FOSUXJRVdoKuL%lHSrQ%v+0H^? zJMR%6?-L*I7a!+~k0s(`sra}EK0-Zu)WG(eAbBztty)%&)2iBli8}6lOlz&`Y!AqG zmhW7z(vc}vJM(5oXDYo;8j&Z$`i4Ss5duVkf;!Caefvs2& zjuT{dX<=BV_~;fNS@E$>eDsQsqWHK1K0?jTo!%SV{<(qYZjaOQHUJ-WEN^yeEia^F zKh5=`l)dc{T&cuSl#;(a;1vgnIvNTrnBEJxgEdcId6 z7bNsgc127+NFsRS?L_ld4HK445q9C%kqO!T*u8;S4 z?z)pgJ9?mCse{gcm!PSW@GsdLWvoT^i&s!qu;Au3?g^JdA* zcaFg2ROwvbum>Fqw4Y6e@^cX^K(8~BhZs>uT_5dWA-XKedBI{>UwLq6f4(gFT&oFG zgaYxP)>N*v6U=<&T8 zm5=rLDXz(j?ni9O)eTUeDhguysHmBq4{jV#oji4EfVZ*?b-&y%U-s7O%gFCMEA z>J5?6`xP*Gapx(-a=CIIJVeZsMNdqOUl$CvUg~Y0q_rs?%kEjI67;OUyFzW^F_0AYuooq>Z6o>TTJbiaXU=Y#8^g~J#PPY0QVGTtD> z^ZP2VFl!;$%izMiRoVyskrC8==)h`#z9btoPrHYD`T9BMLbQNYGZf0Lb>oiVBkqOn zT~G_*s|IeKZl{}Xt?21^8Dqlot3GU~bbJxk;^Y+~(H-@TK&&F~lGv@RNmxCj@U9f+m=G2^sLiKZV!$-{m@9TiQ*u$d& zv%Vx}pY}u<8fKFj*y?;#!5b(S())&mI+`5=D6-q~JHP2rwi4OROA>87T5+7vp0g3l zI2R$tb$W-=#p?NHeY=0Nmr;hB*lLJA06Fk!AuT5IQNC&s7oG9*YRooIs&$dEwE{) zcY;V>1{~vXg!vE{pi;;&L2x6R8-ie`Es59>oGAlp(eL%Zf=^$wn(NJ z%}NCGY8SHS$P)o&nB6=9Wzd#H{Ge>`SHB(T=mtDkN7nslCVh^eyp1iAIVi!3ytvT| zc_N@(&u*T8a;+_i*g-iRySC0DuYY$QvhpRTCpij^v%={cbHGqNSbPOHD&^!2dE1lO z-K(9>?u&KgY>6PeA7?Aa6yDPl*bTyt1z$QBPF{jMZr_;jLKIFUB;oo$7s969t6i~- zNlf4)Y!-Qu_d8g zssmAKb@FPuzybzL*zG1$SNd2KLfn%F3i7*@% zoupb_K)g503$XOrBeq#-S7XS?$AOs!-ft|s-(J{y(y%Pw z@X~6Jdp%nZ(FQ5>(X7Y4mfaSyziT9kHuks+g_nmFDm&k^b%$^CBKrP=Z1D|MU0H~} zFJZ543U}+Is_$pBK~T8YmW1-Zdl1N0cgpS#sIwzW-tHJ0bH;LIr#O@=XP^phJ`W3U zAs}@GnZHF)pJA)Q6x5Y)TZ)&JSKaOz8goGw7iAH_D5d>TpPcNF#et`s40v~f^pdpwcoKhA*j7zOCmPx5AYv$Q1NUhh*wj~jxwW6`kMq}NaD;BGU zs+mb8@(qNpn=O_pbaQ;@GQd|AHroAfVKYEFk_&7}#174RxJaW9R;9xudei&^%-9A! zNCOshAX`8WVK1>&W(xZTaWRLGIXv>?^wa)*&C>P}Q`12Uh!%*1~$W3x+) zBx_3|b|aYtchp1qNU;rHN4xd`!uBq<5T>wA7I)4EToC==#BP`9|LwLU!usb7Gd>q; zN{$mV3lfTpH`|6S{*?T0?VXato~7LGq5~(2o#3RcBMLsI9E{BMk$re|b;|t=8?b0w z6Y@5jazD*(i`duKBngWtw{^YVsjxOxM~#)xGxXlyvZXZCXk}VLLh5(95gWgL&2E|~ z_!qVcw!H#rtC$<7a$Zs8jgk%~k~*LiZyJ(JnXzR~0YbwxRP}&I1<%0)^sqdb%sSp^ zGE;{05U^sHE`{aMKZYnoeUgPV8f{EeX}NPLw3-ZhE#gq@}$>o+E}gsKV^z2An*s{0pO4<&?Aj z-}Qml6fQUHXKCSOxaEc5?#|CP}Vc#j_8An&zx!b3;&EWlJKAqQw}ihH30; zEJ!FW4q$gxFLP(z>(ADDeP>9FuDbO^zJccAv9)VzE_3t|0CoZkzKDhNu^Av1vQv_1 z=Rmu-2affEuYxm-;#uuv#t9B_>AG+HDuQqoTL-2fEJ+lBQ}EDQPT}~WUpkkd@g_DW z1dYA6Xz)8zKQ}gYyH_d~H9U zL)B;v&`QK}G?eeLMKZ-?RxKv59bfQ7yz$%Y=7~3c!GZSLl3fbLR=N+`#m$L26v9Je${Yt%;5Tc!I;Y=Z#9|4i%j=1ux**p-8USUfjjFE*O zDp$r>+=7JS0_RBuePH>tX4izs5{ZVRedIa}BF;F`|* z%Qa^het9*YdJo%Tq77e&+AN=XH@huj;CD(A7SlZ2uyKAD+@B?<6_EIFWbv0vWoZ&^ z_h{X>uy=WiEx4hQE5|0p{a&)Zi%87KvK5z$JuWm-_zar~qWvdqNhp_k6aj4g80~MR zF6Z$O1{A#sFH_F#iF^kkI=~jq6e1X-v0b+eg?Gdm3gnIS|Ie{mAOQW$mPCvI`H}wg zkoL6>sY0G2Dw7|K+@vyn*RCG8yc=q6L;BGR$NiIQo@uQF@&9Z|wPhPqkV(!!V`@5! z!lqM{QbPgJ{)n04L|d`cRNzQk5;58jPTyzMn9mjuO6&E9@|#gFpb?$L7RnT#*|qpU zAyCN`@#{0$?GwK~!MVMek1WUGQydDCvYR157G%-XGyqr#0 z*eS{!3E*{}2cefN_*ds-dGps1yHBtMHpT9QM8D6m#7^Cg)ZpCt$JpEu1V3y`B6b89 zU|$Qxu0)~>KO4y239*Mhsm(2zN>sz)Y zVh8Kk?O4)N0#!R$Xyag|{%Z);KiC4ALbV_f6der@XLKO@E1L^~)Sqlg#E#UwbJb=a z;Z?992vRhm$hF=}h*IJq?qY>0O7jyn+iwI=0e8fk95xRGqb0T^V#jFu`u?Dpx(F~r z;E<yT=~eshaWt6-`??it~_w#RWCe#>-dB3 zJn+E#4?KFWvwiDU=isMrg9^~&_r7EN#_OOS^MMaPrgihfo2$9py=+jUjZ)~OSuXeW z?6!yvULi@eGnWe$6LTZrRHBS1)YlP}-bGz%O`o!2V&q%s`R`^6Zm49)2t62XB0>Yk^uTP3PrD@n95c9^HeByngdTD|pNLS?^# zEw-t$=huu)z+Lq$237qfY#xZ}du&N4tM5ki>IDwgeNupmOpHYLNs+H0KCfpBW{S_; zsx!#ERoy=63N{A>ojtZB;zy@Dlf!anA``MbDibm%@)bnqZnj|N=;VFQBsz7oAa}Ak zAn4p?OCpSpMM$8c3hX>BNGLAi8n?o^ut+nh_YxY)Gi)838j5+s>}fU+#8kc}Nz@(T zT0RY!8zhyXg7d|2XBt#&&X@H=50yIapx%GSmf2MA^Q!4&sMQP=+6oZ<3*LO4sgq_e zuvs8#|CKEX^YPPC~RL%v^O{Ua(-^~z`l3yzvf2FjcPNU z;a66(qOW4Z8Qm`lZ8Xb@UdnEZSl`8xMBRSBqvaicR5DH5+#2-)`uG)WaSc^lG0V2? zVYg4zU9u&i-0U($tmU(rL(8z-$rj8M8`BKSZEOw*I`6V2VT?}P8J5qnB`}4dQHJHy z>{f~DAD1NB*bmi9o@jkhy_c{*`Z-%{Q)QcHSboapfvEmRwj`9*e;?6nd7l)SKG6`G z6Zs0_bM%K>6BCl57_z=4KjGOp!*T?h1A@+Bwj^RlXSS9;5taACQF`PXh|MW%u}pnu zPD0DCh{}7wm# zt@$2tcmrDmQyd!3v0uk-mMDMBmPA^>q%v@xh%RlTokBj~oANjjULd-KG`KHMQM787g0(2^Jx_OG#9_zqi9 zhM-hdC#rXW0pmg*H?7IziseVxryUp<9p=BuW{#lvj4cV}wojuWv^qXsX#%(MH63m4 zj}h#@u$5s7_9`Q=`$W&-iaOU6>p!x2BUu05mPG7WL*H1xD-}Jdj&AeU5zpg4(waFE z=}{{uBnBkMwf-q@NRSXlBeT+r(kK+c|7D2v}#?l87Cw#p_|59Dyyd=_14|P%m?f z2c=cVV68Ga7%Jt}_*H~#kS(YwWJ?lB@UVbWQ6tl@cv_a6`YKoR-V~b?f?Cp+L>M)T zP*_FN7+hJ9P+UB0+uQrm^sn0+O`q76EBC>jQq@sk-XPVfhtB#!>G0?*n3Bu;G45ic z7Hxt;=w`9=9qhJSY@^iLOrm#RA1_cWYl#(mb z(f*X(KEdTjwj^T5Ws#4|rfkV8jCiSZvQ%f2UBfpKsiQyIni!PyOqIm}Qm}!)%4hw9 zhexm(A&?zrOCom2PH6zyna+-(WXZ|qN}}9gDyIjetY0Fer?Ayv>U^g(g4EpuV!-UM zBq|ev7{n<%*nAO$PqZZwJHm_Qg?iQKAYGJz!U9?UZZD-n+W1w(a2s1tQw*2jb$Qj~ zPP&Mg`J58eHnTY)sBN+(5k}1-;8Zay1~nEW6c_Kb9TWVRwZFYF>$2+l?6Z4shXN)U zan)re_3Yj|@D__ARt)Uw>edW&_{v#9+-^^}{7}~!}5^aoI=Wk4B z;2<4rR87eXZi1C*O`nyzZ=tW>%NE>F$#BecK=3Cv(xzm(w#pxI^LyA#5bfV>OF}u= zod{s7BiR%D;WwF0Ih%9Ilvwo`D8QPBIG)g-$(2Jrw88rb-PhP6n?eVbqA<<{p4|-c z>RYB9RlJPY)Qlp;@pd64t7iWay-%vJCn(Q?mF)vSTC?eGX-m20<*0n zf;VxT+vkk{^eZ+C1fb__Nf-lUy-#kwjDaBZfe}T9KVCLh9vli?d{p->L}~WNS~DRb zLr!HrMm`Ymq*8eq^dNsUQk}u(fxt9XlBhcrwR~&u^o`{L^kxM(Z6*6ReFP#;QP-!k z|;Sf>EaEx zU5g*y&OQR-Ms_g+>+WWjtbv`)rJz`I)Dh_6w^!rXF*eH4hAt#*7RQdV+ah*dlqBk^ zvh@c8=55ZwWp;9V$a$GuAN;kD%!aR(s`nE1CGTR3ZKz`Cw=;q}xqdk)xpR>_(xu$Q z=7FgG?Y1P88{L5DwK|BMd%g#GG*1*T%$18!wJ#}l_38b5op%tS$JwHpA~Y{CRLh%N z^m!uyeTvNj0q7B162<^ocSzHF3v!XD2n8p_VzZ77d5Wm~lr4`bDl=fCw9XH~<45eq z2_D~)Q1#eVBcs#LUDnE zqXh}2i~OPJ0(Npf)!sbb%JcA60jRN?ER!N@nTANP>m z@O@=7cI^`21lWWtoKLBJr~wz;U@&5<$>`eVKAZArz>zZG(^{?g-!+tJ5y+&BuU3Mv zc=PMLr?nYKx;G9rA=cPj1I_kfM_&m)P&=j8qiK65X zQm6rkZV@>oNPUgX1wrb|wj^RlY5^=*c(QjE%N0;W-|OF<&%s8D5L6A`L#%$s7SR-| zg<^rilRceSo^YW+dzD85)(dPl2w1TN1GY zc&Y?&?U{f~S{zH((Q|r+l7&l87CAbjNjPI`ZOOSjC0iSiwpz?9=Vi06OLUA!{Ykhv8`@!}Gy6%nw!~qb=)&{)m^H2e&Ushr8_dIux z_2%GGVXcE1e!Lp%zKV@rbQdCoZx-ub%5IAo+r^SZ8)Mxg;fmgJsC)LmLs!0nEtH`G zD@TbdRH1Fs)9zt6N%UB~|m zYXM{c0}jPW_C`p3n#~14>Tz2V#zUAVmAwl9@s@H&L6Q3!+Wh z{r#NH0fFbIl0@BMq~&Xa^R_`Dj%|Bj&JF{%yFQaCz&*5Z-Mv-`t=>zh_oF}AnvjtU z)UfMNl;Fti$-3gATo=}LeeOsXb_AOTqWQyYNhrtoyDk1IT15O0DOzkY{8_u_^!2IH zWVRm`FMD(ObblzzMxLT^oWa(rsZ+wuojyM>&`ExXRh-IhoLI#gNusVlwsHpyrZDGe zgOsdw0XHaylwI#7)cK`su}yV8U#wQC0m>C8SS5Ev^%t{wAgbSPOF}v1Hbk%0k>I@Q z`V>}`+v1gmas;C~FCj*+V+&`FQFWb3atHNrkUN6W7@G%z(WotnFh&+Vp6WEwNi9ey zF0j+IAfdRx8K4CT#l`kR89-oDWTCwi{pE1OYq?N>>WWU+MO)8Qi9X4nk*Tk-JNYSFG($C3 zj!EPK4oC;`BX+Aqq2IS9p`7MBh)JtE`KI}mBR?VoA|Nc*_@X6<9 zN7IE|R#a=%tzCP92H(NfgsH(#Nq9AU5Su@d-7tY*sVxa(o41bfkLniv^_Z^y;7io} zW;XYxnm-!yR(imdNF7?FoYMHnte1U`$D5ilvddtIyZ7 z8zvB3YfB<_2oB$}S+9Fjk>8-oKh9>`ROLq`Mlunr7aw6aNL2l>Es5AweG+aigXMDP zBKMMHrVKT6U`I#M6UlMd=IkVC<@t)~j}Wl$v4uAU>}0>Vhgj^t%pH~7i{%aE9yUO` zKKG;t`!<^=g6TJGNyLunVuh*PGK}?)0AX?Ii#~=oeiiZi8(UCQ{Fc<LoS2+QUIxI*iE@GPAOoSObZ14%&iTWCC!hJNZNzO5e)MeQ^ z_%CO-O7K6~mPG8DU*xYy!c`Qa7*@f{XOd%1UwL4_E9g$!@J+<$BDR>OKD#(rmxL=O zL;)=1)AjizF1wY@2!ZTETN1HDHZ@p{gq}6LB`)*~VJWjkF@`_`B70h5ut?7HxAvXk*Lb}sg?3Rggr`wWHo-;*~sJr{d zI^Q~R%}OU?AE){n)&DPS2@I{d{!+u~>?Voc*P+ttRikVD-ig&~R<41AD#a4)6mtCS z#WKb|zdSeyJBT(W`{n6|Y*AdN<`qJ7Wd6?)oma9|Wr~gq&LO37^J92YR7B!KD9r#! zBaS{OX^8XeU~@)5?6oDKoaZ96gI4Enoi!`hiu?U?1*qB&Nsp{2Dk>!5k|I3G6GFH7 z>xkyRu?03ob4dbj?*nfAyHZcCya=&f@$d&vT19{a?NU_)Le z54BSV{3|didQDzO^xnf3*c`o#;MSGgy2!1oxFx>#ZZ;bivL{ zQFlUmpQx_`rvkKitWy6qMC*%e0Zq|@ExSH<(%S;=2ue?}IUp!~#+F1FC5zZzO%HIe zwIHFmm?8yfeUP(g?Mi1OoOO3gWjH@7x@r-*&M2Mf45ki-~B50(pfCQApR$-4-}{Kw;( z6hL7cujKlLW3FCX4CRQ#YMtWPZRAfcVe>*TJk6Fw>=>?E zyK-G{zFMGI%E6{-QQJnO|2?sqi7AaBn9yC3{cA*bCtDq+=&nfA9=-NukxK+hmTF)` zyUtg$86!}?!j?oBYK!4gjkwr>TaZv(Ou;dr-pt54t#HD+m5w-YJBFc|pFg{-CV!^e zn8EvKRX4CTZ)#P?Cz66;jMk80S7Vs;`xQ1X#E{-1NwhKTcI-MBgJmf>i43mV7ojiE z@u>eA!tf!s=%z5tO~@j05(ZqUm)sHMKgi~QDF1$263Tz>Mf~ddkL{qlVjT>+=VHf< z0c$!7i?bdaeu8Z>u(dteKPEfxQhFqW9Pg)y<~P}jFhz4&!tau?PDWJ<*e-)o$ZlIo zK@fh1%@slTX zAudr`kWgIw+IFE-Z~^Pj%iFvDJY$QjAnRp|-bf$0=w*0+b+P%)Y=EL|OUT!3vH9QG zZ4rBVgCx<$sCR+9T^TN=!+2LIG;}RpgZI#h?_mpXsOZW9xR?&EPKJx=FzQu2(i!aC zY%T}{ciNIr&U721*t*!)zk%T>+*GVjNP;gBhA(5&;d>S)?%FjvlFWxMAUHyNsgVnA z8~86N)aq&7^LHuF;w~dDN*6$LTw7z?jGyc%6&wc7G zntcubZ*@R_$&;-K)`euv2K3X|Z4paaYfD05xJr^}`SQh4&pmm^!H?gp>A4boi7xy~ zHuKRgOmtm2B9Tt5p~LqMc7sIWy|yG`SNNO*5A7Yl?xq8`Ug_-c`b3HYPVejLkA4Ng z_&2s-reI7??D6{Gz?S64SE#D7`&xFp1e42cNf={dosK_h|MmABxbZ3-hTuz7{Cn8k zn<`#-!CLAC?`AhhG=94z(Z+ei>~1)Ok`%STWI&f5Ne+fWgvd8g!%wjVHr4Q)1Y9?c ze96EK`64#{88!n%<4@RVf|agTPkEjzq25rxWM7wf`lKky{}Qo*77J~?vCW>+Dp9twa)nCkB(pS z$oRvbdj5$UweEEIMYG}J>yF9r;e5I^!JCk=S@5=m-4?N_g|;LVn)7W*_-JmlLeqLU zbT{S-d*D(5nQC#?mrJ=3*Z|QF<)XzANT~jj#{Cc-8^rMs9p)KTm@i}t9o>xx;hVvH zKD#Xf^SP2l8wbnD!L5H}kkp=_&kVB#G*o6~O7*@!!3XJ-2iXl1&8BQgCEWs0a55RmKHLYV?G8dhHb(@}2W&~ij_9$SB zfH>aD7TOfYI*U2)WH(5F+Gk55cA%zhyc7aiQS1gT*9=$c3O_^uo@5JS3c&Qlz~vCM z3U1)$OyI^>q*}yzjNLZD;*+){V#i`puLsviLhmQeD#NuT^?_;lCZhB#TTD}w7AH!` zrwe?-|Aoeo{e;a3f$WF2Bw~jwu>p4M4~--XyAii4X4NZd*Stg@u#A3z5FYi}*2J+S zSg5=>(O1KFEr#HEcvCI#O}y`LHbVr;3AQA{P+EkbYIy_W8VeGNi>y?9}Xs5;uDeq%#o6%Gp>rlwDB`WzS|K8QsAMMKlX#U&d~W7~a1~ z5^W4+mvtudrE+y88B%{<26fsqHqs}mkc-PK`k~*@I|#<_u$%Z-wsH)Cs4P$P2Qt*0 z){-;bqA!D}4kKkCoyDuzY!S>ZwI!k4^kRg))$y&U@jLiz7(flZ-2A<^%1>?XyXxZvWzvACJK$}vIk4Qy@*g0HhB5j%p*Hf2Xe7&C}4 ziru@ly?n0}0}aOV_p;d{;NE3RB6e_V z&qis}%-RPC&sW((n8MTe(A1aM?GpWe-j+mI{}zFeiluO1wIHFmINeqdKbHDydt<2; zo3f&+Arw~@v6Fv6os;tVuxOe*wp;CDwSi#x%xd^__~%*^+zZ*8g-;XMZ4q1hn}n#1 z;gh<4N^@ZKHM;LowrJ7rOVrr#R;uIKtrCSUwk4t5W`QJ8cPo_j=9y!<0#nwEw^H*x zDt{we22Hm_&lhJG?FWbixXs_NLVM3M?XrW&UE8f zQS*ar6_{#%Nn#M{A_-2RaK7Xef<(osuSu1WOR+g2U?goxC|CGb#Ix05{^BkX%a1_K zE+}OMg%z{n9zqBWy+R=u3h^7iil|-77StTIRKTgY;2Sv=0U&ZpP`ifB2|?}6wj^Rl zZ6@4rn@?wOhhGF#5zi5yhuI>T;xkL!Y8&uW50nSk%@a^QU`rx)P-d+Us+y>tT^re> zUO-sB!4}FCmf4AFl@i4jahCsLw@+~S4_gvpTrA>j6{_Q?XF)=7(In=ut#UE9cJ3V= zJ6GzwgEn&bQ!$0pm3g(NG*#+^h9wi&ED$sK+o79DOaRqRoHe(teSlD$%+`acyEdLt zznI-F(f>YEe^~v>}&%@_e=i0m2utr;?&`Ptp_G{Q} z5i5M9BvDuWtv{|jPXtV5na&n@&;Sg5_E+yEbow{2#WqxNWxfoZBzH2yIqaJX?SNm$ z=7Few%$9_5y-`H3byE?)XvX~Q9-Ol+dU&KIz{u&)QL6hE!t`EbE?ib)(ym>g)`B-0 zF064Beyz0;l-Bs5t*)X=Yxu0m(i)4GIip2!)u1}VQ%~T=uNp`_uqPEIHGCZ@^^@^Q zeVBd_sRIA5<)1Skm^#;4P*_S?l?!OgZdm*U9=M}Laf@OV1ns#{kncY#8*rDcc2wDr zJ8VhB=z@3vb-6z@$w8=G!uh3KC6{ASuFyZUatKE+&2%c9A0pzvW-GxI@lz5$i!x8( zOM$x;t5U$#19A+e`2K>;7wKXT*pi4HUk5jtR(l!|b>LS%@H(o^Uq>uwe!ewR6B2z? zPJn}NVuNYbZN=3s_*Gp5r?I&q2u`*o5j%n>s6fVt%rAK4z?@R7+2|o+#o&F!@HDo_ zrvA9JCcN=M^LZ9?P2`z$vuoMx5D-_{k_dyy8J2u5)KmvUT?-P5iygN8iQob%{@riHfhbC82!iN<^vNoW*)2aq_v@(R3k~9SIwBMSFrUe3&hVDGXB* zUJV}vgNN7+6AV6x3apngiDAmVNf>xCBPtKpRr0(#FQLBwn=Q7fzURZnq<}lOq3ZvW z%>z;W*KJ8C^ZyE>SI_)yliKs3U=57n;u5w77}a?RG5SBYaON1nMn#{y#u)t%n+Jl? zZ*570F|vphRIq_gYC%GA5m!ffBpvfB{yCw-wclL#{G!}Xj{ssZ8+(k&*~O%mK4 zNurIT|KaQV^~k9rzd;?I#}>%cnT~*U#0U*`u^S{BTyIN4+3d>^gjV-%Gdh!SkB3an zZ}WDOa2$5d69D_Y!hPKzfGF0s-l1TN1H@H0$C#Tz@K#z=-ujS>9g9 zC+Y=+=8tTlOre1)R6bYg@DlBxe$Q^7;PN|L60zely(c*eTNj7C{@wW;ob}N`Ax{yJ z#b1mo)SQth0zYmIKg3NIup1|E%(EpCI~?=7%O&Y0>5?PvkB3519ym;BCu!Zc5T0|` z;+Z^n8K~LBw`1lc57pkJ&&Jf z3t_7M#(N$=%WjwG|4CaCVf|b9k#a>`C$b=+xbSR~jDibT2rRdEA<*?JGIS0lvso`w zbT%i8C1;BV`y9udjpBBilBgxtJ=QBWmS|nTaH_f-_%}9s(S|34Z?+uxXLeh}*#00% zv~emwH@Fu}Q?sVcN}YH7X!uL5iH3=SVPko4A6UO{0&WIOfOfJA*enpe&$A_=+-tTZ zQFrgJ?MOFMw|J=6se=>o+>e9VA{knKWmaNDdZF0+23{!YbW%{xVmD7fIn$Oz{Gikx z$2c#U4zHunq|XtQ6k8;7P-;sX3`(ASjjHX3Np|xDlz+7)5j!XgMNverASaOCmLUHlGwqcGRM-DfPBbR|=3I{y}{(Q~8VHf{cg@3HUKi0`Vd=2|lk2<2Q z+tgO{KpqH+y>EdfHF5kI%U5+LVOb;tb*wf(${Q+$!K!B(wl`>2J^Y4haQYjzNkm(- zkiA)O`b&0O#DWh>5^W4lwOcZ@8K(9GyN0P>ZcQLcl-cb5j7jWe zRJgQ~%@slR6k8IpBfF$0?|CWb;=I#0=5(j?9uzziD^#1Zkmc69tV)x25yOkwqMBlO zT%ss=b<26TZ_LeCd4n&$n@6nj&?=9#}X2rHE=R&U_vOoF|dR=u0y`BwIw9yGEn+>7YvfCn7b&Vv^#v$~` z9=CQpjRS{mB=@3N4seg-D4ifZ z&E|<<`ZZe;v17U#k4@nn_FH=|JkuG0b?IEnS>tq6Ps71loYXt5WY)Qlp_o{kuuXQ>A{qT{w5Zdft zBiIYR(wgZD8OSPbJ+RkGmZH?9s zrlwhCDQw50)6es8KTQwpx+_7j?>bOr%7fzNVuX5yxI&?)zmU$Cidc9%I|^4_gtprZ z-&T#awzE-;?vI2Ln#Ee%*liJ`+iXih!M(|rgb(+u_QuW|&(G}&G5g1 z-4?-rk0jB?SbMR*R3|U@bW(n8`vNS*z`Ry#+21P2wccEf7nJ*6I!buU% z4-wJNu$5qn=qWWf5r`rOHBvxmCprRGNkQ;^g3TAf_fcCCG2-hN20E^5Q%~pS^_#Yw zyZub3cPL$SN?!j^Hho#ybKoDkV>WvkfqV{4aRIDDRE{c^-~{jBzIW_f_QrkHrNyI{ zFVE&m%a`vPJ|5RBWZj;_;XAFppjOatY}NNG_~G!aQzuN=I((b_l=rXu{K+;aiaJ4J zJFV7mMSWc>5+^t^wasOTRJz!oNv21<0?aqkMYpPd7ybb%5gQ4_hFUt$_?fLt&0%!ped-2y53~VP`&9EbSEaH%H1)tJT{nF4f&Rl*{ez5Fg9J zMVVGHf3KNCV293Exw8Ok}46{ez#6>(?P1T;1(^CR zlzxRu_Y1KKc`3XxlmaNoTgZiP+XL3 zhd6(ly1Tv8)CFRj1SA{_=__Q7xT4bwcg7c>T8B0m41c0J^L&7fRJ4%^L7UAyKfrE_ z7}onGi8jtWPuwJ~suNXYL_aJRxi$4d4ghx0>h&5chQGl+_-kyX7yHhfueAQVOf^Fsl&N&0sk}q;$fVYMxSQ{yM_= z0$X5H7*BwbHi~1hy@GH|5d0OJ8-n2Twj|ntAZ%Iy{J7P;TBk+s38t5_c_Nrz zY)c|`Opk*D0R50D$%60^VUUhxvzHOWH?V~@#qfBs|6g%i)8C?_(p=c<*t`(z#%xK% zj@^3y zwuq*HErcTO$fE&RpJ%f{!1}B$i7;3eNdc8tz)7eD3B|>GZKG>HuW(y?^9pm|)SX*Q zim9+n*QQ}UtjA`=`cq(UFLH0Ribm zmgEBEL~kTNlq{x;p(V=M%SG(#4Gg6Fg{L@sl4GIe%9-Q^t^HupXp5~1FN7b`#Y>-e zxp=u~g;O@V&8X7w&03{!dc^1vhPZs?EO7@~ZPx><2(YoTs#_Oy>q)67XA~|2X&8{Er zee$^@7>%)cAbroMEr~Ej9GmvJP=NvtEfypc7k{uF;QT=0)$I)wPU|ceOF6L*4$f#| z{ps@xxpE$EEa~6vWm84xV%h0*=JRmQO{@%)Qu)K*s74YWXQLQxj6w;`B8iW%+agBy zuq4sONaCmsF!=QAfmkK@68-s`Y_SYgSUDQ5fRU{e|9yttCQ;?nwj`A2d=1fP-THwa zJ2*XJf9IMro$AVvlXQB@eVDj}RF~e}Hh&#~`XjO%-n}w;*Dl|6!n;zA_P^Jf3j&7; z|G|yHeF&m=n;>(Xj?C1GPELsJvT!=0x>g0rwxX|1k$MyRXQAVuNt@r>nur?7e`iY~ zMl16-fJh@-dnR;}uwBN3&2@0uLeO7AWhOWylNGyuLcZT&{4+GVHvDS#+%6H$@lWHwWz`*^V}iP(W%DiKr4qn&ytgfn61gxy) zjMpqkC@vnb9YOr?{J+{8p3mqmlw~P`=xsqit47`*WCIj!ctXBrk@tP}-?kH5+m(NLY0sgQxM;e6<$m6lgmRP5B0jB)#W6~n zRy`38+bBGJk6R`D5Rv!|TNqO$rmGX)$PK~bm+ZC)76)xf#E!*`O z$B4(Qr@0dqQ#@wEVxr^-CKUB{*-U4*P7s-5OCo+mg3i7UBIGe5aynZeb42nu{4_vh z9lLdc$ZA^>u_H2b6P!MQun^9W`pVbC!-(gI$t&3+nPM_4kq&r*gX%IkprQN@cJl<3 zURx5egR-#46C0%QTq0~!0wv&1!tj97=tYF--`GN$!n6n~zErss+mR%f^-6}kmdyvj z>vCHXvEy}u+!o5mZ3FS3Ow~+?eC6m~7=DNt{emrwDMr&1gOZ!Th z*liOmp0gzpBNqND#Uz<6PKgdu2cq@?f-vnrMF>6|UU@in*Dg3Z)IYQ`n_XEhr8C8q z0$4A+3^6C_C9TO|O=6yGCppZnLmRy&;j=9_GaQFiRxl|U7+|$bSSU%}?B!amaFRo& zrg>IEW=#b)aGC=&>}IpB)G!X~?w)jM$n_JfK~EEuJd4PePqx*oS_qkFOCoH@9DVuj zr1Ei?#jzlvxOk84{MgUO{jk0HxU>D6I4&wD;ego{5O?+#lG)+_RFRPvY6|xiH3s~$ zSq0~kw5)d*oxXdan!bA_8_#It73ye~zT3fWi}a(tl7vP2&bk)nTsVPJa#pW|d6*{? zXhoO?h5Cs)?_l>Z#+KSp!WJ$?g4V^(PYrfJ{d^pPHfatwwt9RS7S&Jb_RDyC8 z!mh;*xUK2Ip%N59mWyH9piyc3DuQq;TLq>dED^~gpHsQsl|@c*1&jt0?__gAz}RO? zLiK)cLp)oZW<6$eE}3$=lBJ{$QO);=$CGRkO!0uLz<>uAuKG+;!eYgSgf z5Xg%8dxbj1A?fr$8s-VG2@|Fbup2Dts9D5DD3o1>Bh`=u5QUR-p?iK?N*Rszm25Ok zjrKx}hu2hlBuKCMlViE%QmO&A34$8joXEXh7EGqx0aSz7rR1xD81fD_-^7r6C5gJT zm%4^w8${2NLy9BneR<-9GMvlR^3@Nx3PAmvk?k}m2kU{m}~jHL$VK&?Q;CmjmG?EXi6VsE78=H zI?&Hxbf5 zaz=dmD{Kyk&cA3&LizMlwj`8KBl0cqX$umH3(SRCkWjj~$abP6xPX;_&h{oj*N)$Q zpR+w#%=dW(xPZ7j?VRd7_sO>&{Pb-H@2-qLbm#teKC=J%`wrZAmD90qwKI?}o}k|g zF#NY_-gD+Nt(hwc4K&MpPGh%4?0&K&QMa$@XnE)`W&G-^#_zfM!1WK0zvoSQC!;^Y z&Sf=Q#OTh2sIziJBAr@8GdV81L88;;wj`AQoQ$xvI*m3rWa9@Pdh);%59uh>c?aR> zWs7DC$Mi%Y@ISZ&%srJNa}m33g3MN160sw*VEm!C9DMJagB#DC@wZo;ZFw)-d5Mlr zgZB`j%h@8DBLrt=wb*e9+#aJ`pM$6sg5ZK&hQ{6tD}=MIIq z^A)GIn|+1N1JV5#ZFO(EQnpa+S#tVwnT#kG4r`?K)Zgeugy7d~@l7FEln}d`T*YP0 zVFKFK{({X1f#HBH3DwCxhe)v-AGG~5R#j@;{=XPtM@K-RN0Z0fl4 zg1$4Eb!&MeUFXZ$ED$?+sU%@BY}t05lVFnpY(&o$MnWT1?E}oZh z5@8@LIx*D`qL*2aP+T?`j)jJR(4Qd?8`+|my2La%oKq}T z4-rt0=wvrdfH=pNMEpQNq%2Q(IGJ279|A&uhCmFnMKK2g;$_K;D|sOvG01M30FkmK z5jzk^Z}*B&O(Ha3seX&fzn;y$sq!a6cZBT|wO`9_l&Jk0TN1IWeSx?eDg!0>#Tf+H zlb(g$_Kqm(8v>%idkD=(*dm%jvryg$g*?g~>ViiXc_d&x%w~gt^?)sjFjy8-5jC5^ zRJR2Q#l=0gsX~7-g)FMnYkR{tS^=$(F^?v;m3KWpL7`$_qi_6n4`Di4Iibk+36u*&Fx0 zeqYD%ag!%ZfKoEY!ym8NS69Eb36^6na)ZhBoA;>(D>dJvTDP%fGga%P#AQ_;h)OrJ znT9%sH?WmpY5~XKAv!pROXpCpW4B5S zU`&!|QpTq3jrF5^VSD{;s>*sKsdZnY($ z9P*tAY0Fn10#7iV(|(>UiYYMDsy7*uR4+4CQ;>5TN28Ljz=_F-LW4p&D*^=4||S;VZ&K*+>ho!739%yLci(T zh|*@ZxTYvMaK{+9qg(d*Roih~sD~{0^>wfIscm92L*UzJOComouy=C(tMvqcolq+d z)`mT&Czm1kHGdre%(DeH1@HtPz&u_C2pqfpz%i^Rdu|aqCJ2tOxgiJ++meVK!AY{N zBNSjLgo<|5K0s9Vv4t>2WpX0pB@0=oq5xbF{lAUfF46z>wj{#(w}?YjD1#%K1qsE) z1Y1G;P-f~85Dl~~iJ?a_Nz%LfaZFdbSSqCZ$|WcqBm$j{VhkXA9EMM;Ml%1w)6Y)L5GKW|II$NiZ0hOjHo^Gb3&?5(Gy~YW)xSc$_S^O4Qf{yS^-=}=wGX!COKEX2a%j^`Ye=Gbyp*jtL;tOutDA=? zST62yc596$=}Rt+qxM0rDmk&1m#{e|)^eIHiLkX;1PUtFz`n?WgyP}_+aA#$a}IAb z=G5;DtyiR8*|EVZC6}ptki~rDe5jM`*4{7=nMB;dEpGOZ!%|OwG6O?YSFR*dEU9vT z$yr~5YeeM%7D;{bJZPkCe{8D6NZ zev7@tJJ^C5DzP#V>WgCg#L;hLH%hd5oh=FFVsAx2TAfvyxDBS>qiJuCKGdtPQSqN( z3t+1FV-mT51ETqlv0EjY|FA8I*fl?QBivt`f|}THg^)NHBu`6(HXhY^2Qm2pTQpNl z<|PIMZ|Y)mpEm-~ciAiufWBo*B6ffl!3E}Uav@z3u~1$l^Ppxe>=-K*a-sV=8@`EP z{evy0DOii)P8Q@-gfu>%a3&M^B#`};%?N?)Pqrjthivxw$wF#R63PdsJg7C5f^t)# zTvg;72vOp@t(l>a5xO!bG34{**6>B3ao7wHXqMQLFowoD=9=4?EEnO9tsXBkprR&y z*s1dl;&UEbHd7axm*|(gL1sQP;3k8Jj?NIf*eno))=Ls~1FII!`#Q+ISTlC*+UmjH z(NwROE#?a0`>>|eKGc8-?!nq^D}VGoSVO1_c@NeCoOJ?Yo&ymzu;=(C{xwc24c
62IlA?Ap}4>} z)`EoM0_P?cBor6B&c1ZA2)$yTyga}w?$Qvi82$z=?m4#Tra+!ZfE2vDf_GQ(PRG`t zu{k1R>yK?o#E$1Ab<#u!t@Z&TGx2+Ig`tyc&XQ35AIWZ)=>J8wB*OaVbTB>_ekSpb zMw!IA{k?TiyW_dXu7CcvN5&uDJAUuA2X4Lc;MMmZxbl&M4?lSDzP(s<^o7T79e?zO z@oU~We$9vQF9)7@+kwY!hgyvLKYHK(D{mNo>uvjQe{}qsN3d%6flohn@Zq;I|56>4ghMO@2nix|WzNuqABTR*dFyBB_zxbICQb46hyX8^{`P(~%{1@yaK zwz!6>t<07;z{xcSQ7#F&@^z(l|6IgwpQwAQEeYj+7b0Ty(u~%QGP4)%@#yg`TMPe3 z-Qf}O9AUYfEt4rMvl4K(2u%4dTMPf!yOyKOZl0i0K$X_pO3`{Jm@IUCZnhsTaSN^3 zX-`nUx3C2?)$bIkUr517K8U^F%x;)y_8qn)l)c}G;I!P{rKY>QdKd&x5Q8V!a_}%n z`Fs!z9%VO7F!%&2uzl7&tw*NJoj`@!9^CLl)bEekVw&oAdZH+~fxKQFGyeg*ZKC4u z+LBOa{w+kQo|)SYw=>o1XCxdE&k>OqeZMt9E{S6*vl7+(U42mgVXIL!cl@g@i7+UZ zu`cQnz0ZP#;sSd>3lb_JgCm>;3B^TRafdnqr}Y!+Yt-Y*W3$Ib2jgDKZk6;6FOekL z7-7$ct3#m{sfe+wC#^)0BW=b~srweHdna3P(+>IA1YG`!{Ha?P#bkg^cwfzCf@uF0 zwj`9{UxEO(x@X3V6a`A+0=tvlGF!!)qCy3l_OCpSj#VDf&D(o#S zNGL9v3{#+c zN42&7xwW^HSLYPE>g&9NieLPLxaJe{618`XSLYT~?F-l}5Vg;UHk0Q2@1 zBor4bZ0E;<3%JR3U3(XD5Zggnr%=AZy-j~_Jo1%9zTwdUF z@A}+}seW)&BPc{wq(k%<*gO$TKW9rKc1-mNeZ*btQ7<4?zhVnzij~=n|9N)%1eg7` zBx1*9QEhB1dcdCEtxho2);hw5Zz57Ne%P8gmkc$P#af&z`o$vb+6nmd^{pm@Q`w9V z$R^p62t#HOr>IZ|M?(t|ii_9T+MXZk?6(SaZ0A~wb|gpFUgGtyb#TK8Y*u;x-5)*p z@Kxj2d{CQl4ZpS;;cQ|<72QDyNt;DD8`*6U%j&cxp)ftimV}S#5muO5XD?3Z9+TJL ziDQXke@VgFA&$}GKJN`VIDMc)`<5!SCAOf^& zSvS@DQHi2#n<)Ha>?VoAKWt0FSmD+^%8@;^4!ZvxYWxRm-WeK~Z4-@um)#`M__rj9 zHufJ&)~tk1Su9DyxfXx^E04NFMCeW4MZN!(tproOFY?z;;XsQ&EtY3o>MYa!iOmNA zj+W=;%Q6ROc8Jw+LDMJ+}Z0^I@`-x>5hSR zwD71B`3Az(#TLud{bnW#<*anQDpLfP_3YLOE-$ww5j!sDoQh6Y6SX?vccMB$FkzNG zXEK}2j9uY5vSV`KYGQHMW0D;8J#=!2_z+uRrii~>Iw+nV>=Qw{@KGUdFz=TAuP-ic zmvC#vCFbF=StaJtXG^H_b_N>Q+-0QDkjLC14;VrU)mGI=LAQ0=sJpXUGkrWZ{( zY=Za??V!TejHw;0Ou!~mAy+NB{vkLRiG^HlZlKze)5PXm*sKxUud*c(JMQaFU+Jv( zUB1Tp5%(MbUvQGCQQ`k7XTVFA%8<0up|_%dpnr(17E{pIBm&2-5eh+!MBe>shOComMPd@{2Po<#Xeh$!wAUX+i@P4m&rk~^xs~17q11@k{zopALulwQ< z^tMD0{cp0BV~YN|M6xOxIJPgE@8V*ETz(ACzvke&l97}Z zEJ!FT*ljzd^z*jwZg1Y!t&MfZZ+Q6Ny;qG_Zr*?2-Q#y&`}4hT+<()D_Fwl992GtI z(1Qmady_V*4ZpLR!##^_0MXr)5WZOs_e^$M#MsV|B-)sRnFBePT18_*PxI#JSJ1Ct z%@)~Ey>M8iHu$fTXM6>_d7|-4Y)L4`>Os(2ooHDAiIyF3FPIq2VXjw$l4k6c2JazA zd)XqIf;2y|2N@Kzvl_f;82)-T4+NmPI@2!)E#; z#PA-r@TM5P7#2??>+0ZvUk0`zpm(zwB7oj$OCokamqWTm#Mj_?N$1(Uw|5tE!vJos z@a*0@8v5c%wLe^1{n^s+j}X)^vlU

QWg)L#&(>aWnGX)JMO-W`{ufIa?C3LwX9N zNMHkF|84;)Iws**z7Ka@RMGF5PnWXmIspwGuj6~ z&*qBYyWf^X?D(z_sgNSnU4VH%MTBSkq%{*75?5B1Cz62} zcuWtfjiML^5Km>ZMIfGJOCk)h#biazcQ6pPAfdQ8)z()1`OXbi^Bvp0M+D{!xHS$8URb{7p~>>8b-CeoV*u zqgAX+Y{{ds78+=V^=0g~2-aCiqK(s7eZP@5ebpaf@BI$8h=%HHz7>hxGEwezwj`7z zy%q7PH)FN7_=T_+NzPZxc{vgCvZHC}(nJk!&9W-;BzS@DvgNM?913Z5RkHxL|bC=4y@FCbeA^( zSr|tj#j4+;c5gzq!u7pp?b_8XlmYvLQ*a!UR^*?iKi1j^DtzBztF`C~-#)9dn)y+f zTGE=W1Yg!l#_6X_?Pf6?^Awszdx5G>sG@pRgWhhd236AS23r!!!z&1Ms{^MwzJ;J? zJDFskmkGId^eYI`*V%%Zf;3lb85h7HO0LhD@0V(V@f9`)#I?U@OCol3PKrXufdCic z+dV_#hU;P`oeEtk|HkMmUEMNQGH{SjQt$)$8w#L0?f~!x`;(*YVqec@fdKS!TM}V_EPT7Bdyvz0 z3lfTp-L^A+Kd1kScIEW_pms*>p;uvsn&}OHwwkhky+kN{(bVwg#S6zzo-pAx`!GtL zDmSw>ys73&Td@MVOLl=vK5R z*qwZUEuf(?D^n7Ef)Ch?Blz%p02MdBpWQI&MBZylLb>l<2u`b``gvX6NG@B1F;Hf) zd-9%_D(6FSeZ7|unEzl4X9~=Gn10o8C!!4Gj$rgvHV*`&FWHia9ixs;xOxlL6pC=d zKf)0(rV@ z;Bv76qhClsko^stD}wAVZArwA>;j2p*H|_=k_)gruaL|Sg&eTKdx+iKXIm2~laZ#f zFd>J{l;kl$YY=%PV9jE)LBN`BOCol#YOl%C7QSmAARPa~7Q)n(8sDFFI=fw>|8=$` z!uscgJw6vI-o;SFf`sCtWb5^Qyn8{r;$4hRmtb@X_b9_ct+O>fI8@4vIlX208cO47 zJ^S#Fsm^pS^#JDn&L|anhs8ubF)SOm(f?oSJwt$ApY!+c&&u*A# z_F7vK%3-cSa9SN(@y^CfZjZAq9O2W)h{pHW0-2&QQ(OcouCaFqfFm~t91%pm&2F6_@(o)O zu_Lk&5E1h(sHjz3B||`%3ik{p^Wm*Sjb22Q{>B#46s1K1rGQIU27xe9E+Ur%uRpW- zAb9=3mPG7$P3kNcOOOR6zEk@E@i^hnp!+t`vA3n9a{)f?Khr;zLniB(f`%9 zB*OZ)m_e#ZD9%`WPX(h%JyQBqkYwt?bqbA{W|{ zh#iqe6MYSvMlT{tWwwx}DDg4^1vVc9ubeH3*zu~J_-pvoK0rKfVGCi3N8^mZ&FprG z{@-CsB6j_UC;b`*;fILB6Kr8jacG_qc$D2X!QvCPBx1)xP5m_#)Yqv0pRoln)qkUm zz>nFj63zd>mPG8DUkqiWv$7NioR!1q3XY*dMH~n?NAx(W@vDf?k>hcNz)M7JX~8L; z1(x|6D7gV;b0nv}%GG+zi`bkH)c)~Li&|~EM)R232Z+crwjNA(}~&;XhSVIel!PqHRpb z*({Z_lie1vt5-`BZA|4rZHr>YAsQx|dR*CB0je4t> z@NIpHa%NXrfij7tFJk=?f&2wq4W>Y@NXU~pULZ$b z5+c8xTl?>RB?ob*18l|!#LwB1h#lf%Yy56YF6CvqlLZ)FJbj~IrT%LO-n9L#3D(K5 zU0G1;g|aFh>_A5j2~v~UTo9xt+LDMJsZ%d1dxbFv?siDS@b6@^D{CDQFMvpA^JUzN zpBor}9xJpt!HxtXyq2vPQ};YAahZ_J^(Aw&SgZKn3uXBIXLL0u;`^8m#}}0m|wzHhbiW(p-hRA z$E}eE;odFe8J6;3O=7wx(!*wsz};<2B6hepcbBoOS{mFr0~eC#20d}P%L+&Oim-uP zx!}|UD1L=o|3LJG7xXG4(QTo%q|s2WU@OwpP&Ox^N0X)7(j^x(0RuN`!VMJRf+E}+ zMfg>6g(Be4{_f$DvMy>wd)SNqm2Gs5Y4!O!vdZRB)xHSCr*mQl6K0 zpp0NaWZHGFH~bBD1}{3$nyCc=pmI_oDR_5%-d)MNEcPOJcdNXUKH?vTj?-UlNht69 z6GGkUN&m|?=LC==aNrrH8_9m?vx`o;2w}*c*z3cJBt(%Athi$X6YJ!Eod9~ZC{ zX4pqp)+f9`Vz)nE#>xyhMG+FazQnTAsFm1N5|iHJJT|w)Lb_~8#BL$0;C3k}0+0=t5vgD~Bgy9E zkP#RG?F)9Z`65UU*^-D6X}>PcBDk#zw`qeyc4o^XJ4-{N_-N5NOD~aAY4|2W_;x90 zxOPru^{!n&xDUDzah2`R7*t281{tdy^$7c!;;vo$v`RZG)EmuzteIj^Q1Vt={YMw# z@x_z{C1*KJydmm^T5WM+dsBnI2&*gz8+So@F!D)A#oqx1dGW4~f*&ra2R;UFQ@6Om zR;Q{$P{o!+jBbGky^n>P!7|Bm7OJ`yw60DwuS)&b5aF+|1vEu?ULs(xN$>SVHVdTp zddikW>@d~tZfUaZ<=1Q>OrdDJ?d2Ejc8UHE*pi4{|I^p^@6P7-WW3a%M=y&YPthr6 z9*k=$I3od9Y-#-Xx>UQsrm-6*a7?x(5r%`)^ZQ(=#1N(kEJ!FWzHd8w^%Fy%YHwob z+(StWIUTShT5{Ivq3ZD5YKG_nHmcG6gHTGd4AFV)wuljSNfH(rBJ0gEQ=ueq!Mm)S zh7;4FL|Y~F4E;RKmeNq8m1&~DZw)WR%Lmv^69xCTUBRn+b9q_ZMuNS{1jj2I<5>65tL;L`qTVu;&KJ28ahb#h7?7NEvngjouAEKj!DGWW z5t|RPGlDiu9r=@eUeY&Q1`JJAway(mV_Fx-eXHb4V!2Vhcs-y zQF768!?{2%bA0Y0=MrH-&tCZ+vFUywo$=uE+FOd^p5juWEP^b#X;hZ?>%}UEa945v zP*zsXb~-lo_J%r!^Xn2mnMoFn@&{}bOpS5_TxkqTJ?^NqP1wmV#dnL4htq_YJ4pNz zk8pi;AiSF{m1rOGT{gSKbiZXwLYXcajfLGQ)5Q_Vf`sB?S7Xz)jty4I4dFd9NhtR& z1SWUx5hPx#tia?6W(nm61hh&h?T)g@UNb)? zvu4!ZCbAhL_I9Ks(azxRWt%;3PYW&h2p#E!!%-h)lnj*8HiVQAP%F#xSN!0XjU~@r`s@ReU zBV`evs1OGo(1L{GqRUng#Rc}rhr~rfa?$#}`#4Tu)$C<7;iuUOGd1BO66w?$YOP;m zH%P4Y%cx%d!6xfLbMCf0#7E$SP_VI-9!XyjadfZFJE-Ot*ixISd0ryt^9E%cYj`6a z`mfk55XC>=Sn+iY-Zq<}MnY|QM}3XTo$-sfCIiBT*HRmv%5IRTa*{0x)z=+uOG5Q^ z2W$FWE;s8uaV#bPF${gxcT zi5j0HU!5uf>u0x45ZPr*B6dW`?nbSTBu^2Kx3a}C#lv9l1cn#=74DZhmEz~@_f@t zI|^{~4yZio;2lJcFCFd_@v_;C$~J|715RYcnLFE`uj; zq=T?E0tC|^AuhdawV2|PNI)0sbMDF-b4jQo9B^I_ri3O$ zw-)e(LUQSWv0zk`0E+vu_H#8`{ERMFEk%oUIm9q*p`T7+)qi zo=TZS5kZg%dh)7Fayzt?iS*xPHgg2_f-Q;IVc)o|Zx{|7I4Mt@I}o8}61J|3&9`Dh zARPZ5RQr$79w49QbO&Q~bmY`3qG%kqvz2FR9Oor+QhK*4z1(ITNDpUemGpjfDv;jI z2V=ckH#)n8%`>r?n{7#iZN_52R%1SnD;6Xa7fr@|+YW0{P-#tU?i?!($zIE^F{Tgw z4c|l?`#M|MrZ%>?S_e(>S*?XeLxHcb86k%AMOzXvLgrT_<9M>T!~E#f=6n3zqVD8I^6#YTM{u^o_~w`4%k=% zHD3muaDD2@wNDV1lYbr8BytK&B9RXl_#lzSi`fkm=Rd)gL>K~&Rr*}0Q3LZi79c=6|!}gwl`b1yaUcIm2#!Aytm8=s@RF6fN;VN&r&$imtn4{=InN{p^NSfgyhX~ zcCTT#MJ(-=l0+M4oM*@iMTIm}B`SD+St=)=EJ0N>JZt17`-h;+Y7$EAUIFvZV2h+S zAXKcWVBhctw&Dyys+azHlw z8JV)~&COm$7{A08))dCY62@}gMOLM!Dpm<_pJy{dfcva1iP(W#bgHZ%2Z^=nIr!?} zr=!;JO@!>1Y%xtCgL?_Y0*fcpLB6}83(~&yAe#$<*SIZ-*zr31w5p?B)F}@^Zt-Je zsG3=Fig4VaIFN>-uwsR*Y4>`_)DZXSziCbEO@g4xS%IrwhG>uYfw&OXtqNOf6^%RL zDQr%OZ5(4uB6izYbNWi>B0t!W`1`rwp+c@aI3%+CaG8fEbA_V2^9rH0Q;Xjt{_EH( zG4=aZa9agNPqm3)6i6ihg+Ma>7YIap@6~MH2;#0SiP#Ze-EqcBarq;}pd#aoL6xka zIVMY*RJ(Ff611EzhLRlopCjHo*a|Vldj*`P45Y!>3Z;>mevk%x0Z}gzq@i7ZFPkv} z_C>ZNVh4NvhH@H8qo%Vuw4sQ(?pp}mYuVzNLU(MU&*x7ED*~p=*-Q|a%C;n8hiUr8 zasdY4La+l+kD|y^gyr3AaZF*Ekr+UJg8hHgYi?&ZPT;u3mP8m1i}aJqU}1K{f`sB? zhi&91xPT1SUaJh2?Q+VASb9jLNQ3m%_U=x11MG`RIXj>lcqRuGf;9^qKD(N``Ys!^ zXrmJ{H_Kgpi`^EnvH!Luq0s$LTM|CHM<3DF`&?gEo1ffxse=bCx4^}5PPaJn0d=Kt zJ6zXTHVLKMg6NN)c^=+UMg8y>S`(}bT{J^|0=q4O`rjmEZOmA%z?$m8j96$pv%=|u zdVj*1VH7N4Bo$_1 zmux{oaq;Iv9EiVX6=qp)Jb$U_K-?p$J~kSMUsWB4-^<1_+6;v%nvKJEvD+f1cZVd= z#&P%*7>BpyO6gJAsfimY^a#k$bkSI+!ulol37=yt$Pf$|h2hpFUkGub!@%Y4ps1H2 zx284ew?ED1ioo``EeYkTpF-qYy(+j8Mq#-D+;h(NGLZCfHbQYfvC#!?zk)TvZa-bw z_5XACCE#*ZMgCy~vhNFIzoc1S4EKd3Yz9GJ5(3dA#JogsP?LWB?#t^=zwSpbNge~k zq991S2Nw_l5m86b8I_SiV07Gd+{SH~amLXk1a({o#bE~jbxz&er|+%X-KUDaJ$!$^ zZ(f+b_tvSZU!6L2>YP(2?wAMnV?_A~TN$<}pB}_o!&($rS@K2EK~|8cY`XLCr)06*4C?+# z1LN^*9tcv$N=YP$l)u&Qg|Hgf4~yHdpWGQP?pI(1`S*qe1zl+%j2-7g1hZFbfovC? zwR?AXT`Rh0a9a3rh>c+5;Mr0Q$8Q`&RypyGt=l*|RYq;Qpl!9mJisxwXo(Hj0S31bBmgiCB z^l}!6*tl;!G~a_A{t#aVW`ePg?_kVy?=@^DiI4hoDT&05VHzxQu21K)16bua)caH;5gP`rCWiJP~ByFC~#UvQy86MP&$qsxfn` z$TLLf>ugbM5t^J*v6#;Y>0e)Aw@Xm?qLf79C@gxBnjZ~R_vm8p{%kkCOSOI#G5R%I zP+N=^z}&}Yvwg?;Pc|C_vY$ywBo5hzRc9!lI0D0XwhX88bfByjZCgt zRkM*yKrUNPl5Sxm81J=|0@@`>U&d~W7~DmgL>H5!=k5R~p5FYJ1It2i{I^(8 z{|WP?jB+h{TWG=a;G$rN%?7;sgnlp_mOUp*=wI?|1zLhtdvU7VAg5aX%6P7lQwMHJ zPWTUSGg?kHj~?&>@8S*8=q<};lpsAMC1E;s292fTdDZ^C*-@uaU%p)^lPDAmsJ-++ z9t|XH1-;CV5%{;Vm0=6~%2XMoaT}%a(O0wNkTkII7yO71l$i{_iOn0q`i)W&iDP}{ zcDOG+qpIEO3M$y)i_S=Tujgc8H+Vy*K_gJGhY^>NK-@pcR*Ws~XF=6El+4vNSg?y1 zT_qV@9~NT}S~7zEU$Z$R=szGOkvRG*RcR&J$wR$@c6zjFKQvEt0%c4m5`1aB8BPGh%4 z3~jO|(ZyKt1pk2Et5mVA3k&znDkTxszraTtH;a8xK*De_ zK`MyvW>Ok(b`o5>jF<{0Lp^N7*7;sW}Nz8 z&P;0mkMch zl!WO3M-h@{9YCu1`Kx+YoAV17ZQgldP{KFtlUlroz|8$!X98^E?`!i?gZ}vncTc|R zH80UOi_HQ7YPys};y^81)w@Pl(b$tO4!{;U?Wyp@tAD3+_$XJ+<^zQ8MQovM`_xh$ zwj;;rydoU?02t?WHk%iM;TkE4#4$X3RqvT(w1M;sY*^B(felBv8ka)CJyA*ov3?C( zIks4@i65wN#m{7o}w@ZxScbY^O6CiU|!%(<>*vstow>|YkjmPjH82<{Y zdcl7sHQ$&CH7|wQ-B5j2F?gR=ds%-_?#;x5yeN~+KhL^ZYdyPxJb%7I&gH$ z>_Js=tUqaq--p`%bu^sNMjV2)NJ!E!toZi4s79=A8g;ophxc$4kb4ma+)S^86L>Nl@AJ1OLn3^;SFYwOekESB896*Y+kJv|^cY)rwsy2E*k23@@)EL*Ne8o= zm=55dVY5RF>LDo!V^D2evlPnta3*e@SI7*Hq)U6%vW9ZbTU4GYj9-iQ5VW7NMYIL& zgw#L-gXV}0Me4_F9tcuDl9EUqDaLyK_@|Nzcw4XMAIol+=>HfgiKzYse$%*KT;dgw zFkHM|x{jl`fC6wEy1SmgcvC?wFvAYe^($65`dSRwQy+h8!8__J_b+9m72oNVu(F6kY){c3Hlh(xQ{K6EgCaZp3jjEEMoJgA7Hmm5V>1QB5_2fTzDWoG8%h`Bm4-F z_!?UfTO_7J$!5(-lLHuEX17dG_=1!~;wUhJyI-+|utlJCaQ6##yF~v_N=ZcZFNn-c zaEDQVfP~@V9H}6FaCbs?gS!{@Kz-lfeyX6>!j|GdHt)ejxcgSC6MgH8P||;qUlafdrs+l^;NwRw%^Sb*H+uJQ=?q@jEnk!#dCWgC}-9AzG+odE-CwL1Y z)~pjqmxJbMC~)gUC95ju#H_S8dkOLR3|lx`d`?JdNFe(P71%U)&34#4#O8ru^q`bP z6eB^9VB!qym;w@pi#G03YAMT93=s5U6$|LnL#*kDltkh=hG%}Itgw+>_ z|+r?WM72j?d`6kYLDw`n!PI#GzzNz|Uk0VcW%8Prz5P z+a>z%m6Awa{|)o(P%uL$;Fqz5u-AX93HVNSyF~xnr6i*I7mR9VV8lt9fP~>s$g_1^40CPXoMpOG0esb-5%TSNE?EU20JKz@N5p|n%rmSxd z=o?H!u5{2Jo73gJ-rx?eP%f52L3i$v`jq``Y>?yaQ|YMPl>N=@wunvMqDgdd%D%9% z;E8`pVsQ6SNT;=yZ{jHVakc_1m0epDDu?1IHOv- zml3F^*}~ca1?3))TfN)IpCD-0SwYuHy3bQ=UI=!-m6AvvyGu%0sLv0@I{Nh><7`q; zs;YW1J!(mtml3-~f9%ZcfDAIVrKzINt&2mVtD!X9671%)c_G-%lafdryJcG%hI||R zY(78?U&=NaeN=)2W$8f(xxDcPe_x`@S^Su>~^SzJ*?;G5gE@a?fa(^(%3mIbWYxQZ|XW7`r+ny4= z-8Ak|c3Z^M9@ZqfIE@QM{-Kmj=m~b@AF~CtRA#NsoZv_7hKXh$my$5u=LZN*r>AA7 zgiL#1+1Xkh**5l*Yu{6L@JU~(lpYHicr6wC&1vB;5VT|eyE8E+=>d>|9%+nE_Lbd2 zb!2qREyHF>m0(G0zKKUZhRqNG^V#Pun6tNgei7IvzNr@b213=t){Jfcnge$%_v%iKzYsk%kFYa2ykmFkF0E z+QAr?g;MXoB z`~q7*TLrfX2|vefm}vGfDGB4GK7-(NIwYI|2f)geQfxK(&?B_+C)tA7f-qIxnrk@m zRcO{rj<8!MDEw4PB5@QJ_GL0&S^FMUab+-FN$Z6!72Sp%P|G(Fqp8nyCJZND9+tS$ z0iXJOwBi#Nx)h%TvPo=42xQ}>Boc>g4wT674ye&W-HTO*%MwYFD*hD&X%$;A+m19B z)*+EI4NbrqL8q6^0YPVlltdIALHK4OKpeINBn%g~w|1`Lcw*tD!(&c1m@DHp00*|k z4OR0miS+AMZ=%Vh+1j=>nT4tS!((nXm`!7d;Ub^3Tfdgg2Qi$>HHmIUcFQ+p%WCHa z6ki!uop!*h?DxEabB6A|Thm(|wP{1`@(AO?_zqFJo~<2QlwOz`49Ng>@wE)@8M>nv z(gn9J1L^J8u-PJ@T_pug93JZZhQ0e?6(F)La&qGn)cZYb0d4g@C58JQkq@HTyVwmA z&E6p;VLaGv2u`QN!`Xd>qF#k*RCp*-k9`9n`4U?!TS(@l(#RLw%B#;1XcHmOe4fn! zf#$PP5{W}|@}5C5@(gDz>*e86=D?waotfPy2;R@xg4=?3GK@A} z0fraw!+KKd9sn1HjJtssqr=WoHbVr=!%`AaFa^PeiC55%3P>0(#*Wx zOa7u{g0338-dH*ZSZGn?solGmm^uI z8$qUy(*t_g?)~48Bmd>7ymO=Sj(F)pMBwRlfz`t%60hl=#2g#4?VU^g(GC&Ukp=o# z_(4fcJLZY41a1Z9^o2n^nYmID33drIrz!pEArFpb3{^(b2f|hreuT!gi!F#PE>lxw z-~ZKmqd zxdvm&?h|ZP+S*9#CA*Ka+a*?Tzm!Dc`X?K@LX!;g6npCr*y7kCVX@uoyX?jZ9N(6b zh{7T0QKnPkGMj*e;o>T3W?gXs<&8i8d|5%&`>nH;@E(}l6ZI9;8UNcNoQ;ij;w?@I z+-?PRD!VOWV3RZnL7q+OMwx~0RznA|;Wy{%85eHr8KqiG#`X2o7;C zARhbKLfPUm8?O6PCl=v|P01fWY&RCeg*Q`na8ibSWI^)coI2tv_Z9WvkZXQ&rtI(c_QUO%gpmE+t{i{09g{ zr-$X^*TI>-sK$dIQRT-zn^1gN8=o4$)``xKVYf+i{_OKs=acHYq$B>M@d4_-hph)& zbDwPXM8_2NJ%!ya(f=|jiNtMwVdGv(=VC7p?%jckMZ?9x2p}!rM1(f8#k56eQTTwt zu;$Z+5?Go~(q%TW86l8ul#+--CYZRJxjzm%0uqLcHggzpOfaEubkr*hW+Pd5^E2AS zRct-l+Qh^Z)EGt%hyjeTTO|gtPm}24cz;5}tR%FxGn8s;`WCAD4z}R7>OQe?e$sj` z=xuB!i1yzlC1DKzAOhIwD4`Aj%t0(*ioS&~eU>dAA10Wtw1(+XHWLJv3-^N(B_zhc?wkFYf+2WV%c8L}ITuLHw{gZ`>kS`@qv2)J-Q&K^` z#j?dLcH;z&=~5C=I0QY)bV|%^3rH9)#!IIy{<6i{-CedwUF21C^|Ag+TIWi1LEo)j zS>;V|b8$GP&OKFMxY)|ZEWYuqcSZPA(^K?^r|#ODy-%;th1b&Hfl;z-R@=Nm$3g*Q{hJV$Ik#TLmHn_2qQ zL#Q{=&24|fZk~YhF)4|}L19FX|I8M`7KYZ*^_ZD>$MFNEj|I zlnUa9D~G!ruJo*fs{YH>Bo@x4SD?DRx?*svS9ztrVsPu$=!LJj7t9Mbgw7gw4D1U@ z=a$3fU$rH91?~lQ@t?R2!tv&&L~a+ZOlP-6Ol*oK(Zz6uxzA!1TSQBBw%upZ%Wjz{ zcZHOM={Y@!Pp89=$qg3_hKIAz6CB8Pvc<5)U`pd9f^-Pm&Tg1MaEX*e;t<4K6cd_) z$2>#+FmUb)K2YnULi9)k}mBH&r54@FCZ*;u!XXP zWp=8BT*0}?I#<3@&2;HDcKZaEcS%Vkj?3Ht7k#s(Q!F^c#d74pYm;{nozJpGvqfiK z9UZ)NvsiF7Zv>!6*(?x%9+r|w9H7Zi>OB6Y&CnAB<1kwcTQH`mQs#9&2n0W2H%uV- zcPWX)A!ximA~cdTK0p8_9+OazTAQ3|b+N?p>~@L%UmztB)xTguW9CE{HVa4?E+$G1 z$)6Lwv%7PmCBZFDPF$l28V-%!sVWD8}h=i^gl-8RwVJ?til9`BNpFg@cAgrZr`kS^1oxvCfM zc`SL3D)6=6%kCMjl%3*`Gn6l;EBeg3Z)dQUr$gY#lu1Sc;ruFFF}857hN^9FL1f9( z^}u|w+~Sa{#nPw8>tf*rk}(?~zr<#bK>v9uiNvAbxY|IESdSJVx{gKM0ZYgfOC_&7 zT7;c%FoDh&GkOIwVho)kistc4w(@MvV?*6M&>pntu~y-xE3liWL3G!MPJG4B*$fkd zIVvTQxWNppF$R-XuAmAx!@|YiX{X+k&_Up(K3Q-hjdtZ-QO)j4=b@0*>G*>3H|6w* zqA^;n=-Pr|&)i7S!X6pB#f=?svBBbxfxIyER4J9VC?n=(fQ!bLZC9=KcPJu zmEm*Hn5#4fBtT=Xs&YuPs?*uB5F4B#B@wkj!3@ew!Z7*}kT6^%6;GZ@r3~YVhX)zJyAaWm=C2lSu?(HRPo``9^Sd-}D46JQPnPCfMtLS4>*}+w` zgYITGNVNDGDGAdx{v3h$|16+<16wg1FjrGBU(arkfO(yiMB-p}Dw+$WD?3FL-Q-`f zmB#^m4F&u|>;?(o_ex154tO^ru8=Wwqd_#3Z?cunF_bf@p?sa)ATgA$NJ&HuMG!=p zI1Gnu0SUuJn>b9GylLl#K`z!}#1 z1MGgO7bG>qQfFA}jrqzmSx|@FF46yDDT%251zo727wWu#fP~@VMbgxQza({KcbBB* z2TM}hO2taCGB)bLm5We3CSq*4rS;XQSF@3d@8n9*cB@gZVz)&M>y?^B)45RYXBUSm zpF-tQzsMrb6TeH@SmkDDDX80Yg3>GPQE(m4Z+?={lf$(Bsu7fR)!D0 z>`(B&+W1U*v;sTA4{og;yC+{9ICyjI_~Go}pjS9}Q*EmMwg1D-wF$6HF#yhB@Zifq zca>}fs1^(PG5BgyDZSq`?5p8P5Kb3NtzEiuXW1*2S6=Crq5STiD~p9aD>oD~u2TJU2=UL^YOse`jT{Bf^(#`S3fWo?y@)c3a_9`T zlEcTxgk?wBj1hnoFqn>nbkwasoQQ}M_r2rM}LO0d#d1Shl~4F5A{b@+y$`(V$SfEw_1m3qjg-$R;8_VY*j_QK^MA% z51=mGvagF^`1MNKSwpQ1)CFv8-mm;Xu$*hW19b>H*sK#ndWDok;)ZlaFb*qA(#GJZ zEn}APZjJvrn!{hP6=G`+tDxkmjw}qMdL!8=MDT9KkKhB`n=JkvU~@+huS!WIj`-yD zaHf6$D)p=RZsX*o7J7m>-N_ci7N;qxOamXpd%u_6FoEDbQWA+nuqrr?sXAQ%2kbe+ z{s%5PU3b#{k71w$-y@v=z*dPZoN5!AK4Pl7T>x!;&j+|#vJr%O+P`PBM?il>N+NO4 zSF9iQGJ93}0AcRWUg_xp8txsfmeQFq=Rycdt1A}{0xXrr=sH&ETPM|Do+l7k32*7+`O{VoExk}axj|67t8 z40zS9Hi%&T-E|bW)7h*L;Fe2CBo16^b8$bM7y#VVRA-x4g5Y%|4XbobovGCq2x325 zY+DddPUU^RF^6RMZs|O?u^A#zZjq8m97@It_kOkzw!pMr;jXaTCHlWYN+PO%!P<;j z-ob3YfP~@VPH9fkUt#@bcb9iAXt})OJA55`xqbUpUb?>6)ANeH9pQTwbLZ7pc|OjD zGu{%FHrlQ7+|O={Sl>r9i7u}4th8AIP(yC)G64H)^xNNLE6Ng-+8HqTwqFVWd73W= ze4Wi4LGde65~lZl5e=c!D?T>a;!w)L<^u%vcWj|;L6xPKf6eBH;P{_X5{cv3;S_KP z@($BR>p0=~&PP0E48hvP7R45^teea;D**RnYxXkINPkvN*YjjIN_i!qiAxE~|J_py~>i}1?OdV%hw zLGDql%UUcJe1Odx!TN3~iNvvHBtyQ&7Qz;z*2$1Bv)d*5|ALf6RR4lZhDnCtq*y@0 zaB-hBlJ}D#FE|!<2sf)e(sb*kxJJxNTJE;QBkPx)dv<+iNoBZHtnL|hHWdb|8Q3cn ziqUeL>e-NE$9ED6Z_>H}N0Vq>FPvzHK`@3Mun#b*vKFhlhmm`uSjF$~)XK;LFFKmhuNltdID zK>%)Ic=VY95{8R}LXCxuxlSj%witG@E#E|gId(!q0d{Rsij}`ShRp~uoM)fA;UokZ zWAfd@)`M*iZaw)vh21XE|1v3wXqOT6I@57+4kjRBxOhgIMerxzf6=X-2t9c6ar(u0 z4&&02Dm$EZLS7(uX?-@G)&S*hnHoA8o%?h3f`2-C8QjHEo9KHOFFY@YGt@osI5#ZC z`Hj%9KDNA7pDx~tV zEHs=Pk6vF@i$27z@y~2&8Zc=I#q?CV&W)QM&C(Rk_t|X|F#buC=we3TWXK5kT80BE z#gP$E^(CVo92!z*!_t+CS1LsEmv)~Z9RJN$i7gz<0ysRVWUJVA@wP{(Bt9Cj?W@y*h?v*yav(j{ApUmqIy|T>x}T>5&MwLK+D6 zl8K#}vrsp<#(*85T!uaIP{p{c1q)>-0DmnQL4P5eKZ5>=QWA-ye=Z~`V$j!zzBgtM zzyfk(u!i7!(7PiBASZ)1u#T-D+YWzroDJyH;X_Ki7!yG8h#9_7fVSbZw6;J zn1O#wH7@gQfYTHEtj$172F+lItssFJ;O)_6EF(RL;@O))hRq@|gWXaRiJQTav%n0T z9Yr{5cpyD83N_8OBiQbh3tnZ_x#3AhyO$BtH?oDbg>+F0%3l@7ppK4a74d}O3Rxxn z_YG`D2ym~Ll86Gwnb!JTn2ZPpdjb-Mi#8J>apZkkpR=_HISYseH*Lqc|BlrchKG=i zaIz_ENY-DWMg1Kc1zU^i0gHl}gXcn6m@Q#dfXZqw>>Qwu|9%?8|1Fy-VqKrqB)SsB z`-vtvXdIN-TI)b%!GXLtqH1kzNmo>Lxjo^`Q?32$2++TvAd$ROZNl!|Y4E+fcOML8 zr;b%Wh72M|O#M`<)A+=c&z4S1O;Pqam@Rpk3Y6swZ9fk`YLtl6NsmUYbV=*iLnaj1 z?*iR6=YDJ-+j#r+MbY*fpNAT)6tE*S_&7%nc8W|jPvtx4Tl*}{dbzQ!}QP}RiC ztBj!vG}c|XeFx4p%HBv8F7+$Hh6LDdH0boKUVG+prwqv%*b^BZs&fbGt3_{SBN}gv zN+Io5i*8}JMGWvJO`Qa?d^`kszun4KusJRD*?v#u9ecnsLPzkyZYw;|+KYj4U{?c;Rl= z=3Rto{^ZWAT96T^wgh(GYhGQbArB=9i}0_z+C3Bdkw<}>$7Y29H(N>~ao`vc>G^CS zYF0ath(0pEyU&_ws^MKoR}*6-4M2- zhkBi_V>3T^kj(^v=@U{CiNmyJ=cvkZ*1Zwz!YDfZ)lpr^+X_Mv1%&rUY_-_JduFQY z%cYL!gO`O(7!ZY`T&^|rkFyyh(EmV6B5~;FLA`cJ{lhgsxNmKPS4n5{kzE$eUP1tm znbMhvlnh0+6I2ED2JYNJpF7e$pOq@uq-dX!l89m?h+|ABgaf63gyCXDDu^En9oOAZ zXfakD-dOUyE0qg^+syU0?fy(DI~u-zC3mnM|E%qh(J5iu#Xsk;+aeC&OiiMj@z1(+ z8E#zYAA^p4AUw^S5_*Jv_*HBX

3C&WJkiW9etoRFUTN_NXcx&2ZSrq66cd^#Qf zFeZ^#vxTrlp!Fp3N_M+M|NEsRqWTxOJ>xmCiwQ^=E>=ke@jd6ich_@X(zvVvb$2r0 zK3(W-uzJxCOB`@=ABujjt7h}6T=W23F$i-@m|;SF1vSqEKigLrEEThZxD&@ zFZ(*;(`jEj-nZtE71!#&;yCw5Hv6`^p8)%Pb#J11(%-WiC2Iejltkice?io7)buZ? z?!{9(Gc_Qdqjqd6TP#ymFJL!FRDFV!MB=JuL=$~%A#Clubu@7SyIrFH^Q0uA`WJ)( zCYr!OL_orDalf?B`q9J_-Hj$D!4ay=aPL0Y7Zq}$xsTTafh*b2#9Nh;tX&|mpWPO* zq>3idG!W=`@ur#m#nTH z<~!Mq6Ggv6O2TxOw@OKvE{kwKr!ITNbKwHEdp_FTE_-rNF7K7q{N8k-UKS6ws+OEf zi>1AK&v;`%ntQa~nZLu9HQwly%@Fd1vJ0&%s zX4Gn`9bBocICuByE(p_aedj5SOsBIsA|OrCBm`YRx+@os<*LK%aBp(8oZbV+Yla*Y z)7cMI&*0c~7@+pABRFf=s<7=TC#8x$$FTbwI94Ybd|(2OeXW}D?+i9K1Q=IJ!i;|} zL~J`fDW1B)EAOooM;&dnVYnjC5SvTcqS#_H4X!BBytv2<0b&QcX#&J6q$CmtVv_IK z`Zv5hj6&lBgy1jOLfAquIpueT^59Aqsc0MX^O; zT97Gf))C&zZkhn`9w~_^5Q1>pMC3SN2}l?&CQ1b{TwrYToVYlO;Zdi(^Gsa&goM1R z0YUFQj(Lv8`7dm(*c#_7I2WjHGic_R&abOEOCN!2Rg3Q z*enr1Z8y3|tnpqa$U$JzW5-0zo?h~h4Y?#%=NQ_BJphKsLA zQ?QB)SU7llcNY#;Z1(oS5ok#1sU1Q2&pqJu4enF7lfzD-bfuI%0CkvDxhhEhg|`Cd zzFuEH_yrrgc=J@Ew_87WlHC?DwIiBD7n7&V<%7vHIun}`b+%nTn80qCDEBxi3DblA zOq1yRLc_GaEtjd;o4?Eu9(tn>(ebWiOJix-H7LqDasbYn1WN~WFg=~!HUVQfYO;GJ zp;uf~%|gx~TYz)rutbnY-=YRhrF*@uvmX{C)qolHCNzHNRCg-}K^>H~@zlCr#mQ#}O6gKI za))K^@%pUgn3N7Y6zLwDGq>s0KV|X_#~xK#2rutk3OkFO_0@8vIO3=Uj^L_;@E9#4 zfpBhMD<*!NApN1XMqT6z>zW`LWRqZPaakYe#FP_8(-|$9o2kcVG!W}!^GC41KuRKU z>=*dHF2>1)5pMM&;yBC}(iX>ssS)jw)s^=uqpcFcfh(qXd2BuiUIS7R)_93`EiR2g z%0FQj<2T#BjnLKD^4db@)R$u#FvDFZ&5Ci|%w~q*ccUiJ#W8CZTnsx1ryKR!OI*FP zxEE0O_p`;d)&1-gRQUz2TC4jb?DmPe?~{@+-Q@#_Sf`T)C;BlQ;<6r`ofn5r^Vblg zZ?gro#b|!2prcG5qYOAYC>b1IrS2PSE(lUzlafdrsh++;wWAsGIvy@`IYa8WFf47U zUmBc8cv!Ok43T__tpHmjm#5NN0=Q+z^CJu;fm+5=zcfnV!(tM5zh!epko}dEMB>OU ziW{-Eqzl<0SOE;9+4@yPaQ>`>rcbrSv18Rpz$rm(9-9+_+H5I_#8DgHU#ylgky&i5 z{wrc}KAU~p-ZTMDjbZyl?Q7YM61ATrC6Tz=C+dAP>&ZU9hTl>3X|@Qqs-Kk7J7?l| z@V%DZEK&aDQWA+Pf3hDf&~28XCkVg|Y%y#Bm=eSU@eo|kZkRxDjg&;<5X`9WUh;?i z@Bl#{BN!iM3uFt%OtUA+AI9m7^MmZx2_pAMNkkD5Bx+5r7w1g^5{3)RQ3*&GE}qdD zM*#`L#naNfr=M{?zq=Xdo}K|HE4Lh`kA*>4#8wr^MynNF12H(8sIzh5wd>r`dQSP5 zZ1ah?e_8NJLV2rWF zu?1sBDqH8r)%=itv5(z2fuk%XkvJTaHhbw(0oJ@q5zo~4071BeErcxylT&%c1!Rwa z3!?wq*zFSize`FYs((RnX5u>>{RJcp7l)-Wh#%jb*4_ASl^@^1_%{k$ocuJWDikmR z`<+U-K@p1|fp>;i!bX_;eLc|oJ{!S!<5LP~7wG*HyDegH-_j(y80byLRqL3gu+S6i z$xpEbv{WX982VU4vrPVP*$orT{z^*1bfRA%IGtW|=>_HM^D5O*UDgwBbkWz(s0qC> z`2nwx86HWO_J#vN?#Bq^{5hS8*GaFatyDWg^f{I4s9Jt@eQ9(~zb*~z2@IqmZhIb^ zH-hzSDT&0fp3v{X2C00x7)H_jjQE_-7QnWnO$2;kaYb=JG{2VJD$)EoQW8-qaE?5W`1j-$I z!nkp0gZtP}#@nFMM7xo*%x;TV-l!(=d>uJ&WeaGj%yuK^+u02h&AvrS!t|yZg45}d z^Cc}t&Suu%)bwl5nHu(+huG?}h5Dtf#@0Yy*qG->$+%%JUvkU!u1;M3gKTDrd3-`j zB60I@>n9@DI{G@zVc1jvMuzLq!3MYsIa6^q=p*%NcM|@WvmSEdaQCKvz(Ge=JG3*| zmL2t+^*cB8Ior3b55@VpS@q~@ZHFvTX`@|qbq>2N()-WUB)S+~g|C`!tcP0*KSIy@ zDz=F6o|mW-7NA<+Lj6j1%S5^TQWB<9Z9{xI9bnDW!zP?J49qz)O2#}#Jg#PoWQ)g4 zyhR$$6=te~X}2_*p~Kyk?A8e;`=ulj$7IgM#rHKe9!%RA<`}?)U7LiE@7@C1JYC zuMwY4k8sn15l-83WO$1{L=U=nUS}o|#IS4A>SG%$bwkhc^=P(QEMPZHpg2KF!Ws(k zQLP1f6-uvx_&3=qPqPtL_adwPtzJZo`q)z1_LhZs)fWiN09zrpz@+>_ z^6n}XgY5At?f|fjz_?fVY?B_fi_H%K=+#mZrboRBG48Z;TjC?Rdabig9qM&n1!n}D zOZFF>O(RfAEDU11ml3}k*}~f5wgwBKsxP0r$Ma;cU!3lC%aVT?y$>@K12|nVGCmm!gN)i0qVThxgl6Q&2F1u@syNA z;#f?CEudZrc8)|wu7=+cfu$!T6`@a3+dh3Bi1HV)noQlpBWR(;{6?8XTk=SxXM;Sdb&CO*KiMnJ-F(I!5SR>D~j>^Io~d(}2p z^LYm&guc=6g_N~cFQTcG*{ZfRm4&IsJ!nI~rHkAT*eP%Lp_tq(lFL-89kflTs3Q z661z4)(wku00|xVX0Y2PU`*8{x@hdj_ow%fSy}KSs`N~@ShnUpK2^rniCwQ^w@Fml zD>UTRcUJit@qm9z;2gV!SzxSQT+=bG**D2gMftL;!D!e(T@`6 z9t)=dn%zp!^tiit#9SI5CF-4bTfFjcXb8={xE>RJmW@}usVQ;W#e|Qt+al)muqM$| zug&j8m-gCO!6G+qT_mck#l3)z{Ksr@Emd2aU0>|R+lodMz`m}`iuaG$?GtrBE+t|5 z(GL)@P7kFgUOGJHZ!A@qIIz)fXW4@cMaa-=&0j-|j-B6`sF9d|Z9ZT$=HDiz@Nr?= z9qjH>91^6CVRJ!{diHsX)Y8USzV4537JG63hDdPV_HD$ihpjQ&zU73Xea)|iPtCgB z;qqWi_?YaPeuW zAMnGLH*`0-)!UfIQd=$>iWD>!i1)V(g`9itW%VfL1~z>0mZzj|7sXu9Zi`skHJU^h zqnPl%|4`OC{0P142iPK7sG{En-v1x=cFVOhwhw~&|xqW~jdsSVutiZoHxC)sTiEdE+b z!Ws*)dpWMZ;*CZy@P9+q{|lRUTh+rYe7bF-@gK6ABpUyoCecOLvT#)|q{N5dW@>$r z&4mZjBco9ARhKCYdzzMSqR#(^tpHn{&rc0%CUspq51GVUZ0Mx&k8Cao48NC>Foyp- zM6z>Es3*5mFal+`?e}+&x3)O5O_lFtd z#x1|@;ME6va!XX}({>NRu)YhbN2+0c_rcs!`1Lghk+ms}&qB=)e-f$oXsYSla`;No zT!CM^_|HoGXBGalM*rhO^LyYUciYr)#LTw#wmP-P*RfmKUqnkQ z`_+G-%A!i_gN|J#uzIMJK@D-SR9aJpW`UGMf`*7-r`GhseE`|~p!OTV9ZK~=lW>-? z7+F`d`U34_J6mj9U{AuMOL*s%e_dmpX*kIUOcTF;37Z?@P&P|RB#vY6nZ3>qxamq2 z*nzu9aTrjs`=CA$X zD-9J(a9Lgkq9&*#23ea|M-WkilwlV%T?-mihpOr8gG$GEA8?W z|H^KQSm8fw5?!23OjutmK!wNXsaf+gcI;=_qFJi3HW98)@j39dVdlfnuv;YxeOgMw zbf~8glg>>GFdCZ-Y13>5wlk4B1ED9V|7D9hlj$dB4ApT56d$l@N%27-SjujgK(I(k zB0&iJnc0c`qaH*}P*&c!9ewU5G!?2fe+|*us3pwZ0@Iwvnb(xvy9b6~FLq_s*}Eh2 zt_i_|P(#6-YpYaaZv+nLoXclV&qZfB8`BUuZb?JEl9zj>f(oiagL>QxjZ$*PCR-n{ zCRJ8AxKI$kes~yXZh@NIA>i5_0j}M>KG(!l*Gsi#=58;Ql1R{0(OX;$=MqcBeO`m1 zHja47)92 zT~BKg-JI8L^wO0olnMwbur{IoGy2=bi#s!~AZmnp-B7@RuMIP=TflCWDD(s=3DZ&L zXcA4&Xh}E8OphGV3Ijl%A`X3QaV*WbHUpML@Vcoo78am$ybIWk6FAP3lCXwDyzD%~ zUmz_zKe_fD&iZXTBY@N&yRLqUfOu?yYyp`H7ggvLTd2=HTBT?Vuv;c*?9wCz-bSqC z2@o}ARf;aGT=O$(^+vXAwpyK-f_M!%AnxXM>{f|Jua#<4>P5zHREdK%tHb)N|BC9o zk1d$3Iwz!b;sV+y+WY{!QKHSer6i2Ecpn1N>7?9*bz1MM&JOF{{EUkK8e0Hc#ZOEH zDG#doFSA=En*V~7L{#&F5YR0o#$W8n7Met$3pHRN!;r3IA?>1;Qo}aU z@=Y|8XV}`dHIoIV${rMd4Y<^s9;n?s&1Qqx%~PoEW(VCne;~W==|aiL`md2Uk%|&Sy7BG&xU7!r1<7O`_w0t8sE6otvLg=`UpqU~AM$=`jP&`RoRX($`8! zM3pY^S;p;QClZh_TqNc87B#xP#*-}6@3npvZDf?KZ(AE#*x>jYPb#VXA+*1au=yaS zlhY&wv2>!5-`m)N*(z9d!ZlQrZ)P`0G0SUv!#MaP@U02JjL&%%8d=nkq8`#?BSjf55LSD~q zkXXodsMzOOCgMYE!8n?H5!K|q>;{P@-!CO$to%*{7O&G*1y7T zk!bykQWA-49g}O()OY*q$Hwh7mNyKU_s|4 zAYr&jYG7%d)(MR)tzShuah#-LXWchra3zdI7sd zqRR86B#fn>i)j2G4K5yA0G8HcQfve47Kzq(Nl7HG_4+Up@+9?N(P`YwW}l_=m<-#E z>=ud6UneCI)wy6;Fe3}PE&&O{MVpaDnjo0Ae#Hu>2lm~->8<=&_|}qI^dZ{8Lu{4W z+5v1MRl9Cn#R`ox9%Q#mtl<+<5>XrkP#SB%l$wBq;i64~Q)&%!)Phpp`SW72sZGSc zf|l_lTfMfHF*~J}kn--8#bOH!Il^wASjbPMBofDF;*KgTsb$mABS8(nBMMVbN-DUU zl&aKu@HJzY#NEIG5{8SXqbSmhPVNU4J3eh;xfW zsy4cFMHQ|w%U%f^Yv2g4I;#|%{ne+Kg8krIy=p0)*EJ4c8*{l>3T?m1y|um-d?Opv zc%PtD(rzpGdUjjH1YfF2ba9d~L7np1m-Y6C6j(DqW2g4mqFJgDwt}nkHJSs`rw7=r z5{2%Pk}$pL)rd*QryBL$_MxaZx(WYgwgC2;Z@vltMs}-2^RJVVu-3ddPfqsPhY%o7 zu?yVKmd6$di(U91VK+|jxKESlqHBRthH$DNpVzKD>|Vl;P`}?`i)gFgsjw}mffM3p zzQ%5uDEG@!62{oSfcP|XGh$;uUKbIF9Q6r)MAiS6&AqMa$ES4ZfSB4mzhbvZl>Q6U zSocrCuRqK(?|I0K>6(i!X~i5{m)Nf_guq)Bvq*Xg3ZOa=nI z%$PG+f{oUNP;?l^q4lc>&pB*CZS8zTfo!LgMBKj5d}^#tv8tg9Pb1q3>R&J3~}Nv)Z?L& z=4drqG-^)lD`+eqW2@KJSmuWNc)*ztu*n{Ml+6LLkq=8rB#zFc4c=(JI0hw7D&aA+ z@c|<7Pi!Gf9qTj{eO$yF46x#N=ZcZFX&*VkK!y#K*Dg5P`;rdQ5zbA8-7O{ zctI+uAhu-!cO1J}VgmpB+)V(LFTl^30Os%nB#a51FP$9u3EYX@Ez@y!&wwt|c;V1c zHj`Dgfkui0StvW6h4LMx(UJ#$;lG`rsxVYmx2_i)g9Nw%12o#%`G?cc+wu=}g-ZpJs^_Y0NX;x8{%)*XqCe zVKAG0Tis7cK`$y5vx9VUc@?`+qV_Q0eOY_psTvRW}?ZD8^*5?qWAc zRDFk(MB=JGz2Vm07>B;Xzx&J?P-Wx8-GKKgg7+o1B5c815nNaX3yg3KUJXr9D6l>> z`S+K(D2ES_nHzkb%@@J=vr-a?W6Y@E_H(unw)nKJ-*%MUF46yCDT(Cuzu8Nd3Q$3! z6saIV>!(jYxifJ&35#m2>!(j)w@dUtQA#4Je?e4j0&@)11SAX>Yovzc2j&O6yR%~1 zwlRGU9_&lUF$jrypetWvf%TqfNI>^!Q z%)0qg%%B84+~%fk>w)WpRjnzw%EGCZ)m;~15Ke6R8shRTWG`BRKDB$d9vylc*TH(# zl{)nc!6KFEm$rF7#8yzS{)bZi#uuzdVK}3>t&yFTQnJIf#lEg#KO*QFE|DrhiSR}p zwYewkAEg4DTJv9(l1R`dvDW-NxUbG%%JH1BVzmUhKG+%^LcZ4QB{auBJEb#$ED0@Y zbAsg_&sD79J#REY@+YZw4M6`RC6PEl>RPs);4-kQRx8pi{*IJH;yA8`i`=%Aydg-P@63X30sSI2a|HAaQWA-S-g8!OeU-#@wtG0*qhiW>J3OcbHq=DYZT6obzy-Df zYymzwNK3mVWZp*=Z`}x(C!p?SGekfgmXb&u)cI%kI-84dkp_5Q70PKR95YvG@gBnV zcD9JNu$_>Cio%1gVi4k=1_lXIZ(;L5kg7>ZM3LeIfj$=|8-&v*0SUuJQj^*#>%2l{ zcqCogONwTPAE8-%j;&8yvzVHy-=(TJA;$0+yJcbwpV1_`n7COKtU|j^qne$V$!+Ub zQTab*tH4(I3+t}55d^o%MEJ*SJ_r;)l9Dhz;&DW?a}!~lbesr_eolM5n!kovjXyQ1 ziN^_QdC;}N=~y-o1gB%9B%(M8oS*TZ*l`6U3>WA>1tbg?nD-TsFkHMuI+gQt`d4>1 zr++eLJYi}OWIT0T7xX6nxxcGt^*6IkC*E5rncHRcH?i9ymcCJw=;Gi22a`Bk zYxc55v{Yx?to|^&Wujb9O2TxV0mP@%?tU5=H_RWdsAkJqxBxt4%(du4bnS0p3uBAK zbTwsdrDBZ4)eRmXff>LcGFqTz|zIjbPyahN}Mrn|E8)L)KrnO*H;-c9TTo z_iGYebS|3p`l!zo%B?J(m@3Pfpi_jVB z0x1_dh%b^0A_b{(xU&`Wjsuc0|~+LN6D+4BBODLY!x zU|-@VV4cb^-WrnEW4FIL-!~fVXZ+6*@Tb`du?4(0Ro3EYpo7#b+AFv`StD@&R!SmqxK~2%y>Ac_J#~0h7Y`~}Y|ajp(s0MBx~SgYyBXSv&;A<0 zUUXV#W;G1W*InG z2uK(%5(qT_{9_!Gqt>q`WACtD4+ zATPI@U&fxi+s@{S;CqRbL=<1al)%g?aDWhyFkB=Q9yLxOL++yS0ouq7Y*pIYNb9-f z_3Ubhw*dki06DFj3;V)#J47}Z&# zJGU*~N4$<%-kHdpn15|?YCrJoX3P3Sb>7`q0ghos$Y+<}_pDU;X7BwoQWA;dcdo(j zIk>HwoD8CUN@8fA(|~qJLcJaYi-5{8!qLi+ZQvKpf>B4`(nM!rBN_`Oa zBeIySIseY)lUU`yN=ZcRL10qGDslEKAYr)plyr{aCsP)6H<@x$e{}@T3&Gx^p?ak0 z?<$L}^Kz)37+Ltj&ddyz!0i$vC$ifj1~yld=wcW*g|{PoEnCF+zE0HHcBTFtcFRP$ zXG%$!ezOYk>2y36U5pQ%NvPj4cxFSL!ckw@t9POiChgES7Bb_WRp^@JMoy zzD0)<4wKuxj96XI7S-8R8uk(7ir7UHD(#7kj)cqm`oADN*y{EkD{Mz##LoncZ+ ztx+QnzUoX?XFa=FqWza@5?ypNJ#Z>*r^_0<9_OMlBi^!?EZdAhw zG`~<=05wy}$5~i=b76I?H-#P`(ooy?sGEx40R?dd8LV6^d3DAuxKV$g~ z0(uKubX!1EsZn6Oei4^Dh>QoP3XyTr_ikeIL(sfIN+NMIPloM&VKn>Ic9>RR+I@mp zevB=+Etbn7Si&uwz;+ubKgwo@K>1-QiNv8?0#)5YQF5QY9xv#oVK3Y6WrXja*uvVv z$Gjo$TWm%MaQ`SJ5d}^#?J_er9EAlW3>OK-qm9$_HuLuvoSsx1+Is#zj@>S?g8zN) zR)G2!KxnK0r+fku#tObKo!I#E_lvtbe@|g)8MPlp-`bRhqVd_vm|t^veR{M~9SM1; z+_)3RjYBW=Vm9pYUPy`DZa)7ac3Z^6&ekNl7--K}=fT-{T{71h@b+X2Aw|~cV^r(q zY*8)MTAK;A-4sWvQZ7`kQXKhOGBcXX*sT*q@05}-y=XgP)#(^{?)u^g+*7G`68BXq zrR)IwcQFD>lXnoCYuKXMVlxl+dHB4!=?2~iKv%I@AOMX?NhA)?39s~b&nbvhNd?^M z5t;oreG5Ulhb^8hNGGO(9d2r?hpLi*+dX1d*6(67L14N=N+NNXCU49Z(s^fVk(6o* zJwZ6W#1_LAjwz`j#fMwae2|{_t7QBa#nWi%tf2ziX1cWF{;gJ$Sy9gy}o;G>MKM;GMa_ z8%o1o!6vp{i+PTitY?c9?@)=U*Ji0FC~#6DE|E`T!qy8%*um>$7db`T3;C7WXcrVy=SlJ!9Ol2D0&=5QhwGrH%Qk3c@{_YfHl{0qO z8p}L&lvl?=`UZ!(P{d#cr4ku;nU<1xo*2w~;tgin?%fxa(u4h(G@SE_8p|Z}DArK! zmg*$lP>{tW3}seeD0@KGvX+(3JKrgl#u&*vq$CnF5-euz_T}@i^%x2#4tu4w&QGp= zZ`1hZC)eH)Lc6v+{Oz))UoJa{&gpAxHQ4s}(^Bbt9yS-F9Ioo|I!1FxRE*YY%=j{! zCo*PyK}sTVbXUTO8Wg89#!HI<#FrsxSqSm4TPZ``4?=)2-HtXNhA*S^#1fd1+z*^jKF_{ zp(IZcs@c5>O-*VuQf1ALPD5yZ$lyDJ-8g|`s+2_HaLn0MfSZNj<_vG;h5OR^Dy|fV zR!QPtL14~d3ufDg=0YFxIdeV38A0bvHU|WqRZH(l;`yiaUUBE|$XjZt)&!{w}ug zwwhm%f_O#o=&GVCE}WKA#T<}Fg25eZHV6i{NlBPK@h*h1(+fh=Hy6ug1rWIFm0QzW z!w`|D2+Zf%;@AQ+1McK1Ls<<~S!2j8q+{0SKFe;L!11V*M1pYm*_TsxjE#EGTgou6 zfP?g2sRS1u_Kc**oRM@PJLJLkwsbj?o3Z=`u{(-(6wTZ$*u8uG&JA0)?&{ysw_|7j zu62DIc5Un1-nS(>DW4brTF7pKOwO;RdXAr<`>ZdU3<>IE!jp*HxBekml*hM{n8u%% zssK3PCJ-D~gX01=@PCMnn=ZSV>R_SZs$E}IxE)CyjfP9QN9Z)+uv9r_zW);`iKrcO zwB`3Evp9nTjDUpU0u#&v5{3(0PY{qWT>L@0s^KpYt?TX*(ahisTK!75P$$eSsxJ+_ zWMyaOUrNAsOG7Vaw?*9Zi!_NYMl4f!=UrdR7BPPKBkF8>?&NZI%S5@CNlBP~vJ>&? zbSQFM%x#4JZ#Z;a&t~0L?@$cct5ip+lfH)CBvJTPQWDk*7te> ziTc;0QqfEhd{|1N3l;@uSlU`t{5xn-i_cJjTP|u*OM_*0*u9xA_ttxCyn!vmHTT$e zW9{t}-D*0w941;skKfJX?G1%U!rpr0>`kx5YhjHm zYi526q>>u*J3&gK3+4ysZrYk({5xoVm!SFmVaB*|%db1AOkoMYU7NjoUA~yv3u$e& z6kAFc_IQzP9y7@cv4(c3RCm7zj&iq69XD=k?somR2l&b%yGa<@$uWjDfI85Nz*+~? zyKR=rXUuDplthB&g-iNN&gym4Zt`?Vjg@sDI;PMUbfh_5S|n)^{Q&=z_bmH z?`LyEaJ*AWB0(JefOWw+>UPxvRMpi7IM?F1xA=Gpb!hTz-#duGT>?Yyqm&4_*fkt5sLTMD^*deV5Oy+7uPEn-!9DG7sTR!YLhbCn2Bac+G z`@Sb0e#;Y&yzPmH-y6pC+&ZRruqBMgR7u(n)7#i>5lr8uNpvyIe*B?_Z+YV3H-*$! z3x321;xlZqELB)LHkBP*MaSKT*bNdrJ}4z&`o<>^iq56Paf(0Xi8p`j@cUnP^npj8 zc;tbw+QW}f`9Ee0!cqQes{9|Z8zjnqTuQ=P`C<<;4-$l+;?%; z>!lhK4zKlI40PhNZ5(Z}9!=#jgia~=86-G|?IOQdJneua>Y zu*K&k3M$$(YtF$ zK6T5{kKGzZP)Y;=eH&Xj96(=00ev&OK?3M4QW8->1=CwIL&l*~K*Dg5RMdF*{tq5{ z=&mETfAa7LZVMaBl+YtIfzPtlX=?(B{u#`kp`vL%s4d4t+K*Dfw zP#XXGv+8lj!oq8__^oLyAdZRWv@PkH+gP7Z|2G??c*{~Uwwq7?f!!9dssGX>nkuvN z!7y{%>-;sHnP3ogw%ztRkKHm+?rbRu(^Y0@5>0Jdn)zEC+@IT(#DLt>4bh(Xg>M{EmiwJzF?ieU4ZAzunjk;OsVuLa&mNFeW^Pm~=Y7H*fV? zXG2k!8EmZ29EPFUONhw_*}~akGAA`y)D;FB{UHtJ?qM@P0J=*`B5{D`!t{7^vAEZP z8`7~(Z9m+r9LA@~I|$EL*`nFPGaF877WYD>PE{ep%R?nIV9Zyo*)jelcKZaK&r3-p zj?OHYKL_Y+PFJ7`!&n%axEBzYU$TX=#YLTwt9F*B-t*wL7 zm&sJ&diDq^v2P$Ov(8K^#GP4(B^@wDaGB0-o!~M>N+ODjU{Y!3r5Hj8NEj{>3bq-0 zIM%UMY1>6x@8Ng}yIo=hFP4%>T>o=aaY1!D3X11K387-Ol<^{EQQ}|0{yD@J%odZm zxK9)YeGzW483AG?wfh?R*i}{ctnbnlAM_^S zT|=ef$gVWBHl(XzRq#D)>C(G!J92(kX4uQ@9W7=71*Mu(qs)}Nbh)SwpzcZ!6swh8 z<>54dqTeM-2Q_+HfxFU~64YDq5yH2ZM=1x#L_vk}%M{=ovuijmdP*L{peps;Ti zE};(q$`*DN3*N4wY~IsMEsB0uscP=`RI`Kl#){}00Cg1zDtsD1+y%`b=O;x!P-hQI zyRN8aGketsB~;xh(bul@N}$(0yOi4MMgBCCCr4lP^IkwRU8rQQ#Bys&4U401;>{tu zwrk^xm$d*JppC76}kE=ibs{Z_&`txJ; z=O^mVA@%2o`g2tM`I-9j3;5&JCXA#H40@xL;e#*x6a23>J_FaQsFLPeYsc=%7Y7dB zTswX^J2>bS4&GFo>ND#9aC2=!p*k`E#qI_Vz8w5&C0hXjiiP|bd^M?*-fx_e?;@WB z$EOd8)%sV$b$_Mu$}6Grmsi+xWf2M(ZYXA|Bk)amWd`Q2D}x)7Gs93&->s-~ZP|3* zIJH2jum#;a&|4~lFH|SbwtVUsj7&ZS0#*kEXC}>vjE?*{jmYnOE?mGt)BlPYk#9YI z+%eUJ$d_$hdzD3+99TQV}>19yO$B5yV$~V06LQbbO*aZ z0?=(z5{Uye9hM!Mj>I+c6e0LLTO1AqG21CW%WjZB@TinT@({qF}FxjO!HB zqfZfnqik_F5X5YcJj`y8K=2bOiNqmT2n7!6+aqC{aI}0Ap_y`aLP4vJ zxMDUsPGmPopgCSjB5`QK`v^lLd-xG5{|vSuw*8{n7DJcaBGLW}r6i)-7tAQlq!ec_ z0uqLcDbgP9r-_%wOiB}(i~401=Inrkk^>1vSVzS280kW|;%;uVJ{iqwl%f@ya%J^` zfACYE@0?gD^uh{0VUBj|TPr6*r?kU83p+&7; zjy0y^&f&(le!vrNOejVY#&rV^L2KEMEhUSB)aHA=GLoU9D4MQqn~=Gs(2Btbe>px;oUMPhWfJ(;tC#`@?U#6+ls2V_}b#6IU_8 z_9Fyr&bi#M+!nC$uy0N=N#|fQ*=-Wcrb$U8j#&zp#&AtP*qe3urW=pE@2y8}zE2fM zc-MnZzUz~r2&ZQC1)_B>TWnjjCZ+;*DPCu>TP1j{mXb&uuTx;94DoUT4M3k$h#kK1 zhQs&2`^bYg9liElVZ z^hXZA@y?^Kdn61`lXnn~YuTc4;E1WcbTzv{0>_n763N2>rNWQgbM28k?>&6ijYsaf z2|DVUkihXiDT&14I0FiPWAE@?*n2*N|MBFlkKxdB^s%?X zFa#mQp-0|(=+lwvEBwz9#4ocI!T~X6TfrCD4H6JPCnXUDQIM-K=^l*m1tbg?Nlk7K z{oRd6@4F|qNKfbyn!wX+b=sPMUO|r;=AL4=NNnJ@QW8<^3jj1WfQcdj3B$!M=@iCK z`Teyh=^1mag}5?xHu1pD+GcW6X5@Bal`EK3zO%kmyzH%RnYm69-BrG!v) zItddlWE@g^_z@0-cd`ZHC_g64`(Ac~MEUQLlCW03*r719y#K(KgrohKEbrg58zkC) zM3d;E3$Z@i5Hfb_udp8+Vk?G&L`)|5KiCZtB>qiG!t{fGK`=Y*gc@oVKlC84#&NUv z5vB=iI}=fn;Z~0oF=6|0>;?%;ecUVsTZkl&l?u*D%|^8tcYVGC^!7W5}K7OX4SjS{d5QW6P* zw!&|K+8XLkLAdfP-((APP^47mzSq^h<+IKf`lXcQZVv)-ycetPWfc zppLlfwV)@ie<;)&a}U?kJHKWdPke_^QnyR*{3p9D;%|SZNpx{;W|7{ReqLuncA~;& z>76O;28kXgN=cZ0a=a$d@#@;)98PG)8-9cieGOX>OZ(Nzk4f*G!ETT!-<6WER(`kA zJD0L0;b=c5y|aVeAkqFSG>I;{5bH!u$k?sF!hUdotr!jxG3lKuyFr3PNlL=>gCc^N zV0x#sS6IE5EiwnDnDowj*bNex-YF%KI83UNc0Kua=riwz)BcCw^Py0vQ)}`L_L{$E zi^hQ?X7kY_>;?%Oe%!mJ)-5}Ba1DZq^U5NF}He~G9UtvG^9$PUSBx2^n-(fdMkocyQ zgy{!gM=(3>gc`Oxbap=cN4Cfum}2I`zh^f{VEUbuMB*?tnd^r7QImJD*DOB2Gf_T? ze)P~CGap{SZjiunf|Nvpa0E-RFd>Fn7hI?vU4m_RfST{qQjjIsX}fou+Yh4au9M88 zP|hP*Y~3W)O#EW2&!S#zo##*VTWun)HG8R1V$O`jw(C!Z%NF6r2wf(IuDD(x)rwhh zJx@v^L6gH02usv)yzoNcky}3rN0nn{J+*c(BTfg{!rJ1b&P&FmW2)>1iBBj=NkjqS zn5WN$nR8=gB_LtANNiH^@O@7_d_P|99r7KuDNi&$LKFB9Tb&#eh)Mq3%WjaE!26{n zqRJQGXG{R+=K>Ojiw)9n!%w^H?rz%UtRU?IJHxO_!jX5r;n2em!U2?sV}i@(;~i7( z2laH!f3Q)Ew>+hUcIlXZW4A?&?q4*CF3zPa(lO&M=uAvURM;#X^S{qskN+(tVYokcjx)AHcO32u)zrucyWh;h*L`*tnh}|GTA|oYX`oV4lv(ru}v2@Iv*dlXaib==3 zk=-DH=?zj6iNn++)e`DQP2Ry?^Ve+AIB>+IV;*2PNZ|M@DT(CasBceb8hO^{#=nDb ze2*;}2acGT@ORh^5;(poCD9c)aAQJiIAY#GIR3~MjRQx_tn~Nn1_>O$lah$SA(&E{ zSt-UC0uqJ`46g+w3>P?A5|A)l{7^bi@aM)K>DJuXPYBPs@PN8L6mHOT^v$qkRbwNR zf5{!L&wVd=iJG`YQ^L8U>IKG46&GqUf{QNWv%o%AItzT9zH}qZ|I_XGeXfSknLLyhk6dz|n>-)1-ZL5gpaM8%8}D|M?X^ouoF|pq z3r2sd$KiD4|OwIJG*j$j|WlT!KxYT``L($6p z>}wxIW}-K1Ox?Y^emhUpklNha^GT_O;w=XmOu!j{<)n?m;3gIqP88yO+H^_l!&0G) zoA{uVM52}x1%6fo@V%8{54lWbTHP-6<5=hMA5u}{P2k@&Ib435qlc1`mxtxYK?iO; z87>Y+4y4Avg658-lCY+eQg!oDwgdy7>vO5@Wzk#`fAlX>JsGR|p_D{|Rz*gsrHw`v ziAAV|Ei@KJ-ieytyfn+f6>o z?6!!BjcO82b=%1c|NJXJHWgs+Paei!m}7_BacxTI5%%6&*&FJ;>&Sp!NwViNsNxyt%l?DQD98bSVprZF3lw287Yax;h419 zOP2~zSEv-e1i04t06{n(y*AEmhiVSKO8C28mwxOG%h6QbA}s z7w`qyUAP(RQi!|pQj4|G>~8caVsJMy6HW5L)wdeP-hq5Ev)3Ekm99cKmM-k^dU|_% zNy=|gtCvHj5UeGASgObPj0}pw@m#j1v^cdNbm~@=pKyI`xOHvN!Qg#T!OUQMyOczN zHiqtUHWd3wxa+znZhpg&2R;>ow-)=x|6}h>;N&RE{_$*%J+fDBZfF>R z4KN8wxIJ@`giS)o!6D*gcBXfCI1m*D?7x~HbQdUm^Ncjoo?`TTR#GgaOF)Kky*sj8={tE$=59#bw>P>jZg zVlohqDrYBE_Fw90Ufz!)UilS!oFLsfYHn_U*+RQP}E>e9c$b1|w>;dc*lUAM~?E-6AbvA^q&2tm7d+@t8T(EnWJ45jLQwl0h6tNoZ+#>?kj zyYntjOWP#US?#wd7ePhsKCAj~QqE9P`whA*ylPje?zR+Swu6Vr8Z3kq>vVf>d$wbr z+Rk?DzRJvWr!#%gR198wR_Cva4r^ zg~p_Z_It$XOU#rB$BP^3e()L-Tj-saXXd`bJzRaqEF2xDNYZd|MyQ8n3%g~rwI*JJ zy*F~jzoV;o-OuICS)7V?B~2rm9Z1D`GwD=1pEdBXcLP^Vpk3p7(rCV?&rHEN1k#I0 zjprG!{i}x8+>l9S3YV9O4zLf~WuhfRt};nj?yD@GREhS|Wg(iy-HAoTxAwZAAG0Wt zCDeN|fH44TfMXWR^NVI$2E8$wOn?>O+U|4))^&HA857z%x96hIhD~6xvVsCOip66? zaV}xlDItzNof3wj=?;q$h9M?OC|SY+Who^~_^2+6s$0TG9ZTp+M6-l^ES=hzPQnu3 zbP5`RL1@3OYcyL5!Fi+eJcIT|w>QV9VN0d7QWomi6FgKVV&@nVE%^$@s9b zGMzG^O~~dr&E%NR|h`7b=S_8PWy1EUIoudmN7o#Aut) zrUd*-_k*)XZH(I_hPaQxy;He}LBZWK)J^E76R8}^2&k20lxqEUWiceMZq;Q`b+A5c z`-HLHXewnUvk}-sl!FD}@X{W80vPt>?5?7(KM(DKu`xlrz^EPY`0OL(#h^c~tg4`( zf5h<>owA0ptgwt6%ZmL2l-2GgxU69=YsF6>{YF_-$uNGc%cAOrvERa8Gq!FNbx4m7gSmTp*sHL4X)H{qa+!3}Q<*iMXV6m0$_fhF;UU~U3S~maISf;$SSF{#jZ&GyseE5F3RH}NqkheLIpV)7vR;+Tn$KHz!*5%5D2?|zw2`q4iQ+@q% zV|=M{-Vzo?T^3cu!hSWp?=tWjk_JOzzmD{6?>e#O z_3M*~u0*=8-}?f&!A^H&=Da@suCDIu7Hp%!!=M3FI8xM*Y=w8}szJOszC)Kq6|In89PhRUHdDcTo89iiLW4By zJWpp_@DwZF#b)Cd!Z1+%>WE{m$eGlv|3^@|WLp7!2%knM4;%#>Cy9gp{i-365la*nPwiEd(+E(@!5wsUZEa^k)x$7ht!Vs5Q`d)9Cvf( zaP!z7;WGPhE)Od#+_k^rT@1h_$^{P!!0x4a*F5$wW%5at_9A5=B<*k2Wg)7|=NZ7! z9_`JXzcHPN8+n*#$I(2FDxen$Q`N8+WY}wA+`uV3$54J-Sp`9%JR}swGQd#2R0e9a zsfKyVAc1?kvRD$h-_m7Kb#M<`m@#p7ocElTy-f#SA=eA((M*q-GvemPgm-C$+M^8d z6UvGR3UN3TqmnqseTnzv&_P23;q7S#Aa9=(GRN! z_*ED#nwsyOy&3XO#_%2GVg|)$0diWb;;mIrA_T zpyTOOaOGoB9Km%P8>5*7Essj1;QgkNG*dmfUU&Pe#epH-_xNfJ*^USSuui$0;W&8H zST06(kW@!RZ^+CY}3`am@2whmqqof%kmYpf)@uN z=}a6}aDms8j1IsO9z4Sv-n>G?pO3**Z+K~ZNoRLKkpw1!)V$p0C z>T2HS?4KX&>P}R+AL_EGVuj;L{8`IkGY$03N!l>BDV^DXJ5jK%MPZG7$;&dbW-bR+ z%4J+d)rYyx{7YFGK^x=QaHg3kP1q?78cwv_7Q#+xq{j7aW!WTOlf`PUbX9{>vuhP>8^(_+x6fV zjrqoo%ZtVWcO6l9j$wOESp~si^F3_lRpksN*mmi%s5)$u;e0v%LN)t9#(XzCKGzwB z$xEx`1r^7JqVmGcHs$Oj5Sn#aR2_tAaI~EL!N09{*f@BqiT^DO#gWPd3tA(_hI|fR znyZ|h1jTG!7G5Yc#xi0!#NC<(3n4|dJh~mX-Tc!1U)g!x-SCx2cZFGP#WA{VyFDTv7-~dZ`CAd%{;Kn_4dbQz zZZqJs5jiswPsDP@&Z}>K>A`bex__(7-mH^KVo^h< zwf?0CFWU9s#V+*~okXsv4=Wcdpb9IEdmm8FP}1YQx-3K$xtpOFZI{zMxOEK$+?QDS zFDMs8MfpDC-shAvl$8IBE(@>nHJUilN^(`wU?HTqa%dCKZp}ia3BLPogBiWy8?<7e zC)i>pFB=^nS8DO7y84XO+mthuET)-Q{AV?LbCrvwQuBO9+Ow52l=OI*E(>AvGZ~8i z<7V$<<$|av-^V#zqnx3n{8hRv0xMs;!Ew*&xjP-#OdvNQTa-(pqWz=ff$}Eh3?=R7 zh(!&Xko||9J90Z!0q$q*U#F}L7407_YyWEH3?=Pfsmnsx{^bndXg565VXmk&v-i?N zSHt|?j%(bn$%+;3VK^R9E}9A)$H;Izq@1Ay$Njo2stAX@mTfg6JI@)x z>}m-W^o87&X4tzKqd&6kc-O17tzR$3ir$^)6U8N0p3ZWYKk4ewf4K{bsN#+WHKXPb zl>`mAw{)(8`tcXr*|!%6JulD|AcBf z=*P+?u&;84QiHOWE(@>nHSiNAz{3O$7D5Uh(rK`;C%(R|H}R!=UWzjlQ*KmNq%^zr zab;Ni8x<_oaI;&dDCZ?v(OO*=0>6`p#i*Yd?4Eil*S7C!gik9MB%t0aeWPSRIYUYL z8+BO(R(`F9Ctp!6iHi1pW;nj2oS~%sYl%e-hbMv86}XH&@KfBC{g<+0RFLqQBl)g! zh7uAF>aq~^;64U(w1+DD;)wFXue|*5!{8L}{K^G8E;t`XE3nva=f&G!x$b=gS(Q*Bx{+jv? zpNW-vx$d5wH{8DCftx*e4Szr5b&_(CRq*neqFJe&p#)Q>E(SpRJssWCEYkW#Lu6 z27dN%_Qs)xvlT~K+Kzsk^Wt;YjSsx^-HTkXT79Kq?RI6w_=Ab18*W&8t8!ivj<*nt zioU(|>e4Y|W}Z8U?fJgYX2S&Ie%yiwZ{>^iu+I-ZWix0|nHu0{CShg=&lv1jSq$O9 z9Q|f?wnOa?0Yz|oXoM37&mUY_oax-)(6|Y^*kDUmBpOMXdDvtPB!^p`==LejZFDML zB$@8XQu+Z-x(OPv-W~M9F5rD zu8N4G&`H9%PL2+>bB4XYxkP``jM&*GQV}=Pv9x>01V$p{5l*y4h1<(Dtjav%cQf}2p=lLdOgs&%c1z04a_*5 z&(XI>a1S%zx}S54L;EvnEJdaq?tPq#4qX`S&*l3ftI1sa1?1Cwy3)~1Jc7H)Blf{` zboU1wMh=Y+q@sO^Smexn6wWf`&zjMldpdVGG}_l+F52Esx@G2`NA7YR>;=Lx0w<9h=2%Gh|P3gNeg9XJ9=!bbW7aqPo@X(V_;nP zZunjT*MxP*Us z9#rT^ne23HNxyyRE`S}%1Lyz4`6v*=b+g!#NX3$Qtlmj(C9KDwk+L4g;7JUg#^4zY zp2gsK3|_$Cj~ML0U>63jVDKjlUc=z87`%?b8yNfpgEujF8-sT-cn^brV^Fsof^iU- z#m2tqW>791G;_kg;ZLz42BwIgTU%Ki-;+#t4Hk;^y@`0-Obu==w%Wqm358-K9GTq( zbt^vD3GI0Fb)BFlFxYo6;(D<*xlSebz*;~wPFC28UC7tS- zy(kTb0ANj;9fME%%yv#*jP)i`Q8-2pRGo+>MPq711uBl4n`dRR&<0-ztXF)gjy;bb zLQ(TwQFWJH%xiN8qS1>BN8qNBNC8_MzgAmE;6VG#SUgGUM7vtkS65b$JsYdJi7KC) zvOZPv4-NyHQd7CVe}IJ^&Oex`oR{Pu97HTC`UjPl%j&*0Xn}*hGif*-gsND%5{vFj zY{8w%MGUCUVk@3_EhMouBfcrQR5@o!xr=pKh`O_Y@fq#uyf!$83l3>HGY^NR<)9UI z;o!Z;a#U*a$rVe)BPxHr9%BtKGN^ zaUVl;g>o5#LbPWHPNuMBgoCKd&!U#!>26aNLqh9fVo{T3$zJ=>h-Xsau`F(#i)2>u z-7MIflU&25V#9hk2PbB(cb_ygff8K|ofRAp>FVg8kTdxYE2*nr=@N_16>5O<>T|tm z&k0(k)ba;Zy7i!@GM!GzqO&PcC2$%Z2_x0%J9RZ67JqElWg+VHt&HdBwXbUC^e4{V zYfg>p`J8u;J=JrnuR*<`s|$aFvIPrnQ2anO3~ENnpzOo%D_PXbx+)MBwL_PM*P>Ju zVOI^|b93vb!9qwejNhQqSJ{TW|M7{<@Xe#XKIp6#XEJzD)hRH1G1k$ERB{6v;C^nA zX01TS*&2naa1?RU81?v91zWJ-Re>K+fiGy=Iy=;z*bIk6q4vWjX+OLPv~M2=g^lho zb>vW8-H1BU!9Y!b^Jn~K4o7pyVB6fJIkTKk0FlXg`e^wwTU3|7MIF07nzK*Wgio!f zH{|<`L>9iOjORhalp~xb45keu?_MDAt?E3TOq(0%_xA2bYqIfezAar`{B4$tUJVmm z9J0R+MCKPR=>Wd)j;ahNvhaDa92`hZs>JU|uqyGh-+4L=7gZ@cjS*c12*dn@E(_6Y zp2j9K>h8cKSUzEY#LCx#rORx=gDj4>O+0$NpLrSw&zd#sU^q)Tg|^&f!XbfR%kXjW zD4X#tk2i6wFOwI~x%$O(ZhrBcYldLtYr$XC)xN(4bJ43|!5?y4u%CIt!Of_|aF+=! zE1aPRUo4NZ0n3JanQpm-;a;N4q6UTw%SwhaThc=BZ? zn(Bdb!1M5tW3X4U-@{<44JM|IwPq>{A2aWuH!m=~I+M=q%kaAjpaXIC zHSJ&N;^S}Htek3?cBk94@uXH(Hl8v`$_}Hl(XL6$_Gbm)CU`vrN`@a{_%s6PShn;Z z=&C_j`uB8Mcr9H;dy;?69*hPHA;mEMweIZb-lYlWX!$&lu>#%(Bwe;y9QszShT~UO zX)?OFPsn-W1ubLQ8zBCClx#b7%92QPLhp~R33yesIvL1qt z4VptqlmY+%DWut!1C{fY^nZXZ3vaE_sCZ&*%r7i7SO_UXx`TXsVamm|eIIoYyfHD8 z-`{R5-i&X+ah4dCBsiyz9AYf+IWXTUlwL?hm0|O@I4t#WFQh)HoR?%}rxS~cGryz1 z?x%HKHVRJ2;?1xO0G3*~-h_CraTPvCxsU-BT5N-vE|4W`+OkNs_$=kDCH-z0TEC+? zdgsG5C$6QhH6Fie-dwkG%P+8Izp7lkpqg#AKX2IG4^l{Ky|3`FLR9*jV%h0(tQ}8(qxejL|xIv#K&@0WG!BraJSzID|{*~@bO&ZPUmdpLIzYQ zxV5mpr%V>9|NoS7)>1pSS(k-qVe$;oX!~Ey3!>RX4Bn4|XYZ;QMb{Mu;RfYm1O=fb z)P-`ud^XA>aCQE|3;^k+jStTA)>es>kN)42X# zs9dOk3M|$`{l&a(C5W947bs^b>G3>W7NXjm%TSEA`(55Ux#srEFR<#jD;FZD>WA*O zZdJ}#(*G^GEWG;HX!%6r$+by?g^;34w;*=od2MYQ&ppdFYtUP{MWtPut~zf0SE+^E zrCdUPE5niw*FwIeoR?%-FA$3wwva8Waa&Txq-~HcB^KS6xYE|2G&;Vfq)yl%MspU9 zBvP|EPB~{uxnp!$hzj!_<1^aL=Co5_-#o61Ei>?sy3z2zg;6;~xnKc}yf`g{JNj{% zDfuJzjtB{ygOvr4!1;hKi>iaO`_l9#+$pwrbALLMGfqqAGkz}Wr z^`r@x7dGIRS0jdszW2TG&_msID!~1W zT}HXcL9sLFBf}tbc?Dzevba7lCOeR6Wnm-;le#Rb4&kf?`9zX1#0}xF78VbK;5rBJ z8RG5k;#3dp9&qES`Y?lgm9jE|f*THX*`=Y`ELh5qrQ!M+<7J@uraBDg5nx%QX7vhX z$t0w=>9VLg(o>hgY+oh^$A!Qi|130FG4IZ3-#Zwy2b7By6tiiegd-Phl6K^hpt)CB z012AAby;|!(HH`VQ3QLO8Z3kq&*}QT_9)_@+KwU?@TdXXm8i3>&sdX-b|pF|3Wg)6&6S1hcj8k{v{1NNmbfjq9sU&bHR(CW8n@qq< zUXo7tKt)=ZOy}cJtI`=#?hLzR=w0_v z$-*%#Ss1JrOBU{lW#xW*p0a!r_J`}Ts5wC4s%iwuZv2A*q!)MY$A`rLEOvQFTi@lsjrNDX*=8V$xt&hUwQM z7nPo5dpKKJ4MFYUun?Sg28YQJ@Lr3+a=_pKh5)u_Awm2pWx*tfH|w&fI>c?bi^mXt zw(FgN_aXyzgK}Yl0@WVE-8@5i{a;qjTf*Xtx-7g{Xt?ac>u1kTgN2adRbBtn_WGO0 z!>YzgEA%RQEE-2?@Qc@ZYkJ`%%hC~Z8T9z!EG~Z8`f)g3b9L#6MrT)`+ZVN-ExGy6 zC}Zevf~bPw-2A7M^O8*Nabi(X*Q5X1)&1tcRj1vTxJJLDT*QFt9QLKco60#$%Kf`8 z3sI9^XM9HQrGj%RlJi!o>g>hM1Q`7r|uGaib&lY|d)8o6UVR|9wwGXH| z9N79!(p7@6zLmNxyw<0p6}#aTE)4f-8Z3kqztL^GZ5L)YEf+?2(xqu3Og8nHaQM2b zURi%C`6XXg2FAac!*UJhmwZtx-#6rWp)b{1~T$M>%W-J%pl!(JrV?~`7hq{q_pjVX3 zA5hoDy_4ZGLv09s&g6C96c7s)-Wa$RB- zAF5o$pr+l5yPJkkZijNtl5!8!Wg+^80~nvt8&>f|Li5@a7y4Vf>k4CVqH-~UV$c%G zrDK)td%1GP5(LY1S$HAP@X>^u$F)p@g^;4II)*TfT0iK0V2VHIZxQ~tuxWfoS-n9` zV>-8h(Bq(Fm2KqH$`VL6GN8-Ci;f1s!bZ5~(_kT__yc#Iqup5Sz6xIwCe4jzawtEg z@@;G@w=1hTsIBY~>Muz+oR9J?Who?k`Gziwsv~94yak*{zm^t)z;TIGv*F_~1})<9 zY?d7Uc1G?o`h}PIsIoK?g1^*d;YCoRx{4al zV-5`#LW=*=^|K@}5(*oO##wbwfDZ9abCi zY{y^{1g15_2S)v8!&-*o@5|2L&{3_PL94YV%C#2+l0i2q=PDU=J+Y{v8{fXfgf$QF z@+l6>S>a1kuGyTTbd}qYBa{moP`$-TA^vn8$OB7KQ6ADad{3}*LT8;RseF#IB$CQ! z>9P>D_fSS{wEOGb@ZDcJ6-^rOmBlE0`T!QEz!9yU#=qiSjMZt%#S4nn?sN_)$`>xl zheya}%P|`(V|KE#L=t9ebXim#v+;}IA%DGDR^=)EN!yd48SqeVmX&OHIEPAf7YM)dt zWI)xzX-Nr^CEUl@mij*U*u7ktf2%Bqr0oCEWg)83uNbeB8Pt&R$aeKXqBuK=p7agje;L#H!!_ag~S&E=~$_71b z^!Ubg`gCFYDrYaLelJ}XfmN^lGO2z+G9BCC@$j5P*8lO!(g!vDhENyhUS|B`<#uPG zvH%hSA0rkuY~`Xb`f0bHmohlI!lx-6=WNDF~soRm*X z--mTyVobiRT#%rcz^grMkiuuOB<0PLU)ONEvLF&D-_m7Kbx_*i``|dU=37&|7a5o* zl?xLTnD$VdrSYvVK7Gb-l|_-D`5#>tfuYgvwVM~hH(Gpwab00l{-s=wps2LK33+k< zCTxP-jlZodhXlz#iABY3yyCif-8BaXEbi;?g`-Tjz-%S9*7kyV{Ar}}eO>S&Ww+lN zC=9k zsw{zIkn4y=?b?sY)K1gRP+uMUTxV^crCipa+MdE~Hnj+TdiNU+Y*Cg*()=b}7Q*~< zx-3K`Wc>dlE8)b|rv0%DPnS}DfsJFkvLb>SM>8BlR+6HuHrC6%`K`)ANH%c`v8Y%Z zM}KEl)A8wa4!*VNJ!+*aoi+TZa^Zq%cw(r#BtyA^{i@wBm8FnW{4-q^qT2nKQ5x-0 zc+*1vbGXaW8H;}?7a=$nv62ifEPTe_|Eny8gvDQVSyUa1#wE#gHXF?hxSd&%%t-8c zYPDR}rcjR~feQ$q>Db+rg^+-lrpu!0Ks2m{*V$&y(*u-J8HSH4iyyQ?G=_3^{w@@J zhSwibmO(<{SX~xg6g0YX;Sq2jq`^W+Q7yN8;vzViG?q(j^mbR}7uY2Fm30}^B$`8U zAw`*0G{_!7pRy2=O<2UDh8{tqv&_-c@|BWVzn3c)EvSB*@FN58sZFT!<=XXg2QF0> zLeg(hmxZwQ0z)*~?m+88&;fk7CvM=XZ8sX8YYfS~%0&qZNn0pp%L1RQ23cIV__zjl zD@!8ba;Gkfz_@5n4oq5xrxRt3gN);G>z=nQk}oqnzgI3%Pw%NV8h&57SV1-1U~AZ;S-&>vU1cF8-M*#ELfHO47@pB? zlNx+2zLd%^gifoLQ`{KxxA0D%HpozxLc(DmT^3#(G@L2nk8w@YU?HTaQV-QUKi-#4 zC44>|<+{RFu~u1`K`Unqe9}wE;cEMQ{PdHQ<&f-Rr7nxABeKuhbblh2JfwqVl~+w1&4iS>KZzICPS}N7DfW-YF!r92WT}M;1`Y2M>34Hl6O8y zy37FmK)FD{0m=x8e0+4DvFZ1eg^>VySeHfB0h&UeIfSE^jM9>AcjM=G1B3Lka-o8P zG!+K6aFjSmMVmEfA-UV3Y?P-Eb|{M@!Stdo3olF>K8SE*cp^iCg^*&HX(iny4X|=& zQ;Lo+UYz!xY}lvOBGO;@O8f=qA6`6T^d{4U@r64?9 zT}P+S#MKyOF(f$Nt2!LoeRs=(d@^a~d@G6T5@XV#tc>85q>Ci+t0X=XQ3omuBB62s zv8d=MRb0ZYt?S8aOnAl0#&6JBL~ftS=Q?Zs1m(g8)%q0pIx@;cTIchT+!exiLG}`5 zc_ig8(p0{#JGI|}e9nlQWegi;dXktf3o%M%YZ=ifb^geu;09wv zQdG$otzXIxxogw7lgPIE4dwC&wbh1Dug`G6XKwmtWf3HE{F*KcVUAUTpminf!hvNY zI2dp@?4D~3$gh-(5)_cO5bv#lgM`S>ay1n`Q_??ImPEqkC%P=WxM2tjj_)EXV1x5X~DyKBDGrcamb% zjRTG=fbH3Sw&A+Mrjb+DL{QVfgAB6%mf_RfovAE`WEUx27Q!wV5e-mYh;8(mJHHNW&K=>cUc z@i%xZp6{!qrGBrH?p4lJGVi;IMa4d*a&NBN$+Rur9PR6e&(^MhcMZlImqLr)i`<$# ztz682$}P5sOqM3x2hxP+h=~#3!S)l%f=K#)OqYeILXR?Jqy4hOt^2t{0W;S=EbD#c z!e{~m89K*i)%mSReOFl!37EHZS=1Pqc|!p+&ju!R#^^Y~Qgh_3F_57E#^*(cp)805 z%s#p-Y7EQ~LjiMy4a`#I!f4hQ$WQ>|^U7nfvLF&L3v^l37?>l60_I2?m_FsgXaWNn z3SfNRdRWSWNWk>yvZygIM-2tcQ8qA_D;Gu+7|2in<1@8+sj?svFhyM!H3sJBp@2Es z2IgMn!e{~m846&0<~HwE7DNK(PF)r?2IiQdfH}qn=J(2l(F6uE6u|hbpnO_c5DAzk zbXn9Gm}7?m=2#n;x=+@~D}xLLFirBx=l6BBDn3m5t}ctJ1JmvvU>@#9M!L#F%!8^1 z%_Pqd^YC(PCd$}^lqHcWjiJk;*4TJP{~l~$G){-TcPbYrXnW?x#x?$Lma$o?EQy58 zVqF%s#>O)N;K9b30q9pQjxIK?DS#Fkn?7YpBy22Q7PZF4GY8O)f;K9b3 z3V2?*IJ(%l<^tMfY<{mSiGOCn+O z{{Ji3c;*8<*fTW?%50+VHI4pNpx!X~84qSp1sGbP}`#+egXsazagY+RE9 zQ)Fy9l_im|S*pvT*4TJv1w7a|(*jxL;^<=InirTVW7DrJiG)p`E{hstGk3^&0l3Oz z&#RS-qlpdXDCTUY$=F<}EQy58<+>~aW23#qZ?ZFKvnJn#uj0K61AMMCKo2XIDJVcw zN)tC(mdU+5V7d&^1In^U5Zy~GG?rs%Yrd(1#>>)K)6XlHE~us_hWs_`x6<$T%2G%= zep*+@x=UVKK*e?my>{)s#EPz4Uo9WE6%}1c*M8c5f8^SJSC@roblzgXMti|ax$Zr) zUG7T^%R#k)#Wl}09X9>=ENcuYiy~D5LzjgY7LC<_VnHESMGY20iYJCPj*+*E9@8kb zi_R42Dax8uZx=mA;bRhOm8FnO;v`~GvF{o66~*P1%=0F|eTnPefN}|g>Un%95qC}f zPwyP-*BWkAmO#>RR+oh^_J?CE}+_4H{9bXnZG^>bJjDd#U~cmB}Y{l9h!6Urr2(Xh(_nBji_L$|U7l8$4#EJP!-UYCVv z>KN$}HFX~$DJt5;$Sa(ui7Qn&XDoKDvKmy(!R3R@@Ee$aK{#h3?zadz=a{dwuExIgfhr)0} zu%nfWpi&oH@7HJe4Ze<0&R;@djxGx?3L1@?XcyVD*I*%};K7#$3n2yXkk()!q_|Ue zZz)Ovo8I3TYSVia1~^mKUHY(>X zDLSjEXx-k**DrH<4Ze4w``^?$#bSyhNk;>+xN%*c+&*1rk zD~mISz8lVir_a4Qw;w#r?Y+@dkC{v(Z?o8vNX3$Q{16GAHw(g9y8vM86%76afmv+q zi*Ama{kh)3&auUYShSzUmc^-SQC`FGF{7M1z9*UP8Y~p+dlT`vnSx)fb_S({M(42O z!A_VX$R%=+aXOV8fO{uqqML-CDC*>Ay^eNg9SM53UIBEhYg<99(b?;=W+pp(i<#{; zQ$1VYe81U_MA_M~blfayIR;9OhI4t)c_Nz3&K_DxiB#O&JSzhSLtEEDMxEohA$kgh z=(4J99)}GrT-@wS&vtrelT2h7%;^aX=;mR{PB-JhoY{zd3^5wvK>=in_9rSBRYM%? zsR@H-3|b+mXjyHGK+uw5We1B&MzvzsI0dVk3W9j8%6bQlpI~pP9qcQMK`=~$g@cNt zQoXf0pd``q$~vyBvd&%Go5&jQFPbu-K4#2#qANLIAUDIVVMcd4V?;R#H*Hi^?X!kf z`;2n6>o@Yh8LE*VeP_O988_S96qfroR7H4g>URg*i>X{* ze>YLmZE;#?VByT^7Pm{DdwG;U_Ze8Z}Qy@!^q3 z0e$TLT9sGV?wS^sydqb{-BPN!*DIID-?*?`!&Thtl=G78=xSXS0>LYFS=c`IR4oLx z-^jEswEbY8_IGOu#-Az|${$87+;A}dNI5SF#vc%iitTR|UKj4UDwDS0%}RJvB5oR$ zby^(iMsAN^RxW=)T^IKX^_NK*c1A#qywoi3P?kf&;l-NcFlFi570V4CWbua)-EVD+ zemAh*o6OPiF(ey@>HXeZUy_Ha;WUi|vvN0BubjW6?{UOJ!|ruEfR+W(tZ6t!D(?e| z?n|uVLzIgc)U;beT_8zi#9>=vTm53T<=4v6NC^HymxUKW zjp{0DJdZgvSO_V;r|WUsL&p!+Z0L9q%q-gKXH~?NY6x(uUHW%q1i1el7 zdCzxeVIv0}YTMR5gu~rowIRW>uj)1WOVQp2+X{?B5Hst$Vre@uNeJ1s=_bQjp-_Wp>zCGZ*em&sb%DGDRbtkc?VGr24ECmZk z;EQ~+K8v1ftlB4(3mH(g#kNp_WC{1NETzgk&To;`W6E+!%6?Rrg{VfqWV}YZ?;F1& z3JYjl(~6wL7`&@2cu))`g!(Y&GS&N>H}#fs_LA!Vq06EMsyC%BYy~E<>W!Wue0K%k zT54H}pnA&2ISF)}-(J^!l(Uyqzo#yXz^d1NCs)59nT~Dncz8}C>wmGb^g&I(A=JgW zml?m$$MY5_3m_rzQDRZUM!s!%0=#GNr2X{ky~uj*Q7&dsJ-5SGoJpFnkG}m{`na+v zlE$ODEQHN}l0h5omL5K!4ZW`)F0LyKN>RBOK|#S!Yo|T)^!MiO(r@Zz;`3iu+I(j^_f!^8f@?Qj7NQ1C(`6y1 zZrEr>G6T=S|0_)47y9$S6x^4gXrXa6vUZG1Og>p@pt7S1jiy)lEHq{-VpG>R2=`Nv5;e zXlB6e0f=NqVvj_%T-K%#>`G+`TtN7|QJkSHgapJ?T^3abqG2t(&Ng$NDp5*h7(Svb ze$Wch7|PlCyHM~MUVl(o1_^~@bXj;&(CE&EN5FlM1`8oYwcPTFixL?;Kx?Dq5tLnE zlSnJ;GN?&3hvGttGOK8i4+u&s3nAG=f>_khBWQG%IeJ>YQZnoJGUcKL)o&BHq1y;3Z7@&z*XCBG(6WBl6#bk5)_iQP|TJk zOtO?)z2EYpyObr7aJfU5MPOXCCkG}i>w_iIS>qt%_(V@W<86!N%M8ym$|VX4PkSgq z5{2nV4Uor$kB`Ujl(HxiK93WN8n#RItaW!ia1vR=?MC4SO`}*CxHAEQF-n zH+5ME+y6VmGumxZgRjMxQW=H=tZF&MjUj&v_iKapQDdCTCP19f@ zq^MF4)jU7mmrf<{6djL$?z+NOu|`>$K`UoVC|V|mtL^jg(^o0WA=$+WT^3bGWS_O^ z{zNQ$m|@SY!mns5ZmiCCWgywzb`EndqqbSOs6kQN8}=)rtYLe~H5&#=!x>vr7m7YJ z-+5)ZBos5cEUJ#;Bp&k`73SvT%Z$~RlnWFTtI75#IP5!9*U;%R8G5aK8SE* zcp^iCg^*&HX(iovAh2?0Qwk49GGG~;cj2e^A{)u>8>;2v;<6r=23IG5G-W-Zk9ka2 z7DO_SDY`7Yz-VAA%!BtFXs{4cY}Z}RjZ(nrP50GyHwi3xh2sig7J)VxyPY%Zk^4mpnqH?a1T`eaT8Z!ji6EhP?qwa>@PUC8OrgEtQ>ati5OIHC+ zQCr9R%?+fK^Ov-`L07A~t>dJ{ut3V*p6a7t`7*2e3gw~(RrTZ$ob+f*1Z|{O>wbFQ zrYwx4_ltE|i1z71hHkXyWF{?wgK&8i4jmY(!?k5czRUpKr(B@m0O8TRERi2TKJSvh zqb!UB(6@D2R2`re-b3sMj{6b=^Q>|~f&$ZO?-uq0#b=iIcgliDpggI|qUxYbJU(G2 zaS1CNm+Y!9N@wS z7dB|qG$jOI#sZm0>wG?vyF&Ob$Ua_K9!dENHI=XHPVKiKpEKg7 z*$)Rv;7E^-7|KMuy5Ria-n8eemg2B?GcFsH^$-*n18PGq%<|G9!gRn8%Nr(nOXE}U zcsl_lKmV&&Sw0CTQ961y)N7}$7l?$T@3}h&P@pc2rdyXqje$98C}57V zfw@e%Fq*(Xh5{I$sm)821(ATcNS8&8fjN38V2-wdxktG$n!rGY0vMmU&AXHZk$|~F zmqm?%Ic6wej`=fQYXdVTT_djyG8Dix z$t$1V)77e2@9>T;i>d?D?jB$s?nXws$|IQrs|L*^&k*zQa%?8b*c_lNiBxI!(`8X> zY&@fX4>m9wr^DV)P%ci;_RNcoYy96VW3xnA5(%3{x-4pqjb{SDgAEMG37fQXadfe9 zO#!sX*d&!Dk+4bVvZysSo;d&yHqIo#pmK3^v2o1;w943ArYwns%_X`lYK@I&8o+~% zGY@dTa&dIAaZLoY$=KYZEQy58UAio4jg4m}z=Mr574V#Ladfe9%>}f}*gT^wiG%GjipC6Ta6>awUYHgkuZ7l5lgzWIW3aWt{P9L1c?G#Q&gWl1D# zF4JWZ7#r;+ev_R^n>G0^d=>9q7~pfA0eVQeOhEyfQkuBQvP|yf0n=rO?pKyYg6JM% zp|Ko8Tk}m7G+vg@nto2XbU`&eG32jdzmn?d|0TtUN^xC!i5-WPl znbq=fTT#)KbnU0@_eQSmcXU~ZM(0fiY_u1=lVJCYSijaVuPlM2~X5*E&6_OFzSppJ!W8hg6mCjOr*OCe$L6I~Xy!@@I#UBbedynaKu2Eo_H7sBnyQH7lI1O_b`@ zaHFt4D{Dc;8eFg7XZVf3UQy0pvW1eTMfoy2 zTGuHTHK2lvli?h6mM9D-1Cm5#OAqSgLHgCoqDWf5vesIkDzpx-JpB~!dk5?OVdVk` z)%~KA9>xaq}> z(`C9WMCZh)kEkh3k6a3_O|HlH0& z$Fj2%scbHqgwI*^44yx@vN&_-yWtpk`pT%zJYGU^=14bhV*M3+@<^Ehm1;o@drdbZO$n`9!xU`|h9KsOIlcDk7k29MYW za-tC)6hNkEf1-j>)#t&U8ZnrNK??*GEvs!22wF0%>|jyJs8;M6r(ji6KoGB0S#P89 z6YMRugMDQ&2!=_pa8Pkns<+m`P?BhQWgS;mS?8|pO=J!D7fl&ZA2Vh=(Ulx9kegxG zFrz!2F`}G=do`-6_VCbZpHZ%M{YL(mLpAcF@65L><7S(i!gAlndb>2kx)@8|6}1#P zlEy?TXJ%5-kaw2LhflqsY zF*;wFbkD3#^}B=ZC9Ygve>YLmZE;#?Vaq}i z;_139grCT;Yt%d;#fL^BMZPOvY|o`*5%3ivjz@rg*PdYZolREzcp!UQ1&q~OlaP$J znvqPjrX!hborq+r^$#RX*1k+`L(*V<14*0p3na}}9Wt9}9gDGX)^a56Rs-L19FjU~ z2Hw(SeF0;Q)?|+Djku+G_Ire!bFC%HR9!An^ z&1JF|k~-^WNG4d5ku+EzLNeX@3X<_w7m|7_g{0kzBbjKuk7S(Hh@{c_E5}wbxeG~) zwUNmuk?d`KA4!wdiDZoRI+8l;StdCqU*~H-7wnz#&00(dyt^K8IwYwHnD->mDRc z))FL*mWia!Is(ZAYb-w3Y(2-<{)nW_IvGim)z9P@BonL&cxRLK6vpbTBazfwZzCCR z{ef>e5J|h0Ml#WwkEG7J0m(S)pPYCHk_PK^Br~ihkW8|sA(?J%Lo(5N2T8rvgQVH| z0LMPdu?LWhw=O}_WOXBHu&zWh*7_BaX6xff##ui?(rCTMiCdAhScfwSA!)K+MN)6Q z#w5mMDi(8s^#hDGSPydItw@@z43c*1P$ZMBLy(NO{)VL9x(P|0bv%*=>$jYEK9UL6 zzmPOpf8xaJkxaJo9J7#&vFb6~@z#?Vn_#tJtj?N(u?A}ck|ygqB;&15AgQ+=Mbd2j zp2a6idTC6W4X|OKk#1wl4qvt}ci zVl6^aZ|#Pp!TJc2ChI3i8m;dknPA>9~9>v@jtLNeC+E|NCuawHAbxky^A4Ost#k!NP z%|bHK`ZSUz>t2qn=h!!q)LSjctls(`PTU8{-qxQvHh`qr`ZmXIL{evc4M~f2F_L=g z=SUi?|3)&-x|U-H@wH}TJ>J?4Nu8Cz#765DB;&3BLb9*bhos%AM{f`un~@9wPo{GjzMm}tj2xbp|CU)eu9>n<3y{sxf_=j{;;%BR2(trYL9gOnaf z=^P6z3iN|m+-m;4;{9EY)I<6o z?4OiAAwkUQJ2B5goCxN5q7%V9&*4Y|Jbr`ylOF%E6T!#->_qVKHj4#oKvjUM=at3B zLOc#}xYW>z>O`<)e{mvMvZ?UZBYc7+KgNlmkVU>lqU3O|wQJpPF$e=7e(lRt}pqJ`eTKhY?E%s(oCSZgvIiv-M? z;O9~Nb0YjaoqsmN&vW=^3;eu^f40KUpYhK&`1x1<*$zLa!S-NaHVJ+n%ReW>&rkBt zDe&`i{BtV&yoG;GgP*_TpVQ&zU+td+%w*V=gsll~%tix0sw|EM-UD&Ej0RLFT?8EA z;see_G^ppD2v&vhun3hNLxVb!BQqfHQ|zCV_W(pNZ`z0e?7rz-#Jqk{y2yFG=Ul|R z4&Vk77H>jii4%dm@~-AL%=63m9ZF|@nP&LJ1fl@{wl0zwE$Y|yPZIKVh@g=47lfP| zD~ppBdLf0H-wWvn8RfU^pUA>(ikww_Es(H7_OPqf8T_$S)pfc=x? zz21qS5`W-CP-!na5mZ|1Da4eU-`Nl;Z+??}5smv2`zP^!gd=F_FW5gRz5Y~U#?9}c zP6YE@D9IexYc&Yil(21bU-R?xN ziTbS*!6xc$CxXrIAs;6OQuA90CD+`rXnsG3Y`FQo$^JT{?-ict@CVhgqlBw7~NshG;DQ|v1?_31A+|6&Lg5&(Q zXnq%?b#n7-@lVY1QvNA5zm<4;n%`GZC~kh+&!C^k^a%cmCVv|LM3X<8f1-tcjenw1 z{)B&`fxX5*vH6|yNn(c0@6r4do8M3HPi%hA<)7I6-poI-`TaTn#OC*J{IeZ?PLB{X zY<`d9pV<6H_$M~M=kZT$e!sy#vHATK|HS6^Z}v|DX3Ba5Ml`=im&MV*dm&Dj(SR;2 zUF0V5LFXbG)E}G(*0c#x`!O`Aqd0=i@2U1r%6kh$%A4O?or{>)FH09WulJpcm{*7! zNN#?YIuUGsZI>8c$_baaI0?MuT*fpb_WLmMlWA(_44Bt?6JKe)jlsJZyobTRF{oPx z!8i;iV9)@8X{`hY95xN@MWn;JZw*{|0E34x_$~(DgTS;_*>|)=A*l_6Nf=Clz@(WO z%==;sk}ie7w7zcNKW_sh9f`rw7#s_MX+36Nd=`_Qr=*YBNmr&J=?fTKgTZwWm^A5v z{O4vM=?Dyt!r&MPObaJppa^}rF=L`M_X3f_H)3Qp@ubNXe7fyZ@XRC(reH7)gBcj? zj=`P~m^8D3_lD1hq}dqE!C)Q+M?zrI#0umv-bG1!8^r!hDigL5$WECye~;64lqVgZ(f#4ucP2@DU6?hQR_17GZEa21_xBVPIm= zgFym=4H)!ckjCIl42l?Bg26TnF2`UHgR3yO8iQ*w_#y_^WAGIWZouG13~t8Y77V_L z!M8Bjj=@hc_&El@#NgK${0|0?VemKxPh#*i2G3ydEC$bG@B#*Z#9#*oyD)eKgV|q) zU=9Y$Auwqg25b>0AJC?Lcm%wR{1FB}!Qf{Y`~rhtVelvhzro@0_V|s1%p3f z&=7~934>+~S~2K=z@*s-e89bK!SZ?IOz%j|d~p&jc8KKCk&M}uPbA~CArqV6OM%Z9 zK@C)+w^4)aNy6sYlZ1`6CkdNwPZBodo+ND6JxSQedy=rp_atG1k4f0PQ!lWMntx2f zK4Ba61D+eOSMVfZAK^*Dz5tW338W5U8}$sHBqt3#Ugk6Ux2|E%`680vg zBeH+ zo+RvmJW1Fcd6KYm@+4tb_CN!zH$6EW=e47)QC!+uS~u!9pZ?CC@dyF3xYzE8xk6BIG*4MhyQMG?dPQN*yL6fx{EMGU)6 z5yL)I#IQ3JG3-@E47*nm!+uu8u&)&{>~uv8dtVX5Zdk;yD;6>AlSK?WXA#3*TEwus z7BTF%MGQM|5yPHb#IQ>jG3?t#3_E!d!`@!Ru-g|g?Egg!9RU$Tk3huGH4riM5kw4~ z1rbB9LB!B~5Ha*4L<}7Y5kt>H#L&eMG4wS=4E+reL&rnJ(D@KC^g=`o-4PK(zeL2) zK@l;5kvn*#L&?ZG4yyu3|$`)Lmx=Q&>0dj^om3b z-6Ii0KS{*UVG=R)oJ0&=C=o+nO2p8q5;63yL=4?55kr4V#L)2)G4#Mh3|%o1L!V5< z&^Z$^^wLBO-7}1#yS9z|G$%&>)Hd?kJW1%od6Lkh^CY2v=Sf0u&y$3{pOdtWoIodL z=Z`L-CkY)yPZGL|o+NZ0ouqB#MT!`@lTOUe2c1h#61tk6By>ETq;2GZIx(9K`lFsC z^iG|mZRC?;487HDiWsgUEXDH0R$R^tjxx<$WCt%DEKYV-@0O>sM68D5#CWW8F_y@& zEN8*{On3yIuv3spvDJyeu%nw&njuqjGkp0T%Y$mix32W&c3U=I92e{F$DFJaHo;(L zZ_t?43BTOhvQC7gmDVZ@i%q1N6Ei3FgLc|-CVY`Qnlo{GU|$v$>7>lh^g!HNO^>dj z5SP2IwARA!g0&7p7=fNb1eQDF@^)JZy~~`kl@_$4gnNSA@B}W)0#e}EBqq&FrZYK_ z$v>Fv%j7mD-(d0!Cb%pMm>tWpb#_xGW29v1bNx zSr)`P_}b@~*mHyTaBK+^9JIlmM=-%0*GlLwew!lawYl}vuc_H~CGRZJGl*u7X{>J1cCdV`REtB(^{ENw-m|V{! z&%|Pa%d#NbCpm`8vLH5vV;h)U$K(@C9%b@-CJUJuOwMDnmI*G)0%lDd8^`2JOy)7! z$z(i}FEhE6Neh$Hn4G}mO(x5jtYC6KlQt%&GC79{F3SQTp61voO#YY2Y$l7C?8f9H zOn$=TdrWR;@gGJ(nSOm;E(E|bfdoXh0H zOb%u;lgVXFe#hhtCb%pM^1Faz4>4(Fay1iNmIb$5#4%i!1+hVnoyDY`$qP*OW^x6S zrA*#pvVci1lQ~RqSr+hog=2qbvLBOwGr5z=EGD03axathOuoqkmt_I7|KZp^O#aMd zfXTO++{ol>OfF{fb0+`INF~Mb7z#5lj0ZDM;EkrsxiuGCWZIb3-adv-n08bFf z&WfjV@O#!GBC9g#jnI#0j1HWe%!Lyv1H7DUcIIGl-=Uuv?7e$s4tnEHZLS+r+;0&$ zV37oL`H?wgtTskr`%_oa1a8e`cT{?G?y!%}t@P-;VIQ5xkDBE1oH5v8OMc+0fn0Ao zWh_pCzZIhcYYb3Ie>w~MwmxXATD;1bd(6>;#Rl4>6+YZ0K%?}|7PQu%?y`b{xi(Rf!Vg@Q8SwR*cAT4WD}E{ znf#InymlUI@muB7z;lNIM?+sap2uyS&Ikrf8n$tw!*1WvUfLICB%@s>49rlcxOgX9 zZ0(I^Bj%ZTsw2#IPqWa@L83s8c)|K3 z-FY&F{S+QUPoWRKm0a)wdEi@VU&L107O~YjknT)VIG@5BDEuddcTjjbg-<}Zm3BiE zXfs5C_CgeBD@1{ILKLje(wz@bcnO8w6r#6Xpgj-;+5%Ca9S{ZD0I}8DN>>l3Fht?2 z6ut)GRx3uo(Zw#1hh3n34+ZO1x|*TzPzn#BJO4)EO%xta;cqECpTd7p_$LUrTIf`7 zrL7JH%c6Ajs0-v!Z>4Px1#+hgw8^1BdmIY1#i2ku9166-px0-GKH5?*h1lH6rMogn-ngia0P|;Q;1G;!8(<~b0|cQ zxj+tcfwnOeXct3)HZc@v4?}^rFcfG9LxDCh6lniKfwnIcX!k;aHZK&c9mMl03b#M$ba4x`@t{Dy+*a~& z3gqGxXwyM~CI<_&<)A=24hpp4pkSeMQ=o2VEA2KY&}M@I?KLRSOlN_18Wi$03)lOG z=)O9Jb%=}8dGRZF*yzn=XTg~Z;97$3dm>HlErvrG1_rNy4iUw$Za~L*0(skmh1}q| z9v|6y46fU^-h{V~r%6ufPB>7c?9N-@PU|TMr2F6?^0NDGb={Y@{u|;>$2|^DA`k`V z`N(nE9Iad^Huq=JJ!v|Z0sCpYbMGjQM?V!-BmyH?_BI1c_#OWJD&}=XS^9lt=~tDd zKS;mx#d>lN$O|Yo_LwPhy$7u~;BxQX#a3I($#g7=Bb&*QwV7xt3zLs|AgB*${#GYtROGQsK9sZfZ$u7HKTAM$Dq{+iN4I5*U%lt zs%VcX%h*)L%O#lAP7I4v?V*iJBq)#p3fvs&NoFF^_(mM`#3OKc1&ksh@pyj^SS`=3 z@_k{rFYMeG=KI2UUl{Hy9<&w@6OV^x$ZCL z3Tz_%iGCC2-%ZN)A7C|nqdQx;G3?w(`K|@X6JQrT24N4U3G~4j7N9YcStE~QUSko= zbY~J>`J5RyaO??M1jv(S5{@N^8>{SWOR0%$A4)kX3TJk}L2~hMHs9Z$&cK4ueNiYm zy|~-_I4aF>o-mvzfX!T=!VbV&fNu{W%gjY*8jJW&e(PK@7{+tX*N8lFr19u;pYO-5HVw!uurk>eq9`BNqy3LDAh29l<` z+~}b56Yg^J6JdJ7UEY0G5;GfoKz-YWZ%zdm&BOAkM?Yw#Assf4>8x@yPy*X+9F_8m8TZpY)gUuoqf^EF2<~<(i1Yq9Q%w76l&xM4U%pojE>2f_=y~!uhcnoZyBp%0Mj( z7O!4wY)a&M4bPKC$K2zNmuw`H^ief3=AC9wZkapY4L(ihT)a8zM<)%~J$4z8T`X-2%hi zaGoyR9j3cUz$4e7($`>NHYT#roGnL2s9kR9)~#7!(CnR&?}y4>RtrQk)CCnc1)Ux& z2+w8GxEc|TCW`fDW0^#M&RrAkMs3oQB%JdkObx=5;T--eJ?X9uQ^*k45KrT!2QS+7 z;Kitx-Aih5ctyIR*+eWmNF!pt?#|1;UYtZlHL!(Qz>fgG_U?Q#8BW0a#;`q)@Ggoh zB^O(EY%lJ-^6nkmuitga9Vp3^u1q4{V`3pv{m#Ra@nOF!#mNikcD7%t&&cF3pW-AF zxh)Z=BXFw|2l4!jr-=AW*m=gS$b;t_OJJ@xX@VaCN{_>d+F<-fE)D-c_p_X*P#jUO zg?34tSfV?cnRB>Xnuk#uQLmjx!tf3pq_H1y3p2gc*G7$nI5(W=PM8_YdQK%xpr;yv znoa$!TL7HL;0OKGfe(hA2i;=qc_R6o(d2RN?%eLUcdH-^Z(JzSWuF`ei{VA4*)OUT zwN-W%I?kAH9Cf&{B9Q_w!dQSR!eY;>kX6L);!&vh!M8?I_FV$ z(cA6rZl%o_g%CZggJFa)j9~Yc&bXCMCQeWI<;_pHvus#PY^dirP%ba5M#y!+3JaJ2 zf>TjNy4jtJeX~1*Neh{UvDQ8$twN#5l<)u?Xz$$Fbzycsg(4fWpK#|n&z>GP7Ur|L zbRXFfEU?HPM!%LrCUCqPb=f7ak`ypgRzN(~6HP_BqcPJ1a|)%R2i!`a2g3A#Td0;r z3zy7aY3#i6nq9YCgi833Pi|&^GCcqt$(eKEf24N++p$P@CJkpbrQ&Y2;B+4I@CZOW zpnD-6VdfEbc(`RcWD(trT}%{?oIi6e{AYKO+rqMT9wk0bme|}Jh4vYg<1|%~{&aF6 zmF|P%@Jeaa7ru`25(l@u4hPXh3JzsyFbLVFR9$VOB?z62QNa0%0>;QbBHj5EHM}I} zvnVGqQjn7wg&juJop+SPT?7XqQa`>Dyk|#V<9It)GCiNp#!*Zpm5RjeK?SrMBxDYS zq-QD!nM#H2XQ0W+kvs>Lw)ryJvUL z?n-XzF0w33vQ1x3m3DQTZ&5J;40dc|E?5Ks0n?ia!8RqajSZO4LLfhogg^ob)hdPr z2t5$sf8S|m=Iq(sD0g`g44pr8ebU~r5w9HB2rC{eQRv44e!@nR z4NwcB7>oe|6Sc-g{Ddw!3`|)`%GW33^8Gt6^@y!;fX|iuJn)pi~ znIn>n$JeF6-OI_ELqc4bUWXYJTcu$W=?eQgZgxmKU9Rx?rwmQBYKVq^Vr| z#`$-F{4BbHVFFJf-PJ3sdJ$8Njxob~dkI+vi%>h7F$!}OTD zMbbtgbGkjjobE<=?9Tf>y6cWN?0WkHyWaeP-8-O!erC{czqrv8&h4q}w%yLb; zHPRANH1kBM;jENf`_sifd)4eHrqM)$`(f-V2Vy?Z`*^U#V_i?3TuKm|Ln)QLzo zAE98)rfYz;CPrg19yHJt?ZA?PWcNWK+jRA*KMV?Db{xD|X-$ZwV3WvW86Qt`yu&rb zP#|>VF|efDNrz%nn1tqmIx^JWESLa7JCyZ=<}blHn$8d%@jZeN1ak925Xd^hBH&^< zR*co~$~D(QA0U?kF*OEbk`vs(F=O*aLK5ZsLsAQ*Yh-Lb?z(Omc}_wIot(Y-2QwR| zCT2Hm)GOQo75zqA-JGEAg3R+6ntC_$A*t&f!0pr#Bko=%_@1E^itia(w{3hT*gCXc zmeyU)9xq_gH*SOc%#j;Qpy@&bx>xDV?Cb&--7N}qEb4+hd2O%_tn7F)wCDam+j-~9 zcfIa|SfG!7>@SGslJGs3ix@H$Q01JgxGfc#Y%s@aOkRF6UM|SK$j&^TPXPiD=5?l?O~w;UAlG!hh(I? zyNE1?EGYFfU0XPf$Fi8)Q-sH2Qeo3IF;49*UJ?gQMp75AkHHoQNtatq#o0f6&G+wtQexlYyxuw znM3I5T>$?>0HR=5gDJC!g5(WR&;?R~Y$BdY0Y%Dhs~Br|-A3r|hu6a_HFOn%JWp*K zvIXcKAR)QOtz;}rgmOOz@;iM%vfyx5&;@zE(7Z15Z-qZ!I946e8=JXi2w?!evee(2Fp2obtq-vSvNa2 z26;@{k1oKh5o&O}8BVL_B4Js&AX8(=ZJ)?8{j?qjXp7{v4Hw^Uh)?8p2VduQQ695i z5pi@m1xN4<%qZ9e6ynx6>}+GX6}Evj7aYMXihV#89hOC17$=H}&WuC5UVj_-^_{oh zy8A;9v*AM65Ejp@;oJiSASLWmZ3JbI+YwJA98o&g5xVrSlJHe&7t#6ab+)0$-g(Q; zci*ym`>lI!d;iXR-}LB5Um-DqPuTUUdmp>&R>CYel%x#@{EFtCTzoGlK2a=(j|T4) z#t&W01@_cE_r7EIy>Hm{=7;v&ee0gPU$N(rm+ij$;hp!q_tB5OJyS##Y(krJ{X@^D zqD^RXj!8cgoY2m>*UQ=*o2^{(Z2chuD{ad=M8sJ8hq*%p6G)3PvmPq5rqd>`{ma~; zGV_XcGWWqU_l%~S{XKW8%qb;EV+$TSXZ;!>P2$ei=5~|}kKv6E3Y7Dcwofb**{))) ztRYjAk=qddpc}Gw%~EDPMok|~T4j|~MG79w9kWzwL6&EkLEM%Wn!sK052K|VBy4>?-FpqEqnCgS3h>w{X0K))6TnJ zx%*AGU=P}T%l&)qyJye)Zj!qaRSNgKVfP2#yZfQLht{rM4Ws5=Flz3+`?Wi_zbe~D zGu4v~B5Q^8s}Y7;r*rAbXsMp;!dVNl!Y=xY_a42})JXLGdf!#^!V6}6b1Tg8SwHC4 z`+`8G-X($IFvoz^S4cB0w5ywy8Cx9AOM;nbiW0QP_V55f4SwhE}esH#$X_L<4 z^*{p7SNp-)3NI=-O+*0!r>cA>mf#YObSi=um6IK?@LH9j6@vfnF+tL;iVf#k zpodyOqwjC836gGAd^t+F6QtRVZygQr$r()OHd0Ajl$+xKU&nMMU>q0Czhx)&l-WLOswh*n&oNnJ2>nWA;U(8kS^ z7YuFQh=hnBk|qm>qKPqFHX=%GB^oj(x>#+QFk^Q`i&6k$N{zb1OGj=?n6XO?ixR_A zqwdf?bI-l^?0)#>M<2ZD(FfoE*k69&vD@Z$zUMu=9(-`u?RVm=7=m-(Vrch zHxgQ@cux{iTMt(Ry12`7-5ZoB*TWOxf^`@zn5eD__?j;*oUPIBg-a4ZT{9KHbO`Hk zpKep`0yBI=+W1UMxzvdn_w_#Ard$P7G3By1EoR+`%28mwBsp}YaOV>kGOMyZ1}$M# zYTpRf5&nOZSdwtfi8hH1*4Z|WB_KhgyRQrlIEFzF)*c_$G~7X5aT&~t@L?g>HY5js zDBOl=FJ?cLbcWIpDPe@^@q*tqJt+F6Gii^rL8*7Ocq~`%CPL3tTXyrs07D;a3W#1j zg+poo>d3Xds%94om4A!wqq6F|`c)0-Ocodx1w_@yV=J|PZDV4H;p zeznR1?!X+qM*ixwv&XhGm9)pPV&zTA7F=Y-eC3UgUfYgSVi+YvOV7#qF7Eu;Ll6+9 z2s(7mnl)FSYw3|QU7bC8@C&rD++bv60g2a7EQO+75H5jM!QmS+DOqTDTqt0OY$!dX zp=tV}$1U8g<-yCts1?jWFzM!npF~_eq#;QK$}U*uC6!@A#T~NeNXBI7avs9G*UJOs zGT7^f?ZeoT?55>`yiVZ6+pf4p37kWVHO`@PATTc$%uWwRABtGvfFcg4B6Gr9*tpEb z>~y*+JZu$q+jRZB82yLt+2I@7i~@SdvGu9yjuXS<$`y6eG)PfRUg zwS5jRp=<-|J2nYjuiIzOCaNB1z9-5VDeH~R^Lg~TmN+`)zy6d}0cwMX) zvn!FvQZA4a#G?iBk+UZAu5{i zNj4$dtxe&46J%j}rb|SkHRs!{u@MbvtE_9%Iu7pvm43__p&jDF}o}sojwqTzSMR9zo>mw=NG;kwO zim^C=WQ+Dis|4JRWeG7Rr%UbM3iTTWd$B3YizEd7RCDf{o^5R&3nn1}M7YQ&>g5G% znK3s9m=PR5Gm7dC6+jm7XVT6bXJnpf#ne!&GV*8(mnEm8jo6U1Vf$QGmpRU;vWl}o z*?`$BF4W+Z3DN{=!ZQD-J5#RVckz3b<>qs$qkGO{pyn`aS>Xd1>P zxu#^{{Lgbot##(3?`coGk4sthNM89ai@1dQy-?j7Mhjzc` zt-Bw-Q%ZWol&ShO7X7K+;q9BU0uJLDSgJk^Lw{sFsKVwiQO zP1m8H&mE;leXZD&avDOFO|775&v*>?7ZXcdp`bg z>3+aY%~j@xG64LY=x1rvcX-`Te7b8PhEP5V^EG_^+KZxS+D2$-)MRC!^ zBkS=^@VMHQ23sB+_OTD4+96y}85_dIvyDl#X>tN$7r|z{R~{_R2O-MZUG)b7%viuY zKwZS{rla*3tx@z?Yv$OTuN9YorzeCWE(j-P;p4I~m`r5ve2A52j?MYXP03+Va#)rW z9rIMg{E}3M#4}#R0M(q{yZiXk;HYMmqZUL{xP-5E3khohVRav08Xn8aA(Lg*b|FXX zT-`a3K6uZb2i~{m-cRg&_ic|p@|KM70WapdTCrwN6cY5^U z`!Qv5-M;hPZ-U_|Yrr|Z=gSswd`iXwPuCSQGTMQa6C`+Zu(-oz^NQi=%15pq&ienNZD@$U~zmu3Ugt{_z z^;%(Dyq4LQ$?VWpGP|~o%GD!9LQBDJlpR~bSbz1} zrI)o5?iw#eURTwOB&zkXl#C&0lbxVBI1+x1Xxqv{Z z??l%33-nIsBw1gkJd zIhow2i)P@IyFhmo9e_HI7@7oizQmA80h*A7VQ~DMOi{0kTR8d!(gBtQ#KH(Toe_y8 z(=cda85SK8M@&)?HYf8|*SWK*b#5+6)a0=y2Ds@|WKG#wuFGaMLFwH$Moz{<>#|wB zEQ`IgAXpAi_(X9s+gq0?F6lE#5k3aHXBNq(PaGUUrpH7TWFY70a5{wnae!?hu`x(Z zXOYB~nVNJfvmWXb;wF<%b+N2-3S-@%?u%LXU$b8>k#!d=UgO0Nd2l|_Yzh{yCIJQ; zBp4A!oB>j!=^P^1GPCCEVk&}-@q)e~=T7`mG{6$ibuoCxFz}6Wd%nSSBSux(T~Xa- zEnRqCb!K-(b@^dkesJZz+bP~$DA^~+KG*8s&a7CzOXtzftgy==h&t!d&a8aC@=SxO z`$qSzP_sBKdDd~`02SEu@h2CMr`4_{U+U)4NTURJoE&Uvi7tbD%mOn0jR>w$)10k2#NVz{EYm41^A z73B)&sZ}mtS$63{k4e|GwMrM%nq9ik1iA**B9N~>lf(0Em12JW%vjEbW^%YLq(@X2 z%2m_3f|L0ePUb7+WX{})H0rKqYg%rb1pranau;J!+~MDjwl$`t#iFZ(RVWyy&+CNDqt9o)$I}z zvVxKH>Jo7ZY6|&&c@7bsMnumQh&nIe4`1L9EeSF6hSn8WOGH3a5*Na`^or${c|&U& z`EgUCm!^@284{IPxRFFvAOY$j7!=&CKmyc7)#%A3pU03A0|U2pHb@MaN=dgW>lqjk zdqjQ9R7$#3))%T&zUB^V4q5Z2!L1h)hNlBHcbeN0Tns5#cF*qW#Y|B}^BBg7VVoEy zB!B2=+D%T&70T#Ij+D=N}IaVo7%8 zOHV5u3MPvzv_rhZ+q&|lv+B4mncPD$d^4N=-)#C8+4Rg(q|s)buLA)Xfy<6@rT0fM zAxP1(6lqdf!!;=*gxL|VG%2MjxRDtDgBV{VF<#Lvr0Z68cZiKqUi2*pDJLlQIB)wx zRab}gts#Z@B}6MQ3l>VQ9xjx3vdP!5$?uX)?zdCsD#C_P7?7{uPML#%9U&K)518IdOy47> zyCtS2eU8sOCe7U!hv^fPdK{a1XcnbB2l##>d?OM5l|;CBFA%D=toczhO-OG}5Sk}I zwRSZj9aphWmO_E&rJx-E)*<6O}>)a=s+v?NYTt()3-5(JgP*l^SGjcGq z%Xs+*Dh8q61oK1rVYZDS{5l_zZR;oGxgq_q(z~xwifDlSgglo9;E+ZRmF29cH*pz) ze;Y0csxT(_sz+X&0{3(J6ezreignwJ;al-lms4kNKZTbn-M`j;3a`P{Kiy2GuC_`? z<89L6WF;FYGK(ppGfPtpTBS3qR`nA}b*pp{(Sd?~Kao^7MVC^H-Tj_6p6AsbXB%2t67&aEz_m)1K01U)J@c73u^3lRH|YcLOEY`pEe46&vbrz@}1ZH z+NewAE1FLmby>HKqQ?2OQ5VlwoherIh?sGdTd(le$~W{|9L!9yqKoRDv~O5;FU5YF zj~>xMb@$tR^sqWK^6k#_ff{_S-E;~~Xj;}AiC911XTvjnpe~zh_%s}FSTzaJAxuuc)DYdr8z7!V)SXD zDI~g7)RFD!x?ILln?{*(YEycMo6;m8b{>|SQosH+VOs}u zdPL&N7MX5cHtr1nX`GClxkd`sBGW~)j$s5+T{JhH zfQb06{mcRc!txn|qRXq1`W(^xD|_Vc1e(ql_(P39d{M&dr(Pty-l19hsTT=M`-$ct zeTfMEhX}qb5%g0J5P=T0s=b3XJu!(%sIPi}NHhiQ8LTO&PWmSz`VJBO^ZXDE4#?Wi z^h!kiBC}#5e~pNqPDEdqh%)a0JsYiwoHI_coaG&$3s}?F4YdW9K2upcZ22Sjf63sL^MgYwqbtFTU@wrmwN4?~9r` zyZFQL{9(7Oy5E5Wvpr2o+N2~IM}dPB`W{HKsJUk%i>lr22gIqo4Q(Rw>Smi1*GT)KER{5pECJJm$2-^`Ch7t8ux7t77G&QDqQ2G;#E zS$98{cfO&2`?0)(V*sN^eo0hMBdT9XRQw!R^NaSmly+|7a%b?Uf2qP&P|Bi6-3tgztKLRJ|k z5{}$r`&pl?l6C-|thRpEC#!IGwVmIyr(eyU{)6o4e(SI>sByn_n2T(ovEELsXG^S?nj>9LUJ7Uy)_Df) z6?9y_!=^JF42<3jbk88V645r%>Zx91Vz z*+h80M40iB#r+4r3mIEj-h=FpL`Gs3AE~KO%r~Quq06Y`ku4yy9}wBdJo|3mad!vy z-8=&DVst$soFc-CL|CAUvRgeUz;1yq$}ZkJ(k`(0#Bv_7)FqZ|AJ!w_u7fNpuGkq_ z)Y^x28F$pOGK$yFcu*T?3wE^WO}tkCZS-W@oxDF`MHvrjmm3!4c##0w=*f0&LKN|! zcIm;j7Vw}pf&SHZ7P5yK5xBER_HcpNZIkO0Qn*0uwo4Yq7RDG~Oaxygf=lL!pl1}} zfd~r12?N0rB4DiF&QghB(2O4tF?i67?-@E6SXK}VqxyDMN-UXLQqNv@#_K4*P}g(? z2F}!yx~x0%by=uttO&tCaRpH@l5gkA`Jph8eG7sC4?&QJOEfKsroh+H=^b@p0y5A%f)f|`I@-jncuakx6a!~SoQxXWi6qWJ=Lg5n zju$M>X%TjK(C(ctsniH55!^)t8|I0CeN-5Icpw58aPnb@(FYwO_zDqhnkNDoLfDT`RN zfs?WV3%80Q5*H||Z3^J2EDE{M#6Yx}h@M15TO^_aC9X{mQOou!F!3OXZ{87#f%QgW zeG9R^NMao%vCJ>LaHjb#o==0~3W3qJ1?ClvU$Y`9*Ar}z+fPIIgve?$ZnR% z3e;E5_*(W~qfd1gA*mHP720HMTXu1@U|_qI*q%*nw@GY+_y(aDGXWqR1vkkQsjpm6 zbfYsdA9Q)ON8Uj+4Dj1|r9?A`!U1TeS!iJcz>;#kF}w7gtzbO)N(e%bgNS z!4)jKWdkAx7hJ)zOUs+e1)+m6Mt@Eu4D;K0twd5VMo^^BKU#3XiEqmH4;u_LuP2(H zvR~dH(G=)>47I(92wb4^F?8k^8W`x_M0B4gy1OL0f)mD2bwkW{1p+QOVN6js)T|W| z7#QA444)*1w+RfLcbXsGB|#Nznuc;7RPQLi1zVG$lE+sR?iWzsOJoeE+qqjJD-h!h zO&6ICuPauYh{#(YK$)^G9$i)~wf7UnXNcmj1d7hR=7;;_4<9x^d_?|mzxm+-@q=`2 z5w8Q(CkVGrwI;@_@Xc^rl#zA?aMo(M#ptr!FJ)O5xGt-JKSUHhfj=x!6u4v?Nnu>m8v-pAtF~u++X8jGDcmQ}EvC+=h=cKFJD(Of zI-fH?{GI&a3;f{#=J=xcL0aH?jgi=kdj_BFyB4jYP83?8{1P$jCWbFd4B`@dFAR(y ztHLdb*};NV+}ncL!4g)GLDcw9tdWsqJO3%LcDrp;$jXxakPrv|1!-59m#pIxkb3DNDAb!SeLJ?l21U&U-; zVath9mr|WDZ9YvYwW5E(nm4lMAIh2wjIIi{X*CQ1{lmr<7+rPK^{1x6pj!+*i%%Ut z7X9%fqAC;Bk0q*tLo1I;MDOBs?j1k2;Ly@|^rxm$7)Tb#eoADF{@VGOL{^}Y=|WZz z5lRf2h$35{k?X@6o#ma{Q zAITIk)f$)n)VE>9)mZtXnqI#rnlp*!4-!oQ!=|X1=>-+k;P|iw44X!yKP8=>fnw2l zfAS)r`vcKE3E!YQEZ{)$=x{<62ZSx)Kr|Blsmr=s(}6_sA)+`)qA0j%lSg5~ytax1 z#1>q%(IB!<6%Dp4QY?DrP-0p@OovHKeGU?hjW*l<@nQQMBpMZo^a>OUTt^ZYW4CsW zlDJlN8+|n%{VDxx_985-py?WbH9Y+(Y0fJ?EKnay)QsBNIc{H2OV6NQ0b&0*)RJa* zWLTg+k*Hrt)F(;Q1*#$4$NE$CwT|Yhy*>+L!WO88boc5{)yfwiT$Zber^Nzksd}jK-U%P&prS;9{Zj#W;+$x_p5u) zDTCX;6{Ifsc*9-Pl_^b6`- zz(goo1T#3oKTAx6aOUxwFnd(_P25Zo8mT(}WOx82GmdSNY zp2g&PCeL9aY!J`ox92f=K9d(PX)zHjP{3~?lZZ*oBw>;=*}z0d(QSU~FxkXpl*t&A zaV8T?CYjv8WQxf&lNlz$g<>fhgz~mk# z_cFPU$p@Kyh{=bUe1yqgGx-}P_cM8b$%9Nj%H$y?4>S1~laDj`1d~UYe3HrEGWisf zPc!)plg~2w9FxCe@_8nI&*TeCzR2VsnEW3mUt;oQCSPIlk4*lF$v-psDwBU<@--%3 zXY#L1{*B2un0%ATzccv{Cf{Q6Z6@Dg@?9q1WAc3_k22ZGWEYd&O!hE&jL8p}{E*3i zGWjniKVtG@CO={F-%NhW-Qr`8^Y%2>AoQ ziNMpmSKE0K6A|lIT%;4;E5d+uFdrPkL<9^tjNb&yd?dde!Gz(#J4Z7)hRLx^j$?8> zlM|STILjyD+xEF55QjNxj}Djp1(Vp;aim?1-?;~q&i1(zrVx@U*cQ&Fc;y9Me>ytf zb5*{p0e$=2p>caddj>8+lF0MbLw3jZxu*!na1~3UJw6HMMIKE$`=rXw9@sv2l=N5; z(Xn-oEh@(ha0q@lg>1?R#EzEB;^5nH0@>g_GkH<`9vW;V-EI zH{;C@mQJ1F?^On_;_dR4LxQz}v5--b zH_ncQI_npltQqG3iLEQ@rd#s!PRZ;#kLl+uq@!E#Q#}gmum@K7OSj+`dlby#`5FVa zTkz9P!R*SI6uNrW_c^Cn=8vZI>~82;x5m#pMTatmjBjhwMq;mEHIJ?ed;Q_Q+Z!8Ufe zuDOkUl2i69(?4=VdQ|vir%+}lQ_g8RoMMmCPjE_SaqIGtFI}LAs#4;psEQ6cMELmW z&O2UZxKKPhD4akj3%N{BaGo5eomj$P1}`2myVS`l*9%ZyuvOdVj?`JRz3eFttrOO+ zUOgPP<2D2v^2dB9uB`J^C*L7>N%**@pPlYJJ9Ijlz`mm&9_KtfYQyM6h}U1Uyv}i& zlj8_VeywPV0Z`zgZz0}EfVpl#>?Q)fIvmkg(ma#oy`e2!p=U69?A+$0c`;l#}Pb?4%Gr(kwT)hd{a zCg_%LtMcU1wp)=Kt@2`Pb4#U8scd(!N=Xg9TWq6K>AHYc;Ag(!@HcK*~HLj)J0&1lX45b!zq{@;(8OdBW1ZI-|CdiI^Bu;07P;(!KE+m6?3*_PJAdWpo13eOn=9_)XN;wPLd_9(3}aR*-jc zG}~Q2=Hx!B9rJDTc=eP;8Zk&Bst`69&gl`S&=IDPhWk0^`3dGZ*t9WhX4`bWFF5&5 z(XT7wi`Grcbly)oc~4Mzg zGTYdvoqR{qPi7P@30X~l>tr}uXRv$sAt%cjW62o8v5&`F+A-c+cEfBk3ky*)zF}sg zZsjMO0w>#9@}2jvll8=C7E4I=%4jf)m!@i(pLa4or8}c|i+Rmx2ythiC#cF}BvG z|79n~G4bq_WFPH3UsZW1IBlO>X0}Xo(KjD>O$9#FK_q)HKEG6C6R`%f{Z5*Utl&oO zI{&RxEZdFrM%J_7&z*v&n`VeR7|`3XpuO$=%E_Pck#gJ1M__Wx{=zAHnyE_%@N#qi zuai6T;*m9VMICYr|Hdhtb)yifw#{S#zuaOM9w?b>Y6+Y(O74|C#;oC#%2-`+hO-cs z%}W}KMG3!0>0TjIT*P&!bT%I3hq^DFyJeeB*{qXvpq?JheZDF-Av)<8@CH+O3*43@ zY|XaydVH>vXG9#jU_kK#({_q=E90SvIgO%)6hcK|v8W}Rm{Kej@h_Z-`9dduW{a6m zKo+-K0*6x8rNuEf+_KwLSt@jJgendX@7fzjR0E3`(L0@xn z93ygYY8OzJ$}bn+aztc%EZR0gUpajJ|Z8v?N|M#nUe?>ae-;bJh7x6bozC(mJ` z(KAMB8$L*GPt?*v6E~e;Tp(3$)}^2BJUpT|(-0G_;!<1;*2~!iJqqJC}akEoX zU<);pMJnI9Kju6jU$++pbo7MAKQT7yhhd)x& zguWkRfvM*uPTn)=Q#a062ICU;OmT_VsuI-7Zl61RY_hc(-i$_8-|jp$_FXV?|pIpB@h;!ChslO6T!O`Z4`cajUWwZi%&0 z^IufXAwlS<_W0(!67@e+j$33^5nd|`0Wi_M{w?S6S}-nL0n`&?y4LTjLhA+1 zLxciG5Amg?m zk|)um+QKW!$75)1+tbst$pW0dlT>R@tDIMfoClU$nnc@qaDdT}wA|k-I)CE+Ue&+H z?(a4I`wQLQjd37!f3NHO8{FR;`uFF$zc=+i$_G(c{j zJHY%t=lp)4XU6GH_d&&U)r;K+RYU4#_d(4(xZQo=n+Gp(AJol*JKP5i^WY}u!2za2 zZgYM=s9Z87wmVM_ESm?fa~>R2_RNzTb5APf$;)$3vc|tC_atlmj@*;1`LE19$=ZKQ z?n%}GugN`W8f-6ho*anPppO4PcOD$%WnJ*6xhGi{ye#)5>w;J3o@8Bc;34t^dA*oo z$I_k`OeIt@z)GpX{E3t4Xq{<#X4cs9p6Fyb6kIDbY`T0$J$$~X3&xMh;+o8`b_fw}_rk5#j z{&x%h)+uC*o%hkoDQ3DiUzwdbDG)!%oBWfF6-!@LXR*G}1NkZIE{ za%^`?|I8_E1!3ZA;_3I8zn9_`-{}<3?$xO|qFtb6M^BSKp1?}sYIEs4>d-mUjF#<7 z>z4SXQzE;01QEE`Jq(w?E{8y-yb-Rz(E7HcO>#-Q#eVD*%Pby+{+e#lA2~%c!-X~y z*%xKpl8-qhGsDHwU~*=5thF|Y+EB(jQ|ebvk*r5;|8cj(51kU3m0I8bP>#lKq5pIW zWm=}}j+vYP2TuN{n1MDoyxi=^94ZeBdh0-7hp2`=C|ka!PiLYANkulCO_w&UtsclW|`w}_cJ-2$x~S3 zJ$&#FOde&jmcOlHauAct_}jmcz+ds(`TT8`-zrSb$am1b+KHzrBs$5`G)zw=MiuC*||_=co8*hkqW$Kfg`N2lCr)CL?@$ z4xe7ZZ(nEfOFlS_$=&>OHNU-+$$BP_@wcm(j5GN^r1vp?`!SQdn4Ha|#^i~l{8oPZ z4<;=pKB>Hn$qGLGD1Unazcu;WD3g!yw;3jH=ATFM+jp28%Rk@9;YM{ujT!mdT-f@OSLGt^D(=eELNu z_wvs@d~gx7yoi5JF?k1{-pJ$;CT;%q0F$ROc_EXZF!_5V+rzno;!(lD;*L3p%^k4} zwq|lj^!lFGuHI{~M`mt@BekX%HR_d;Un^I_pj7qZdaaq1t6o@Zrb$p8k&2&I98Y4q z74K79?NIQNW)hSdQ8{XaVbmx!W4{^s&A=~JD{;+F5{E*2a@%-F4a*A@5$UK{3aW84 zs+Gf9*eI2wz^^A!wGqWhtx~GitA1$&^|vN*yh*ND;AlA{D$S_sC26x3))F?SQA(?| zB(A4^%_}#{Vd|1FKvG5J9S>w zN8>g)G?z7lQqriE(^?ePOHsWMrg2iLhs`kd{6@`h4xnkEPAIa{TeBHf!YHny*>T(q zlS)vnMt)R_y~GO|VJV77l#iJ3=QKtrHHhO5tqY?du9dtJ8{Mo$l`w5of?Bx|){|;n zEqk>dv<$RqMXo7&@uDQD)l#oksYj(o8k8$Zsaj5|^`>911wQ(AM7pRXTX|GN*O$3X zDtI#vy-RCeTn&PtQt?aWzzZwQW(h2S9|YA}t?EZfA9@DjRz*^JvR+U^zeRqd>|w?> zqNWe}NfQ$eFzd0`D2*5`t(^7SoZ=&xrhZb3(!guf!no;$O}|l%0H@}qX&OaYaRcCH zMS)(x+vgV6YNZAih+nTKWGO2kQY& zlv31)s!yjJ|1Lez#%xVGU+%POh%`!$QNU$LV*o^8mzfz7$ z)kZDGE<7SE{i;vC;*`ChR4X&f|C?DA=hMOaTTJN=OY4|4_V8xEy~ zLCSRxK==Z~d>vhi$;dyOQN*LHh?0TzEk%qMWVX*WDt;A5a~wrM5=KG29D3Mh>m}?s zW%OOWG*Wa0LE-wgLuyeOE#%?~aavXCDdu4r9>;8Or4fXoUrfpXdsIX z6won{9#f?5l|$%Z1fxo+g8dE}`oybMOCS~3!03QoER{!~1{j~FQMrqI*yB)I2u3Re zn6w)Bm3kai{4}ikrgNubdNpZ)SH{6#LI2h{T(uf_@lvf0Za(#+ zZZZbY|0+tJ7`lbvc0C{aD_BYh5njcI(@qpNaN2`ODPu8^de@!9j2Vvc%5PU+=XfAH?hma*sn`zTK90ISNujD z`zU@aC%$HNl`*?(avkE3yCgyzeVi01H;|(8tCDJ|w{4L|#>`p?tR;6%yPJERuX(nh%qUIl&AEMqBRZPpup z1=~dhjBQXUCS`zKrKrg(8&`&vN+n5}Sce`uElvD5C_!$*?80oV)Ps>2mrW+N@s)QT z{_lRPu`A$S?oeM{Pr`uwHx|90c(LbInwV-hk8qSgqKf8C-N1jgs(@ELx6jpsI;0T~ zEK(ZPaqMC5hJfUSe%Qo>t|ZkF>%xR)RMjT;9EZ}vQn>+U1@cS--HFZ!s$dJ!Aoe2g zLSd;{NXfu@fg<)F0@lU#GR|JV5knXRA64_qWt_y|y>L2|f<~oo6I0H8nM0q{VK@XA zL%uE5p$n;18(@HNB!fi-&wv>PMjwnqKY|8itZ2>%kRxE2A=U?wynG0}&8QAxD1eAs zO1UNz@Tw}r7dAZAXOTm}^FtpyEo9pyt;BwWgTlx51gUHd|Wo}-c>F4k>7X2q;3YMi1DIT~$h%+f4wdB_9D0{xXo7ORRu7XD;(yskCqcc{XqK@0 z!dfZrL(f2bvm(g=1e6x*;A(I{)Tob1pi}azIO8CGLt#+D!s%vsdFe|H;$04{3xhIR z2sHp$(+~$j+~ht|gVxax6X+|v9<&U!_bGDnJ{Q!(P*j9a4uFdep&p3CCwKf8V1TeiVWi;KtgQ#UNfme z`weNj9N{M`-Y9@UIIn>-g>(YRF2ZI9BLT!I^nQT-s$SKSogrim z-iIAZ3n9~Cp`k@JFDYT0L4*T{P9?B4I5-5=4lKfYQX+b(Y;?z3(V1K0`UMiOG&*M2Q}>~4g_q!eh4|Y+^Ar>f(vRu-=p?~{KYucXNNn) zE&^MKF~X68T?&M-Kh(kd!W3AADi6B6Uc@xY&IyVh!_{n`TNFZ%RZpPBZBrTr-WBgW}=*?n%wSJ53S1PQY7$ z#S+w@N&=e}cuANxu~WkYgt_M9^sd&a-V$D1X11T=5GZ4F@hcwoP_aU=H;0&Z*qtFJ zp?v{V1sMSY;tWM&Qh->Bo`EJA#;iKDSdd$NFvVr6g`2Q^RvVR(P2&?=Mw56$f-9oa zh(@O0tm+DuXE{_?K+=mLc|b73G=)v3T=HNXi|Pr~ZV?!{fm99LVMVwh;MP1yls-Dn zgLxPHNT~)bI@fJ;x(Xiff5dzTQ6b;+!95vCi<&dgBFO=8nn5Px3H#C@ZJqfW60%ETmvtW zyV|K>UE+|bN6-M4gK7xgvRs7{q+WsDxe7TD5;GVb$hUbi2G9yci9wy9#VeIO=#R=N z^lmU4hOpQLP)vb?haC%APZ%hB+!|HDmOJDwfu{g=LI}k^bj~p4hFIY^-KnznV8@Po zlQRIXQWP2T3IJiFf`t#8ZZ(EL5C#}rF#5G}sR~UorprjLi>V6WYKPn<6>J+R4D*n_ zATCtFoHlWw)M;^|9l-BR&H!AeC_Y^P97)SyR%>uas6YcpeM1G#7YR&suo%;x4TjaQ zU<%WEhXNFyFcPLw0@n+$C@}^%M8_o%U2&w;f`&uEz_?x!k@sFNgIwujbwlYK1`QbJ zsOqSN5E`MMhk3&rna|Brh3|O|=_?yCG}s{=Qey0G5H|rTz zG+?U-8wJrOso4Y!h#M4*UkVTlsRD(t4<$wuJ~wGvf*lYH4wR172DrNV$OJ6%Fw<|K z>-)C+cy4uwT~va?IBe2_fYSuWF?>I~5_CS;LVU12u;&#MGvHpV=rPLO_PGnnaSBl# zdXNe%U1_OOgC+x8NQk)>R?|9^8Y&*S>YqP#ijOp5Wr>>DTf-2YTJ=i61YQsa4V+5Q zd0BA-;5CZE@d7{-T84VP+`vW}L06R4p#+7@f&B}!7P5=5k>vtssq|m&|p><(W zt~9|s!chh+WeoS2AjIxpgBd7nmZ21(y{&+jf%ZB@Zo7as647`BOE&li*t8mDcu)mR zn8)kbrYlgijm*^YqqW1K0M{X?8xj}*DPqDq0VX8q<^syu5R9>KYzhX(+Y}Lo#UoD$ zjt$co`y4f4ut~vz1v;!c?8mT$2z%Waq7co%t=K)N?{etC2La-@;Iv|>4WLt{!48}V zY}()sBibzTbPS}s6)AbAc}ZHrF^J8*j`O|(cabWnKq$vzhL;lD$Y80h zabA1u(x$)HA-WvCTmeQ)oX#-4HY*9#HdtxU{b1vV!F~Wy1NQxj?$bp7El(QsPQbaBklUa4I&?2X^P@@y4s8%;VM&6W9sCar z&KMn-5`6H(1L+#bA5x@WE+AhFXC(*{Fil`hLR*3Z9h&u|3jVtm!)E~er?9I+ur#7` z4(o>!AXy7?i%1vI~2$wR!caT zQi$Mb30`BgY=Yk?S0m`L{i;L3z}TaR{7%5Q921%1EzH;<_)u&C@L+>ZAF>Y|fkKE9 z+7^QMVd9Sq!U59X=Xh z@3FD^=v&xPaYWJ)aS%}h_LquoNq}7j9vrGqm;{>`F#K1A^bNj=`XDfj0W9PC_44j( z>+@aw8;9&lENw^&k%z7Y9}CqNjP@RkNewzpn zbc74QmcXZ@4ER+{39z;TW(zXvS?ZHXdxp6JU3knK_r z91gq!;}X16z)HmBW(8Iy*tKDz9f7ZHG8V#vT6=OYb_ihkRpBZPK^8&^yhc-K#i9F$ zpbXbSd`30_17f+N@e=`J5$cV3&O+#cSO@C{Oh8~$z!K0k+-uNqFujS6qcg2wvYnrF zD;#PU!{Uu~9LDG;kn?IDx}H|DGW2-ZCSYOdLCwHhuL!OX@SsS8RHcfb$SdplJ!3f9k8CGJ$n8fq4{t4u5mJi(b$9l=1P^3HLmQOdV2c z0#|-7sl$C0JU1W#bf}4Tt7SLx0Za?K3EUnn43KV;AM1ctchg>l&1FfUTF=+Gl zIXLEn*M{z_i46m~{t^^?UMZ|&cgC@Sy%YiyqN#v0!ZldD@4gjH&Z^!@9YReiJVUwx z){-Vnq%qu`a9<$wF&&^^$9`Tw$bcGCv>2lrpi0ouK=i62g%n%DDG50TI2+*GFc7to zP7qCmZMdqn5CL_XUlgcuhfov44ww0;h7k*3oQHn{2*Ki#z`_B+I4mM$Ky6dBWYm^g z1)heuuTTS13eg;ni(bV;dsDdXlpq?GMr7!gsnPrZ&N_6U1ZmdbJQTpJ3B3hW$Ka#j zqng5fg6NV0ItJ2<6{%U#PYW@};l%}yALx1Dy$6R5tQa`H`#1xkvxN3p1QSwGV)D3N z>JYn#v$000H^PP)V3J`{ke9;5z#S0SxqA>Z;BHg&IszQLHXw1-not-=&~U-)3gUPO zn>Eh2227u|5fT2DF=B9cbv)1`c&kGNWg$32hX_{uz7IP zh1v&_BaGB=p}>4?_M~Ruy+ILV=y%>+fHJ%c6DbZF2oG#unHo=Mf#9M7A1v+irrvy? z#Ud12>0J)7i*UOH-g0mfhg@E#?i6P!79u?7!L>nX??udj`%6Vn2I^S}Z;k*xk7)oG z6_}R&5KjCs5W;^HT0(eqDW_z}H+V(pqzKj%M4QB>pWDse<50c=P9dcL+!R!f5GHYV z2RHx$Z#06hm;)VnsYd{Y;WS|D8k7f#UGcJ)p`vOBR43Hj- zsR;xXXc@c67(jokD1Ai&q9O{nhyViA=;@b2O%9`p4_-0AApmtyp&|6s4jJf!Ai}_i z4Vea-cIeij`-f!|szw|sK?M#wc`^pjKPgHwk`q<|*mO7^L6eA`2s{o{#+Y(gS`mmR zr4ct$)8yoY+W5cX(7|@>*8-SH=yDT4w17ku)uCI(!Hs4%yaGA~(!VKEGIZ315Jq5l zgpU`DXaU(0=${klhry%6iL6q~k-EW%_zKzA9deg|Eywjcn0Vp(iTxg$d-#&YV9lXI z^P!aMP0j%PnWFe4F^HE#=!GGZH!r}7!4!(+13PVk*$#C!G;AZ&xUUUKHHJSaxC|cW z49G1bLgn|lpE$Hv@frhs0pZ#P?Fp1mFo9HH=80hoDPiS$^Q3K{|6Y-Qi-3M9u4tri z6oM5#1l}slThL>|y*Rq`hjk6MDXQY~O4Y-#^&@G3o~o!mS@h^) zILuY+aBhYf12evaZ3S-BWjY(;MhvTt=rEy8iZ%SBKz!eT<* zEnJIBxSN8rsDX_aR(+~O^P~*0`xG_4&Sm@DML+`u6fK$Hu)$%055>(bC@kR}Qo)?2 zXo6#Ha-#@Z(wdyPp{4v})e5=Sp?4{yNvK%hL=HtLB=7_-sy;mB;L3|V4pMm^dIsXh z6v>~8zFUr?l8*b>9xJ$@jkOE)9#%HAMNk~zD!>TiJiF0C*aHFHcH-_jA9v_phC8(I znQGuZBP6m2jv!62givQdT?UQ;PzTdBkiV`-e_jr^hjE3N0Ko$iGF*IVCBeA{R-^=- z9#*vTLV0-jkaJKS`b~$_B4{>oOu(rQJ|M7sg7L!T9k{RHRtv(GK#uvf#50xugdbg&n}yRiYK3e zpOMfY)WY5mg#{cH0~l)H;gNt{g{C!yaSW;trzgdo<@SvB4*pMv)`bw-0{D}{hZ^!c z?qcDZ1QWPpz|)NAi#m8hY}a}POFtN78e=}?=9@kkQ(T^UQ?!}X?Yhpol24$GlgND>~42cg=bOf|S@Xpx~CfD_q3vIg+Oit=Rwa5;px6|7j@O4Kc5d z<(*(HmK!{YMx6Lis^=bZXuvNUX9|WAc85~Kt0ho^fqR0!CxFizgwh-h1Ld=d%&!HM z1yFs$U6uL)C~0AAgH{Y@K13S$ghHd(7|8-cDI9<65P%2(7pe;OXKbx-C~1I|_fzVw zV7x=HhS(-xK>WR;u|$9v#+5$!#GnPZen{;Ey$GQi!jM86jr%GiCd!n;@DEP;60fS@ zsv$xMz?A}a%n0Hl6izA3KZvdo##VU);meA|Mgd_F{SBd6DZxt#97P%8F79GhV8(W6AgiP9ZmNp91vH4z-Kn6XwC|6kHFuO~?zd*jE`z1kwVWv0x1CMa{tbnj%;h z@Gc@4EEXRWabSZtgV>1k83zLclhl29hxLg2rT~7!p?4{+^}&G@cRS!h6{5kozku7( z#LEktvDb&5f%q*&lCR~1A3S2dz#kMAE6hpQY+y^kFHjo8yjO$7RUC&!q5G~wY7s9B zrHDpTsg%)UxF-lf17T&Lv4SHmOsD4hlFdskFu?vqMF9J`=sWl#giz*HaXk=Ddbr|; z%@`LMs*t$B0AksVXlD{}bI{qXey?yzN(&>{ND|?}QGqOl$O~YWa1#pN60kGk&?%&3 zU>%@fohe{lBAkeL35C~lc>2Wj@`q~*t~9{!2@Fo}hx2Funkn3o!Uh`{4MUU{h~L;=U^Nmq{EK2cDtKo& z;O1eyz`;apLpP?xJsQ`Fo3ZGdpN)=cwuouC&6N5fZ z3*1hHgA@#o$|cH<5n2=lQ{jEOLwz+b;edSu;}3Qidlc3!R9o0g;RXzSmWY+W9dsad z1OEb5!2=RL_%iUG&^f?&2SNZXIk3goYGB-Oj|;MC0etBp=7u;`@P{4htKohC|5m78 z(aEqbc{mB+35UQctPO)XZ|VmAh^pX)0{#jtOoYtBeui6zxP%BbCXRn-F(Dw~vOF%` zD)@b(Zz|+vhw$alCqQV2hZKTBpy%PU3T6(0oUj{U8p7x^55flYLPh)i0yHkp;2yaT z?;hC9aWqtLEdom)${DamxRzHPu>(^oc#9ko*fYUbK);1e7kU)T2HblCp9fK_2CqO| zY_Ia`wFeXj%@I3Jt3tEdA%VyZ*vlfs2C2h51|GYV0v!C*sley` z3YUZd@+?K=KLwB%cyN@&eI}^h5hVf9VR(s{F*z#GQVTBej}PywV6S&7gcAuBs&M&f zG#K#)$``mG!1D#cEO0_X_p}ccnnt!%o!dks;ZDq;6ct1n!TyX0HfUNCmWv9-Nko$> zjdTZ1R^XrO5Q6pqQeFUd7{Q8Q34*!{{Z)Zh7zZ5Uvownc8BnRB^6b}eoXk}-tL4fi3i`E;s=oCU)QTrq)KX)dLhmB70Lt4Hv;bc~y7&p-jG z-)ZNn&u(<;c@_+Q5C>2J9IRk&hI|4Z9A_1@_TUCFEkkwA`%Istx691bdQSOyJfX4h96iBL;*7-a8B@N({Jr3-*a_ zF&-}?0RxnDIMX~>#9*l__rfqccPuO-5Yk{NkuTnwooerR@s7De=*!$9d(XcPn@Uo8 z=+MWPe;_MgbbU@#st5fv(evJyW%fj_wp3q=MI_Nwoo$9d<1&hmzRI6H-F3> zSXxkSEGX@mTeNXzW^#Jrh#r*%6H^;-qHLYvIE14K{Z*2!3pUP-jh-zD4`(#zo;bW? zW(VFwsR=J2^aVN)MKFrt`kR{(Mf83obJq^4N{BUC;o?fWs^~lj;y`g?4uyIpqyypV zc|lMm`_-?B>&lPMRgS=gqti~+SI(dcueu=$x#DxxHb5^1q$p zyQrhYf%N=AO)uOk=3SK@^##34Alfl6z;9`9f=U=Kz-nzBb9Xabz39Jj?j^*+3N_I4 zdjr+47{O5{UxMItT_SISOIIlVc#pWzO!T{ofDy9vCm#CMqD4aazOflbl{-`UUL`_-#qm*)$6 zhFwo{htuEb;|e*eQ^UQW58SqJM}yH3oh;t%=O7LCH`4CvG{`=i*33kUb}Si{oBI!L zgE=tw_oh`?p$7WYTyJW&3S8wZOj;9D?w-GHUR|h(2!?cU1scm)xvcW&+`!9ng)?vM zyuero@I2^iEKe)UtL_>W?mO%E3z~cl8jpPEJb8Y>TVu{lFIc>?wR-vW>zv7R*?drl z(glO#P}Mb`?e>JsGZx%9F}@Zrn@YBqQw-D~z8LY}z?>iM=vCqxT=+3A1`r}l4 z-OTr*{=RDUs>_{<_r1RbN!{YYI@hjQy1(lrNnPh@1!H{G?C4CpQrhIyd-*;Ou_3GL zKC__iHOct+dN>}1!MI!hRr_4OLt0}f>ho*%|2PYhy3U*;Oza`oT(idM?q&PjTvF^; zNkw#Ez24(duV>m@G>_J;TkqDo@B4)ysoPpu z=lXT~`%G9zlDf{KGhyAthKbqL$re{1x9?{{MpxHf#BW`@Y|Yg!AH47UmZYg`E$Zj% z_x~OtNa{MzDA*gpWwh5r3V;dLnar#9d9Sc3YXn6jt@F9ldf!JnqpNE#IvbuHAb7>% z@#!tFu{a&D?`MNUT4Tt`$6}v;b}~BIL-v`M?V>NknW~4vF4^$CFAlC;$KNw-5HwIgXX41At#kuPcqsXgEc>_d%#_dc5Pff_5zrZoQ=G^i8uMWhwV-k~lX zv@!GnAgQU!X6FuqO^eD@Vb8KQOJ&Afd-am#Yu7JsEm^#7d29LVrB^RozSbF$fl4de z9-6hRA9>vo&*+(b)#9})i{T7ZoXiW3OJC!$)U1livsPWTws+SI+`ju_>87o5Sc*j( zhYQ-CE(5pl!9ZN%X7(J6*&{+XiRokQ=!)Xni7=U(36{)`$D@0>i}c0h($yVf84pzH zDOvx5Pym=(;Fh!dXyC5)N8quzK)eRy^6@oO6P=~-ctJ3XoGobJww^clXG^1ivhEMd zJdIpJg|HD0?u+%k@M0{_8nn6e#nP`9jmtW9foq+(xxQ>-2HnGZ>(2Hv@YL-Kri-*j zPZ(E`vcv3 zX7E66%p%gee;o4tk*o>g^*V~^dxv+j>J-noHo>2o&CaY1s`^AtRfZ&f(KFkk+ zCan<^ucYhfL|Hs2`)4KPD$r;wvxk&lxlgZNi73_1EFEawk%e;uk*BCDwY1_g%Zgxn zhKgdR&VgRPed;s>b(LKL{>ssb>s;w*Uj%$fO;={=-zCQDk_haYs{>v#Xsz{Wo~EZO z>}uV0T|T+{(mF{^S7sfL65?jrx&{9)rp{2t_PUju5x3df{W^uL&C9L&@tjK5S>jfz zr-0qu{W+y9JG-iwQ)aUT{gOboLpaY zz3b4J+;z~EUpK*qv~TO6XB7pAEXGVL1{VBLh%7=m*2a3$RfR@$UN*n1?2eA05Y}@B zaRwH(-mr@6>5t9P89a{IitEwXvipDwtd`~#2!-$lUh}aC_U^i#RrN=hS13G=2zyqg z5n5I@tI4*Kp%C4(_si5PtfoIQTj}sPA}g#$BP-S_xGIQ3Z2L#6(4!)au2Q(06ssZ% zQ4YMSVNI0YYhyr#8m;C0ZjsG&AcY98-!HSTpc0MBGFI8B^7@KGa4*}hH5XljZ@Ypb8DkvdSn}La1zs zm;|uUPUl3Yfl9!BaJorr7+o5S>r`Gq$91W(9EyR4;(4IRC~FXw;oj|w0ugecFZ(*ZzT*Qsz;+q^c{ou0^_SpM=9uFopY&BBCe5MdYvyJR;_SrLYnW zt;ZA%CMT2eB7ebspP~+F4Wq~K6iG4rK0KPLuG~7j?cw3V)*&E85D#bT7-&HqI5OSz zHJ~1Ag#{1`$JMLu`&uz%=TZIi%tYJihW%5$AginIF(t8G!p}$U;tqs;pOOw~4Z~72 z*|TC4{(`f7HA&o#5_c#D+O`Hxi5zharALpb+~Qo@&pqOh)-WtnPC<_p9Ipet)8^YD zina#QW5L2-`f**b-Sicp*}22vqy~?ksdhLEpI(F-lF^&QonX7KTCENgrnBRSJQedL z8hFFXOgqW*0RuH61N*IaJqq&l+(FYb@j^t661wN3a=|v7=~Nvg3gillNGE-x8X?-y z;i8ZZ17s`C%JZtuzQ^7>b`dH%R8%CKcAZv@%&VHr*>}gB72}397f70@;$Z$sZ+)kN z;rUcxeEfIJ{a^Op^hvVhxDx}-7Q_$$7X-iyJZm{TKmwIB-E#obJiDu^rwi!nZgf>Q z0A9(g%vV*3$!qec?uHiHCAnNKcXLUu*bud%Niu0glgVWIpl>pLkv{1k(0`$i`U~Xo z;(0vx2#<*OUcAgI08QgArz_*R|NICK50C3J<&4+RQ~1kG-;8_|fB9Wu5Q4w_?Ip1I zs5`vMks`I=XXT(E)-#td}qt$uGo6 zl4XyVYxlk-rP#72%t%KSTYgty=65V9(&Y@a9_jKs*JkB!N-3Yhha?vIhB3w`+GDMc z(T*o8@IlyBu}~a#%SMaE@@Ch1KXn3^@(t9}<$25-F#gfxs21r0-Iw5S-R{kuJ8h2Vh1)g?>?TYa&T`)FPDKVpDr1~)7$ErJcjq(m^V3}7nr_s^3LuZ z==wWH(?K@cfy{E}cr{ip`01y>zPO_bNcm&fJA3dR=3;m@gkvA@qRJO{;BwrZeEP26 zBg#9X8>XTikwz$TO_d2wAI%2~CT^5wIld@IGndn8O3Rn9bg2f9k=i1b4q zJuSL$+ormcnTNvYYCHzKT&=GgYP*IS4*jpe1xjwTiiTSJsxaF}5A$tp;25ugi@5aO zjQPXt#V&qWko+Wg0POJHF_hsZFVlu;zX9>jK6(Mm#1rLZjK>czGIe~0k&i}3{Y?S; z6URA)ok#GVs`9`)a62Nrt^;o-m_tIw_q!FsfVxhU4(8vDY0^-CqYCxBETkar0>oW} zSVpQ{MP!$Ug98TZKd6icMsI4&wSrq{Z2QU9CT^LJ7RI3}@r=42|}fyno-ibq2d$^9okkgT?it z#?Gk&$-A15!M0YrH_;^vD6@R(T;dSV6D8t!3z(E3RDA|P*l`9_qc1NVWV$d9={hs& zveoY42D%$xb^(;oRT(Y-9o`J>sh!28HqSQ<_g$Fw0M8Pks?P-wD!=Q(<)CUma*1-Z zVU+N|ieX$r4J-2^8-nr}%#ABk^DGgDl{wDu)?L1sZCjZo;}WXch2yt7+^pK|!`oVu zEWg>iwESe#mcL0^mvCuBcVj^DezxPM?T(E?=f6QXmte!XT})SVxK|ZtvfI=xWnIEm zOBQ}tcs3j?)vUF|Dc)4uIO4lneJ5ur<70WPo_^7#Ee2Z@R zG&@sc%Uy}Xyzvg;q^v8!Rf$_4p2C9Xpe7Lbw+Yu`UBXpsd+42(cJ((7(qX$X%2Mo` zCD#%p?LrpFv+>eZ=4M?KS(f+$N-RfOX6_9uvE*8UWK#+{Q@nLc7~BV&wDP<5$R1E& zIl69BfhE^cfdMasB{+4DL61S)tQR875}!IP;OWYA)Mpq!*rb_nc(RRvwG~i3OJXoL z++9kpr8d=WOpi86R>DwzYop4PlOc6X%mdR+EyRt$%~J~=x~;qdb^@r0H!iQ{Q*U(< zhyg3rhi=^x>my9d|97iewu>D_p~~~;gU4TeaJ+nX0ZV<8bM+5+!7w3~6I^x(p}+)QvEzp6Jfef+=M&<8x_X<<0{65L()?%Um^ z{eNp}Ws^F)91gOnptEnh_Cp`}$oAAmVO)jU!WJUryCC%z3be zQp6cw9s1|nk>EW6$HCCJR7F7+^ZvCE#KJ)YQRj{$&NPH$4|&wem;2PZd|7XKz8!14 zV__gJRY3rip_VSCwv=pN01HEX0ZJ2Iod5&_5kMVFh`7*fI)j=mydJ`_&)e{x*Z^_k z&5}DoU7-iV##-2$z3BE}+=ln2KF~WeOW*m=wgUe>0S1vn9mkJpzmP-Az})|GDFSg-BZ!5M31Dr1z!0*Q#2$$16vt#_3dDQ>cu0+;q zdofE!&Nst9A3VAYPeF!{?hYSaKKjxMrj%dqE{6w??xL0+UE+TY-IU)mqxP2>id_P> zB8xvW1^!R96&T#EVC_yRINB3};?GLbs$~Y_M*cd2k=mZaQ-Qznev>(I1DSZ1U}`+JwS57+j%IU@GsJ zv8th%Asi~r%t$vL@KMopt^R1b;46CdcX2f6Oz-4;Nj6de>e*LtQ zsKW|z%XL7q8=dveA4CQ2H*rF}xhLPW>1I|xh+3>r#CP3L-8@rPkAD!=_B&0SPpx1H zYdAlM`l~qn(vpxk{Jz>sW442lIcCN2S=6pDKEG13q~wYNI9IY~0Dq-nNy8OKcuT|i zVM=*~f2C$g%@rnzDh1$bzIfK{_4{z^2+0IqsaH~O#SDw9mt|P5^eXAKVhYCfDyLwt z6f7yY!p;)1BNmS9!3Lk{*%^%p>+82Ox2{y`&M4UWcFm=#u-{nNjtSdHnOv>xpo#7` zz7g3OT2YpAD_y?D^(tktppea>6_P}0SCrhDuFW>B#!^Y0>Dox;-@#(mQ`p|Gjd)!0 z{<8{uN!3QMTeslaG`?ftN_U}E*o3TMD;HWUd*d04Tvv+yBvuTveWv@Yi4H~53lCWg9V>F4{rX=Hk}KVFZ8aLs|V6}#ESYX2%^z(SdO1LiB^Y`{4F zMa;Nyx^Db3zR!;v`jv^N|@cg)|q@Edz3NOG=u8#zTGvp%tsk!rKH~jV?e(NvO~$2HIYV)em}Cd(Z_SeKM$@8KxdOZC zO|pjcw`LY<6y9EqKlCa-$r#e#ni;5K7vfuAyp@Glr@VtHf@HQ$obs+%jNnFtIQGV8T4>)mRprN^x1;R`mIer4KgVcMh~>t161jaO#<-Z!h3;8kxO z9bUIvac-vsV&`)5SDm%IM_kHyrN3<=3$8f#acio(AaC6Q-=kB|^)f3HYe*_Cywp5IY)^{!07)V+JO zvMUoF_HoXw8kgXxD{Ey}COmH4x>8prNa{-KKLS()sq$2sc(kDW*>~3R`}vC5z|pk2 z>T`EXtzT(wIzD`8AM$k+E1Z`6zSf-oT$!VqNSAfam3?39?MZBQP{y)|-gGJ>JYMwu ztiRRzwb_eX{ZVhR$Zyg9X;5eXB7bYKb6dT*cmxxWef!nqZ$vK`KhGwadX;{l9xFnE z>XE(9#d17)o&1q=!K&%!NsF$!Gbfu2I{oQ*Je^!AuAe8k)ML^xTU&JYj-K3pymxZA z$EKh0XPZSOxl|pMxlQnP^!3kr@TvD~8M^akCZwzt%^m=0Z$Ds)jlX{#Mx0ahL(~jWsbY6IJUDu|cl!}T zm1^#SrXLqFMPy=kxqo=)@!|2KgM+<$3|(q>A$0u+Nh4#^pOb8wH#|8xW)S1A!-vg^ zL?ieVTU4P8?kj@+lED>31K^M?f>Te|VC!R2Y8;GNMA8 zdH}B7G@?}1{Al=`!A(|bK{SF=u|=hd7C(A&ynm;A?`y4sL!y3g*dh$>Yflc2k56vA z-6}XF>Ia7{47gvC+)?+GJs2i$KiKEpIsU+N*cUlzKTzJzz!k@mNwN59muB&Qev zmor4?6UUO1gZ=x5PmY**Q^%5mrXLqFMPy>PP#I14&G&9HXsLY`iTbf&3u8*PyyFDI zr_<+q*(f``aX5hdW_UL2_tfeX!}^zrIiiP00J;Yhs`=N0l041kvK)WjmK>Br1u1BA zV-2xmee>Y>!9%9|)Q*)?^kdWvQLpN`JjX-&<5h3oUk>}%Y4%0uwPsKUqysfmf?49# z&%(ssrsvg{(_ugBsAzw!W@MsH2lMV_fB8WNCrRXf?R9E+tvxeSPuV*D2@fek$@YJ*LS`LGJSD|l8Z7PKGy^}2*wBF=N!aGRQz zAyNN`i!DqdAfx;iDix=*RHMl#Tbf0WSBt@E_u|8jnS!;65{deCi7mpqgu6f&i{*{C zJ7zA{CQ2mgM~N*AN-^v&)D)+4#WO2)?XeS7wI`YZ)|x0%U0(5ARUEXSwlf;8#vPoh zQM{>xR_*!WKa=#E=T~O7M)9Tgb0q5bO>AL&Q(gG&c);cKIlQd`lf;f^D#v2zU$!;P z;#1Oq5RvJkdd#_sOl+P;?QpFoj$-t9ku4_E&J|A|DYCQG1m=v>NpI9SnZlal@vO&- z3JtRYiLT=rQX}Kxzd^i#H0<^uZ=8%_DskNa({k5vsuyJs&d#zv2*NsE!*FKPbku1# zFsh`f3pDCx1*+?Wk=9!k#@VR%LM?N5)PLyb+nEx3&7v2OE(uB+EPplXqgw#j_g4jo zdYXEVVFWAgaP=!3eal+$G@GWQC%b`B6)mimjV@1miw7BBZf`hdIz$85kS&(Y1aSLV zHq(p6%$8~3N}@h+WecOZpCRF{5b|Iwm^5qV_ZCSXFvAjcM$4ZCjeGmqc-3!ZU4c{d zfkK9eiH0+zu)1^b_~g+%Th4pK$&u<4%%BZd3jNf*SOp-6`zKu!KYsAwgaQ4dB=ahA zK4dv7gt8+;xs&zA#~GB7FBqr~lR=e)L-5L0rdtR=k3U=u#}7}x1q18wl0P4j29y)_ z0p+a>P&#EO+$L{%yb_Tvl2mF@4nidW(E7soankEgm-Fd_uYNVmR0{bGO&>nfz-Unj z(O>Uf-n^eJm)6jh7NSd{K5S(R1CHj+g@~%v)2x5<$cZ=&^Ja-|2x7?`jVnZKK$$`J zXMMWif>nu6Q4Ao<86qZ{+!YkM7lV8l>0orH6S*{S1w|h?WQgE|;Y3}epJ!9oC9k4; z-3kQ)#>+13x140Kk_P{MJ#wsHb_bS0rtT1&clJ*9iYI`WBfdzAgf4NP+1-|=WB+Ou z(D(VCg|v*q1ydb1072KKwf@2_T*~*4j+e0Um?`~VUYXJn4T?b5vRx7Gy_ijx7ujOS z)6Mvclj3F@m;Qd?oAw@Tw&_izX#N+MXX-DydeAIDBTjMx%XNE1SYEPu4ak(Y8 zA&4rWCumUjv;uAk(Csh#UAG%B|Gx%7hgLhQNpKw_5MAD_D#djUM{oOw0^6^MSJFOm zJz`VPE~`P03qv|2>n7JETK#6oD55YP+gzXcB@TPptXNGZ^&#q7X>*>Es4wW2EzCec z*XoM?ofT!Njwu#Vj9acx2~*km1l9)fY6r!&rNYXt>#7Qm8IKe$Qs$rt(~1|Iu+PH0 zm9g@hF6xDx3EU&bZF!aX(cg(5w7`MVS_-N}@hzC|eju5XNnV^Ac(^o!l`x_k_wU z1)Vmb6R7*p3r&p}9oL^NF_i3O(T56fWfdo(^a-Fdh!VR z$S>b?@Mu2m!`?4znf%|kC>Cc^O(_12u@$Yklp-BZSMz>$oXvW0$Q$-k2;S9jzfFus zKo}1wG!88S5H4(aMUbQ6E}JlikQ5Ril!5LNu{e}Nz97V3q&iogkk~9@QrPW{Q_*3z z6vN~IaEMco;a{Z6;L;BW;5Ihs>1MPL`p!xAd?|PKf7pO5j9V?qETHIY^y-G7oKL5D z$(zlk|7HUc7JTZ-hTu>tTE;A;!aU>l@ngaD8WsiutfLJu` z3ZM%Rh?wU5F5Ee$aPl`b271u6rdCw!I z$`goWQrbY}x>k9NxgEe0-7GC^^4F0jpbxQ#uncT#D=a4X@=0GN>d{2?qsWwO?C+d&9fK_isOtlF+7eq%e!P5Edj9;{i<+ zY#v>+6}ikszkgklO&4udfF>@xX7dRsq4WqE&aaV!(k*^Y2e^RCue#?D5iPf%vRpGy zmF2-qXkker%q{*tHA04Y1-fAPLoh+X=TwX$SW!x_ zbNBN699*_j{NJ*cNUg#wf9+iPs}WmQ5)mDUhSzKECZb3j0-;Q5ZekW&eDiXc!2#d- z^c)_3W#Or5v8V!{8uAcuIO58=15w1@#e6#Mxwc6TxH6Aw(oj$+2|Zj>=B+Llq68XH z{w{Si4RNX^6#*6AlyHV4ESQSRqBy-@QU~C0L;@2f=m8H8@L4qFo z5S`GGhgh4s8@Sy_-!$3A-+fLR!HTs+_erQtNZeAZWi_hvQ8uv+L&a5*2!r*Sg;)~SA*kxGbY$JZlI{jbHjJ}ijY_2##Sl}$ zk+$*dqGul<|1jBCOTrBkN4_3#pp z!6h&dv?seeTHWtG%deZUN2c_Al+g}CW+18{&fnVI5MrbqMT`xN@6tQYi0vL7@3S7& zPfkmKVhEjLh+6cF?2m@a{>3pAqWSfw=_7kdIEb)hk3c;MDC}zyQ|0solu!;rB>)hs zCrGJl4DL@`A9avy2qm^LcBc>E5?_3La#w|8=8p{@z;&qx0Tzs7D$Eu=n4R)GK0VGq zF31KEB5Q=`$>)zp!vTbzuMa1K>9f5tzn45cpSQ_}Alq$?^*y~Fj@7_BZH@z^_xh4> z5N^pnrsI4B>y7r{LiPD{$lup&LB|&PAZV+t(Xl6B`Er2tfJG?B0qYeiR5QJghV)yY zm~q{nCyz}z%?LhVipb~@V;k9{Y!258oVrg6HavS1q8~-fz#w{$51b6gnKau^_W?pV zgqSolnhsz+UcwdC*6qseU@a)eup$7|t0$9s+T-4uo=E}45H`gyhH1+0^lkyubQHt{ z3=tDub|>E59j`{qVHb`^O(xl>;{^OI&*?nH4-4g$rpaHFR}?IW*Cu0ZNy`>G}&rot_>L$|2aK znZfOunK9f~yck3`I{Q>>uf|aQrcZM2TI7RDw%Qs^S8!{xN<#%mck7aH2zuGdfTkP8 zJi52nX(;k*v0y}x8;4~e(?T}PU!%pN3jOt}7m_LrH@N!4w46TNAlZipwu8YZS?bG>UDEM(GYrPlvnSD?Am_J+>mll%AffGTK4Si>p0V(VImV8nIhK zkF=xcv7vFE3d3Z%Fv1j{K1`N`L%7RU26Tn&kF1d})altDp&W!QtiDtTEM_@`dP#by zMzSHq*v6>23S3-zXc=ykRgVgZtF!DtVW%gqHu;dY?Y2hiRm89>`z?!Mkq?StwKZZ? z=%c>;FTIZv%5m^~!NF73r!%yCp@2n|tuH>%lf#}dKS#-G|I|ya%|b*4KcQ;^REBgv zA(TUYLYmd_Z}l0j544ZF;R1zcA0qYdD_yLpg6}F9E`A*9?eJ(Z{O=yT!q$h98ytyb z!Jy_kiYBJ4*&D;^{82U-_VP3ho_ND&v|NU`j-obnNEC{PxEQdSX+(gm1&o77)-i~M zkZnVhb;lthYlNtRkQTSQKtpuL$`a^Le7`O09$h1yJKbM1Y5@ zB^-yiy&4RsS{Y37e^zh#yah2_JSdF1%u=)>mQlDxCIxntzc{AcV2#eO*e$~ z;e_94*qgwe#~<`YgCQHyz8M|S?9VkW&5KS;>~>}j@LBL(yvY|Y5@Z+-qZsfrA8-8K z@caqF^K3PNH`}L^9^c4w6y;ie=;K?qFr0ssa2`&XoWC9A2wgl+W?k(9DU1bFpSeN1 z7N592@iQMc{N3>UG?7Z*_s1kVh)SkE^6@K3qJ(sNSn(lDBGhxvjO&xCT#Jvx+&jnu zQK&f#`mMR*i2?X(6oC28$J;b8s-`=;%k%lh!)dVjqd0$aL>vitfjBJ4aqP-)6CfGqhK#`_v->FE~O%U=~fr0!9P2JVt zenke_3RV&VJTyhL+fNfV+_JPAT|{{@&q6MYpsPs@g*8I)SL;te8jK@Fo(R)j@pgvV zIXmr5K43wxVX<7Mtg(ZtFpH3zA^J5v)#EfBpY{6;YQvRfk#HPo&K}KASAQIOi+rui zy+N(vT1tq195w}m=xOa7eWf?*?BD4wr(JbAEx*8p>AK;TF+X(&xxcA#4?3EY=Doq7 zJ8`bXnbzxj=%Etb5Z018YL}j#rqo8GS#PoEo(?};S*JW2o}Ts+58~x85VXf7j58?D zuGokiF$2#h>53R#HN|?ke?$-3F#j~a2_U)BbsOsp&k=Zk)9Dm zB?53!87wtAH!fgh(@BN()x~mF4?fj}0?mk#G=Z$sU2y`8A<8=r5c*HyU2Q;8G1iM8=4Z zUI#-d<(F+pVYJ~ETOaKpRt5qQdrUu&uLnsteMvZuHNVIYfzrLeO#G!9p=RpllkORw zw_&r0zeZ`tYUlmK%j{R!D_asX^#`bhLdG?FkCFvk`_~N zx)U?nA*igOQ71jNL3{%)2<(m2d%jZ7tGO3L7!7RlLEJVJRJJF5IXhdzVB-!D>FEoh z90E+588v%Gva{i6ss11HiS)r1$p%p(YgDIafH)iVCg)bqN*^E!szHDSW5oAMas~+V z#eO#Eg14UYi*HuRv5S%pBBc-zuBT%`ob6v^o@kKXv25}|*ftb|PHWsGCY<+%T*D17 zZLmm&Am%I)mS?;@*H?m$+PM;xf-{7J5KSx7**&w_i{beNokY^YbNX!7q8@^5H8r^D z-5o>^Lw(VImsTbz_CHVVXaa{2exbRM!4t(sDkQcZ#R{q+tjHLh*pnfQhLfx}@8;!w zzQ~rIAu!rOtPBJq_6%Jkyj7ICLi*5!WP>=7HA3{vzem$&zW$az|K`NQa2X5)?THd& zxRV)1v+3l#+j~CbzK|XzEb1ZHR#Vf%JW;}G-W^(Zq@_m*fkO@aIiQ&Cv(ZAm2qg8x z7Ie?42eI>}M)#f^Xq?T@Gbprw0NdDEDw&=GQPN?=1VT*BtL~`xOz*(AOZ_dVnNtsf z=1q;7eO*&G&$m`?3^!7*fE$|{+@73sd^wnRpJkAKEEnDR@{GAidd_K+4uCV!pgyeR zNIT8uTEJRT4q`2v8NJdSwPZ3fTeNcFBBvO{1`JVuo>X|=;$e9L49SMjVH*R{W8(R+ z*ON+l=_V$WgFp!YRHr9i&L@*)cVypMogOa@-5^fG98r2^lrWBVvrF!b>27<7RLOG6@-_$@i$x}Nxyc&!}f3`Uoia5fc z6*CU_GV6EGMy^JVqlPhb!Wy9rs>880(>k2$+8IK6V*5+0aF79Nho+q)SVivk)M5Yb zX|E3jp8>D=hqQyu)6T%9Wu>Amp7ZN3`*IblT^R*W*8%AY;tPd$;jS%V7)uIK0!glq(%W{oPOYZGV^ zO$%eLtILLK69MuO$Q%knr&E6qZCA|=r~V=ORl#$`S3sXLWlqvA`ka1M^coE6p4N># zx_Ry@zhT`d$e=3z0uBm5%X6H*fV*LNPNExuYoQc+=in9@H=HlB54)~3|By5*sKCu9T7^$ve)l^c`Js=f z|3QCyud2WotMhZ%#zDU`98FUo%I`2+6Ra z=8kX;kCWu?yXbJjQJg%X5XK5luRFSY_f1|;P0QpY^3^~WP^#$I?b$8qI42y1tJxz^ zp|WL^@O-qGcW<1s@hq*fWs{DAMF^GQ-rOAAo2S*_0tAFB)JeDs-g@&*KKD$kleomI zLC#?yXu1og?8c+98^Rjyf^mojKq6ZNCrpq*XlUg|uCxgfena2hZ2p%mT95FkCJp((ND>YAiy=G!t!_k^59i(Cg7>yI!@bR@ znoRarMlf0*5c}I=IO&JGTEqH4b#7Hflz@h#WswoWn!1XR-bKXZ4(8_*kj?**v7YRf z@`w3f*&vYYmH|e!<&&iUI-g?Fcv|H~Gn&$*_F&!?n~ z<<~w$t-lTVoBO;mKX?9Ma5j51F34&(6}he8EHR2(S^CO2wmd~FdbRzfYs};+Vu(|H z(YVp%l(pap7fB7zdlT^xS#ruM^N7o1gTmOW-iyKAV9o$zebl|Y!7_t?-%`AB+0>Rt zL2D+`&FzSEvw=uA8;bPSc0_usfkk(M{=OMp-Y8hrd5phRWA<<>Cx#CX(@qX31H(1RqDi?%~| z(i>Y_Pa7U2@zD+4Ax8A}9l2DQB_Iq&A5p$-0)y%mC zcJ>Jap@|m}N<{My;rnygK(6=M7h9wGUf}k1bAD z!_lCtN)gtxoHZY6#4%rBQ^Bj0B^VNvfbNkONUQJE=HTbH1)gu)j|>V#PHU?kku`t;bP=0+Cnnq)YWEES~e?__yv! z7M9vlm@%CC(G^Kyu%Hx?IJ&qVag@VA>~0TGS-kGmDu|x0;O((_cLBHavLT@17BEe? zWFg1@@^>2o!loOUZJPPXQR&IFq?f!(Ofk%iKLVz^9YnzS`E9lE)w3RYYd9IRnN&i} zKp=FwTgaxG%ld3Sgtb-)ds3XNsd0`1!H4`?^@uC>ZyN%_rc-uX=jxk91{X!pSU5=; zQ>$y*@J669{jOk7$nrw@6(51N6h9PR3ISoe>0_w_^$m=-r_;r7`GP5Vu{|Z101&d8 zb;wV^d5aI!LB3rNyUYoLi2SP;2a2EuO8HY2=L7YR<>tW)2rrBMe2nh499i7hqTGAAv`N z$Jz2?I>?_8ri;CU9^8hMEf<}=qbIi?@0}d(b-G>XmoPybce^Z^ZaA+MIAD*&#TKCn z1%XPZH3a&}{;f=VkeP@AGrqz zq8IhO|G4{f@8qjq39sUZ!Wy>8}8i+ zGxN$4g@&e}8_mPK)R+o=y{B5S?)%sEvMZ+}h*;}M#;~Di^nxcN+WRNJfBS*gNHrs= zBZ{W(#qKgktYVKiJUDu|cl(hSZEBA|`d+-)KpYG3r2 z9RJD5u~+pqr<;z)7zSbBHiR(fuSEPM88kBRgT@w;r_gN)r4fgx^WlB<7{~qL7_zW| zSLF@2tpzyw#R!558$o?~G<@zABiRVZAdKFIfS|=>_&(BPJ%skvnln?^-;qNcHN$|g z#a?>!J1$0s-5-WX`Zzzf>6kU)zLV!mL;Y12Ur zhd6460UdKefT1C8oR5any z%(3BsPrtW>%~xI-{w~o=eEj?(RRD;N^yNAdGFPM>;pKG^ks(AG#X^G7>eCFKtBu+4 zZ`u-&af@4!HJ3b;9zrl-OO}o4hFb4$uY+(59a>HtK)!i!{NSOtx1|msn!49AE_1|6 z-;;qwncM0?f&)`uRZkMOY4RKq)m9m+ORr$K(4$sDz!x2QQy7w}?Ak6%Plb7=>I zr9(Ojv*3-|q=RyZ|aXstJ`QD<2c6VsoK%EB29FYn)rvcK-liuP%wiKa$ z*sQ;mNRYT6E4HWrc0bEzx=_3Uu!Oh=ENNkbrM_ASe^A`rFG6kDrEJn3pbl$v0O6KO z(-z*_v7Q@CyGzXwj)ByS5h9IEg}C?j^NaaKMW$gy${vXLvu$mGM5pq0{KZ2$+K|=5jq#nm`WVU}Hc9n+5xnu?b>;en~PD=zbT{qk} z+(00cuLhfkenH#E>Kglpc$fMHv~4l)z_wc1;{mNf7V5~qI5xMyi^v!fr}09aiVh6%-?%R*6c;8J2HOv8&t{CsK)qY$AeLWmUfRcK+c%=iUv!sK z_+NN{l?(Q7uC5y1e;xI-d0` z|GK&^Z=*tyLWAcMG8C93f+n>s*@yCpbr{;#U_xQ&h%+0`vJt$_yXdIW)ScC2Fv>c2 z^~~ZxPc&ft$&jF8{nyO`b2W~(fYrV-I8ju(0xyy{Q3KAS`4p~Uf;;YHLI2AZ1-1B9 z64Uy|5t5eiL?P7xUE~xja5OA-h&(DuLV=)(=<>QqIZrRNM|O+3?{v=OXqeH7+$zga zOuq>vl<0TKrU;RTlE@TRaUM?y(O%YY>ww6&vTPx6C?$>ZA~z*vp3lJ>;6?vpR%^KI zBJ!#%nGFb~k-hMEx|;X1;|xZqe3MQQAC+WzGQ;F)dV#Wuz#eXX**qVV@K8G0R=k25 zl&#?zpVC$$uYhE%#_T{tx#-~~i&t4*b-r%3ds#*0f>}he05}xwcf=rKN}#Z-zhHF& zF)=cL{g0^wSd^__-sq>!a7Oo(l|~ilJe>wAN&nRbWJZRyq{WXMIpvTe$e9OHtpBr+ zliV!@ZncEt(9n0;n@T3U3B2;p!GAp?#DB2?8`c+(<3kzckm`}~QhO@1-M_mI!XYq} ziq1sKz6Vv{eEs3}@naH9N4?X`y7sf-#4W_hZ?7OK6o{4zLu|@1la3Az&kKbZ)s;u* z87K}dJ-J+naoqHzVZFo4B`$~q2c@99PF?zUZxpU|2&+0VT>Aju%Ew)w_Dynk)vk*1rs=8e&mUC=WdX6mS*w zsk6JN;TlPRO-*5PL?}r(@ELt6NrXV&uw>PqECnW%hSuK#Oq4WkswqziOSI2?x|}Xw%(9L-QE;?c^!z7Wnic|ld>m7KdF`{V<@G+_^3PXfexkKlWhDGj;aC;5zhevOSZXx^S^I^q z2OZTQo3x~LX|_e~)??+)L;{Q&3Cs0eDGrgLChAd6L0B&$6_LmM54eXkt5_~$fL&PM8q+Q|Ya z^20RAPZCDB`$dj?sDlrMjap!(aHH`GjRHM3* zzSmSWJgR@sdCejYs3##WZ&HeF1Kacd-JJ{XzZXKc=E_?eKs=-lbe zKRAZXjhWb?o7VlpocwYHfuY6NI=PqA3{IoYr|0wDSd{GVQ+?BhO88Zmk9=eYDK_(x zq};ohPscsK?V2ve#&}hdP6CJaV_P}`+yv#&5jHux5DOM?3CB88lFw`_vf7#?>)}LQ z^_qpdVe(_vL{x`iB}tvHY(eRPA;RtUVDMl%T*%R-;f)s(d0PmnjSZP@MWOA-v(a$5 z8e}Ka{X1gpX!u~5mq!S^2nKtSM*_G76S9?TKO4d2uN#tp^9V@58`?JTxQ#khJ{`fU zrr4f#{B*Z5y8;`m;l{rW`37MSfJ|DU zp%FM;t0PJ%!v0Y<^5+>1E204|0TFzFP!3u?b2-4>55c6cVfie~C@zfz3kC8x{{6dq zd!jF;JAO_&0GhEzn4UO(f4UmLeqA{vrpIwZJ_Of>fRH_!J=&aRbJ78*jCBm=)BVRA za)2X6Is}ulMwlK42u6-{2QcJAaP8oQkm;Ec(uEbxNStW6J;Bc;0$+fGLU>ZZqt*T1 zvwd}X5w1fJ{Ukk!p2M{$2hdW+ zsAW%P@@Tm1UmRZy&*bZy(z8~=AcWY3fxzkh8>)ix3ply99Kw!`Z)aV#_Ze=-x1ZT= zxQ-;Vt0smF3Wf5d;;^b2oJ6Fj;*>*35CI5c_e6SiBqC4HcBqYm1%*&c(yABiT(G^|SI&lT<&l1mopqC%nNF&2Q5Xna zRXsv<^(HUjm9+Y=ZhO^JrC%@{2wrU>jDd$ION&$2u*2qT%Jg5e`V?YSRR$YQ9Z?qZ z{&fu+JU#un{@JoxH zZx=m5fxu%uqS#&r$8ttc;^}_?51L+OkC5P?C~6@sXajw{Kp_T`qUQT>Aud(C2&K>p zH9N+NC&_`jJSxny@$@n)dNjjdGm%ck&w-%+)#NKgd68uwFw`}#2M*D$qV=3Vf>m{? z5J4dis`+$dhLc?OFLmTaZ_whRo zkU5%wmhDYre5P%7F`Z=N%smKQb3Ap>AOkO4Y`_p8W_l-3af-~nPu1M>r!G^RTY;zH zmL)GUr{Lyo>A*svR9yk}RGwlYSN2`NJY0(eIh@LJR%ILH6F{~X*cBom)Y(W5y z1!Z7og3R3ko;&BL5@>GU@b$`4XC8k3F5>xs0z?VfIki$k>FzoDIhC*JiJ&mIfOIi% zC>!15L$s+rcW$5a3D@)x9v9AG7m?0sPvN0>zaX$eAX@M7|{>`dV;w^Yc6d0g3B zTvmSB+_n@Jilpi!t_R__#c6Q*A(f}$sQ_1=f=^r+0T4>UPQg0HG4~7kWNEn5!Ii~u zic4dfQcx&Q?3A{6UjrpXEp=^gDxiQ-ayHJJ^OU8g+4*!zfJ)qSoR9HytQz}(0z?Vb zxnHSHfjbxm*;#Kjf-B0@qq|ZWzUH$HAzmm@sEvrHt}v{`NlkS{!Z182Ol*a4vKn{G zg;G9nZ+V5#hEhj_a)I>9MW9d$5mxI@LW!!kT*8x-aK_cCQJt+Oef30rZ`3(a*X1A2 z;4&}!g`k?XWgG-W+So^ejp&0ww8S7%bl)&(SYi;VSHi0ypx49^I}es@A2EBRB#JoC zRaq%{>xeZ3)bY=dWDCNrUVD8EI}NP+^s;8jutn0T@>#!|)nF0U*HulPU-Op=OOy1& zDp;bn=y6rIKzYx+IwiaZRC7eZZtZfx0om?QZc7Ibib3S(Q;t{#w#g{Ip zMxvCMP#juFa+we<6f;FS&^MefxNMrqqM!0YK`Oh~v*~=mZF05lrSYH`bOL89NjbGBtLtb+hIit4KB8etNoAu$I6nK+%0qG*twlA$)y=o=| z&5*hf5VEY(b67fCz)44zx@<+KhBE?G#{pcOj(g9$r`f{F+%iA8S6LEIFwi z&uXGUL4GeT$ivkV?j^dd3Ku%R?WlPwWLT4ly+T=YsiFnBBH&O=ReFnP$fZQvV^!X}vHu6!LaeAqz9Y7JZlyfWt2O^WjWQzgfTf+ba^&j}8SbPuh5UpVkTbPC?pb`UBaOPnm|3jm+bC@dMNpw&YBi~jV2k`UG&npl$euIN z{_WK|Bg2KlsrR!g3HNk3$S`*1W2~EC)x2W5HPd;Zp@`~=;o2fzWNIG>GhfYhvW}-F0 z^Pxh)>c&Lz5XBY8M1u*1s%tGZ1sBRSS8OeU3I(eiI%q<3ZIWc|iymkwVud8xrE@Kk zWG^fft+HEE6E9nB9E`M|U4SK00{ZRjMLV9X~oa*t^H%YWfyLMP32nA|TOdzec>O z)Xcs8gQF*V$K88}@89blJvrXL!=$QtHqNz{OFtlq+t}EL-m@A)-+grd$uSe5=48K$ z2sx8la%fm+3c9m|2=nC5!Q+!IZ1e5jzy0|A113fCA&+|&^$>iksWF0lOo&kah6}vr zrZqwRB^ph>8u9`Ps(eTGeob42E2ixa>(%$XpcUab+?+iEr59v5zTv93;Vv|pavZ7# zfLQ76*A7L&7izACdevIh4=f*0Yj`frqod>Q-P_FkP%m807PsDbWA-Bdq%)nLzme~i zePglgosP0M&NFzY84h9%=n{OX0!=fZ&Vnf_QXRy1ksW{S$>CA=;hnD>?42Awahw;>pRMHue?yHpp6^9#rp|JcNA_IOZO+DG>uK7h1M68FE~h`5|#U3vM}Mqv3| zXsNNU-+p=k>0H3J|FJz`MP`)*6~8n>$_M#eAuS!zQcC)XDAQvQE9X{AO#Z2nQ=Vx& zefW(>4<9|bf0!pr`DEk9n_unj^AMRl)9|thNap>fnMel@*ub95Or+xmA{{pq>F(pLSn00&qDGl=cpML)HL}v-$yP)7yfNn1N4a*2nLuHt#DdM01j zWN79_WaHrXEI%Gh%-i2fJF3N28-f0VBaGVgA9eIe`q1>G=OWR57k9kFQWu8y_Q z5h?LXc=>9WyfmX#>jv!Pr5Qpv3YLdzRyY=}%L*e&cin zH=K6P&c?Isyfa_$o&PtZ&d5GjhmBvZf9YTXi+*sXZs+|+Pj)WV@rfPSAPbvh=Wk@{ zaZ$L(VEJtDH}G_!N} zuF}koLbLPW>Hfjq8xNiyJlNYoG$6^Ft|a}7tpCC8@*>+kpRIO#lfiC(HR$bL!Yi5f zNv*Fn5FtW-{R?}F{|@laZ2CE;r`+6ou_%c-cv^!cJ388K!Bfdl?_jl%rA%8GY0cF8)()LTEF%XX#&gN zby=6YeX2XKWTug9=G-G6NSzM-2xpBc{>W-&WTDA^P^j82>fzL z!i(N~@T@n_jF@T^k-FhGlSB)$S^sJ&6E?)Ld`FEchzEqhRN`CkQqXkLIF%?q*Qvy3 z@-bLxbvoJkN={hm?UxF@m8^KL8DxCI@#4k z8J>ftcsR+mM?If+0rgEjQp5yzd^~Ib%0qVjxwktz`Ph^92F4Q1_iG+}N;;J?6nn|sO-Sy9aU!e`*$DQG1M=^!a ze5oJ?v{h`^WYAKyh4j{+f$oox9=*t;rGg^#`)Pi2MQ;SE%G37UZ!M=Y2B=BDm#MCQ z2At{-9u^$`$RNyF0=yq9j0scM)pKY3x>3<)`fELW{VW~6?klqSpgHdKA08`({G`oM zk2*~LFV*H-5Lv&5C$!!K0C zt^?(d=UgFT=vmStzeq-r|HYEL4r?l^pTYG_^pMjjOYgG)tt+1$k zRq15FELYXfl=L2QkfrACk+aDIk7ff(`AngdXK>Tb^x480s@|%o2mD^!;IqaCFxUFJ zCQVI%t(69HD3Z%oH31UK6~L&iKLyb?heEvUbywm7Lm7>k0rnfHz@@nU?7N7i><~&P zm>i=RMkmFfSNxqps+t@l%~CZM(Y4P~KP_k}51I_edrefM$*ez`hh?P!OkEJI(ttfx zs+zhWja=eX^TWSBoX{^s#b zTz`fnPGl^{Q3pR(U`9Q-<^E#VRY{|e$EdA81u4b- zoc@kc$WIBKdAzvf_so2`Nng&XtpCZ;@zXt}`P%}cs%eB?s$(8<+5}Qfe(N`@CoFpX zP6>(&j?}80ah_b{E1}*Tqw0bqGRgg}5|{O_+Cl*wTu;c0$7NcClX~Q$9Mmv@mBtCb z46^E^9?5agn%?@eFfJ2>{nh@12TH9tv&4@T7MRP=mw9e9$S%DTimEe9q@2U@lV1NE zbfaU%IZu~>vprdm(g-O34bNV9^0-E6ghMf}96!zZ@I>w>-cW0tqhW8-&pIFUMuVY~ z%f-u$4hf~Emuq@@*KVTBc0=S%HiW`#5V7s%*jP7@um6^x7oz3nEAus%eiZYMzF{7j z1utWGU^7JI46^xD>*up2k`Df)^zzRb52_E-ijG6^u7#i3+ckFa2Ph4Du>9N`XIXE# znrGeqs0VjupAGwY-QG?4e>*C^kCN8LPuJ9P~i|s9M#?@86X`?mt6U0U(Wu>3jElvh6Ulk0a2{X#Ax;l7WUpcJktbgRLp$Qy!9FDNenL%M`G(30fNbwxf z5#J`a{;|9HpLT8=4gllFZ5X5Jf@}Vr+A`-P*8k+bq692{(q;j7fz5|JDT_~gZ21Zz z>mNSS)PT{?JB;7~vf(c5FjNCGZgVPsq#Z7 z6qY~18eGY%L;en^e#%C*TDlvP;wf=SRO3J@>yJGt=mD=c7K!@mas`xa*^61gYk(IdSc+beFoLTGdWD>!X^WgRYVjrK#D6ZA%qrzuvUi zu9s|8Y!CZtV!vC_+KXA%U(ToJ@Scg|sb6o&rj&=N6wG?NnsHr>g4wcW!eDA?=8Lk=;3TlqAFtqA$>q?E&havd7@ZB} zy`v|$AMc$U?&Wre+}->^`Ld^1ny(qI*Ui7!z}T=?8Xg9a_RNxrh4t+^I(+>+Tf&=( zV}>+76Ro35!(#o3Znt39?JBK)r4~|>@fw|!N}xXfL9_U0s9Ktq7@HYvIBZ&pX7 zdbUExddqRT<_$8#VBHj<)Sp{Lhzy+GTt|;Em%o@=4^*~_5*e&N2GxR`6S*#@qRjgfjxf|?l9T6Bkve@wCeAPx z^?M7g6lQ#SPxgCT3W+)OnKiv)qU=5;8Rb>KU(>53rbJ>ENT>}Pp6!-kYa2>Hi1ZA| znqF5XlB}7i4(8p<{?e^#rzWcVaQuJoLINnLwQ&oVnny(3@kKOGW8e=b<)A&0MNV z$^gij3zD*W?w2C*>}<4xUHecl%la28Zo%$;cdtNv3sZQ$c{gWroHN-&CVKMuK1p@>*H^DYhHXtR*AFX^eFs|nd_;@q%WwDGn*`zq z)x!bh{gdCntuJtYx&CPW4>dx0HhdU?3>Fi1s8Jej_%PHiX1h=+D~+Ff>nx&+T!ca`F{g%h)tDCT}x#2uQYd~zLGjst|A|c zS8IA(ndNd6B*-0G!x(1cDcr~86o^u%hKC175BF|A!l_~LPt`ADDK9~!x{jPlrKY?T z9_QjFPqD=U3$T+frOp&>tT_WGnAAa8AZDGkRg}nJ{V`(r*j$$CQR;+9ly<$;xh&JI z#1!$%b6NZq+&VUwttcJq=Ty?vxolNQ831`Mi=?bja~v5qs%n5G6;uVw#Bl_1drR@y zfFY1maj_}5L2O6EXm~n@J+9!lqv05O^1z9_sXH3(D-QP+hx-KwJ(d5o^Mi`UzZEf> zh}Wbv)H;8ZXdMS$K6V&ZPQZ(W6B)VlR~7_Q!-+=*m+4xzMy$N;5Xu)Jq`2j@WOAmK zw>@%7K%Azq8NFIN@XoVF-YJoH^ugjB_2a+Xj2}y&9NjQbYx-=2$@0SAfX=>9MQ7uo zdm&EzKF#nnEJt<(gmt`m4game%$I9`;`tagP5ffK8VETXH|=|?CS)h?J88p_P@n!d zSZTy5?EU&k4G!=R77bb%aSTwyV$D3@ULAExoyE|l9x-fH#}ZrP#cTR3Iq!}jyK?fA zwnSuMfQq}?nz#&toC2X{SW{5Llh)M0@-V80%kAlbVURZv8bz?Spov(4CwFPRxZ|XO zsRf?=^?ChpYY~t?LH?xN^*5{7sYJ))CAG#Mrds3h&f`M@m2+|V%Wwf@PBUUdXABS^L?LbVD)OwjCi5Ry_r-ECjVlALM zRLZ?ccaTU@tgF8_*YYvL3lx8oN?rME0nN;xay%-sk6!D2{q&dPuq7F?Z`a#n;X`J16jJv}*RWzZ$I#w9#CEAg00IcpUW zSr$meP0m>>i_0K*a#kcpgJPB5{H-$bGe1o3&Bbf;MUM8Gd40Z0ZziBjU!$r|?#&dO z;ZVOfQ=FsXA54qMy_o?uETA_RKd9gs?adUX)U6C%s^jF|%%DqbjSQaNOhkdNYG5bt`PZpr`g`M5uKvvBefI<=$+5 zhJY38%_xC)0%jV}{y|+TwKpT$xVRO1vmr*&Rv4QxLzMu8pLu&HHek?G0}vwg_egBv2|(uO3IPZuh>FO1f13da(ZLC2l{2!|S z#ZE{YEdKDDdP2Gc#(B80H?|p-fpr3J>Sk1qQ;xc^wTcp9{$DI;rLI*Fe46;WG;?e- zYKcqAwp^^Kn^6f?iDCXTT-oUV4O}-?T(2M#3uiQvq!!n!$j6w=+c`8DE08{n6qBpS z&B7NIeAZf&5w|sKff)DouX?TAVGY6LH)5iPk9fsz=MC?C(5q|e!0GJ=`&c^ur~I!f zsQylEm^|`PgLG33^621T?;gXDXCK`sa0->Z*V*CO#eAPdF44M4Zp ztp&e{O;tGwZ@$QzF~L%&s@&K8`66!z?-+=EoVljzII$CIT(XJ^U~!gqt<)20T*#`* zU~tx*xMJ7`prl@XSC^Prx@4i2YU$55&=({;mNprl^&54+06oPHZNRqS(QxHnrkHwY zmmq$*f$O9c#pTrEQ#u%_S!v5hh6u9xnc z@7+{65bJ-bi*M>Gnw)S^uE&3?@hevQrl8FDLN%Yd_=aF~u7yLSGlIp|s2NVFw_*dP z+0>#k2QRV37M`NA`58eA5_PQ?Owf{KJRCv?DWQP02kGm2W_0row|GV>Gb(t z&gYQx(S7}=JU=T5-j7T=0uu0Y19h>B#6ax9YobGF9WPc9jR@rA=BX9Ym@IPHBX+ba zB!v`#JndPJNj=&XlvD!c`2YsVI<3Kp=Lt?MvGQn(r9RZ(|8A51E&=ptjsaYMsp*%X z(Z!ZD%BlfWr7y3GN*TiSm+R=1eF{pAO#ysvmydDsNWwaB>J-4|ReA*U09c1cm)JfK zBXRzSVDa3WGdia312J;tj}jsmJvRP?_@f#b52|(n8@qp8jK6RmUZ)VTRvHy!WpuA0 z#B@Kkj2@Ol9uZF)n?vfdqP(m#{drpf$ZHf@LYUYqy7qv5v^4iIZO7!9||K>bD*blA2rP zKk`cHE=aYTOT~IfLk|*p=Ml2(Co*$(s#qeECNX&{wPWnKEs163l_d6*+Npv@qZvF( z-8~(CxazqVU^OhY`x$8e{N>V~OgaWend}>KclXm*v)7V1a~4f}S4+x__o7)~@S_O% zEQhh)mMQ{zrm=t1stCZSt_n}Rp4wwP8x5DMLDpSPyMt3F6>3H>O)(9yZZ0~*}ucD zTMO&MbFm8jXf_+Y=$>Z1@!51fhL__VFK>9UN|1*R;PlzjP;+Hj&x5X^&q4`@l6sd& z&8*w-LDwLbP%wAEussSPvh8SwIh*Yd+ty4NOfAiLCY6pt`_n<@KI+E!gDdcEIZv_ zDfOVgl7`i6Mm`Amt7;`>*6IFA`3L-!0`S?4kV=)Ex(g*sQ|XP$?gLO!_IL)ZqzcUp z(=%wBgZ5ib25mJ~_KRoG)<+TlRnkg6oSs43I3j*bf%r0Li)0)6uw9B+pN&Bq*GC9Q z4SmEjXr;t?_N}bH^hM_M4BF+P{oIp5JI$44;~BK`S;W`1)RMQSXV5N|h`)0%zC6(( z+m2>zXJh`r{C*3X34^JnnJO8HzwXyYMp9DO9`DJZPs{S7vS>VmCLaX7T#n{#jLKXx zPc1~j#17^kl?|y>*}3bKWZTY23}w9&q^!02092ISvsIl;H#{ZkhFjHL!rDve&C*UA zWhBqGaHnm^H}hgU3oZ?}g}Yosu~xHXmmN6-5=3Mkussn4ws8^TDVY9dYiHc?L`Bn1x#Odn zpnYDE6Ws;LSZw^TZK>ky*P9lb`A4Zs+7mY^wugN+vE#*9xFHwzG4ya*+Znsli?MK3 zF5{q`)l-bM8Y_>D7h?q(Jbp7cRr?r>w9I$Yi;os~dm2l(4B0?@#Yc-|8~UIQWod4^ z`k+8;IcwAdyAo4u}V*73GrYuTeedU98YG;_JL`B z*@y+z^sKHV9LxobVqf~Qx{^?$*siB2gKkZ15Bq9jdtS05g_S|JR4cBt;j(|xJ)386 zW%H!}!pUhHzGN3?q+ORjG8O$s+4G`89QFxDq8ty%>Vw@}6T3ze%+7z+LSzRCkCkgOxyiewItZ zY?rOY+1V18q?~jieS;UJuHD?T!HYCh9v6NQiNqbv0Y(B)>VX!FGZY< zdXsZuj+MR?ft0lydP?*~Bjtthr3j?xKlqO1XrM?h(IelG3u-mK^p)rlSc06)2?};w zkyBz^K~B%pGbI0kv%LLm(1lF(eBuPchELD<$ZId8uWEQ&Dpx#-W~MfDPgbg%?dB4) zz_>~e^Hg~u&&=Bu5ZJRKn^FMt7lLw&3h+Xxs(|7Ci!4wtNS|UkEVL7QrdW1s z<;d|Vmi<*|gx3wyv*gqq0S5PgK-S#U(^hD#F5FIkJ_Rxn|t~VhVwfvR@b6Ca%i?89H&xdDc z!^vpqzABWyhD(TR2lMRAE88hIi?899?E}%WY{WuB`WkLYI5cA~TY1-TNs~0OnO_)# zZcS_td*2!^7dyTo@nU#>LCyy|iE8?WM4N+lR?mh+tFiLf_=ZI5qk!9DORQbeaGAa# z5vfLUWL3; znS%C(t>`EQsHTqM)v=MP9B!mKhLpAcd#YnaBW2Hcbqp!`t7Axx+AY00hI|A5jEsF% zBm6x1#hE@rcPqp@27j_rXVg z=p*WXDr`&OYy!@i^VrqmvhbU}ErDYQIVuC;TaahuROgIu&S0Nd>6c&A)PXmw1wV+& zT8OWDji#%?BwM)NoWAO1NNY#-ta@Q9WwiLJ7q+(SMHfb~33J%=RWBqPn&Dv^@2Zz+ zkRmMei^6{mGTlJ#C#xFb=O`nCPbmf(TEe;(NV}_~Wd=y`)JuNLWWeWk?!Vz+33y3!$ zaguH5gE^H&zU2VTsRsizZ|Z%gWo)&BC|B9X;gIu&ecW)U;^Wx3mQC@axQ}DY&G3Ry0? z^W~XR2op7Z7-{a^Y2}N@oif@mj zO|%uIFdwtrV9QDgLaC#a3KbVB=>paOGIt+n3l$fEi*|co#l`(V8M#8m#r?3V^K0pu zsavSH2zaV?fdY`Xn&6UdOGjP@yeb{V0M*n{{FU1&?3o(Ohr+e44PW0SyLw96x)1!K zyg|w|Q&x??a%-9g{N1!+UY`ESt)UxAWK5%%zBgaX7D*CQXDLb2qzW5aq zEN-ib>Xjzm}9kspzb1=DqTSwyD-vOQM$S%w5V>+mqb~!0WFB zB*^~x=;6%S!riEGn0%&0QPuwWIeCf%4U}Krsfy1xmI4_%e)n5L9$>g`UnXYeZOCLZ zjK~zb`vUg1!gICNZS7M|n08V=LuW@lC|o+UoB#J;Wx=!O}MoBiT@t!#3Vc z#HK-tu+#?(LE4)(C#=ZYw~5$b17YI>@O;?o;X%gs2VhD)H~^D|)dpblLC7gVI^3>H zO_e?XQ~pXaPXJWS5P)wGBBWAfXO2=@mi5Vv%I*VDQTBMfaz2?XyQ8Ua{35+xS<=?N z>Zw7s%S4qVzm0rCod53(|F!xpO44E{EnRB2Ww^>V#2GeKV{@7h^|3>muM_{7;^z-sG+HJ4Q_a_a7 z@uYkOlU*(OE=bN?_)j+_b#*xFZL5cRnqUK(nQucq5jgeK^KRUG^7}}7qi#Qgw_vBj zQJ=4;`-HIZ+^OcI~p6)bj9YSs(>#fBuV3}(Gu%`lg9lutXr7BmwE zQ%f`P0t2~^Mh*AO3(_n6l)CnK&x#ajsC+%XB1Jw3q$#8olPrCbO(=(IU!;Oe$UeOWcLB^6&Nhpf1^r_%iM|FSKEkJKv(@y6^$&b>38pTE&t4TjS<;1!kAQC5+sk|4-*y&35&!*54AmuXbG_=HU#jGFb_ zj5vM5cA}1z9V^<}(|*MKK}EgzHd%%Z%&ZQn0X61H>Dy!tD2!~#X3g=&i)#j<6{D%) zOdBRe`c%@9V&1>VI}~MZ8hJMZmMtp9W+P1%i96YZM}hQl$-qV11*Ogb__kA(q!dh$ zK7InRp7e|Ube=J*r=LJ9L0gefw0cKF@SWW#iRpHm(801d=ULbGb&x}-po6^K26T{n z&DHvWh7i|*ZU;JuZ<1ZkGZ?mgi+9J#<2|RZ#}hL0Q-5boRZos@l4YM*v5c-O>vp(? zMl+i9?V%il)t~(!eDREtOV@&5!CTaVA4Fv>#CO$P_S}p+eOHa5s=d~;0|go=E5&!! z6!?hqQ|C}*s72Cu)gbZ!L*EXR1evI*w<43xFe1}0$TO7T0`}u=h(0WoSylS!C9((SN)A?vElrvL}?RWOIG$Q zZU_iFeuFn$+>oGlxUJVeT}om7R7<^`O{!ND7uD-2!3?Kbo7veJT;Dx)k4!Wy!2sP{ ze+NiccW>Q+@QU8>Ca; za2jaVtn%z>1M(huvKJ}5aK+|>40h;_;E0ok$&MI%IB#ZDY%=Q6A?HNM*a+-PAvKb9AilG!ICGzC!joVX(G9{$53$k*R^| z6D0=*x!0C5{p?se!jXW^Juh-WJMAVARHYNX4PWE}vd4LxeyquAH~1v|n{outlDz=x zb&8T{w&9Y!gpe~?J8(TuhDmUF=kKtF! zWSMj5zg2OL5>#O~{fAbagCOKg&^b!DG3Ov~xuvvo2;ftlgM#NQwR05MW#=e<1n2Oa zp&1PqOFeRQPkVh>HyXH?C_ZQw^(4~TN$43Gp_OtQPdX#CwlbPs)kKdryC@NJriST^ z#5o^)N}GtR*|8FVNRqG}i6E_=ZBAH`broSfWv9_pC|WiwJLR;rtI>jl`m<8Er(}W% z$k+^L2&`gc!;*bZ(g!t}a9$YMjo>o!GngvFZU^d!zAPEg~s-kcZ28z#;&N@TG982%S% zvJOHl1<B18gA6EVLH=!rvWl&3tQe+AhoA{R7!o>UG^3ecwhSzt}}8%OT+q+kGzgB^sZ-5 zOJy+6P7BW$mfd!Bvt5Wum%Ca*NL?1K?6mM9uu~Tw1Xi2y5KC47aa?9%);k++v+!W{ zxv#PT^|F^$72vtLh_Kg|b=!(k5(r~^!&jz!xC;(!aIb|C2VXjZw2Kiru;JZvzm}{=cc}F^a>L7~Jj!+1lCH-t zpK=H&S9w&&*x7Nh#pSV^XuVZ>d;^I^~LzYG$Jig zmpJI*{u6|$GLol!Tu3L;QOAIRh`!`LsU&a>F38FT ziH7(02XI&^3ML5>5VjA{Pcj~%332>Sdn-&@^h2t9Cwu$q83gcc?Rg(B|Ds@eR;XRs zkYMh2z0rsnrQr&-#ic~1vnF^^X!LUZTDPnIquW(*e?sgx5|->_G@)=q|L#P_%e1ooxDU?=-j{ucI!`;Ki@x6A{?aYe>8?OD@#7%INPup zkmvf-RG8x&2S{|gp+pxiX4BGo3X(3CmZo0%5D9L z0)EaLlpoH6b>lo!!v9pE={#HRo((6x(JpaLn!u;!!N{uYwmL+KY}Y>yf9~dJx&#e~ z=Gi7}jXlGwf`U0a=kL`9KWNEwM%Vh->IHr-q@lJ-F^E!4 z{p+jK6vMQ>;g_TIxDNXUG}hmkUlp9}jNxBhxxN&l^&54xRpcInP3y`@Q2ye|m6bzU zzgb6HnCgr-rY6SCbvm?At>3DoJ?ksb zTjf%jj#c^QhH#~^Pkl`WxIz@7oKMmp9I6tb}_Vl?i+lwi2HV42m` zWfAv}5Kpx%qHGUZ^4xc3>6Ro1YL4c2(Xt_E$vtuZr&rd`KpRLNFUCxtRg(4-`!Nu#yT4f*8lPfok&;s)?cXRL#7_Mv0S~-Pp5w|9PxctSC^~b zKg#7UFjdRd`8Uw%E;j5@8r?kOHOjxbYS$`Zt>3QUW94U{x{YN}#@VLhS^-r3L@jrdzp3)}t!m?p1@`rP;{qK<{-B*)jm^6_>jl z$m9=9*)1)1xzH&?SMwD&8W19R+{yi>j4w=*mNpv5k`SKjPvve@I=}Ly@Rn07^w@6y zIxebFXG+_0ima%sYiB}UYyq$0!mw=zVKt44(9*)NV+w(-ZxQbgn{{pfut06c{O&s& z>im8v)VAS59MPci(u&!UZEZgis+4jGjk-ch*%1*WI^ff`W|=Oy^df!%`l?t=si`j# zOQ@z=DyC3bVg+5*mc%jkioG%L+-Y!TZZk2ENK30rx9#|C`#&|7?R&o8_R#s$n z$7;?pl6Kbb9c4#G6TAJ(^>2g{2ksln2dYhN;Mt;yI;`G>2a=cb-f)r)U|--UbMKpI zXKLf;r``E;-UdphYH6sKMDF1D>uxDA?8^j+nbF%xLy?!O-Q4>4vkPS%*286`z=Y&o z?&03x{f=qq?^}s#US6@h)cYYE_w#oY|5xB$;lrYX3`&)=EbCt=H)5(tJ1n{ngpW00 z-3LBi{zW-`_^>F4^?LbFhA{20Xo*K#g)muLV8h24%MbIeh-cAh-kx@l$3}`AY8vprU#Y^d^CHWcrI(*d9GK0&DG(am;8>Jn! zERp)+5NUzzrH#NsGZ5W#Cs>guWn-WyUDML=POyUP0g}~G<~97ciZS7J;BTo zZEBN-H;7pneX$J%G_0lTHk?KvaCqK{rpo)M8_>kHr!Q`x)4G>1mfNy@%(wxbzk)>=*X)3x~t;KG+fd;y=I<4u5j^ zk8p%P`Y-SSZ~>eH99-aD+{|i)&5&ZcZUQ*J^TRm@JCJ4E8VGl}0#jrkeDH>K27ELD zX~D-g8hdI7d)49bZaDvSwWy2s)@5C)w&hRMf6Cfv-Zg>HY=-w8VQVbgHG%Olf+80y zMV@0(rm@%}*qK|EI=&`RmrfCLS1RSBtC5m8)+0JoyukIIkIr12DvShup?X`XIYFnNf9>S)t|u91tS zsb>xk#`nY7%o|04uBK5Jt)m^jSegMKtEPFRM9Spb>N?3lYDC<)Y@|daM_Okhn%uSA zx3Z@F!>HDzEGs%k*>B}Ew!_Kn{h%Xxy%#%_C2KSMLKrv5%p+bt3^=x6C%Ce$!lx;rc zQaiZWuESq5Uv|oc6`>9DYfP_E*A)RI>#TWq5-TGzm{9`kuAnetmhDbrku)2w(N#m? zZmZx5?S&N2stgik2E>b3Pf8<{Hl#Ff>G7%LLvY!a9$tnv`LCxtYj zns9?B&*;O*^(SQmLKaJ=*=sP|31gN>Y53*L#LVqXm}v&nikWuSuO?A~(OJLNuVrLg zze?V|j;$sc)~`k2-ebSk?=;Q^lT*h%G7~enGhwC~Oewg%_u~fQ(&8ATVUQgeq;Ogom=&Joa^%KMm6DcDxPD0l2N$%-slKoW|beu z+Om728K6oBMrdSf!S^x-7C|j+nw_~=lb;t28{(R9TMn8p0EpED^PRNzW!v_n8gOEx zHrA~^%-(`E)Q1s8wlOqs1!D;CrVeQsA@)XUsB9}(w1&bKiAj3OZGGa>L8NHDo~Vcq zyZZpwb=mbqj1oGEWbtAFarf?UMVsIOJbkq>`pB)WLD0Wa6lQMUxN)bB@*kD|mSMel zq+mcWAr;p^*+{{{Vx&X@ck`-(L(OamyU`DYwiO_!zM9`gwzz&Z^PYEkyC+bpVDVA) zAE?|+noLx~RoWL#rfd>1GjTyE+#B!GoxgqIGG&WTn12CZ%`Xqx>N}dxmb2xDN7bNt zx8%K^YPCt8_}ndnW`li~GSeiba-_BC%Oq97!p58CCf-sU2HyZ+S(nQNolumDjp9?0 zAHYtU4-+MnuuTSbx3a@TDP^okZlO$NM$J;D6NKz2y@Sx!mlK5Y6mT8!KG*bXafO)( zvBnBBBBK>%5`c1VX7wY`G=b@GstSV(8K#Tf`S>1v1MZ-w*cGW5B$eB2s;U;H0WE*r zla|B9a$b!N$J6^H+|AdeFOtvQgzagLQUeFg+qqrb;j6T4JGTO+r+i%T;!#>j&F2gl zfCIiZ%FY>ZP>~?%HLt%; zA=-W_4qoN`bq}hQLVCk#Yw)nTi?N7rmRo}l7YP!Nx|^>g!OisfLgbBvyn$M}w0@U0NbLl1K zz3iL{rvxJ~cFSh-4mU=bumwlngVieA;l`;IiblT5UH*Z723Kz0<(#D|O+-wwY?pJM zx-``(x82uE0%|uOx~3XMrXsyWW^{mSyX>SfMXiHeSleDI14A(DqmiUQ$K7Pd(F>I! z4v&s7;=fGZf zmJM|C4oEJSXXNHUi%L4M8uz^el0_0(Gi9N0oBg;#dm+V)30VQy@5^>Ta>d8IpG(W$ zoy;Z#OKIK%=I7#=jrM#B2N%-*6$M6 z``)8*!KKvu(lg_Nm(62_8l0E5_qgDd-yHe9#HVrV_frBh%>!f|PEa;J_?OL-M1*Mj zXS%R_dg%boJ0SUdUOm%JkJDU#Cly_`12Tdp*9Yn*VBPdY-5_iQ)PvA zkP&wX*>>g><1dRlEPieyS!=9jdT+H@jg-Ip>PLR#Bl3SOW)m4xp`VCxm(3<}JbS`8 zTW_9~q6K(CoP-5yMnt8uSt(AXa3+GLVrQkiB;exBvr-+@wu{=>8p~#-DC$`6#7osQ zD-}r!bTlvJDLPyu9Yp1_r96dd$9Dbeu>6$wS;pn&nQsPVA~2WDe0u;}M&{QV=K)z= znC)XfEt=`$HQ-`%d$cBOVs}^pS|f%8<=<<~t;aWsVWa*z_QeU#+HbekB8-i`AY2=Z z{`Cq0cqVqrZLjdtfTuTaV)nFZYL-ycGLaE;P_~KL1Kt>+QGhc*xYx4$B28N0q#+dZoWjFU}C$LWtXU1D0S@RB3ER51Gm-LK$f%}4Mo`jmET7q#pNo`o5UeJ+8CWP;iH7p4NO zo3{q!YaM!Z+13CD)|*8NYIdvk_%Da;qANtF0ezd_;(32`a$!;}m(@H7@MUlDybA?i z(*^4Y|ET*SLwxhC?-Ujrr-w!DRKsknrM2+yUP4-CkRC)MtSt>fi*ve+6Q9?jrFzWvd7zNp?C@=FtC2L^H^ z>e%#hXrURIWf=Q)<7g_Q5YK4M3Wmu!P;3n}TW}IbvBfNB{C&}=%Sdag8?RMr15`Xb z{F=rzLu2AZYv;EO&;owb%}4072gmpC!^r|zEvO=XTh@H=brVX}zWaKv?*;`(|NZk0 z{u>n3%7;;I#*hE~3j7#Jtm~_lFQe==VDa#A-s~<&1?#8 zEW03vmaTo3xh{nylb+c;Iwi?d{wH6JA~jw%I;FBxzNCb6*QJnR$~5+kNpGFOz1$UQ z%nQ%bxOvgu62#x!RkmpF6|U`)xnG;6lhu?Sj>sl+XhEZiiJ;RIUO-qj9HD6aAxT6$ zx8a@^RH$}fA?sB;B0f*;=95yCrs3q|l@}k#Xhfn-*-0r@gf>@ZKRK6L)?V{|axPaY zsH!>~D2<7>Wm~6NB&iUKp>X@jxk7s(g|{qi25Tmz5lS0UGGj77VDBj=>%!A9S?^oR zkI5EvQ%u%{;>NS5nC!Gli*F20eW)GS%X-z0h|g2I`59j8?H^1Q^Wph>K|C&dhBqi) zo9S2L!_Z+3M24I@S>sKUBNc;X!GrVnNT@mPWdvyvq++juz&&j1Q&mhrU^RwW?5(RM zAPOOufHuZ^VYS8!#b+Atg?nx5PD5`Bbjos|;8oRKtz8a;blvqp0B<>KB_IkRmw@z& zm>T;iw|wcv7sI!p%2vc^Kv4p;0W)tkhiRn=H*e4k^JGO}351w&*#=DpMOGA6Fu1j) zu)rRu;B9H`R5ZZIry_55O!wdX(Ouc>*t@VQb{D1#uA|FopCBJ)RsArl*I@B&Rv*CS zFT2aZel=Pi&#MJ7&R-UF5C}Fs!4OCjPuHJ@762&GynWKxs8b?5jeuK8oNV+Tusv!so7wFdF~yl5kht`G(RXC+D6l5ff#++gJ_JE zGzm`LQkXZT?JOrgq)=&ySC>ujGMa|MNupD3f|sTMpC7giT%pkS>um#?l_0L*%Kp>7 z16zoOD7Y1%5ihpR0wmq-nIyB#1atHLy16kRxbv)(MU%2a6CpQ8jF%q{_K&Al%jcokm}^{>Q7%FbJnS`G!)Kc9-v#D4=jO?F_cC4|Ko zjg5)nx+w0zI4cPS8`X_q?i7um26RpC8OqQ#^oO!NLk6ZdP&T7O^K-p(n%RFqQ?!aa z@9QW;Y_iA5V~Q6zE+%(%PY(Ib9A&$@0gEYEPrQ6Sv?`ZI2Job@nDS&h=n6wi)sw^U z0+TXhaR_y6ZxqYjz~>4mP|?^XDhzx6s#Ijerd4cyTw80PR$+sVLD}QlxMXc`UvQO0 zHPL$tazZg!oW&Y7Ib9sCkg`zhYmyMmJvxnwkY<-`aw2+iw5>%?PH={vIksoV%p?f+ zVSBpdgzf3!cxIhgtWgut#r0h$PLqV-c%2mMNljpldUAp@^!z?Q7&;msRg>|wT5Rpk zrYFnMVp=U#b32@j@6E>-4#yt^f$$gIMo3Q7rJFbI-nqDQWBbnVjf*?m!)sUHxPA4) z^{YRrhfSY}CXmtM-6Bmkot~;O9#}nz!+o$?9UD-HX6+|s+M_nd)rX_Rt9nAoKV2~; zEVQ^Kh^>|xz;q(xHOEAC2qTEYYCe=#$RaWpM^(k#A>VPl=HzW(zjE{T_3hh3c?m3X zhMim6+n3&|-QkPPsiaSgQdW^xY||teNZpZdXx)h^{CTM)i>W7UVmrj@*B0cJRANZJ>+W26nM~^_2+@qWuSB+wfn2m+6~ca>u2PO zh-#7BW*t`%)!6C}(-M6<-nZ$n#Pnssgo){`l1;_RO8;*AN*^9gju%0f=MVa?=Habt z@9fkz`&*%+>Sw9LPJs@L^$w(dq)L~o)GdlYH0gX$qBCnrp;@bnCPe)0N{L`$#p+#r zt5tF^lgLFR&O`J=p2HFBB(-w}ME#BzkvIu&y(1qf9$wtJJ-l}D_M6+aaX;;UmsY)< ztYQ7=J%PKabr`_MK{%_iUtE10{!pf16^dNQ~iX(4v~+cPZD3c-=d?V!DoyxI38NwZ_y#ZVkMGSancdX>8K}Frgx>X1&>UhzklOJlt0>H`WMUQ+@vf?6#EL?_K zt4JH#@q~~ozQ#=2&nL)7i88XS*A)|>H1@@`nH{(FI$;DJu`ttCh8jeUGr2-T4cIy+ z$%vJ8Jk8?}Flw<7NV-#UAR3Yx=?w`aO?uV3F8Ub$Gegdf*` zWm&!hvn7neqjK7r9Z<>4o62)uewXm^Ug7cE$0$inj8w9D?)Otu04ZJE z@8)=jH9=BSe^fd#kkqdUiAb5|Q7I3sqdQ1}e-d*3#mdQH;WbbS{pr?Oz%@QxH;r4? zF|jlK7Y`ku4kx*JDK8LN9f9G<9${AyvbmnlmbtQ#!RUzpsQV%#W90E_R{#aKdB0i? z_NrYttTre9@cTX1p9D$-iN`?f(1-=pZJH&ytx%$_o7({&?D}k$EdEfWctL7Xe;+z1 zpi|^*P-9KlXXO*xbvzs7WILnLZLB1;Nx1lu)YGQmHBN3TU~F$Wdr(aWa0qL+S}bPN z28*{9a9a8T#dA_K^>yfAK>fYmB9Ka(JeVB~Ce`%*@_;zf&-!*GBu6|7e++A(06DoL z?Nxy3kKn*vydv$BZiJ9dPjZ>YLpmMo@6$V&ikE48oLYqV*mNjG0h`IG`vBu%HKA*Y z#Z&hoNF_sjd^%MB=wPQ{CKD1cNDN7@tFQ=sKkQh zBID2;5aO~(;8TgB_aPBGmhVu7GU7>M}YHmQM?y_NxxE#6}#?1W-| z{;KZ?$wKn@2_cb-tvQ?7lDvlbfV1feIBV+AV)p*oS+LgxPW&*3|E3av(R(Xk)bB`R z7XRWbSo8r!wtIS(>*oTte%dozsOyeN`t`a=LO8@XQ&xo%10~7DA{3%zYs{98(&(-? zW}|qq2-T|^#n4RoB)*+86gC^!P2U|O+)>6nt-WJ}fuuV|I5n{H^PbJf>w;rq{&?L6%+(EI( z%K-GW8UCmy%+6>9>(zY@f9}XhJQ(8ZIlOu)@-s*inm~>V+RPP(nuN=cea;n9w9!S# zvN0-{c`IvwIrj{;)8?<&EhCTvmquA61tM% zq#f8faj9gNhGrp@6dxo^P?Bny?hvnqb*+{ez>AMtgloz~)?nYuVi)1C%lxYz!#HIm zZyvzQV=;XxvLGt1SJszyCWSDd?FCl$WPC(dW@yTYYK@Ssbv9%UAQ%zbJ zfh4*oTd4*OAk=Y71;wpYlM+a#zig1)YSy5N?q`P6*Tq}SnsmWJgQ@Hvr($Q5Hmv&- z*PoZh#YV+=`Jy2r>=&rZMpB+0!oh#KN)A|1JZbP|Z=2K*Ka-oGc$%Unmv%(D}0H9(DyY3wdRzVhqm-3Wc@E$EtR%>ztiPms& z9JRsX4I~=;&O4qFKJ9;(aMQgo66P8vtG*1(7(W3;?BibIb^OIU&OHY!>L zNTNSJOAq>EhJ*)7Sda2Se^d`FG8mg(@9NDue0nuS0@`$CF3!sqQNK?v|3`g>ZOggT zMDyb1|F~DNfVkwR;&<}XLTpUV4s%*JjKVkvaDyCd`o*)uocc|TALl6!T4dV;`<2Lr&vXByN@*~A5KXp<~6}GgTBVi?ncGBJZW=}R%l|pbP*2%$z88( ziHX+KuVkWr@vc`kpru+--w5DRfq17QNSxhf`kJ>SO6{}_*V+1MGkvYvQii}qwpj5s zL%JU6Np$J5r8MGp8V8i}N%VL?$u}oD>HA8@j9`<=#kb{Xceb3*rWc0y=i~kT@pJ-H zz`F+{xM%NIk$Z!S7vJt&yma%K~Uz>9lsW1DZOD;}V%v{c&GZ&E`PN@!oibuKu(9 zMQw@j_wUxm9|tx~{%K^jB_k&oW%9BMmaU_M*|dtgUh!oYEcRP(-Mj(!*i+xz%t$Jo z??ESv3iaf@Po?ACPprgz7%sAqiCn(^v^TyutIjYg;)DP7`bgy9=Gd5cjcxvNvVwUg zhp>(@c-KX~n3ZV#iifZc_`4VHZo_Usw(0v)BAIl(-F#Du>V}NFPSeoh{bhgF64yP6 zNaS$yK`-2JHk&XQ;$HuDJ%n*EQ}z?-pr^8d*(K*ALWaU{PiQKhj|fpSaUAZ$Or?`v zRkgRAP(8+o8=A7e?%zxp{nME82>NwD1aU^2vK(SHf4?TyIG{;Gip&`&^ML^-?*p+c zEtiYPgmLkGAa~4|1(K{GdQUt65vC52@brpunr(i4;%B*#`#!bV(J=D`R7FIXcv~4Kr%i)fPc`DqfBb6>69hW)job8fz2- zem#|d!}mJ6JX@ibEEgV_aEYVDzg$(6VDZI>q~TnAryw&>`l~fiYJxWA@}E2mTpD1J z9TJfmFu8!eE*&1(NZU4Ax;SyxRdjgnfW%v-H=e5gJ>V*e>SJ6-r z>^eL#mk(d-VC|torcuZCe7FL8W^^*5Nq-`_49$ePP%E%W?!;K}GIYw&bY&sw{*HnC zvAB!mp?V<)s=I7Gk$7SGSUllfbpvWrS>PU~JU4y27pqn$cIh36ll2&NEm?fL{s%;! z{OJWt-4;{l+^9V?1e%i=LizN9sbV*TX52cr4JTRQn#*qafZxC9$z+-q0An>{&spR6 z`QNU~)ELCc2xSqAA9P}z91#DrGo+sJ@&D#wCf-Db?{%Zy#gi_R1$93!=%TG+vf!?s zR;fE@pJgnvP9eKx`O8_(1(7mghpc=#D~xhjBQ24>1ChTeg;&D#gm4fk-;|Qj!w4na zuP(i0Tpg(EgOyoDFPT&dlIwT5e$*jGVU_T%NvzX@6$Bfi6BZn7*Gygm$aD>`R^iWs z`e)K-D82?T?)}kjqro8(p(DAaKh$xHP>|W9GI((17jI8Y^1^|OXM#r*bDNdB^{h7p z-}eh$gB97py6t;lD*w%@{fI>wr_yzBVjDH$fz>M5vD;r@o@9q5=64m{{@R9W7j9>& z1gQ9K+uFhVT!H1}Rdgq_4~}L>$CI&oYgxWxIXwU31Gv07=nEBJMR)h+Pj213_0F}c z>d|HSVkL-rdwAL03-Fm}f~-mPMosuL&Cx6*$QMtlNA+qjkZ7LR4PfyMUhfG)3rIl_6?=uX;hQ#8zoMlHEHDp z)s$53s+^!!oQD=M2;d@e4PHD$ffLl^Ma<9RX;n^Oc#5M)m`-OWSgg+pc2Z8TQ{)6n z6W-D+t+W~RUSC<66KKVGXfd1KY3l@vysj-lrOC5A(U!pDX=P4O^AtxBcLJq-S0~sH zp9x)6cj(IPgcDr3UE%~<6W-D+t<(wj>3d(Ra)MfM9$Lf+fQxo5fhMo36V&8co~RRe zJgv$J3{PrCD036O8HF{i>XxR-A_xaRT6? zofByCx;jBkp5=);fydLToWSrDM-g=bt$p(DUN{|b;iTHVfX(2=gTMoRzjS&A4n|zK zyM5^b9u&X$R&D;D;(wL4pS-Cvt^jXce0nknD88waS4Sz!gW@y9Zt9Gr2DXydxboV| z>fSUzVMBkBJ|9_pjVq5_6BCgy8jK@(4T&ieTlZmL+{M?BaB5wzZTkiGM`_y08wjH4 zc_U(z6T>dPfq>PerCnc--9W$=E{RI+24Xdj8ucOJqTL5*@#wXQ zT!Wm3a4moB7_N;1xkfG1lNww>xVFmjpu#Fw`bRESj->7ut}R=}=3TfBh*?3ncEm*F zbKzQ%1L}S^wa{eBRN;Cun%|eR^o)7`L9e}$YZq_7Dd*^|eg77zG551H@Ph&!cw>qv zO-%f6SE(=$E5?EN7Q0pxOAeInlu%~aQD&}80_Nns0I*ysJ23>J$xPY>a%1XY*QDQm zw=reYH=$iC`)m6^P88tn$NM$26C%TZvVt)$m(~y)U5+KWy=slESwV4Zy>kG znNEuFFzBT;7)O^tZW=BU*H#h8Z4-6MdZ=lPx&(5gL$-y>3`F5o1ahk|4~vP+ii7+> zu99~Q_f9&?Hl>cw1{EgH-k3t)R{Jh~ObMb0aR~_HLXoN$9YgP{SQ+2NdOD zf9Frvz+E#Mkv6g9CFn*1<2YeIsQ41}hH5vxq0cv^k(Hc$yCtO(Z;?&8h|d(i-O{9B zyIzv9ewfTT-_~QUOD=z2;4sQO=zOJaP>jFO-c#}0s%hFx6*9gHJ*lK&b#G)$^GfVw zb&ZT|OivpkfJ{`@$QZ3!`ism)h*(`CV~OA)MlD8h)3%XOnTi@2$xN&lrkzHnAl$94 zk&)^|dt?YrhKZfejv{h5Uoi21ySIi^Zu3++or))H<;#!K5t1*{oA5C-D0!q)?&xI>m za+G}7htrxi==0i}}kh1?F4)Jfo%mC)ajv zg8=Knd(}#jx+#9r&_kYMrCRmalZIY_l8WSsT#gF!ZNO+ii=SsC;D_hmsEzPx|GT9AXW30Sf}3H6pct{kKkO|= zNb536@jwDS#aElVj&+fekL3F*T=lsyB}p21su#bn;_Jg$qm(Jw3T|nS7glbM7ixR_ zyC**K8y}JX^KoBzqk~~;+`K)|D!Z^!!>qOAfzXNsJ+ll`^U=~UYd(zXDo74I)q6Hf zqk15dui)ert)?6uC|`Q<#c-y!_=;9qBOt@f&psReBCRrcK_d^EH-|7S37N$gG=?hV zw%$X@MC^jbuvp1V@*0OwTiUx+p;Oi}A))vhhY&3nK9yV%sq~j~+sM&k9=S{SZgKMm zTc_{B*6E8ox5-t)&%EpZAS)w#J%k`uxB5;-_o@lK$Etii#K)+sK;F4qixZE^%OmSQ zK!NN@oKS)AVW;v*oH%|h&3i2`c^bs{0!44GN5Mzwi;qMF_My2qvdC2|9nA*ago2^3 z%50E0|KgSGsTfK;zV-xbP(BsI8xEEiT(j~AouW;13uDzKvGpIVCMfYx0y{hvU*mh_ zK4&tZ-Crds>ZV*K?)}Y~@`F*u);)cya2{YS`#g)a57i{I)e?p*8L`7)TfVO@P%8fH zY+zK1fI23>$m-FQ1t`njsnv-xe3J+cH03+Bib%t-V(W#00GtVkOTN_=8W27RWa%Uk zs`#z0u(p*k1z1i6-;v5*ii!05%9mnl-bttLNu!qjDg)&Aas#9TieCH0w)peDq8@^b zM0s7M?7hnfx9PiJ)a84ZL!vj0Aks<7?%W~7sLO&u_tv??R3lk__b7Rdqwxy_9rsl* z_TppjwiEQ@+~Bm=Ozts(%_=Z6w7>NB?C9M`r<07Er^9 zYx&Ps5e!&3ln(?)4BDj!j^Mhvr5z8*-bS^Gkc*0>FhT*v3}igN%{*#joT z6g3>;KD`Z?-Z-A_O)5={`VSI>h+aIvA0pg-<@}(WnLM zx3L_=dx{_RXx5bl7Rz#)2)n*XNb_CfHcf2pv+!cPxf?UFv7GkRTKU>#MC2fgy_i$* zZ;!{Acd7xU?-Wt$vp1-t9I25qv-(*d_{(jr1_H(-9jdw zA;9=o6f&{6U_v5$?-VhctbPt@q09G9aV=T%GL4A<(Jd-ok+KoYUT$d5hnf#Ctrf2K z-j*AT!fm>GvKca<5=%6;c$^0~OTItPhR`edCiGZ}lO_1qCv!VEgF+uiSdvdHqT^)N!oNGJL1l5eBXyQqhE z=?yJm6%wy1es(EtX>A%eOH=IGrMMVr(C-)80^4J0VBJoBV&nNYt2Q1MWtAU_SjsHeFaQwg+$f*?|;AcI9=Y=DE#Fuz0CmQG6Rg9`bo?n_A4uaF~ecV-y zYX-{^UM1xm-K-%Gk0!_A3o3ma-K@b5Z(V!GyqhA=_~FmepmL6G`dImjbylU6BBs^H z(M^oJsk!lV6u+G?GR07CPbr|nncF~CCDFRPr$lwpTKf{!(M?Q_)a6`WoUo_(3GQ3{ z1Oj(v|5QAtP0wDpaH}Q0CX);A9eA&A1$gmTC$Z6BW>)Q-3n0P7Y_-%;Ce*Nx3n0N} zTon;XL3PFUj?QPx+494qYHM$_g!@L8i><@s#VC9it?S;=u>9+)eA&jIijS#3q`Ak| z55oKwpWeq=Ek_bMG5@aX2ca+rmP!+ktLYje92AJ{9SzGQ3XGQ(J!95&?`SB8VpoF1 zW5Xc;m;W9PCGD|$Hp0>zYV|L|ch`G1LMaHd7K2PAw&gM`#bL!R9Z5$t>AK}IEE{Rk z3_>OJwp>PvlQkCGP8eos#R3dJoMGT`QrGQ-A)a=O5I}T0VXSDZ0x%U@%?Pu%V~Th_ zrmE{|MhK`SRRobB)AO;iNfsb0w(4y2?;lThm*d%VG}#*M!Cev6^rV{1pyBYhx^!K2 zPD|2l2HAm|%p_eVwuLU4*_*E!zyh*vEeDQ`fn;M~*dW2A>lQjAWy?wNIQOR2bAZt; zbV(6?^0sApi)wT>yyXDvz+18}gX;C(X#QXU^QF~r|K4c&ARI{+_hp)dX^-LqMngVn z97mD2U+N{yeohgiM#8gk+)`xvo^3ZqcIa+HyUI6 zcewiAJ($l9N5lQ`WLeFn(*;df*Zn(r(zMf&%Y(BrO0SDu#GF+?R&%D=88~)`!F0Wd zIS*f!w>^d!y6r{b5 zJmHhdBaI}s5hIm1%hxm$1H}X}jjkIplBlvgjKHFgWuyf3NEvUj*m%x_vJ6=5DU0n_ z;ON$oc?grp)&6WAUPIM&ze0{I?L_C;2@TZI@gPd0h^?CENR`WyP9)!3)FKCl6=E7) zSIu*)o@-d zj%HKlF7>Xrg0&Q@eeXNY5h6@QflD|1%NC=y{b)&9jhoFrs2Lm>28nb2haN|AR%BRd zd46g%4k3$&k@(gYfPMOGh;I$Kl=wDH>uj+*o=isIVz4=c85j21wED6#n^rGd+osja zp5@3c4{XYqJ|N!PXT#v+X!f&Q)@9P*(hY;lp~UpdAaCBjNbH7dWH1k0CkB(NpQvv$ zAALAn&PTiB>3wN`#GZ;*KO=Iqcl~av@kG$1UBvd1b1gT@n&nlHeo(VO80dP2D1|A@ zn=mN)rgNhB{@CJ;6tR02Y^6c9W~cj3^9&A7YU3YTLoGEWO7+}>Dg_Q#R%$|M&6PGp}2)wCykl# zy3rWB5Qd9wi}7?f97XueRo4q)@+E5LdpXr`v2dm7{JO<}k1ZtA4X3-|mBnMPHJp9HSfU!mr>(o9U@DUf&FN4Ua8${x`wnhf? zz;$9U*%{^8P+z4Hl2BCK8Eq1#{fzI7Hss6dMK$Da>uIVe!b)*3stH|NU(@g+y{HC3 zJ=2)9=(D9U6J9qOW7iegu3=COu(oyK1YX_X8@I0473Ip)j`tGV5p9MljpiiP4Q(!> zh5H$n!p81jmv%uD7+W|Y1xfEZ$gGh5S#2_R16bJ}iEC?SH6LVWR%7SwGb%<|NYEg5 zJw=u+Q2XY$Tl%H~E6wPG?#^iy<`?L-$DnSgv7><&j(bx7c6IKlQFif94O2WU)Mi=# z*;CsBW_N1e?ryb5^9rWk$5Xx~ovh9fsbKB4-)rf%qzvi4f72roZQa;_30vF$ew{3q z!4?l|6=eC5se-U+KC3F|0K2>juJzyr_S7!v;T*2PlC@+V5We3vAm~HJ5E1@ypImhI zt?VV*kHNn z>|z=Y?*6YMHaI2=fj`9c(9XpkqI&28yoY*7ZVFZup#>&0gf;yxZB%|>DBcuYi@jvl zwcf4o+`CneU9Qjes)@Q!=2U#KIh7nFB+s#AtGQ_xl~^W7*Qxj%OFj!JSQ#W8e?$C! z+ny84fts$|AMHZ0{?Hy3r#B1zQBPf==9<^{4TVU=GgmaajVtxB{)IG>ANQ#JZ2tae zzDKNKzD}KM`Qj6>EUb|9tDm_V5;tM%)X&H#S5qc;_vbr#RzHI^ep2Pdo6K7TfF{Vz zZUVRW6l4a&68$+&6OiV}yJajL+vI;-qt7)#Z>|6fUA)mlAy6T&=2yr`b*Oia1oQSk z>5sdUZ6idF@gE01>^B*DlY7&g>k`1S*|Q&r>lN=!bFOER>h^?)6oD!&HWOIny2WJL zjJ`G#V7}{Ck!vAh4-YX*F%%VfcVdZsa)^kIeK*tAX>GvRfkF?nZE#2VG-ptD+hXHlax?R5N|MNJu{ zxg_r_YAT?$+o{4xn_qlqQ6s+Aj;8@e?%8P))i;-E<33|9a{+ebGI?gTu8f26{`mfA zIy{-}!klaPN_X*@)rcJJbNrcAK8v)F+@24kRb%^6rytZT5D)9C=i_5a`j!tWatd?R zY=wsEX>t~9r9ri3D|dA4X+JzUA2e5ejgA>n+HV^Bz+o=wI+M&vqcC@}m8!EC?-`t& zCnoVvdzxutkhS$82~C_Oc}cqkb2=mPvY>S#ud`!aSf68EP}62@ZR0|bV=498G)se% z3+u5B%|=^jEp4M;@-nRVtjNoP)`h&zj`h;|9P6b{j`dQJV=498S?^2haV*V7TWBq9 zqhInetoN+Q%YxR0yx5~&{%m92BZ-Zjx<2aVi+O8&W&GyF8+Yp=n(hKVNxw>m$vrd> z!rlybQQ%prz77pg$n{E9u#+URf8%1i4lJsaO>XV@UQfMJRwr)t?XB+kX@!wcHC~|_ zo>;+{TtTIn1v6}DtE?0wk1Wvbb+44BbqkL-kQ9C^q-)xb%{qPZcUy~q8 zlwB9Yg!MIiqy*^T(*(^+Z(@kJ&><5L7<(hw2K%G&Q8gJ)tHqXGC9t=B4B-)<-t78BXj%um7BM(Z{Hr?zH#G@df{_;{hggVm+J1@r(?g%c4wG!qCC|$jo$7)kAc#g z1iU{j^&bZ&rjxdfC>qg7#vk`Y25V&wyFuq}gwZxaxcYbN;wk|)Ml@_?>Y5YGF1fk6 zk*#I5HyIxvhC`v^&CO0MqxYTd%h#^HbKMM!KG%>$x>i+WO;|_HyUg#zX#RSoMnm*( z#3WMOBsYY*ieS9O=g+-n?}4GBj#;Um9Nf(ax>y?MrXf4cg}#lC*TZgpQl_ z?{0ehrGepqSWl0R*PxuXo+eBp#Z3#xOL3D3{|(s*bv-&>lDY)shWu&AYsw6cm%LWT zxp2)~-4DNaJl&gwuNf9!tK;O+-trq-o}Q_Ap8HMu*q!{wEv8QWaP36iHauO(t+zlI75XqUW+%mr-D$aDI_Tt31=@ts)?V?5@j z8euYHu3Mwi$emfu;$%COyo1IS!Lieo)vd4*!Qr9!0u+b3SDqQzV!K0qG37vA{CN+d zDFKG9L)_TmTKM7NVNdi@2a?h|UN#l$RD~tCGJ2`+D?3oNFAIIOM<+T`A`LNaSaXdXb zUdkgcyVYVbn-gp6u}g397d>x5lBWy+ifGAbCXRpGQmph_Zrlw$6%TMXsE@a zWKbEpkqSpaJuXUy6@rBZqo3sI0B5j)Hi@{7(-S8uJ{{mNh1w=S;S8sd{qB76(h-x7 zr?{+G`<&4XNzcVIZ2QHJdpMk!5FKJ$FsQ~Ge&9{^--t*~RbV=KGSg{5n1gGVQvDK= z-o;tWZ}E{rhmI)g?Y(FFZzO|*7kM%zBFNyq&{G$Z5?c z2AEt%C!%mpVD!y`<_uFz!s5Xy8#E$S1pUF}o-|hlxTG!phm3DTmEt{VP8_KQ{f7!u zr{X#0CmEz$>~VOmjVC&OO34tz%NgB*rvG`(4*v+5h#F?rBV9IaH_t8$X!mYJidTa7O>o<|c(muj)hj@hi+!%*wZ z-O*%1Vo;CE>`9GuaYNJN`g5kH1_fz${&~-aoQm*C z!iYKikL&h?6#OLBr{ee8j1+Zwp{M=Zhpk$+tb<@9{$KvV)sNFdTrI6AR~7_~_xi3e z>?w7dNFylmlz+MQnn>dld9BK8Ddz0fr^VL2(fq*zB6YX}?Wd&#ASrKvlpQ5S?>qaX z{UDo%NCrL_EHDEfC4}pd-IW!Ud;c@=G-Xw?Qc`9~d(nf*E zRC0qjqaHAu+(3Ye**%!g4o7^ipm+lTl5z+wm5d6?vTT%|Xj{ApiZBJ*reXrh5L*Q0iNU=&}6_6d2yu14UcK6$Yqyy>)$9C4uAQGXMzt7+#H-FDlh}W2YU8 z@9;*#u4-Yb7lvjZp7y`X0CTHFfZ>$b^gj}pdauXu;-lBKABY#Mn#m0>h(5o_EO+oT z5gLj&ydZQu4JkwRbDc)+&~6YUttI(%Im+)d(uqdvZ#bwFKV6Pc`o!eLlpvSwu)Nl` zCai`)?-zMzT#Qb_dCDJlb1hX?JzIgG%FnWbx0(^4NwR^;f~)0bA)=sg@l+AQtyLn_ zg|i4F^U#ag2g7QAALgePTce|+$%p2z;r_V4dFX@`UGsSUvN?maiO3vpb4JhG2atMD zYd=uh+rOmtBwBWy<4xd^niC6a21Mp~n~Uy?qpgG(>}zY`Ct~-l^jIW2?b1&yKA$ zsMc&~w6AW94fPK~a?GjG@T7zS|x>Dw?zyy6Az@l6b=V zE6^|tgg~iQ$U?km+#0Nyg*b?876!a6ppN)xZ*MvqFT#%Qjc!$pioUqFcS9Ae?e`J$ zw=~jMS^?WMD2Wli+b=>VL=dRg+CfEqXT$}oz+uk{@S-j4;){s{P%n`!f{Z3!OS;7+ zF~c+LG#$4HqT-E0!I+UtV<3pHH7k$DgOT`;ikJ6(jF-oI)pE9Xudn!z%D-sJzcai1 zhSKv?JV8E6CyLCrqjCbAo8${|r;fAjNE!jCYln(sbcnQ8s8mu!lhql{WStPrI>u>) zfzd2tP6mXmxKk3RW5vmu{6#v(n1YSP;f4?uP1!Qmj~(z&%A=0KVy!a*hSFxhkp38g z&Zh=;(*C$RJA_@)6`U+yj(Y2lA!wI$`ImM1x;=Y>e9ZI504F?bjF1znE%!$PQ2Qel zCqf<4{z!^w@JEu4XjblzjApz)l7vxzq^Yv}k!Y98f^B5_^+y7~sa2#2jX(a~7e4YE zACdoyIVPVCXi9f4pvFHIp**>v~PXwv9Xb;TP4#@t5Qz3|1iFT(Ys>tE$7JgVACfwq>`9{pPYOTzk%=?u)FW$b2Dc4Jo`$_a`yG zj`M{`j>Dzv0tpfx=*W61D$HeWFfEsesM2vg6-oD1;oaD!Iu#qqBv4mBX=zH4ewtI; z8Z`E)5Bs*c2n?sbg(2`W@;sl&vwkN@$Np$9oa*>dv3^%%vD%wHD*rA0D6*!9lrUi6 z(H+Qw8Sl8Jhsw5ybm79nid-LrvRYWY1qNU{ULS-cI<`A%`?8loO!#iOx<qxr>}V5rRzoZvLj9R zO)dm@)Bi{`=(v|1$@GzG%MFAIR;54aR0om1Mj#Vg=093ZRYjoqq@2bE6G1|#=k#FW z{(QW@Kb}s;;nA$}!Ni-o@M}_o%73=1%8S4W2|A56GfYyb`-4@}WBmg=_}`v6 zO%@h8647jWCNcnR>8ZZS{%-hCYWY;(wJVp*Tc{tE|Caunp6WATHswEv!In?;Swy;U zVPU2F1Qr$_X#=q3eF6uT7pW+XP4yYR(^GvJidh51eo;Qvm!qH+9h>S?g&=EBFSJf( z$9wQ(aJXP}quA50nWA+Y_K5jgT7G&T9|pE*{vaMuzR+qA>9)xV5d><6(HKQx>LwEI zZP`5=jgc%Vj)*o&!g-~L>(qtFdPy&|8ciB{iZ+R{M67iALaR|o*IKhq&SN6`_-tVY zE0B=(8Z+>bBoLb{_Zn}^_K5jA&ucKSP4fpqSnf3jk>=kD5d>=5YfQ!lLo!K-0_CBW zD!?0%NfY%Nn;^?;j3yb%T9fV9YYg5dud!*2GsI>TgM>iBOUVwYBmoU=eBZfK+~P=B zNPup4o}^!;A4RTmL!HPFs`4gRI5ElHRUr2T3PzFi)ElD+Z}2oBQLlXJjaEU*1QE;P zw|TU*Kv}2h;Ud*A;fW3d>yPEbMXEtQB^HkORt_~bIZ%`y`y8%j>~kHBedNDoeWk}f z2F#}X2QkRcm!kFSm1zii6atUebZu%)8_jlY=u~}yu|JxRE&LJV)c$C` ztim4+K;(~BTB1eX zjNYJu#dpmDus!q!Em&TpqBPnYtohF94W<>dwuc>|hu&a@f>w02Hz*51)}G$)bTnS> z9xUMP?xhR_#KOw=JKd6n@2J9cyYr~~BJDqYc!I*)bbk`0<@=o+E**oAAb9-Ksv$wA z_dB`F4Z+nVBC3?{cXDW(!l_FY-S32wfZFLv7pGB{+SX37AC*tKIMjLSTNom;-w73n zJS%de4jKowrDHrDFUOFUO$iNe&;z5a5_#m9j z2zHd-hkrD8XRiF1RK5@Y7Ajo_rN_`G>EP*o_#Q%dD%c_>6;{3vA3>`F6A~qScgCf4vx1}k4n~D+JH1>zuk@3>fq~yBHmTdD zXx)N5V*ZwNzn>-BOrgp)mG0qTMt_~6c2^n59oh~P{m28c=edETRYqDtL zHTB<_UW0&b&g(yj(e>ap7@-paUW1@!cnyZin=Y$B4_-qQ;6+rp z&WaEiWx7v-QSuhcVK48K5bV5Q!?yTB^Y2g_>9JR~p4LWj<5E8M%GcKdh#k5yMIj$a zpZQ%(#&XH|{qb~f_WthSG;o&kGrv1p#JftwB@m%ony3Bm(tXlremTIK{zu|anYe(|EhR= z;p@@V9}LnOrxaUxY+4l>XnDE_E_~CHL>CH z)hh%I`>7TseB|j7l#iTmsZc7SPx%Nc(1!o2=ZR5uPU9~4YE6eva9_dq%2{Ye| z??dSlRb9Mr*fIvQhO5Z(Qi!;h#@Zl`dJ51aKG*asFn=T85}LHLkssH~tVe5!2v-(l zg~zVBr>Q{e^g@!Vv!iOhJf7bhEyuHPN~L^CT*119WoW;6Cip@6$Xj_eypmcgC;$!GjULVp!xQYHI zXv_PM2wH8$j+|5BBTx4s5z+=bM5%~A<$cIdpV@r(V064Up5a%4P_k$r5~s5IUx#Iwrxu^EgJff9FYADjFQbV{!o1L_7#lfRmZ z#THh+W()wEEKB}u1joD!rvY8ldkdsC5Un@izoe$h_ZCPfYCI{67RI77Y$HF)ucFxG=@*BB!L?}EUnZEKw}Y&)fsHL;#;JE@x$9JOsI!q|VF zZP&W`HPwS{8*OCKVB4Dgh_@Xt$CJg@{{G=nb$_V;@cTy{5iuoe8-E;2lg7Ty51p9; zWH8vBRHOM|_jqqKfJY0K)d$PL?r8UbK8&&7ZQRU=R8b--Q+!(eG?Z|LHJqV_1B$)g zN-<5#Kw%)x`?G$PA#y}e8$WCX`hK+>s4o0KU98|A-1%j{&>3msS@<|q5QY{4aNku8 zbvk%$YFKGl4f_$)_`B+yAKxct^o#!Mg2)n2%bHN1q$^1At$jdN@LqLz z{DEHsJ^KKWBOaH)tylp4gVwB%r|_^OKtCDpR`l%Juz%XAF!79pufBm28UW}Jxo3n4 zaWbk(LUgf5^VxE?JDX4~I^HwFNK*lo6DOW?dN>fENo4N}Q?}7$GP^&RR3{bf1a;i| z!pN~YI6>kGi5~tQYQcaza?3PRp25u+e#cv;86g&QEk!&k5!ZhJ-1ZT3cD#&P{R#rV zCrw98{Sn*!#n!%C7wl{f_b%`C@4kUN@w}{wS``Na>ZDx{0!kU2K;(q=5bC`vh@MuC zj-K|p^(Zv>~aFg*^yeux-Av8Lhw{JZV@B3ju1QUG!Xl3Avz#HRw5d zQbFPg_?t%0-Bx~#RwJ0u7wx2D1^=>NPw$9`oG@>r3RLyad!$T8B(GPE$@=4UlEq*l zx4|Sh=Er^T;Fg<^?Zu=of$OgEG^^goe&AUBQW5*kq zmJilVi$x*6*&MK>L)pYYM`TASL#FK9rpu<|7tBe=9i6#Qb#JHNjwM#g79c&gXLK@&HGXZSoARJdWJh3$xR4n>>RelN|?xT+zl9 zC@sgO21efLIm9r-$&+;l7&F+!M+PEXxS?p@9T{(wi0xzT9T^WxPCM;o0ZSS7Y$?Im z6I1l3>$aHyjku7GFhM4usqZ%1j&dlnON31~O%(!Dk zDgZva7AyDVh^J(<@T~kozS+p~7XE3PogS^l3J{M-q)HapMoVgs7u8^SAPtQAVxIv- zBE@nvweV$VBm?fo^|sI?pl5V%wiquzBw?>;z0C~&iCC0 z6r>@+EX;d!?Ogff#EZ`-K??dup8fE%B@7{Kk1z@EuaN}OD3bS;e3e4XKu6=~(iu_? z9khAFd=!l?9f*``CZ2u%-+^b;v$TZCIpOvjocg%6=IQuv91i0i#X3R!T_ z0hq4GL9A?YYST9Zo2u8!$L;zVRX&E0tbCjph=?4S@wrRH1xc;zEMOWs9+~mwr$Pb+ zAi@b;7hPylpuoFr6Ha)+|H&gTqeHj|?XcP#kLt~u!FKu^?d)3@Ef4mnqOZ%M)f-&Z zyxvp)0{f#JDSO-e5-2xEdwca>SFH)@H@4j7mx3J%6HkNudP%;P4=Q*smgJ~#Z?qWi z#uaJ#Vo8=Fj7ae*sgC-gKc)1R7^ZesrxX#1mD00|uBJK|8z~z{fK?b95vGmJSHT+? zri^X(;CT9ASxpx+`hZW%fnn0ZupIH&B`NiemI@Byof1o7-mCUU#}l)sow1~rCux%4 zS%KpD`g7nK9n~R~i!EtY>JWiWokEM+A5SLrR1OKgeOnZkBOa4~)g4mVYIqy!QWhoW zKH*7|(cWk|BA{Dts7qQB5u|rzTDbt*+ZUSy85`2LKbZ@Div3%xH-?+Ayl zLyZFVSpbS|x-90qYt_Y*`B<7E|E@e2;Iw#+&Z?wL=xBB{P<=yc{Xgw@ zfVqjph)3a%VJ)+LI|bY0;PlvHFoIsr(P;NU<*gL<-R5%g#B=r6A)tWw*fa{z#al5< zl3(khOCVi`mMexy=QV27qQsL%gZcx2Z)-X8nY@Z=>>cIn-Ey25cx%!90f4>LTq^a)g2r{cFWb}B-vDwctZbOH&il0dJCK>XhR|DANUAQOGi{&j3G^eW|6ephD(H}QJCxZbL@ebLf6oI8&oum%3K+RCipqtZ* zTX+Htn_0_4Hc1`RNbuyFT0cx6$LWEYVLPKu<3Y@99eKT}mfM>9Wk;b=2Pg6wQh9)- zQQs`-!9%Q(`}3Y1KV55j^n#l_@luyuz}0l+Ty4p*I^1J8omSqR3IFWuiKF1e?{#32 z76FtVuAWl;eC2RHTGBnK|Jg&pD8?p!*o9DB0`Tdbq|@<$Z5`E~-Lyn97l7M?mM7_Y zh}gGavHL5vL*1QQet1N~-QS$8{UKE1 z^_I+`yujXgrR?c}8!Qg(RUZ(m`^RU?AHgNQ+mb<&8#r81uMdxRaa(a#y*@nF&hPc% zT)@?2HTH(M+S;Fw4y&+-@=wpmM2nXG?s zL9|Dxat0T%yujXS8(h2n8gqBX4X(x1y1}(MS8jE3MNQ4G(2aX%Y;_1#YpX+ffxX_R z^0d#Q2?5ehtbZy`dmI|h!&L{l?JLd&T&<{Uhq%J?W!O>As(D2OU}*WxYoq`mv-hdI z!0@&nimAN7{tT>~sk~_B)x|w*jSs_AUPwXyR9-AEuy?KF$U+b9n>ME%u4)XS2lM`J zH1S0n&G-bMtasU7_8Kdz>{f907e}g=m+j@RuCmI7Skx7{O{E6tfuF8j{Ww3&VPeeE z%GRLcEHQ{sSHD%h6*8uxkJ-WfP%uUiwP1|oTZs=637D%h@Iitl%Lhpg;HPUxl=ngQ z%rfR^WgSu8lUO{cBibU@%D5sm@(^%E@MLpEasgM~HKB!VA3lGLDQbC5Xj21a?m}rw zgJGyEVR91#AwTW2=d&fRQnRCR%*e0T+6|&O)Xk|)ln~Uw$uE271U5d_&6qwZj;Z;x z^;6@+QMXv981gf%geZ43_n{!lhm%E=p9zTSy0*wSXZ~4tY)va$Tjbj$9|~Gq%*)U_ zIdVeFnJS&9TQfO6lq5NRhLw=x%=662!BDcu!5M%Y@18>)!FZpk?=)*lf=)SPBI#EnSiLS$J}_!GD4X1Z9<2|DJMl^&S+S+6}GdIB38&mXS0&qINz`&66UlqLsSyz6zFf=EW32@aOGyk55n zdQODV=g#Gg$W0}gW9d7+nuK;CvIw+XuPxLF#8*@L+nZG~u8gc-qFBY1k=s+b8zFLK zWc{N&gq(4UA3_=4;)va|hg`)kgWn>2x)cBseU1Aj~5Mlg9gxE*_oj0mOsLlq#K-i1!A>%+N+by7t|;cs_8u;_qd1WqxGGWpb;&-}-jdb*$?<~j zIq#cQEkS%t{}))zxN8iv3Uef@xND3sYGjbR#xm|e!8qZv8G7)rhdWRRNF_jgRQ(5N z%(%f2!-Ly>S9XITfk_03$K|cUcA5)dXIyDPV5_FZtQyw8kT$W0D=jE~R-%8UMV%${ zN(-V8gIQN;?xAx}Kdeg;c>JKY;g zspEDw<0_hz_rj8TImzM+oPzFm(A2xJKh=`j@=(QX?amI5;CdDL?EG+2om3OzWG!#( zPd2p{0;);|g7{iy!k()8K3x13yrH$0>b8<2)op(VO>g#K*oUJJhWEJrc}MFoZX#WL znXP1!2DHA~gVygYc1IK1iTu?%^sVKJ&#{`;zk-e#du!N`r3Y$Ftz-{-YxtN&r%UQI zr_sGNCIKj$v9~5)*>FD#j@Uh{>$lK8#1dWCH>GlWYx?Jhtni*OKLkq_KO_g(kM}}H zcB{ua%T_qNZ23Y*ew)X-ObtN%wha+Y$$D2m90#sh{d$;~Qs0guGv*mvM2}$b*26rb z@$II0Mw3R5?PBwcBo$PB#zuq|x|0zajtV_&L@>y6I3PHp8xc&2BsFmIi;mp`J{ssp zvDEQ$eG@S04gbli`V73whhWsZzfA!r%(5bibWm0|^qoCL7)&NbI15meaknYk@w8-JeUc_FCAYC{S&w_w;qeE)sq|;tM1+3Z z$4UgK;c643yJ2`dg@-i&@W~h+8z2<7Uu|NkHeS`ZJwQN8h-gD0sNs+_; zi{)&0=3Tbh{+@eAkcZt#(y#Yu^zJL*4_Bm^Vh#Su?EWB}AZ`Ep4I{!LcQV8il5zOE zo|FZ&;kp!4ltIfFbo+HFrhE&v79bv#IO{(EWUE*Qdk|yR+;5=v1nF3(KVo|hU&&w? zFbvmaI)lP}rl0rK3sDVPAWA$hS+5mv2!Q|WHXRC(&zsA6e;P;njeAyvj(hgcwx*)H zi?&t8T=#1#o*->1x?^gkcLQ%*)m4MHf-rdd5x{51Js4~cTuj2a`-^*2hIm2_@JZYY zXFVcbsb|obAETXMtWo<}4@Qy-kL_`oyX2V?qu8My!+mE=0Ww}i5y>#(byzVc?f0EA z0Gc^r5STe2rYt6P&pcQ^IWrzCf-D|vYTzN98)Ya=+5_oIV;0)ajWXiX)TKVppK!C@yMIzez_G2TZH)J z9s6%k{uz+7Si+f8RUJV!U&s)Gvg_LZ!c|=))Z_+i2ZmSb;c=ynd*kV7F5l4wsb34E zZpy90fZ^VFGG2Z-fLDX&WBP>4o9&_Sg^K4dVObm3wJd=3#SqqB1t&80AQbp70RON9 z98#Eg{4y>Z#J>=VAMc$f9`H&Bsj>|5!cFz4)o8NeOFhR(we>f!^*6Bfhh5=T7d(xn zi?sE8;vDQ+fsQv}<{N1wvn_3(PdK048qcIX0`saw*;TFs&j5bGnr1Ms%lFC=zkrPpaL){v^~m9leY(DWBO? z8soym(@JajG=%bv=1mZM?Ta8N1}KCC3*%{zESSO&3-HOXuth6^@z5<|GT1F{wlu|L z;R5w`tS3_WU^{If`xV(MWL2@vkn4)RkjXMOQOtCD1)I7+lxZwL?YypA5RYw~3>a?< z-)Fsd_=ck`F*32mA`Nc)m*-%U0hfmyxhV3)1>YuOH98^BwvBbPw}oz57n;{Z<2*&Ef9R(aE=``fbk(X1Lq%&i= zp!6W+%``n|{i71CFGvcZfmTnqup!ZfvZ!ZHVe!WETm*L4W{Js^{eY#TJ zec7P?`IP!$o?-@c<7FR!S}Oyd>?{U?Jix#k1vc=qdU=4VoxUBSz}K}v(DiGH+BOM6 z!Ak`SzM@~upcdXQ?lze)$TGC|MZN$82vmTJ0x zxMaGTtJT!V%+b`PE!EUq&9lxrH8OKFb!kDl5=&(IY9Soh4qg6 zrBwO!Egyvyk41y_FJ{y{%>wGT>r94bPr9d6|DHROp&1j|KtR};Oy=o>frWZ)9QHo$ zRUfRI0W3S00h$LG*eP^@*Wew8B|PT4S1oquW3@g?c}Q>4Df9#e0kH9EhC{G9fs=N9 zv%oL7K6cMNmcX`6@0sbFMbm<&SITPt75(5Ut?>K(c0&XBwNR+zZ>HuWldsG_J?IPORF?};Xs)WgL>hdQBd)!tM=nIdR;hgI%)S+%U_=tJO84)gT6W; z)BWia6>T)Va9(%SU=z>vYHvKM=issY?Grft<=b&yKB(pUeXwyJJ;hVaA534`J^$is zvwEw`c(1A+>=BOA56AYw5k|Fr`|TS9)z!W2?YH-!Qz`W zd*$0hy3;0o$$lRkQY70JiTGhIZ?O`9t9Sa~>f3Nk0=B@wtmJ6-LACU}F}=mR50*R( z(j#Bb#D`!0jt+t42U$6O0|IPiki{a?LV zo!-K(o6fVax@LpMZP8C2f!mSRXO@_lvoOnMi$4|rdn==T$h85J{#hR;{kmyl(4#8Wfso5R5JEeT)jBK}`fcCH zR9a0Y{2#5XNTk2h322Dqm#hVQHZFj@zMVH=;Y|tV;C;JHe8OYqkUsb zM|A-j6K*b6^0?z#bCZ;B>84qf+KZ;!nS;Q7Oil)u?0^Q2*67&iJyrFUSM@W}|~QMo8Z^l2I*hBM59XJx?IW(ZOrA z*6p)GRleH`EiZcyCVR}J-5DVs$3xMQpD=g7 z{GeBm&yXL4q60rPH}I3QUXTtuuh;j6)b^tuk*~(21@C3OARR(DB->+HP0aSQND2LN zX{wmN8(u5MmGhO0xMLmRx?dZP?UP&Ql(W4>)%ujK*4 zZzK?cSsjO`M$^|CG<7K9%6V6;cpPxKKLOI$n;^-Z5OCGX{(dzlww`{&q6rZ$RXm1v zTgXbh(2QrgH;@55?uO|z%+1hP0pe49)6oJj@t$_4mh%7;0T{6Qq3%mbz>P)-T`&GM z-ZCR3#p;{3&A3uRI@eU`GB1oK>Yz4|r*4TcrtgbsB9JRx-^cGpFsfITg%f%&E5zxS zu5o%jCW-TRoA?|rYL_0!GuIyyF0U2ELBC}2ls8gNVuMi^s%v_9z6_gRvUtiH;bmcS zHPAOUT(ZXI>Q!Bd)7bQbt-?bEx>pi7NLkY#6fK^Gk*ceahW!(X+e-HH1E=5%qPq@;>b7m zBP~}v@nb0m_w*W3=?#%wFTD&EEmu52HeO1u8hgm|3iilVC!-0=S6L4^EL%Kt+sMPb zZ8X)UTv8^6cCn}uRdM2@>OUz%f?ynpu4Pq5%N0-Tm|H$fTx|>y8WLMyWg)^VSUkD2 zgwDbtuBr2lHKmfnj!V4HoK)TIvZ`at7cXd--u`lF`LDM|YZkHz>hv2{O)ZvY)nmoV z5no`@n+0X5#a5#h$45uAx#}mwAQDEpv{_4EsnrNQEL=Rhqd#r{ZX*#uHZJ_B`*`3U z#5(wSToA6y7XA`~)D>pQn}Nb>iqx}~eOyyi7nHiDXnQKJJebSM|7B454oq-Ok-wx@ zUp##Ng1n8_4836Y1l}$|*#EQE{)sdSPOtcTsA{z+9N5f&cQ3%U8-InfQ!&fapL`9r z#rDBou(`P!kNex&*1RDm_;t)|X6L@0Kd)}h&`%FCdC0aKYy&@ev&(McE@lw$x;-BE zx4o`;qfPMZnAt4PeLH{t61e8Bp6FxpknKFDKY0|$%(dtL5AXqA`O`kV63=qM*|M{9 zOE@6b*;R=v2Bma&t)0A|nIo9=V4! zPQ|Y>y`~RgP+12(RMxj=@Rmdvu<)?Xi(P-aj_Odb!q|j|cQQ;}%OpInIG{AVxvKpb z`Q_co4CVysuAufeS9KT%X~}XoOK@{l#N=#_zI5N894`*eM0X{*mF^}7=pG)>XEr$dE<3nUNd)KevDTlfFeDq?siaOx=_GvDZ+nDBn?>wpev3jWW2V~=-|rDn=Z znEHn-yr26zfpaSURS?A<4q)IH;Tf7Hzi2iX>L2aT&@}o-Gh^TXk!=aLpX4 zA8fh9yK>sEnPc^WqH}lidGJ&xkXt7#hewLe-OY#KsYa4Gcl+IZm@-|S_?Z4L)Lppn zg{7!@uZ&K+b~PW04&@;MS;O8PcNJJJXo&Sa1&p+?-D^$&18=?rOOi^ z)BgoR!ZlkYUG`6j@b+uAmVF;vH@i<;kkufJ+ z7e#D9CBibQS@o)$T!O9rx+uZMmhZ2N)-9n#8?K9{(3<`OLEU~`G>O{E@z+JYc3f%^ zE;%ACA}fI$`R$h+u^I_M4NH!wLc%Q?NEP+Zdhe^={*2qK_FFVC`mk*AjQWNr%Ou(1 z)|R>$`DlzT#Y9VtuKhlVx>&hH>Xj>=cy~TtRyZnW@TQx*)$oSPHoU2C@UjA&nU%bK z@*F$`9zHVo&2*nwX44DBPu-F8lo!>br`O=KEcba^?&bl!cJu2Qyn{L+-kE;ZQz27C zqawtkZ@Kb7(34Kk7*-RBh;#W`Y^u!SqgQ1aQ0!-1v1%4pJxw@}h=_#mw2?<$Dk9B%wi{^@Z%pmn&!TMG%KiWK=aoW}9AN-;x_8M?lct#&s1rq^#!xeO`K*2unwiKp`l>(}Hb$YGX_Mn7hJ-t?Jdr(58o<8kIA{!EMPyh8~>*0qZTa2gOh9~a``c^tT z)~zOD5Bj--|5~Tom_y2c?TB; zFAffl??Jp6!0BLko&FfQZRJjvE?#`KPP1`g>&1<88*d%Iv3>i_#$e-$g<%};f=4D- zIPfcRPsaDBht-tc%bq?>ZRs|o6flS1O=|$9O%4Z(1)cOr9~VtS zcO{Fju$a$nygNF%b{)9i*|{bo-EW~J{Nc`a?RVIg|Z^95(T zTcIS0;N=JcJWR7W2L>bYsJmV9C1i*+`p+Qr`^QrV%d_cd5{wqplR;L+EmVx=@JlR* zE}3NU3sD@Kdy6B&R(h};#iGg*zj=A*mX!H>ahWiWa6Ew!V`Cwzd;}af9-|hO=!(!@ zoGDJ^F!`OhR`c2Ha4lIE=nHg1afI!D4)PJPCUR>ACqh%}GIG<2GQ~xT>*i z+^(@~>^Lk?L0^uma=aW*#!GsbKD{6sM{LRypLnM(8RWl!|S-*a>c^(F@U)pAmPJ-@rK1U-R5TN>e z6xDc-j>^B^!a}X$W||O&=lrBilYBaHSR@~&5a~2!lUzExS0pz&&G(f!?{>_O?ch=Y z`?f%jgC9gOfL}&iRa>{Dtsi#BmnTeQxY#$N3LOO#37FjUk?^RKg#||p9k=$DLfJ}f zrY93H);6uZlcNGcT2SV!1&r01NGNqVxqpAWpu^*gu{u+j0$i6SK7RMjH)XL9uVAIb zruGAP#!89JtHU-K+M3^_7#M4tKUE#M@IJ6V5c|&>S#JFFg91UC=LRWfQjHP+Y6`@-bjyWtR()o79NIjl9 zH?QFGHrVUJEV;dy3}z^^=I+tkwm4b*XT9P#T?WF#ciT$B1qn~+)8`hm4~7+7O1I05 ztaHwGd{pk-kRrbn6S-HN zj3J5HCe@TCK5@A&7i51WCL5x(Tr2VoI^A21iAM#BM{l{(0mL_BAZ%F!WAKEF zbnng<;58%Dn3R!~q&8z2bO2xzSz2R|(@}UIryi;T2`WOPGTJ!^f zpY;`T@Q59y+YXn}??0UiuX>-5LdUZ$_&>jM4SAPGi|?E}cl4nuaBDWde@^X4Jhxbm z?oBF}Ra?#@rYK3@r`)e{n4o@w%Z`X9ueOum3K2xqqqQhsf#1z6UZek*f+(Rs?aI?4 z3FvgMO4Fd?i7r!wWy{t)?9Atut#fPKk7;r0lSKdd8oiZJ)20*Pfn~a(LPc9kf(xs3 zQNouDktjY+$%sTQv)1ed5Wjn%EDj9`q>f+kBta(uu2+N2zS5UyyO>^*K%iBf(Xzx7 z7fIP5ebbj-H$nqgz@5Y7WPl+Z`F#vriQ>7s`?ax+TS>rqhZpHnu06mL;CJPRa)9U-cDqhJlBH*tV~veV>|}^pe`xaG4@* zgumsZl5XKIe5Cu`KJ%s&vfS~_b4%#^&c~z4;vAf)8_O*k!^MZww@~3;1-IqG zKAR~W;iOlJ^QqoMGQ^{AfWQqc5ZJ!a0_rYoMOw-Mx^l52ST^0CS8!qLboWEp?;$&G zG)~O=q(4Wv*t}Fj+%OO~EW`~1v89b2jOK^4>3DZAlV=fTu*G_HHpa*j&%RXy*tlr{ zfC@isQE}s`Eg1HNfxCm_6D5AxXHBuv#Pe4zh>cqo1Ss-S3q@oVoQ$jY3HUpGg0~XH zBa&_<3_!N==*U!EuO5wL__KJgwcv9xdVe{aEe{5;2ZwIbORp!lh(A;e+{Igq-B4nI z-dEaSe(!h$kBtO~-|f>3V9TKuA|8XSe(;w?+lFDd`FS+G51}%^+bhFVjCkTsE!JWt z3@_&L;RQW=J$!$>JQ%|Hp<#W9Dc=0IVmMQV?h1SnwzF%9{Eo>s0h0CEL zY>0%1V!e?AFfPSRurxT1)f*+{wz6 zZN?xnO!`M1)xQTj!eNW|2u2v};kpN_(wP%1o_hn}z;q^EX& zwT21EYoX#PtILLl0UB+WXtX?lZIlPI2_2>FuT&u?Q#`5kaUVdPs~y#W!{PeI6B9dV z>+q{psl>Nu#I+>03Dw(k zw%e>^Imu!HZK&~_1Oy6xucLy{f=>>KMn7Mbe`!(TV{cc}Yu8J>rXl>V%xgTE;>j@J zcWu;Y(S!G^G589pl9e@TylC-)`M#kV*o_(znAs0Hn%SiKAh`G@y(74z>lk6;6W407 z1r9QmkEW8^Seb)pQQ~9zzkvCzj%-h7Oo_;SZenIBKxoCYzd^o6+{9f67zPuxD9x=A=0fxAvnEXRl771fbD z`%1?cE1RI;1dHeH)NtJSS2fBY3yqmIuQ#7SQ$-bOwa}O;N*S3Nye>|~$M49&w1WNJ zgn_}Xzr5+(KPYtcs31M3yUESzGPg*j=82+W@@IET=ZT^a%BFaS1vR+|cTl)^QO|(_ z&gewwpRTgDv(SiKi}+ayFM2|YOpeB;5C3qblq7)U%ps=6jZwRluA$}o6N#lg;HXID z3Qndsn>Z?~(&_HO;b{IqoB94^v^ap93=Wn9*i+4pj{khcHJgJ+eDw|38KH3N1uchr z19pMy;hBDbFtxT7C0*4s^u`|y77xZp12;d2dqAaYTT$t{$~p1k`Fry7hD5dDP(hdC zc8MXlDMY!qovr!BN^3p>Kzz#0W2%c1(VdNVOB8OHbHX+J{z{c@0Fj#bO3kZ8O-mZK zKXZdME}d723RX7lOJ?VcE|yemIBdMP(mD*rj;Ucvlpt9%cIbnvq;!}Pm8h!3iln2h z)FMcYJ)aaxFj47wdsqUFaN*Hz3X!%$&n{UYG*hzJ@5B>Si|9v%?Hr+1~9u^9vY8s zkPUPbK=%w!cUQ`)$^wd0r~<1{=x$1TXWG@>+S#Q{59>YCC*2pxOft#zRrhDsV_Buh5?hiZuhpieBHs%dl$_8`zWhxJx9m z7pL7^zts70ss+A zPV&E9f{^aX%371w3--$Yc0n+%93y)1)+%BFOOi_O5`irB8cklQ^ezC#5fNa?J|CZq zA^)==NovTeAPI$;%aUx7`SU7BLJ_K05BCmBbt5?S#aluh1FG*vF$^`U_sAvXnCj+M zKXU14(VKULxoVWg`=7?KN^+24j7eJV>{!nayb zW4vlHFKC~A-=&m-#>#NcLpZPmRg=@6Hm!VhWygk##YA~e&=t9XqAEAgcEelS>3pS8 zUm5nvFzc=ZrR{C~^=SbDHRL!NcmfnLNsbN2La-opc2Mh9 zp)N>eA|I$=m&CI0&)KU}`Z5}f6+b9incA&0vzLZpqT5W_PZTJ~86b4mPS?5G<#W4! z!tE-nBIsel^zdvKn%G-BmmO>IAD->dN;?>_BfF~q^uiB*_yhbudWMBLx*a&tc@dn! z`Ec4d{i82-G(}AbhvhXOwpBY4@X%RFN@7kO)OD1)V)IH#%z?!;P{C4*wj%6dsX7pG zJu+8b340X`4$1QGZyUV6U-uG!Pi|$thO(R z6?8L%!+UF?a>CU&lnMq_zW^F9lR;=;pANIyyB?c;$BQN0ZSj}%a`Q?$`XzyjUVlJ- z1|1rivx-tkCwqc+Uk{u$sTjrcIpt$Ir)ZUS(qA^x>PC^t=qet|tPte?Wn%?a23iv` z9AsvL?k+FqsMixBdGBOU%+zu)JA*IR@d9o<3QpkCzQx7LWZa+67PK^?SKhlDnW<@k zjy~CndDR53n&brzNX}Te;jlSR=Hn4uaWfg0IAh^PVu~qH(Y0F~_YU9!@pN$0>JCU; z4;=ajH?0tiF$*0!Y+i^u4JTd=bqFXrsHZ=7tR_LLPey|QnJN4~cdQu9>vQl7q_n=&9iU<7dPSlDQuF%70v1r$}7#q4aXSkc+s2t;RNn%LI$;)$N==np5iix zA&`s98@Rv=>MGJ6T6~H#qDeJWxabYg0vA*gACxHIGiOi3XBbHI!oKjC0zV?!+7=dhs5X zj@IsO?qR&dr5cJ%1;p6Q-jMsx&mA6gHZ}MPo46hp<5ZJ~U;C`9~d8EW+Fj z7JV+2z`xgGGD=F=uU#&gIo9o$c26QYHMFHe^s4q~X{fI_XSX77&wzSPLCQP)L-Z;N zvvC$o^x+=_0pTMt0q~P__Kzx;u#cO?S_@ z5Xzp|+!wFOIT32*vgyPm6)g-U#5eH)ygX6B;yjz)k2DEDU*IE0@>k-#{yV6NphSD- z2`L;i@vXe}gsi(5)4T|jnr-)#Mi0*@TbBZQiff|!o@0p)* z!^90k={~Q6KA9X?WBHMYR^Wt_APt-Ol5|aw<_Fvq(%_%za9HwQ;y7pzEGWbzhAWNk z%KFOpr+*Qzy}uC)m&`Up!FaRRmLjc#q_Z)@wd?{EL*7ue0xDN8xjXs@rd+bfNf zCjKc)CNS21iY6*r^r@;$dmWW&w^tjnKJDDS@B08wH9!bQFK}_cy6&bzM6dFndJGUO z@6B`+Xr(x+XUZUArtBwRn*KmFH5DJC3WrJ)RP^p)GWN^R7><(Zm0a>V9qeJ^o6JTd zGQj(<CbVKU{v7YcnUMHxt5*(=eP-l(br+3H@{`THF=e`-ubYQHw?}LxV;aSlP6OwPS*?0 z$D|V$?tE_P$Qmwp+&bREB8Whv7SpJ0-rK9mj~?W$ZppYMqt)SP)pYi75)MyT)jgtz z&z6iEjagrZi{9MS2!IyK4_9K%4Fz=n zjmOf<&4ugeMJB3mis!$n-4^U?3VZ$`@Ha^RZKfWjiTh=Cg)& zgK-;BG?}v)!$T{prC8ijQ3d>zgxhy8awIz zYKXY;xi(G$Imb-(w7MG`bsu3QVPygd_>)9=>WMywechl;;SAL1gWZIV=8gW-!DtD0 zCnci~amg!~4s^Ka&0Qc+JI1TO;tMqW2a1z$$_{P7ND-cm7udOI^IX9|VZ@ByyA@NZ zB~+ltsj)4$1EAMIeOgds3{?Q97tlnI8ip$o+|Xo|fedq-Pi)K0fjMD564BRCH8&;; zvzZ`^`4D;BkAx0?gn0b*i!-IC&^)(QTi`UyS^bBV@qO zmKQ4-i<~QPgnT5TpJ$i>$ky~Vjrz@=(-oBScSSI6q11& zeQ=DmFgYD<3Q;TKx=n@slYy{{BOvP{V=D2fi0ejW4U`2NeaMspLQpmh{zIk~bz9zz zgWA!gY1Qd`w&mSeOeYFv$k0}+V7O%>|A({r(C&9WRWRI`Ob;_?^!~Ro8O`fHR=xoF z_2)gP&Y4Pe`Nm^xSHvKvC(#%DHuV}7Rb|&>?VMo@76Q132L~(1I60|1*~5J=qVlN5`)4%}}ec4>CZ3!x@d&X3tm?NhGdZ_tF3IghZi5n}y;LpqP z0xn_HzM*{bj}*C#c}j5fZfmu+jpeRXIJ=d(&=o8!%dXT4g@>)or_&W$Y@fxbio}N@CsdTrVc<^m z_=L5Jg8ImGZSu9B<4$y=Kt?;3NNY>}!a@QT*s^cy8=t=`)8v}m=xvyC?oll0+ctMh zjS!W&V@h)LF3jqtu}4h-=GCBP^Xv@>pA_JvgCTGP3V(sDCH!!=hRFX zQKkvievp=kq~Vm$Fl9rZevlT+h{kfGm*anG?w@{B5}Jp9g0nNES$#(1wBVSMkQ`k@ zQsM`owW^F4>9-jzD1Ha!Ss=}6qe+iN-SrqW(y}=-B0PE>D&F-F>^BSy_^DaYX&Hpy zI%VgR1)Y{m*@5Wj)tDRn1k8T!wA|oyHeb>{db_;Igw*Iq;ve~_U^%|(sc@;$k65)o zHgu`^Pid=Sd*OBuY#n37SbQZnh`;;fucQ%JyO|)Oca`7v*v`Ul8rY6S7;juX8Umb@l=o6~w=vDP6VCJ5K0h_O# zJv4+qL=3cBzJD^A(F^Q9 zAOvICY_tMNxUiIgTV5vttySQ2&?F7R79*KB(P!|d+6shW8Ht)8QM-;TSQ@|E&r$g7 zTw7#T@DUTsjjnN$3x3gQ5T7PS=}3k3rOrvVtU{(go@81F+(K!%M-}e<41%zAW7X; zcXTpjpdSZNpcQf$=8snvr@^^a57K8xCj*1|bqWNIol4xAzy(X@q>M2=D7O)x(ITd; zigF4BuMH8n%GZ-xUM9l=XyyKVJb=3q;mgAGf#*|RCIf_-IgJv%eKST@SgV^+83K_t z{}Zem(VNYQxIUXv8AyzJ29(Xg)og?e(M$Ot9ZJ)vdCyYbP~N-p3ll6 zLoD+ORv_=KJve4CS%g>}fIA>KL2hES6kc`2p!{8if99q}KdY;w2H)1@Y}O_{r8;8m zOq=EG8e{GW=Ao#nsVfCywx+t%nc>6OH6YZI*_nNIIx`?xH_HdrUsp4fTU2}#3=p0Yl94pqb!bPBz4pA?wUkM42s3MP{C+5BR8veakAE1yUd-00f9 zgaoLh#>P`KZsy9=CkmV`m9Ig+*yU?bwj#m9v;5r8x4~ueK{#OdeUk4&_Ow#;LnSFn z0P^ZFG^N1nyD$@jFRoY_1qoufi$^Vko2@=uB$<~MK4oyT0r-k2LC_ZwYR%?sDM%CU zZWyvdNoO;5N5%Ky8PNYbob7d%<}TEADx zm=VMCS`H7P8X(-C-G?#~ig2QPsqfVon>BMj@aXGU^@L=NkyI^!-|1?mXSR!>U+dvo zpG?ne$xJI2u}xoHFny^oy186yhUz4w;TErPk>&Ci6r)X!Q9$lH!M41t~bT3vm!m3i^|J-Bz~O zqki%6Ds@Kixo#_4JX0l>PjhtCWb|waNDy-9p+H3X9y6cx`D_HnQH4mAe^e9fvgIIC z;ULUeaQ-HvuTO$qHVmVi!inBG;%>mB4+srDkbnJ2YXhi`P~rNMf*8gNHJRe{F>GiL zA(`TAIk4Q@>XS^7ArdVL$HMoaY}TN5G+RO$s@hTPaeP&Oo3W{FGd5^i^~*3rE;vB+xaE@~IuhCn+KWN$O{Uiav(p(4Z6l8}IH)m4Ff@ z0YP=~kfA8rQFu1195kS3CVdtU83@dj8btI?2a36i=_AB?U4RRObB-^{T~!M7POw_r zMAVv!3Pja485M>^m51SQIW8FH7bAR(xPZ@^jAAgt*&xwpU8uE@n5o7%)DDk#(dKAp zbuCOqo9V+8GYqFG4Sd$Z6edFh1t+)%tj!CN2rl_Dp2JMZcJR*ClXJk5}GJBdaH}QZHu=VIx9M=y`Ra3SX{uV%K;X2 zfcuN^)1Htl+0U{;u%-R8ts%N@@}p1!5|}EiZU)ow&)1CGe=jv`-Qj zmCn^Lh>t#MGV0<_+BJLj7KkID<6#H|L|J?Sy5!<}2oLGQM#&a%L17Ej;z;Wr@~Iu- zCs=JC`P8oC*utXAE4JDDtJ81-cX`C0ZL~8Sl$y@dvZMEz?Qb*8_*;w(fogpk+LGue zdi>X?J`I(|{DQ@NKj>nAG)~xdr-gJ&*q0OmpTYO6tWAYZYZ8x63*+4$Ll*HKfed|2 zja5@^(RQ}}py6r2jc}^D+uL;83QGaH7|2m zYp`pmXR!TCx_)KM2?8>2Q|7R^U{_5u2GAqa%TK9EsLh33xQgT?gks}q+xy&FL4h>e z8Ua7Id7sD~ve5Y^~x{OAJX;09fM4ogr7O&1L#`Z0PE(Ly|-@VBoC z5+9wWoT%iQKo=c-fNWvLNNmnA!EHWQ2GZ#z)bPqaLHoBJW2PnwtqG@gHwS|d3dunE zwPEcN7VtADO#yW=a36$KZ$5aiy|ab$mUCKqV2PozLYz8W_{gjTU_w-y>LKt;8Gb zh%q|kjG*1rE~^2dR;-jXU$xKSz!0zatVL3Mx~vAlbjiYqKHS10)qLen(1EvlJX90P zctgY>n6tPboXcgYwQvpX=}b#R@Hrl;p>XQiF!43J&{bgZ!8p_;2T(xWI?zO;0<3$$ zE+ORQvA5}*<+F9531__1(xbPxu|q=Y6{Oe+L}01Tu9_f~Hy z0AWfIqW2}+MQ!W;_GV2WyB&jRj()*LA#qC?119~mtYcVUqE8ri96~t?vhaU)ipMac(!K|JM5`A?0+r*vGS7Lmy{g>9MDHV{oS#Ek_@}d|1 z@Zi=a&OlCZnsHVh9Ma7GDlc}6G*5YKEUfiiPQ7WySb6OBljukMiwVuH*09%H3ElP2 zmnQ+y-KU1VCXcx$6PUERTG&i`9N}RkgD-AEz^AO3CXo>kB2^nWTu(Pa*(N}FvFoYT zw=}wF0J*YEXNCDx-_is#J5b4nEG36k9%+tI)+#73?i6&93 z5ne2kcMc4TWFiXND!pWta^xZzekQ)`w@4;{tPS%anik2DnWiCKBojc?P+hjdAJs+j z!}%Dl@g~~&Es_Zs)6R`X7s=2{>LU4D&Irahx=1EKs8!YiRt;bIEs_ZY(c##&%9Q!L>O!HbH(QLgOEInz<ayP`&SMgUCere8`B_62l_4$quRL7K1jTG;!HPal=lmj<8jo4w0I23LnIMEVJi|6S z(bp%3$pj-cG2u9}d^dBn2ZzjcsZhU)HgVwPaWi$zZ?YIROuUt=u0nj){3gMyDPqZ~ zO=2~<(DXX;QulOKYCg$@CfSUdD%`YTtQI0P2|JN+#*dmQ*~P*G7&z3P*Kw!X$+aWUz^Qf&8uJTr(?N^f~17aXP#d70{_6of@YDI;rVbCKS|ZIA5OOF1wbC z=#zeB63rA)WJlMw0SNPC0SKt6U%00Cky`S5o|~TO{yty0iO{6aGqTAa3~25StR`k8 zq7n>EAt?Du4+!`qW|-vbIxv9f&AZ9C10`kI*#I>M$s`Gxo==wA0S2EOB$HIekBg07 zyvM}n^w2oHlWvJr;-QLcy~17|GtD6jf(BbEF%uUXy?DsPgPGL*Ba?Bl$rg~jrw&MD zvh~?NG6AsGOCi89PzG9q>V9DjN|CUsOpP`yPI}>^aInPdZF@M>E>h+Dd_Fu4;*i;s z=xv_c%)+y5NN0nLYBs~GXf>WR&Cd@qeud3u0AN;2BjjPr(o=eK*i3|CdCYq9^dA{g zinGlFz-^1CbMRoyVM2z-_n^UL?V06ul5)p0Qrz_ME6!9i&L`zA7nW#=7)-D6qLw+y zC6M`!D8aT8n2%=qlsU--%C#_{M(@Vu-~w`swt7A@7X<1RKEe_(tnOVfm@O95ZQ6 zJ-%9V;WA}2fT0#SH#j8f5k^H76gmC4GKa>UE(Y`QxwhoH8U-_eqYuOZ0^HtF8G(Z8 zQaqO>u>~<79JNcGcD2w+bL}7eW<0u+FQyVAvaAi1NKwt_o zMprOr6?ZIHn!K#1r}i|TIEn_y70!hi{Srgn?9p0Gu6CWV`-MpVtx0;Irdpz0Lq#=l z1eHo*1{TZAUE%MOWvx$%at()RX9dE9W`1Z$_$wx39bjT|?TBC337V*P5orjhNj#XU zZQ^qmktUO|j)kVe!@pM-IH_Ka!|`wo6+_POh`|hU+VDEy#b5@Dx0S`RkGEh$_k=&= znOb7#iO&j$0yD~f$We2RU1pDDYx_X9c9)Z_9Wk=C>qjx$U%&&5E;NQ3eAWzyjUh?Q zG)?Ic;S+q;K!~bo6n3Wl9&dx%T}eXlXJ4i2S#V9ZP#~_2p*ob$S#V9Pq#VmN1@-@h z-K}6OlEXcd4*gXb?c}To%pR*oZQ#iyxWB zfGnI=(+>Ch8jjP?t!kYNr7N`XZm?n2oNeg_WREqsU!YX9GV`rrOzfzF@^e|S2El|9`= zsJb&4;G*}4Hs1;s&?xF*-5iY~FY8_r*JPV68S*)->wsjPI}0=V7_Vi++Zt;(YJ!h) zsgqjj#sP!wrl&>vl)7<ta_S|dHM2P zd1JJ{BmZf3I)&Oi(}w|kYp+bkqj2RU&=MA^cH}I~=)>Ou8z|U=Y<|9g8ttR7#@K*f z>X|)Cd(C(kC6+fx^65fr+l|CzwE3t)Ax)#R!k*bM1O+pXzxI1WuMi zL_gZ+{{WICC}W==7|HWV@ED5MT!c{RA8PMH(*2Y!2E2kYc0kVAh#0-Ue~&S#9Rm}r z;?J3YMr8NX4uBf5_zUTxKAXmQtj-al7g=}(XHE5to)0bD;s zT;6L((~izm$^jq!VWcQjepKiJV6maKsHU|fOkXqc>T*g&ICx3G!^ z%T|DZYTA7=Kbtiqrk$t}j|$F~=WrE=v11he+Rz}ma@m+zV}sY!NA)-%wPzGp?E+$j zPg^yDsjG&6R8=E;l*-W9(@co128Brjtc1sxGIR{{+M~4Ku%^<1qBo(~DMG8v)qG>J zxH2#oqZFALee#WM@)=_Z5WOTK1UMyT##IdrA*=?sNx@BID||4@W5X!EM~I+`o<|6@+Pphf{oSTnAU3WDJ*6KV)Ro;(Ob7;aHx!f;6PqILu8YQ z~qub0r{hcMmJzZ@7(1CSY<7~AiyTb3?ylC%_^22<)XoL`Q^hom(M$C5Mvu7pIO*^8OsBuxgAgzw-u8$w;XSK3uo zkW{W>W>nO`mXESHBB@*pM@2ORX43>h8vwWSe_DK{&IWMjDPH?>{OGHaQi9S7I6AUkmq9r}x2$Bx)8<@dzlw}A6m%$irxMVkw z67TR2@arhdFHA7eyW0%BwyA;x^Yo%rm&y7b1g!DXhvhpE&i;#1T|VQCk@5r}dL1L= z@H4Lqju!Ug$-cj@k|zg9cs{^{3*=c(^*vo*+gRpvDmdF;$xxXZ#nK=3CWiBivvWwW zhQ$${v4R-qcwpbOW1mcnafW9-Nuo%j;Z%5sWEhL5n`SzYT76AGp-E1sCd2 z>3E$`NSm5LEz%hN@jA0y)ZhukL)D4sW)iQ%u_qmWH;Y2c^UO8woP@7`{M`(~EKX3O z*LZpwR{;s9!&GKjNEr6{*(H+LS!YWUGE!Gq{t-AcB%^P^bcLzX%WpFdsun&nOsxLP zZ!-W>Bu0o{*?IH}ezhkyfG5lG8SHitZ>gFkN8l{?7#grlC!Lv96}DtUx!6X-!ajts zf6|#5OPVzW7QKfSW+S`UEMpu%4Yei@?|5d>DK)^|4G!W{lg9>^)+E7;KBUUPUy>zR z=0YMpB7%#vqZycVK7d0uXE5K2dkttFUEzg{p>4S!xI!eDUIsK|=Tjlf2E)v&;Y4rTV-b_Ew#9+LrF~WiQe5hIZlx;( zf)c$ZDdQRp`(Qd{(d=JnXHhRtbqN2IMYDKjUm;(uf9x|e@%B?cp{OrZIy0HTqIZwj z;t{_*gSg>DWj>G zaneWry-rqHAefaEjOg08Sj^ab%HJYKp$bWw<7qmTuF^SOFjkT_^c375Dtzw-K-2wm(%Z8`j7cP2>VJ`h&IsZQ`80rOQcj| zlxqFQ{2!$Fzj=(Ejve+&xFA47sA+{Oddaznh1gYyD4$zt6O zhkY9s(U5g5PU_Q7TCa|6M`DU;P|+K^0-GONFVIG^+!uBiDAY9@jpD|7O!`XIZDa*b z3hrT_;k@F;dW>q4!OLzrY@_%*y}F|F8ocZntaV}#x-m&MbnIe~s#26rCF`}JV@F|R z6&Stt9a+QKMIm7*Dg3{S_Ups;L8rcGp!X5XM_5cM7G+*a%35s)5fAvmK8sVFHZa`&Rw6a?ntX?q5KWvWxj_ z+U&Ut`1wTlZE}$_+;DgdmDHdH!-}YE!Y)xcmUM6kRlB)O9@-p=Kj2ve*j<5jIG7&h zOm^!9vAa(0RN9paB48x zCJfo0pU$QsYyw-{$R`+WgJaw?@S+dysYHkisY?r+e5OtXi9|LGu7d)SiXQqHpGVAR zY;#mr=F<)XRcibUyyycSC1*rxvJxN=0nb-MEjGiT@h@f7oQ9hv-8xCs# z9SA}#0F8UP5*nD_R%S7q#F#mZ&0rwB{F)upir*n)>eyp0izOH)n?#RH*c?-a&*&=4 z-mGMJTBW0_2`qZ|TTyvO^D#BG+h#LtDHMDH#RQBKgimU>4Tv>P3MqOE`6IYGHTZN8 z6gi(xjod5kAUY5(^De`~g9DZMwHr_fdXg>y{VS)7^Y_q7PolSy`cJFu_c&^Nnuz`? z`TGk0yE-rajR#g*k{SG^elYkxoDNC9U3UT{JXcx!ODWL@H@Q4kI&d56g9Lb25!*)m z1*-=OZ;ofZMz6vDn+H!}0Nls)e}1Pc-3fIkGEByOCUupEf1!3W)`a53@?-w#KmWrI ze*n$V$o&d0X|s2i*v@?*wGz59wxoURO}p0!hRtScu+|BJMz~RLcH8w)f3&easJH8V z_|uTagZ?L{S5&H59(q#wJGqqysr5#^(GJ&#^|g)eT7NLy*cgn~Hrn-#{-6y;=#%FB z_fJRZJhTcbI~tBQ!nH-5*_t!`rwc7nmiFlcV{``uQf-WfF- zEqX=X(`#8LtzyberM2Zx7ND-pfT7O1cP?FIT$`GH+Ir0q->`>>O%i$wj0BCy952T)oKlg^ zAGJ5?{q-g&+zQu*>%$=2*w|x7v-M{j6HnNvn{u!Eo3g zfd9h0+UoaP_0f9RsCNg=aJ{uYSPw_f$c>$}3MmUs88iaWs~bTJ8 z4hO@=Gg8(`tC+IwR;Sx+j@Db<02arcwY8wRHmbvoa_ghcdSl~RDeIzDOxZP9K&*8} z{lTc+?X+QOywP4;>o$k&QP>aK-Djn&i&i0J2laYb@3aS<&ZyZ~UmLCshuv_v(GQvp z_^xd}t9jN*tB|rGESZL*dZRmPZUlo)tKI2$+AuJU;B%n4Hh5MmC?~B#%8u%TdUMpR zw>#?_qxJQ*usei*!fImF4qE-jvzmIGw4|~*f?zwiBdC?t^$&t!MpynIn8cJca|FS} zD{&x7ja2#v!3xohu_f&sK`@Or1YR1@d%7DsBjUu~FYyJ5H0>Xcot7FE_s ztB|sT#zr#?y0B7RuR|cH3n@??7^X(8aI_9>TXv!^s;rY%A!UbcSj7zb5W9s{Yq#C+ z*E{RsFodA}Xw>brp49;5q*X{+Sb;Y-*7{8tkB2Z)_1A+DggNV@&S=ycgnhaX;~zaJ z+Okesg_IqwfxGtM19P|r;p%Q{qq`CI>#z$0i`LGt-hM_?kCRq0W&2?lx@Xu5>JW=* ztT)3ZY)>?X!}axcXE-RkUMYG#c8hEKF%oRZz8g-1K3tV|(mQ?F8^TqG`r>%kxkuMujwi#_(dg_vJmDOq%$3uJ zaH$BF8U18OAk}W&yI*4mM&Q;D_QxBcSd{~zx49tT0#&qz@CTY~zU`y~MV+B~GcT^q z>2Qg_B$g-};AO}_fn3e-5$P82*2Vean;SRIAG59a)!F>y1}idf14Q>H;SKp3lm8@o zagWIW_AgF?%h8xf^GUeld+dCRJ+3#D9PnV-035+yv-agP%)!+4YB=>ef4m~!6so

+$r}soppBiAPblr)9tnT$H*)GC-Glku|Q$ zS?QaaU7~WFYFG6<2NN~%)~kBHJZZYLptK&}=mjNC5?ZcZrC~}YS}@h?363qGmYlu( zYJ9%5{uuEdM99L)m*Pv8lz9SWDc)n9)=tVhawhJ8LC>qY&&ViB zF-=`5H3#T2lttG@PId&X89|q;Lz=oAo*$GB>Y~_cJw4lOQEO^nz-8f}F6W6lsXeGG zxY^YLG$YTkeOWjz;$y0uvP_q=4Hm!7u2!p$wT-!~2b^~#nG$ZMOfG*!X!L_QYdql* zp^{9Cf=?O?V(z>>8&7cS+ipJIHfNXUcY6h;4=@#pUp(MX3an5j!ReQ>a~wiquSjJpjEH6+a^QrM0M7DC=%K zRn^AtLn+P{k1=L@k1kCpzc$X+kuqTuUma)bIRkIeTVcGJ!ikvD zcD1+SIP_qadyoz@_vd9LUpHeFiG*j1k#-~{6Dbog^H3qGo->sE>teq~-{BQZ^w)S# zQb(^j0`y{M$QNSNK1k}wCRB?OjS|l4LDGx}8Gm_9dbpddn+?k1&kHVqT$HN!s{@}h{1JGms4NeIP(X-s zpG&VRWwu0#N9%K$gN+?*vKeB-9tKkr1WR zU;s;3i5c&U`y4u_p&l8pT`Eg?*^&?xoYbJ_#^psT>8B)4d4lG|LC~-6Z8-yH^i+^} z?V*!^2=sbnA#Uo>N%CR8BwKi{=D0x_#;8#*N#tZoLb-m#kf-$4c!SwP>^CtgW)Fd! zW5`l(VjZudFdHw8HnHwg5~sM@veJRaYov(rp>}JH2wA9!zS>%2o1(fF zb@a<{<@KwsbZ;kuZDLG+XA`}Jhx2meU2~4mb9E=uaWdgQf=BJR>F%)mkR&PE^X8$x z#A8iK0(`YS6D12abI?Y@iG4;w1+6hUuBjM7d+LGIgZMH3@S#rGei9)@# zZm*|hAP!uV+Z&Prx^#}h7g1{VsY=oRTsiLuJoEc3al`CUCzVai_1KYnF)SHK}Lb6HZ$=#RYWN= zZqw*d4=Ku?YNNS`wh0}0 zC8m1%zN`d8W=-drI`SV_J5LCHi;99nsX#IZ$k(Y>5q zE><(`>$pS#x7xjQv@F1$i*_%4GC&vIOIJjji%V68Qte)P9(}--d+EO*%P1{RY-U*p zhZLdc+T{r%ZG+7&#igQzvh)%o<>$)P-CXTUj7+_VRM{^fA*em}yFAzL!w?4~3bh_! zzeKBmm$>Bi%gm8c9Od*Sz8l=Bn+60`k8M*a_$n}qO*X7Lp6NRqNc!DJ<5T$ zsZGO7UEP-(({hrboCuKhjcGZtK~6H4X11L4H>TwzSLQ@%v%WEbdJ(B^OeovmJ1ws= zgv>YjkrVsv|6i< zmZeqCMUS>V8Coq46Yz^QV&#ihH$sp$v63gQrfeum23v|0*j$g-o8}A`n<=cE{(v%s zhHE1QIzAR~W;P;TDpH{PjD#p{@cL5pdW$UuYb1GS#?K8%84;mSu8GpXzlWCzXdwg8g%8zAZ{3_Wx{x5HI~wq(egssw6)a zy=fDT3o3D+)Xu{TF!l*f5BrW7$kX;u<id#g%EC z=viy;jMIctt5>F(lnIvj>d4oP;|#o|C@fbZQ!Wux>aC4@^&EOI%g9$>o|Ig47#{AL zCi8(^qEK_S!{BJyn2B}fhI!@yU0hyrMRHXWJ?Q%1U;5M^eTx2b;Sgi5PBVi2;_N%VC`Ole3hHav`t<4fJWxkQ1ry5TumCR}EnH9XH8 zpo@FFuE^Qy;sP5*YP55CxQLN6g$&huynGsl-;>9 zrro(fTHUAY&MlaruKN@u0bp^xb$6~uo87q@)vMQALAwM}O;J&jP!`UB;WhAIM908HX~tl9{B^bnRWnkxMUnc?V$ph7@16U%e=xo-(Po zUvpiE9zc)}RMMLW0QfhhN#$-qZ?Di?Q8zRk%c93uC`(vK^~AqpWvY2W&#y2yJ@M~8 z?A7&+_CIcp1wA$<>WEG?;{ zFoc{^kA|Fx6_7I@139My`JWf;TXlKT+k3Zi3B+>sfZ_A-6((1AKIFTc@352ipGvS) zf2QZz@6{r+1`I%xSC6>qb;(WMjz3m?0i}pau62`%kWs-*U%APg2IQq>KFU8E&sWRK zeC3t$u<}Kj`SNS6%PAQaq!=+%w+t(f%gN9C`mwEk)fNdt`?X^R=$NpxJ!WDE)t7u8 zWNY)KC$0p>TAzn#mq1FNhe{I4vKi|wQG9WnEm0z5gUq%>nI}+|mfa{nSLU&{M45UK zsa$sBvZT<`RLETqf40e2UR@4cg=_`3b}E$evhZ^kJ97NgR4Dzl*FJD1k#u>oONy$y zIgqwc(v&_R^5lbU5RFPw|1OZS@>4jK(QihrPVh0jZ;*F)*^gHP8L9G z9h$(yggbJ4lv@x!A?T%P1lG6%JL&V>nT>82?ZSZ;7fRSwrB3&_<2bzow{_MG%U7d|5R zrQo0lUpx8XV>NH8z00EG(=UR&X{!5*WO%!@Sh1dsmzTI7ZGFaT|uEh zs%GCn$_gz7=xx_KiZQ&&w(lr|R=Frg=(l#AKH+4ldDmcli@B+F`s71Wdg*v`QY_Pb zCyJ_r+T+bBvwhOYLpBa9>jWGvM}jBH5;Uw%1TY$xLaP}f>tc< zNj=A8fx6ZYjMPlv9)P}aG=9{t?u*r2?N8!EqzT~l>LyY)YT}Wpn>j<>rM11?a(026 zIaO!jQ&rzw8$cI$n6R0>ju;4E^lN&CFgtA}ly)Rd6Db=q@yImIoT2I86ufK5gzxA! zxJ@(J<*y65e7-I&6cB;mL@owB5?`aRPF;1<*g+iRRjg;O2gXCc)rsS7A{SQQrpiuQicSchid&k6?jVl zLN{ZzREGqCw05%>bWE67ijx6C#1H^WGvk}-N-e)pihx+_gApMMBhgnr81w8yIcwDW zW;aMV4oVQRP!fHOlG1>(LjqoZGjE3LqlCaWzi?eI%n(hGD?R0-YIu9Y!$11zQMX*riA zsNc6oWC2p3`}NQP*Tp{MxSqDpyQ#M;(4#jayn{CR4nA3zMrGvqLL`S@6H5yd)Tu@F)e?zMEBQ5?4aO9qBUAn}ZR7f>0MxY@hX&Nk2>o$tINE zeHsoyZ#xmi2!Vb8!uK*Qq&rO6*3#R9^*|(qBHU)ub6ykt%e0iR&k|Z$_$}&XxTOR# z3RBoA3YHRz*;c&91^AyNcQ}RL2V-+&6*iX`LwvCJ<5LRtcl}AHv+GX;rkeV@{zT*X zqG2tNu(h!Y%}?D0Qw`lDPr@a!z_1{hBrkJ zQ_!$86M6&Mrhy9c0TCJDPT~ZLeNXXVzle8@{2jy^TX#2c=-3k|C3VGZBig$;tn<_x zMMN=CS7B?2c4E9how~3m6fRm$G1aImQdjEQS?Y>~NnLqBZoVm0+6@{!NlW%WB+z94 z$4BHQMG2-c7+|G8>XJ4oQXN)wCLp0O(QZiWOo#(;Wd4?0W%fY)l5>h=u)pPKq)Peb#6^~Ej?xlGw8phxm zwV*GdGh^ytz#}YDiQ)vT>- zw`Y^GF`$aZSte4(hpF;9`KWNK+-I|5@C-0=-DPX!VrV|JgAD~s3f z#)~Gc_E77gv9mT^v0IqOztx#X8AdL?D{Gs8f0ccoY^0EElHoq08?G0t=`J1%iOFax zoGxm4@FXLW^VD+rfMDb~h21Ir5#i5ANUkY5j(O(RCPFZR{~8%M%gbkGWI)335i;Xs zNC9@Ez%7Ibbx0x*NRoMIH@GA!KAGWu2&E5pJRFS_q^BAj5C0QjzODO$Zf{0!%Dg_* z*41td(QBV^ofiEK?msZNqsxqE0a1*4Y;_cH@CjCsVJcE1Yjm-o98R!?LWC<@-%2)w zvYnv8Gg`d`#1z96jeh__wwdfVEwE?4xSmH(Dr}^XL&)jEat0qjQcQ%xuw{e26u5$p zPdI?2J|XpGn<}9UJ?rf|+739s^_{v_gXfnic?&Xg2y6doVY{vuTuWL{c zkceWeYx)6wp835Kb5VE8A% zWV34CUGiAmPE%?*gJ;!DB1Ph8hFP`yW#Qnx7>|Sh7AhHxgGr<~9L<2k{Q{0`6nuQW zyEECX;UsL~^xxnv+5oD{py>eR2#AA6!JL!8d%YWZ9Ps>^TNnlN56R|xC2^0pTax%^ z-P1}xND@b{B#Gx{N#e6i+konQT^NcVZX1!DgBjHO8UF_$WX>Jw++|~2KqN_`N|#LI z1=58{40i4`7p+Fe3L^$_3eKJWh>Rh-$Ra7Ux;XWctS$uH!ES&cn(7i4X2CP*xByWW zB1j)Mi|g%^v&ndJm9{cYg+3`+031B}Djr&$%xL8Jgwa=hVh(6r<_0~)X+!@N7zYn% zMC>ghF9$?%rd-sC%6vge1@&n5CY)yLnlRw3?&58Ug37@>@%vfEaovQh4sJScKbYBl^i9Z25&8UD?v<0SAW z9}#}jcbsjo#lTg7yW2z!K!PMk$WY}wN=}9pDYw*jlpm5Lrkk-CFL${ixm3fBs@#l( zhZewPc`NdF`I03hpAd9&=u66|PRHdq_<4_0HS{TFJ#x6-#vgT4vT*MQdCa~>HRh}h zSM@bSMT2#1)?cPZ2sr_;vdD&zsq{F0-SR;pT$czIpG1P2uOo1 zv7?;f8WF!}iCsae<7Yj>)mm;A{^h=@kZVU*+r>Pr;uDGX*YKxf(BL6RE1b`vA+;w%PnRlIb95s_jd^3cOA_Ucm5T zKt>O)%?Vhl&R^^me&P3GGBWLp#F1sb?AxHfL{V$M4i0a>{o#+-s|o%&Ax0-|X&LOlb+y7?ukR{G&2qAuHk;8EBFg~y|SC3A@2Pd96D=GkB1>und!i!Ge1P97yGQ9TZ`xJB)oQPoWRAi<22`eNzu`0&U@+^^@z>Y`OhAp_08FLgYIjwH zQNEyyKJ{7P`BRc+uJQhJdw=ElWAXkCsMxaD1+r!iRH)3)uZLf ze72Zjg%a&|b1Iaux2Z&?ObA1BB!r`6f1eWv-)|CMbRScybA${v^UcY{dbKz~x?sMy zc|_)(8U-MM+K8x)h+6x#cMU$jcF$sb1tm_ecjve)kIm10ED+pY{Em(XfyRF?qaCEj z9Xs$NE>Fg=`SG-wIyFeu?;Q=I^q$&i4C^Oq4grM!puh$&ULfJU)1%b>>a80cfA19S z1A;)6`n?|#b>4M9!9!suizg>jm{}_8=43OzX{NHt?Y%iZip;b}pgmeV8FjRS0WfVm z)%QC(PP-QZ06#OE;X)HolKszKKa7t4V^#9PU-#Kj3BEI@kV?Mp0;lm`H0%vJp6SV! z)@bEe_&57>&s1FZ>q()vnT|ZE_Dk>N^uhd_{MqUC6Rt5-#sp5{(zSSD@OztF!rxOP zr6ttbuiSg`A-yG_xI`7e?nm?*Fa7%wx?TJ$AiS|p1>S1ORcAC7!S)AGMDrL~KRUVZ znEmMFH;&tnPTt#*=xBfMU$a~Pwb>E_C*J?Xk+&(jjtv~9%q`s;Hz#n}^xCh#vm|F= z(wsO}Xa$}X^z(%oj^H&DLWa$DbtBqdQ~W6Gd}u1|7v70tor2Rlo1AbEb2qn29lO_V&n}P~F*!Gjg8`t! zcr9d|d`My3CvVU+k+J~gPYBBSZZ_ZIT*S!*4h`|(&E1NN!jkQzi|uZMz@)) zXV;kK>Nc~t$#&d4J@|3xx*R>%2HS7E5qNz_dG{T!(2iKvX>-22yrim0jo|jOcHg(p zycuZ)S*NoN4HPE;dxBF0Ctc~3+wEob^hTh^rxH4P?Kj@^ynge}hs;Z$`3`CRV%^|0 z)N(t2a)MWo;kw`#POzYcgz$TN@u>QaAi`2XaMTfOUw*se_8N2hhsX`;VdY0V75s0n z{O-?4 zN_ceMQEFdGc%HoBQ^EV|O1_g|GeXe4^U7GGDf39G{c_4Zm>Y@yEVC#7R9^k|R0$Q5Q;tu;@#K+Ak4TqW%_9e}fajm>n3LSeoT40k?Nxy6@X({xQ-5^*@DJXY9|< zmS?fmpZ@;$n7>^8{`a)#gad=ZPHxlkbCPZ>CaSamLp0mx=+}wsG09GTY-90VXqa?# zUA#cGcZ=90?oj!jG;rv8s;BKYeD|5pXbABuCehQ)?wS^9;rN2G>`w*ey$9e;@(y$4 z5&ei*dsxf49}#4|E8)Il5>9ZtV-QY0ql@Ygf5-+Sz$7seybu?e*A7Fxien87cce-5R~@z}`PDXu3q( zz#3=cXES*Dc^~u6ZBT?k;4BWZuD&7ps3Y4x^G;*|y}U|#$-g`uPq6s8p^ngX6en<# z5I>JkrG9>Q2(rk;_eP_HN&C&$A_Uhvo!sjn0Qp~(kn`;fST38KQ0%-52}m8?y<2ED zVW&)V+qnCIsE<18?U!GR$yllkOaby2Hmy@!GVWHtu&=QCcz1mQui1C8PTx|?dn4U! zHXd@|g!Ml!#e=k9#ib5 z0DlNm?5GP<>?Rb_6#rvEIn(B1yqj-NXoo~9>7ZW6lN~v-?F(;uHXkw@D2--jhKf(I z?LsSrSV&y&c(GIre7BjI8B|@x5oyfJ64LD#-z0W0qK+M~(Wg>rO@dJ*k5 ztF{I`hbkr7KKE9_0!aS4fP~f;(VVY0C##!g?exX_(aSro1L2p&(r$0><0dvIhmkHt zVRj>8=X3~mqvg`~A?_iwKYhCl%XK5~(t~G^>qj=XQzh4ShX4R+m3trkwJDo&c=GL6 z6mFjmoTX8w!^tr`*d)4?4*Ef(45)i`bNrE`-hR15nJ@)Noq>oja{V0SnGVGN}nZ+3CQ$Gm7~ zRpL0P$D3WaxN%3eec_#pllyd<%>C}sN#~rU?e!p?bR?C(SL$`C{r-V^T_UY}UFrt1 zUiZ5No5A5#xKzr3_a3CRi8+&r6x+|e8;GNViprsQC&X!X9$#8f2MtLa28A5%o?b)o&3cI_*{zEK#A@g4 za+!Cbx0>bW3>;|B1);x=3pN@%F73DOc@Xaf5U(ZK0RQK{ z_IFZ*dm}&XN^%Hi(^nDQl`aM*n?}s;_{yZ^duP_8z^B`3ecFB}Mg4BJ$4W+6>Q#8;E<3&l^(stTdA?s_ z-ym~+ODk7y^(3{qgC=g>egzT60VnbR*lVHy468rEb6;^61K-esa9lu<#&??l41j+XMzM6O6cK!}v?{bUO2~x(I8l#v@$^&C@|0cNvA%)bKplmw)S+ z`t{R)!$GhX5(2^^6hY=6Y#>JNYad!egJ z?>wSoP8^UJIE}VE#>Ts41d0zm3Nrq}AVLxZT5;p>gnYa)TurIl%0VQe4}9X*;i%(- z{U)!wxN&%LKcWEsUzUv_&^?JZ%|6g{yd9V3!cCnMmWvWuvOh*F#T@z1qE!DFA`Tea zn}khHoO?_x2slmL@6vp#a<3|rY?`>^VutnIAky@t^Uc*#+fRBbtJ|u>5QEk1d^vyb z^I}Enz70nfG>SzQ?N^g+LJVIq1J+fTA#&@8GoF&lD`$wE$|DD%=&w|%H=Lqh?KbFw z__bLzoE@y*gataEzyj(`GEUx#8BlLwX_3{7V*+wmt6W;_)X5avPrt_hf;&fg1jn`8 zo_E~CMsVD0#3LwitJR69(9@4#~9syXT&)lZxA2w``^zlevEU74F>W!*B0aDt%8Gkw9kA-*cl)$UE@L|;_HmS z^Y3~u8YzEX>|RdsoH|XJyC?*|CY|j_?ma7Bvdm)lN7nDHM^d<*<^=% z6BaJETQq>bKhWuRgoF7%|AylejlTyHu5-X#f^G{?(F}(|a)jyr01$4Uf79{7-2rY{ zr?44D7D&s7`Si7NGc4L2QT6lJXK4K}PGAdbtc)avyx@KV9jR5h_R#@~#Bt{V5pQ4Y zEa`;yp}DE{_}`t`mm2G#{&&YgG}o^rKxKpN>F7FI$L;7+x>=M`51!c+KI80SrUOS0 z?RZnV?Q`!WT>2eu_ucjhmNCP@8>y&69qzyYQ@@Tu`(=j^eAO6H2*9Owfy03~n2S?N zeG3Vd0l2Y!1SX?w=>SLIJ%3}dpvOn0X6DvE5L!ng2OL%$WyNXwCsNag`l!Unt$IX8 zqsXZJ7PW1+))BK$aBSA$fRPl|8A#PI@;|Q-eqoanTXuE!ma>e!>w88Xw$gW=mcZUw&WC7?h5?B%)MK497mEaIA_ny zv|5xzQW8m#)FnmTNJ#}slv=H>?rAjziV|lC5+cCX?97=3i$H;>7Jx!m0i@VwyVh%V z_AQ^*bRO1h_x1d+`6c`LB_iD;Gb^$RoMWfW)I?=f`uBy$-NW4@HqQzMw>_b{&32)@ zuu^eYCk}p*JY&Xzd&{6eZgRw%?%`%X9}a%p8Ha@9`mjoPc?$kBgJRV@f^J*9(?qxU zIa!u{e_7Bw&FB)uL~QvyQzGkfZu(Q7o-j@{EUS(?{i$nDKnUxrGwR+GhoQL8YVq?R z)$NZ_pXyiRwYQ+3N7SB54hnqnjv_@J{=Rif-IrF2+=NASnnoU^t)~bZ$L!q^uonS2 zg+O(>P&tPeYw?7SIN4K&85;CKRW2c4WY-~53}g#xrhDmDr3ngH0A)w8S8I2CGEkylJxQ8uD>g(KJM*$Nbb(E|pi_g$n_2m^yF&c7XV6iACB zP*qvpOv@ri)wUorhFX!X{2lM(4z@5RvOAt>dmmD&aj5UY@EB{EK^x2Yt>M z=dr@u=A0Zdgw_nT#~tT`e7CZDWi6n}V9KcA+2Z9v6Ti9#V#g9Z?(N!rK`)Ou`KyDV zkzSrw|G>2h5e#Q+D%4lbSMYH+6;WvUoVwicdhUMv_(Pe?aBB(MqA2W8oCo%8+z{`Y zlIIjVny<9q|4b$Oq`(q_M%!jAeIL?jn;)FP3)SU)D%UVx7?x^b}BQLu{g3@MKdEjn| zb@v$23_e}$ajiU7F0y$T6!7_Vdn3ntY8&B*oYo zAT!D2u=Qy2xOOUl(BUc|Dx)JsrvqCa`$NeYX9Pl*<8)iu9(S4`wh{>($6)fF1zCRT zxz0HF6|OjO;Gkhk*C%y7?izvk1{AB`b3{3OQL*mRpftkuKVOXBACinN=5z|<9TQM8}^u3^S3JaS@bu7u#CCC$zxA< z#tFJK2Hb6kaF|Ie-{V?kNXd#}37?@xq0i@Jyfc{ohci};8e@I#8PD*`5gm`VTh)8q zl>n*NMvUTIiZqMZ)VQF`>~w_U0S4<BbIlH05<=BV_E`*D0%6(muqBT@-E1@9pomts z&qB2lc9AX<`01Qn**W|_l&iR(r(F4|=Q_jUA>#mL1ZbuDEXD!OL|~ZmIKX)b+<=u` z#QbG+(8}{!EMg$vwp3ok;F(wF3|9@=F@8u1M*UX(xW_NDk!7*v3jqbmLV3eJ!(hli zmFTCKGq5Gf>bM3&1GQ+N)vWQV3gZe{rRq*<$34%sMbLvK0V!WwCwxhUstNBTKO@bv zEqPYRvScK(MWC2Iox;Y1l`#Tm**D59#23u75=~78j%@@zfs;60fh#ZBqL9^~SQAdj zvJ*I=P&3SB2BpEwaqNCr)pW3PxX8k2=$LUTaY)6|zysJioQ{usDnYVgT!PmW@(n{a zl1&nt1{Tm0Xm8f)&~vMg6~~@+JwZxCjN`9Y6PA=}m`9IUovuc;A*KJZJ6(;gf}qn8 zex=yLUIZ}13P&|$YTu8<$6kATy5tj<&}6OV8Ydj;LsA86Yknq;)5zAw2|xXShQ>L| z7DuX+LBn;L1q1ctz%<(W6d`h~C>d?2lU#4N!5xXKI(%F!FY+Se_Pu>fqcUT%*|@^& zH93KQa6hs$PVCJt;WO-vCT^96(HY^f|K->vt4{I->Dffc(hSE3ZLJP*$DIsVy7z`V z%}05uE8L7VF0K)xlZr4RG@Vo**J4Kylo4L1g<+Vu&f;z&#@0b>$S$osKybs5!^$eE zCmiqwf9h(f1`Q+R3kk?wx9rp~QV@4s9gwP!cxYRZ%1e59db<`D5B2Mh(2q}2KQ^t| zQS9WXZ(bI5kk~U1ap+=KE%!}CcSw&5cW*f$VePVup%GB!4x_UxD06~@{dB#>Lw0Eo zM_G<}Cl^D5A>uY)&}U%ubzsCLj^m^Of=kd;u7BKu zxqvAbT1HG<9l)49#ne+c zX>LfZd>1T#pi3%mM3!sH@@r+uMFdM}XH-`176v?CXJwx020*fu@B%$K`R>#$jKJ6< zXz6L&T}X1uvqC^BKL~B^zG;VYMkt(?tIX}S^6=tW4oM|VvfSu{u4aSe z;(R}lYM|T7GX@FJlI6 z12*r7!RtvQvv2-}m+Jl$?rreS+!=2zu%0xsq#))2d{aqyl}Y=;ebcP8Lf~=9$mk*L zZ(-hVA`15sgvK4F4q}}wWJYu=S0g{kuOW(p7fZkgV_t6}GsW(dT2H}$6+Lwx;7_z& za${7d>=5!QU+1j5b#5O^mB{iU-EnlEpc?=|?aYtE;lUJ_`yCt|Zcsk9Y3+Kztm%ec zqw4`B5>|A^VsRn_vAs%cdHSCSuHfedKc_M8<@zM-lyRrafE{F1iwR*8o>vomr<^xu z>hJX)UvspMdq~ub&?Owu$ z@;CC!;x=Plp^ADQVF+W?XnKQWHY2oj@eMk`l6&g{b`%$^dV)Y;XLm;rCy0N*Evip? zyTivgORbp|v-ee~4227V)FklI?eHKP1I`3c=}G#@ReQFu4%2naAg+ATi$`hSGMCCy z(w*tky@zAm=@_m*aul+TPuo9fiL0AxDc4RA8ZJNr?Ct6o1iKbs^(qglh>Hm|;f|Ol z+z>GzEqSMr8VjWeMiN?HOlUbse18%bR}OX`VIaZ!Z|+M>4p~!$Tt)c`X0ii z7z=24Y{iwkD`wX6VT)C8;W;fU@?uU# zKed$dck=*=BwM~yD%R47@y4}HwbW@ zFQ`jbxGj#l*=g0POV_hT6jB4qy6`R($X0XSOT41$3X=iVwCj6c&Qm-YK}F=xaXRHD zNNS{l4hNG07(>jf6ps6Fgs?jAbC?ZB$EJQby~n`YH&Fba!-Vid==7DMhD zD^J?2h;c=otMa5LsFZpWJ*&l)bDFAM*&58w?Y5|L_)-ZfPs$;SDsQ)=k^FpP3R5tglsD_fjI2(`D6zF6SYfP!$etHj zp2V66#=ZEI!1*>nwV1kMcgkbUF>Uq=!-(E~-{2J(7+*z{ zCswGW`iU!Ih^0PiANB%Q5r4=51nUUIlK`y(BMsN~$|tJuclNME9qz)8Gep9^jp6>| z(PYeN{Wq%I0Cq&!&EaBKE|c$WZP*nYg|+j7Ddh-adjCBN60Tco2tx|G*Crgsn_sJJ2Yhr>3~@d zsx%;axj;OzhvU+RgUug@`+g6X#ZhG*gu&Oy!9c&dRs^X)c@Zdm{8zv_yzgz1*Rn&c zMUeN)Uy}T9SQez83esV4*~XaR?|#ltRu&+NK*I+H%qAi+6hak<)Y-ODe$%}W(!wh- z_RFy)&o{s%a(NA8)5 z2dJJ;scs%^4LH)(=_Y&nG6%~Fp***I|HgILm5YQ0b)$EaXFYyzx&wD9=nIo1AOon7M}lPI|UcJxfxtXDdH}5WSL2R8zp|C7+R>;%1FW!h`tt65+yM zoCYiI@;Tw1wG}0z4R4VroaJwH73Ld}nX7&Wo?j)x`pM^PUD=^18wHUF*Ou&tCErvQ zYdmQm>}&TcsFO7AcCzQ!jm$%@=Drs?S9_nkln9Bm;QN7S&PS;yLiPkNktga5q>Rw= ztU{fSld z6o!L+3>|bDjhewVjhg zEjK_xG3=yKId}B8!Dft{gw1D#ovbUBG~uHnt;Ol|%^FMt7xpo6z9e?QT8K-{Z3P>J zMwgW(uh~AEjl%E~O`pw9tJ(MlFI%+40KwuC&7sCu^{qQ{eIg$;;bvn#X~JY0y;-5b zPrc+md^uuGvON)Ln~>rWSu@#wk>2o{KOAcC1R{Tt&|28Q7%;?AK^Wzw4nz)r{%>FY z&42nE`d^v$6O?uD2{MK?itPz9JhKm$S5tP6?WGDU6|G)gBwF0QP_5_h zx59$s>t0&rw^duOW}WE0q^iS!iF&0~-d}Rc)}^<+L1Kd~xF62%8k3D>4ck_f@C)*) zjAEy*>+xlTfR;Y6Z}#Qt1$u<~)1ozGzRE5$tx%yOmo3n9t2EAWRbG($78+qe@f|Cz zzlk}Nb6)Y&FeJ`5p<97MFG%HPwiU)fIF>9o!-1BJ$!f~)m?fRxH5#7_M?NEN*Y(Kymq(Y=RHrLV(F3tl~~z+m~V)l47ju+hQMt~3rardo#C zwYrrk46Rr16#e+eVB7yA^do zJ%w?F&W)-GL-iD4$-0UNL-BSdd%y)QN*HKFPhrPsYcG5BZRJSg<|ox?_u?Ja(7LSg z2>Yykr%ILUhTH5pw3Q*aVfBbf{Fm+o`kei3-wa~5pjp=pD?|W|B;3|pjg2VcY5VK? ziEe&pMmlpRx-2kgRn`M_&AM8hZp7(2^?g2OTf-rx&iX>6aS`y!KCGlT_mANnbNi); z0MWIRQoewlAGV<48$wMgfI0USTfJF73Jd0>)SX~{qa~AnLeGv2v45ec9DF9{P?S1u zSNt5Ey)w&ElE1b7v4hg$kKwn5J6|fSxNSi%xORtYU@n5tEUQF?Qaf_rh{Gj(^YwXt&~a<0!Cc<{4&e_ znq&j~N*!EVTq?>j$;LC+#0nGN4r>tQxi)Z6J!fUo)Tjr-j#z$bw4fZ?WhC*`7{mhd zEeBcW=Ag5;C0St^bs%P|0S$~^wnF;s)!;~Ey+rN%LPCU;e|Mjv*r-jshu;K?(qOmW z-x+P;2Alo^x`br|sqf+Ri(HQmHa`+tk%G&2x&(0;e4KdVamn+DeFR~Wn>*NhOy{=N z)=5O62#<_H`36eqkHt#$7?j@elxQx~JF#0P&a7?S2^7T`sdkDyv)qUVR{!9H^huFH zuNAH0GF!xZj}DGL#vTAm5{?wxy5cG_zZtLV(Bf5uMp>UTCt4U)@_UthOYyBc83y%M zbbzZgX*m>1@AbAwD^iJ;*Xh+7O1%}~91{_LEkqV+MIzAhIEAxIj{zEQJ58%Eo_pp7 zs=S5YHcF{Do>I|RBA3A~wqtRk4Z6qEx>_EOW^9iZQHuzSRImp+^~V$gG|oT;v{I}T z!s|x6U(CCF+0|%N0?TPwkG{CS&j+JeJEtL;`CWhpJ!1-kvkt$H6=(H93Pj@LyorG1 z6sAjochBKz0>1>=nc>IQMg+k4vpj# zF_Kxdq3l_Y#87q-5sUufZ4p_OoRmCcn(VA(l40vq=0;ba7*=ubSi^*frawk@)`?&L zb(v{c&y`Fw2~K+~5-Srk1744Fa0Llne=&pDli}#m4qfIxJ=*&i36=ImqX?$-Z2vjy zHKMJtg>AsWG14A9AS)PL65dvV@JNdv zgV&Z21=)V{%J)&c>pZUj8F{?q^sq^zT?|27kx@!4DDFB6g1uI!J4f5w@LM{LR#ip> zdudIDR!}t7=~}M=sqoi1ejkfvR4YTk=xbo71xE>{*_ZHz0_HgV{?U`Do zmmhws5#kbMSEpjOBhbld`T>~~5Sobt^fXOMwgTjxikOIs$x%+z(7z_)aRN``0s0z1 zqiaJC0s4r!*@i2I->GGlBTbhA;o%BB+1MWZIr3qAm)6rW${A3&!5GsjrABZ?Vy9%nf(HO{`Rt8;!lK~- zgRShOLebs0lQ(hIaHLG^svN<342GkB1w-=@J;V2aBL=7xLTiO-t%hHs&FU}FtUhZf zmD{HvR07E)Fr#BiP`_eVoctQ7r8pJ^D`mt13yRzwIK_svaC?>}A}GK&O$ETdMa_#A z6v>Lj!20i^cqK zclvQbCYd4rCAXRwhW?C3i{^p|a!-JHy=8FA&zlRlqI7Q?x_3j=JQw|wT+yd!bQt|Z zNB3pSI|y{CEP>!H2<4ALeZAp|vnCWmPhsBIa=ej$b{6xFekXPrD$7GxI|0OUf6H;d zA80uCA1Ql``lQ&(D;~RBPM@_q{Heg^<6&wu&u%=t;A)jlFr0sc_9T!_TN{>MzD_Gx z`kGUpEX&ul58gGpHJ$>3@k5K$r=Rlt!2{V$>yjNBx^7yW<{}o4 zsdX%CcAnGh^=4h02Rm?;r<2xnotHl^YZ%tR{a^=<`9WZL5_)wI=rQjnEM&x@>1jH6 zj4?_^6JNo3*SH2YGPct7vn)9HljDd*hSoYH*j=r$Ln1e=pklbciB1Ev87>Lk!L}cP zwr;S=Wldl*irh#aEFWZFe(`+^hQ0V(A#_30|g{_2o$J^69sPS z19*1J0wPer1x!?OD#fjZO99pVQ-f;Q{8?QAL1{&C?+)q}WB;Fy5adHq;4n(;KZ1>^ zV(hgtUQ{cDZtjF&bguJ=j{Ur%8-3v>KT-&D4_ADU((2rQ2yZ*?(8V7bbb+ZhqCwlc zFvP&Pb~GJsAMIkv5Vj#aZFmK2Evf*l3?d}jh(PuPl9md(0}*>d`6-neEUQv2=UAes zA0|Z&D-cvMUu6T2^J#%3{hL4f!6thFo0luSI0#20j>3B?yu5fTgl(H|12mY1tx}k8 zf-oBZ$vFwaIN?T}u3IHH%>)P&Oduwt2vNQrSyzz-Vlj%p0rxk&HjpMfguT)N!x7B~ zp*4)+QJyY$Ub+uym25S%Jw(71lO%;kd`-Q7$A9wo~=LEYgsD_F>?}%^DA7 z0cW0!!S5y7#OQd48;TG^yG4dltwN{Og%*=eZk&E_RKDT>uLnSA`QwDz{utvW5yQN_ zJv@}v_eUSeQr zh*G0mSeO-L&(LM@)%Co~jV}fayckS3hz$#}kM7Mu4J8X!%%+l6CBmtfSx`EqceP@+ z7O7fW;?#>!bae?cv@J_3859Bs=6oC(3Sr6m2`TUO>?FyAWLaT{^WvJ(1#fbKJwM_P z4>>Ksg9nr0pN~d3Bi^7ko*cw-5lVM6eeoc zr>n`ubR*)zXab)TD<1gabS~(I7KY;qmVvY!!Ug6yPNzrFAwlgIg9%pE(3}r_TWFC) z8vsV6)es}{`Y}4e3EXh>$Vk z&2^bl*5Z^Brl8`E&i0=s{f6^e4{&=St_PTqKjRio%~4HZ7cuoq)`eC}oa&k}dKSa( z#V>Kz>)AY@@N^ax_GmY{`7!JDg!n=RS|N@`682WrR)&q?bOuYUwhmV?Rc0}DK^Q}UB2{nEoJuEs+5`|1}jv! zBUs#g1Oo5!DqPr#p$QRGo>(@YP*~kTabY))9^$Idg8U2MZJ%Zn@3@09xGb(`#FeKv zkG{Trea%9EgDW*Em>SK&&T&f(LDVcr5K2wSz`vDGNfi^}mbr26DkfQWK75IB-CTIi zRxv|!XYi%X$L*wb%)lxMseq`s()@W3uU0Ot>5``E0?WgNTUS? zj=x!2d1~|M=FN2r0ENG0N-g)h^ahXi$8>`&)||3vec7Pvks3|jTHDAG6p~#( zc%WyY8>E*FzknT?KdkcJj=~dmhFT8A!Q+$ zu4TEoYRjSq5FUNP%?R2Z2W(mlt<*0Z?sVL%p!3S`5N;ySkyvDh#)_5Go8eZ17H~A$ zCDVjt%~36B1LF%nRfM}CY4{7gI^Z$^siHm6Xad~TJ$BzDAjeLV(3i!nC6m36u%Y#|~Q-*AISz-)SrqgFf z3t%HZ7OPVr#3CtsrN#sj+IwJ{Hr!<>u@z<{&V{wqQZpD(aqNq8dh}UQM!aQ;0+S%Y z#@M-X{a^DAJD^1QaRMcqxyyoJK441J%M(fzvjhqD*FTr{?3MXhE~vp%93*#TSB)L_gAgcFzZnL&8^zv;vBmTo4$dvGXca^-QwwCm%=JWD zRUIvmO}w1U@|@Qs(k5|mknUGNHXv~Rv?H6#2RFZMEvZOELqy-Wv8p>shz0|792)+FMH(f!;k1MOKDi3?AIM}&e=q&% z@xgu*bc8rO=elL|EO?y*y9&@!p_?Y{$?fFWizP z(G}5Gg(yArB=s23%i&-yPG5lWOnyQ_)Zk3*^bA69z@8J4@pGAwoH)V zI>7uVh$%taBR`V(qh>nLw@y|bMQ?TCHL&B{akBE#gtJ`dA|lHZa(@di{Mwr-jz2g~ zgO6NTiAe4SLo4pW-WhwBqmKSZ*a(7pA0Cd zD0mT7Q)UAMA#DOMQTAzE??3oIs3(wJbP0~r6pj3VJv(aO!pHXL zfK2v>pyZ3vF+EIDlt79$BrkJ_r=9>s z@GwHUUf%KCGzxL!9PW5Gi~V#(Wkw#`@Pl8f*JQ_RCN&;@pb4_E_WLFoRpM7rsG5qS zuokBK`<`RR6OAY~=*n~4N1D8sQ+9X=Uh04w1vK+|fcwpmJG<^T)Y0KEif`e^!h3x7 zaUtOuko72}D_@+a?2uhJ@pF1Md_{N*-&H|YzWA6FC`&q5kHt&M8gT?(=hTV+msJ0PG6a5byA_I;p7COqZu#4 zr1b_YEfqlI;8j2ng&&6>BE%DCfmSF?R+tIOp?0ANV9KFqkglC|vNoJYCV# z(@h$F)a4|;-q$HcQZ5YqMrg5FJj`;WrXD1gCvVEUCm7dn5Dz`suXrHb87ic>S*MPU zX2d8*)B$0rG>V8tb^;22RmlLpn~o1AJQL$rIPc)DL9yy^@#jt55V_Sh#65Q-EGjlO zk^}zTdDqjta;q57QCDEVU1o}nB#z#Mfwsed{&V@;yBMn2*2d0+;mro_b>>tF=`x$H z_2ESwS<4?hkfopw7=D^uY$`Y6wJahWQ~8=f7F-$ji01XQ%3#yvV5@NXGo8)gn&8P~ zgx=2)`Q%rrJ)t%wZ7)S0ES#JUcw62!^*t7b~qoIp-^p1;yq>D0#&__=& ze$`3!a5lcurxXb02xk+)s{CdBGVHl+jNAoPe%Q8e!o`=GCa2{`)+>)rp|a+C=t|GQ zkWRM0P2qSjfx~JynEr@e2|l5XldX1eNVGKj>Hwt^s$AdMi| z?-h`g<^+(v2-y?JD*e?LD~oYOfpu8Z0wdF0IFKAo_dmdu@Doa#32QqB&t0E_q@(q~ z77pUWVIRcza2q^{rwpeezI+!2q4b`5?1&%z`(OW`8Vk_YVNPk&?1_pPQUc^@afyx@ zVFi+40*rLy$>nQT`US=9(ZMu(2VQb5>|wWI&X$ESQ8kPyhjAgUfFa=(2tYn|W4(h@5zslyTkI7Sc7tVo3Fe#TFghA}NcI zu-yvx791W-`&X~(K)f`bJi3ZIO{Z63hehsC-M`vGyAq+_D`-zaVc(=$4WL@rh!01} zJMiVY4lf7Bhd&=(PO2N(i8arCINzl_B~)DMq_U*st{Vt{n zN=uls*5$ryG0Wee;PFkQpp_dX`AshD48Evvjm6rY;us4yl0AfVpf0JB4+c+Zj6kyG z6Ib3yZ}2(8z|^$J`Scw|5vE90kiTWc*lGk6)pO!r}CH$ z?7=VJT)VNFfPlss?G~gZroo?G_wMM{o4|{l@_B~6L#Mmc3-#QFek*YBbwt((#A)y2 zW`@+KtK+#%f*eF*gcp(J872WAMuEDc&%sA+H)Q?hBrw!cI5{HL3-ChPt)i2iO73*) z{84OdEmn3s*g)-^M`N+y8CtmJ9spNv^o$Pnw_lWP6goBQB$5_}XMMx`D z<>bekt@tBE_$pL+`9@b(DAI4+ilh|)4kKi*T`JhEmOVK(Sf+CKuFkiF?=1TTqbIIb5 zEwfqekh@CP8arM)Bq*E#qH(lUS8Rt_Rw$C5iANpAx-u^}s>7}YI@+=#h_5J9qKM>b z>4Q*9IZh~#u1F(Pf156XXc;G5N9wpDjgqAhB))BIK7-GFki;5rF z2okh7d)6E*G*ok;BAhrk`pMExq#tw1;?FbeP(0lW#W$LY7wlk^fA4T7CgH%M9K(=b zt94u)M>x}q;xjH|#FW)>&~U&kKW!*ze5aWwN~@;s2-Q?t9*<_%WXFuD5vH}27Ry%S zm4?#U-}?2DMnFV3KJ{ixNV6jB*wHZpBFfgH=wUCVM}#9nt#;nL8Gg{r09B#>rBN_v zujNH3Hg9}Ib&^)Qqkm}>C`{u=>?ecN@|ADHg4bYyQ*HL3x1)q2ah0@cTx|Am;(Lks z@^xa_iVnIOa1?(+3okWN(L~!BY`IbQ)o>1li)*PhhYv zsbI=??{r~5d+_Fgk0$f+G83W9O=Dcf&xR7{5|@X!c-3%R||k)Jlcp|cxxGN92pA*{^!%zwfihORXs z*SP{FW!DBf+L0?pkWXfRY9V;Ye+KzzfxS(PE$qxrCxqYthJ08UenT8!SSHqbVo0oU z$%*9Pgq?OD_CN~df<4eN?Ra7snFg6XkqLXU$Slu&(}D(0nv{_^;lJWCoRjyiRH0;! zP{)AhNCKjL{<9Vvs zK_EhVHWR^X_zhAK5MDhafgbu0EwxwgVfBr;Q=AMqHFiAoiF`zw3;S=5X;%XwF(Atj zJTb;npD|wqGB|HKE*%YokqgVEe#%uC<-+=jPI~cPK;>Fn8$tmvbXj~z3_w+NS+gNA5Ez=@O~l&5J(_NZWb8&eu$XIg~y2Zx8q>_PJxJPikInnz33 zG^C_Eh3k`hN=><)6#iu!J z71lW578;t9Y`Fh;giK3Rdsubg#1w~oveCRkS9DF^XgvMZ2LV<~$I5N1nzyW#6@Q>ZbcgHYd1ZM)7qu7oSFv@psMJ6kf59ods z?Y^o^P`Nt9)%n9Efw#h_YO#RmeeCruc*h~Gr3?l~Ofe3p{GckwYRX9Of)_?8i|!yp zS>)e_RMs7LkdCl?2#Ks;SmEA*`(kik8MREc1?el~J&aC_eHvVm2D_ub)RorJ7Ni2D z@5%>kB%IXp%!;7h^3PipLSbeLc}_Nw5n*Le$QsKAv>r?AE2}!8n~4(LEJiUQkAa%Zm%b{aSFL5Z#Oh zlKaCW%5xihBEm=`T}^-F2G)+7QAbxmqRU1Ak$x6HVCE7ocho;43~$0^g&P;^SvU6j zVxL?+u%eu3^Y)e7@wNp=w($}I?x`aAPEzhim1w>(n zBN_oTEp$*0bS;rwJQs)#MWNe2IdUDN9-N}Aa9Xz0f@)V_@?_uzygX#&yc!?7{ggqQDN^C@y- zz`GLLZ8}ENo6ZozgZSlLREvA+hKHSQ^J5)Qil?Z2co$GPK$%e8Qw$AXcc+M=>TbsXU@VDNuuFc_I( zDvl+1<90&D65#-Konh+I(cSlP3k|ln!={$eafYeO71ovT*fvhzsR2UEdgFUtPCq^> zLa%jQvE%u0loI>C5)5vpy(qnW`A&FPL4x9*97NP5VQiE z%WEpjPx5_kp{EGH9`nO`Q8Rw7*VEr}mRKrwmHL*8y_^*L`pONQ&}y+)ZrNf((R$+3 zNzq(1j$0smc7xhoW9fL}Q%9D@QrBaI7q2u*sOz>};{RgOVUMy85=-JYlG* zu8zd2ipJ$J0tR=IjL;o-P!)vKJ?|`O^OWMykQ{KzcjFE!{h6hM+SS>xLcxL8{^4Z2 zi*f!@F&!UG$dv*iWz{cSOYS%uR&Prw3`kEwD2%N78N6Q5Su;eyU!4l87yG;ufc!AN zVQGomU-kwQayD|@J319svXwhIdKdsKZVf>B25$(=_nrVa>lUVxTjyN0An!TQaSKz4 zZlP@Dm#^0t+pj@bol`2QLU^)|{2mx&cc+J*Wyd3#N}gc}p*(c4(DF1>yLaaf1KnO* zU!fsMy;7?8`*hwe5v8t%J9?#5f`o{XRz80NqHlAsDnZxl4o8jLSLobFZT48mi+_tF zvtZq+{GO8^!wz4+ISU?yH6u_}#6ChHk(tF&>zEO!5+Zt1N#)R#?yedCwJrA|eEH>Cow<0<1e?4v4=pgh3RURj zGlxL1q4TMMADEP|rZc0oXgobeSP>u#(QV0AylO?*74OQ*2q^q)-{01 z(U2_Fa6Ww;&TvU8IZQu-S1%s3#lm%@#j8{53_`=nE)`p`;Haut<$F>IIZkbjRNme` zLbk8L?vue&ntb7+JfVUO3U&l8wrV-mIws<9%9BPar6N3R_6QF}Qao6r#qn71%9zwM z&kdzhCu;}UhjnOobokT+aoKHqM<;71Qc9t6ZDh;o`!y`E(rw3+5mq`+rs7~qs@LIiBi3AP~TJSq=eLVibfrWo@8PXlPMxsP?ilG@DY^t+kZ9&#C62)`i zFp7gsb+BZa*@7!i7ZbN7hdUde)o^AtKe8t;?aykl~wo6XiU5!rh0 zGs4`A?DFER8OY$7stEQ~B)qA6$1S8HD-0^K9|5h7nn6X$nVwWraS69{!xsjZ(;N(a zilmP51Wr{6hSXk9AaGF)vWAu)tR#n>T*C!2BYj;l(F90e$g&|*f~^U1!Qymq2gx@u zHtzdkbUfkdPz=H85e}kZo*;|u$E{^aIcb6Z(4|1+){2M>%hfn!r1zn(!J*6v9NB3@5Ac#e* z-cwBe+_QA63dfGS&3GWDX5K&y_ZI(1w^gEUu%wpITR5)m)17V=_v>_w%UaXN}z_fPy(dJAF`Q%&AmK}^X5RmcjP-7-W>TLUt+>o zK5qts{PL}}z<}qbiop-ET%pNYmsR>sU);nmCnJXUc-mE+jxhaSl)Py8U-C~jW=o;31u{TRmqcHDZ_rO0Y7KF^<`zB%6C z|49xzMh~$h#k%q;op}y-#}otXSY_98Buf~;?l1QRLIxdC262=-s`>^{H>&TTmlv50 zxj~WL!hv7Q&EFMxe7}6|ZV(0GCt0{`R_ISB{`2nQW&6Pr%IA$ZK)hQ)$UQ`G6rEy^ zOpmcZrG-p#9Z`1RqgO?z3}waQM0o!vtW;HO`PMoaN#vFy1-^Ud&Oc-As=x3IWf*?u z46WE^hGH0OWB59iYD3CdMF#0rE3VEuwMUgCDvS|9L0owXSD$0S3DZh=1SOq!6cBsK zp|LpL@-9``VZn$|d_-ARvdR}J!jc1PSvHVgGp``K(*b;y@l|SB&)ynlqzJGRRlab; zN(Ss@^8zlATwr@J$k5?kOz%+fM&kHzgxgX++UI5iOqFBD#G2M*P|#uU)@) zi|=8+Y6SK%?c-(}9gr|-%9INU{~ERAb~ zfZ!v~gL@qR3bC`qu&hju9*> zs!4C|@w3OI-x;wR^tWbL-B2(4K0OOg_Po3?u&$1?M@|_eDHQz(qZ3C8RHjcEkzo7a z8va_oW;SNnrJBCZAWTulLWB{@QO?l;Z)M4PJHVMS>>1?Ts6k*fO(6b)ZpCzE$|h+_ z;iM3HY0OkGxfsaUN|@x@7%^i2C(bPORvCSTi#D4k3d{8^`QO_M8_MN(3TZvQG7&s`nJL5uT|q)jexDN-STxzV0AE<6iov#!6scfUFd7b`?To z_bE8TxC|x`jQcp2a1r+bh1^l}$R-UkG~l>a^Q6;YVj8J3=V*#R!Wf@=oS0n3Jt2YZ zFi6m5MoIA4h~_Ur7eU4%1%ZCPXweUrwg*Td4tERMY8(Qd4nygR6*4gU+WXhz=zxL5 zdrW~Si#>qk0s`!6q?~t-_Er-@tCkSTa;c>(TAAc#;p#4Hz)j`Zy3@*Gp$IMJ0GM@Y zHT=w6S<;Y0Ie6smj(Xf*(V5AQ+T7=rVjmLAz{%~xyJ!H$Y+jj_wX z@l0_yc26*nWtVwNu7ye3Q@3T8ks|fNS4Tip`HN+`84P~`@$Iw@;Y&2dWs)t$&YF-@ zaSF{c;}{PPr!?ff8t*{n%k*um0qKrvT9t|?g(@pas^*(XHnC-jA{-4A4JLtDl3)$g zKe*vZg&HhiAvX8xvU?rO~&aue`~RE z#316F3X4XIs53D_330s2h~*OE?q^WcIi#Y9imQ*3x{JX@kh{a55OFJ~MC!0XNrOl+ zZnVidV5X{+YEvMTjB$|P9|uQ@LpfI%r+n`lxe>WvT*vPabt`;=7YO*!YKl69ELu(H z>3U^Ew?(TFEc}mgbHs&IBUK7Vr`fD!Kb51*LN>;q%U{OKjHIF~>F==zqBw+j^=Uk# zbTsZP)_g^F)3uea-4a;3{g$%f6@ev@lZ;bPvi<0l4KYk5OJ$LGa@mdI;{b*c>*DPh;9x7;ZmTN-iH0Kf3ZVPDJ=1R6 zZX;EglIUnG!bmIEd4uIS-p~Xyk^u$7_tR4IUQA8xvAKDE*=&!gOv6u&M=>`n0=S7? z9T40urgGG!vv#x5g6kKosS#{0ULs3`g-f$^X$QLvwYE2E43M*OYYMaGqhWIVm_3J1 zMTt^a9$Yvft$YD_FIo7v^bznMr0?`8Lj_#zr%(4DjuE^@Ijz!LoU>UjQ=vjcB;yKW zkxc2eNOF00O(53-zmJ=#fB@ET_3HWH@yoz!iLd`b@)kI zT=CD*c9^r?W*v1?>7q>2H^mCtY&BV9-^(^T>3gZ{e%K5?p6U@B);ey)%{r^3B9*Re zGJB7w+7C%?`RcmvJpm_7=`rg4Y$~N+-kk3(@Gdm)Ty zTf?7d-FJZObVwNL+uMTcAA=L_tqeH0TSalockdfIvJFF|mC{)aKSM$4dmy@d3#;#| zbib`^|+ zX@vxBrdb1Rr`&gWGKnT-dL#;4-BdOWPH(pWZ|;t#NXM4q=et@PK0G*BBGy+4j{rqWM7lg`D42ZmrBjt8XP&?B=ZRGRz_UF*FV*@$mNk;%r z@J!p88g+y-O+g@v!SqpjqL;Vt7;T7AC(1-~k21@PYTt?9TEvQ%UMoA;`V)i|yNH{o zbbSa;O0uQR!%J_M6`8#t6Tys-SzgrZW*ZT~>kX+R|a zpK*@(hCf(vuo>7HPWlCsM>w_2Q&lRoH{u)ou*DIfJ(5|zzS;))&B}FZ+c{>_C(oW4 z$(+G#?FVM2y$(P2Z5r!gq!ppmVGFAaGJTuIS~$ooF9N?65gJoohXc;^U$t!Z21O6W zbY;i=d8$%mn%2!Sbqc(=J_8ZFE=x;SUYmmn&YiY#(#m(-QRqiwKF7QPqH6X^k3^H1 zghj)L&5ABBDa%>-AbVQL(u!`0|8`2tTjwiQerr$9;iJVXN)-&acLnarkTQT3)p&ZD zS{EHap|g0WwRxsA5v!9KhTa~vFG!Ux_~s9SdYvaw8ksLs3nNtY!7J1WUuAl{+%Z$X zZAE$WW2KNrVd)fq0lul#CEq?lyam3Kn@snSOL2o^Ht2*wS8wpG4Q8JzWJ;3HUm~a2 z@Fi;@o-RIyR|+!G^IrZva<%MHN$tM7|qMa0kL-|HV}I|e}PfX4z55dhFX0C1`*!5)&4 zCgMMxi$4kYx%^xH2coZ3qNT&?=LZkSVFAHvoa(RUKA1IqIGwR%O#WOA?FJ=6$VH_AVQa%$Yw|YTlw@#j2&I7Vi61y%u+8sYc zP!E}(+2Q3WQn6?q`?cJhN@7135stMIgwxqG3D-)-()^M*Pt0UsYgP7on30jh^$A)6 z?~~!k7`oV&??>5L(&;S5vnvcV%$}Z7TIu{ zO?Ic{C|2^^eKu!qgwFD`SgCNp*u&jz-fRWQjR^GNiC19UFKA;yHgGzBlfv z*Jt*W-jl5$k+_B-qi`OMcrj)nb&&d!vg0pA7A1Zqlo+RNyU+z~Dc#`u51(xG_k-PG>%@+(1a950$mVA6v z)|ObSv8{0rPShue76jh<_rLyk+T8qOP%#qmadhWk@^Azz*W@W&@g?M0z0&ud237MI zp^F;M8$fEGeD(8x`(OU%Km85;&#nRX=Tf+`=tUNA;#U@$U;b%OJ`WqZ=;0Is%mP=` zglN$yWB!srF>zsy5&IG4TXM~4KJ`Zt<#Q`R8X)4*RqFsV8TS!664kla553tS7FX^1 z0h5@KtJ5x~r&V2$4&2#|EWN&B^OFidQhr*xLJ2aQY>y_eW#Wg!U8j}owp``Ob}0&# zfrEvLsTrphtL=!;+$9wRVq`#}F^9Y<#?YXCu&Mssf_ zEOZcOUWDHu%QG?rCVgkVnb%4wPauRR%CtRbI>dc4JJ^z95r|+Cx}B+|Da@w~$b~;P zwxn49iCo(n-dLLn3xaWq7J_hJE*>G08adc`^He;+wH`X=ZP67UgK9JN)K}tzxyDi9 z{S;&wF6^fOhhp$RzeU%L466OrQ_j9ZTAY(4N_jVQN1St`3Q)SInl3}SCOq27l1?EQ z6aWkZJF02;({NM5AZJ(DbgqIE1KMEhJ=NSA(vOt^1!PckFs$*Y(8!>nYQJ57Mn!>o z;?~ZsfZWJA-`0-hRD;rsUM>(njuis8rbE7xRG%Qh^pDgx{z5mKv04Sz?<*5;ScU(DAMqKxvF z>+x@(+=?jV+X8$EODD??2GC?zgzsSrMhS5rq@;;6m-{)*&9~5DM;)kW$n8KO1 z&B4JT6yRz(yTlPQHYEuNi-~5TxqIZ;%-)e8Z<7lv0FzpV7seE&F-fg-TF`G|4MpUDd}0)DjO6 zpo;SWA7<1a_s36m$@U6@iKkXJLO6&K5;a)}Pfo=Hd?~y|SB>HJYoh{D($hWKa`Hbd`Aiqz4P!Hw+6Ac`2je3C^ zq|Qrgi4cf@W3p9(L8oOHjXR(glPEd<=^3jS@4WruL#lzL^?ek%NK+9ZIx!P5)7{kZP~Ah z9c3we^|Q|ga4tO8%#-1xQ&-*&?9`=8eSL-ueY(~U4^Yq(2Ty5#$3D>x>XU5ER4;NV zv3b|93(PV&+Y<+BQsyg|HYoJ>GY~idYx)}wJjNUo91?uP%TBO>+)xqGnL=+CYy~LKuS!Y34nfZ@h(SZ3`JPUkO;pT+ zzqG4>Y}X)$I7xVPgb{KhcKeOT*PN?IJdN&OlS>yj*NdFmbvy~3fm$Npm={zgJv-%}TE$2IF9J|EWvseCh4^dI>$DXZo4N;Xs| ziq|xbcWSmGs%jFhJv0E6mz3XaZA}F%Wip9ik`d=%Y6%yVqZUs_7qK@xZDuq2b<<`O zO!=Zx6%7)rFYN8iF_RW-QxA_Gk=2=RTc8PwwnB$6Sv2Io%%&j7V2Fk(aGxfp02Fd# zp1pxD8W@25=NZ95K1yt$o>g`R!BCGdf%vOTJU&)*(Ed0hv@Z*o-J*7zWp>q;kt}po zd`~X3d_mSkiq=J|oJy)%t<)2uJ{zrin5flTE)c%bYPKa~;`}n?p^b-ZIe~4Tp zFtEDc`SsSpTs7GUtRt16hs6h+{(6E=8`z2^ydEy!=t>j?|E5F1?N4H!D~IZ;b-uOn~!H6TL!<=Eu{u-Cftmdeo5LfLxu@LqlZEjmK5N6$% zt(+jdLBBvS>%#KF_qNWlb*<65CUydm3FF6QfFL6N1UVmaGG?oBY zRR|z&*Zt2Cp+SJsuC$>6t5Z_8%BxNN^eBT-kQkU_*xdf9kSE6nR!mgMex1*!cQn!I-X;!BPRecslYUNj3v>lUz}?GnS+n|m>!L;c=^z$W7*O)Y( z>^;#0Y>>k61Qt8C7rCW);DA?f8wOPHSEncs~yH6i>kmc-gI z|9P%enM$5TFrt*_5~A^&ZiIDagHg}5_4&4sjxh7-4aPkL9tFLV_=Kqe2Gjibr=pTR zd5kfRHx*$Acj%C1=-4SEj=43Vc!hZEL}6Ubo&!{5=8~N=ivAo`yj}w znvDH+N%tumvj1?DkI`}(DJOd!jKGa0NGYK}Us}qU0&Nd|9B%0E{a}-IY;QuDQ3beU z0RBx8s(h!pIGzwnGh=1BgvMuCEa5CsVo;hY=ol-7<_g;W2{%qqK1|(whqYy%7K-(m zC7!9I@k5;B!V>M;+c9RZ=Hf(@^3CR|i9Z1S%{k~F99|nH>ut%1OF`1bwWUuqnOu^% z)9(xBGwr##FP&2?^(7+rb9tw^#0xWrhB7O{8i^%wN#39<*Sz)U7^8V}O;fSd1G*=0 zW+|8giN_e?XATm9C|yrIyC@SX$R8}#Q2Dx|&~$IjHW5i!IQ1jnF|1Eg zH3Au?UTOKkFrtWvYnF1Ya~AGov<@blNDpOvzp;!onzY|TnRUBtk|`Zu1zST-^F@?5 zt&Dzkv{LjCKniosaDRYw4s3S4Qf&WJAUEv64u5Pnz#_NCA@a&yy^14XN$fFsbQR{_ z=~YDKVi)Diqrx{H>7YYLR5rq*L-ZI_K3Te0i(Xz0XF-jGZ~k-fEfZdW*|_*#Iy2WO zwY&GMu)eNUuflt5>j~VYLrOfiipZuMup*^s!B!vSh6au#mTGyw`dxrr6T2jlyJ#i# zA5x6K0o<053N*2{W6+dr@S_eV?BARIR@|iTP`Ov^ z8{`l;fdd%dhKL<2e@wBmafIszbVLK(N}w%UB6{5s#e7Fz*?joJ0|=i%nYKv@ z2auiDzT`%ZY&fueQ*_LjbniPkF|&b&4lqr_70jeypHs`-)pM$fs%h10LNzV0uNiWP zb;q>_N8uRLj{pnQ49VuRwQv}Fa1^%h7!Y2+lRz)8-mjohGroz3Z5DfJ(so!C>9^+# zH1Qyq&!C*(^88)hVlwDWfT}Xt$My|dmHm(-vvEFI;1D&)tLBkYcM)qbz*K8}#Fib2 z17wz<swJEA5X%x zN1OmsZK%naHtbE9 zS3*5EsAfGJRgWyYiFxA)`nD(DGF-lDW%t9L*&di=6Wv+~!Y+s@fAPJzV~~c<+uykz zxvR!I^G}hOVc-C(zUIl+xxqQZogFzMIj^O;j$%|5rkynSF?DlM@(VVr#~B_N3oO{I zWIFYq!}G%LLaZRBI6d0iLyinr(+liEtXw7-4+9_PwOWd6N{z z0A4EOx@-1|Ym3&@3J9_qc4#%!*nvOuMPj0H93tPLmM-l_QA;MQKfKqPtCR&sQHu~3 zK;APA2`F4ybjJu!YvaB~W5h>Rmaix=x`#XfXq=ArT*uB0b)qJH9Z5)f`KF`1%r^f5 zt5S;dK>H%P&YsgmS3M8?QZt*R)GDEsYZP5xY#ikcrVwuvRq)nYX$ROu3BQAuko^L%^CdAE}AVV$K^+Y+xVfa4K2U7Y{`5* zV*EfVN;_+3?}xO)8Y)sGmM=SvVZZ^*?1rzFXxQE0B<0P`$8Gp38pbsioiu#4Iw6xA ze+!o00;2_{^xbd-Y~EijV1Wr@d4FZZmgiJ;0(heW1T(+43L+3)yN~bIPM4STn>8DT#cHiy%z zc$s6HY|~!68G%g{O}toiY(@YMThQrMaO7`iRF>>IouZCaSt`#~mTa3yRi9WD_osu$ zybnf84rw-$`twuH{rMNw0>Q01WYdTcQl~I-yt7sjxvlv=s(OZo>23wEcaakPa8(oE z5v#FD_A1$q2KwCv3KcGi!h&xTr=eu5wfD!)veNhCMN(LV;V^+My_WWDGyTa4#vOPK zOa};sLFKu2lTBwMClEV_d%N$Xa>|qUSaK01L*cK;uk`pyJ~+gz#arHy&MaL;H&`mH zd_g$rM_`_x4EM++7Q^@?(qwb&Eil=PAd`d5s}l$j>~^8$`Fjjlxq!o5h?p7z1f3V< z%?%;%3ZG4k0}2jZWza=uRKyh?90=qrfjpj_cO<*dY05jIa%*WvUM2)A)T=K$$NqH!l6tn~5b9`1SD8&43BT_tX{lSD`SozZ~;H;XJ!uP}_wLkkA~84bi0 z_v2h~s}_Yf%l~|Db(vK70v?AglOM6Ox$msNN<{gb?yY#(UB-{D;<8sPh#n$4&ele_ zX|5msfMfpVc*1wUZyj-H3Z*o{<`TQjEu?S3bvjn7S?g&VpeQ+@Vu(=Go}fy$BSA$@ z7rMmf!|O=6!FPDZ9~W&Dp~-jJkoiRP(PVtI?_J2Vkr8bIr6_bBs#57Pg7^VcuC~2N z2avemgl6uTkvP3>C%gY{6E3tOLY1hF5X!SSo@{~!-Cwmyq>G6|%c(AMg=^0t^7XrB zk&Pv2gAmdNr@AIF;FPaZT4Qa%MQju>9WV_P;PW==%>~#RPDhV?ZsTm|Ya7B0{t8oG zY@~lfNPzvdHrb9nHMiz2nf0q`lV9f^K(q&*x6G-DGXXl(prLE2O|Ih|Z|`vJC2R0* zlU?Ur0hDJf-@9~!2;D(KTt9A;*Wbp>Cw?IDsuIUEYw>N9EKEtfoX%I`%U5n*Ut3Q> zXSReXM^$5Yh@-AC|D$(YJFdrU2?ByGBU0#%`JVt%o?mMv0N%Ye9rUNL`OZ}Dy$;i6 z;{+z^W%)JzzPh$@{a%xTUnQcnvh1S`AMK%qq}OI;&pLtx!M9?{6W5JUsO6RL+qM}f zo7Xi65HRYUEi=yf@Jj?L)8K|#eJ~x7n>Ckzqj(3c6eeS>6&i!A=u?ReF}n zS-7yHfmBJS%~Hz?cNuaG&QQbR-n{@x=@E(A#ZVYZ8O8e%1en4FZ894Blt9y)1Szh5{zq-f&Q`prrglf$LyXhj;`Q74 znkiRK6jZ**^>I50hAwzLM!)J)?bRBJG#|<(JbA?Fyqsb>t;ecXLkP7-BTb3Y2M2`m zeQGO3+JK~4fy(vpL(u;$s%$p>$q>mm_a#MvD?&DAAOJ`!n_UD!kyHd&q|YwKJ)y*j zYp7#Xt+KHw^w2S%vsE@SXQAc!`%U_$hs2AvVZn3K_s~x}w8d(8#@vauw%dX|FQO4F z>;+$)LomNw{ylCrB`M&0iiGM=&--YnweDL-9pObp`GSt_gt zWbMLuwax+$aZg6jbm`XPFd!68AKWHnuy3$virKH0p0Vh6w$gfL~RY(SVN~_)W;c!6b(0TCAm;K+RVZzAbP5cEMLT_K=jJvk>s5J z)y{bQV;w$wmMSL0S@4x$x<(fu;?R-Oc@uQ7IF4z;2b+^I?yN$v9cPYqEhf9G5>}W= zkP2Im-J@n^fs|iDO=JtA^T=?DBlp3JeHkkf=2d8J;3D!vn|mWEg664{uJ5OsY+{P8 zB}g#b=}#zt910*whL(XlX2Mn5pHp)-_O~m^AiTWLpx*E$6!`a3TrIu1<4Amz>#gz* zS1`YX+s-87vs$BFr(tA+94dHnA*S+;pKa4@e5A&PAwj&-0-C`pnc|d zA@HMCnbf5nUb5Di_Nq`S4FKimfhRTjw3WC%01NaUU5c^%(MQyJUZEZBU{{Z_%*iC&(B(e&YL9cFB{$jzY^{#ss@lyUC~A7S zv1&J`&!}pnAOmQt_Jme#tv-L99csC%T*GA{v9t2`GQIGhy`85ICnLJCwW0bJX+EjE z*nH%RV!638#|ON$IetHlg34Fbw<)^Du;G%&DJeQ`ydJ@cbb=5hT)@%Lee&Z}UEPgB z%Qv+tuMy;0gtQ&$qE(W+l7%i9$rtF zh_FzhdkqE?F&ZXC7D)(gb@NR&-dKR7>C%OJ0gck|2$~oZ6SN+`M`-2eNL3kMBa*kf zkVJ#HriH}mnKTC~q&zDUxHu5mxj(zwwPmv)LLR=1NlOeXuJR+C*j1F)xVaT;?TzS_ zT1k>SC$i@AW~z`dds%frx$fH^=S}Fudb8+}~ zCbLQWnXSNMGMj|WA=W^3X7?iG3}%>v;?JHLGn&|fR_e@Xk_+F?WcDARGnxSdb`vwF zvrk&unLLJDeq5IXkye9QFTS=GPpwYA!#EruD%Mxhnr^29?Y=JG_EB(Ey83I@PSdh( zqmFOXqxxvFxbn>MT3Ao0cV?LT-cTM@?kUPa(0F&nT(iHE*NgJXvo|$&CARq%2rAJL zwy#qO&U%LrCxbS%WX&vAEjnMQNT-_fIw@SQ!-3Ols-EER+N_y>m}eOlL>Z-=4j!|W zcwp;-zR%YQ7eS%NSP`)xn+D?KUF;HZ7nxQGuckwZrQl}lcC+_fB^FU;#Ktu#Ych5D zJyQ)k^o?hL9mW@n9r^@KUZM4AxvL%?$3#1b%+>m|{FTUR(3riKIxlbbBd2jAnXGkQ z-gmnIT1ke{v2A0OR7W)>9lJWJiKwa$zsIU!KeMJ#O*IyKMpMv@3N+TJ{Y9FB*%ZY} z2u-1RUv$+sg=B%4nL@J1uMG_(LD0tHhR(}tv(}%+;)~HqH~f@3{IJ zA>;Rnw)bZ}4jeJbd ziD;mP;lmg%Ld~=d%ySJNMsBDLH$`?Zjl83ciSM$;X%udM-lqlx-wC0bnn1F?RJQp* zDu)q~RBAGiDn!}T@%j&Rfp!}x^!I)s*Vu8JXSVE7qT?rmlYVLz8E^g20G(L>PIITg zF-2_ou32RxPV{vdLn;~NFK^l?4X6*rkTiWOM}km}CpuLp-3AyD@!$fm&%5gU~VZKu4f=v9yDObF|4C2>6>5|3Au z$0l9ej%5-SOnyO_-RMX+-~hiSSuk0uXe>^7=6qg%MyzZj$sVl8dm3+LgoOEWoeNH- zI;r3CO_^9TIh^eJ4R`DQw86!a`|_Mxqsa2z`}?tV=^;XK3vp*Z(IRaX>PI#uIV@8) zk4M8NTo<;~*>$bFyg@HJB2ilTf)u>?BYwhw@8~;K6HxD>qI%*~lART60v#12wWXQ8 zSreec^49P%GAcSU*-Q>KSxSc1Z-^dZfuT+4N3@AIYOe(fwc#>rb*qVT3}l!*AsvJ7 z(V;fks)F6Y)A5mawm6;&RA5kneguX0YP?ki5|Oyk;P#Q7Icg%UDm2njaS79Cdk)KjnAc9B2m9FL4b=jz= zNFeiSP@S}F`Q#{M19O~~Sd8vT<33Q}b=81)XIzsS;P{in%N||8MVdr3v`_seE^WhS zl=G#-?a!`ljQ2N?0|3z&4l%nz5U;Dvqpg8}lB^z<8Y-*&ObUo>JA=dCXV;3$>o-5U zcBMeV+v|*0TxLhZ0VdQdh(D$Aou|1M0;vf?pdF>`URWr_80x@?1(mORJ{6sNcbE65 z8s0kG!J39*k2i+o<#`@+{%oztYSjyQXIcc+y6@_v6k77%~Tr!x! zZJXQX>q2RQD9YV2ZYf1Ngem3Trd--SoI88&Eqz@U*i5KJX!-taLfU8xyXc=X(}qDV?Qg!E3R{q?r!(isYuIQ^;MD9na(#q9gHW3R3!M&YXYT@XDMy8 zA7VS|HR_h14!b<5(Zm$sCDDYPV~%05?(tw6^x8w5V1>{3fC z-_{81G^{(TVQPCXr=pTnIr)8BqO60F?fRkgoPwv6$t$Xalaf~JVX(PcXOncu8R=cK zC!=-YZB*?lJxls#BA4!T*oe0<(B^j|Oz+8k58P|RcdiBeIA=edfhlFAAM_$AK8=gO z*{Q5+}U6eE-JvZ}~D6s&ah{(o3^t_M;k*v<~WZ6`nPG&z7C?6@c<&MRlDa z!7>>hHX^G~>7mfV5>YgVLo^Crui8nWo-2s1S86lg=@NoMmQb!iZUBXm6WH9H593@Ialm?=3xGzzMCf`Kf2yu;7Q%M@h zKV{0pUvt|2F0Kgo<;EtI_4Td=dwzzO?_!UUZ1PM{la7cQE27HCK6K8!4#WC-m zVJtbc<4kPX&Oe4a*rAt{NM5qR= z#cxDdtq9_(_mG=$)@i1%*{A%-nm^6;3-rcD9VM5~ee)BgV--Vaj!<+3x9#?s5Q>t^ z=k6lNn@(CtL-pC-YiKfj1fv>aZc(2}t9A7{|7`DYq+ShJxBxeHpW+u7-DN8J$|-+;&H*Ce3UPo#cbG{S90`OJycfZH51)#5 z1svO#?>Z4)uco7~nyM)9kVdGJEIou>6!GM?56oLdL9`UnXb#8D!volOA-_Ch2o^U8 z_Xa(0XiPzzV@iwB3Btzx@bT=JR`NYlTEPe|m|o_xMGL@2Wcp+W5&9z}cqkqn;n>u- zn0bekAXU^!qI)Cw$o5z?%r!rxV6$`>n1u=-V{q~GvMCW;3hn8MeE4xdJ}NtKyg}D1 zjSGIv&GNHUn%uv%G2I#9B)31Hkl#n>f}uXhV&WR-yqifTHriAGAstY7MMt$O2A(t5 zYv_70$fq4y9~|L;VY9|L>*zI8e8O2Ugz+npu_7zq)Dq>DfHX^c`lL7*gRqZ>o!1iO zg$vsXp{EE~HH`Ld=xtm23=KCmgnD89KvSBBYY20}sU!?_44ZCTC@_M8+)jYt7-QTgDdz5#gg)QXE04j!jIK!<2@mm_L#Vk)VQM%#r z#qJ;N^9pIJz=a1GpZrub?}o?A7Loy=7XZpr_X8$wE5KaDr>LJNjfZZ5+z^Ke4509u zDoC610JrcwWDgCe(T=B-aV>8Ugek*tmT!T<5v9VE=dZU?XlS`cavwu|pQ$5VC{9cU zIG}wvO4K~>P-^5Wb6kT)jUi(67^6Igp|cSkq%X}-_}1`nFiMss9S^VD)f@|jT zwn*Pc!WVDOV1WYsdPV_gpRhH?%?#9;5c7|5jSL4A1>{TcuXFAQY9*je0U>d_j7U8~ zLU=YU|66&W4BuwTfMw}$fS4kj!;T)0wvGn7@jjj+=H(qGYu0&Ba2m^mRVyK5l@*ZH zu?@$o1{sS0Dr0A!D08}#Ht=+LGiD&UyP1Q+bfl$3v8l7*ygO-wBaP31NxX@I#TCU{ z7_?{7L22HbQG;d?V7F-V9&FZ#8@cJ?B0Y&R?`i}%axIOICh3*$^P2LFTv4V(g;&DM zlM)qPJ%O^)rLB?D&#rssUD_JqN>NrfT^BvG21s}evIp=!?jG7i=4mupn11Nu7Qe7K z_V8kWdMQwOadid_s5>>H8I8cf1@0TztMNc(Tj#txUL#c0tdeyIeBqu20;xx}4)fQGP#DEy;aB3m5YrJ+BD3%D-?D3({K|v>e!;fEr|}g*yEetps#WE z%8rB6;_+xuZ!caAe_g!6kQ$VdRRg?(i4r@CD<$@vBwt3PI~@&D72OgQh0+-np>%v! zMLxvMrK_v2zS4mDpc&j2m2|u%QWSb$hiXLrYR&{X{lR$ z?Vf12h%!PCc)T|_=vL18ml~l{1W+v}K{giggS3eB%a+pp%goZnc+~>FG8mp@4Ln8| zCPIlvSWD79300KWWu%0|(h7s=;pWa2H)#Iv3-^Io>PV)iWO$iOWN_0T$Y3sxSFYk@ zUASNf1s5!iE1g6+3l$12qQ2<-bAJm52?geC7+dynRkyS;C zN33FrRkY-`eL|5DJ2Qh7w~9+v7RNcKdyIa~exo1ywZEdjr@y4<0v7hhS^)MAAU3<( zW7uZpM$9>}uy9`h>Yj_4>NmmhbnOi@ll1$&h#r*3Nu*+m{P4Jj#$1W!_24axcMkq) znqbp={nfNm%_w30V_Ag%t=u7L(rU6!vdnNT(lnWPJ<~Fyw>dQJS3Lm2qU(pAZ3xDU zCnN2a%@^UAT$$Fb!9kvqbrkKE9mBL(O`0TsRl@fMJ8~hih&Axkjmfa>j2lIw;7w+% zX`AgPs+%V(JUoo<9_JZ`>-%VN@GsPK9Tk|nWLnqC2LI6DA2#@xuYb^xzh}t*RFlK@ zZ;Bk)s%YB3gJZ<6-K#H5Dyvg^63w4?4Kn_v}d%ELp_#hOlYH+hAZ3U!ORX9 zWyu$}XS9k#U6EkqNF|io_7!{8oVo54!>ST^` zLt1KIpd6V#$ME_CQNznMpBq@Lo>Tsy^CO%_Ls-gzH`=s1Mb?amhx6kHW`Ew~*7F@Y z_14VVWcG@yYMnjLrOW}mdLo9ZTIZ=n4T|kwMBc3LPr`yZSTAr)z_vwZK1IXt33}M^ z0S;N=Mpt@V{1ILHgYJF1JQ8E6^U^AV1#j6sL4;qL)GANV0gn$M0yn-^m|#4@l`dAq zmzTf$h{w!a)HWAh@lq~O>d9QdK);R|XpDwza`MQ`W@(XiNEg(Y3A$%(VT0na6GpL) z%PzALmz{Qd#g9eykD7#b_uk0gae7%$@9$IUa|`qt6>$N3h;bH)=Xu+<%*U$Y$udmF&`#L6Xg84i$tSnK357Zom?i^2u?l(cKpm;+ zwzo?qG=JlR=QFiX9vXncjtoG71ZY9GqN81 zM|nNKWpz9%_qeFjXt>brn~Zd8LXKkV<&+}~f9B|W@IEfDLOZ(3-oJuy^dC9}+rFSW^a~yzM$&iHugm^;yu5?5oq+-k~=-Ltf|%7M9WR(C7+d zECj%;ueqMVAEk(~h#Dgt=T;5LXNQ@lj1SWzE1ugYHBk%od+jKasLmL7d8;FAWTnTJ zxhIyW|Mtx2XUh>D8bWWps7}u-L6oPU`I0PQp6UU$7{_JzagrvQ8D>JKA?@zQ^dvvn z%9psf;J%+zc~Rs0;K9`84^s3%A&A&-suuN#kjDDR1(w?Fm{8bx)>~cRszB6c`LY=v z(!x7aU;g+W4UKM4yy1e*gSW^;X}qrTj3LQjy}=oPO5S~v>n$Em)Kl;s+Xj~B^2&!i zEW68piMWXecn$w;MsW_npVj8JoF1+f%HZwlba;%1a&2B+VA*6-sp}bY!(%*1D~xcV zif}KVyiFu`%|Bo)y<_7277tR>5Nt??7vUquP0d{f!bx)@*gXO(&hCZ}>5w9`xS-b8 zK1&IJaJ_$J!fn?B3Ysxj%#9GMW#nTezg$V*>8;|Pw|zAN*$)FkPxWG?c3*|{P43fbzl@HSW*weJ}mk0!bg zjmfD~({Zp01()W}X1EYsD9eq5RhU+p1HSy$U8aB=|wu-u8GLbZAt=*uU> zjb?g^;;!Jqy&em^WD0ZQDv$Z-3}(9T$Aw}8c7v7n`#AAbO@;j?nH_7$XeHOQ7=_hA zp_cZLX)piw{aV{cb)tiNR@)z~wn%dpQeHE=M0n$KZVwe4oG!NqboY?RT5fX|@^IE@ z4~ocaV|)lQbI}o|1Mj;}_Nc+Zhj%_ZpbLXyqvjBv;_Rw(iiYpLelB+^8M4{TILg$$ zdf!7xp4F7RR_~wGXeXqy9g_RIDV^FuMG@sraU5jh?>1LPk^5*0sNuVO;~tIWKH{sL zOc~vA)rAV`d7U5GR(D?(?60D&29uSi$wdwzE*h6?ef^_P%{dRf!7y1N+zM+H2)aag zo}|y+U~u#Vh)c0)tpLnVUnl(c2>+u`Dbp_pnZ7nz$(`J5xlIFSoN(%_>Y*{Rx?D|W zxbZ<|^LK@02Fzsf@jC|BX73}Fz4?5A@!ED;UHdB@X|(@&G#F3>=V0*H1M?g?)~9h} zzS%VJXE^={=`2%aO>12O&q`Wqb4|#heFWXGn&FbqdU;eo&0XunJ~O?P{#jHe%2Y>C z*X-BkbIZ#a}F7YjBq}&Y8`WW4L_f_U&87@GSl=FH1wNzQ3hLtgk=0dh`z7 z)MV)n(l3wP2~|yDMZ0@Xt{%RFCqFp@j_2|_?%ETQQD?);fL>d!(XU}nwW$W<36{o< zJ%pui@8?7Y8>@q(jddU#9QNppi%+vfjv$-y>Ad)+l~!T4}zix=nzkhga|-v`BZq)XhoN2 z$Ysm_Gt=%KQKQwG0D{dDECe4;PH2&Kxx!^2MzGz?bb_%N>fuln0-aH-1!HTJ1mnRZ zBlye9f8*F^&lYz+t!;77@5#)5s0ZF{4Y-3Q{@uoi$QxJzWGbEU}1y2Ibfw`Mzr+9_;rxeUVdOzAhFO2ZJosEE9OAPU_CgppX z%=4(hgO~EyGjmrMa4u9!7B&_++>I%)Yu^6F`cIAd~ z*TZV5!j`g?La{e?AgBMkBf=ABnb6Z(OWHZ{Z;dU^v9r|pS-?`q1 zL6-tCcRVr3jGh}Sj%yH2&BGl3ANg3z63d+%D{z|uj{(}jaQWOPmh?7}-l0E1sNMom zSWakEXYLk=!WKG7u9bO(W#a$UD)m-^LUJlELR;o;B`9Q}@q!gT!wUaW>(l$=3gw#b zJpO`0?#8FWwd#EE%cqnh>Zluq0A+aIXEvN;DN5F&JDFX90(R2Y7@RWt<)tcq*$STN277YgfgzES`l|k%UvCviZ5L+EeY3@~?3f-E|QDElC6qnD}Qa^QngVwHUQKKuBy;KVy z{PL-L?xZ}ZpiJ*!*NM5ap*K1vUr=vr79Oy_ z56~Rol?B%+#-^x>;Tn|?<->Zf`bu-b*e<}dkIK)?JV8;+=75abE_mzDEb>Eh3hSOL zD_a;O^1XZYR)XFS+F&R`H*I6(lQMd3IKr&cgfEzJl?}k*5r^`#-2EU$WlOK-vm<;C z__3oX@LhiIy;{&cFUseR8M9e$)Yk$k9?H@dlW7E9x(joK6XxD!rQqvq7!KUE$#((c zSqwRNR8d;l9&g@(wCl}*G%v5zrTo65Zp?7(-JZ7No1S@5 z0qcK}dY&6f5Y1&x>F#Q7HiTS#|NgC77GK}Yulzt(Q$xCXkDACX9ko^aUV4w3&-NaU z&(-?>eBo<<^ELXP%kMSWOVxfID5flV&0D>0X5gak=LU)?2J4X?O|vS15CDIb-S&Ry zuH%C-Q9Z>zf?^cv^9N&sht)qa-hW7&w3-aJTs<~n(6o<)8T`Ot{V#(jF zsagq_@0!ehiO7AANjtaO39tpM6M0_q1U;vbU~?eEg~_ zANDuaeGCd;r}E|J|JVQaH(vwx6(4&rJ{ItuA$;|f?r&S7@$uU*NOchs9s-))E}&aa zZ@f>r`nF}JO>Z@Yfkas0!GJx1a$l8_!;^{{UVyfO)|Y zB1(8MJvgD0Q2uD-AG7ET$e{tDXfKP2H-;Zl-W(NnmdPiAoMlllh|Sm2*BvJ3%0|;+ zU`sxa<-g6D$kZ=0GG#Ha#s`ecr)(|43LpN3EZIjnuVLzKEv{IJ5(IR%Rw|FBVlh$cT=PO))&fJyim@7=8FAr$JU z{e12iC1~o113a{Vhc)2kYagY!U~s!I4LNA(K>rU1Yg{mI{^N7J4PgFbW}e)|+J>$< zJI)7Ko+ZH1K!bnC@P`iFI^J98PguxZC*;34A-9|mc1pWkeT`#Qa8$DO!C>F8J1$on zjAGU4JohG`mwgd_a>3KlX2G79=d>)e(O z$MrYEQ`ru7_P++eb_)*W(4bsCW9t!6?-8ochGmJ#7u+2CC6LGFqY#__Z?M@Tb$r`x z!l1v&sJ`}QTMr1EI*1ioslJ69Mf3;=IIX6WwS2!lr&07V%;rLk*cfw(da!vop*vSp z7nWnp8pT$)XYSOfT&v!&j`CoO7!Gbs;;qx~Gc4+(c}>&He~Pjo&s;^?TF0C!5;Tfe zK2_~*V`qdG*)#2X*||nxJAYcEvYoj?u5pX-5R2fZj)>Mjr&J}%wzL4IcD?6(qCSF(?C*NX{RmM%=W}) zqBi1wo*}(KxO~EFXBadv*y#x#g&xe;16UExffshnEA@VxyyLQjeM(*8_>-g|Hr&@# zSVV&hBe6SHAEu4{mTX|(J&q~-|Kn@-&Yn1JOm{7rl3b5gljTM@$6vb2?(@lJFvTSk zTWkvt>bI!}=U0U}=}a?5cRq`oM*qZ|VkQIrz4>geBv6tD!#QsI2%DGA<@8c@n5or- zm(SgMgsW!XtN&s~2X^8b7rTBm9|*S4(3$MOL*t zt5Kmdy!1gaL>LUtu(~J*?w#lFiZv50E%(*5m(Sh8pYWt<^Ct+mS0zM+ua?rj|Nd2Z z=^-&)zVc~>#|sc+vRaJL1tN@}ZbUb3U{6{^MQ-3VR3mUEdxo3fghO;5*C{qGv0^8s zX2q*Rgeij2h04Q`<30?7tW}cZ_3C$6WDdjFxt~X!@v?47u;-CrI9G5iEs6v*L)!oBhr1=1W zT*w~OHI)BiL=$3M1%PewgEQO|tj&14%PUg~9X4H3u&E9mHXaOeUvM`7vHpQsq47rn z817LplXg^W+z+sx50}{ZmTtJ)s|kL|SQ|FTctfB@zI>UN2`uAX#~3eS_cMCB4ttDz zZJ?+nrA6$Z>BTy#3)Kq8d(nZv;v`X*Lsf!5K%iZY_j9U)Vd-Li_D6FtPAJ`NIo^l2 zhD2l}#~;(A+^acQwMK`E_0b*bk3F64gY&HrbT;ICvc~&6lP^>}!){BdJ|+vMy?V2I z=mB58WG{hGd@!q>hz-0`#DnGtxj$~}Y{9L2M}e#|lOT0?_>Frs>^(@H9Ja4A#dX>x z=^ai&|9_kZyDDdQZv4w_Ft4H2FyXJc8K?{R5_9PZRe1YCKdEkW~R}8jdb~h8S7Kn zC-J;sc+iN_%WF8_tI0m?lW^Gjm~x~&&Dyo`2a{}tn#^u%Xz9H0Fc_+Iq# z2bm_^SmdsI$yMbJ|1>W2rE;IA4Ac4%?j)0Kd1o!zr5qU-;nvj(YY&U*;`9-f-#3X> zwg>N(`Ay@jXsf?@&%lD^~Zd;q5SWbVj_{c&zceeim-Lu<^L;rRWzn*r!X-i$=(e`5C z0dQ_5=;gDY{pH|e@8U@izib~cn&Sd^dNc)xxag{EQIk5uJFK;7)@Etrkn}V?9%jM= zN`?y80az-Cc+(w{qgTrgw{tvdg{J}Q%~@&sKX+9FD+inKgX)5|;wx^iyGU^KkdNP) z$J0Jz83!No9f-y+c?ud>>y3-$_L|)V z;|&>HvCVM_qTo7r^#Ei`%%btG3~u#yXqT^kYWLP|o6VU6Uf94nP3U-qbl@VrYKYr{ z=;&~Dj`clRSe=_gwFCw-u|W)U`NG{09mLNNF(yZ&vm^YM$Z}@{P|YW5CBa-i(Lip# z++Kcby&2;{uF;qO{mZv5zYa$dL~nI@A%0+Ni`Nq0+in)v*vJ0at;q$Qd_;uzWKCf{ z6jg=wje|oQaCJm1$l&8c`~tH`d6xXJlahbMyjL4u_te8?V!Sovb$mq5Ailw~if_OiyNe=$o0ZpgI2R}Wy{t;>VP6LF8wCzY4EKw8-vf6b)dcBD59=E0q_$#k(^ zEYHk{?WN{diL&TyoMH&f{XNGmir`j7SH{!3#nLMfYq!S3WP`;ChGjU>h|73{1v0!M z0>zRJ;*zlTwV?}mZH(L%WTX5n4)rBZTobDUr;U?2R=obve zRnOK6gM=JBJ036TB*ttI-v9Trt{NeK%QUavxN(QhPf^E=Em7)^>bw5ltdC*r;3}OD zG zS?i&^&k7Z9c>l(07pDuH-#(kIk0^FpSfF##)&j&TzhkCpm~K$GHT7j1x<>z2bBn|) zK8826^aqZeGq*TK%uv_sA#puCkN=p8>qY-lg)JWKBAp9+5dh~X_ssU^4X+SyG6R^O z_kXycz+_P{oiV_{&zbcVpN|8cd2}Sa!iFmzx%gp0p5+w^h-Lipo>|7m`HVWoIa(a* z*Hk9Y)LBETCg+9S71kM>e#%nbMg-BZyP8N~hl&g%G(0w*QWX29jbZN3jJCRPfhPej?wUhOFz5wnBOwbV>c}lz@Mvy@G_pTSmz{8|C$MK z*v~EslKvN5qWfD+B(O56mfSmIg2Uf4&8w!VxoKOMgFiO#V7=mgg$O{z)yfLhIYL!G zX1;GBbkJY{|J6E)>2oPs&s^^z?AN))mH=VCE4LK3Z_NkW$>=_24=XwA+}WDV@0sn% zKQ)Lx5dxaV)feXo_7r*BnW*`_Bl@&K1kqE@2)HUkFm#R`ydN^O9i;&1;H{hN7WVqa zACo7(?tXx)g0QDZB{sm+evErL1##y*B8|g3Uc|*i%y94rVsP8B?w9EJ6zR_Gp!q5D zJdg8$6MKB~fT9TPdcaFHi+Oj=?mvqhc1}}b2+a93mdi2ZVN{s)F?&Q&5Onq$_BRgF z&Mp}Tkk9hx$!b8SCj@kNn`cg49`SFP!iGxlL26w8e?Z4DusLUE5#$|TKRJ|)%XUcSZ*+3p|KAo%+U=^J6Ck@ zt)9ixUKW8pZZ@?LxF`TSSE1dnoL*aa^w%)f@rp@&Oc#X>=C~kAFm*P=>c>p@B2K^B zx18Rm|2Vi!xa2e@`D}tkeY$c5dfAE*;2H0cz|~`#jVC;#EEQW8@3yr1YkOz>XDuUJezA74(<^HGWz7nmUb`m zm+P9}F;Bf*$6w5H-M8#NWMA_SU9(935d+(!O-Bw1qW`B8xgPhUPC&bPh&saFeL;D@ zf;~mFOgN}RQT9Xmh)}mT%OA7YmmPsb2HR^G+tNwsYOJnU5PsFUOP)euesM8_+vM~q zvAA%ym>*Fbpc-p*ZdymE1)3`_@kcWB_tU@R05oBP54wu86ONTU%Ss$cyOa@jCiF)B z9#R-iNpU2Q^5b+iu;NV%5cRE={wl-ma_cBqmi7u;Nqwb)`(e98T=8IUXYloP#)t2Q z$>Lu0#MN|A_Es8&)+=%TVTEX5U7Ve9oV%j3x|dmD(2YP18r%i5A9K_iK!+Fh(0Uo8a%Q2|9El z%Dhlr+&;n>`1L7fv08K2U2pA0DY zU-~t}FB`Y$)WH^c$66#qKaBJ3#yEEH^kE$q?N{>7iy)IQEbfU07p$-AmYoVgdH}+fgIHEV8|s{^4S}#r-qB@jF9hI>1;7 zuX8m@EEDYEEjn2zP-&!5G8UcUXsn0hivzB<0vau(gA^AKfZ_#23{c=rlw>CGU790f zq7)*r2A-`sQy7j85%OB6eMFokMVK2dy~T$>|CuyJ#^OT+ie=cNs&$2dEx-a}B-@O! zTmdO=GsZ4XR<#+xZ*$4@z7Nn(J4WI>F_$1}OFQ(O=RDqawl1viLYx?}1v z3}O^}GYqhjh9RB~!yrk2h9R(|VGI-0B-{1zSk3|DnRW1M$1Yco}C_A$nJ+8AI#p(F=|uY8b_j|C91xLi-6@Dy#%Gi_sRoOUp<8#$11ZTKe<~ZW;vRqM8ZXu3 z10VFs7JWLUEy13~=nTfTP%XM+f|{gz&W3UcxY#`b6n9TzXjPCK+@0$5alj&>01Qx& z^iBLwo1xe@Emqt&nFmsmP3Qb{Dm|mPt`ZWScK}vEK8e?)re+u{#3eHhk=Uguq@D#bWf8)8l>1gEfyJfB7GI$x(ky%UiUCXcie+l|6+9x}m#+XSk0a23P3dn$^3dk~b8b*rQ&oIeK1TF2u=G6#EdaFc))lx=Xm56>W&9X-& zGGHxbWS8xdgM`(o9*7Rvc=s;gllg@5vH|Gwr^0W+S=lF#XzwwRQqOG+I#}dbU!`;ptw&ELtAm+ zyBwqx7Y8B5eZp`+M6x(2f%MGc;xJJ0;;<|o#*i}hF-D?-Kt=odE)w)qK?o^XBJCA~ zekx6|Pl=p4Tc`?RSx_RWxdmO`^$yfbt^;asX)VQQhBz?Ga zT++a?Bsnf=K9i=TFXQ3O;pW|6_T$S87B4c#)TU-KA1$_O&!E_W7%Z;FF+ojg%yv96 zZ_(ktVp-Ko$7~)RYm#F&?>iOQ-zA2AUNY%Oo$s>j0La4lJRygd2u3LL4mF9PuuC_s zPBw$}*+d=Ay}f(DTL&zww2v&gA#a2oT7S}!=|-zG<|n<0b=?e~K2b|}RyjEW%z8!oK$)x%A^+f_~^+m%7Wy!{tD{uM1jHnMT+=i@bY#X*63UQ$}XZI~c z;I$Sa@j+HsRai|<&tmm<->Tr@vdnl@@Y0dopLWz-FS+!+&PRJQfLZYOqs|}{>`?9( z${F`9ci^>_JMlqQS4V&&xM)1Uc+q$XT5a=4#Tpme20(G!5Cd$J z+8iAXx1%$)TU>FR}r zVi|Jvf?3*(aWSn&h4p72;JV@+~#&HGM9N;>Rf z{&_zg6M$HVa#&)3g1=9-+W0=e+X-vjb0^159~CZ1;mVf=ku|+8TVX#1iA(kXenQ#4 z6!!oElI5u$KqMi3sZ}4k-e_{V)fZouF0nUotV^!?G@nURvR7Ix)oi7>@)Hs(QKL`8 z0TJoSzl2Ar2S3UyzXf9{y7Ds<)TFj%MvzNtqz9F5&D3bDM{dp3U#X1J=2@*qi%O1* z%gtlK66Rqhs7Wn<=osYEf$G3&ai@)wuPi{ffnaD?Aa|ShP~bM3 z0|jQUIbCV#5UIbXT3%^^#8%LimJh0?y8`Tm;SSC@p68a!K;>P5hsdIISKy_fGDKKNp`k2iELhrJ6i^0F={O0nA!_ytzIMF zqksUFaui~Lj+O#K3Tc!*3W%^$1!QOx0~93d3w}7L@H(RG z2#f1W4aaI!eW^c_!=}1J(tI)<%1Tq*+Ad%MWkErt+YHhn>uGtLVXzWyhUIDV2^G~^TubX{R^<~m ziZxjxVXRDXi5RGOiC7kxA*o}%oKEC8pjd~2itDf}(2-hKs-_h^mNHoDc|~dTnGeXC zD`yiS$$gVo7M8ll(^2r2Fdh683uwNx+@B9%m4EN!VQ6w8o(7_&e}st>a%q&Z6a zFvemfa@^~9ASE@@#3NI}9>rDT!Uejhssa2q$GlKsF2#-sptxfaLz_=rEcHpLVxKTj zai6d((2*K*qadJTFq9FwrDN_Ijn&98cm1`s<-SaI}}s>|I$= z_9z`drAmibpd&f9z)O#F3@#>^)C-#wk1aev)}+Q3UV^q_I+;wBq|#zCNYP@l957ER zz{Vt~*B*p{N&{>pB+HTkHZlnrDb>oIOyu2xrL7!rScz=q2p{yR0RTQruPJTi2#5v9 z0f1qEf>e(~D|MSnUXW1Q<1iNMkUfs$X){J&!IdYe;7a;H#gQ5Y(D$ia+bC^REEJnU z4g;8_L&sJw>F%Rr>+baqb$|srQe(3)#J{)+p<~%>4cXFL4v0uaR+H}Qbt;Xl z^zc}ajI8v&lWkHBzn4r_;nIfR2V`Ng;rA1Cl$tu2w@0bfNAiMFvxo80RcWD*;g!2E zK_#k^VQDWW{1}UCdW~w2VyXdC#Z)JtVoF6rp*ZVw(t}E)p#&mplhIHj1&K>`Ogh-4 zxMONACQ}^~F|;aBVJ77Y>L3%Xz=oKlZJ^>y$`veJ3#=7@0X9gszq5sUTcNln6B4_G zs>z0N^2$ou>k3kh5-sv z3%92-{GfE<_SA(Q$c0;=w;5k;augfCa(P$A2R`UiF$bsBVpickLRBS8V-6ZPE(jTO z(0nFMsfO~jdZ1QvODm^AVkNSnv>dJFB5P)Oxws>sx?Ic&&~&+M2IDG-j43Y{2bU-p z_qnyA>Oi;RiVC23MI{ClN@{+4x~lMey)2m0`7L9y4mrPdJdlzKjNv4*Re0+Dse;ipJJ;!?{-BB3-`>9Uc8WO;JgNG2hD$>v|~Y8E&D zZc410|JHzmQ*|{_aWhljNTiw>;3Mm)zBf2-Us|QT)Aq9Ob%*U!4INIxkJo3bi8>oy z+R!y{>=d#CYCe-yQj7Fw)$n|>)^p6#Mfw_z70E^V`YQ=a^@wM9pi>UpOM66v#6o0` zXgS)f0uhVT)lk08R%{iA7PpG~N>)jYpU?V>NU%^WMUJ1DrLA-xEmep}ap@3JymSml zn=vSXY+Oqx6K4i0ZVbx;9jV52@{X9$ls2Z5cbH!`ra%XGY9cdvM;f5CF$E5@%f^)O zTZ$kO=2%(;BFa(vV-w_<8YS5j(iEkmB*tQM$WfBxfl1n>$fj#QDQ?jrCdI5fqy}tO zt(xbQ4%i$R+eHr8+(+`2RL47+^%QMRK&(P`yoLb^Qk@)bhN>4kRgJgmbWrJDj}OSYA*b-_yy zO4e#hrLLtaE;x%7FF59blw`YXlEki9DsGp3M3$x6Wj{rio%FpE``D?udP22+5X84n zyp_1bYqB1g=#$C(6p=Xk735om7kLG!Y_IQ$Qw%{WvRO+_oXk(~bl1GEA;20pk}x34 z3uI9^$#Z>DmxIlXkQ(3f>shF!n5LUJYRX>ici^DKdkW6lA#|sHMMKn?!@rS`Op(=J4>VCX!xxWq8H~lKk*;Hcn&jLAZ`{d_qj>H?NUTH6 zJq$;yh`D-4uUrI>5+aDBwOr=asWwJ=xmd77xiC|!n&l!WnsPN3ETM*(peD7qHCZFn zL9V0~?HBj9dIP>bcn(B>TY z9vnC>b`A!MJBMRxQFDKDc0QbLWz<@!8V43t<35sYQtKGgku03jbqwIJ2Dy$w_$|(X z&vFs2)Hw)<1xV*G3{a42(Wlr*k;f}b>xe;O4YEbI91xLeFiZkzh|&hbLa_|lU@!}G zr1pQ+vmT}UzteauCD6g0^u(TGDW{28O8mXm6RVYUgJMqvP}~!Vq0JNVUHU+=ClXTJ z6AcGMq*`m-<1SCPmYbozdsJ0OVrVtPT3r%cZU!JF%s?Cvk=o8AGYrCbywb(G29D*( z#k%G*X-aJ!HmRhSl+#{((JrfeZEqbu%I7cM$Lb*jJzeX>hioW3gqd5UWgA+Z%ymu5KH+=3EF zM=f>>0~L1*%hF*C*|6_p4A-)U#%Mh(GKEalw(nz%x^Y)^#InE`$<}>wdR6SD7q{*J z;sQ~vJ2A8uhkE*akK(wRXx*Wqy{})KO3&QG3{FB|2BRR^mP5gOv6|_t3X0qE29JwH zwdKusDxK8ACj1mJMS4J7x=L1~u_U<$Tz@4&$$r=gl5Shv57%%kN%h0^XVR3~*nn`{ z+l`x!wVg`WrF}rwB{w$w1f(q46)#S4XRD~-do(kEVl_cCLoCqI;@$MbOmELyBmWMM z6$ReyzIPOyOD3!T9tBqerV6f3u#3UyO=N%kvPW}Zc!AeyFyd?XbO+O~!RU$QR)bLj zQr6Ng7-i~o{T}TC!?CKMU2tqWcs-7i_gaX+Yb`|L+d&pR+1saY0k2gS@$KMS=D}WH z*S?jJ09$>_FhW_&@OdJu;T}VjiK~FYh!GqR(bAMpR6ySzO*x?0BtcV7EYQ(1B8c>K zdyEJy8mkFL1k43N=^^Y~POi$wZgV%g(qlI;KtXbmOgcyLBAN3Hc}QYv+#)%%R6bEW zv#cFL%`B}qB(uI1O-OOpw_N@z>svB=Y9nyE9fXgAmadySFxDYA0^LValXAn^P|fE` z-H?D-g>*y100pT*)@-=GUyTPQirQ~KOUDcz9_x{VEbluRCN(BXfgVY9&^~gbL^O!a4 z@-aS7X6m)3(&b~uVspslW5)waB>R?1g?AM9EdXK>s&63%C`i_z3KvDnn+QuspECo+ zDpU=!ENwoaE}km(iTd6t#eIT#V2RYoYbLkpOGjQaw@WWaUO;d2 z$HiDiD-`=9fa3m03{a39>nz4w?BC+%LKz8KJl1LOSdSX(G~Y>9YDhX;oL6WzfLL)0X0hVl$~=&gnnKUki43h0V@YyA-+XSXMvJ;p{k5aW>@gD+ZnsB~IlNSnx$h(^HRy+SEWe7XUpnZwP%K6c`kAFw#|n={ z_oRcM5;_bEbfmh^`H)iJfTX%VqP&=DyhJh8-&>36_|c}4L(bx2GEi~zSQeNkHNL?? zZRsqf;~N5E4RU;A7@#289OH+0Hg~d+Gu7hexQ1gjsyVJdQ|Y97@41{QmG<6qH&2qi zH_*YI8t~40il7A!TR;wY3BQ$IZp@U9w{hAdL2tHYlKxor6x0KLmw)At!~g@NMo;+R za5FiV9#A@Za$sx(a>*co`-{zt-64x+&mU6VIF4cP=nWWWIwZy8UjnIF-%aC zZ0W0q13Zm_RR!TZ#Vvge$BI--Uw>||Uk?XgRI7zF(LN4j(2@>hxmrE?VlzC^H|&-R zVzh)H$JJVDoJcl7<)!A}5~b!oQ>i8AC5t&3Qn*p^yu@O$8Z|Fr9!N=cScv}=I*JES z0AdlU!y<-OV}uc?<;E~r31e6uNJ;iq2>1%mTNFF5Lt{CrId)&kHpwQ(CF;p}YdDsq znw^CMLmJVVl{O@d#X@AO>Uba}Rc~>J z39dnzEmm@1SK8?`a4bmH+vYQsQEFm6Y?U^( zH5%)YO>O;^1SN~i3F@b*tvTIXMHN}Y)>dS=PN28B9Nic|VDTbzOi+`W*&|#-)UDE~ zHE>vioY@mT=u;yVe3nI1I#MAZ79d9|hM`Tts;38_mH>(?Aci&t`hLw~8#Fg-DjN_3 z6#O_57WQC(=5H`M8{(2CoUPFN&bJFA!$MfL&zmAREKEjPf4Y-aMB3pnsqo-Cy{NUo ztoQpZdRYM!zq6BKnj_fj)uimtdXep+v-TghX!lZ+$y0ssgMrDUuySc1%vdZ=_Q8$^ zQc^)?56r|kay?yXkeLt2qGXVnpMZ>%TAo$owbJF;dax#!XYEKWSwQR2SvBitko3S} z#S4geV20Fyq}~ql<8n&}Bo2(l$N`D_*yg!-H|XlPl8eWsp37KK!#JLnO0>fJ-V1dl zNx2k*m5^e2ASE@~TMf^9n(P@QmLca^mIESEJ%4bIQE9J7KrBJ_dWHcCQiH=)HJYH) zMh_xdw$kx@1IKFQ;IR2j4x8E;Y*NW#QR&X0hsUbqp1b#*WTk?#k!-OV57rylRIV(Q z24xFGmL`L;MT&NDr+5|y1DLbL;=U-#a&aDFLY$X^#Qi$a`LA%5nGuJP`era3;e78F zuW?rcyqGf%75~@5Q9w5hXX9-#9O(WTAEH5x0G)4lpD2};*! z79=ZAd5v~(EJ@dB_n9=MVjplztzL~S-BhWx=OMB{-TZnfNL=d7(+Z30wK(ZtrDvWbB+HX$o@5fzmv($yIlJs< zaEvk_ELNl)-||38x_vT9217aZD{r4191GIzll$CZp2-&~yraBbpvw?b?SlD6Qd-PI zKOd?~y7n*+!==pQ*q|vj;Y5iqrsq|7nSJSm(+6Z-a>D5+AZw+EidGpSBt(-?K2)sn zSeG6u*5BJ@Z7?VZTdHzdHC{qi{hef`%aM{rTF~-xYycDG*d!oj$%)WHMP?LFgaE`! z)I^9FpddLPTx@>b&#hi7LShYSK4>^vMQrEt2u|s4(`o^vgb3n*h~!|6ek%L0;*p7g zVi{_%W?7&kS+}v8jgj?aq}DczD^Y{Tid5ZhzPCEc`aw^JZ&rj9FC)XzRz{Sdr!q27 z@iMY3(2*KfU`=$RH%Lo6PR3#-a$MnfASJcv#z~}6N*CQ67>kjMZtf#_Ny>R$8vTY~ zsq=bxtVuer_nl;=dH^q(G*oF1-~+NS*^~PTNLgwG?b1aaH7gxKOGs8HN6<0}=}X-j zAX7@?mEIblFj=9zH9(~yiK&J=@~~NH!!4dPlMQ$Cm|3zY&9w!zUlOzp#YHI~<3%Zw zkeyP44SMiHj224=8wA8!Pt7Afy4ZA!uvqXP;q;#NTkXVBpZCMV8NUbO!!K&hD7HN;t6$OFFqU4H#NYQSgzRvir&w!M$ z5OKgl$?kn}I$KQSh_twSw^%Ghb??jrDar2LCXwY-+`Tgxi&5RXV}hDw6M`3U`e{M{ z#41!1LJUxltU>rLjZs{K2r2F#hNIm-=Ev$bw>|uWuu}eEcpxR&r1o@|1)e!!393o8 zcUhzzLX}2wpMrIRghSXSwMBt^OMDLn?jdpQl5_Klc-kfB>Iw03mjqJ6C5fZ8X3o!g zs+se%R6(4z*Ub4@Uo{g*DKmhh)eK+A)!uS%_`)sqYHt7o6eN4sDQ51`L11z3>LapQ zRPXAiAaTi#4R_w^yL^iqE{ny2RL90Vkdkb;)ZH`1W5N3J8P#yv+h>xNSe$I=?k0aM zR%{826}JTQwE3(a@f7=PGvHA^%j2EY;yXXzhNGy$9;J)#4IG<9?oBkG$yJjp3HBK~ zx}HslDqcxw@K}{vNoc;4tmGumCc{EKZ6F9`#gjY%$>P*}T_hoWZzp07*to0@aYus@ zwl~$?!S@Oy4N~B&`3EAtAeETZC%e++R1K?&yHY}8U21-0I3OZ9qR6FdPt(TvkDl-AZ<*#mg!Nie;!}70Uu0$(GurkX5a?rM6hCMDEHf}3P4K08V`egf|pGPciKbqGORr|q@BPOd18sg!pth>d2YO&&e$~-Ve zvcI%R28)vutPb|mUkXSTrus{fgbFLUGr%b~k5rgQ@y>t;$lBD-fR})jCEH(IaH?)d zEN*`d6su9~uVsObWNq3Wi()ITP1|EuplTEFL7%Km+hf_t71t&Ju>e(@hyezF#! zU~(xV-}X^MU`aKG32I(TOp#0*95&z()l#U2}K$av&gnok70-C6+9gFKQfLMvD!^8mFBwH|f#Z7Sw zwqSPEf-Q(UH4H;1KSm=fTd~qk#DTF6ISg|jNlj`PhBUML)A3wxhn5b*YBbg(hhg>C z4ncOsO$^re5MZ_DpsT*aj6OYW--NaKv6wQ zC-fGIZ6zo4%mN+Bk;Y;vw^WL|5dg6U)r}AX6eRn3Os8c#Ufja9Cupg5(gWbQi9HV@YxsuK7%wew3Okt?**YDNe1f zBG06KTsn19pseq^aweq`k;WLVA+;j3S#2v!G0*ktY3YiPhsWh2SA@Lp zBr7?uXkIYo@DR1LIP=+;@;6fu?*Ea zT9&p-q&EVJD-nQLgQ`Tt00pVt8`_G{$3#naZy1Yp$PG`&(^4o~gdeJtS*3+yp`wMt zEYOkatGDwLT%3S;vhdQ0SZzb_&L7!)qyh>>yRC| zeNAtaONJkXVJBA6bqT5f_L`miPCTiZDn~ z5tgH+L`(wNw3e2Lg^HF4v$Pn)-2W*0oKj;Lq^L102SmK8mlsey)|EO>{@dJcnL(KP z8M}PokYiaNV60RPM`wfKvD}N!&bp5zv+jS1_7{GFJ^esHNk0&uI&_TGYZKZ2*pLA# zrGr>dC_$qsek=`=J?oKJtb`j)`K`kwI1VN1#vUeVPF8WF*$5$)c9S4QZzdtElt~N^ zqy+s)BNiK{eVGJMDK8tsApuCQ(j4XGLQo0+Ff3g<Cn z8pb5)%Ps0{KG}&vt8jbbvTCe^}RVh7S!;*+_nDP!8NGwEm$i&g=E=cgMyo9ja zT?|&jT`W(#yO0!FKIILa;d8#L8#?>3+c2_2+|MwsOVm?h(qcNrbPr&X^l6y7V~iQb zc8%%TDAZgPep}wq5fuB2Zs-h4m*-xUM%k-?t~zIl6cBhIrPU--$zCRLLLw$HI?^r5 zT-`}q-l700(V`GXt1*zEFJll?!aocPbOa$EbsOBgu^_xPJLDq*$eK9hBa(nD6oi;Y z(n&*QhnU6?SsTZ{#!|Gmd*&KfVX^XRD-XT~pwvKN1mpW5>p>OR~hL+uZi<=&D)#x7^0f?{_pD8^`rK`ZM|Oi+V3xZzlgLcOM%7%=?7h z!zM&91qYb%_r+Adh@5?Z*`Y8eA7FNWCE}NYEb4uoUuWmB+0S{BGf9{rdpSlXyR2&^ zY_6+%s-ZJoR9Jpv8OWJmeq$HD>BHk&25VRs)q5!Ub+LX2#nnao{z=%D zPN$=(KK+&7mNE+G(6yxw8(9q7Qhn`YeklS$l_Fur$<$n^fUKSaIhUE)xlh>E;DgRw zep_Qfl*=$OvKV$3^HX&!KEDs472Say+geK9|OfBtUI zk{qhDlKXdtq`nKzO1N5E$^AP+Qr`tcXsr?O2o_Pv*E$m`p4NhkFZaa9vS0f7z)DJiu$Pwp#by zfcVI<9-y;rYXFp=?Oi*4WGQXOhNA&cp4OwZ+SeYpKHInH(CBPE zuWf@Hp$W;9sS3DfnRRpG$+QKXDN_}8&ob)*_hi~aKiaj>smPTr@Ag&X7TYy5uE(%; z%o3=q*sH+WhN^+yNubws`YY7$$# z0ZYB2{=Bo^?Q%TaRD-WhuOe`I)t^c4)lU0vhw}~ICm6@4jDOzSya7I|6_dwonW{4N zF0-ysVnX@z-L2^w3N^g=*Z%C;Fu1DK{Dq3XK&)y*zXGv!pHw$gwk0hPt6bnK5L-Jz zE!Or+8DhQG&Tm_L6x%R3H)#GsZt&aPeRlk4KAd6k$OG_25Bu}okSQ)ch;FefQf@e= z{53neMWeBZ$EYG%zw8j8d~i~`{IWe#A!5jv)XVqliZ!fr#rh9BsrtikHC{iQ;F!8U^SHfl8P~8* zRs9E2l~^Tf-1wt87M|v#ip-^YjKWp26gKO7Rx##^RNY0dBJ18lh_szWmL*kR(W}V1 zs}Le>Ptn;*e>{9tt@^JTHLP>O`VTu*jgPD0{YSx8+TK;8hOJfAJn*{CpyNarp{j6`|0&c1sd+%iz{$vGiWnh z(APO+a}dEw$KFFWADNZa>m7-G!=^Lye;nAYaNjVE&hj27BRI=-_CU2n6Ph3@IbQ2eAGgC7mY!zEppI~bmy4wj3>RE;@C z`;OV#xmf*+F&X>jL=8;7(wx)-l`toEwDOCbGKm+(|J-L$)D&C-PkQAK!7A;B3)v7$VrRv$^$uKON5G^$&YDw;G-0eRE`}ps#c0 z?jwYYqkGTX19(>W*vOI|I*mT6HOJu+ifwV2nZMH>od z(dI9?4&Z*NdZ({KZrwvY>5;;^InCDQY*nq#^rI(zHd{3V+xCh24`kY$W^21#W8kDt zh4tBNIRaMtxcfH=O~mFzn?Luv!SN(g!3tw@c4K1c&xaC_hu>uMz%>A!3aHcrhkxy{ z8`eaegXi?$sSsl8Q*4(Z?Kd6WsQyF&9d|d|W3gONvObjpW`R%nT+kL*f0s{{y+qYum<@Jg`x|Dsq+ z`l@z#7W#b13$?K}K)@XjNB67wn4Ty)nVcdz$NUo!1^AZ`UeX5a%*1(kM$$w7^+^5S z0rd{O(Y2aKvT?Sr^TrJ(2st+|ac;ynY7?$yX6nX0yg3xf%b@4Hcs!hir@TLr^4#Ju zKmYS&a|ZQmJoJfSstmC2yEtNmt~g@fC{wX@$u=MRbc>)9k-o}v+$gs z1)~Ak_@JvfRM3-)YW$}=!_{!M_TfZn+~2op+>Mj7_1Xt1O~~FKGqbl{SL0iYbA)ld zcYcbBp3LL2=RCF%b4I`WL0ckfOn;x3TUQ|)bBkiE`psg<#`$_7{6d-eFNK*QBMpY5 z%^;Dj#aEQA2rp;wJ9P#lX(+3o?UPju#0R6Z;e1|A2M?3E{^G05by5Nw;78H`$>d~< zkM^-eI{)*pGXH{>^ZbU)vq-Xsd!J3#o5d-b-~X50JI1TsJC=sBdbg}dg_~59)3c;= zUwk!%+bV!F{{vUdt%=DBAC_6+VQbE(Uro*fQqJwSU2cN}l*8QaXR@YqG$}{!yZZ^) zI8QH(gD;es&WTCWz0lCqfh^4YM6HeVJigOhoRR1B-zgiv%k#Qw-c}^ze!VRq*}0-2crr^T zy=O_&aekiDe<$C{FQPlEYKg`AWPbWDq6niaqR1!8)yLUIbQe3vRXu0r|&T_O3d+FgmAl3l=d^$ldMT3&qdf zooaR6PAgmTx$dv5cH!n6|3Kt8DHM5+#bSuH%G%Di7mMX5vAR^U72i$4IeA*pW(js; zgVn_T1p5?Du>Ut|vO4?F1snA!Sx$b%*}D(zq~nadmXw1`b?)3XEYsnrqJW5MvKxC$Gf6Qg%8Q073?PYYXpayU!w9doKVu)FxX|QqJD@>g+{Rm1XmU z&HxV{U@VGVg?Q=ppUpU_&SpFnWwUcPHZW|nJmx-$lH7YY)}huV84_~#UU#J!rl72K z&Qb#=_Xm-oy=SQowa!rehqKLW`sL+wE*tLeB))UP;1buUOMd~~uC}=}B0qai7#!*@ z%v@4`=d#!)61l#)^BAuNZ2F9NmHWK6p(*6C*|NQ#b z{^o1+KmKrI??pxjUze$(<@~+sY@j}q$L^lBQ#^O$2+f6w)nGgs$=4bB%Ta>OGfVxA2~%{Or`J;7DN~&>9!tBNBHE0-V>}p?1%AtMKu>3IBc~nU<}IOV z@8Cucm~}nn{fTT9yYx}aiI%Iya(GHtX+9X4wL$s1Rmr7~9r&#D`GA@9c6R2=&DH7% z&z~>whT3*BnXZqpNQ({E$$DV_TFI9N_U_DgAapqjl^{o*5kPGBqd!H~X7`Q&QsB;e z9T)U<4u&0sYdEo^Ke2INgT;LM$oY-%?7c^cJCbsK-t5wbe0J_yXi7VU;lGO9?Y(Q! zO2v74+2u*emQ+K<3e7p7<Mi(R$xog^6>y3KRcInduAzbG~dK z>cyj2QTxR--*-~GGc9NF``!9-s+r&3x4C0))vSe(bNEI}k{q`j%y6iP9(CnW;w}46 z(Z%-VmI*G-(X&bc3h0xr^%eGu8klCsb$i-$uI{_Y)utz>bl^DC-%8Hee6u4N6<%lj zbZfqCKjLJGJntPpok8pzRpeJ`LtbOoVau^h?C3$sb=Xl`TAIVZ7Zh1A$}4RNp&1n$`2pux$75L|Lje+Leh{iMeV!Lg&nNiY)+rPP)j zCGH|%so!#ZxrTM?FiL8#hHW^UVVl2@({^qFBjp8@grO-7E-1tIZdde4UXGIg-mL{;QunqtBPTMtR*(9Y zWE2=dMhQ2OQGD7zqXZIU)F3A^ihw@h%Ox2FMvzg$O=J|Gq`ZcAeXOvDRN=h#Y%)hkA*O@F>FHvHQ^VMbw-L;8Wjp__j~y7;N)|P^A5tdk;prOt5F(oe?rA`@ds<{%mNGjjhhrWUO{rewW>o)HqE39D7^+cd8)Yj?m+E7Z_aF`=1Ng zEew-ismU1~++o+U90IUvYKm`PV**?olm0~c z3#;Y^SBb4R19jI{e$}jTIH#^^)_-rMS9fO>)7KYdDSCUEV>0*Z*2ZG``g%r1Z!c;L zUy9zEgP`N15BTQZBf1^sA+F97{+<6Ia}t*e=YX58WI8IW@Oq;l`N?7xsJ)$C`BShg z_RW-7#}2LG1@8gq=jZYU*8B_JW00)zjg&@Wg}(5n{s8P8i>IR4^Ka^pVzR>Tq!b!n zNc?`#t~Q+`lf%npu)y{d${&t$f6MapU7vL6h`N1x4?bnDXi#&$Tp7xwf2RxGrY zgVnzfVTbVWPS%L1L6BASa& z`|$G`n$`bZT78|AN+66?iWq2XDr%@aKUS$7oVEWTt=(7B?mw<$exEz$>#nO7w%@~l zk_4QK=R;;F{#Dvf9H0|=eRFX%8?Npn&UCer6OsQYcbRq;)_$Z*p#4|mNMRIoUDnAT z&lhuK?&JhhTfE^(r{6{4F{Uej-)^CKGa z$T-ix*d@=QQsg!a;A$6uP0<-5PFIuR6gM^uaEZ!z-}~_L2|3rl-YM5n#mISh4Q3$Z zqq&KsclB8KbpAD%UGSW%E1DHr!%*M=>^AO;t;QdH5*3>t3fzg$YM%>uAvZiQ8o({^ zTwGg|k$?Vj7YY{r)0E@HR3Sg%hLI*4PLIy2^?IV#Me;X{(!i|!`w8uy0w@mS>|?-c zK9(P69|vWn-)&K9=VakNVFd8=;b?KJ4V%AD*n-S@|2D0+*08H-^;EYP(*m^Hv^?G2 z$pOyKqHlNzA+2^8E9!LgnYXs01@qem6PPqwY`i3hx(>=Lm}J_M&n`!vY=Y z9*a`YhIMr`nVUfv8dv(K&{p1KrQlibvx*c_)APXwYmJ`S{42IYRz99j6R_Op0%8ab zj~KWHL*mWoy?VM$e@G|2qnmsAM+|bPI1{f^CK6&gU1fAujqV?P2&Xasb#t{+J2U&a zN(`Q5|0v?xvE)?k(!B!}iTzdmU&7PNdxskDsQE8@PFD90&G-7hNOTx%<`-@wy7`em zUC0kM>p*9-|1fEG($Q$?vikDu=r*-7vucBfDC0RX;I`r(~elQ=- zWP_L=b(lb9vEK`=EVv;wJ&;Es)QPJL#BuRtTh6Y^2l7dL7XMa@c&P{3XzhtyHdfUs zf+4VcdA3;G7oM_L^Ad&UOhlTOXmawI^!lr3syYt{atpFizW&<6z&X+DuPwjmY<6IR z$$Ye`W>}mV;6AxEUhNR&u~)MbL+4CHnw?l`%0PPg5@$_MCevzlbaRenmQnTDeDYu` zD{}erWgML4KO-5TGCi!Rf&Pfsoi>ZRn`(J)MVlfrgDWM()QX}{{mN?;A%%Je1NAJM$#$DYiA1s=R()cmS0e2(u2$9 zht|v8@#xXnYB8%KxhfxA?n1@c`BQu02XR;xH7kP)x#~3pYm}^3Z8RvMYBR{cMoVTO*s09wuJHGh)}wJ z4=BM|=i@aQ1a@~N7UPe2w@7WM@86a9&@ApTCW5r|Sk4uM{r#O4;Gm;j1)6)Q{_by^K=co6A4Yl%VKoXy|KIKzFX%J3%j90pjXER~E>~Km3arUwG z+987#r|RbD8?d4Aw)?h17~5tucsQAl7Y_ydjoen}cqqVF#mjLfs0qSZkKy5q?Q}X3 zItOpUu@?xaydJM*r6~phY-8J67d^B5ll9CY8UU>&*hTm z@3YO{05SdZZ2IN{Dfruzf@yWK8LZDHC(;NXmI`U`SkG%xPxHOiF!P1fQ*0Oj#SKFY zFia3cdCZ1Wt9aQ#lnoB^a}Z_occTBhRJp9o^Acgf{Gqg9JU|xoZCNs2g4UwBP?jk! z8UV$Mh8SR*u;Id0Z1-owc|Q%81Y;$x;gTQYjxt@0C=6vNUq;M#lp04lO8s}De=%?r z)o=VN+c9P{CVYY&0f=Ba2$)v56KzCc)$6n2vXWDbo7uDqjWxW&8q`-36ohgf*NN;= z1*s@Ilrw;1NgT=~w5#=f8Dg04&y2$4&YvAN zavwCeBmOv;(0e87VaDv{R->^HZf^D0cm;EU){E)6Y+CXwn80E&u7ZhgakoF)&gJ$; zzS|Q76FavzsL^UR#e?m_1@rj`Lh%{YXf>NoBwcloI~X3zd3ScyQUa7!aoAcS5!oiCa&`K8LTIAj*xb}-eQFsH@U#Cu_d^w)`)5mC7ZpT*a6O} z`9MHNVp1P=G1mW9xb`M=#QZKsp|L*K#i*|&C|I(qGcnqZho-#I{UgX9Ti(mTG4{UY z9&7fJT{k|9=AHZQ^zC-#hwp?Nl-rfj5_WZ5uxoH`u+9gr1-AcY>o1VYyyiVxgneQMpB}E-L#T-U=;Or0AX^kuOnoz1~>hnJ=T-4 z>`PiK26H~mlR%3L%3w{`CP)0`Mt1Dk>th}elk=Lc_kl7UPSO@?IXQpy2n6PIqesF_ zkbN#%k`l7d1G3MFEC>=t&OaY4&mOHOBehwV9V9HEn4W`##V67cE^;iE&~Peyqx?xB zqcFRh6guoU@oF_%R5GZffY_pFV#Wq>xTLX=!{q!Wjr!&)x1<3?Fh#s~Ek}6;4z+eS zMbzF4Oprw!3fn#d99sLLTFLdg0*CUTv_pBHNJqrH=b{o7nD?AHYxABHQ?RdrV2UH` zM^;0*-I%>x-QY0qV~h&YV5PQ6e0_nf_6yk+Wv|o*a4g{&E5UI&<#I#sF3eO7V&&FerEXmErV@asygfkdQ88K7-45k5ME#4p@ z>;s$Bt_Sze@#Ob`0UnD8hY8_=1pRh29G%gDG+Kc)^~nC0@Z0})TdbT<r0Ufh+A}Luq?4gZInSc_C1Qbg1duR#9+FTDUKa!ew zvy9cO*-;%^ArzH0%My@Pag38KXUUi@Uy%+2;2}1GN9wlE!kUzTj+JjBDOofeuN$k= zFYtsNE=3jQ%pV*pG*;)v>*^~B`uiX#qfWG{##@}AMx?6{^-*^GKm?J6z0PZMkrX5@ zoR!uI*J$1`IuOe8XQdjBWpVsa<9m(`nu0@?HWfE1$J60@fciaFdxY7CEK{hgkPlg= zQnggx^h~<2@(MtfCn~Q<(5;N8EB-)YKV=rMMHw@qaN`Z0dwiugWfCx=OeP?k#fN;6 z8En~*&jPWM#~3zQ1G(1^7Z}QFpby6q{2J(gCR2p-d8)>oN}b*-o5$5ytmcXO55ymD z!>ieH^9XTtINUB8rLs2MLt_no8}5B2LBV~lrdgmTYU&Y=+w2n3vhQsuwsyo z%ZW53F+N};r(I*^6Sd`ddm3I7R5oCXpt4MVz!phGLgNc>VGLE-!kfWiG2gVHY0szi z(7|%Cn8wDkh2^I)W96sQkXeFQdDFY#i4oaLWXH)W4yN9Z0U5VXrZ!i0_j3$#e5S;S8B>Yd?tdeEp`X&*2rmj*&Im% zvP^&WCKHgd_#)=#6U@eG=i+F9J66ye4e*!2iHx@>TY5=Bvs!-0r-u^eudtt7{RS*^d498XA!**J4EQq_3fE~-;8SeD6e zb)?y$H9qS1K+R-cwz6eop8%6p`lJ3J4Vg1OcJ-1{l<4YQS+i{H8bM{5{@68=iiE}o zN+|OI4R&!erVQ088w2=oEX^M%`JYKsd>6OX56gCOH6&~EcX4$R(ifl7amtAAl}+gc z9xL;wbmBY7O0+Mw`bPb&uzit;EKRg8GDWAj^?bNopQ-x?_7dk1)8bqT5|^w5h!`+a zblIg9SArUjWvNO~eTy4#42BhCC=)Hjb2ltjixq$^@O(+OCJ{x!1j{W#H1* zvTU$cd}(=p&QDi}NkZAua*f4mT&Nfgnd)!pf-_0Xo3)sp%L9jH1t$R`1t$}bvUmgG zr`xJ{;IcZX5LuhwK&TWXF1~@jTs)))gjT~n@60jdi3W@%`5WlXM^Y1>KBICrM>}v# zs$)=;fBLK)oYlJ1XYGkeeLTh{P#@{4%3^F1$gJCsu}P%t61}X3_uW90mP}=PypQMr zIVn0wNuuLxT*2(3Y>kUxSdPEOWzfMLM%a^Q(AQuhkso32L$L;TWW)bNHi*~UM4WC} z=t~2}TKt;Zd?Yo&U23N4QyT1BxY@Mxr4wAcxzX3j{%g^krh|cX|HNA%==cR?CO*=n zAJ(hoqH8M~X$m|R>W?(VcajyKfQe**3zkj50!)_YPr!mS?M@j91}Jw*3zl$7W`e=u z(?Js6|5io>mG$}4!AL4HTRd7JVzRPm1z|3C#Ll!QHc}W0;>$K~Mc!ZdnjbLYW{BEh5PKN`k_ppfo*^ z=TGyGf*K4acSk`jZi-SJSudijAFcK%6K}AOwlgfw%4MefW40EA^XZP+GIAoLnEi<& zF3Bh`0^1TUC?nGZEUm+{@KPM^sa{rJEG9D71=EBOk>%9WgfIn(3l2MvtJAA^1VR`j zyA&8imV!eDYp}yRt{!Z0_k=!rlfA>+;4n8I|7reCnGVh{j@1eC>@$o2U_w5_NQhtx zj)(@A?PVVkB?RW;BccW~YE>j1RI_8XEShiC8b?{R{yXJ0IBHC~5HBM4VY5&CIuxen zqsH#9N#X_0%LpefA|{lO*kB{aL03kq=;Oe}$@;;Y**%9wVaPiRJCO&j3*7DG zgo$f+1154GHXW1GAv!8y_57y8f-ogF;A2JxYotc0Fu8&(u3hb|vj|L(g$>1I&%@5+ zi8}0zKM+&U=i~1a^54oMJ9=bAc$8a3l1 z*~aCY@sYb{(wPy6U#d#gW(ChN6N?!(d$BIdvJ(eS8B>Y zu(=cd$lh`t)1SS$(*e%%d2^>DF{uxRu_q^+BmA#$t?XeegRmMN#yVuM29qWJChJf3 zoW-FqFHe@-Un#pm-^CwKR;nY(?z=o7rsow&?*l1FWnG3ymS%k(&H9{(gX>&bSolOi z_D!lj5)0t#T>US}+@B$p@VBDe6H1tSgN@t=TWcmY{*QFI?5(vLhN*dLt^PA*I>{}| zyqMb+y5csa9(A_~8LJ19Suv3|)k3AUNz=Q_3=xy9R7@SBV1~-4E!VX61WF`6< z*0bzUx`5*R^C(?>N;=&nsA@${XJ8`sca<%eC>eG1RTh5sM5)1HcAh9Tf2XXc>1Fws z(>n*y^rp&1tNUaHjiSz#S)O1bmN)3htkc&%EN^fkmbdt=^nF;KXkwN(f2V?vHg@z? z7`~`?Ar#KJH>@z&AdVI}eUw%&Dslr87P&npvY?eG@t?E{JLpC^MMou6Z(_sLf!Y4J)t)c%*qpbiweH5l^{O6eif{<=eH6b z60^Hj!uvv*4n0|K>}M~ToB)AIohK7!oJ?)$7m(E(`Zbx|&X43w?d2DcEu8<>WWbE( z41s6DZS%>1pv*{^APXIJRjDPld`Be+<){V~d|}nZ6|#6dB!6eKPP6IBUym`Zk-Xo$zcI7~GBo+vNa497*~NTHy-7)F*3=wkpyIwuwN%nI>Q-XJg6r;D8FC#kXVcB z*S#+!B5boM!RN!#$wOH<`E7Os#1dSa-F#?Ou&U&CQ?UX7#T5_(Y!J>pjly%e`;w?yO0&s+M?-6*mZ?c|9I( zaJSQZv6|6cD_h*lI1o;U4B8C2~N_RADYL{SbOBYo$QnJ2~d{I zC+QQ3(r$PDc^_^El!)6AHp~-_lE^2|XG6(c)*KTIQ@c@8jSlXA4*cxm2qVgBHJRah zYV5MFAI**z)5(Y*ygj-xnc-$)L`vXYN_E_4l0Wxu|AQLwp;X1F09P1Ch zf($SZi+>X09W#W#pDX+(MLyuZw5A9|oj>h610f%09HzY zQr+)AgE3Cd-Ya(zS{G4N(q!D-9*=M-aBK1P@1Jqf+CSr;$v=OWU3e|^ZrppRNixpQ z6Z0C~`xytqx=GKsv=GH1jZhxO!O>v_%-5gg<9}P~1Q}s4^ z)ptGBY@FX;?pC_`*G10kfoxW4k*4?JRb+X^tA0$my^&kIr`zFbJXllPwK$$)Z)dTU zmm5s_F5(y?=lj}j#T-MR%xC-d8SdQ2o_B>)&@}s#8SmYt9obvxn(;VriW)O$&4w!D(mzoralkDh!GU7)?U zQi_bTyJMHDeoVRjZEh>I9ImhyNCDmIx!Ymit&`8h`MkQD|N6hAO#Y@glWJH0uU}an zap~&WW;Xru^4-iVLLqW^GdG88Ob%(JjIqT1`QqUm$GKGp`+47ajZ$*1f3sVzqY#w; zUuNh3(QKfi#{aGN3>yy4;Xmw{L#qo}3W9kej|*i-)>sUd#E~_O3(6oE>vSZyfU<+J z0KjA%j75lG3XX!Qo8q#Mf}OepDtr_Sc%TX5A5NTp(e{DXnuOmU!&MU5Iz?Y-w4 zuyPH9GawMb6zucT9i1434!2YHdW7hBv-f#JJkB%k^M>C^R&afyNVa*jlsm227Xk)w zEQ+sB3_g>l;0iRG3U^)4Fr8YX8B9GOkbRq28!{{9E71NQ-p)Hfj95| z<}xz3-1dUgUP3d4E1nnWxV)jY6h6EgQlL!+Y&1$IcDQkr;AvUR3oOV{-h^6d*p`R;X`X1^U?w51Ld(6&#=2f>8QFT>U-BJSKrE^GG6xQe6 zw5*MSC8l2KA!XJ@ym4MRAdLS=ugtF;7*gtqzH(q(!VhN&oDC8s`-8EWm%t+xwXRFx z(XSYG_T}~kXV06{cA59(s)(A^eYugcH`zn0(kZZC7S5jRNhvGYlb49S+Yp)~!t4!U zw9`Fm2!mq`oP7rUa@+-9SzTHx_f*UiH8bxsFts$oy3fG8MvR^PCcGf(^CR$>_K|BP*?N764XkhvzDxknO6s7>vWgsR@S zioJ?Ff9APS+2b0?SaFSh_UCkT)%qM|_MEN@Svg(5fCo+=x_=Z-?+7*2uJ)l-*PFq$ zp+PgTvu7|8Rt5*E{wTJ8T1dYPwCvMD!r%O5c=?cZ{z~>JB4I@_P?ab;b!2IGqi>tJ zjx6o2mb8u(Jzq+C&IHOl;4+Q`(!x?d5y)x#!b@g-kh$$s5sjm^eUY+6)Y++98Z4L} z&&j+~7X`JaJ9Pt1G3HdZ(%=-AIbWpBTmi*0YE~=T_-As|*^nJx?XI-DA-k@l)^$U6 z{ddee+dIR{;Wv4W5}bK^XHrRB(CwYcD-E2e$$kXuGgCR82$g(Js11Kgq&%YAxGkf4D;twHZC!sw`IBGS7Vc z;Lt$Pe6KF^TL8i2aiF8NqcUID_eMHc4mi~)?%5+9idd0WWwCm&J^d%n$}xtC5q@Ey zuTm`y_Yc;(mKLhzu1Z;EKEv~g%qgx#SqFTXOlb`E3MT_I-AWO5rdLEE7?9JIAF9}^ z51FS|969w@r&pZI_~Zc@-Ht&6X|M^!ekoGw!(#^aLbQB@uFrv9i#`YGmRY*4ko+L6b+>Nw^j zeKGHL3~F8BSvyALvv&+488set45FVYCC;hkl21XkP#9QRSYGoMk<6!-`!&@oJ+<5) z1{dAdqt-o8X}k3ZMbwF?^-yK8>dXR_YT=#}BTq8V0!1onS7(8uUx}{UC#|*n!l#Vr zqc_i^J}H`F%^%V_G=5P}AW-$&D_bx4mE6JXCSgHizL*#Wt+kV%QnzmufQ8X6`-6K6VQ<)Mzwz3w8aOI&2+Qkt0(@!p>Aw z#hx=!ET5I^oIEVMTo;X4ACAsEV`)gK{jqgzvF@xlam)PfYH4VAhP>V3d^scYdXuXc z<+f!-oN*2>uHQU6crnSStuh~8Y^y~jAaq16h#SuMjvHk%v%0%2ZDEs3(UY7PW*l|)q3 zymoRhA81P&ID-=|8V{+r=Q$_q;3QR6UDLryYA_OMXM0E;gdQ3$4YEO1p46e59k>{xW*z52Sh})hYczsy7Jv;%o^BLdp_%*eJR$y z(fQ(P#XO)Q^NJA)YE?()fu=9D7Z3Nlhje64?MTH;?dVrx>1=--=r$K_Gw=1`=vbCm=#qvFEIyTE`(}UO^p*T0~tz6+JQI6qA8s)r?i< zVuFHMOae{6v6{KFEQhgL%{C^QV$7+4cyHFTS15A@RM%0%S^?F6$GkJWG2ni#CiC=0 zsG(+cdP8-^q%*BAhmy!5N@sU}MSNRqHrSb`^(`@VLZ|huizI+E{a}TW7d?$ODf9G$ ztEWEcc31a0ZaI6IqF@#4<%rBXToOX+i0)-dT)+co4kEf4<;Fd|FYBJ~L&MjJ!oP5>rRaq8eRnlo-X5xyK@JVu+46 zG0<;NB;|6ykq~){Btq(dStJ7s;(;^L*Wx1Ar5QJ?=*%O1Q%n8Ok-mAYQOQtO%mm3> zG9oc=$%roEjWeWHhx_G4&!SYTJ>gf0dq%8{8JUOF>ALEp4yn__H7dyVM_}?6WYJM~ z%%>WCNiC=EtKQ0GySC5V_cf%{3GMqDm+-?`bJq|9Jp=L@cDGDU7>`xvA)zCu{^**! za~YqUBM6;Pb`oVig3za^p6L;Uz7RO)j2;sKYn1_ON+$E@(N2 zk&Lms>X2Q0Gat$55mdMINJdWpJWK0K42*QSWjAk&5s9fsW?v$@h&O39s zfuWRoV%C9bMf^ys10_VYv`jL~9OdP$1M70?k68!SFOxQDLjn!OF@;6~7wC*sX=l6gTVMO3}h1)Y>Yc$qdM zQCngz^5z}8h>rSVj$P0f^QlF6NzbSafyESB>V{Q>)sDE5R=tK>E$s>=Z}l3hsXJ!% z8eb)C(%S7XP*99UrQJ^GsZ(aVow$x$XqKzW%e1B!pP`5dMn0>xK(9jr0^ZlW&#Lr#)s+jh&FMd^` ziOOj4OBBVDyZBY<+rxaLFZ<#b5*oE=@hebGvu6%ia@mX4r4si1-xijB%brG+mZPNf zS>F~8G$nFwN3GIV=y6sPvv<@Y8BNrvqZa*4M!Jn`bk&S*_C_|=QR`778~=`Zw{uqM z>mC`D@7CMn(d?bGgp#@tbZ{mm3?$j z7gFQV_@sV;NT+%rTVIWWp4$Tv@_T><@xWK~f;6yZWAhX})lvKPq8I5mN`PgS{oDy4 zLjDB6f_UJoM6LZOc`CJdGfKTu6IHS2w!4+S(P(#7MdKQ^yOFjS_Em76M?6mj7s{yV zdIhKIV%yy|VHWS~+a{t?9c`Nk($+O&&IxBXGoq1-%#8T6&^M=@~T)KJUXQmL+(bZTjxlC<0B%(Zk~M@?%j zUH_dJI~@eQ?9Rbv?jR(U)CKJzB(LCv)33I_nwYs?UH@pJ_N(=qiOw5?@_T7;#GD1s z{OYxeXe9NG!AM!+=ZuR6i`J`cnR~k^s68DQ1)5^aEyG3GdSUKF%wC2A4K)~*;ZRph zIt|}ovDV*LEt&I3nQP5RMa^o%7yarlIMxf1*$YnmK4esI!q*|)f+OeRwO?>T5v$;+ zvLvk2>RG4cWN!81BXYFW6FqPFtXStfWiOwiV3kiay@jQ+q$p3Jx#=Z)VNn&UuteHo z*v&$@*i&lv*$+jmEL3H&>YS`NI8^KG9;wR9_QQNJtkNxe`+K?ui-VP_xnVH#A%%^U z)jvI1u~A6!Xczm%7H;UNmgH=X#y-!@`esW5VRd<{@YR+E0rA*b03dvEaA8FFr^GA`qj z+wqWmbcQY2+Y(h#52B7oq%DT`@>P&Ed1Xt!(I;olR=U~x9@gpd$p+a0XP-cOe4dK3 zi2-$Yr+S6iGr#6}25bz>&5Xc6-+5XLPgotfS2$QP0}{(cHl$ zp4U>c$4^zP_(j?hKWAD&jy>rbu5i+{(XM5lR;cT!ah+DE|4zO-eQmky40o_}77OT!YXmHIL{brs-i)GZZ&V$B3d!Hq_D#s+3howtlqzyoLC zFV|(B)-axV;2&zJT^;zVuHR&}Y8{oF!z3EE$v{_3I(1gLz$H1q&pNO&M>@wsb~?uw zNN1<&D4Q9ax#}oKBW0~RL{H2(&43&sWaMS$W+B4dvwT|VJm}$eZPmGz9v0)lmWw9*};?h|6AS{n=zgKdhB)cz*);{v={ocBervK`( zuq3`alq+}2bFk3pqGcb-g(7Njl|WF8`JTF|3#K}yKF?F9I%;xEBr8^(sZA-BQ~4lD zabSM`NN=w-g3CMy=E$iJYg$Ic6=y3t_m-;Nye=@e&|^JrnYW_bYU;=Y(?oMWtcR{m zKjOzO=|}kBHAxTa(QDI>_~A?X5k7uiKlnPgjPOS(Uy^EZz9fI7GH&9>Xyi-XWFlXZ zKephHm$to$GsyHN%qi!f_8?{D)X?Je!9~TM9y#04X+JX`)b7{R9Gf_m1FS7`l55T@ z?6JyxIU-Y9w9>FS(VzJ}Uyq>rw07uI!cdw+oB}kxJS^k6x>l9kPC>`tl7g zrxk_^bM*_-Mkg!J@G>c;j;xXV4JUk^F5mDrPp3C4cY4{XTJj9;VkNaa zHvWMaH?VD0ByHG^tB}ZcSa~$CZB-j>*p4fV$aYv&xJv}(PP;3geZD@>&~#oIxs()+ zt0SXS=ZR&k6y)!mzyTX=F^E$6a;QgE5h;SoIAfXUKU@hRHm`NJP}$DuG~H;_Ehy z!azJ5Y1qz{_^xK0`0l0DVqpih>VZ-5EUpnI&hVH^$)LmS${|k%ArfU!ASlLs7180= zoI;+8NHo;c%E+ZznrF^lS)}?M6zPl*B3p! zFjA|@p6@xcW;s2YJbh71PrX>n`k6HFHExGjDp_>q^|$H(Uuj{LNCuYVF%~C2r^qSHk|kuT&m2Yg%c^sFccB zDJqrm59Ek%4r|sPj^R9WSfPwsT}?&Bq_0w%HP^G=p65Y`grWx_`aA6j46j?|F2CWp z#H}6+H;l1W%JLhI%aKfjenp_`8s;D3a2kmu9YTRxjY>`OHch+%lf$`Z>)mewl{Hk zH@yj~*rsV?mHxK9i5~*foA6oibwo)*&$>jOj%Zy<^JiTB7qX_2c`H}iF&}40Y(C73 zM&_+-Xvch<1F`uq@qP0yQTn8Hdo(pWCVDQBFD-dyWzeX27Uz`fS(s%ld1mF^ zsCX7u?Y9k;@KY{e}r8%M*f zI2Rqa!c0u75oWoYSMt^fp;WRyRB_2HZ=+o-EM7jZC{skqqLXJRHY-w6<749=C@9`e zuN&=Lo!&r3t*%y&u5V-WEP2a#U|vzyZOgTy(^tu}h0IY@N7ivJq&7*iQP(pylB)#7 zQgI20e`#bs+$U@lfxPBJsib)omqOs17@R$SbhZ+zjv5{l$%<89Ihb9j$|sKJ$*IG> zMd3Wv6T!**N^ zNAV78U*Ei>c)PGX=>g5a&VN zgD@9-!#txhPT23MHAPF{@M?E%Qj3<^yp_aOc2hnK7Qt+orP$i;A+|NUiJ4bY(v9IYm@mTF+}x zoO2HIFm!lXCdI+bhj}y*Rwp;AJ82mfM}4FCAbg5{c}DS;p1QS`^)p4v*O?B2^%o00 z^4)jl)2$CY=IKnklIqjC?iJkfbtZi4e0f$GRYx5d6UmBI_Z7i%=Uk`%oc$F+RZ)wp zhLU2>w{vW6p;VQXtl~6z44uzm=h>)b3#u1u+rN|SzJ0fB(i$wv+lo#VmuDZcp{A}( zFn(<6hf~+JaZLKc`i65>^9QvFfV<=Z#7Y7^tYlRYOU!=j$*!=JIqH5m9Ta z1cGUilW_YQg(gq+j)i^W$OV#O&)3q=E6RH|!9h9h`xJRvdP`4zSj+mEV%*dlYmCyi zH}N>d^d=muH1)^u#5Q%DzKv1&7H}0EXJZ*&Dv2}=0 zo~gCElo}pa|Ao@vt0m``MkB5w62}!mG3IOTd{dZt8XnbAlVc)TvFht-%^$2(? zQsZOeAF%D4ln!<%^vYgo>jU9A!KbnZE&^uB#4im}a(l;!Q7)dg7_1C-EX<%@a>Uj(XxHbv=of zyi6AR7AF@}<>1F++GKQ|#Ysm|JzK}QfKR)7PL(nOatcc{`RL5%FU)bUR6}+3b@PUS z@Y`31EiCtX-ss9xhs8?j&)E0}Z2MN4B!FFc=2>Y9Wz_0wDk>&@?eoH+T47KMk5L`u zX`dq@HM@HBH*xhX^5}J0O^=RDv3i4f7I}Q4>d<<=YdGiI!c`ADM-GW8)`l(L@@(Pq zXsT-yJ(tpo=LyAX#hp6HQ#@lO^>6|}p?vz6J;$qo+`7%#Y^@(auj7yl230wsg(MGm^E3%wr;nAh4CEvj!|w$-T7*X8>iUE*nIeng z<=)M`><*H)YoM}J&L^*y`ua^*-`~Egt_AgX=kPdkH>uq_NOI?7_0$_jhB$0}pxA51 zCG*MZEf~-6x<7n?l zIhczt40IOsRMf7*lD;m_rlDhVc-&ZCUEd*gy>ak7aj>fY(T+phCbSlZu*Jxl4^}fW z+Hr{6me%4BwmhxIL8jIIFUwM0zNNBM51yqgMR)xlm8H6TrZ{9POOcWPqq0<&&lHES zEbY{!Uh3_YEzn)gcgE(lSs&G9)#oj}^-w(+WyZJ3Dp_lBWNcTD=ginVo2=4=)nEN$ zk~C9k0rA+^JSD^XEBidnlUG%Jtv65JP#GMxp2AUbG_J@SIvPH6EvBgTsEv}Nac$ku z(eS});^-m{cXhvB-=?E=)kaxg4@K7dMzx7@vdDM-X`WH7M^l~L%=hfacE!a#8&^_` zO7eXI`34zhe|5>CD5s1W{k`MbtF3(c>iUj;*FFA7G!Drgjjp9KA0|TzjwLpt)IIu9 zO4`!s?cHkhlJ`=md>bqh1)#e)V18OS&jt%iPhHmUYnc^uU{BogO^GID+(Rw%Oo=** z>Y9F&%yKQX*_v}!{W}WI#dUA0b78&PLdscn?kG4H*SD$8g>|ibc&}Wn@{PycdA9`$yIFxFEFPdRQbfxo#DXQFT2oCM~!g78u_I zi1E~N)Mi&PI@(hz;F?+e=9vI#Wfoln?2oL9f4+%xSIl}>G0()gPgH%}yn&Bmxn(b{8hLcQjH}{CUWRpWYiVg! zzN6!1T})gTG?(>bxn_q8Ym&cBdZ-er%jj^o*+WH7z4G=@ z1AEPjUECxYzO|X5v1p@*BMwC3HL17buw9F+lVIDdw+&(S)?05I0r9v=i{Bfb8Y>^( zPMbq&v&Hus&=`1IeD4h{6kKOtK$`^@y+#E$u-8HY#|NTzMe~(b-Pvve`wTQpVBZa` z6czVAt9~8*n8bChzo>XUl00eBIqcITOuNbh18%RS&Ca1Cu6g0@96EtpDCm7u>HsmUxp)AwDT-8*yI8~Y|?)kp6vej*sY zHklah<0RWrpBSyHs;Ax=+efTGP-KI^o}+8#v{z&kvg)e0$R>i}Ym;7f5ZXEax6MvjEUJEb zd)aXyylgU&PuO95i+P(v(@0Z&^bSpQAo%@v{^!imL(yZEI0IX@^Pcd zp*EKreERCUce%kAp2Tia(e`tkvD@soTNT8r>aw?@P1qJkn~Ww(db+XOD6~16Foe}z z?`XmZNYXZGZ%bu4uwbYnyMxW$vUA$2yb`kNt+(<@1jE-RGxv)Jx_U}WjE+>BGxwpQ zdgz_GSDWHolewyaJ=_A?=3JFZs(aqKs>rJN*W?)*;9Od_T(b{C4%E7r)*R93c-eSY*|?YL(nkax^Zw-g+Q%G%UMK`YusmtMHDJqjBkN=xA7ceea?sCOL3) z#CMWro_A4GbT#`se9MA{eW_ntcGoHbqvmd02%5MX7K4`EwF<(hxf>USChmrXp~<@3 zpnaZao3p;?Y36&^=}jhA25UvPUTt%7CDK&)ypti~}URxXpFPqGLRAdKQf5m+7uFbg*l~fPCb03ja@vq53*HFQHwYANKE|F8eybE1e z6Q7#YaYK51sZ42k&M$4Vj&sD-UvC}f1jc*cF=mPSWC*W~nYcX1nAw8r<;K3QO=wX( zYcd5p#HpiQzVklYoPsrk)l=^jtPzm3oYc6A4a1Lk&nTVOUbSjTtJm9j(>F-Bx)r5}UTYM30SbPJElBi8OjgDh&b{Z3Yc{`1f zTTPyKf|;j(wwYjoV50;JElPs5;F&r9Itrde``^4Z5uSCmP{^tT9L+j15Nw!cfkjEP zCJQNnkeO(0&IX5y>YH~qSZ#`P2R5z_Ycd&J?CI*M40jDxD?KCK!(H()2u5mlwO2Pb zvZE2%-B(dIx{p%PeQg`&*|96fc{`+x`b#H}V>INyYDn_W1SROh^1xX5Y?$yTzS zrFN4|^cp4`_Qb6wJ8Npe$(vo#GTbQctTC0jskT=rQ6!cF1 zL}AF{CX>Ac^&I!u=45YORo(PX_SQq;XbWj66_|Mn=qRKmn$6NOuq!S$X>6QLRBhIp z=&5Vo#wM`WJc|i7`dM68ZIs3JP-JnF>6c;e*`IArzr>>Irg!=!4%EUE6NfdsbZtH{ zb=8K+8KqFrBR;rs*Dmf(4auic1_p`)ojrx&LRa*c(YssJUhl4nDUH%zaj?WxMEqOi zm*u4tng{Xh^y1y*-R%e-Z$wG$M=-OgE5VYsLc+st*yR$JH&R_w1gj&Vevq* z);S=bKJMg`#NoH?W|x*(UC%rT-$-1Y5597qv?)pKt4<=R@c*6FVxPMd&rmBmJy=c!Jz7}I#vtCK7@lPgDhD$iybBfY&6_b?IU1PD2L(~Wo~M?IR; zuBO3Zag~}=hve`b7t=&ePBr)EeV*fDGT72+*N=uO&A#pmE$V&A#~U>xait?Znd{>kL=( z^us-x>fPA75%I_O34;2)3(KW)iO*`u_K=<_LGQxwEYBwh8mg<06Mcpo*)NckpB zePP?50`jV=pY=&oZzvq~y>Dg*UQ!qsDVm|7fsa?tUrccfYwMjnSTQ?cBPLEk|;%|8J2@vD88& zQ|=@ueLIK4RO%g({jR~$cZVhb_98XhsDl3&MnW5 zpmb?UDiJG&Lkn`=+kEH~5k}&kRZAqI9L9n;*(A(D!!oj?b{?B##QgAmQD{QL28|q>TrLh zuTr+2%{-f=n_AFV)Hg{ty@SZ?m)cM`k*N(yM#$=h+h_Pd?lz*a5slI$t9fXA6S3N- z^;l^G$fjVU{ybsy;*>C@IZo7tP(wdG@uY39FCweXVH$TYbcfouyi^z$cw_iLvGSXguPM z1&u@cBktTmWPD4PZsg-BZ0qSV9*R6mm#v%9=+&1lTfdcfruTX4Q7Xz*{a|HDF_Cd$ zRc%Bwf1kGnOBzeN&)dSCMAA2K)?})Vl#88H3bo=~`Io$7I=d*1kNH6588|mo*T}5n zniXHu`+`G(uTw{A!;et?>%guWS@VC zY>KK|tH(xKNV8dcER>U2s*=)6L?r!tt5lI=Qbi${*y zzmwg*9U;j&A-pHGROZ>x>DxI!gsdZ!*i&gEko36Ha=;{@#tgzw= z{CAN(I0}o6eHW?jJN_z}EPVr&MbZ_Qw_5zqTAt&tn&@k~*N?wy5}s%@t6xk17xil- zst(&zkYS=nf$%bY3R1&LM~@oFY)td)LQ5tY-N!&x{j{ebZQJ6gZ?{KMQg&;nmWVvN zJsN1M)AijR4Z@Pf=@TqrJO|2MDMdN|1dB&m-L@xKJRxzqS#PTvRMKgVx7*ut)YbXz z?a^bWw~pp1tX=q&i#Qo9+g| zzx1B24mZ;0PV)EKeA4Q#J?rTUir?v7IlUt}50RWo$lsN7h1F+!WbOuR;<21CKbNol z_RKGyHc~8in{Sr4;jtsE9U3O|Y*8}m`_wq~l;MNw)%00UyjK(g{%P*Fm`d5GX#kx*H`gW0Mu++7IJiACd zn(AJCH@7DYE~a;Q zV_2+?)-tM3TAjB$6uzMN?Ryy^%&D}VM4p!s97XlA{xX6S0_Qe#R#7U!CK%&UIw*6s z8j7e3W6G-Ow^u&BSgo{cFA!0C6Lc(436;g_dTuPOrL6<9N3lAn_Qpl_L{p4y;4@~e zcD^rMda%0!zaF=wZEUSlPx2iH~c&*5Aq%OACcWjRgTA#H) zFtc4G)aH1#8L0a5QceakpZ3goiGrDzfu=8ExzIIGT5NWtGbd~;VJChIm_Cvz_AH8j~?Px470psUe<2OgnB#CXI=c>#C~il;@M#5%^BT5D2i^Vnr?LtevO9JKq#^rs)|)-K`ngds9OeQ z*F&{arZd8>sPv`et3ie*nb%XAh^u$HjM5}9In~trfeK?Zh6Zw6UAH-^YTJ8Dys`II zV7zx`V(b{FIG%YXCS6y3)|r^}aJcJq{@vh3vwURk{QDHuMeY3iLg1V;%VGzlXYLLM z=H#n6j*cIXSXSNCS(bF`;%iEEI&ZX|^gu}cSv6D@t0`^PyxH^Rv??>-a<*A2rIyD; z$_--dSk76a&O<1UaiA(zouNdSD|WXedyhBh-iVA^Tp2~N*Wqul=F3RFR&+9VdcLAp zS5xcb>c8NG^9oZK>49ojjSYD6`gOH)YCoGJdgezz7?pbFmswgcpsud%7#4?}xe%Y8 z^mFC>li^wO3|BKRt~8X6(o;5%M8?EDXFIT0gYRxnF3Vf^vXi{e@-p*Y!B#A&v+GQ) z*rvs2=dI@EipLeIgY$|K@9MBQqR9MKb2eKVk4>$3816`n+(BFL44S2SxxDw(Z6$v8 zL0h`8`nvkm$dEYZEKhi%KYiJdjD}^SSz*BPF7xt4Gj(-wf@!kF1e{eET+~yrTpW!A zjD({EjQ*y+Y9(i91s?(Wzi>>2W5*&x;+V4;!;|*2IWc|yaB;};E%RoK#@g!M_@p`U zu$8JlxMfJ53z^wiQncJ0jjG-@puVnc|4v@FQq><_F7kZYu8u}kUzb)V$JKwqy_C^} zQOV4$3@k5K2Hi(F=V&5TTwPqlFepy8(jLu|cD`Fu@aXbfzK>Th4|5%j_QMqEUU`u6NlDR)U^DrbK zq_)=y=lT;Dh_SOqHB_t)ihD-4HuD;lil}8>Gm4bO>PGg!WT?bj!Zp+E!C6akq@s4$ z)EGzF-spx$ueTZ9P{fL^DvMR;vEehJZ5FFQLM`fJ6RL_mXPhZlmiH9~2hDlt%;U^h zM(yg7Rs1sr%FS9C5YW^cNt``vRmIBMNLvg~bjnm^sbO>f%*Cm)RLzamk|c^^$yxD~ z@x3|6o_UoF1+}Fso`I$qb7o28!eB+F4~J!q${ZPGo+UA))ciz^s$oU^Sl3Qos~+Aj zYwE_8@amz(um*ODk1VvxKxLrK;uEQu#V7ieOm!v`!;7cOt6Or`Sa*Lx2Gi!&jm(pY zK1Fp%Clh@kaLzfo-v~HdEZ3|TmNTE+?-5kj^yGd|fQHG|BL`LuclWz5@8(Xnq@q9B zk|CNn7kvoN`m|sh&eavuoU4au(K+i|a--l}{1rK?!1c(xDa(RSgofXbbKawn?5~x= z-O`=&D~l=v)64QnG4rX+{GM8hsHWfeq#bz(oUV#2NAB5E>@zC)%v}`~QJdOTiIl~v zQ`wUUhRMv8Jql`1EBioGj5!TA7e--AL@c9bwc(C`raXF*x7;J26*uCVBY6W6J9$H8 zvFfa;;*(f)Bb|9oHL0Zb*A1JRM88Zqy*vD`-Q+{o(8U9?C=O>6Hv`ZX<``^-8dPdfJ%opcsef4(lU z8u1+VM8dX*s@QYu3YmX55;c2WAqr|Osw>d+7NTNzNqTg$fypqLy%5DZYB(xH@$Z;- ztE%FlEaLQ7!{y9l40#PBlu_eRRTce=ZD$u?wdkCuk$D$jsG(MM7oh5jN$0zG)#6aG zFf3c6WppoJkhjJ+nZJwY$f+axT|DP9$>7%5#ae&C+PRj!#tuc)e$*hUvRHL%>|(7l zAV(a?(NL!vB`KVDt!*mS=JM>djVP$isJ1~2#a(aM`P~NJi~O)mikjKW%HLRn2}^_P8Qp#Whg%6`Yz~ zePu2esM6shYWxQV}(&l~klGR-O7muXV}pF{99CemWCEYF+Dx z#04_d*$^6Cmt!{R! zHFoj}PB^tyt!Np~Ug$(YjYfqIO)=(l5aio!MQgWR<_7q_@) z&u>G^%5UQuv3EAN*NVekJ;mMvtw&FBNy#dHnK!q)dg_wC&E;OlEvE}*1Y!5BrCliJGCn!;9LZ4OyqephXP)Os5mo>6yoi)Qct6c4)3+6%r*@Vjtt0o6f&l$$x8!9&gXJEP1$ui zEhJ8RAD!NTky^i`aQGo_!_{1mj;W^(CLSI0dTKE(j|_&xkIGONpO`B2n9BjVim6A` zEvBA8c)6v$L_iTCtk1h?S=S3JG4*PFZS*Wl;*GQU5rLtq4A|J)V!x-7dGn*Krv7YD z_s6g$4mm41NL0&x;dXGNSY=+xF{IQLUCA*nrDl_SL8RPO7+6|ZZWf|k*_04-vng>A zZ=7Yjn)MyP%*%EnpjLI+4n?u#_C!m4gO!rm1IpeL4Mo&q)Du-@vFi4F><=Ag@AuR{ zYZ&!=&=g~Cb0!yL0%@sC%v6@vIv2@q%7NmrIkw1NPxwVO38LoAAE+fS2V~eaSTGxf zw!Ku*#$HC2B`uvZVE9sGA}zavjjqOHoB0eFucUgYXTW%akc!UB8dk_+eUqo*WagJO z(sk8SeOV(tTq~L0R~V_)N~4_Vk!ZtAj{@PPvmwxmRM^4|$Xpk@oQ-tNydkimw0f-X z!8Z(w-_G99lso!m6NqdGHyqErH?*;~daeg`H4cmG&LI!hEk2hsAM)VWR9E$o2Y(n` zbe7+ppk=eN%DnvU5me`N`P~x$&zew|;YyFKxjt)p&F_#JCc2c+C> zQ~)_TAmwh2S=<2;O^KGzSby8bqAw-ajrC*9?NH0M@}hUfC3}ZDDW!3ZI@HNa_~DkI zfl6Ob(d=bqFF~P*Rf1I6TY?771>Ec*9n;?0a`Jkk=UY%BN7F7 zx+m0^r>u)F*vqCUqr_#O?s4?gxoEn_xlYPDi&0_rcUna;^I}viqfY2zRQxlxoqdpc zwN@A$8jw@%+$SRQwltrjdZgRZd?9eoT~rCv&zD!(C)o`xbtqa?F|IXqWvHiA=rbo# za=Q|0`CU;vk}A%2qA2-B%myLzPLR5ex}ZBj>c5i`?!11GSY3;1-CdrosoCfCZ8>!& zn%B24H} z;`13L;W1r$|Pxg>zE@U5F)ORjK9ey;$n7gbiJBX|1G)(qo-9SU57cJ|Cx?Y9h%Xv{^H|ofyrKckg$qR zpehk{hrz?iX{0TN-6v$Y*L)zeKOv%^ z2BRkgO>cUREHZkq+0%1mk(!FqQxv`FIkHH;)@E(8$ey06Vx?!K?T@0_&B+l(d)zA> zC$FU??H0}@cHtC7vE*)7S|Z#2N8>%vT3tw!G}^9Izu?c#rG=rwGV2Yq?AfU*R(3|( z-f|=tdrE_54?34&R9wS>witE?S<45zg1rI81CxD_70IaSXpj~COlrHWid=2`U5i>M zqIRQJMU_*nw)?JcV0Ad!{g<>V%4t^Zfpzv4RH7v!Zd_4LwQ9|==Cc~lvnJvyiz=yB z%N4V_&t+9a+_<7Fab3rrh%xQ$n{|>UvNR^#%MjRbTCw4Rbxv#MRtyD=leS`krbNgY z=5s-ICsbs!ggm~+^O<>UZEC3lI?Ok(k+x0;MNWM(>}PImL_m#dgNmY9@}zLN&8c%y zwx-Vc1!GQ6+B5RZ+>;J9G;-RLR$VdaOtFTSWTMa>pk$t6O)9B*onlR1A>K}<9|q{L z9?{H|ek`NrwbGA&_GhsDT66YCNEFm!^a!EpElrgnb1QpxW1?UgLsN`7gHAev<`60K zs3DM0b2{h@RlT_=Z<*DGD%SZC*>f?Hv2ro`*Z06$W_CBIKwnG`mwyLM3^U&!= zb(ANahfa6WSyaWIvxQDRJXT1b++bw&k z76mmNJwj+o?A;1WE=Vs;&TX~2#n~&YgpwMMDy+nnv>2PGC*_Iph!f+Hv>1DbhLLhrUZe^tnWDM! zn0W((A*Igf1_t92et1elO(!Fh6WBRQgUZ;YAyOCH&btjGHF?^L$#)wH1AUchX}I5- z6Uh9UKqF=KP~UB66p{pU&NB_a{}PSEWL}X^Vb{8PD^<3fFOf6vL~;)~5=FiYWowmpHidihZpd7;W2T4e6!CzaF>?d2!0_|t!|V4i@V zJ^e+&N`EvZ#_l8JPQhexwx{CKeWBlhMke(}`c&U$mBrGk4+x z2~AY(#D}Vqs*b&7vWaZDQBP#H7f6`)LRGQn^x2jTjdV_5BBy#AHZ%9xVi~o&YN#m| zooz-0oj)wki8&*id7DvPM{UZ9vw^A@bv75(1Iw}a!^LH0bTjXt4rnLJzDnje1H43_O0V&tW**=fQtHZBjjU*kb*G`_ zmg3;h@N)SMsceol>}PIhEiv^#8(Qlk-Z;lu6Q)o4w^0Vkdh?=^tOb~r=A5je5A{F&QhXB#981~kk7?v*!$QQP)vs!Z1ok=xyBvE%JuckXx>nbcMlm-fm+8q%G zaZjju97%F#kVx`zI&*hWu9nu+Q>PLg0P{L-d24xjds;qF>*iaoT0SAB z4kc>`UE)|`nj&eN5v=ClOWt3=Id1;8`!ljRibTu&A%>Ot7mVxpl_Q5B`6*c zdaJwI@^W{7wNjQk*eJ=ls=I`k=1!uzOI##hoKZiYUol`f7S^>pqVg>>P*N$5bjzEw;=s@m-r)(VNtUZjX(WM0GX!7^N)c8m{lsT$FoMQ>S@VCvddVCm$j(HJdvc-lU@1 zXOj*0p%k7D7HW&F{(MtU!+T6mRYxROkwszi`#U=|i#m6x-1yn@?~eLZ*EWNtT6b|k zs)%A`q}Ej|FDXg;M@85r3p*t;-7F$a``IlBsxRBjPTKC6Ubo$GY;0R%y!K#4CUlBj z!M6nYcDIr7`!tQcb+=mA(^|sf>R1r7V>tzJpzHKX#jq#0H-1Lq+tiS@`jMeXQ!I=b zl&*$6Xoh~%LZ>&Wx;`C|lBljcIAms7(}qiKP&I8_Q4poI?JF(i8#q+*Qg59>DkSTk6CFO_|**Iv!C!@O6$*m91{y!CV}2)=kz z>tL>{AQ{ooov5bQ;7;$mw0pE-GrBX%C&MDKTCFUfrOjG5g!ibX)?%t7k}Fx~2kp?* z(P$63emqI;AHIBK$BWh|mpg-PTtROrIgDx^_r#s*r;a5JP4RY}&lxN z#oBIighE$wS#XeonPg2rp5@-Jwsx4haN6XK$s@xRIa0OM-7&kgOrDRq(YdM}u{rT# zO;wS=ee#7HBZ|!*$1nzZuUcOh!)SF37WqV0sXM5DG`fqbl|oNP+SXV%tHpJuM`}?w zm?~gBJ1`HmQHYz40elK-bCrCcRZZd3jBj+i;OW5;<%PaWLJeD*gFGgjV9kkPW7xGtT} zp5o9zWjP&Uv#M>n&e~8)9ocq7m!nN-9qX)xs@&rX$Up zt)Sx3Th;KG*}-POAO|&7?OvmVY~}f`_Z`R2o;$xI+Ls3YsniS#>SeKEdv zc$>WR(^DCgKAM?rO@}S^-D+&Dc|}b&=WVR^p-(OJT1_gw5T9Q?sObIXU_2*)8(vO z`4~p933JQDZC(7kDjP>ivWqx+M3NcQbb`5wnEJI@;Kh`1cX&{zBpfA0*A8@ohAHgL z7@5|zOxkxF$q{x;(vo8v``)g2{;Ny2wU=ddZ$2PRCmLE1RR6XOk|nlh^rNDoUr-gU z8cZ=5Y0`8yIk-g)=`?$&BFQ~Q2e*b|(*eHTq?$Skh?GQi^`X*GQKqiUHHt~iig9$8 z>aI6eRpM?~sTLepvAWbRy)xfoPD?bG*Sl0+C&OYb@p}z94M!dUPyN(%P?@|_4XklY zQcdKyOa_`1)x?v6FIqTLdrcp>CSvNumPsc%CTr``F^#Wi1UAL5tqm!C`X_Z)%DtsN zX^fl^cGLC#=6dSg)`oXcwIDOW3CrT(dWN7rCPtBM+9CESs1utQPE4LV(_9=_Eo>hR zb4_PR!+WBF5cacGN8+<`b;#_`H=O{J8&u2~q|BQ;wPQwAW`UMgs=*7&8%e<3dg{ZN zuBc0IxZkutk*1S>#UtZsMb2)f5?`JBWxuGo@vrFv8r>DebY79~f7f$EM*EfF zN_QoAX?3;mplBmrO|wN0mkt|qot#n~aeKA!thkJl!Kr*^POFYcj;RgFhhMCDoTl}w z-lU>hzeY-ds+1_!YLYEdqv!AR64HqFQDmB~jfno~dbJ4W()0(?m?Y*m6PewH{`N zQrAva4We(9fTlf~FvWtW_|)q^vf>I7Jv~pgQ0Xk!I{6k4<0_?2bg`>Y;hV2AjFX#; z+-dqYx@pA_(sD6*^3e-ss`h~$ll$e1PLq!AowPs(AF>Wj%z{oweSFXvj$0gBq*avUJYB$QP z8k!zp-MX&2y6F_=6y`>zgCx^_RFFt|3ThOUu5Ou0mD#MJ{w~>QWUZVw-A`qCXKATN zYcWA9^J7E(9SZ^zl3uPCHJQhc2AXCXW%t6+ioF=&=Z<7rXiXlcMNhFP2e4Uh#5X;( z%1VStMD4D>fGO~B;4QuE;!wvlEJzw?g;BT8;G8;&FBzLj&|-y=BBh?J88{&;C2Bxi z&`L7Cub0!N!q&)ma$2k;eL8A<{0x!qP-(GjKdbg^a@J?HpE z)R#?zoQfKvj>Ba+OGX%KQT)CyYkF=LEWso-Qxh|vhNl6 zrh_#ry0MB{+br5(wP)w<9dqV{^XeV*!@XS;LH&SH?1pSLkjZ{oaFkDs^b~6SZZEp& zLHL$SUPX0ptE78#>!xJ^E;21X>H!0FAESH<7e0eGsyPrWIUqW!*?g1jrC(G1+#@a; zvW=`mKBir)%5y4fo`yu#{j`hZzl>gSHf$q6Dn=1~)D80@H& zJ0{Ceqhsbgzk8JtHdOUjD$ZJVcJ~Y|b#K#Tb}y(JLGVb=(V+&a$~j181>JPDF3gMg z=Fn!;V-Fwapa&#p4GdPSO@FOD&dJ*~N?R_B3j^sMtWVDl^g9;TbVp^_yKZ6R)mrb` zFBB#50_vUg5!YD0K+GlqbCp5vZoHfp-==oPE)boLndnHytr`rFjR&ylI4&Gh>(WY? zccF^ttt`9Y4Yj6oWNe=gwRDph3bI*fos}ncsJ|p@Eb@^SSuUjjd{9ih zc;AXE@c)}?I20TPrhutnI+y{D05ic+U>2AIjt0kod0+up2#y2CgA>4s;3RM| zI0Y0yH|PPqpbwP5sbByMf(jS{RZs&XUMn%BltPE8TDKus=8eybl}%4grUP$zTeY2Bw3h};5G1f@H+S>cmwr9bjv)4cHEB z4|W7QfnC6^pcCu{_5gc=y}>?UKd?VI5WEi@3=RQ@fyrPhmK?%fS`kN^lkUEchJw0{9~MGWZJk8u&W+ zCioWk4!9b84}2f|0Q?aA82kkM6#NWa4{iWI2RDIVfLp*X!EN9Ua3}Z`xEuT$+zajp z4}gcj!{AZy7DU;6?B!@G^J>`~|!U{svwH{{XLpe}Ol^ zo8T?*U+^|~2fPbbcu24!SQ)GWRs&UjSbM zUj|fV;r2 zz&+sC;689acn~}U9s!Sn$H5ceDeyFS7CZ-D0KWmh1HT7<1TTV@z{}vz;4k2>;BVmX z;2+?h;9ub1;7#x!@L%vh@D6wntnjd4C9pDB6|4qU2V=o_um)HYtOeEq>w@*b`d~w_ z5!eK53N{B@fDW(~*amD1wg)?aoxsjuS1<|e26hK~g1x{#U|+C5H~_p490U#lhl0sq z3YZ3_gTuiQ;7D*3m<{HDx!@QuA1naJg5$vZ!3p34;3UumP63NRHz<0D#dxE{eK43qvKR6J) z4;%~*0f&LfU@DjfW`M)NOmHNa1!jYz!CWv8%m)j>vEX>{esCiA05}c_&B%_Tm&uwmx51# zPlC(A72ry675FUp9QXqGBKR`+3iulMI`}5|7WfXh8hj6YAN&CP5d0YY1pE~I3|tRx z06zyefnR`Iz%RjV;0|yn_!YPt{2JT~?gtNmhrq+&QScae0z3(x2G4-!!1LfY;J4uS z;1A$M@F(yxcm@0gybAsXUIYICuY-SqH^7_VE%0CPHh2fT3s!hkup(F)tO8a8W58H2 z4y*wtfVIHdU|lc~tPeH-8-b0%reHI$1=td71-1s;g6+T#U`Mbs*ab`ionUvc2iObj z4fX~5fdjyS;2>}?I20TPrhutnI+y{D05ic+U>2AIjt0kod0+up2#y2CgA>4s;3RM| zI0Y0yH|PPqpbwP5sbByMf(jS{RZs&XUMn%BltPE8TDKus=8eybl}%4grUP$zTeY2Bw3h};5G1f@H+S>cmwr9bjv)4cHEB z4|W7QfnC6^pcCu{_5gc=y}>?UKd?VI5WEi@3=RQ@fyrPhmK?%fS`kN^lkUEchJw0{9~MGWZJk8u&W+ zCioWk4!9b84}2f|0Q?aA82kkM6#NWa4{iWI2RDIVfLp*X!EN9Ua3}Z`xEuT$+zajp z4}gcj!{AZy7DU;6?B!@G^J>`~|!U{svwH{{XLpe}Ol^ zo8T?*U+^|~2fPbbctWruSQ)GWRs&6Ro8?YVN9_$Eq0=s}+K_}P^>;d)! zdxL$ze&AZ!L4WEE;6`v0xEb66ZUwi2+rgdSE^s%v2iyzp0}p@)!NcGY@EExII>9x9 zky9^}^klom#iZ+{;4<(@@F{Qw_%yf*d(ueddR1z6-t& zt^q#;KLS4i*Mgsc>%a}*MsO3j8QcPH1-F6Q!JXhPa5uOI+zajl4}b^3!{8C{7z;;05qo@H_Aa@JH|`@Dg|h{29Co{t8|Le+RFFe}Xr_zrkDJKj3ZfKkzPi z53Km4U?s2$SQU%`tAlZ1JeUC11Z#tJz(lYf*Z^z@HU^u3&A{ehOV9zf2HSw`!1iEA zuoKt?>mBfzN`^fiHkBf-i%wfUkkCgKvUw zf$xB;!S}%T!4JR>!H>aDz)!)?!1dq;@N;kz_yxEH{1V&-?f`d!UxB;9ufe_Ge((Tz z2s{iP1&@Izz?0x<@CYehYpN{s3MCe*!OqSHNGutKe_oHSiDcI`|iO1H1{| z0{;bXgLlBYV1=gyD}t55DquA*28;#cz#3ozSPQHT)&`d|aF5!e`P3N`~*L&0HS3YZF}gBjomFcTaF zW`Q~2XmAXe2Nr;Z;5cwRI02jpP68)`Q$PW9gC5We`alVs3I@O+sDL3*1vM}NmVjko zIXDBH3C;p%gAapqz(>Kk;5=|XxBy%TE(Vu?%fKhVr@-al)8I<*8Sq)~dGH1BCGchN zRq!?N4e(9yZSWoNUGP0{4fp~05%@8<7W@=k2d)Px{0iIy zehuye_k#z)L*NncD0mz^0iFU+gJ;2W;05p-@H_B(@JH|>cnQ1={tW&C{tEsE{to^D z{t5mC{tey){{jC6{{!!U_rMBI3swRvgH^$5V0ADSj0bCgHNje79k4D~53CP11RH@( zz@}hxum$J;v`%`-20(`@liq5O64%45ol- zU^+M)90865M}gU34wws$0rSBEa4a|uydRtZJ^)SvUEmb32y}xY=mq_t1QvqW#Dvh2KXR23w#KC7<>eL6nqSv2R;ri02hIa!KL6b@Ja9~a0U1@xC(p* zd=7jbd=Y#JdwoPd<%RVTn)Ypz7MVeKLkGlKLOW*pMmSZ4d6y_6Sx`N0&WGj zf!o2I;4W}CxCh(|?gI~i2f@SO5%3sz96Sl00?&YF!Smn+@LTXZ@CWcm@F(yRcm@0! zybAsbUITvzuY-SrH^9HaTi`$7ZSX(vE_e^D_>5pBunJfei~*~IabP@{0M-O+gLS|} zupZa|YzQ_6n}E&0=3qByW53ncL8|(x21N(ym!TZ3$ z;1F;am<*~fTI2z0a^T2$t5F87R2k!?bf)9X`K^G{1MW6>1K_BP` zr-H>`5R}0XI1SXmFjxYXg5}_Ja3=U5I2(KjoC7`r&IKO>=Yx-f3&BO;5^yQ_1o$Ml z99#je1XqF2g3p03fG>hCgRg+Efv za1;0ixCQ(Y+y?FdcYZt zUIc#vFN0UWU%;#2Z{RiX5AZtp7kC4_3El$#1#g3Qz`J0DX9X*QmBA`tH82K@1>?XP zU;;QHIJA+-oB+v1rcO7I!*S@3!A1@I;CW$;z-HSi7aP4I2-9q?W7J#Y>90r(O4F}N1| z6kG?c2RDMBgPXxGz^&ky;C65axC{IW+yj0M?gRIO2f;(&5%4H@96SM@0#Acy!E@jR z@EhklFfla`sU~{kq=m1-RZNRo*d$0r83G57Z1(U#T zV0W-5*bD3f_67Tc1Hk*hLEsQ@D3}bUfN5YlI2;@Sjs!=6*u7;f?+TMmV#yAbZ`dvAUF$r2z(fP1bh^H z44el(4lV!}fs4VV;4<(@@F{Qw_%yf*d(ueddR1z6-t& zt^q#;KLS4i*Mgsc>%a}*MsO3j8QcPH1-F6Q!JXhPa5uOI+zajl4}b^3!{8C{7z;;05qo@H_Aa@JH|`@Dg|h{29Co{t8|Le+RFFe}Xr_zrkDJKj3ZfKkzPi z53KmSU?s2$SQU%`tAlZ1JeUC11Z#tJz(lYf*Z^z@HU^u3&A{ehOV9zf2HSw`!1iEA zuoKt?>mBfzN`^fiHkBf-i%wfUkkCgKvUw zf$xB;!S}%T!4JR>!H>aDz)!)?!1dq;@N;kz_yxEH{1V&-?f`d!UxB;9ufe_Ge((Tz z2s{iP1&@Izz?0x<@CYehYpN{s3MCe*!OqSHNGutKe_oHSiDcI`|iO1H1{| z0{;bXgLlBYV1*Y1D}t55DquA*28;#cz#3ozSPQHT)&`d|aF5!e`P3N`~*L&0HS3YZF}gBjomFcTaF zW`Q~2XmAXe2Nr;Z;5cwRI02jpP68)`Q$PW9gC5We`alVs3I@O+sDL3*1vM}NmVjko zIXDBH3C;p%gAapqz(>Kk;5=|XxBy%TE(Vu?%fKhVr@-al)8I<*8Sq)~dGH1BCGchN zRq!?N4e(9yZSWoNUGP0{4fp~05%@8<7W@=k2d)Px{0iIy zehuye_k#z)L*NncD0mz^0iFU+gJ;2W;05p-@H_B(@JH|>cnQ1={`~(qxTmNwa4ig= zwK?syQ%yCsZQHhO+qP}nwr$(C?e_lr=3%e1@|e6NStlP};1youE#Bb+KH@XJ;2XZ< zCw}1%0^JE92!bLwLLd}EBP_xp0wN+Z{z6pzjp+CXF%b)K@Gs&aJ`&Lvo}< zDx^VLq(=s1LS|$|HsnA~ z)JFp}LSr;VGqgZUv_>1WLwj^YCv-tqbVm>LLT~g%KMcS?48{-)!*GnmD2%~ajK>5_ z!emUvG|a$E%*Gtd!+b2nA}qmDEXNA0!fLF=I&8p3Y{nLB!*=Y%F6_Zx?8gBd!eJc6 zF`U3joW>cP!+Bi9C0xN(T*nRE!fo8eJv_ieJjN3|!*jgEE4;y5yvGN8!e@NNH~hd) z{Kg*yz8gRg1VeCyL@0zoScFFeL_%alK~zLTbi_bR#6}#%MLZ-xLL@?BBtvVsOvEHi z!BkAg49vo8%*8w`z(Op>5-h`Vti&p;!CI`x25iD+Y{fS0z)tMO9_+(@9K<0U!BHH? z37o=doW(g@z(rifl>jCM4iq?$(fpdJ>$r(qxP!a6j|X^!$9Rfoc!8IAjW>9Q_xOlU z_=2zajvx4i-w1RsfWQcfUYkP(@Y1=)}tIgtx_kQez;0EJK(MNteTP!gq42IWv56;TOQP!-it z1GP{abx{uu&=8H$1kKPKEzt^X&=&2{0iDnpUC|9a&=bAU2mR0=12G6gFciZv0;4b* zV=)dBFcFh61=BDcGcgNuFcf);Kk*BH5a@mYK@b$d5dxtQ8etI*5fBlP@fV`vZ$!sGh>2K;gMSeZ@sSY!Au*C5 z8ImI)=!M?si+&h@ff$S-7>3~( ziBTAXu^5jDn1sogifNdEnV5|^n1}gTh(%a}rC5#?ScTPCi*?w5jo6GW*oN)ciCx%( zz1WWfIE2GEieor|lQ@ktIEVANh)cMFtGJFExP{xei+gy0hj@%9c!uYAiC1`ow|I{a z_=L~+if{OVpZJYG2>c*`AP9!w2#HV#gRlsX2#AEph=QnyhUkcan23!yh>LhgfP_ed z#7K%{NP(0{jWkGy^vH-z$bziMjvUB^+{lZ3D1d?}j3Ow8;wXtyD1)*nj|!-S%BYHJ zsDYZOjXJ1@5<>zgh0-XCa;SicsEjJ8hU%z^TBw7%sE-C{gvMx!W@v$yXpJ^#hxX`* zPUwQJ=#C!fh2H3kei(p(7>pqphT#~AQ5b`<7>@~p46IE^znhx53IOSpooxQ-jR zh1DgZJT!nH2!`MYiBJfGun3O` zh=j<9f~bgw=!k)sh>bXii+D(Ygh+(MNQz`gfs{y%G)RZ^$cRkHf~?4n9LR;-$cua^ zfPyHDA}EI9D2Y-igR&@(3aEt2sETT+ftsj|I;e;GXoyB=f~IJW7HEamXp45}fR5;l zF6f5t=!stFgTCmG0T_hA7>Z#Sfsq)EF&KyOn21T3f~lB}8JLCHn2UK>fQ49$C0K^# zScz3wgSA+X4cLUu*otk~ft}cmJ=ll+IEX_yf}=Q&6F7y_IE!<*fQz_{E4YU1xQSc1 zgS)to2Y7_Xc#3CuftPrVH+YBl_=r#Vg0J|FANYme2=xC?8wiSE2!W6YjW7s@@Q8>= z_zO|+H=^Mm#6T>>#=nS*_(*{NkO)bT6v>eSsgN3Jkq#M<5t)$%*^nJMkqdc{7x_^D zg-{qpQ4A$e5~WcFr+F$hC26vHtBqc9p{F%A#!ahu?btS72B}`yRaL3u@47u5QlLD$8a1caSCT}7UyvRmv9+ZaSb9uqMMQ!o|NF$1$O z8*?!a3$PH2u>{Mo94oO3Yp@pUu>qT~8C$UpJFpYGu?PFG9|v&=M{pF!aRR4s8fS41 z7jO}maRt|K9XD|ccd%|t02{Coo3RDkupK+G3wy8^`*8q=a2Q8%3@30Br*Q`7a2^+N z30H6x*Kq^4a2t1V4-fDVkMRW0@EkAk3UBZh@9_bj@EKq64L|S`zwrlww+0Xd!4MoF z5ei`t7U2;Akq{YC5Eao79Wf9Su@MJx5f2HF5Q&f&Ns$aGkP@kp2I-I<8IcKDkQLdH z1G$hJd65qVP!NSt1jSGsB~c1xP!{D;0hLf0RZ$H!P!qLL2lY@N4bccq&=k$l0MjcJ<$t&&=>tN0D~|XLoo~^FcPCN2IDXu6EO)>Fcs4=1G6w2b1@GK zun>!}1k11-E3pb|uommF0h_QHTd@s0uoJtn2m7!e2XP2Ta1_UJ0;g~qXK@Y}a1obr z1=nyLH*pJha2NOS0FUq(Pw@;d@Di`_2Ji45AMpua@D<I?~_!n^z9|`au5+MnaA~{kZ6;dND(jfyfA~Uie8?qxO zav=}$B0mbC5DKFxilGEbqBP2&9Ll32DxnIhqB?4z7HXp|>Y)J|qA{AF8JeRdTA>Zv zqCGmG6FQ?Sx}gVpqBr`WANpe;24M(>VmL-%6h>n##$f^`Vlt*+8m40=W?>HIVm=mN z5f)=9mSF`}Vl~!a9oAzbHen04Vmo$V7j|PW_Tc~y;xLZj7>?s4PT>sB;yfX==cXQ5esqfFXACS65>B3MiL}La->8mq(NGwM+RgkMio>;b<{*H)InX;M*}oMV>CrGv_MO=MjNz4 zdvru6bU{~iM-TKuZ}de!48TAP#t;m{aE!z#jKNrp#{^8mWK6|0%)m^{#vIJUd@RHw zEWuJN#|o^%YOKXNY`{ir#ujYDcI?D1?7?2_#{nF|VI0LVoWMz(#u=Q$d0fOLT)|ab z#|_-VZQR8@JitRd#uGflbG*bWyun+%#|M1EXMDvs{J>BA#vcUU5kL?GLvVydD1<>+ zghvEKLS#fiR768`#6V2MMjXUNJS0FuBtl{&MKYv7N~A^_q(gdSL?&cGR%AyG(26hm>8L@AU(S(HZwR6=D`MK#nwP1Hsm)I)tVL?bjoQ#3~lv_fmNMLTpr zM|4IPbVGOaL@)F~U-ZWS48mXx#W0M(NQ}l9jKg?L#3W3?R7}SV%))HU#XKy)LM+A- zEW>iF#44=8TCB$gY{F)2#Ww7~PVB}W?8AN>#33BPQ5?q!oWg0G#W`HSMO?-eT*GzT z#4X&xUEIe5Ji=o<#WTFXOT5M#yu*8Z#3y{gSA540{K9Vp+8ID#1Vu1}KuCl}7=%N3 zL_{R~g(&zN(eMvqAQocdU&KXxB*1@2gd|9cgh7u@=(kO#+D36M$ges_t>ZpNQsExX)hX!bf#%O|OXpWX>g*Ir5_UM34 z=!~xDh92mN-sppV=#POIgdrG;;TVBY7>%(QhY6U7$(Vv^n2wp4g*lju`B;EOSd67u zh80+e)mVddSdWd^ge};L?bv}`*p0o|hXXi>!#ILtIF6Gzg)=yd^SFRZxQwf~h8wtv z+qi>!xQ~Z;geQ24=Xilvc#XGshY$FO&-j9G_>Q0Wg+B&4bTXU(G<vF0UNOyTd)n=u@k$n2Yay}2XF|7aTLdJ0w-}AXK)VZaS@kr1y^w$H*gEL zaToXS01xpPPw))S@e;4_25<2mAMgpE@fF|j13&Q_e-L6rrBDWCQ63dg36)V5)ldU9Q5$to5B1RyjnD*5(Ht$%3a!x=?a%=o(HULP z4c*Zbz0e1J(H{da2!k;c!!QCPF&bkq4&yNqlQ0ESFȽ$rm7^RNI5u^3CR49l?+ ztFQ)Zu^t<+37fGM+pq&Wu^W4^5BqTthj0W(aU3Ub3a4=v=WqcRaT!-|4cBoKw{Qn{ zaUT!x2#@g;&+q~-@fvUN4)5_1pYR1=@f|<#3%?O)PXK`t6u}SzArTs35DwuH5s~m0 zqTufUIyJ8!(8(g5t)Y&V#%O|OXpWX>g*Ir5_UM34=!~xDh92mN-sppV=#POIgdrG; z;TVBY7>%(QhY6U7$(Vv^n2wp4g*lju`B;EOSd67uh80+e)mVddSdWd^ge};L?bv}` z*p0o|hXXi>!#ILtIF6Gzg)=yd^SFRZxQwf~h8wtv+qi>!xQ~Z;geQ24=Xilvc#XGs zhY$FO&-j9G_>Q0Wg+B=NFn}Nkir@%=Pza5%2!{xWh{*U0QSmpT;~&ICEX2XTh==${ zi2slnNstW5krJtp25FHV8ITE?krmmH138f!d5{nJQ4obt1VvFCB~S{bQ5NM;0Todh zRZtDpQ4_UL2X#>&4bTXU(G<vF0UNOyTd)n=u@k$n z2Yay}2XF|7aTLdJ0w-}AXK)VZaS@kr1y^w$H*gELaToXS01xpPPw))S@e;4_25<2m zAMgpE@fF|j13&Q_e-QXl06`E8!4VRn5C&lp9uW`;kr4$^5e?B112GXBaS#{rkN^ph z2#Jvt$&dmmks4``4(X8*nUDopksUdZ3%QXO`A`4_Q5Z!~48>6rrBDWCQ63dg36)V5 z)ldU9Q5$to5B1RyjnD*5(Ht$%3a!x=?a%=o(HULP4c*Zbz0e1J(H{da2!k;c!!QCP zF&bkq4&yNqlQ0ESFȽ$rm7^RNI5u^3CR49l?+tFQ)Zu^t<+37fGM+pq&Wu^W4^ z5BqTthj0W(aU3Ub3a4=v=WqcRaT!-|4cBoKw{Qn{aUT!x2#@g;&+q~-@fvUN4)5_1 zpYR1=@f|<#3%?QQaR7l46u}SzEk_5?8g0-H?a>jP&;?!59X-$sz0nu_FaQHF7(*}& z!!Z)0Fa~2W9uqJLlQ9+3Fat9&8*?xZ^RW<%umnr794oL2tFadAumKyf8C$Ro+p!b7 zum^jw9|v#RyhG95HVid+;EXHF3CSfwBVj5;(CT3#} z=3zb-ViA^LDVAdeR$(>PVjVVMBQ|3TwqZMVVi)#cFZSaA4&gA4;uucgBu?WD&fz>R z;u5alDz4)OZs9iW;vOF0As*uip5ZxO;uYTDE#Bh;KH)RI;v0V8Cw}7(0zU~L2!bIv zLLwBxAS}Wo0wN(Yq97`wAv$6pCSoHF;vyarAR!VVF_Iz~QXnN#BMs6aJu)H_vLGw6 zBL{LJH}WDM3ZNhgqX>$jI7*@v%AhRDqXH_SGOD5)YM>@+qYmn!J{qDCnxH9~qXk-_ zHQJ&bI-nyuqYJvBJ9?rQ`k*iRV*mzWFot3nMqngHV+_V&JSJiireG?jV+LknHs)d; z7GNP3V+odFIaXp7)?h8xV*@r}Gqz$Ic3>xVV-NOWKMvv$j^HSc;{;COG|u82F5n_A z;|i|fI&R_??%*!&;{hJwF`nWXUf?BO;|<>7JwDHv&BkATWX=7(yT< zLL&^qAv_`?68=II{EcY%2Qd%}vGFhBB0dt}KO{mDBt>$hKq{n0TBJh;WJG3UK{jMZ zPUJ!!N9!7&`iNu0tNoW*%uz$IM9 zRb0aj+{A6%!9Co^Lp;J0JjHXoz$?7QTfD;ue8gvb!8d%zPyE6k1bP-g5ClbVgg_{S zMp%SH1Vlt+{Dr9a8`1F(Vj>pe;9tZ;d?dtwNQ@*%hU7?zR7iugNRJH2gv`i_Y{-F} z$c;S6hx{mrLMVcwD2@^+h0-XCa;SicsEjJ8hU%z^TBw7%sE-C{gvMx!W@v$yXpJ^# zhxX`*PUwQJ=#C!fh2H3kei(p(7>pqphT#~AQ5b`<7>@~p46IE^znhx53IOSpoo zxQ-jRh1DgZ{5*gl2!`MYiBJfG zun3O`h=j<9f~bgw=!k)sh>bXii+D(Ygh+(MNQz`gfs{y%G)RZ^$cRkHf~?4n9LR;- z$cua^fPyHDA}EI9D2Y-igR&@(3aEt2sETT+ftsj|I;e;GXoyB=f~IJW7HEamXp45} zfR5;lF6f5t=!stFgTCmG0T_hA7>Z#Sfsq)EF&KyOn21T3f~lB}8JLCHn2UK>fQ49$ zC0K^#Scz3wgSA+X4cLUu*otk~ft}cmJ=ll+IEX_yf}=Q&6F7y_IE!<*fQz_{E4YU1 zxQSc1gS)to2Y7_Xc#3CuftPrVH+YBl_=r#Vg0J|FANYme2=pR=zzB+92!W6YjW7s@ z@Q8>=_zO|+H=^Mm#6T>>#=nS*_(*{NkO)bT6v>eSsgN3Jkq#M<5t)$%*^nJMkqdc{ z7x_^Dg-{qpQ4A$e5~WcFr+F$hC26vHtBqc9p{F%A#!ahu?btS72B}`yRaL3u@47u5QlLD$8a1caSCT}7UyvRmv9+ZaSbn zp$odAJ9?lOdZRD;VE_hVFos|lhGQf~VGPD%JSJcgCSxk5VFqSmHs)X+=3^liVF{LE zIaXj5R%0#JVFNZ|GqzwGwqqxDVGs6VKMvp!4&x|};RH_NG|u20&f_93;R>$eI&R<= zZsRWQ;Q=1vF`nQVp5rB6;SJv6JwD(QKI1FC;Rk-=H~t{-s{n!^7=j}tLLm&oB0M4> z5+WlCq9PiiBL-q3HsT;I;voSNA`ucJDUu-tQX)0dARW>pBQhZivLZWjAQy5YFY=)P z3ZgKIpcsmyBub$S%A!0fpb{#hDypFdYN9skpdRX@AsV3xnxZ*cpcPu9E!v?2I-)bW zpc}fQCwid|`l3GuU=RjlD28DKMq)I^U>wF{A|_!9reZo~U>0U$F6LnY7Gg1$U>TNU zC01b#)?z(2U=ucDE4E<=c49a7U?2A5AP(UOj^a2@;1o{dEY9HqF5)t-;2N&uCT`&l z?&3Zk;1M3E`v9seLEVj&LxMLfhuLi~rsNP=WYj+97+G)Rl|$bd}9jI79p9LR~>$b)>ykAf(K zA}EUDD1lNajj||*3aE(6sDf&!j+&^2I;e~KXn;m&jHYOY7HEmqXoGfWkB;bsF6fHx z=z(77jlSrI0T_tE7=mFKj*%FJF&K;Sn1D%`jH#H08JLOLn1gwkkA+x-C0L5(SbZ4cLgy*n(}?j-A+rJ=lx=IDkVqjH5V)6F7;}ID>OIkBhj3E4Yg5xPe=^jk~yq z2Y86bc!Fnmj+c0aH+YNp_<&FNjIa2HANYyi_=CW20|R$R zifD+A7>J43h=aI@hXhE7L`aOJNQM+hiPT7gbV!ek$b>A&itNaNT*!^Q$cF+bh{7m> zVknN1D1|a8i}I*|N~nygsD>J-iQ1@xdZ>?vXoMzcisop6R%ng3Xon8yh|cJOZs?Al z=!HJ$i~bmZK^Tmo7={rTiP0E?aTt$@n1m^qis_hvS(uHvn1=;eh{affWmt}tScNrM zi}l!mP1uaB*oGb0iQU+Peb|qKID{iOisLweQ#g&YIEM?kh|9QwYq*Y^xP?2oi~D$h zM|g~#-4=umxMO9XqfKyRkQbfGpsB>H|24!#ILtIF6Gzg)=yd^SFRZxQwf~h8wtv+qi>! zxQ~Z;geQ24=Xilvc#XGshY$FO&-j9G_>Q0Wg+B=NK7b$yir@%=Pza5%2!{xWh{*U0 zQSmpT;~&ICEX2XTh==${i2slnNstW5krJtp25FHV8ITE?krmmH138f!d5{nJQ4obt z1VvFCB~S{bQ5NM;0TodhRZtDpQ4_UL2X#>&4bTXU(G<vF0UNOyTd)n=u@k$n2Yay}2XF|7aTLdJ0w-}AXK)VZaS@kr1y^w$H*gELaToXS z01xpPPw))S@e;4_25<2mAMgpE@fF|j13&Q_e-QXX06`E8!4VRn5C&lp9uW`;kr4$^ z5e?B112GXBaS#{rkN^ph2#Jvt$&dmmks4``4(X8*nUDopksUdZ3%QXO`A`4_Q5Z!~ z48>6rrBDWCQ63dg36)V5)ldU9Q5$to5B1RyjnD*5(Ht$%3a!x=?a%=o(HULP4c*Zb zz0e1J(H{da2!k;c!!QCPF&bkq4&yNqlQ0ESFȽ$rm7^RNI5u^3CR49l?+tFQ)Z zu^t<+37fGM+pq&Wu^W4^5BqTthj0W(aU3Ub3a4=v=WqcRaT!-|4cBoKw{Qn{aUT!x z2#@g;&+q~-@fvUN4)5_1pYR1=@f|<#3%?QQV*r5>6u}SzArTs35DwuH5s~m0qTp{t z!#{|DScr{(5f|~10RJHok{~IPBLz|+HPRv-G9V)|BMY)2J8~iy@*pqrqW}t_Fp8oW zN}wc4qYTQSJSw6Rs-P;WqXufBHtM1t8lWK>qY0X!Ia;C>+Mq4kqXRmjGrFQ1dY~tI zqYwI_KL%nDhF~a$V+2NFG{#~aCSW2aV+y8WI%Z-P=3p-7V*wUnF_vN(R$wJoV-40} zJvL$!wqPr^V+VF&H}+y54&WdT;|Px7I8Nde&fqN0;{q<>GOpqpZr~SWf+GY%AvD4w93mhhBI7Sa#ovgI ze-IO~5C{Jv9^xY*{zGCUK{6yqN~A&>q(ypUKqh2HR%AmCs}6h(2A zKq-_)S(HNsR77P|K{ZrIP1Hgi)J1(XKqE9pQ#3;hv_xyPK|8cZM|46LbVYacKri%0 zU-ZKO48&jz!7vQRNQ}Z5jKz3Nz$8q@R7}GR%*1TW!92{zLM*}(EX8uHz$&c9TCBqc zY{X`4!8UBiPVB-S?8SZ@z#$yQQ5?ewoWyCI!8x4AMO?xaT*Y z!81I^OT5Axyv2Kbz$bjhSA4?{{KRkkLEz5;1VJzaM@WQ17=%T5L_j1&MifLvG(<-X z#6)bwL0rT`0whEtBt}vsLkgrsYNSCrq(??%LKb92cH}@V-VH80z6h}#v zLK&1rc~n3pR7O=)Lk-kKZPY!w&4kZtTH6?8iYI!Vw(Bah$*@oW@z4!v$Q#Wn95ET*pn^!X4bjeLTP;JjPQz z!wbB`YrMfbyvIj;!WVqScl^LF{6?TJ0R%=+1VadfL}-LTID|(;M8aQ)g1-?B{~!ip zAvXR+T*OBL{D(wHf}}`}6i9{CNQ-pHfQ-nDEXaoJ$cbFYgS^O(0w{#SD2iezfs!bV zGAM`gsEA6af~u&F8mNWZsEc}NfQD#{CTND{Xo*&6gSKdo4(No==!$OWfu87%KIn)3 z7>Gd_f}t3W5g3Kh7>jY3fQgulDVT=on2A}KgSnWG1z3c|Sc+v>ft6T|HCTuB*oaNo zg00w&9oU84*o%EQfP*-UBRGcRIEhm@gR?k~3%G>KxQc7Ift$FEJGh7Yc!)=Mf~RwK$4~dZk$&ef=kqT*$7U_`znUEP-kqtSJ6S9uqMMQ!o|NF$1$O8*?!a3$PH2u>{Mo94oO3Yp@pUu>qT~8C$Up zJFpYGu?PFG9|v&=M{pF!aRR4s8fS417jO}maRt|K9XD|ccW@W?@c@tT7*FvGFYpqt z@doek9v|@uU+@**@dLl`8-czD5Ewxb3?UE_p%Dh*5FQZ`34b99{zf$XgBXZ~*!UN5 z5g!Tg9}*!6k|H@$AQe(0Ez%(aG9ojwARDqHCvqVV@*+Pnjtn3(vLG9>BPVhp5Aq^E z3ZM`QqbQ1@1WKYb%Ag#|qarGy3aX+yYM>Tsqb};90UDw)nxGk)qa|9Q4cekTI-nCe zqbs_h2YRA6`k){BV;}}$2!>)fMqm_1V=TsD0w!WIreGSTVBFV=wmM01o0Xj^G%M<0MYu49?;_F5nU_<0`J<25#au z?%*Eo;~^g537+CPUf>m8<1OCd13uz2zTg|a<0pRM4+4z}AP9mYI6@#4LL)4~Ap#;I zGX6qT{Eg`N2Qd)~aqutVAwCk~KO{yHBtvqfL@J~~TBJt?WI|?SMKPUJ=&(L!2N*%Jj5eB!BafP3%tT>yu~|wz(;(>7ktBa{KPN(K_IbG zK@b$d5dxtQ8etI*5fBlP@fV`vZ$!sGh>2K;gMSeZ@sSY!Au*C58ImIvbu zOu!^e##Bth49vuA%)va&$3iT^5-i1XtiUR)##*ey25iJ;Y{52c$4>0R9_+<_9KazQ z#!(!@37o`foWVJq$3Y+Xwq7j;)DVn1NTA?-Cq8&P*BRZoCx}iIIq8Iw0FZyEu24OIUVi-nXBt~Nl z#$h}rViKlcDyCxwW??qwVjdP?Ar@l^mSH(oVine4E!JZLHeoZiVjFf~Cw5~G_F+E` z;t-DDD30R9uqMMQ!o|NF$1$O8*?!a3$PH2u>{Mo94oO3Yp@pUu>qT~8C$UpJFpYGu?PFG z9|v&=M{pF!aRR4s8fS417jO}maRt|K9XD|ccW@W?@c@tT7*FvGFYpqt@doek9v|@u zU+@**@dLl`8-acX5Ewxb3?UE_p%Dh*5FQZ`34b99{zf$XgBXZ~*!UN55g!Tg9}*!6 zk|H@$AQe(0Ez%(aG9ojwARDqHCvqVV@*+P9pb!e9D2ky3N}@E%pd8AhA}XN@s-ik- zpcZPQF6yBH8lo|ppc$H@C0d~k+M+!=pc6WyE4rZvdZIV_pdb2UAO>LwhGIBIU=&7U zEXH91CSo$CU>c@lCT3v{=3+h;U=bE$DVAXcR$?{QU>(+DBQ{|RwqiSWU>9~{FZSU8 z4&pG5;24hMBu?QB&f+{S;1Vw5Dz4!MZsIoX;2!SdAs*ogp5i%P;1youE#Bb+KH@XJ z;2XZQbD2MW>h)Sq}s;G_{sD;|7i+X5)hG>i?Xoiyq0yvE`IEVAN7(l1y zp#xUJAu_BL36BVfgvf}3sECH>h=G`hjW~#lcu0VRNQA^lieyNElt_&ifX8Vny8IBsE7J!h(>6Frf7~9 zXoc2ji+1RMj_8ao=!Wj-iC*Y~zUYqu7=*zXieVUmkr<6J7>Dtgh)I}&shEx#n1$Jx zi+Napg;$&mu7kQ!-`4jGUUnUMwA zkR3UZ3we+i`B4CcP#8r~3?)z!rBMduP#zUg2~|)P)lmbrP#bko4-L=|jnM?n&>St% z3T@C9?a=|9&>3CP4L#5kz0n8#&>sUa2tzOw!!ZJ*FdAbq4ihjDlQ9L;FdZ{73v)0R z^RWPnuoz3R3@fk_tFZ>_upS$+30trg+pz6u}V! zp%5Bj5e^X$5s~p1qT+8v$3KXPScrpv5fAZ^5dR@Dk{}t9BPCKH4bmb#G9VK&BP+5Y z2XZ1e@*p4bqaX^Q2#TUON}v=8R z<)))pG9AT|DJUeSxSdAJ5 z1qB8D`25~KKIfk2&-XmfJ?Fjez0ci*Cy|c=JcB~K3(sORp2HTD;5{hC|KYvZju%jd za(n<4_#i%no%k@SP>qkF1|P?Z*n>}?7IpYE>hT%8gnjrd8qtK$qZwboD>#TRq6Mw^ z3fk~hyo$s48amL4Z=ws|!fQB+Z{rwx@ICb6`}hI+@j6am06)eceuAIkG=7FNIE!E6 z9DapgV+g;&Fh=lujN%XYBQD}kxP%G(6_@ch{2kNy2WBvfe`5~+!GE!c{~_Rtz@@Un zRS3e>xCWuP7GVg-4T!*vxCzm?88KLf+YpP}aR(A`ClZl_dytHKaUarfKhm)rZ@>z? z5pTjOycw&p29IDZ-h#Jc9o~j)tjFWnfVblv*ob!`51a55^6@mDK@r}CVr<6q*n)TC zJ=lu>!!~Tk`%s4W;{(`%526w~@ex$vqxcwh;p5niJ@_PQ@hN;7d+`}GU>{yaBR+@E zV?Vxt12~8;p#@*YS8xblMLQ1T>*&BY@J$@Sx6qBF_zsTYyZ9cCN05oPAPej8D6;Vw9!Cz|j$CZS6Uf7pcnSr08igpr zvna-McpfEqH%hS;@5MH}fcK#s??(l8;6tdyhw%|q*&Nc(1jy-4c+)QzJnfo7ri)+AD|Df zBeW47VZ{akvBVxD$6F z33nqIDYy@*xE~K-IUd9cti+p;fj8qJtii)ri%h%~S$G>B#dB=z#>Y^DkK;w`!6#6Q zI(!=S_zYgcK71C9Xu{{wj4$979K;vVf>wM5ZTKo)#bJC69q7b2(S>i}H5|paaST29 z9(wV8`~dxU9Vak=A7cIVzrwFEgx_EoBltZ=@dx}77x5=t!UX<` z%lI4qj%oY@GnmD{F^B))zgWco5OC!Zfw&4mxEj|W6xSjQ;kW@2xDhuY8aE>b%WxZF zaXaon0`5d2l5h`_aWC#e8tz9rmg5arfj8n!ScNxZHP+w}ti@aKR;vNeJI2G@d50>2T_Tg_z0@- zQG5)$@Nw+M9()qD_!K^kz4#0oun#Yz5ud~7u^(T+0UX4a(1I`HD>#I&q8*3vb#&kx z_$H3vTj<77d=} z?=glyU>q0mXI#Qx@K;RYZ7QHaJZh{3J64RN>~@kqd3NW|T^2PwE0sYt^ENXLVC16JaV$iON*gw=Q$k029o zK^E5GQDoyWJdPZ^9l6+uCy<9H@e~U1Gzw9KXHksj@H|TJZj@px-ivK`0q;XO-j53G zz=u$Y591@K#z#?uU3d|@@dFU=kaS? zz;EzdjNo?|#TfpGar_B?#svO?%b3L9F@=BNpP0qJFo${k7Yq0wt_WHp5LY4y!MFw? zxE9wT9M>ZPk+=y_xEZ%#8E!=^;&2DzaVPFV67EJaQg9zqaX%iway*C?Scx|w18>Gd zSc8YL7MXY}vhX%MiuHI58<2x{AQ$h%6WD|&k&gmAgF?Iu&tfy4!xog_Jt)Qh;l0?7 z7f^gHNCqb@(*u@fo~?efTUI(S*;V8DGFFIEXKz z1+DlB+VEApio^ICI?#!4q6^=`YdDH;;~0AIJ@n%H_yPLyI!<5!KgJ+_f}i3veugtR zi(ld#euZCS2*1HFM(}%#;t%*EF5*wPgbDl=m+?3J9n<&+W-yC?V-Ekpf3b-FAs~2( zKwO0&T#aiGifa*uaNK|h+=!bHjhhjJWw;HoxE*&O0e2!1Nw^2exEJ>!4fi7*%kc)R zz#H){ya zBR+@EV?Vxt12~8;p#@*YS8xblMLQ1T>*&BY@J$@Sx6qBF_zsTYyZ9cC0^WymydM?Vfe)b)AI3*ejgO)RyYM1*;}iHK>hLMl zV=rDp13rtF(S*;T8T;`H4&aOU5?b+PwBZn5MLWKRucH&+Ko^eSHFV?K_zrsTUG(BO zetiu>^Zmg7OJz)HLc8F(`u!Wuk`waCOwNiF_2`85H7Ocov)S9JZhY??Ea45AVfxynr&4;{&L`2k{~7#D`IZYJ3be_&8p~ z9()3|sKcjGkI&#G?89f#h$eg<&G-Ud!9jcxEojA8(1x$#RUF3G(1A{T6J7WgUc*s* z8^_Rt@1Ymp#}ClI#L}sw*NsnL06)eceuAIkG=7FNIE!E69DapgV+g;&Fh=lujN%XY zBQD}kxP%G(6_@ch{2kNy2WBvfe`5~+!GE!c{~;h`i9lS1AY6@W5Q=LNhH%_~2;7L9 z5RID=gJrl4vA7*~AOUwG5lOfQ$+#EyAr1E<9n0|stiT)bCal7nu^Mae2-e~)cq`W7 zZOF!YJdO=`JKlkfcqj6(2~Qy(PvaRB;aw=kW;~BAcsJgIr9Tr(g@tX{j`yJq@5cwQ z10O^scH$$b!bkBj?83*f8+-6c)Z$b4H1^^%Xuv+aj7EG8pT~ZD0S9mpUqTDMjIZDj zzKV7n#@Eq-Z{V9af^VT4NAVpT!*}sL9LM+3hkpDJC-5Wu7$@-)oWg1R9B1$g{1WH! zD_p=3ev4uJ4!_43{(x~@#Gi2qf5BfdiN9eA)A%Q5@Gtxu^Y{-Iu!t){mk7X>xC+6z z8X*Y9bqK@txB-#45mAW7Er`LbxD9c*9q~xOT}Z^;xCbe?7pX|Y14ze%cmr1AjmW?% zJcQMF7>^(mZ$TE;;ZbDcF+7eOydAmNh$oPTC-D>t@H7fhglAEV=kPpA@NSf1E8dH3 zcmeN2Io^*7?7)Xmi4Wr=sK!T8gI#zLyYUHp5_R|#>aiCup#h)8%V@&q(2V_f1qbj& zdJ96vxGUdInHfFEHHC-GC9!q4z? zoW(D24(IV}T)=PeTa4g$7{wU=h;jT0f5rs>fF>F8%-ho`a6Hj0hR@E)-=z0jN@h~1iCfzJykM8ErU( zSJ95I;p^zcH_(M6cn#h7Hok)%d>6eqjvt^8uj7Xpz>hG9llUo4;b-_c&f*t1hx7O~ zF5ox#Ek^J=jA9Ib#5n$hKVt%a!DUS1@0h|r@K4O*Uzo!@{)+|t4_AC@i9lS5AOzzY zgy33Shj3hv2t?v0MB!%Kf@QcBv53PRh{v6{3rV;e$w>fF>F8%-ho`a6Hj0ho-4@hT4EYv@2HzKJe;3$NiQzKvt(!S~RM@8bvP$LlzO0sI()_z8ZB)A$+A z;4FTLbNCg0jUoI7!x+KuF^WInkGP0G;SwhBS6s&5@OMn(ADF=`{*5{O2mi$){)Yg) zumW)vf^apiK`5?87{YM_B5)&aLNsnh43^^(mZ$TE;;ZbDcF+7eOydAmNh$oPTC-D>t@H7fhglAEV=kPpA@NSf1Y4_yP z6ohSf0l(FcVg$d#D8}$djN?!EGbZpCT*f5+jw$>D|HLf*g*nXQzgWQka7Et|fw&Su z2*x!C!L_&!;kX_Vh{R2Z!p*n^%Wx}V5r;bvk2`S}l5jVYk%Ie>iu>^Zmg7OJz)HLc z8F(`u!Wuk`waCOwNiF_2`85H7Ocov)S9JZhY??Ea4 z5AVfxynr&4;{&L`2k{~7#D`IZYJ3be_&8p~9()3|sKcjGkI&#G?89f#h$eg<&G-Ud z!9jcxEojA8(1x$#RUF3G(1A{T6J7WgUc*s*8^_Rt@1Ymp#}Ckt*Kq;^_%R0Y6Z{mX z@iUykS^N^`@GJZpL--AbF@oP?6o0@UaS?yQB~0M2xQxHy@0i9vFoRkA8*}&%{)Sx#qGEQ3Ahu9NWwix#=W=?X}BNh zSdKSf1>T4^VHMtt)mVc^uoiE@Td@vrLpIjqacscb@eXXnJCTP?cnbM=8qc5z??N#) z<9TesyYU`u#s6U&w&Q&$!~5|8?7#<6iJkZes_;>K47>1g?8Y8^61DggK8?Nj3>vTx zFQXBk!{@OdU%&wz#Fx;5FXJmXgs-98w0{0bK^gx_Kqzr*h_hCg5&7x8CY!e8)LOyX~t!ZiMg z8Tf$6K_El*5OfP<1svr9K0R5*oY^PhbQqA z3h*=vQG{nvjOXw?O7L!!Vk_Q@ZFm9iLpk1$3hcm#P>B!YBdEqlQG;E05xemTd=ho| z6zZ`TFQEaS#mi{I=g^G(cm)UWMSKaZ_%hmX2(O|YU&GhYiEp3_NAMcD@ojtuJ@_tq zaU4HDA6~}~F@PUoaEXeoPcE%1X#$aNed%dDgQ6uWw!Ul0s+YGGi#)f)`?o&-|0DNo zEfFfk(y5H4myhizLpdt21C`i`DpaEeyRaL3P>VX$V=o%84~=L-Gxp;E4x$CEXu~12 z<1jkVi7p&LH;&>MdeDpG=tDnFU;u+SiBmX@GdPQLIFAb$!Z1cKiZP7iA}(P9mobSc zOk)PKn8Q34u!w-`mIy=;f)RpHgdrReh(r{k5rbujMI7RhfJ7uA87W9b8q%>GE3gt7 zScTPCgSE&+7S#+ej$i+tFVH5IEfI<|Z7@M&LB`C#KY{Pbxp&S+1flBN|6{=B# zUD%C1s6`#>u@?>4hekA^8T)Yn2hoC7wBZoiaTp!wL>G>r8%J>rJ?O=8^r0UoFn~dv z#3`J{8JxvAoW}(WVHhJA#TdqM5tlH5%b3IzrZIzA%wZl2SVTbB5`hRpFhUTDFoYul zk%&SxVz3Och(kOQkccECBL%5QLpqjY1y&*htFRhtuojuf!a8JQJvJZ*x!8z2Y(hQ? zP>3QFV>7m(1f|%DZP<=7l%oPWP>G$WLN#iz3%jugwWvcq_M!p%(1<29V?PeyAX?Ch zHXK4b4xbdo43;4lafn9(5|M;tq#zY(NXK%l zz)ECb6;@*n)*=&GSchz^#|Gpe7aNg>O~^+93Q>e&Y{nLppcGrN4ck$Ma#UakDzOt) zs74KTVK?@m7Imn{UNm4I8qtJi?8gBdLZ&U?noJ3ahaOYmtd8tV1@|V*_%Ki;c*` zCgh_4g(yNXHe(A)P>Q8vxJ&tm?I=SzDzF2U*oi7sqXxUM8+%ZTI@Dt?8n6$IXhJjg z;{Xn#1+8eqA++N#I?#zO96>jZ;uw0+i{t1+KTco(gE)y(IE^zni*q=S3mC#MMlgyo zjN>9MVFH&ii78BD2D6yMJQlEsfE$(wL=b`zf>4AZ91(~_6rvG>Wr#%_;*o$vBq13o zNJSdbu^cO~5*b*9)mVeI$V3*_Asg$l0XfLUM&w}=@=<_76rmWKu>~b4#a3*?c9fwU z71)7F>_io+QG;FBjXkJE9qO?c4cLc9G@%*$aR3L=f>yNQ5ZZAV9q2?Cj-VSyaST1^ z#c}kZA15$?L7c=XoW>cP#W|eE1q@*rBN)XP#&HpsFoDaM#1y76gIUaB9t&7RK*SP( z2tqJI5Q;E_BLb0#LNsEq46%qqJQ9$IBqSpRsYpXQmSY80A_J?i8f&l?naILAWMe%x zAP2eFh&*gUJ_=BXA{1jYwx9&1*otk~jxv;^0y|KNov1=JYOo8tu?MxNLp}DQ0sGL1 zCNyI|4&WeK(26!3LOTwl1D)u?5p?4yj-dy=IF3H_;{*mUh?6*l(>Q~(IEVANfFTTH z1fv+kI4FpD|NV*!f@h+HBNK?p_&LJ@{=L?9ATh(-*SAr^6nM*36=_Jva;(5gWMCCmV-40K6Iob?Y^=uy zQHF9_RMgl6o=0USgNTG56>Xvbl6pc7pp$J1bA`povL?Z^v5Q{j(BLRs>LNZd2iZrBSIaXjLGO!A(u?B0Ai7c!` zHr8VUa*&IS$ipV&qX2~{LNPXD3rbLmt=NX`C__0aumhFYi7Hg12D`8udr*ry)MGCi zun&!BLNoT`01l!Bt!Tp`wBs;3(1|V_K{t-#7<$l)AT|8|$$FImpFEu@?>4hekA^8T)Yn2hoC7wBZoiaTp!w zL>G>r8%J>rJ?O=8^r0UoFn~dv#3`J{8JxvAoW}(WVHhJA#TdqM5tlH5%b3IzrZIzA z%wZl2SVTb75`hRpFhUTDFoYulk%&SxVz3Och(kOQkccECBL%5QLpqjY1y&*htFRht zuojuf!a8JQJvJZ*x!8z2Y(hQ?P>3QFV>7m(1f|%DZP<=7l%oPWP>G$WLN#iz3%jug zwWvcq_M!p%(1<29V?PeyAX?ChHXK4b4xbdo z43;4lafn9(5|M;tq#zY(NXK%lz)ECb6;@*n)*=&GSchz^#|Gpe7aNg>O~^+93Q>e& zY{nLppcGrN4ck$Ma#UakDzOt)s74KTVK?@m7Imn{UNm4I8qtJi?8gBdLZ&U?noJ z3ahaOYmtd8tV1@|V*_%Ki;c*`Cgh_4g(yNXHe(A)P>QYChV3XrIV!LNmDq_YRHFvF zup4_&i#pU}FB-59jc7tM_TvB!q6MvJ!y&ZeFgnnQE*wEOj^Y@4(2L{fLqASn0E0M* zQ#g$?IE!;Qj|&*WFh($nF^uCPE@1+fF^MTmV+OOB!#ozSh=5y`2t*Kq5rR;JAsi8i zL=>VCgJpc(y<&Xuo4+qh1FPtwa7#k)*&0~u>m>A#YW^|6Y^1j zLKLAGo3RBYD8*8v$EEzkc9fwU71)7F>_io+QG;FBjXkJE9qO?c4cLc9G@%*$aR3L= zf>yNQ5ZZAV9q2?Cj-VSyaST1^#c}kZA15$?L7c=XoW>cP#W|eE1q@*rBN)XP#&Hps zFoDaM#1y76gIUaB9t&7RK+F<>2tqJI5Q;E_BLb0#LNsEq46%qqJQ9$IBqSpRsYpXQ zmSY80A_J?i8f&l?naILAWMe%xAP2eFh&*gUJ_=BXA{1jYwx9&1*otk~jxv;^0y|KN zov1=JYOo8tu?MxNLp}DQ0sGL1CNyI|4&WeK(26!3LOTwl1D)u?5p?4yj-dy=IF3H_ z;{*mUh?6*l(>Q~(IEVANfFTTH1fv+kI4FpD|NV*!f@ShhqUf)I=l zgdz;#h(IKw5RDitLoDJDj|3zl3CT!7D$_IK+P>;Q6z&4_W9UIIj-wC#IDr8S;v`PtG|u2G&fz>RU` zJIYXw3hY27cA^T^sKGAm#vat74)xfJ2JAy4n$V2>IDms_K`YvD2<0+j#{w1+5W7Smf)I=lgdz;#h(IKw5RDitLoDJD zj|3zl3CT!7D$Q~(IEVANfFTTH1fv+kI4
FpD|NV*!f@h+85MK?p_&LJ@{=L?9ATh(-*SAr^6nM*36=_Jv za;(5gWMCCmV-40K6Iob?Y^=uyG6cC%SM1-8hP4=s_=z zqYwQ!fdLHSBu?Qp&fqN0;XE#22*Vh`D8?|3i@1adT*f4(FpU|^Vh;0Iz#;-}Um_4e z2u27(5r%L?AQDlCMhuoA7IBD20uqsgWTYS!X-LO%tiVcSU=>zl4b~zPSy+c`tj7lA zAQu~vhfT;w0SZxsVr<41l%Nz_u?^c%hH_M32P&}>Rj5V{c40U6pcZwg$6hpG9~#kw zX6(lS97GFR(S}24$6<7!6J0ohZXCri^q?2V(T9GVzyJnu5~pw)XK)tha2^*hgkg+e z6k{02MO?xJE@Ki?n8pldF^739U=aa#ED?wx1S15Y2tzm`5Q!*6BL>S5i#Wt10f|UL zGE$I=G^ArWR$wJEunMcO25XUtEUZH|)?)*5kc*AT!zSdT0EH+*F*aihN>GZe*oN&W zLpdt21C`i`DpaEeyRaL3P>VX$V=o%84~=L-Gxp;E4x$CEXu~12<1jkVi7p&LH;&>M zdeDpG=tDnFU;u+SiBmX@GdPQLIFAb$!Z1cKiZP7iA}(P9mobScOk)PKn8Q34u!w;8 zB?1wIV1ytPVF*VAA`yjX#9$d>5r=prAQ4GOMha4qhIA~)3ams1R$(>PU@bC{g>}fr zdTc-rafj-9m}x-E0KX!SdBGUi%eu;9kQ_=8<2xsY(yS5As+=OL=lRy8Cy_- zQf$RGY)2W&QGp$(#74xt@~(Sc5M z;Rw2M6vxnmUK~ds`f&mS7{p1O!fBkrS)9XpT)+^9F@jNyVH_862@|-CNlalHGnmC3 z=COc91l+kqAc7E#5QHKO;fO#aq7aQ3EJG~f5RU{TA_>VzK`PRaj^$W^mB_#QIlpXuv)+q6y8|j{`V}7PO)bhtQ70=s+jBa0J~rieuuGQ z3}!Khc`RTN0f|clA_&0`JIYXw3hY27cA^T^sKGAm z#vat74)xfJ2JAy4n$V2>IDms_K`YvD2<@LF9|b5x z5sI-HTTp^hY{fQgM;XddfgPyCPE?^9HQ0sS*n?Wsp&onDfPH906PmFf2XGKAXhjDfN92ap36S#~? zOko-`n8h6Cv4BMc+`U8~f)I=lgdz;#h(IKw5RDitLoDJDj|3zl3CT!7D$_IK+P>;Q6z&4_W9UIIj-wC#IDr8S z;v`PtG|u2G&fz>RU36=_Jva;(5gWMCCmV-40K6Iob?Y^=uyQHF9_RMgl6o=0USgN zTG56>Xvbl6pc7pjvkf)bQsE4E=f%2199>_8=U zq6*ch!7l8^9@L@^_1KFB>_a1((2V^!fP-j3E81`f?Kq4MbfODK(2b)wh930dIQr0! z6BxiCPT~|!;|$K?9M0nchA@l~jA9JqxQI)bz-3Hg3e%XuEaote1uP;UWr;upAs8VD zMHs>nfk;Fl8ZlUgSi~V72}nc|l97T`q#+&4u>vcRfmK+IHCT&GWMLh$u^t%jim@46P=Zoy#Wrk58Ol+C9jL@kRG}I**oEELgId&~9(&P%eP~1znz0`T za1bqMMcWcfTjLHHx8pE6(1|V_K{t-#7<$l)AT|8|$$FImpFEaiCM*oQ_mp&9#e00+^6Rjvkf)bQsE4E=f%2199>_8=Uq6*ch!7l8^9@L@^_1KFB z>_a1((2V^!fP-j3E81`f?Kq4MbfODK(2b)wh930dIQr0!6BxiCPT~|!;|$K?9M0nc zhA@l~jA9JqxQI)bz-3Hg3e%XuEaote1uP;Ub%{U(As8VDMHs>nfk;Fl8ZlUgSi~V7 z2}nc|l97T`q#+&4u>vcRfmK+IHCT&GWMLh$u^t%jim@46P=Zoy z#Wrk58Ol+C9jL@kRG}I**oEELgId&~9(&P%eP~1znz0`Ta1bqMMH>#G9f#3@PITc2 zx^Wc8(1TtaM<4oe0s|PtNu0uIoWWU~!+Bi55QZ^=QH)_67jX#_xQt0mVHz`-#T@3b zfJFqPEfI(y1S15Y2tzm`5Q!*6BL>S5i#Wt10f|ULGE$I=G^ArWR$wJEunMcO25XUt zEUZH|)?)*5kc*AT!zSdT0EH+*F*aihN>GZe*oN&WLpdt21C`i`DpaEeyRaL3P>VX$ zV=o%84~=L-Gxp;E4x$CEXu~12<1jkVi7p&LH;&>MdeDpG=tDnFU;u+SiBmX@GdPQL zIFAb$!Z1cKiZP7iA}(P9mobScOk)PKn8Q34u!w;Bmk2}GE3gt7ScTPCgSE&+7S#+ej$i+tFVH5IEfI<|Z7@M&L zB`C#KY{Pbxp&S+1flBN|6{=B#UD%C1s6`#>u@?>4hekA^8T)Yn2hoC7wBZoiaTp!w zL>G>r8%J>rJ?O=8^r0UoFn~dv#3`J{8JxvAoW}(WVHhJA#TdqM5tlH5%b3IzrZIzA z%wZl2SVX`BO9Uba!3aSp!Vr!KL?Q~&h`}<%A`bCLKq8Wmj1;6I4e3~p6u@hKqYpf3e~8=F6_o0 z)S?dc*oy}2LnE5djQu!(gJ?l3+HeT%IE)T-q6ONJJqT zF<6FJ#33FDNJJ8nk%CmDAsx%H0xOY$RalKRSc^<#VI8uu9vhH@Tx>)hHX$DcC`1v8 zu^C%Xf>Lb7Hf%>3%29zGsKicGp&B*Vh27YLTGXK)d(nV>Xhaj5u^$I;5G`m$8xElz zhtYvfbm0iPaTLeUgI*j*ANp|u0~o|foWg0G!C9Qcd0fB{hB1OsjA0xXaS0Q+j7dyk z8Z(&19OkirMFcEgA`n3cMhHR?hHyk65>bdo43;4lafn9(5|M;tq#zY(NXK%lz)ECb z6;@*n)*=&GSchz^#|Gpe7aNg>O~^+93Q>e&Y{nLppcGrN4ck$Ma#UakDzOt)s74KT zVK?@m7Imn{UNm4I8qtJi?8gBdLSA6G=*u*U>0+j#{w1+@Zb`GxC%kI1|hf( zVYmSixCv3X1u?h{vA6^AxC@E62g$e(sdxbCcmr18O~}AQSdB-p7H>rs9z`}D#|FFu zxp)G3cnbM=28DPQ#dscD@E(-nz1W8Lp$s2D1wMpId<0ea7;5k$cH@(%#ivn^m(YNh z(TLBZ8L!{~zJwNh1#Ng0?f5!6@J)2#HFV=U|Br$@{tH2m7yB<)zB1X#S0(a^=coGMQYNOeT}bWG9o! zWHOmd_U-x0^YQu%K9Bd~^LRhrsKaH{<0=|(9gVn&Cfr6d?xF?v(Tay?!(+7LS9IVR zI`INsc!h4fK@Z-c7a!1vPw2;>*#iV%2m&z-K^TExe1Q;*MkvN24C4`wiHN{tL}DtU zFdfmDi5SdAEaoB(^AV4QNWfwwVkwgFC6e(KQm_)K_!?>W2I=?~8TbyFSdT1xk8J#a z9Q=q}Y(XBjAs;`X06S5LpHYNgP>j7O!G4tDAj)tUTntLxQYf`Myd@;k&PdagCCKLEy%+*UgF97j=s{sFLpX{>4?Tm#9%gJF&A-|k9aIZ0v00?OOb>xk&Lg9f|W?c*GR)RNXNIx zz<0>RdSu~yWa9_q;78_j1cMiG8NG4`Sa`%#L6D8pft<0vX{9F;hUDx5|&&Y}kAQHzVH!)4Ut zDjIMdjkt*>+(t9*q6PQSiic>!W3=N}bl@2}@d90Vg>Jk-58j~{AJB(S=*OVB0|a0Q z0x=9h7=d7Xfe?&FD8?cT;}MRDh`?k-Vk)9A9nqMH7|cd2<{}RB5s!sPz+xm~DU$Fd zlJON%uo9{G8fo|j>G&2I_zsy^k1TwTZ2W*6{D@p^K_0dtA3vc0J5h+AQG{PmjJ+tq zew5-M%5WIvIEo4!MNL6NUI0Mfe59*ozYEM=1`X42MyUqo}}fRN^G6a2nM(iyE9qEiR%Cmr;+aXux$e z;wGAK8_l?j7TiZG9-c z;|Jv6N91A)@~{p0_z4Bri9-C0BK(44>_rLoqZ9{GhQlbwQB>eKDsd83IE`wYMGelQ z78g;6%c#dyG~hZKaT86rjb_|M3+|&857CClXveSUz%z8>1-kGG-FSl@yhATOpbwwW zk3sPR1YigPF$_T%fna=r5R67B#v%;k5srz7z+^;XDxxqQ(U^%C%tkEcA`bHrkA+CU zVkBZIlJF&x@fA|A5~=taY4`@|_!b%X4w+bwEPRh_{D2(%h+J$z9=0JLKcN6SQHY;W zgkMmMy(qzcl;R-Da2Vw{iV7S@B~GFWr%{cwsKI&E;v(vB8TGh|23$uYZlVdd(Tuxj z!Faznt?D7#@EGm*6&-knPP{-DUZERr(1UmA#Rv4^6Z$b|!2kgmfc*y4t_)~ zwjdANkdL2GfSoAB&nUt#D8^otU_VN65M?-wavVhkj-wJMQH9f}##z+hJZfp79s(Qk%*;8 z!k0+KS4hE1q~dF&;TxpmTV&unWMVzC@IA8e19I>qa?enBzz zq6GUSk8)Z;1|a2<`fi6-1eGwz}V_tA=n zXv1T)<5zUx89MO-U3i6Vyg?7%p%)*}hfnCopo9SeFa&`Zh9HbUFup(tMk5qs5r**y z$3#S6G9ob*QJ9Ws%tQ=kBNlTJhxv%dLL^`@60sCX_!7zZ3Mp8LRD6vze1mj+iwt~+ zOsq#1zDG8GKn{LHF18>K+mMf+P=K8%#LpVuA>n*(S+M*#$B}FK3ee*ZFr1!{E7}dLnmIK3$M_PH|W7T z^x^~h@Cp4Gv}k|;3_&13yQH9CD@Nr97GuoqZ~(3f#ayeNmSu9s&N)IIFDLfL>(@p9#_$T>uAJH zG~qUyaThJPk5)WH8y=$_zoG-r(1{o5!Yg#+4SMhnz4(AWd_q44{ha{Xu$M`S!75^2_@ZazP{~fRJKkx?s6Yuc9@B#lDpYVS$Xz>8Qfg$+6 zFbsbMBk))81^#c0#$Ur&{B?}S|AUG6O-#n$z*PLdn2x`RnfP0njlYe#_$|!GZ(||; z4i@8guoTPicd;CQ4=eEZu?qhHtMUI~4gMk4;vZoh{xLS-pI{??7n|@;u^ImiTk(6? zj^D=){B!KWA7D2&{fmK-Jr|pihpouRb`)R-3b6}C*o|WBK?(Mu6bDd-Lny})RNxpY zaROC1g=(BZ4bGt!7f^>wsK*sF;2Iin15LPvX52vw?x7VA(1u57#}jnmDLU~SU3iIZ zyhab+q8IPchmYvTX9VmWU@!tP6hRn{V2nfvMj;eq5QcFG#{@)R5+X4LQJ98k%s>og zAr^BGhk1y{0wiD&60rnHScYUQM+#OT6|0bj)kw!0WMC~au?|_-fNX3;4mKedn~{gD z$j5dRU0If%nN#A5*xun37*f+Q?MGL|C+ zE0Bs+NW*HRV+}H}7MWOwENnnFHX;X`kc-X8!&c;DI|{G^h1i86>_##6palC+iUTOa zA(Z0?DsT*yIDsmhLN(5y2Io+V3#h{-)Z+>oa1D*PfhOESGwz@T_t1(5Xu~74;|V(O z6rFgEF1$oHUZV$Z(Tn%!!$~%W*`Q$5Q{m8!#u=e0TQqXiCBUpEJHGuBLypvid9I%YNTTgGO!kzScfcZKsGia z2b++K&B()6Tzw z!zI+?3L0ews#vvRN5P?aE#1uqf8lo`+F_?u|%t0LHAs!2mfJI2e z5+q?6lCc~qSbh9cz$*waCOeWMKocu@O1ggj{S!9=0MM+fjfWD8w!lVK<7g z2PN2tQXD`T4xt=JP=RBp#0ga46smCsH8_V_TtFQzp&nPzfNN;P4K(2vnsEm$xQA9e zKpP&R9Z%4Kr|86Ubm1ks@ftmNi(b4(A3mZVpAoQsfWZjFPy}H(f-w>y7==)bK^Vp% z91{?MNr=Q0L}41DF#|D}g;>l%9OfY&3y^?CNW>B(VHuLK94T0VRIEZ8RwEs2kb$+x z#5!bQ1G2FZIoO0;Y(^foA|KmPfE_5rE)-!mim?YJ*oRUaKp76997j-rW2nRlRN)k= zaRxOwhgw`f9WJ3BSI~fKXv7UP4KT0~cS|?p4q9*zt$2VoJVHC3paW0QiRb9TOLXHk zdhiy#c#l4OL_aews#vvRN5P?aE#1uqf8lo`+F_?u| z%t0LHAs!2mfJI2e5+q?6lCc~qSbh9cz$*waCOeWMKocu@O1ggj{S!9=0MM z+fjfWD8w!lVK<7g2PN2tQXD`T4xt=JP=RBp#0ga46smCsH8_V_TtFQzp&nPzfNN;P z4K(2vnsEm$xQA9eKpP&R9Z%4Kr|86Ubm1ks@ftmNi(b4(A3mZVpAm3ifWZjFPy}H( zf-w>y7==)bK^Vp%91{?MNr=Q0L}41DF#|D}g;>l%9OfY&3y^?CNW>B(VHuLK94T0V zRIEZ8RwEs2kb$+x#5!bQ1G2FZIoO0;Y(^foA|KmPfE_5rE)-!mim?YJ*oRUaKp769 z97j-rW2nRlRN)k=aRxOwhgw`f9WJ3BSI~fKXv7UP;TD>42Q9dVRy;r(9-$pi(1EAu z#B+4vCA#q%J$Q>=yhk5Cq930T@W%rTMj(bF2*VMKkqE&kgklWBFb?6EfCx-NB&Hw= z(-4grh`}txVh-Xk5Aj%l1S~=#mLLhskc{O>!3v~e71FR8=~#mdtVJf)AqyLjjg82` zCgfr>@~{>8*p341Kp}Ra2)j{?Jt)CGl;Qx&a0ul%f(jf%B~G9Ur%;VEsKGhZ;sWY$ z3H7*w23$iUZlDRb(2P51!9BF%0ow2g?RbI?JVhs-qYE$5jo0YGTlC^R`tT9`_>6#q z0}MtWh9U^V5sZ-t!6<}c48kxD;h2C3OhP24APUnEjTwl+EW~0C;xG^KSbzj9LL!zR z3Coa-Tn75xPk^;LnCgW3AfOUJ7~c@wBiBU z@CfaAf(|@IC!V7VFVT(H=)qg`;ywEC5&ig#fU*GwBM?Iogy9IrNQ7V%LNNwm7>967 zKm;Zs5>pU`X^6%Q#9$U;F$Zy&hj=VN0u~_=OOS+RNXBxcUK?RPX5+_iFQ>exn z)ZiRyaRGI>gnC>-1FoSFH_(JzXvQ71;2v7>0Bv}Lc054`o}v@a(S?`j#%uK8Eqd`D zefWred`7^b0R|%wLlK1G2*yZ+U=%_z24NV7a7;i1CLt125QS-o#tg(@7Gg06ahQjA zEI{0x0A)CYavVVgj-e7KP=!;d#u?P$9BOd^b-09jTtNe_p%FLGgj;CF z9kk#cTJZpFc!YL5K?k0q6VK6wm*~c8^x!Re@g9Bnh<RY=2X zq+<;-uojtEhb(MBHZ~#$n~;mm$ir6TV>=441BKXyBJ4&n_Mim&P>KU6!y%O82r6(4 zl{kSaoI*9upa$nqiwmg3CDh{z8gLDbxPd0zLNo551^3X32WZ11wBrdn@D!bRjxM}J zH(sL$Z_$hQ=)*_!<1+#d4=@;k7>XbaM=(Yr1fvj&F$lvrgku6CFbR>Ef+$QwG-egCfq_Z?w|$t(256W!y~lg2|Dl;op_EeyhJx%qX%!%i}&cmNA%+}0?G#%j6e)U z5QZZdBN2j82*ntLVI0CS0TGylNK8Q#rXd+89^$b830QO~}P&8*?7=&RQ!Z866n1o17 zK@_GT8Z!`sS%}3P#9c8JghVVs5|$wu%aMW=NX06oVKvgR1{qk3Osqo|HXs`t zk%LXh#b)GTEAp`&1=xW?>_QQCqZoTof_*5(0hHko%5el0IEG4`Kow4*8fQ?0bEw4y z)Zr59aRm*yhDO{#6K#e4MOBl__f z0e?EcU<6_)f-oGx7>N*!LMX-{4C4@v35dWXL}Ch}Fb&a|ff&p}Eao5%^AL{(NWdZ_ zVhNJ449QrI6s$lhRv`_mk&ZRUz*=Nt9kQ?i+1Q92Y(g$JBM)1VkL@VH4isV+im)5S z*n<-6Ln#iR42MvTBdEYJRN@4xa0=BpgBqMeEiRxAmr#!@Xuvfz;s%;<3(dHL7TiNC z9-s}6(2ghQz*BVMIlAx?-FS^2yhShGqYod^kIx7=I>2BAVkm+z9Kjfg5R5`7#vlyi z5RM6mz$8Rs3ZgI#(U^f4%t9>YAP(~oj|E7;A|zr7lCTWPSdJ8|Kq^)t4XcrkHORnP zWMUn%umRcFh#YJ}E;b_%Tal0LD8LRBVi$_A8^zdz66`}M4xkK&P>v(0z%f+f1gdZf z)i{G1oI@=xpbnQ%k1J@vH8kP|ns5uvxPunlLn|Jj4Uf={C+NUabmBR>@Dkm4jUK#3 zFW#dMAJLD`2&fofFaj|YK^Tr;j6?`VArxZ}hH(hT1VmsGA~6L~n1*P~Kn!Lf7IP4X zd5FgXBw!H|u>?t2hGZ;93RWN$tB{7(NXHsvU@bDS4q4cMY-~ghHX#?Ak%z6w$95E8 z2MVzZMc9pE>_G|kp%e#DhC?XF5mew9Dsci;IE8AQK@HBK78g*5OQ^>cG~gN*nn(oL=H9~7n_lXt;olA6krDmu?t1mjbiLU3HG5B2T+DXD8~_0 z;20`#0#!JLYMen0&Y>0;P=`yX#}zc-8X9o}O}K?-+(8TOp%o9%hDT_}6LjDyI`JG` zc!_SjMi1Vi7w^%BkLbr|1pL_mgAs_K2*Pj#V!Zbu< z24XM^v6zE6%tJgDAOVYzh$TqEG9+U;Qm_K4ScNpKMmp9Y18b3qb;!a7WMd<8unD=? zj67^bKDMI(J5Y#SD8gB<$!YNea3~F!=wYY#fTtYpr zpaIv=h#P3aEi~f}T5u1ocz`xMLOY(I15eS3=jg&qbmKL8@D{yzk3M`vKRzSi_yB_u zh@l9=a0Fu{LNE%U7=tj3LpUZN0+SGlDTu-}L}LbGFblDmgE-7XJQg4Ui;##VNWwBC zV>wc=0;yPqG^|EC)*u6Gk%@K48em`}ZiCLoM&w`-6+N$ zlwco9aR6mFgmN4~1&*N-Cs2h`sKy!8;2dgk0d=^9dR##RuAvb((1crP#vQca9$N7L zZFq!sJV6JZq7%>2g_r2YYxLkPdhs58_=tXdMnL5NgAs_K2*Pj#V!Zbu<24XM^v6zE6%tJgDAOVYzh$TqEG9+U;Qm_K4ScNpKMmp9Y18b3q zb;!a7WMd<8unD=?j67^bKDMI(J5Y#SD8gB<$!YNea z3~F!=wYY#fTtYprpaIv=h#P3aEi~f}T5u1ocz`xMLOY(I15eS3=jg&qbmKL8@D{yz zk3M`vKRzSi!~la4h@l9=a0Fu{LNE%U7=tj3LpUZN0+SGlDTu-}L}LbGFblDmgE-7X zJQg4Ui;##VNWwBCV>wc=0;yPqG^|EC)*u6Gk%@K4!UkkxBXY0_x!8<6Y(+k{qX0Wl zh+QbcZWLn=O0W;5IDj%7LOG700>@B^6R5%|RO1Y4a1OP&fI3`4J+7bu*U*R?Xu>Tt z;|^MI53P8BHatQ*o}dFy(TV5i!b^1HHG1$Cy?Bp4d_+G!Bj8^SFc^UtiXaR}Fh(K- zqY#QQ2*WspV*(;D36YqBC`>~%W*`Q$5Q{m8!#u=e0TQqXiCBUpEJHGuBLypvid9I% zYNTTgGO!kzScfcZKsGia2b++K&B()6Tzw!zI+?3L00If%nN#A5*xun37*f+Q?MGL|C+E0Bs+NW*HRV+}H}7MWOwENnnFHX;X`kc-X8 z!&c;DI|{G^h1i86>_##6palC+iUTOaA(Z0?DsT*yIDsmhLN(5y2Io+V3#h{-)Z+>o za1D*PfhOESGwz@T_t1(5Xu~74;|V(O6rFgEF1$oHUZV$Z(Tn%!!$qy+ zMG%G~7$XsaQ3%Btgkc=QF#!>ngh)(56s92>GZ2GWh{YVlVIJbK00~%xL@YrPmLVC- zk%ARS#VVv>HPW#L8CZ)(1Lqt#RIhA5!&$t z9e9dPJVzH^q8qQ#gSY6#d-UNW`tcb7rv?~|Knz6?h9ejw5rR<&#TbNP9KtaH5txKX zOhFW;AsRCfgIS2h9K>NB;;{e;ScF6@K@yfB8OxD^6-dP@q+vDEu?87fi%hIT7B(Oo z8Tv}PxQ0gDKof4E8F$cvduYW2wBZrj@dO=sicUO77ha+puhE0I=*4^V;UoI- z83BJjz+ePoD1tB?!5E1Uj6x{JAPnOWjtPjsBt&8gqA(57n1L9~LM-MW4)YL?1xUam zBw`7YunfsqjufmwDpny4tC5a1$iP};VjZ%u0omAy9Be`^HX{#Pk&o>tzz!5*7mBbO z#n^)q>_aIIpbUpljw7hRF;wCNs&ER`ID;CTLoF_#4wq1mD`>zqG~x!Da0|`2gBILF zD;}T?kI;@M=)hBS;yJqT65V)>9=t^_-lGp6(T~pvI6c5%1Y#(HFdV@ci4crJD8?WR z;}DJsh`=O7VhW-#4bhl^7|cQ}<{%F95RU~&z#=4K36ii3$ykmQtUxMOAq}gMjy1@@ zT4Z7!vakW!*oYi#LM}EV4_lFs?I^$w6k->Oup7nLgA(jRDGs0vhft0qsK7B);smO2 z3e`A+8k|EdE}#yVP>(BUz%?}D2AXgS&A5XW+(RoKpbd}Ejwk5AQ*`1vy6_U+c#R&s zMK9i?4ogAr^BG zhk1y{0wiD&60rnHScYUQM+#OT6|0bj)kw!0WMC~au?|_-fNX3;4mKedn~{gD$j5dR zU;0! zLwsK*sF;2Iin15LPvX52vw?x7VA(1u57#}jnmDLU~S zU3iIZyhab+q8IPchmYvTX9WDk0D}>Tp$Nio1Y;yZFbbgp%{ZOj6*mkAOe#Ri7AM}G(=+tVlWG_n1eXXLp&BB0gI4`B}l?D zBx5;JumY)Ag*2>2I@TZqYmtd{$ifC>V5Y9!fq5}5B8!2 ze}w%wfImhV4&gA$@uxV7WB4;v;sj2j3V)8%ID@}H4bI^_YVoge5ts09P>(CPiU#~8 zuHy#&9hz_px6zFMfV;Sd|AF&R_vHxPwsn2u=tP0YkB{4K;{4(1{b zzlHf&fZs*}7GW_G@jFD#&Udx6#RXx#47v)q+vC_K|1~+zQtPnBV=M7)*}o5 z1m9yLeiu2|gddTMe}*miJ#548<0t%c?8G17XZ#_4!N0&>{1Nu!k8u!xg2VVz9L1mE zIQ}J0;?Hp!e}S|3S2&M) zulTQchW~~a`0sdy|A9C7pLmD&_+RM5M|?s*{tpJ78(=Vg1A!QdVFTzw!+-kA0ow2g?RbI?JVhs-qYE$5jo0YGTlC^1`tcb7 z*9RDkKnzDPMj`~G5Q;Gvi*QUtB&H$?(-DoCh{0^cVlLt^AMsd-1T01(mLdsXA{k#H z1uKz?uaSmtkdAMWf$xxs^~l2a$j0yD2W-MWMJ_gD3-a)L*oN)+eH35^cA^k}fS<7& ze~4o2!CsVLKT2^BWjKs-97P3=qY@`kh100US=8V>YH<;DxQu#SMFXx6kh|dz2X0K~ z@1MG%*sbZkD8YV|;vmX!809#M3LHlzPNE8@QH`^x!Fkl;BI5XC~<%Q3_&13yQH9CD@Nr97GuoqZ~(3 zf#ayeNmSu9s&N)IIFDLfL>(@p9#_$T>uAJHG~qUyaThJPk5)WH8y=$_zoG-r(1{o5 z!Yg#+4SMhnz4(AWd_q44Eg2vHLlB5z2*L;i;|qjfG(s^JVHl5aOhg1GBN9^)h3SaK zOvGR|VlfwSn2&fYL;@Bg5lfMTFOiI|kb;#+#n(u~H%P~~$iR2V#Cl}mdt~DW+^jYMez4&Z8C=QHRT@ z$5k}oIvQ~kO}LF_+(irSqZJR)hR0~fujs%tbm9fN@Cw~{gC4v?FFv3TpU{s%zcWAp zh9D5b5QGs3#uo^|XoO-c!Z04;n1~2WMkJ;p3eypdnTWw`#9}VuFdy+)hy*M~B9|Fbu{88ns6JHh~WZ*kw zVm-3(J+kowa_}Q^u?2b9hJ5^l0_;Q~ent^~K{58C1p85ngDAscl;bEWa2%C5i7K2% zHO`_2=TVD`sKaH{<0=|(9gVn&Cfr6d?xF?v(Tay?!(+7LS9IVRI`INsc!h4fK@Z-c z7a!1vPw2;>qyYjj1c4ZaAdEmTzCZ{@BNSs1hVcl;L_}aRA~6+Fn2u=7L=0vl7IP7Y z`H06tBw#TTu@p)863O@qDOibAe2p}GgLHh0419-7tVb5UM>c*y4t_)~wjdANkdL2G zfSoAB&nUt#D8^otU_VN65M?-wavVhkj-wJMQH9f}##z+hJZfyd@;k&PdagCCKLEy%+*UgF z97j=sc*y z4t_)~wjdANkdL2GfSoAB&nUt#D8^otU_VN65M?-wavVhkj-wJMQH9f}##z+hJZf{sFLpX{>4?Tm#9%gJF&A-|k9aIZ0v00?OOb>xk&Lg9f|W?c*GR)RNXNIx zz<0>RdSu~yWa9_q;78e+w#v>dP5rN5w#8gCKI-)TXF_?{5 z%tajLBOVKpfW=6}QY7I^B;zZjU?o!VHPY}6((x@a@EtO-9$EMv+4uoD_z}6-f;?

*2v<^HntvV3vJa4k~tl+Szyy8h99O@EE^- zQk{t1>(6m8?+|p}TkIMPq$w>g_3zYiJ51BmSVo&YYTwOQj6L#jy?B{(yP-b7aNb!{ zDD17i%&y6P_`ppU3MDs_FV(bo45hv%*I&$MpnQC-h10n$z#%Y2qSne$oAbM&w}!F? zX*dem?`2gT&os1<^>#o!zqk4tyB31I3@*%DwSC}USw-E44y*>~YqCM}w0mfjub;UA zq6MszVNhW`DuA1_mXyj=Zp2K?cLcR_7{pPIONrju^IwHi*x>lhQ3 zU&F(ONynF9Elyt=65m0;R*C#NEpmgcm6P_p&%0lA({Y`z zKo*dQ?*A5$@Hh2OIv5PN(H7|TZ!3T08h@S3??HQlO9pgVpN*AlcGT%sE(eEj*Tepa zx^r?W3Jsr>8+yF9@&8tZS#NrXu`~NH9UA7+S=ih>zUU29ikZDbN*%2>{@=`Q%kTV7 zgA!qwRliY_XsGx0pS(RvY0ue+g_}zd<2pTqnNsaUb9jS)tCvxR|6r>je#<{mdG#eJ zbv!gEGYvz%x|ugqsznv_G{9qQUI-))OGy}C{4}E4?t{B?wt28ORaGHAGr!x>KwbzX zF2kqLs}0{mw4Py$XN%U6DHuM}1yz4|Fu&W?(5VufG52Brg3Sbh=|80;5{GHJx^@9< zRK?)VnH!y+lfqsV^Bkc$?2d%`uIdbZ*@DlLJ2>E$Polna2)lU#%8R8W5(i~I3^2hi zBD>QrED>6eJETQcDK)`TR=X2eVcQ>i`k42$c~eeNF1`M zTlCckUC^uO&Bb9aB2N*TF19$f&`e7W>q`%yG?dQ|fny81aRSHLQWA;7p$cQczG|#l zrUxIK`@(RvULQpd6Uwhrj^Uj~o*Ocd@x42M*k}XCvQo+31h3q-2n0-QMO3-pad)O>JBgDiGcDDyLkf215y%+gK{! z@)G26dqP2kY($}nuvjdYQ`i@*liK3J4KV|V6tmUEl+}Zh|tA{(T8Z0 zuVag8snY7yRI9AWYuIfQ6<;7FVO**kQEGScYO2Bl229xPrc+npv64JRH1@E?u|;E= zMgzt;;7895=VhmT z%A$6OWJg`K!K|*3CGGD2%4UrK{bwnO#DQMmkG>YTHh&dibUxCac@OCZs|$m1*%Gyd zY)%Mj^Q0saL~Rk?EjWLT_CvVOuHwO-OS1?LfmGNVo4$#lt=Do6t%LGdb;Zo8v$k*F zoF4UxTj8wF@@-qX)!*BmML&pJxkU3)@6> z%Y48E(f@z2+a>ycOiCiEf6g%Db77|BI588DFkF0G8f^Mg^0CfN$zjh@erL&n6U9z& z($-N0ANw7Q%)=x5(1F^N`)_Q(;%!aI+iJ@FS9V*(zW%I92&UZP3cZtIZK{D9tC45u zz4PyCPxMYSTAh;8kosM2%*L-H*-aA#&(b6W3YK0dzg5kR`}1DOc2Gx1nMi9a(6+bzZFU1>JD07km|*VFb@=r?XCQh%2o7=C2|M zpJ4027KDYV5^xG0TF)sQKlDrI5;X2%b3)Mgs1yzUsO;y)CU5h~m7?Bc4P$Ir{gG#= z@9!du(frq;+qc68pJ>MGAowjrGstm0CDm1YjtiOM^f0zYFdeqz`wD`rxH^?d-S7#i zFeV@M4JirJMSc~5Y4>nDz0N?Kas{eJhXAd{JV!%0_@hb1$200Nf$jK;C*qASVmD8` z@$dhHp!jY(sUDRuAmK-d#UiZ?lC%b=g`H}|Y2mjJ$-rq>NL3o|w8&HvPCG4RAW9r! z9>+>$F+O{Yltk2LIV$i4F~JoM83Gc9i#wC)Ic7m@r2=z5GoiMvklmdP-a)G!U@O?R zSD&roE8s1dVykVMv70md*esAlLRCT7nphzkT6{QQJMf$T);g;$8SCEd?jkDeCjvYZ4m?iswUCFbl;ryaATI9 zRzTvz(Zye0txJ=Hc8@lE3wxL6*@9atxq4(u-RPz3yQsvBE?aSl+T%hah3D8z5bYn3 zk}xhch5)uZx}VkUZ>6pj@DK(Ry@@VUHh2din(?vrMES%IsxU?)Z*Bz&@2E2r$Q$YZ zr?Ocf08NsTNDv@D(w`bZDAXZU$x}q-WGxSg_or^(-VN7vL(OeSKYG!)e`4LUP%AkF$leb^iIOKA%fHs;4i3lzNRz(g{4m z=7V$s4@yZSj+e6z7IsQHM*?_ls@*lz;ADC0*Acs?*#g^QcXX=H=U8KBZbxcz?)+zL zZU}-uk&;Lp!MWJiLa{5A=mHSC;XE*0I1`Pbo4kjZjlVmoIC`Gi3kH3m=262|s_{tN z?I1QA1gvpV5{ZL#AJD$x2LF%Pa z5{V-1VM@>61g^d2~pb07S0x>IjOqsHwvhLJK{~}uz4UDohc=eI7U;~ z^aaJ#Re%uzhdf18ifnOgQJI#49W{P&cjSk_k!Lqf;K)izMB(5B#6A}$MT^-y0SUv! zm!v5vKSjHsvnks3&ph&uXK#F9?9n}AcU-;yeODZ~>aP7)JaFLNyARyCXYBSX_FsGD zZy$Z%*xm2h|FIA6fA|h(+t#hlfzR9s6`;rNc=y<~Z-;u!`#X1Hl#l+aR(DT2>7Ti+F zkjsTyVnNHQ)=rH-(gS>%%>>c@7o;SN?|l{lY?R9t@2r}E*aV@dD)<_PDDDMB=XthN zw&)y@LPYdxD-4$EkO+-to@2L9fH{C#ZM2iEVewu5)+v9o-Q(|@+6s5ss2Z@azKutH zBSYc5CNHA)r{2?^;Gc9r)%mGl^Ag;21G|kCm%*YpMPU+~4}!wsQWC~J#!E?<0TOND z1r3lboK$KxGeaqwtzKCjm=Akt{3~cFuVm}S)=y`J(=s`qGtz~g&gOvF$f;5i#ztD8 zBkn>E>+y?Pgds6MBMg0P32b3FJQW-WpzgVy-6~Q2MVdqhV~5#hOj3uI;?>*eB~wf(udd_5Oh8$C6PQjUD-UAJ5!mEZE=~9nX#`RI^SRmW{*z6=S-v1Fbnck zHU|WqFG)#6(Gi3MCaS>BQ$WISk<_>q&4tC9Nu!t0Q2xf&v8|!lC(QoJ=7E^XpEZew zBV6030keXnGE{IrAMQ+pip_;e_|QYO!8@q;h4&^E{LikXlc82KRA?(g_^){Lb!JYQ z&117b)ILW_!uZBaDGB4D2!4_tDjj1Fhr6SSQ1Kk@y$$VvtNR_zVGCOewr)5f1y`r} zJP;E&o82riflX2p#ssi?6yRq}0JCEP5{8QpN|OC$UIxd+Oa_zVm(8oW-7S~d> zRl9842ifftb>AW-VchH{M6B(znHQE}`6^p5TWoAIEMH=CK+yTTl!P@pNoQDo!7JA_|Ql>^6}*_M8F|hKr;^if&c&Ay`+9PmspGf+lh$ zTfMd>G7An#B4^DLq?fZfAU3i`N+NM|>ZZ`49<}aw#NjTs2(~yhom$_)Zk8zjb}5Od z@&(>y92BQm0uqLc%cKF8KefK5vs3F+HbNms*x3uad`I%xirVy|>wK?G!wpl8s__dq zG3Xa6rE-4Q*$BmA$j+D{r#7elB^$?h3sh=oHK+bLyDegNKh-2U7|SlNUDLG@bX&=$ zowJ~O^VEJmz2it1KCA;Hl)I?1zs7Fi#h++T^h-dgu1M9c0E6X4C6Aj4$>XY3N7$Yn z7#AJg|M9|6{F{`7aofM5A+&p{zRU)0<7;8GxgR6g$0Y{#ax1WVRnOt7^41jV6q`5V zv5u5P;#fo9*tjcIJ!u%-)~_R;XR`&i>`|*nrv@~~_5P_ZM$iz(Be;pp4MA|dltkhP z&h7C^`fypk0)-bVMJMO&c63SmFmz4cL(Fn)5p6M>mntKVF7OEdFS@`ZR+gvkwv){U z0c%i7B5|-5tbw3q7>CCc=UNCmIvuOejcVhd^u*}_yBJS^Z; zmB#c7omMobzRJyX_Zl`Q1huM^L=-haC~Tr>46Xzu3>QyHM|MA&eotqk>0{UDE4^@) zRBhDP7e}oNhtA>k(V=Cv*!k;h)Z$H03Ee7o{tCM-Vq{;`Bsv&7PY~K#lN1@ ze-WiW6GO|2gz>3gAa3mrb!XI}b8e*!+b|;V#Jzy{O!;Jc<|oAPVYRRh9~dz;SER?C z$ZntDa+s7v;<(KBaXBkj_KL$^e-qVHt^T@Y<%!=Ihzpz z*-|Nq#34JO31p`^7Y?S&PA*?o@uTMf35p3n?ZcQ=Ru)5Nl>ObB8S zr|f3)MG)?il1Lok1^Pn0T9}Y2X+U8Ot#7B-ABME~tBB#HY(Z@?T!`1@)v`R95@P0a zN>JO)=7gYDmXe5~CWt&u@QTrmfP~@VbJDTe4_@!;Z1B3cwuJlio|~Y6NmgBTneBgi z&-?KfixO50T))06WS~Q*&j^m0-p58R-VBxCtpeDOv)dwucDE+c!2ov7#!MCt(!oa6 zex2tn#~#IL_!j#5ciDnlDjANM4k-TAM%sRzx2^F<-24eP6GZ#pkdiPC_EiM1-I46k z{_va5^*fvM>3+5RF;IlX4|P1DFPpDKdT5LH5xPIKMYe?wDn;Qu1bB9{$g`_>)~lw- zGXe3BY<38Uzmt+k9K>1Y>tyVf%q4iF8+Im>1KkbYL9piC*PclU>CB++Bc@%46>sV| zx6c~^XbzhN0?VhjT0rmMoPl?!Ua+iCa^@PUr=C)3>$K@iaWiKxkGd3B6p-q`42V^MD>qJNfTMgV$-%>n`F z7g7?|0Ey$DsXax#T2z99lWNsDj175;s7(A+d!ka(HC3mlB1dqemjT1Z$(Igu7 zRsS4;&Qi9Vwx(|p=qzS8PLzC{l!P(*l$3-CF%aq(6k=fCC?H|Dz`;>K!sy~gX&>ST zI=|{{ptEcf-YNh!cGJZ&%zpJE^!g0k5|!z#s2^0_ET;=9!82bkHqTg-s$JU{4{pZhN0eZ-1^C|du^$;EKg<1`MYbw)x zkjWTdy#!J5<}`RO)Mg;*N0X40(@$8Md-ZfEPh8vm;~R=D5(j&ivfeC{Iee{ zAb3Wz4R4pqZR)$fO-jP_iC1Y7Z6B_utWB3PeX7iavo2kVY~zYPM63G&TNqp5row(# z;6~-c-9E()35dSSZkzO5Pe@55j>VDPJH6dHd7AI@N;;d`UGTjA$hMBguOU8vWeaGF z&)if=a|kKafJ3*091^7d%;th1^+zd*#F3f{3l^U4oz-#$6w&wkb{6umks<O8eT;pv`EEl;>mpuNT;0c#$c4Fc92DT&0vdMShry?Ak$N_^|!Yzt(i zvbBgTQ;KXAxBCPkT*DUJ*4>U(;}~+TQ{swqcUW-_cfI3CrZ^{Pp26mbp!sqsiNw)d zbyhA@&OmPEQctgAXgKv{Ys>0J^kq=>e!2b?{t=31suBW-w8vJ8Ez+w~V4uEJ25QZ} zTPKyeuM97iQ&JJ!d)fRE+%J}rh~mzP>wGTE6cVQv0uqLcLFw4xPa)sh*(v0bx3af`=WE-lsz#_wHM=VqcJ!u7wytLQ-Pc}0I zz#mIVBo5$-8o*Vj0WukNJ~@n@(><6j_Ltyn0PKuC7dkA!6fPHzzx`)6Oy_HD!?Ei+Y{2{hb zmI|znS68S)+oY%cAiGJT$6KT%jJw=~P_#SHUC^bnf9hn7{)aj!JzUB8HXX9!YV%hS zp0Bb6wS{M4O6MsRr}z&@G1YNOQ2P>_6N1|3r6dwZ?Z|a`SdfMCI*`n5f>`6%5Ut;^ z1++zLE@S`$4%LzNW=Q>t%>_Yfzm$YEQsTWkGwa8TAP5aRR{Sdn(ezKZXCgrcjOwgZ zeS$8CHfi@ah0OthXQC$2a2RR(+TiSSp(4k*yJ5}_1Gc*+n=QgUv~b;hs3cmWmr(Dk z*izfN#+;O@#gX5gbJaz;F0AYN+>tJ9IhzNf`K3}4#xWL4NtkF6@qaotrA<~fSWsgeqf-}{1B_SnB6$Biq~lp4gIm5J76${ zIXg5+>7o~KgJMM4jb1{XU(OcWR_AlnYLywFTy=s~b4OIahs^^~{bf=T#vw07^x7Q> z&aSObVR^YNUU@K2Flz7;Vsr;vID3q0>r9$ED2#*L5sYqU^FT1VRZ1d?k)X#johCY| zfP~=!J52!z!v)R&1tbg?mq~*&f1-bXXD9kg;D*;qu?S@ro%QE!J7)yV+vcDt}VStK);%d>6Z60>Kt332O+%G5+{2)nAW>)gSzb zn%~Xl-d6L6Lf%TZPLy6|w@H+~OOxne&poTI;4mEK3vQtdO{^QdgNlAHTWDKF&xSC* zRy-I^^#!~Uyf$05RQWD14uR-YA9mP-F+}*P!b~!ur1i^TeEru-^lTz7IdAQ-~ z^F!>02?P&FNhA)zL0dM5>)urLFR1dLv)Q&)`N65-Y|QG#PuUF;RX-&qk+`al!_8%| zT<)CbUXadKpk@y2=qPzAIS$*Loir^$U$y-R0Xz7iq=L}n{o)>Kv4594qPbVg8^}Fu zfOdWENe}iSHctf8zyH%>y1-znw+v(bBS2VP`Vt<)o4<8q*@p(O4Oj~>w1nZJ; z*Mus7g?zd`pTuQH*^Cg#Mx-PXhir1N8VNmXbW2?18N%`bwkWo+Ofi?+$M1G~Kf7rH z#QUTq5(i=eOse{_Q0XflIq^~d03rASTL@bSCaUREzy)!H&$8Pk`hQ$XB60nbB37a4 zEP0AZ9AJxMi-bkxhcR~J1dgYrB%*K#;s6s$VCq>w!f^3RX#(6|Uf9st<%QHDIM|(D z?5rQnrHA1F^LdqYuAI3P*WBQk!P*VmdO`!{(6zO7g`*#C&s;=_+-hCnD0W-K#O7-f z9n4Nmg8lqO*zg`R=?gzX7k(96#CR7b>a0$NV{vtyknZ#q?3RggPm_``o^uM~(hEVuV5|OyTRGG0CW+qv6_vJP-nem#-?;a(y^Dr^2qiC|)Wnne z8iw}oomjDQ*-AL5QYynvA;;fdtYhpmD?4_;4x)|eK7G0&S5o(?dBw;ang2PW^JccH zY|(MSIkYrxVH8h_sz`hgr5ONe)X@hc4RM|~u{k3kzClXDIM3@fiMB7$IV+c~QWyQ@ zi%_*6k{&rvRa8jBZAEyJCxUM4*AdN+um!e7b72au@dIxCOILkv{mgI7vB3|sIU(rX zCMD4c^j15Yy>t;WkG<+@ut6_dfZC}8{#}?9y%w({df#LVY>!@6aqDVsUF6m^+!EjW z8k-Y>-j}5$5=ZaImCH_a*2B(BRd+&rpQ^6|rvgIpShewMh}Q4f0@|VlTXuc!w6_J^ z5tN>1b3jmfPD&z*k|4G>(*qoA1tbg?Nd-CcS1ofk!dZ8>T!HhWs;gF!JKlc~wwI=F zqRAZnNJ4>qbuLuu_nFi-)9XQ3t+Um1r}t58E{NI8*CaX^@-JKk(Gdij4i<2AAc--M z*-%CCe#w)viq1gzZ#D!nUW`kgHx|D=*o>LLdMl*z=m(Poj zf`?w!=z*>ecg!jXa&!SAG3x;w;YPHUA>^AeKJ~l4| z!|hTMiDS5Y)w0#W`D%q?IS-qrRc#xU{`b^sCZ;rkU?S{_?5`2sx3Se>i|*1?{n2Y* z7QIAZWT^#4wClWz%@~3D3Mq*w)PmvCjJVi=3rH9)k{WT3UcJmw2X03(H1qRkyXx|1 zVH>k}AFb+Pw&rcE>LsbPVi=<}WY`TcO#1y#vw0zg^eIiEgJbZKt6>b*rQ|d+xN2X5 zz95W8e;_4c{O7xfU%Ln0rK@4k-GCi4 z2CSJJEY5mx_zAYjz}EJ3->B}q%bDQ_a=cFw&3~{JVTd~a8Cr3d{?DMO= zv&L_uIf}z(g#frvN+JrNV3afiE%wp^5{8Qw1FbYVuU~Zz*-QNcG>mSxDs7#-`Eqm@ zyIo=hTcjkC*Z(%p@0TO#!U=T`Q2)ExLfGrSXt*HVXqnwE(f=+fiKzYsE@ZqAmna1! z3>QaAGi8d4O7GBzJG=foZHulT>*Y$`a4)&&W$5PGV)Mt@0L9yulCRZb^WE&Wh&|n< zNpvvkovUwGhD+%%-Zcu1TuayFJ#^wH*uq;X8j^qd>SVZ>4x?VfBb~v1gUtnj;Hy#+ z#+kl^D7G*5^>1JpkDH3a6O!OZgyE0abo8Eu!?tf98BQ0X7Z4n*ehiTdZX5VtsTShz zRq)x;d9!(HbNdKvZO<1~rbPvKKBSR=z1fTP(sDXJTcbPH-xjSDq_(ry_|*YkjbAdR z{7$Mjb6df0q$CnFKrDbTvCAu}<#|G2{`XzsTNI&5y58Q)BnT>~;wzw@FD@V&B5U9k?N1 z#KxavGe9(cKuW^c_!xrLzG(wSZ4&^R{!Gkn;`#>&#Ei$=6SI-QwK`D&5pY5DKb74s z(f=eViKzYs@sP@u3rP4O+jGrAwzfwRvo1`Jth&JKTjh*B`taCW9vHj# zp=TevHq@OCJzNXk&S8TT@90X#R>9ku?6!zaZIF^MXs(r#@XY3_Za<`8u|Mmdb>Aba3CF;)8U`?_xJhG<%JdgmIuMg46CnamM*25W037 z8Qd-rS*D140Ref4EtD-FM?lgExN?J=#xz$1mj~GG6I||-l1Lnvy0R9*o-3%(1KEDi zg`=_qcQx#F1ViC6PEh$C{EdMj0BY z;7(0CidlYx@SVjL-L_*q&RTx)Zp4pbQ=N@sPo+_8HXKAnAVb}0Ej`mM`7)^L zFj@xESzO6xi(q!Sl!S59J(@(@mkXVBMGsbx^lT6vM*SNKUU@}WABI1}n6`c$p}dtITm>meC+Pz!f3+4y> zOUk3;H{(0R^gC=7*kZZ_N;lQXpk1_XN2!}1Xfl?6i_I1R_v=y;iGy2zHYzmDtbc&; z{1;mYTX>oun)(B~U84WrN=ZcZF9?K8EQJHBfP~>9EfvI%rOxbZEVcBkoT_RF#g$d; zuVVROsM!Ujte~)B zPTfNYp`lkS<|83~^H&kI2iStzqt+jAsxJ6OPE`PioD$UTV{<}K`?!=u;;2oB`)v!E zEbj1&fhy)X;`0<+BwKuDs9S9Vo*IGjB)fS6%J-!t5(j0*nxLwQ>Dfagd)x~M%iq~T z*}`%}s#c}Ma7CQuf7$I5T>e{1B8rP3&NiVsj(P$ThKm+4hqR-eRX_KRkDaRx-a#8# z_PK<@>FVtIQ<^4qLc@|1*enn;StKQqI6(Ci=aAdhKR_t9v4ya8*XA?obJ^_@{co0% zi0WV9W5!K!t|cI0xHwkY-}p1?^_`tjZ#+BQm+#F$o$;m4nNVRH|1~&LSn7-n!XK)N zp$bV)!!S&55efE=Iko!a;hoPzjPUHQ(Mzb}yVzn|s<=8whfbP1o#7nvO@(&Acd&UNs=r-I!noe8h+g}q zB7V_~IomuqXIt{{NK1f`vnY&G!?zHoZy|HhvKkY%ZwIv&y^&~Pjq&(%sEwes#t)^s ziZ89p7h=?Eg`SygfWW=hTkn&m7c>-Sw+^txX0c7Mm~9#mgA_^jBSn|0rQymO-1tbg?Z<3A|{#0k)K`>2dv=Gp6 z%HHROc=G-1wuy>ADJ5Zi=w3vr(VRtW>=QTSMl!{GZa8Yt)zA}!;U{c4Y+;y`^6K~? z82mqW!vupLq5>OrBkecy*=H#OPiIx-!G=n1^b+d(|JY*N>U$1sObWPjo2veQ*gO!` z|3yl|nE#&;y+-CQO={1Ef;BLPt4r9LVAS9x#OUZRv}YbbdV5H#z(z%%yXF`j#pZ!v zG+#<0ijg2vFu?{osepvxBB_q@5IW{p{ol|K&SPuP)>+4=pi~3I8>Cy@%5IY2evT&5 z!O{PqHGSd8sj7cL9TwRF+3N6MSVxS}V4mF|(O_0e!q{vEL1=gHHf>!R?(xv6`E6bw zT!$KpSgZ6gf^a=sAX^Zo!)|rpNZ&V6M2?6}znk4ULF8H~32Q{e;npGgvdb_I{%@%K zhuOT_Dt~-RUtLLikx#RmBpUyeCeguOWXe_#E?~(zTfOq`d~s)3q0xt^*&nmTwAJj? zR8Di_=6r65QU8eDHc{~pq$G?{e-}||cQ-SqXT7rl_US|YF3&m6f&c1B7h#K97?g%@ zAv*tHi)V|@>{PkmRp$s4e=hvHjNB2B{>Em3fb>@>iNrygaee`=KUGIy)cT<=Zy&}d z?gfM<^~IzjT&P0jb7c-M(f-L{w@+|cC?%0NE>pYHBd~RG(Cgb-$irEmFev0HBC?4s zj;*syOO=2hw~im;ChOUa6FAmLNhA)(oUTe)dr7A3sQcrgkdy}w6WK}H@GXRACtEyQ zc#cfLCIH2sn<=}%AKVw<^G9GBWHUiv@}wl9FbO7fW=@E)g@ACvOZCJ=dshVXT^LTwFU0z~%ZlB*b@rtlSZv&0m>C?%0N2=!YVTkLuKEn5g% z^*7)1_-l5%ME}o9NksK8@FU}jxK1P>VYs+fng~{0z|~)$JgB1!fv#VXVclRlm-DhE zXLGt#cD8u1&vDe*sBWhzt6E}RqdjV4NvI1LT2NaKT=b>(gwIO&R?C6MvfCoYc8n&` z!KwVL;9jthnnT*GHh9O6hS@^Ldp1!pY%CA%1MBlmz|DdQ&`x$en+2lxHBu7Bz0N@B z+C9IY9=3R>*BJ&U=D8mSvqiE6W=3jQd!gF<241M@bW%_T+07GBJSmCfL8(8Eu_>L2 zuA@(<&k>Ys*dp13QeWC&hvv!GsM&s4Wj9Yid8?E};-Jh^MG?KCoZvF!Z z6UL3ZZ119>U&7xP?HwA!zxLx_&*ERt>A!pp`&2*Glxm~FSiFL?v>VbtP~&|ItfZ+^ z&seppD-Ek5Stwt%7BbyXAPg2eGq9^6WYt5b)MC=PUv5uKs$_2!lg?(hMJ)ITO`?M_ zY3Oo{(8MzI1iOZpu?39p8i+DmU7K+dyJ4c)RZjzyefe(v`l3v5+iXeM|ltkjl zF6=INUcYmG!RZ}!x-tb1>YS;Csk3sB+zxkH)fVp}hI`ne+G2QAs-$>zD+RZA)GgF_ zg@PNJR|4E+Y*q+xmr6-QffJ0iX1K;KS3tsWF-Mcmknl_kelaI#oUrwtK-X2RVHQBV2u6)OEw59!`T*f7_1` zvcIu~w}tF@EPe@F!)jOJz!@9Oy{eG|+~YV(CrE!~^F%QHvy?>Qn6ALnQh0U!)}C`t zbB19#I^XZCbQaYP!NGK1m3UQ$DI&*H`JW@s&R5zqJs^Esb(w#b3O3>Zq`C4=7X@-x znj>;`@=&-J+Ou}ui^siaociBTXxe7ZvCgxn6(*55?#mnDzRFnyW)M9x7lEDqHKM+r ztqxo7b{nC-N}Irlr%E+8IZU^P%^C6WGo&PnfCZ|6qfs*A{Wo1yMn&~+Ib z#ds4{N@x{yUCM5Y7~O6u2?KXoO2UVGwFqu;c5369`Q0j^s&T zUx1yMa3-qgl*(QK)=%MW6`ZIdt*VTHqpuaI&$$exYxv*E)lX$(YW-Q=>o%`BYs-dhr#U@? znUYiX`UZ2ET@}xP{|Gx~tCtbTsbAGQV!i_l64mjgGMwPuvG?737r$|@TEh6D`t{Hy zOLF=0k|leGp2WoqUAN~T_$}04P%CJzCYT;#FN4g14~Mo*9yf05P`Cc`=g{1c&!2Ad zFjXf=ZKn-2Ts1$}i^K_zY;ALKsy|ce%ce8KUJ)i9nUY)6zYG5XDp4B=)P`C*;g}@V zi`X4RRR999RKt*1 zJG+$j;X(-1zN@tF8tuDE`>s+v{-LfkRUNIm-pj~Bde#k6eH!~+D0_=OH!TfI5NZ=|7YPc`Rlw)ivTuP7mA}UxaEMp}}A%Uz>S8$wn&P$dsV1W}e?? zw?z!=JDNlXXP(ENrLL+|Rb*5@tX8{2>V+Ht?4S+TYphy+gMILy*-Ehlpn6jHns;BxW>We`HcJGj-$_Xr*ZU1Z-R?;#EXTvFLRB||bp@5uiDDY^lxpkO z5yp96YtPaG@uTX|P}0V5toB(DjtPQu*xV2VXG%$Q0zufl0QiAJrt9E?EG+Cvg^ec! z!4|J0f@iP=wsk~>V8DX91FzPJzzz(bV}jtz+1wBWUnV7yID(72YAW!DsWeg^M){#jPDTBUbYHsF-6=Gs`V8{*7hTW^-8wzwy?r_J#w$taW(g9oxa{_k$Zya zug?O zCY-u+OKCL~*6G>|%!k9V+0bRRl)?#LZ_iXn$=E8Tu!!9jv8iJ=9;QDzm+XAQy;Q&=a;#GL%y#BP@;cD5Jj@#|45mw&Qe=tph$Sla^#%qqeacgu-RaTDa^-aLLa6;<(dZJX z3P<2Wx_IgHt`{%oFLf$bw;5HNzFDsnPLF77rLRzTpw)Lhu!;aXENi-TLAS0J#B8vw zyOzl}N|W2#Db=W1HX4+YNYJkRg+MTCeR4e4hu4Oti;^9(l6SC$vqcih z{u=J|6(Bx$1f$#8JdnQURw;=nMjV^=xiEnO4lM!_hKpmQg7|?#sk4E?N$V=5a$fC& zgTtCwe|l3fUn#(iC4D=+Tz|<{u;IqFK7CLf;#cH`U@@EBHo@WuDT&0fn06NKae>Lu zmY7{Q^fBV`3bsJDo-sYxb%TJYeL)0~)7Y&OL{5>CNFI@(vu}V1d5nmp*#g-kQo!M- z2_pZ>Zk-_VFH#bTBQpIgIDGZ)S^Ri^+^sCg2GUs_Wo@y2+c^ z%@a`GASIDFDD%2KwLu!sCBil(Py+5Gj1DNxUPPEa!WPmNruk6%rN$+=4|3UPp!qPH z4}#ZiQWA;db+q0V;c1}M<_Oqz7ukvzb}Eba5xsA+MYcun7~CcSjQagw49`9SW~J(D zY<38UUzU& z_kjfh_v&m@!wB$sHctf8=cFVO$8^f3Y`z!nF7uTW_QL2x#Aw#Hl8eT7Xl??Rql4NE zcH0DtsZtUNV&U&_n4q)8{i=fu15y6~K{!=QF%(^SICA@TI6BlfxGa}jRw-w)rDY0O zFS-mdGw!8OlfjzA8mYG8*Cc$l^=5{nu*wQ1B?AMj)eDOx$y>c#uN6*m$hP}*`M8gCHXrv&|0a&}Drq=ib}7W2J;ijcGyqj(^o5$reN~MCzid{~xgetp z-^Hiz?x>~j-ps}`-guQdTBYya#BPi9qi@h81nE0*J)c={0;TM%SO)VjPbbhyFb#_I z6Aj+M?%{T})Rr2q&Qd2!%I*s24C-0)m1g3@TiF~Cz27X=yR>Z90!R{-p&W&>YqbMz zYi7q_8LA=c#jwzzQEmPzg78JQ3T#1GsFFuMr+U3Bhn(UH7!4*q$L559@fj%z)B8P& zc(yyudidsiy5Cu!E~mo~)%}imJj)ir77w@z40v$is?Ri4{yuiIMESpzl1ND!63q)@vTWnjWdTFYJe4DMas$7s>y=YRi zY#Ey&0_6!(5{W~3ax9dA4+i5FLJP4&e@34pk3PBqt~f?LN5`lum({uu$cp)Uh1RJ< z(wTt_%oAV}CQKV(H(1&+vxtpQF}ngssv!xWDk$e8_x!e%G8*lh*=X7t?Kv0^udMY* zkY4jA$9l`9Rs(Dk1U0yMm3!M2Os3ocRD;^3BsTa=DSfr?e?6DoJrxFXuVjom)c_6MXSjKjWPO2Tv- zi1|Ndx3Nff8>^N%8=*j08MphWxt8BMqHIUn>C`Eqr~C%@nb(Z)*~r^X8cmm~`|Nh9>?MgyAo2iEUw+m5S&eIU_#(CpHH} z=f9VdFh2dfl!WnVM7|9^Eg)gIz+9Msgwe(8rIT631zbmbbZ3*GtHy4+)7h3T6?(lQ zTtM8FaZYredGKuqK6B%NTdQOD+`R8S5A1u#o%^r7(pj{6g)>kn9UZEg)AOYyjQ?yySlS)8&5GFgfqNd`|JXfY6dJsPaJ+#nnk^ht zQ^mml;5IP#M2gJo*=-YKMx`VYM`rHWJ#Rg5+na+M&z-S%Rh@GSUT)n5VRV|jhX~!q z7SSFdI5VRc3-iEO-v~wM1MId5LhqN7NF1R_2kyA?*$=*R-`lS{@QzQ1K?y%X9KOsJ z#1;qDajl}t{{p)~qWsTFNhGiQu^S)X|JJLk5Ku~u?68Me>GM90d|8# z`D0QN$t(ZaJ#XE2^+)#IdF$BCS4Wf|dW6cK`kjO#AU$Nq3=EUl4HD%aE+vt;^5<>I z_hz!*RkoW*?hs%yro*Q>$d?6Z2pP&9iHfmzKK($*`crG_<^Fj*d1_wuqg5 zSCbH=T*S+Gv)6knk?Nc|3iXd*YnLh@5BtQ!4&3M^bm+gZ<+ju@Y~bkE+_{4h?tI0W z?Ph;s^FVa}d#UcF+s)>wJxfksKATnL!eNcHk@}mxh!7n4-S))Q#LTPnQ)*We6vPU+ ztUF9VyV_Z7J_rmmq$EryH&v5pdwOyT^fwJLiatbKPG<{a>l#y2u&1Xf7N@e?CRm&- zB@x9!FlL!y4;@oL!f^3C`gWt7skrx?<@cWHoa5z2GH@T9I&vTGJR7`&29jlK*w#R1 z2YqKc=hpK^y3P!n1!5-ynuK83l6IXFV3PrCM9&w8BO_J)1Jv-_+2Yx1c%s@=5O6`% z`ZjjEM6FjzNf^Vw0+DHC_)`5(-U_N$r&438$V8qY3ZGz$VvE9*R4&8|0pcEZ(*%f* zN=Zb45OiXuA4D$`kT6`d=m(|dFup4f1$jop{a)}R8o)2uDzr6#LsJE8ogn|8>^2GV zKbDe6T<4Q7(3e+0T5Wf}xHGK!$TLLXknbfGBTh--RTKd)1c(>2nLS#fg6IwaqPAU7AYx-I?$xNzcJ< zdq)-ZjR4W)J%r|`Y!PjtnWt}rLLT)Fb;YBLJQA>;VzWWOdQwUv3YK6hVrDa#>K2eN zTs$F7`ud9*ukY+)#@z7g#rpHM#;;y{=LonR!objY}Gm;wX4PhQR!}WvqYt3 zDG6iTyQCz{sD!}2piwC)7dtG7*2CUqentzpi>(A(3pgAP(ZM-fI)}Q0-6}DF+ck*} zjvfmmYu-9ORF#h4cHd|TgBI_i>c7rbg01S0N<~({b)0B;B@X!&HY)^=FG@)mhx{Bu z+Gw|4X>w*ic)Q@;+)tb_1u5S>Qp!1ay z9If~IpnJ$i?kFGnS#54{;t$$0w@~V6HMdyFZi_g( z+2Y!wg4an&B#z(&UDpu` zFcc$2JL(@GDxYBsVT;PdRMtxub5KPAxFGs}l-(}T|3gv|QT+?z5EIJah$bLmxHv&7 zh#$&4FA8O(VS6}|Nt52)k7L$nO66jvw^D|}K`PMMsKx-Y$6@FZ zk<5Rw+alKY2Pp}I`){QreB9qH!d;vkT(-$8>+!t1481GBs!9kumN@@!4d>Jk+Y_-W z>09CKu-hUyFVrMD7_pud(x{io!T!iTeFu~&*Q@WM)^4R1!?tbn2Ey4SAq^Z7*0Plr z?}!AT>dC2o(<`{edf8k(Sg4^}%jOmfeL6W(EP`xg^mrwkMS|<;QWD00Pes#cclf+M zWB^;Y`d6se|GK79&hIEfy;KE%{eyE0<&3%*IkIV{JtWaQ2H1+THIEHp^H2rL)jiH` zz0st7$+dCRKgic4C)U!(=9pN^b}5OdwFm+Q6Kh~!Bp_k9m?ss)A9KFeY|Lp~OGZ5C zymrxAubf_N?m<@bku#xAvRi+{JY*7a2e-P}Lk~;ced#O=QS0+%m160y^p%}8Ww=IE zpU_#dC8ztI&P)fqM*!>7dyN89t&V{M>NXFY89_r1{sQ9PZ0@y14 z@KiqFfN1__>{f~9eC+OCjYkdMK}^O!*`AP>^eENY zsR6~Cx!Bz2jR15In*{>UI4Oz50h$jNn8V41Oj*T31(nQ$nzgWFtX#}T?(1y&CW5tu zEvBslEr2^&kWUrT_@;`> z@hP%pv&Cn2s!#I<*mL|6{~=DQP2NK@L86@L zjIEg*m&$4FA$vGiRQ$UB4*|c#v9Fb?&0KT!b}0$t*l&}PFjGY|UXE^kT^KGfjuntF zT;SY9K*DfweY>M+|L(eJxZJL0f;eLg8!vr~Hv3a_gy=nX(}R2L`trjCDCQM)*vY!A z;xhkfsHwnX$E2Xgdn_`_QN68m9hJhgOsT(+#%tuTW@I27ajK`Jk{PFZQc5C0L&EFf zkB!<93`)6+do$@0^oqUu@&K>2J%o7G@*A|csXt0;@^CBxQt|F8-d)2x9a|@{IU-~0 z;ZhQb<2k{cGzo)N{{WF$%@)Ge#U|FBC87FX!ETr6-<6Vx>YvlW_+0pz#8aAO5*r3r z;-L1zXC8USvo}64_UN9mJFedUzAFw~b=UqY9yoCC-3RX6gGEPw`{?_|9=>MmE$Jj<|IKAee$|WIJzOKyfpVzb7C+Z%Rk}&=^f`~OrGm0H$dJo*=(e3S81^;`5^ZGS$4xjvyV$j7<+#N!D+j_YfZ2B8etGTK@1MC<=|n^@AE-0 z7-Kg~FnAgj*g5N-(ydeGPN2fj9^B|d)bHW{uRXyo88xd@Qzgv}w0uqLcq~Z>90xr}~n4eLP88(`>_So!T+yJ{(VupR1Lu~Zwrh3bAATX0)-ADM#7KaoFk>!O+r&3O+}$b+SPbm?zk+6GXltB@snLFv^&L3VTZd3ByH; zflBJH6E@&|sBkJT+>_QnKwEh6Q%Oa$6I1^Er-}<7LX)8QhZI7SaQ~Z>gth*~35q$j z(M;`r4bXt&>>>Yb_!dHQTw>51Y0eS@f5APq(34V}QfwxOw>p|c!>FR|^N3mXx0KiB z6k*jjcn1}~i7m5j|2R8Uf5&)jZb8+)p3MSL`x+?;;~r;7NtjL&!T)FMBoBv^%f-G- zDVo%+`yI_;H(Lv~<}d+vTLnCj96{$Ni^)- z+n?AD2*zbYkRyy#1aRl8@0 z$F27Y8Ms#jriW_BsIvRAIqU#+5Ov+?$kLhZM~L1Z*}~hRcRXBP;B)W#+^ea6a8x5G zL{*|g^zYa_5lnw0C6PF$;R$`rUF>l$AXamJ+@2W)>A+y=6Oh5Ou1#kAGuiDET&7D& zB#z7c`q)Ij>@iAcSiEvBtkEeOTA3ak?B+6nmd^=&4DFJm)8AUjD) zA_|!xPBEblj)npfhKoC-eS#nAtPq7d(oDnr3)3U3F7WzRIk@2jHmf{)%Y6s#y>jd= z9}Ug8hE~@ioH84#c(YTIwu*3evD+e+m6MV%nC_I4@G;#Z!c?5SIJ#?8UxTNPC93@; zMdw0wj2`!Sug$~hgD|vfYS7-o7Bn7OC2%WfZ(_GapuItp=wR?V=`3}SMjiDesk!hY z?4TcKi)g9N>f}_Wo)gj|Kf-RADEC1r3F9~SBR=g8SP$v;%9TikdjB`n`_pXJZS_7r zRnlz}h5wA*BvJTJq$I2rF78nd>85qi{ohdI`_t#G0K#M;u)@NKAEYrP|%?APF zXekL}{zoC6?e1@utXc*Yhdc+0f8lUi&O^-JmoN4^kpIK#iH5PACLj3*`nvxiz7PoBxQ-9l`wvQWA;d ze)1`Rdw)OF+0O&|5Id(~>fPs+PV;jcYSALdcEG(&YqqR+Hg%mJfnG`k(fJ*lQkcDH-l}cN8iy>llAy^GERitCU0(e?jKdBwukhCLm$B zNGRb@U(+^}q_2N~*0TJkNlk>C7rR}`ZkJfWVkwEJ{sj;kE5MwdfP~@VdTAoXPuCuN zFw|*lbcUtjb|-Oi#jOu<$F8~ez#UhPRj=Q7=dEKmU;WEHZ`^m?$M?Pc9ylR-;GVnp zKXQ3!R2w?Cmbx8eqZi*zDdAhCZasEe#MpW@iH2Hk|GtBnkb0?CH0JR_-W>l5`t?<8 zkuB9*g_DQ6!U@Lw4bqEOu$w0uf1{Lyajbtw(Au3}nG5-q3*kC2HJHN`uMVY!;6ODcd~gPNPS33B5|aSgJj8Bxl+M{T9;~)g_CYwtD`Y& zwjUvePq2lz#qg!DW};a)=MDVouT25{2Ad%Q=vSpA5(jh%WLZ>v4W5^Fp5Aj)S1~^X z;O2`@?|FYyUp%h>IkMHpeNmfr>XlC1Hz*XT$rALi5=0Bka8&XNzd5&emIz*ew&~ zJ}4z&9O-_ z2*g1@YfDf&M7o~p0=3A8e8Q@(=F>HN5+ug486imgpA<~vI{$-UHgX;5@IPxE+{Xj= zuN0hK57z8GC+)zNhp^K$cn4uRo~<2Qe}NLvK5s7a2D3}W8v*F0Y!(PWM@va04$#c? z`Q5p!UqVl1d+2Gc_*W2~bJ&8}!ZRz?Z#b)MPowCZ$>xBdvq4HCijE+zH&X-bP6Z?k z7cIs=sS{7z=3$A&c>AD_(Kh~#tyWvxfPGWQQ4_nkgxxx^i;9$lH6r4OWcIo&Os6vg zqi~x@dI#)|(U(<3mc$#qgz((Lmd+NQInc8rcW|Ewa0eIRs;e|&mbGtU^FTnlL6hi6 zOzv0wK6Je|09hC(Jc`wRMeY6vvK6iGJ!AX!E~O0EAKVYeF=<8qDdESVHi8P@Uy*7p zzQVW9s;5J>EB?Qpo&S67i+h?p!`8ylo96}%!X8mD7k4V+1zdw`BAF;j-QWA;dKI=l*-U{c1 z^3J9_+;N>BcFu(V4v)hP-a+*8Y|(7do1NONcvB0mJM!)T@CF-|QqiYxW=ab(5o`Tkm(JL)>8I&YJ{Q}O%1(Xz3}9O zapNx9i}#sK*1KAp-c)n16zupo7CGaf7ViN{^{o~YJ|tz`#GW5SMRqQII&p2f1Y^ee zC76SwR_ zhV!`+jDb3f-Cgj!{z@Sd*Ef0zf%$K?aJInAf$3KrcPh$2?g&Qz#pZ!v^am-4#4%d5 z4zAvUHH8u!HBcKB^Tocw?!IECP}WD$HojVKyn%I=un*aPhBz+xMSJ3V(p$k^8g+vf zN}zX1DG5qi0)4t{;1aa~qfbddke$osiXb~%N+NM&=V~n1kLJ?D`2fpJ#dKjX;($%w zL+oC~7SYxR=cV+p*{^vF(At4K60lyuW`lrrnv_K1VAWrf6|9?+b%ut2smGOUFkAqYQb3t|hxbtydU$sLICAsA z5kcfd?A8e)fB&aNWF8=*=3P)xtF&B)fG`#A9!wXaTZfvxh$t;$>&ez<<|~u}E?pf2 z!bG`*ToSyFW%EJsIz~z&aSxiXu2L#P7L@o-{R6~fGg}B-JRtnjT*Uj!S?qR+{x?cV zB(DD{>UJ;K##Yj&@*^Wj^daI2+>sPRsAt3>nfkdjDT^YwGhP&`}z0JZ-hTL@e2H=l&w z&u*9K|C3S@QT+>MkY*B!vlRge!^K`{_~B1Nf7aPa=&aBrG=B1VTW#|Bdp1h(2Bw5; zHTis=-4-#b=QN3b*2(9zU$!UGCdzCz`JBvdm}qu_l!S4VLp6zpRW76(MZ+`9P=^_Q zgk9!|Y(Xq78jh~7&(OFhM4Dw$E(>Q+2S!H zl>?q&W~26vVJtx-iSyab6HvBENhA&mo$`m=gFZ$`Ue6ZD7809`z$m+Qg2;%JMB<1v zo9KtIY4#$b^Z~YzwkYv30`F(@LGXH?ltkiq)ld9G_|!i@Jifpd!WNI_8G+BT+a>yc zTuLHw{YNMLAq=7q5r+e8VQg_|oe>ygw@t8kT1p~uEX>qDgo61Q^*`yEq@vtr8G*yu ztrE?Tmy$?a^9!JibWWGzfU|NKUBNL_D2)RF=WsaAYW^xBw1O?Dt%odBwWSrOcotaa zZ=mD`)X&kJ`YJc;F)o`Eg4z-(iNsN>PuGMzrv3pU(!&`((iKosBznJ5%yU%n@7coIs(41K-|*x%C`|f1yLqDP=cFWznIAy78kxB? zX?cP^ZL?vx*V82u*QRxS()#~im(OOQULxs>SYINLv&PyJk&~Xkx-_Lv=6Hb|y=jR2 z@^1Zq_Zc~eJI!D-Mj)OlC6PG9N7nh>mVCdL?MfG6c=5s;{i=;$L-0;z3uxSQ(-1gX_h5{V;q;&~OXIO@P94;dK#om_5Ny(402%S^6N!M*tTfdS~T zBAXLrBoN_?*ov`5_@vY>C7J6>=H_xC*TmD1S~9)sJCKZ^|5`SO1pN!8Boaq|`8E#@ zmzSWdmYQJ?!!5$SSUCcLKgS#O`p-`9*x~hK(aUgL!u}dDeMB;F7?y6u}wG6m(7A_>u@9@+uFH0TmE6N7)m7-G@ zp!lV3{R7eGoZVxLBy0=qC5?viA+{oI4P|o*dNf_SEmL+u6EJY2Cfq;~E-1pSQ-oh7 zS1AGx?e82a8|$J*^g%Y`#E5Q@l873SATMB23mC8qNEj|!%$1};T_5%;$!TBHv}VO)TOGDTyc+0yvFDU}{1@!f#XZKKXgZ$nhiJunPRC7x1(ipeVIZwVwXdosU@VQ z>}$`oMCqbcLTVzrEn<6zX%ZbwNFBRoB%gt5lldK)KDeO@uGI8Oy4*{@=M@|%BUn_K z_ORDmeuJHX%T`K!XFvd`9+yfh-d&$}SM#omy(r$@8tr{gz?UoBGm1k z^q;XguYeqe1J5wsNcTaXU2-xd2t#(KM*-S2+(%r5TCeFGbn3(TGTeeu|7sZN7fK9G z;5@dnY)#;msjQOLMG;(-*3Fb4)KJp8C@riLL8VTVHvB4$D7LbBCAM*nltkjT@v032 zP+KPhvk={>>N*8D0a3o=6f(E~sH!~;SF+`dyE|Xp3D%Oy4M15GdMW7(CWrP>VJpnm zKGvkXKw`JAP{GO!I7LwsyS~J_)2Nr&H4>BFqsZo#SV&$A!D%_?G3b{B}8NRqYsEUu4oL7WPyJaG7!;KJqE!F!g?M~1 zbwSA)P77~{d!b%ioY>yh;LpP<3(Ce_P#%nY8dCLdKtbQY>!aX@OXh)(f!oq89+v9V zR0#UClthAVfd{>hge$_b=}Hc&x)wuSUC6wujbB5A|HKy17U9{cfV~#I*YDXZklyQg zDT%~ks^8txV%y7+`xBZ0R-12onZ<6G=zoTkMB@6Nx~6YuF26hL_3!ZLWf9~lI>qU1 zacrGpS_-b%3i0FX((D2|mEAaj<76p`C>)%g-{-<4hA>4SAYr&TMC#XmV(7%qCWbb= zki?L)2$n?4&Z=;zI`qw2hN!|uHQp+fQd(t*itM(C5#}`sL54`YS!Obn1TK2JDj7I2 z9Z9rRBhS#!_p+t5)M#~zD)3v!3-R)IvYRFfen-a@yrL&xaMhg<&X!DHF`tH+3TV2o zT!A_H8n`ze!se2*1s0I<{m!DEEo;K2T;+d`Fx}7Al`TxmAqqu_VDTm*5iA0uM39M5 z61nB!G@W{VlFb{z@!sY*w*83U{GLkA)2UN+nZ#Nckem&rnaB+P*IO(_X8Y@#{5pkec4nv1p@ z&e?jI<8${o7bpvQ`ic*#P4@$ttOvK)-cV8(7MF_^6=dm6qq@9b4^}yZON;vkbGmZ2 zv*@gzo=C@VW<$cqGs&V+jz7?zNSch4)wOW9F)a1CBic4$C%+coEkPbGB)r~1;+J@Y zd#nTD-AuVm`;dd!>=M%*CnaG_7mY?>cgA#aL=uoNTwLAUbj7j3GQA!z*G<9QtBkFEfUoPCF5cbn^6MxdCkFY zIL?TjbwSU%EwBeC-?!8`+YA2H)r0>EW7+&w#Oe~Z3T&~OpDOnaYfjxE&;LgO;zY$e z^}7n24+2H8ITY=`@Da{4dd0p>DN?T7{ERBTfi0S?iq$bkp95ms*RxwC3VpYfgc-7~ zMNHbgK7M4NdH*(fT?AW=UttGm{2C(j7+XMFWaie8!G%ga+UPNfn*PIVE(lVemXe4f zC5TTXn)^*6eqB1^)j09U)c(?HQ|F(nf{g3TK~*$ zkXY*FX) z!|8H39&Y+3`re~#RoPm|f>fW+CrsE&a3VzKAyhU-@#({EmU`rgtn$zsu=BY>8rXZx{Z&$7^6C^s$$@OJ&IPgshf>v=gJpJiHk&`<2}ejtB#wUL zY)2^iZu}Zz_zJdwobKr)+C81dZjgX-ij+hY6oFTpjsX+@0uqLc7E3(Rj)Ae$ZkVk~ zTlkyrv>Rf#ORQjrltkkCpSI0|YC*6lvkmrU!zxYW1SWlquJ}&2K(<&+hqK?BBREmx zbL6YjL}2e=w@whbT1p~uM9A*OP#;O2A|Cg%#j(Z1V(;T8*^Lu8?v;{=!XfD6OgD*} z-vlHK7ugrGm88-;bV6tMKEAX^El^wld+%T=eeB+c4t(O)eYfq|cmLI6kKc3P~Pd0nz%QnnXjbw>{r< z+=WHBc?VRUcJK}&$CnOwig>x)#!7!W7e>MMBgADHTPv1!Up+px8@Y$t6#flLKKHmc z1h^m2+!LfuVDm(fS|lZ5dcR|(BupQS_VR-I;Da?64J}LT&PUYTc~q5G(dDMXb`<*t z8qL45Rby*3GmSGVzOcdxoy`0Tn*m}WuSUf-${jcEL8Y^U<5oJZvoVu{ihsHr)wLPY zP?y2eH_}1a8UupuM~KTC*lMxGC6$6M*5};SHRjS#ML6KR5lpXV^Fv@7m69-yJc3BK zdw0a@Re&cHlFJN?2BV?|P~8`v?(c^_8y@My;AKZ`9q!HNA{!?}6cFj#*lMvwdIi*t z@nzEEsg_9<5d@i_C$Gt*w?k{0NdNr-Hgg2__e)764*SM)dxzk_fz$7)a|bHaOvBc7 zwfR;=FZXbpzgK& z8e`$1zv-K3V}D^Q+t$Vw)asxaK5MnmXejU}HY3DvelI1FAY^{!fx~*dlAZyC0Wv=$ z8uNdxW>=)9z~t@Q!Tolpi~WlhM+*iVUV9QE9aIBIX^QEgUrZP`?y|j$hJFcuU$l2< z4FB4Xe?5zTJ*WTj)f!(7z-Q2}27t$zoJDGzP#(@WMGj-kfI2&Pg3G*6FDJ*jY^}~o z!GS$p>%!MdaOO&FVo*F%%R5r4B6GNZmXt(-mgnE%ej#iuftoKnoM?UOiSx-YBqH7W~U@?m9u*byDegAZ`LFl zW{=uG<2*%IC@N;4DpAq%%ThUobQ!9e;aMXu-8TqjR?|>w_fnXD23sUU1430y1^b4( z*ow0Rsd^IR3Y2iLxZ(@v`oif1lM)U}r~1OdwolxfN;{D|*c=jQZPK*LxmxX7yZRKqF(?ze142ynlal1Lo5`6ucMa*$ZlYbv3^FN|8#HxaVg zzu^x5wvfTS1ZsiB)9E1J-OvSTUwQ}twJ_NbNkCCBjX4xsh zafi}C28zO}6|$Dy>kFoaxSz&Wmo4tE2wZg+qCM;f;!0SzCTzV`H1C8@VRK4s<3uTm z#BF2c$;+Jc{9r@l@8^OCi}}iqL6zl)%RD@tD^%T`SB$Kk3cg4D|COy0Tl|;9Z50?j z)hB{cAeH=A0_pT$AQ0)j|AoyPLHyNH5{VNQ_xH%{RAf|NuQ4ng|KWUw&1As}J6c#||zS6n~_ zYo#cIC0$NA7E2GQ6lsvY+SawsT?_l7`kf1*8hADj6@o(+IP{lV?&_fD+Y_!UnOo(q z#!IGC zawffYu0v@3AmmzA-lqu17Pg8k;ixXIpEK*JfUa7oq|j^NI&Rj#(;?w(Hdh3=O;Qr3 zGhUC_w>uwsEaW4Z{!_L51~J{m7Tp%pRH~rPL+M;8^!jc;I)0F2M#uM|Fsa8Jn;(Ma zPAQ4R(VPsa$94H!UsmTG!wwmFhUi?!7R45w=I37C#cr3NaE+8i6a_(yWWp@$k_99T z7spBk@dx5rqA*LmQ}yMx197*i`q*q7KB6`be~Ybxcr#S0Xf+Oho!u5Oy{~8z9UO;G zfN^+BzML7+otnClA{+tvnJyaZR9RnQpYR*Df-J#+Q5bG*@`X?rIt*Om?ojnI^wzW% z{r0ceToKszOGy}CeFl+l_b9v!Mq#}H+;h(KvXJy~HbQYfwb2D`zk)TvEFiNt}P>#q&!P*d$p z_D0}V8TDV`!Me$N2;WI;5pA7xj$UTK7+Kv_4h(Alq=E4&HV*`;L@-~YwLrED&e*;^ysj19GdLyuIK)PnkDW7JPp=7 zgV8`OYi?0fay)((%7U~CzN#;T5L)fkY$e&6!pqcM33@pTM6BPp9-8mL4u6O*12e(c z$M0awbnh)}CP^RlW+{opjbREba;{5fGrd^lIOPA;=tBhUUbZl{piN4_1!*-_2oN7* zH%x%|h?GR)KrDu(N0@i3Wn?`zpjWDcM?o4Aa?tw6Fh-2;5WerRRbUI>@hN}VxURcZ zr;Gys^7_#cX@C1|HctfEZ%Rodj_l-@!J;yRK$V!eRpc2W^cS`$wg^p3saVWsg!tE= z*zFP&elI1FI0_3+Rr90X$_`!Z-Jk8oyHxX65u^Xl-J8J6RTcT;0a>yyWFb43bb!R< zCM2vA1btaplMwR~a6yxP{qD=_PQUI)FIjMOf-o>>yAoV+K~Wf#fQq6bqvNRKzHdLB zan#8IGdkkF%fHU4d++Ic>vs34qHpWx@8>fwOy7I!RModmojP^SsWb11wB|l@VeaFz z*}3D)X0t&cn<*ucI%MltovnQ02n^%-DxAvGfwEeRE2`CmOCj?PMf-H{q9(W-vb$i? ztN#DMVJ7sq?vO+icqUtMw%xQ39BCkRuq76yc88SIemnzGyPlF-|Nnupw1{G!!RD4& z%HK&z#4Uvr`}pO$8E{B-G`dYdj?)jD0;oV9bdL!ETzvU)z22`HQ% zCQ0|P5ll8&rGQRJ(mJ~>VsI5rqK8S+i~9GE43vxNp5Eeq2bP84_;0zS{uAa&IptdP zw$PI2!9~Fkn+(N`ubk&9Id$Ns2fL z^XLID@GjmUjouEj86`-+MoPkT>Q|z%bUm-yzdJwbH0#T^3uO|eatXDU9VnuKM6F;2 z^J4`55w1=HvWPi@qsdv;SaNUBUpb>N+NZv&)o|5rRP+& zdtE^VJABz0$?o=?JnRN<>NIEs3ic@CG7^aUf3X!~i~D&{wGJh7bqyBm;$>G!2G@rr z7=)ILp#L9i4hj1IPf8+n^jE6VOddk7uA?ju=zB+?><2`bK_+p~sn!QZ%7gVd@a(S< z^QZm1JM#!KA~(*~#hN?>9OQ8WdGs1eD35F8A#jgjGe_Y5bGP6Y1bilD#6Uto!Wdmy zDu^F5?(c2PxU@NDyll(%$eajgQo6QY-_;TSRahCuiqBw!pX`m4;GJT{zhk#W4DEbP zqKC2Ksr~`I=c-~`8%lffm2yd)8i?q#(ef?q{?BI%ZmHzP?BJ-6cKBWsf25l~hs^}h z{&pz|)4{ePfZdMY7!`c~fh~kB80~j5{XM%~qW}F;5^?W7}1@YbN zXm8!@IT1IjFK*EpsH7dlFq3rFZrHjl;vfnahYt6{Y|)d=PpP1j!~Gz;En;%-*CcxA za3{hgU=@hG^rn`G5*yJ+=vu$S7SU3jjY;ahUc(9Tr{83^OqBaIDGAe)zKr;^@~7g> zd$VC9nV)u22PKq6C#_4hehuOIBU?gScxDBM9Mz8A0a#CKwd(XcHVXu&U!#(HS8{UP zsuinLX@GbMpQhhYzw>|5orwkUCXJI+WRX<5XAZkbqR&}U62|VQYZ5KXt4hxX%~`c# zwK=wM*~aY~g37&7SJdV`1m;<65$z3s&_7n;?kd*3)|L4#X0t$mS|cTqI#7#NtvE*) z&)8Kg55Uei?V#|WtACYq^aNMK<^zOokS(+=bf@WP9XUpy730_kz$D_bY+eY4FO-r< z9mDfitvHtqGLUtFeM))}u<7Jh^9o3`CrXJR*8jv-jxE;bB#%$H&}Y4w`5)Q*5&T~& zC6PM*^8tS~&gClk(b`Hlmj~-GD&MY6Ac}JPR}stivIVup5_Y<39-Ff0$Rp{m|IFrr z;Pq}PiPZ6$tMFPK?sfIISMC_h=VIxQb}u4UUu6qvi`C3!Ldy|bck%N4Q87S>-OhQDHqZ;PQ5_)aWcr287ITq5Ic zb~I1n{5hK$0_XopNyOn4q()431?L(95{8Sk=7f{r@JY)pZqa9GA&Y;R*6gJH7Pr&c z?Gj^Hs7drN?=fRF42A24z1(hpw^Kiqc8m^!$*-WQH?T#v?TpjlVp8DB-;GpNToGrw zmfbp0_%o#>jNLy2F>93zk)Hjsqp|amGzz{}hlgT%_eD9XPsW_MobO)}Os3 z??dhUI@-`1n*gxWyR8i^Y}$*eEXk}Iw}^6I$7Y3?)9so>OaI#S#Lj|qRzOD6AH6Uj z(ikNrH9NeEaD0@l16w%e1lzYU`qBG@TO~IiW^+N1ct}dZ^rZJmNtphO_K;?Omb(AN zaJzMdtdvCRNHNy)SF?q%?Lh6<^H;LlCHh}3B@x%Zz;7DYi%Yx$5{8Qhq-$)7 z3n&1$rnl?)3$7@s1!mX*x^CGrM_-Epd+L*KEx0ONx!=u3E7{PLu$@-!huLirZ!MS%$BirA^>w(%6|Q7i6LqQahv-LN#un33rH#qzWU%3ey3bqLO%n~@EG1z& z&W#9Cx2LSpof46WYV;ApaEL94EexGDQM`xUGC|>9DT&lkn7W|^8?1vk1M;oWEQ~sU6GXl!C6PKJ6F2P3j*KQA;)p&%B!0sd#1@H3P_kKb z(&7NdFWD^<6rPZhNF4=6a5wkY-3heGnA>O{+?~p9m*{_nltf(rg2>DScNhf-NEj{# zq=w`Ncg5ZYcTZme^?if;se)Pyo5}v=c&@p-wkT6_aDK#WNLjPuOBlJbh5jvDJag-xgr&r;Y9{)y;h}9K# z%?$2g*ujP@+3hNcJ4NQ#vD+dR_FPTkZ#Oc330p)f`o;kYqBpi7Rp8&#Pdefy#_R4I=*{ZK(87n@F4eSt_`#1`Au7cACD z0($7Mi@>*ww=yce-74};ocD!nh6t4BNlBy*C1V1P%CaHqEu@NLZ# z@C`#l`CJ}K8bJZfy-*uX?N|8mfjg^EkGJam_`qA7syCu;lg?H3?E!s*S;&Dr>{mcwfQca5rV|Gq$Etg{5pc!?WxTKyjUY)#USzo zA$gK5hAku${o5~EEZ+Qy-7taR_fit6L$I(vuQu|)4o+Cb>fnqTonA(uGQaE2T!A>M z2Go5(ZuM>-e}bT0XANB^={^pd7lPdaDT(y4ySkEx`utF}qhAj)&J_wuRaGycM=k8| zGGccbTUgspc3P(FbL--e=xQhpw*A64K$S#}UY z?r5Y(o?;LA09zbeB&KGDkRLcHhWrq>_8_})0>}MQ5^*>LlQlEn!w6qM!f^2cXHQV}tu2{9F zY_F>9e)EtQ(Pbm)1@x$2Vasc&+s1TQeg&@lp{`Xz?2GL7iM~H4)wgtCLnQF)6cRqc z7SL9~9YVsNvKuCv{U0d_k`E6Z5Ve-tXjtxiW48a9~^9 zP`&ufSif%fCYnrxt!-PAnU~o+yx+|SvuO-5T;!8>>)Y6T5W~4eljvn+w{(5Js&;Nb z@s(lKX$QR8Ue7BzXY1~}IlI|Wn>N%gk0>sT?+~T?+1jy1>FJrlhzw95U(4X0tvh-t zTXI7gNN>N7%@zUe9w}(z@KEnJT(K8c0b<)CCp14ny?>c4psn5~W^msl@*PkaL*`2|}nTS#VPvd92 zf#xSt5~)M8_}XFcUwUc?SF=`kFL(B>Jloly_lj^SbKuaT&dlx;1aH^xZb4m^9o!NT{{E0dd_Er}LY7=8%N=!$kK zUsCwY9H4Xj=>CI^lOdh2T0H0#j$s>*<3Ina|M9V03tSeq!k^8Be*O1{@U(ELZUmV+ zQ4i=*yZ3)Xj{KM7^3IIQJK|+aF@dLq0;`8DBz|GL@G?H^8abeI)OvO4QiD0_^hXPI=UW`V{3#>`p7jcZlC1whCC#p!VmW$@z{kij(~5NzMW=89l@uara_TaM51xiCW?&ie!;3>O`y>e9IeW6ACZ zY*pIYNc$zb@3Y$_R`6XZiPZH^HgrWM8RRMU*5m(_R*Y(~-RnuIF3qs_Cn1i5`yCCvGogE73@&;s1teo$%-Ggx7R*J}FbzZ4*6?Wj9Imc%qbqG4ta!iIzL} zq`}ciYvD{^T;suysPdI;=4~zcK7{ERkn z4_lA6HZd*(HHMJ`VgPruTO|f?mnPA}@&44NSxIDTXC&3u@-0;NXW4?=s(W_x{G|O} z&`-0OAlm<=l!P(-k0XHHp1g+uz#PN^rubV3(@)sq@nM4LN_&_dXEQ-yIw~a*he_b# zjF-f&Dj;FF=-?%#AthtkV*X#!issudTg+j%ORQj)ltk+KCkqo1UrL^0=X@4h9NW%m zv21ZMyKw@?8Yzi59D*KYIwj_|1tbg?tEIDcf7#-q>j`yb-p2jR&+B}!gIvthis8-u{lMb zdWiHUy1DH?+07GBz9%J-Iw*|j@q{P46Frjgqr)vS$FbWb`u|I}^e>1tOt^w0nt+6{ zf>Eg;ez@|h9)~MS)Rq@#%K>F`?;#!RT-n zd4dDk0k#;n7))%wM34?)FJ?DPAhjieV4md~<)XI6*~-nv;Xxtccu(Bo_t2tY@r zBvJ=x0+c#WzG*Y^1i_d(<~Z0pn=SkZjzFnnTmOycrHC5l1Lqb=KCWeBT4fE1mIk@5VinJ$h5myVimhxqW=|A5^?TiixX5{^eXwB(_dG&0Bx(o*(Jy~MuNz~=fdgG2pg_sOHTcjjRr@0C7X*C@ZZ`n8_YSlyKiUUg(a5IYY z?7F%kB`KS3`3-v92idaQ0(WKxDvGKe=~h*bbb)ubs(E*>Z|2>H!vu`?vsogD-iL6s zsvy|9&Yg7C_{4s%Rv(Qxn}+`z>iKJIp=|YhQl_fgCVKobyGf$QFGxw4p7B|PqE*k3 zD*W74EAXDjisz^TUwgg$uHjnMDGxbA#d5Z$&#e1)25Wgb1ddIaWF!#IU$Yfs3+HO6 z+6EUyRyfq;{Pz|4B;1bd7&RApUHmfavRlwV0n z#0^CdM431Yhim}}!$pTUOq#u5Y!iF>@o7yZ+aEGGi`_1Fa;1Hv}bc;Tp17 z8UW6)h7Yj&ZDtE$+x^rT*03>Oc_s^b6}w%c|I4K$;`$eKp{8D_6G;LRhKoUIF3Mk$ zI-$2qQgebOsV$Xqtz6qb>cN$ZP&_7PY=!THt5LVIkxDi)C1|JBsGHes5yQGslV~{? zD$Kk*Qu!1rm-@xEtvn>p|2HKQGpF3y7uZ-|BEi?EmDL`r$dCEQm1># zQ{e(CkloeWPItkQP{T`|paZUUHtbVXP@FBWE63SZ$->zV$N@jQdHtz5tScM|yW}_6 z;wN`WrG`#j@~iB&NSFMQCegA>c7Mfd*`{(0(xR%LsYMr}@s>Jnu)f3|@e8(sEWv0j z&y0j}s8yEH{aBlKwd-li>5y3Z8JjVJ+)tz=%=q{?g5T|w$g=g|V@qC8W8zY%C9UAD z>Xnu)6;F9+XFcR{VF5Cl0B3!P5YKvAcj8>q-vDAYR+K!~uR)<|Vrx0{vdJjQp>xto z4j&&Ah)riRMj)OlC6PMBb79?Dub=7#Qm0mSJXq?`t07TD+r5YYu3-yl+ehcA6>hy8 zs=0&;zpmm^FF;VdE@1OP@H$sYB6YkL`Qw>df~l@}-SgS}5FDQ)C6PLgo1px*ic1uZYqPoCP!z@KAB9Q6kXea= zvOek}EI8~ll;2ecS36wZt9qzEvf{pnO%P>9H@P*sOdGA^rEFE&TE}Kp#v62@JNN+V z!mawc2!>y;qMbEV$3R`cR_49R4+IOi#ye1l@DFU(i6Q;Hltk)=bapTfD@)SG;HXVv zmho2DTrJUu|eO{4WnHn-o|06}Rzpav#i}5O9$euj zQZ0uLu6;R3zn;Qoj6gh5N+NZL7xZWMAf_A3*}?XGxWl^$OMEbz3_Xg^_cB#&(TyhX0CpzB+?cYV?l0@Hp?`)%xYiT>}Dl8EbHur_0scQD&8 zAYr)pyfp3Xuc^MTx63=1v|Zlu9lnme+`hdkFC8xSEO~a{w&+cYgsZTHrEQl_J-z%)HtWQYo*^ZXx*@GfPA|6^Z)2G*{`Y7QLu{4U8pP@r31)vHhA~7| z#Sme-nNG@bZ1xD~JEbI22Ypf)J8dkNV~3h!&k(Gau|=^3YjP$``4<&0z81~u{H^S! z2@p3+Nu&^teea;D*?_qO9(7ablB6T!ZG_M-yF2-0g;C_qfP~)ty@}%y} z(UdwmWkZ&;+al(-RFmjoHe?b+vlVr=y$S_wVgqmN87g!$Tgc?TO%&RgtfJT^UVP=4 z!00M=(?q|QOG%iHwE-dOcAkP+thd4z#1@80s;*xJ$|L9t>UM_4k68yJG9T;rI{jL>LGUPMBVR`k}&<_5F*xXFEtYi6~UEz#r?s8 zbi&?{7VjW7-)D7m_1fV~$86W`tUP>YkkRSjzF+BQA0SUuJN}m7MCy<+Cg1&RA#8ha`^onfcDqFX zo1`S-`WN&%({XVQCLm$BI8*9@{K@y^UQNE26ut+uqNXjVM;ig zZfJlC>n24GLl;g_FZk!7HNA1Zhw-BGayT`uC*`+Gab61z>x0Uh_37fxNY3XcQWDlE zh?51A`%0yGL0#jY{-q99nI6s&2j9u2^fDtd+wdn zSqzB)U(0YVr93hMs=j*EgR?^FNLaR3^D3oS+S2Y5gyRghN^E<^q5uvLO4cg2UA)#2 zN`{XHZ2Rgp8O}v)b_hbJNlBRQGGCJ@blYj2r*a2qqF#t$6?V5nLF4{m*ql&}BozSN zN_HfMt&j$SeFa-JwqT!Qzz$HZ!d7@FS6tPCMUoPLzZQ(3e<_HJI*a_p=!xz&#)(5eJSloAtRci4Y9-1SAX>9p*pc$os55XLA`+6%Y+xu@$HM z+g5Lg4k4Gqfu^V-S$~BVb%c$Atwk*Xi-MVh=R#PRuV68N+G;QA9H3zTUK+&zn9UTi zuK&^`da|15=a=AoaZp)njRPeF2a4W^DzUXGTgwfrEr3y+I=_wpoit8OrsCB0QL{vx zE@x|UXE#>`gSv7G0#zMs#D@Ux*6_43hRpghn%T+Iq-rurt1(g%#-;ojt+#u#6W>N> zKtW5Gs6p8pJ)vLYKqbVOT_(SR$X%Rli;H&d?5_{#rDARDUgcV-6SNsFj@S%)M>l0h z!AkEq0g8dD|3%DoVf*hQwiFoh2B~_J4cV7T8}dx;W&NqE6Ie}zi$;rgniZ6WXs7d$!`Hgz)T^lQ0xpH{N}%?pcioQH>9fI8bXQhgeWzd%YNZt)z=k)a%2 zzJP?`qQg+$gSycN*s8R3j_p^rUd(Qn47oQ*NyPOpfY1bVxMUz8VYs+SnvL~Wws!Pt zWeXR!`kK$!LRAy5s8WY2;#j+3>o%NpRK1ZrT;o@P4GFN_XwX@*dd;~@ohoE$U{7Rp z%r2ZAt`>cSjcBqlDur}fE&33_v=y;reA#p@#$VvgD9-JR%KWHaL*YmLyk3W?t!5@)pBu< z_sl3%g6|Q}Ke1I}i|4A$UX@r4LRck}8;Kg86TxBvQwG(iLj| zu5+dXg;3)cc*dR~R?hhDtVt19*3fr^SIU5o;)Ha)1?+|i40ELt7H~nurv`5&;Rr#e-5u>_?>U=xs#0qftXqz7oy2MIND7{RCS?OLca<=KWE2%S5>!m69;s=V8RB+kxk)p_#X_>PE}A5Sznn z@oce~ovHfW5VoR6dY!LhllA-&n+XEb52Peghv}T{qbl7QdL!75QFi+4qq>r}6@(%R z2=CYl-HAJiCu^LWsrz!NBl_TFVK)Xup(vMY4gHC11_|`XOG%^-{Vb^04r>5#u@7!w zTkqAf`C@FlMXQ$(z~yY=Z2RY_s)BkGckZCi9qFD+**p-8&XkgfVk)Bag5T-^>=#Qk@Y03@A?ADsn=4?v3o0iE>{e zC1Lu^ix8h~$3KiofS{2q^GkRB{scKN+NZ& zKP~P!8u}Mh_vLK1Ej>r$giO9%rK;Y*Zjh*Yt&~LSs%AtJMYa&OifFb3z`m%63oQ(Xfxx@i&?H-xlB`o8 z@D6rc#FE~oNwf?Ex_-22T7P-Dqn4$eeAQ8Uj4h)lJV!VADYmSZdTmV2RLibjDbH73 z4Xv*wliB=NcH>0R{~{$}I?E$c5~j-{+)t^?-uYCxfIY~k^|s3{4$9?SQ!nn$mcp`l zuxGX6TwAW})|IIZha55_;dmDc=h~A z-3jZ7K0Ai>bJ#5t?atC9T57kYs}w7Dv7VQzd|zP0`sj~u$o_4ak#VSD_X&E`i`go% zH15V3nE^GUR#WZZN^QltyGM6Hn11U!PibVjhRqQH>4NqkweAAaUAb^RSDk8ydz0(c z>@GNGGvuI{&R(c`2IsG%0Cj#H!FeHD6}I4mb0Pzp(rU?*# zFC~#W5aWH%*1!I$C<@IF5Q2BJg|LNSLdNe5)xq7=L%oyTF46znr6f|<|D+(-nbZ-Y z&k%*rvqiB*VRDcuYSj_`o!vA6;!{!*aUcZYw28=Zz!H!!T%0Qv#BhPJ%~RrHy5^!~ z6eJyAr{U5kB;-{w2zu{v!gDmvlP0GXYn}oJ1l4T@%{&oL{WNy-#6ZVLNf^^e36%NU zt12w@{k0#@snwDkC?@K=+rNrXJ)JG6tshyCsVh!{04KO%K3{@TGr%c9?JPDY1hvId z5~-th^15ZqX!WJ=SHxm7n|)g>PRium#A-`dv701Hzg$Wpb)}ErvcEQ*RQ0O)0jj>j z7Q$Bb6EZLl11^&FUuL&U^k0;cNL~L^gTUp=?4B&Oe)<@(cpY0HTP&u9p-lleN=D>% zcIyO@S4&Bxj>s8n{p5gJQ`c+jaGyfWfypwSGQ?3OI*M3+gV=qPExIjsXPU%@&%3L5 z2M|ZG)(OrX=(zGQn77niJ?ZUybjouzO0u3oWwIitb$wN-x;2w25IqVe5)++gZ zP>@O0t%BrVbSrS-=5YPs)G6JWgDBBEtsl%_w?#~CnkLaQ!`=PlDRcSYe71rJpY-wzvfafAX{*jXLf~hsD%R~hpSN2t2{;yU+rc%+{b2&AXk@?Fx{wv;J4~V(oEIjbz8PO zVNp}8)|!JAXJ1F2LONCp-0l+u^=)jyZ9!d}$&J>-qPu=MR^U89*HhTiZg?k~Ap+(b zr6f`Za{=7fIh3!A=6oZ=t%4Q}L?1Anak$ zyt*N;q!)gI%?bhTQ7MVkfn#g{JjNEn7LxWG01vaDbz;P^t2;p&51z4AFcqo`|zLv^=m z5Y$0w8&9q4)tq8}ppvcRV|Q2c7NWq$NtqS}VlHPlN%XiuO2YJ`wFpJGBdc?_=+!@E@=eDcRapqH=v)gs zi=1`!YOOrts0EJT&V%R}EhB+&mf4E2h4UPBkt?igf@F|Qg000>eV`LlP8dz+v}A5B zjL&EwR%G)>u+K|Lq>lYu-`6ELxhTTzUPK&kXA5bI_Q>kWdzH~v3E{vMQ@mcy z=7Zq%3MmO|yu`_b(-M&KPuL~+&5my)bPu!TwS~?Jmt&eR!(At>ig7)}W`^MRK24&B zW7a8fG3+3mZq#cpN%hW>UO?S{mo2WX?x$y<+%Is|Ufthfw@=jlbtwtcUA}^db$e)= z?Znoy5F<8AV~d2N+NZnmh=s( z9nFx}@o=Hb8B)iEVQEYK(&Rj%!;<}Hh@>+urQo}B8*s6YfM(>32iaoS0x&U%36deWpWQHl z;65pd)FGG}?q2eT{pbKeA0rswWD8^q#x%1h$sfk)jPq;k)(IkCmXe4gB1qJlTrbX> z1SAX>n4=PqFkE29Q9#0Qk&(u^e#Uvi32+HYtL5vKoAAYx`Xx&Spsd_dm_C*UVG&zZ zARDdMbPdGdY@*J_Mc1wiZx3_Ib57|_SgYjjlvAF?Zi`s^bWNhAg8%9}VJ>8gnCwo7 zIy>%!Igi~kQSNFf3DbR6B0k-ojZg6J&CNl9sHk6$JVBR!9a{`r3?{;g?ufbwSM%ZP z&rHUi%WjxJaE+8i>JUuYUP9p=3PS7|!f=2siY*M2Gj*Sr7C^k1-82E>1}TZuftYed zX{ea3W#RfWCtKMS_3RDu6v4QgEsiZ1Q#1LHA6N53`o&%B#t9s6m6Avuj`174Y^4Ni zUX_?-46j6uuy800^p2a}oj^}1pi`jt z7paoXrE`DOBzhR=O~6&_gr%^^6YR-OTFQj`X7sU!R+;<-?1o8Ko+~9`I?<_`M9bNX zbfe}9P`*B|QXkc2J>fNE<@JhMik!)pmG!W!|j6kkuD_zbfJu*GK_ z-~)>*iUXo~kKHQK{D721T=Rm_&J397MFk`b7r&GGa(}@5LvIJnHU5CPwaIt*BjaF` z6VV&{VGsDmtxkV#*i#oQL<<5HJ{FFgcd?;Nwn3$dP9x`A*=-Tad$T6-w>oluf-Rt> zGCPf&kFpykn*FGhgy~HWBRJj8k36%@$l1#JTbh33DN{q=eVDB-Td1GaZfp(Yg^hWB zl#CnpiWRpSc6H+Nf5c{%n8y#KBvLmIH#`x!#?jYl4#TDbI3kJDhpbbAl$JU&S+0OX zj1~T5ev8nLozb1i2635<y*^T} zb|>L~IqM)N4tH<*2OM-{wM{#dE%{N;S+{+CpR;w#x=5T~_E?R4jp!rvyf?E&v{WZ7K()Vx`bKukM7b}Kk}#d>MTk$g1FUI! z*o5sCf{bhvvLyLE!eJESC1$7IIk<-KZ~ zC!D5g1xxZPh|Cw+g4rT7BQspys~jY7)&`u2 z8+w+nN3+#p1G{Mg#abx|YbeCKy5{OtD7^;a-(;&i&84uq7hCOb_ab6cWJ_s_(L6lz zs@FFBduf47R~=nQxZEhu=7Rt>q)GJ9F=ejS1=*cdYv6dRbD39j)|TN+tH!~3c0Hfl zUECj;)-L?)5&~q({As%?|##yTl^*YamGXl=ldrQt0BTz{!3Sy_15x@7bg|)?RVSwLicR-&&-Ve;W z<-H|0ubCy#9b&UWpnH#$L>xLn6lelT?BN0uhKmlPqu3?S3%8eR)6s(@90;t?qKR$a zMBDihTidp_Gv91F*H)v4PuNU=d=ks~0h{QkA=-E;IfRK{zut5T>a5 z3{dAiIvj20#Ra%V++L8%&6k0U0>MEZk)g|EF}?#Lom3T_yETm0SUuJ zhxkCcb!~32-((x?RlBraEIJq=^o>R@q-?Z%5l!W-Y*pKu%DhbT9<(9g(#7}yR)gsj z`^{`Vh}FD7N+NZFjUwLUiE-{L_n z_yD_6qV^X{NyODI7~D;Kfc;27!f?^SsYwHV#$LM*uvKYm0`2$OJ;-jCSi${L5^?g;o=w407h{EcbxS1HcC7#IZD(!?>2eW;m8nL_*EDa{)CNJvZ*O?JH>>L zv)dx(bySn+VN7^Ru*i*D7l|qxNiU!ypD?>S(IHW7V|uvQjkgtzD1d!knHBG`?DmPe zPn41{{pfg2qGgCE^`^709p3M6ELE5|u+eUN)q@O0#Lye9Uqg&mvIVp>|Hd4^Xup4( zl)}e_ZFjJ{OL0h$TF&NzAhlFVB6XxrYmVhZe}uEx%lp^Ig8PndBX0d{acyyPBGJC) zSHq`f-R^L8Fd_Wk!e)lRw@FGOb@&)z%U-q+wxF~RTWaifiTCS|Lc)7*}?ZL*QlFipz1pe5E&`dgJuz4g_FilD#bt|~S4`ugO@---><=~AT z>KZX;&~%b`(SXi&(M7swDHpL-XzLcP2*P8n12+q&Rn&bgN(XL}4veE<*v^G)u8HlO zCnXWL9YGLg;y4`N1tbg?_efo#AIB{g#c|Tv_!+Rd1-5akeX>CjQ8>Wqu7%=@gU+>y zw_z5hhS6J%4O+6bDw#V)Z`ZTiA~sf%k}&A*mXh$%eNu$3csXwRrRu~Sl)HkWCso+~ zkb`5o(NKJ02%TgMhfH!}W?Oq(o!RB<*sbj?qoq~->OW9rQ6=_4$F34s zJygn|hIqMDT2r8OgOo&yhKOKi&RGHX0pyE=+HVARD20V4;Vff0wytLN1=`7r*<#xQ zdpaIn!aJ}0>l#C*;Upt4P5k-|Y;K4{*()WHI*u#OUEyqlo32!W9k`1WhXED459*V_ zo1thI{(pK%h>f`1j}hIw*vha)cXaR~}hYXnufZ@-?<9ZOx>8A@eV@+a*@; z1u2QR{sj;kE5LcGfP~@Vb&~1)X{A%1;$(JP#0pQ)BzicR z7`v`qf(noEQ?ur0?AS}$q9u21qQ=HJxH`q>z}JSE51+|yl_)eLC1E<0gP3%0T7c2m z1W23abFiI>)ES68LH%!Hi(#w(iJ1Y#2W(nWd=Ln(WH(G8xJ*hSMF{+v+3fyN527Y0 zD{tJ6K6ewD3N>24hUi?67P1beIn6V#i92@=48dOP+N$$+#^zmPg9nj@f;rcIsm9g< z2XxNmv!~~xr#P2pA#&W5g?c4dd6kk1sv?7W(hJQ}a>gcG8$2gdRXDg%5I;OTj5D`D zP3{nI?T!G~?rxuJVyY#n*38^(x0FPRri$L;ayXY*Dev)`47GWD)JA(Xlf$+S1=}6bdVnh)0zJ53R$32eMXGg1<% z8xUh_=o4%qY~gFaHT0+Kc8UJ~M@k~Df6f5ub7AIx82<}M7%q;J3gXZIru26Hw-6Re zz2YYiIbkV!J$(7o!KX)plfs&CUbl39cjk3U+D`MjGudqs>&j>ny`0xw>Sb$nC>0P< zU}J3fGy2=h*`g(PSfWOl*9`?6_}Vb@x()1Bi9**(NtllEOvI$y^SUXqBU(`a$Wz3j z$QH*IhpDhEg4az|v9JK03PYhS?1grF&8mait4oT9JRf!<0SUtedOiUO!v#)@1tbg?9dbtEurr#ZxU6lG zLOn${JAYwX@nutzVpmd*~hB$|AVl!S2-+YyYv(kS&(wg4QZUqF@q59|hs(*Isc zBCd3Sb2sAyb|L`@!^OGnp%=TZw#kNwH*5PQI=J_^=_jhJ&)HP#zhbvY zwElA`iPW`@CLPashrgns&pR!xNYh_wfcAZznPuYH>_&;&XG%%L)h-wn%)o-qOF+VK zk=DS{KARKqeeGXGJGqLjZ&u$-NXcH#Zjl(t22DaR6G=6AF0utIi zVJtm|X#AB1mshg|U}-%ev-S#hi$v=$lafeX>)|k>JjorC#~e3C{VzP596mYNR)p_N+Pa&!T4Z?81!KR5{8QoLyXkfOZd}C*4LE+pZkJfY52PgGI0&FL)_}P+0SUuJhfJr`8fK^krK0n^ za=E2VB)@`|F~dnK4xOG+OGrichH|-$g-m0&Pb_4zltk*-jN4X+CAEAuek7>rcSPYr zwg|TUb9|;2^5ARE%m>b6H%pYiT1q0Wd_mtb-4k~M3rH9)9O*_L#Rc43u)Mdsyw`1j z8gXuUNYzGnuCK#2X89XnV+|bPRcDogv%mTjQ?MU=vsbTVi@L@EY-6sLE0OIth0DXO z;McP;O}0j*l1^K}OYF9Y3GUV;dN|t{t4{gs$$NVv3T&94u~WaAEt;hoVJo;gU!yr7 zefkybR*6DiCM98d)2)a}*XJDJZu`hYI=%`2A+`Yans2=c|9$LMiRKSUNmy%MoG>T* z>>~(}r`QF)%a+F$2#a0#-(ojT@c6nW(L>h)r3~RzL9wV^dDOi`AEADK&lb^Ezms5F zP!lJ_&HRSlGEwd?r6i28KY{qPax-FMKS>u6h#mC_enizTIK4Z8GZ`csCuel&fP~sS zbJ=YYrJt%v^w6SD)bo?5Df_>nA}?VJWoyGH;S7XMOD|$KN%VN3l!P(f^AL(w#w(o= z&hN|RAkfS0cLpo4(Yh3g4x>1PI7(TmKS0M`y;6#Snwr?V4x3I;u#cY1286#KosSb9xI4E=zn-K!p0V#>pAzRQ~ zFGA(N+Vr#z?;>pXu|>6oZDFRlvV-EaLtndx%?bhTZYha4aDr*Q$qe9lCm>vsN`4BSiZ+rudT7njP~(>Gaq1+J^But17aiJl#)mto$>3v(PDW& zlsKtH$IRvjh{RvmLf9fP0V@86ToC>Lk=-uQ|L>$E;`$eKFw;kImL(uzxJW7A(3Gf+ zjKNL6qYbQBl-6vZZ31^0yIEoaOQa;?$`{~gOaOCu0uqLcVd-?zPvAb%+XU|UO9phA z#tlP5`CMMr1{x_3rEE;fwGPDp8? zQ_gmf-4?OBtR~UJX((h*IM+wq!WPj|ogJ@_xQX2|QSJdL3DcQgjQDhWZhEqB%@HeZ zgunV>Fq?f_-H**cFRGODgLHCv54%yK_PeDdQdj%a;*O)Ce?fJBna#GXy5ZzoIU$Sn z1$Ki()t{A;NL|&-n{Mq*aOlhYyU&~fRW?4_4S1g-c)wsP!WO(`!G&e8zzE0S)zAcm z0>h!nzrV~yIedW3+~8+yz6i!Yk&;LqV@Cb9S()y{g=AQ6w6EVbo!u_c|5Pc7^!2~d z%T`KIL820?AVKS=uVD*e+dtaZPrrcOF46zFQWA0f3!-Whm}8(OAYr(8p|m6Wf%&7o z4a^s9*{{#RgMI0EygAEg*VVzlz;5QEo#@!gQS55T8~-xOjDQ8g3bcIVM!4O;~A8c#hG=huAXN0&!Y;_8EwCT2q9>2+MlIZbkQWD0x zzl>0{vTlA_Jt#pBx4Eg?df+-?Rci{avT*8Eb=O4{gxM`$LtOrd?8QsaXLjz?qr-~k zb+8rcN}cdRuvlgK(>lB#VJj$D|Fp&2xY36wxnMmC!x_bGjqJRPk{zxs_H_;W5kc2* ziBttjgg5J`!#!cYlNyw%HUDcVi4<)TYt7Gs`|AAF9?#idu2&$}2V0{f$TwQOgy!h7 z4Z;?|8NqUo=PK6lo;R8xc{-Z`;xx{Zl1LpObuHU=a2eQD>$QBbx&r6CJIbTAyee{D ziK1oo1w!|1w%E4Noen#N;D#^V*EG|?MBOk=od0GvHw4G4q$Eh~&H0oG+3K z*D};xxM~PQ3M%mXA`#FlY~~2)Whsf&L0@v-ig1<0b+&pq+M{BsdOJL*1vb>g(rxyi zA;52BE5H`u#X(xytswJ0s(9;0z&ru(RsJBZ=qz>ww^H(?<%W#nfcwZIDX(ya8 zS84Me!uBXzL|fQS%|J!rL02&d@lO+j1gVd*c_2tVEF}>~iW3C-T$pSSPM-uM3>Rrl zYA3GsO1a^YY-KkonjL+FX7N+DK5flnQYO4hRdGU$;eXgI6Jt20N%SyrGe1~`cAaK5 zI|-B9_OGJyC!fKc-PkIBUg%1jL2z44geS21AW)2zk}y5uL`|a5y@@bRI%dP7pVJwy z)~_K}tJwnDVs)xo9&~MRTFK^t;Iv#yB94>5`5FI-9aliYaDo0)K*Df=d0znu!$mL8bPaPKqUJcXwk(ofD5@z-HvP~zs2Pm04W%X<9wuq%)uSxW9 zaA0n&c^z9sOLcb4>fg?8nJD+wQWB=?yaMs*w!5DU#trj_>+AVy9xecn7;_{35MBF6 z*}~W&F-1*To4N57X>$1wv)d+EJR~JyjfHrH<;4D)HyXph{|#0D12*rrs)wwH;YjI*2cl3nB%na=5b<^NuBWWzXtX$=E-!nIl;KUP{9Bp5LH3bla1i4cYSk zTqQqR(_mliCt#i0Fy0zc)MK~5I^Q=M?`Qna5%A2J-IVpo7#b+ADV^H3IhnDT&nKUJ1GPzClRzgz%~^9#pW{m>;NQ;f_^xQN6!+ zGqMw({WXGp8CxB;z1z)X2O%jGf~z|BDDEh6izo~fOH!tgyb*Ohn=^uSpOi!#Yrz!3 z%rbDW5Rfojq!cPOZxf3cQ}Y9~lf7(J+S*C`{bMzDyTl5vmy(Fg+hr{35$$qTJ6(NtkZ)8N{dC(OG;d8F8TThv-Cq$ri>IiO%!PC)jNhEPg5_ zVU0z4^UPDv>P}Egd`hF`JaY!SNuu#-nnVv>i)5M@F?>L-e)n(f`x-ic?kIfvx za2?@*`nAK^nv<`B+1I?{Cl5K-Y^#^NAK&~A zNWrMi65qLP@jl|UoGr4Y`8O71_5#mtzN$}D7u`KI;22hfe0B+bOWB+d{LYk;NFBcm z4Sr9-Z8hX%5bZ5&1=*r~K@-{$3H5pqECMRW3|oE!$L!{7H8(q&r|UqQ*gO(DxKc{O z+786Yj17M2ggyCcJzIn$7vUJEm&u&rJe)CtV@3N_SscsG-X)r7A~m+|Y)zyuD7FyF z95WNiBLR0yHLO05L-(J;Bw%ZSzeY+-G&IxSQ3_Cg$%%a3|^207Tkh{gTd?+3gbje?dwju75!YVWJQmsstnq7Z*zf@uQGSdK-mIk6Z(g zv_tT|Fzy)t^zH=3O2kfa$I0xrh)JEGN&M}`9ZT6FCihmN&W>@%ne3K{ax+pArl&ZF z&)-1Yv575=EfSsMjw{)16D%&1lCZ`?oKzooEvyd@70Y{LGxVn4ap=09ErTrt<1=cF z8hP+lXR zp|;rRGaBc;ip>&1t05&}`pRtxc(?u58F21wOIekP^6#^9*6%N6NAkG<-GuTpmfs+t zA7YDc3uq=Y3XF#rak+!YcyOu^87F=318jZ>nh#1zq>kod*zOlavtMn8X$Pj=Cy3?u z*n-<)xhRGu+`izIKi~b%-nDk7LYJpq!f=fPt!Zh-&ZV4X@Uji`irV)J)HA}qV>cR zFJre$tYC?hL|p#@2#poslutmyaB-Z}oc;OxgT0-iFl~Ohr{{&E;eS#UPy`DX+A&5Zi|>$R+H#qpgnc12WR7T$y{f^+m$ax6xpDU z(YfEk7S&R%jcHKZO>v|un`FZYhb>0Xp>>fA^e%NR?E; ztsb%2f6KQJq%X6@vju5(CfMPowtA>43Ao)OVP*XbY$gaypOunG9i|DF=1bY4v$;%4 zHAS8v9KT?TVGGB^%#h;4EonYTPx%?UVFJNVq$J`H2x1Bomf*-GAYr(8p;Qn*EctqG z!;(3D^;#LqTf>BRQ+^-RO@d@q4oZW?oOR(dVKB06d3R!8C1|H$WC^=1VpwNr61@yY zU~^PnZ;OK3Oe&)p3r5Ie?7Ua9MNRI!M6D2vz(yv`ksEMCdhliJ)`_CmOG%i%(}!4f zI~bX^-W$roUcnZ&-AH(jn3UKe* zJ8X?*mO9F-;~;&5Lnst6m{&<9GMA$?q$K`E4CYhG1~Yl*&dVyLl4vki|3%<&?lsc7d!_Ei0XO{;O0PVdAuULew$51$N*sH8@ zeth80mhsJx54nutBcXA&Ju6Mt`*CjTrod73Qv|s z@nwIFD9?3Migz2!Gx<;+RpJrlaYK1r&)ww)!qARU-* zE5(sjlH^wqm;tt6w!qAUKIC)edWJKC&JH#Q1fA=oBvMCbO5fm~EMNo0QOl$GTr7!4 zo+2i(WGaLq$PWx*njZqkP3*=A90#N%tlR)bZ{dBvY1 z9`~{3vB#qpmJ54&-K$K9Gl4-+kO`bRx)us(_fP5MSgRdEOK&E-l|-)-JQ&3}O{ zyshTvW*}ZsJi4mriVLUZR51tSkznvyHX8(kPfJOdKJiI}vD-PADI3exssaey^~%lJ z%~6QRQv~K`Y;kOXnF@DuRiUhgs;n{Oma+-!b3b7>PT+W4N+Lx#{Orpa+xCxo&|9i7 zuYiN}UZnyT9xfTl?srDArTmZw+uO3$SZ>Dh8^mt<3KcdN;+dPdJ9nZV<+GAsi`Y$&$(g6y$`*b!e$1E`A6!!SZ}|5G2Mb5=pJVvX zVJHwk|*ds>)(Sn8^=W_5rsc~a?F@!0n?bqUzDie@A zy1DvbspP6%Uv;=0Nga)bOS(tsG-0Y#IcB~;NlGGa#~f|>5Shgp9AE?_3>TPS7LYJp z;Ch09gyCY5bb{?K5mkD-L^LfpgBD)t7U_hAZ-z@l1-6|e`)eg&r=_7??6!z|9@Hdy z7_m&`op-&BEuy75JDxkah21hy?oCn>rk@-@e7YTqoS1MMq5m6t_WRka+v**PA$zs@ zD0R~Jv700czeh^KTH)gPP{(VIzQ*RAq4DHvj=s!pl4$%3nnVx%$09gT0&AK163i)` zA*g_)HdR$ssg3Y<#E5Hd*nEIC{|mM{Y!PtOQm1Cw4Ov!oGYreVV$ETnpRt)C*!)CF z!t{p65#H{(A3yY-3Fk+`p;RHM3vxz*Yw-?ZHEU&JXgw7cMd6O&d~L-x_=l`=O>BM` zX)Oq&7izj)3!{-uPNZaOQl~|(&c(SkN~dpGu2BCvT`HOhf~QJJ^uVIv3`<9gN`40| z>hffZIxSdchuxdS>WZ+(CL7p1Tysx+H__gZt(B7Kf%(C?n~vs}{0^Gm4QPH3OdT_3>5T`~4F20{?md0y+G07k8`9cpDYlX= z?eb#VJf@Ks5)JL8Qr#T_jtW~RjTy7K(69gg5cnz}yJ;BO;siq*Kpp5sV66k{-S$f5 zGv-y3l1S0Ka7lmRc`F>Xn><@lV`b=roM1z6WD%;<%V=-!WeaONGR@bU%QdS_ULjzW z1UmoBW`qPf@0OBC9k|T-a6coi;%gg}7-*AK4eXMer z9vqRX#yvfGA<}dZ!v0CB#bi&9?55%Am%`<)fkt5sLTMD^*deV5Oy+7uP?pA1uU7I=~gK5~E3jf*RX%q$J|D z$I*}PZ%rN_lQ#kqhKrQ)lZuwHOC&gGm7aGA*P>YOPGwQlC%@1pJum3F#V(^(Ze+RNrxYK`LRb{5m8?w_z@$B zV{EZ3RoFNolOJ3~$KAv128kYjBqd?`#t#sR?xnG-1G7yjn}mtPa78RBTO~6$Q+n1pfFv}ZjiuKl9EUrrn6uj z>uBRvKnnZRk$1oJ@S}G;e&9`yef-wLkG>r`*U@|LI`Y<+$9k6SR|we~*y3{_yO2V5 z2fIN6*=waFQitq(So?YYkykzN_<`GA;83Ivf9&m#A9yXI`Pj$b{McQMqaS?vV-MUB zMNmov0sR@1DJl-6YZYEt*6R-O#vI zYaH16?Q9>78hg|4XxR6&g|pS?$!h<%o45g--6m1!JyH_JgzrX7y6t*qtzP4-FY7Xc z&Gnh1FtmCJG5H!>I9p6+WCqK+!eFyMq`};m*$fbXz91!$IzTgFdc3h*-tE8*=~$<> zAMRC-;?v?Cgy+|6(QM(F4ktCsyP;C2s*vFop^_Oe=Bw8182<&keS*%+&PgdWZKxBph)dCDiGVVT-8cbdx|BrfpiDn+O$bU~E?0-^ z*<+|AzJah@%ofYGyG#pV$p%ajT-LB#C%9Z7B@xF(FsU^2QVbykBn%fR1>1~093yO1 z+S)?bqHEh9bF`21Lv>|7z zn2^sI>7%b?b3o8}xs*g49YF^(eH60|0uqLc`O=Zu&mDcDw>vVX1UoYDlD??f6(-IO z3J83jjZdGcwzeZ*-Jwb| zcsmC3xte|t?yryXA5b35*0MYBp?>ko_=|9h%?J>ysNL7d$Bw$XXMKmR_@Fll?-;6- zM|NbPwIN*%tA_7cOPAe&+mVYqa>HJ3_h>l}C@9sO8E2;AWvgX%0Ch)ppj@x*s19cV z6#XtyI;hdp3fz&+RiNIAj}X4SG)_46^a0z_? zP`Qb6 zpWCfIsG#c3h`)A&R{_25+M(1I7WvamE{?zI=e>Ytwp7dCfaTVd8WzOg#G6BQY}Lk< zEOB*jc60}J02JV~IFZpxSt+d2Y=(2=FG2O9=I3+b&%>iRz=hYCm@nmub%iO^!BRcA z@H22Ag`cZGzf^yIt^WL0{rSE6^GEgP&+5;U>d$fK!k?$9KPRd`C#yf>)Sn6J&m{F{ ziuyB6{h6-*%v66)g+E?n>_~Rspf_3@K6vGm@V~~%Ik;X$l{DYnIAK?@JaF)~#!18Z z!9lNd@Shr!d`A5rZflG!)kg-P*xlg4tH7_;@-+~kTq^E|uf|uhdyP}_UE~aKeEN`B zW5Y_g?ypi^c>`4b@=CjIC_@3m_2pcB1iq=R%)$J1Wlf!A%V&$mjRk6iP3PXe6_qM@ zKXuk@(+7{kSmcMGj{1OLYq=SN(RDwiG5BAf3KviZ=r_F`gJ%R|aP#(?$fUV2Hyntc z1xCZuaPmN`Wb8B$U(9Zc48&_RiIxL#_t$SuI(Fy)Y>AAhuMzx+M!JJ7mZb_??T5UM z-5}B9bEPCqWO@xk(d~Tc#KVt%{Mf;J6L;iA9-;DYVhh4ie!_mp1MCKg@?R_^k-GA& zH{nGNo?3r}kln);p99%BG(mbdyFmikT~ZRML$(mM?mc$s3 zE12GP8FgHpUPgevz!sJR(76<#&$1gN0DW3YB6WbK!1_YVk+?ygA_PBUi^G8+Vc+CW z*bNd09+#3x9|BlJc>Km!9C_s}Nu6R!{3${({k)VSBR#Aq?1P-jZjeAQNlGGh27f79~pAWvXS94Lne!`4xkU4T7a|jED zSO+6pik8+bED0y02Q^CZy19jA>IMIVr#{Fzu2fn9OZAYbii9^oA%r(e!A`ENol`|jZ|WDGX0gP`&QdbyE(J=P2;5PDv=vC zhDPus`kGHA8bo7GP@7AoDVL0lWJfRFR;hbS~?vhkncUPdRvp`2hPH|#1IU8M;ZDn=x168TrDSjIyBMM}bWuSXEi?&S>Z zP3bq-bi5|_?7)<80cFWqP=O_T7O|umXi3qR5}nUqq*_Y0A7ncX`|01nN$V_Eudvst&*d&{!)-(WXM6#i8y32TL?cd+IUY~C3f zPd-@lTXvH~(c2*QyB=X0v%Az|54AFkRskO`_{3G#A4H8r-c~ zQ=5%o(;DP<{44BX?<{P>a`fi6$ne^*`vh@(CR=dZezZtkp&GF5hWFgV##&$-PmIv1 z+%wqh5GemnN+NYAm%&mSCY6FsUFv>_ENq0{e}m_E`@9^~EH9TFwP!7gDC_JK0tNlB!R)C#C=-rAiOVF#~U zsh9MHONH`4^ejh%`!QnrOSUp>Ft)qA`Y}5k!5mWI0F)p zFkGZG$!DAk%v_k(-~(lDAWa^ttS|h<#lnC1H^5my+<2 zeSrvBajI%*kn4tht&cr?FI37sa`&x=KmL{@_rF0^tHc_kwC-WS3n9LhEpRf#O7Kn) z-^^}{KzySn(ZeKGaGoJDT?&50f&1NTu`E^C>X5@b*$omszFkVfbd|Rt6y45uM=Lu= z)E<3=%KtoD5RUQ_4mtcgyFsG-Pf1BwD_`tTm_?uek1YvD`w8b2{+Hb#(f(taL=Rnv z^%;ZLBIUOdUO8VLC1_?~Altk(Xw-KUi z+2YzlG&ZwqwC?6c>ohmLjom1L>Df{e>B9uM={QV?St3lG-bR>S#1@wa6F@~_+Q)8` zz*Lu#NFAm{kX8nmumkzMDTFNvDVq-vthcd+wg(IPlbZUq_BEB`)A^ruazLGa(`i$%2 z1t((#!dR*`{Iyw9PHxB6&K3vPf8w69^v=9B-I*3BsXL{2X0zKO{&uD&(Zjh}kjaTmy@DUnr>tR%mF!c9 z3R|UjE?_rE^mwk6gy|=%5Q@KYdgp~~K{(1!NbfwK-5^o^bEG7!mEWuM&P&;naI~M0 z-uVZ1gGBp(uSxXKg;*zQB0k3YD|ABdWGjY)L_&J!?d%2#5^s@`F#X_72xhmPP*ZxR zyLWp1J6mK9ObO|oPq7;$F#W5PMCvf9(&AzA?eNFm096r=yz$;hsMBci4)&V=WsAmv zBjF~z$Jh-LIF3k3qz=byNX%ebpk46UX#E<3GUcL_LQ)-1CDd=3$Zn8;GEPb&eNa@= zMz8a>2c_j}2+BEZ0XaP-p`y##>;?%au9QR^6v2GbOi3}`5RfojV5lu1VYtAFlYoTb z;uNXl@h8UPdV3Yuf)*3wglirPH-_`!eQcXawsR$Hr}=Q5-4-$NiYC#+U^bZgMq<_A zM|2ghXNzU2!dCO)gX{*09$zCRVY;{SQ zKPV+(t^8iihyRN$2}k=0^WpzsH%PSq|1^mnx)AG`ZN%8Ezrubn<{8}yB8eYwwcX** zPaTOrNJ*G}@LL44+fFF8`S9XYVM>?}pU!TObeM%w5~;(~Vy+wMM=jpLUUNBHG>-pD zm=AAYH%Q=EDHR3O{$sX#a5q1z1TX-pXj&SMBHfgQnSRI8Huf}O@P}cL1(&(4qb80OSNKFT!*A2 zQZzX%2B8k~#kY6g@zCK9-@uSae60PSX-P)v8o01(< z;ZcakR2!?{$Dd5MI0!H?K^m$Ai4?z}{Wt=;Wg|A2@ z=D?JYj`<+FK?2kJr6f{^sYR+K(vMoagT3ZI*rIXZNJz*0KX!uzj&Dmzqz^~9J)vdf z*_fI94#F|!l9YncRvQ!kEY+n+Rs2Cpq9<_R#)S58B)o%gEKU`Ugjwn7>;_5iSSTeC zheI%>G_z8SF$5$G7Z_d(NEj|~vLqm3xOke>y8XHF_j@%r_7lQ0HtbXPsj519`l{Tj zs<9EtzZBjQ&VBRRR^ln)!rRpgj2k^hr6!l01@^hpS>O}(M}WEU0og=-@rKPPIOeD?;VVtAL0?R?hWn*@Nw(?x*yJoBZOqBwaWE~Hs}$e{ z7b^Q>gQ*mI51R`zyxc7%VO;86nnV{5%=@lyO5f;cF`v^nQme|M5nLPODGu@9L1y9? zk4)ORGrYwpZb%*OH~KHBhLSA@8BD<$faPS3!c-MgI8lffjMF8pZ%TzSZsKcF5~*5F z9Qae3fL~E7FCll$Ob+crKaLn#FqBMuCO3@t`&qIHjMLT)h*vq1){^Q0uwG!7ltHeWLn$<{PK zz%Dz?7Qz;e_V>?t>~@L%2c#t8`sX+-p9?b!#Q0P|!f>%uI(GT9z*qKa7KnpH=JN7h z6#><&p0f>RgXPNFa<($)?9JDPlM60>Eu4JZ#l|ez+?2?jCLeEQw?$0s&6-3H7c<~W z8rb_&gz*>V*b#T!h(5yJ`w6y)mg>}3(ll}6YsLiokFr}P%KfO6gy}gCBR<_;pO}x8 zk(-UXMJ>@r`&SXA!)!rqQCbkx9@pJ)Ky^bmUvfwH>scEe^?tFt)j{{HXZ5%jl8(gJRIr8!MJbvJ9NB;3$kH0>8a=q|hVbpgU z8=++5QUZ30`fg#jMGWdDO`?ZU-(eOpz< z^|j%K+Mt8+=cIy}jNNCXBvQ07oHkE~Vjt_4EprY(^3G##zwy{@w;nz8!3eyK#5d5? z{=yc^7Ng@cISRxd+0Bv8{yQm&6oK$N`!v`jbF=}Qy6=AM&|OFGcrf1G6P_aqi~7{0 zfh1tV4xcMSt;Aey2h2f=yDIt8V7m^V{Bp!1f)4+5-EP;e0!J~@=U>sbscJ#m_#~!&oibK=y2*3ku5jfpDVWa8t(1 z70zQfzv<`)VxD%K`5o2%4YmjzwI}TA|0=sdqV_LINyOF8>Fz!kCfk8iWC01o#Q|x6 z=w~}_>TR}T_7<-)RIZFv z?pD&RPj}*qZIMQ(J~+S$q688M2{j3jc`a?RsZB9|o9F`jnA;}!h;|BG556`jvRtc8o+8WDrYPjF zxPsMT^gLW_ik!DHT_CA<=Rw9GSPKlZWQjMLDGYi$e6Sd_0Asszd5G)ovhy~KbwSI; z91W{LpEiSPRe|$cQryCrXd$jXMGIpvbjM^1V~~?AR5YPin@U9!98(l^*M!#!P3TM~ z3M6^>(D?RT210z{gX2~zod*|2rXPOEWO6$o46w7`N?4tVVzS4|!UPyph(pH4dNH8Q zu3Gitb)H^edr1%c?S)HLxV`WTw>Q?=k4qJ7Z;aZjsK-0CiB;6&Hd7RJSC5TbAgl*J z`vGy4c78E-ChJ10Etj=nOehp>$mY5%h~%|1i?6oxxj4Sjx)8?GV0h_ zeV)~3XRYdUF+^C{F^?ZKxPV$@Z5Tg@8?js$e;g%-jppBBbn$p0AFGSsPiT{^DALDF zQPf?Lj#!NWVsuPsM;iXh^?|WRV@yybhIx;L`y=fp)+*d1Te?WPxpcOOG=kJT8kJuE zeQh!nVSUFGMcsvUp=%Q+dlK2KohiiO3{epRz%57`7F{$g!X)@ zcf~kvMUS1_M!guue~^5yol3*$0IRdq1r}mR^dr8_!acEW!nInG9=$L^OL}91UZr0j zuT6~7ua7lFQFrkz5XN50?ksh8%wwT~H^= zRoXNtGFonmA}k{Vr**hGh$_6}fCNpUZ?g^BMZ(S!nOpW>&32JG}*uk3yT!aE^iN6x$>w z+yu2LmM!%rVB6Sjks`^vw24zBd50+q+4Xj_GK{uwW`+>i#y&f{VN=jN4*$r)+N<4| zT7@;!6BZc5+1@^NFn(UUZbcT)n4+koEZnW(W7mS!kg-@47Q{1SM1!?H-I-5-Dcl+q z&PXq_uzt>J6OI#W+PXE9?o8);`@$Q@jqdY6Wg-~lpegU7w~t-oX#05l!a$AAKRyjt zHT-NEB>a}nyj82doz#M6S_YS1plvY-*hYrOfCI>IgvcRP3x8tD25EKw&=f@-wUE8F zhqc3DD)6_t<30o$eX%nZ2`)pGbbriQdH=NLsPryO21iL>$ z@)p|6{&SC^aH3iYuvFvJYVQ3LU_S6`iWvF*?<|6aT``~T1ZPYt_-*Ufl`A(bw7N>! zBs$w*Q>WM;z*f;K>L;%r02*d1S#S%nV1bctgw^#trX*ax90UYl6T}wE>_~=tQ z?bF&sDBS-qQxvkhe1ru!+N-^V%eLpzDXRp2c3jQlssd(_7%HubPj8x-OGK$|Q@xZgEJQFq}kT9LQWJMLbRC3n-oRw(ws z^F+SeE?OyjdpaCip;weeJbqQZO#E0&l3F6J`;z4NmK3Q^8(eQwf&Kz1j?^RW2veKbtcG zQY18BibD3Mce0R2&y04RF|qb->Arv&4eWqh0aGOi&`)<+RpcAE0xlv9`xY&Y1zM_fmp!H&mnQ48 zrYP#)UDj`)2wq%-y)tQuKZ?H;OK+7&8% zyulQO>^#@9C`NBl!;?nv6N~}22Y+JbKc(Fe9p*>e3i4s?3Kix*Zi=F2<{L-AHV@wL z%)Y&M?0@3ngCBe-I3WjrV(x!ayCpi@kGQnqYuXhm-2XD67{ei?=I<;9l)dIsEQvp9 zGe$=e5%)O!Ub{j?62CP?A^X9vSeTva zVNq<=ZdmQ2h`4;|O6}?tQCwk)A}k7nwTxU2@w8@uLQ+vLi*E3VNA^AUzWw)o9KI46 z?2yfYpI8BQYqPUf1;BgWB0gYyt9FHo3fydpBFuaP`AHSv#gPFDNk!6hN_JPo%Z6JK zS6`hO+pFSZ8`i#OpRnL#4MjViN+*lf{(GLYGh%xb?=~dg$f^EF-0M}$WK`m zqiu2q7q@|>K=3DKe)C16V>l}MOU#d0_fFNWP+@+9DT*-j4Td;5N^(~+Kq0C4`xeR{!3C*TR>A>?80 zmgsQ*9Ce}me(ees?ms{%#&8HZenj6<(5R~6edhkl+RV`5{<$jmKciit!u?O0qL8}3 zmjyW51J8W$6?vY$eJ|Vt{=LC>2e-*8Ro-E7{8GDVI^sA_6~~Zvg^D=#nWCtpINVsa zc?f!za(D$)5ssig1?& zgmcusM8G8Kn4`6-QBw=G1cDQiMOB-cOq(GiPo|in2y2s0>s_6e_B;>p1}G#I^|EaO z-mTE=>i3DUvaZ)=XRVrmj<54o6ma`MT_2UibBfoErep!!#{$qmtYqjy6vgK z_g{D5$rp$AJ~_Z$_)+bK)X4X0UYUoqD^!^Opec%)nLk#`lmFIki4ON8JRD!pu2A9r z=Lp3ZE>CKXD+nli&84^>{92naI+BR+ksQ>nP?5xbQxviv{DOr!+DnyVaYcFa`wr~g z3r6w&_uVvj(~YoNfndM=w?29Bz8eEpYGtICSwOQc9v%0wGC|Nl72!vju3e!bplPNk z>MkH$C+@%h`oTTV`$I&6a;fqTi{mWqrs?#T2*=79+7&9|SZs=-?&3HeBM|6YqWf=s zVDO=j4&JmEBV&CF%Aja!c%Q}edhI6bh$+GYvqif?MNFGbQPf{d@P)X+_dIss$tQ;P zT*pyW@a@t4&)#tGzNh!U|Ea;}9|?(R`6q1U%8RB~$9oq8*uc(81(LCh;i5v1^ZFcIYK*U=5aqS8f6?nuHMVR>p@^e?Q zUmk81TXk_|Y~Rli`<+7%J-_e8TLNNrPV!c>-`8eLv@o%CBdun?qg|IG$8QpfswTZN z|Dti@7QSQPtplyjci>`4@GE{7z?B2e&jH}mUvPGi!4QLk41PtR(g4T%;0rbb4z;Nf z{>-QC!oZaSt!T6~7BuNNlId;LxHVkuTGa z!|k|ndBt9>g%ff2lT~qf13FQ-RMaS-TQeN_EvEZ2cHFHtosGlQfAOw##-?%?i}wZG zk;wN#tMYhUjSI!;Fre?WWxOk&>jeg;(s(&M2!`Jye60eHfIx>$ZI36C`COq8=euN> zuP2GO1jMgvV8yvokv=(sN0<54ap({`={=7NzAGI=y5_x- zvimZ*e*6X)H@*u#lfZr9ctMWu9AiA+my9#xfjp|rdyT#Zg9r1oDL4$-AEJGhz?Lkf zpojJ)sjw%1e;w55xQ}*v)#Gn(t`o!#?SX6m;aU_(;di^zoX#dQCG6fA9wnTA!yx61 zTL;MmOeSH{fXNh0reV^I$qYW{n`6_Ms0LEGJRfU18K0enFl4m6UsT$vj{E& zEh=^D?7>A_1lZ`2EP@X0x)h7x5<*ecBB&l0Yq~wq3^#b^b8rm^bt*p-E5V;wgSTrp zu|{@QrsLJtk`k9Q^5c;O?V1(l_L-uPeW#b@GunQ;8F1ki+{SWM32sL#!nhldL-$sZ|m)@tQ0@HO$C6$B!F74*zkaQ0~?yLJ`V-c(9?R-Q?Kajbt0PX(VX8FAd7Ai zYJ?l=i#@r}omt*fe*vBOy;fD3PxoTcZIs9oxc`obaYZcq^p8wAAj3VrZ;C?p>F=;S zM{l6jQ>O*%DI6%QPE)q>&F&$6YT&1l3Uw@D(lJ0>i9{=uOIYm+#Rcl2PzyYTa<99u zrcrZESs*oPmMMy`M(HrZ6@)atdGs?tA*mR_fH0V=T*W?qb$Ta!<*2t8CaYEXJYG$8 z8LV8aEp!K!I)K*jK95M3k6KqqmSx{J2h-xr?U&ox97Iegz~ zDwk-T<)+s|1y{AWUjribi+MbNZ@MEZW9b5XP^<`7P!lWh%Mr{<{LpuauD?ZAsz&3@ zrVNmZd6Ov$Ic#3fDl_Wlz$^%ua6elWslm$6tidlaIbrkQ+^tdSX`Qlo@#0h9_T((; za;FW~0)j5X=fo4N#*0JN#QBj(Ub*I;SFU;Fm22KT45CO4{=6yoqcxbDUJng^bx?z& z)Dy01MkdBOZ5UbM);#z|d4d&KRooX$+btFMIa3s4ptul7GMwTnKeOWgK3Z`v+6vc& z!gYIa?R5d~y38lC-Ei}F2|jBK`bzq{2z+kfleRkSYym!B-b$M;;8|TrxAf(^$uk<# zM3+hm?KsDZ>I8zR&8cZJyd&LP_^-HR%SNdD@n|bA+u4hiOcSX1mGpu83HE5 zA2IkC0`XYY^xvAYL2CN1Oi_e2U59&$ea#k(0SZaQ2==w9oAhYU^PKSefvgR%5s(S! zW@Y$Sxf?FoP$#c+<(L++*##q`Z}W#g7^UjYB5g`ssY%^gXo{llQk%BkPUN#7q`V!J zk^cvlNV|3;YF!&NwPcVA5CBl&GEaJ2Hfh(Z@PC6TiZK5TI-Xn`^Uj3<3Q0wqsoThn zNx5)rH>OU8trI)*=_jpKJ8|?K@596McQjY;e0}D$4*EXh>P=@Z4KmmN19SF&w3}BeXPev)8g}&o6$)Fws9mqZ z)|X9D$YJR-ESb?;dj|NweDxXUMDm}0VE+HFb|ZB8-`NFJDE$A8cD)M!e`$)M?);yz z7L98=3m?Ex`#|_dmczWZ(J|YUA-ggYcE4R}V$pqJwszf$EM}OZ7)x2G{lO;-U!OQn zyD_!)3BN3&`^DMXbt|%1YKkH(3j>Qw8f`r37@&|;yx+8gODfp3I3y~rI}|D)rm1tR zOh?yqehP2Pz}|K~w$k-(cjVJWup!sk`K+BOM0|NM`NTrliZo>kek*SZtc`v_Bm}eX2$J zgnr{m=W*>u*2qvWYa!6bM~gE5KcZc=GR}R#6onjN-p3*uZTqWfd7_X`!u}{&_JNL3 z3H-uB__B60Y866rODEC+{%oW}5y6+VD^^7Cc~ca17r~5WsqOg1msFG#!auSgey`n_ zS_Lt)CE-$2O%}h^u3M4CuS`+YT^7ec>_A_xkcO!6bg`d4YqdVzn}&;0!LbpFNF3o^ zmel->qhl;96G7!z2zv9;N?%~g_-Iu+(Hw136v53jMNxObO@k;!2-!#fQ*apb|G*+S zU%L^tcAh4TLljgf{69y#UWNZ>nxd#X|EILuwzVu%$OXACA2aW-)NVknyr0@qu&I%1z=q=4t(|r;vCs|R z>e#q>#YOS;8`rdp5SV3~*76#mx{2>>^A-$uX-hF${g4SGndNtA*QF@kZbDJj+dTT- z(8=v~vD6pr!tOKfzn{=%Xtvh+0`c{IvBQ?Rpjdf7292nEwVNpBy~7HyNOiRNQLX5O?rAb!-REBYlT8 zXjg8fcR(}H$DMv}gq*W!bnI1Z=}05wOzpZ9&1xnTV>m)KZ^rXUd7Dl^2AEh0{=}X3 z4DBXHcUpy=a8itX7J?FG*j%h#v%=idOi{=V)5`K0?O}7?WpHF3<6?aZ{@S24qF-UD zY|(C5tx}oSvI8i?FjKNe+!GOsa5ifbpa^H9DT=xa=kSYiJMg5~s-1nge9^i*SIS34 z2vvWLh19Rzz*>cLL`zR@2M7puvXR1AKTudLGHAOt6^f(^rYPzzspHqfCwk%Ry}ui= zsOSsdD^5Et*r#fEpJn%6?IzbMJBvOm3^e;Y7z?j}@qtOzfV@|m7)6A4o1&<@2p2Ce zr86W$JQ)tLuy_vy_c;)sC3kmMWxL_@Kv15#g;}_t(q=}j!i}|bx~(B^7KHL+Yq)R z%4}XsTF?cjr3GDzXkO7KKoQMPO;LnJW3U8}s|dC@4NyobrkXayT}9k8wyTKcylTL4 zB_ZPatoCA}Gh|H45TEC`)Xo>}oz}9o)~al(53b-T28JEyCU3QI>?NbK z+CYwswAwgIyDmio4<{63xY{^jMc#&Qv;p6f5E!59bth^&zumTaV8DkPivp~z)KY*) zgbTIV5j`R(tgp1RB#CMWy=JQ2sT!${396L=;sR}Y6!DyEib8hHvsl8Ty86eDYShSJ|$wUp1^lH)u1sRvo%rju&u;2h1F? zMB3FSIGvT3@?I1c!(3PC4sZYE{9^wA!U@gR=X97roG)1Mcp;+G@htQ zrNX)fjLCssS$5QnT+u4Y`tZ0m8*0^uMJ;gE8QddBf)8s1wgVOiumo@|3q{0_XcMN0 z_yeXW>Mr6Lc#6l8c6MOTAp9c>>dV@VsZ~%jTktf`a9019wCh%6@p)4eVObcM?9%FI z%g+FXq+-5lLtLxh9$Tyb%=R9*#L~NKE{_&JT*}3ptyjR!nw!1b8O5o6!Tr zn@7jYM;44^=1Dc)md|5~no1>9-ryJ4hq)Yh$4x<&YlX@^yLFHo%rOuodF zU(tcdF7Xr=JwCW);=HgJ;--HF7bZLWmdr%w{J3?V#UK+FU$W8g2V<(HT9qAOf8mscOGTe(i1I=q6 z9aCQ6b>%2Hha;&(SB_8eE)!)`;B0L=6gkWw6k{oeITv+oSZ{UoK=cqTtdt`KQ7~ljXGYL+tO3)&7iZT7cM}fYvm(cv`e+?SNOfel;5TkKr@_eg6r|zCIy#OfuESg zmufe$Ru)gk(@n!Lw_Uqtg}IwdQOLPr1IuUhmQ_54H+5`W5v}ckUswiLYd51-88o*P zbII!Zy+gZVMFd4t6k!n<*l5zs<6dTfLQ=7)K8i4pMn9N+z{OvT)`;j=ST#PV&E8s7 zV?K|7FykO))pg`iZ3+|}dB_w+SULs*mO8>Sp8*O+nM3)l>XD%YWERq|g<-bC7yGP#kk9cG)kj%ztQ8qe$?trYOP^H0Z9f$Mc%Q z0EMLD*QP5Ucj^xvt`zNSaS|fWavs(D8c|Z?@q#`}UZ}^npy2YiRJV`WDOTdhO=bDyzfk z9#Et&=Fx{&$QJxEo1n_<9oiHrGJBgTin_~e(n|QQWv~m9}|i(oB^k=&B7NvZ7YJG zmC$d@+6h~RF)}#}FzfLVvwpoc;Wdsd6<|G8 zgBCVgd=uA2Okr!at5;aR+7w02tT*0FYFM7hCAWnvJn@kEf0Z`%wer8QrITy-DgPwZ zh{$Raph#dFp%}wKe#UzE=p}qZ+=}9F_($gR9oo&TmCrL<;QlM5CKkc(sF8lRHYp0n zZ#6|Bb^c}++GvmTP3v*?jgm{?7Z%F1+Rdm{D9s?0tQ{$lhzZ~m+H@!q`Isq+x=W;) zgkfD$$|)a;4gSP3`LT9GYLy9W?csnFyNW6C4@*%~!w<9xQH1hcQxtU<$_)54IC|D1 zdrJ667R-c8>t(3UY)LUSk^LoN&iIchUuB@zKTT28EE?lkyJ-b{qa{)>fnQiEr_@a< z&2U3rDtZW;tWM)6YSW?gmg5OU)oHxy2OCVCl_#v~?dyT7Os@uSC63l^z&!qGWlO!C z@FC@(-C9clmdaXfZqz!6wY1nC)iI(PB8A}O6-_sS>cG$z>FHdpO`syK6{aX;4|<&` z3hBCGr8y+m4O=1xC?pkZff}HYycl8SYdo4XwnHFUXCipuqvAbfeZ5gz5Vh*-l$L^9 zzfUP6#*gc?DNq#h8bUF4~JSeqJ! z^Y1rBA=Uo@Qxvijvi$#_?1a-c+wR9QLQ{(W2Ud>nYcrx&dq07K5Wr zeyw7d(o%Hm4@ervOi@T}|2T_iw9SF(D}V>^;hvO*QQJXjgnna@yrSKdT17IW zCF#-vpR5L20&G*S!?ljqJnj@wHlA^g~uZGXBJQ6>+5B; z!Kdtqq8J@019}4TiLe+ZX_KPJXFQ=8!*QvBxgP8X;vsW*p?0%s?EsA~heMo=8k0`e zCPLwDizy1J`xc95w8x~zNR9WNvKZR5$*)xmQ(B@md|kvCv`(7}MGhC4q6o{uz?hQu z822;-6q1TM%}`CtQoXrsI^xq&fnQiF-mcBeTD77XKItXt2#kFZcKTbi=}`2d-xNjN zC2~wht}mS|EV5kRD*VOQCU@rHad7M$;a!&6L)uNPRcc4Wc}1i(=DJ)9?v=<)X+Vk* zp6>^>=~AS4zbT5kOK}#jd95nGIrV3j)fcrJRI99JyQ|<>q^GWNU4%3AWo=><0e!|4 zMg0Y|87}ZkB5 zT)kv@A=|;hFX{yr(%j4IWv0)Cg)Lkq4ph-$4GJU=8kAF17s4!UauhL5H$@Q^lYtE) z%@}rM7@&|;jNn!>4QYVLogG=azIc5)8xH&o|Hw+RQk$i<_GAp}VQMfs0jTlKgc0ho zOq&ozJzisqA}kmK*-G``GY1AJBo#j}jig5^;OpR@8r#z(5b|1p!^9`^0pp-?=KRt- zMe;Un@kFZ{wl4A%$?v01k-S;ERzrs4v zL7Nzb@6VZ{kmJ+SEV|M5$;?`5ccpn1Zbb=5`I!Z@PrE_23n=AL6eXYtXU)&GiBSaf z6H^p*7f>^wA&wGG@Fy0`)GJ2E096Kjxc!#zii#3SgqOHMn-E1P6HQUnT`1F5r|k@e zuogmFEB+r?Ad9sdQEN|W0)Hk@LGlPp9qS?-SEp%{p@^f^6h+PAFrK@cmzOdbyBOI? z0za`#+O=C!t4!d)15pyyNg^Cko3sg0q_TlfR5g^UhHxA6dUm@FTdb`77TrY@w3#A) zXRepD8(S;a=fKyIktX6g-;WgR5Rn1dd2M4cWd*ZR=HTv8;UWeH-_}mM=O}#7}4vkPr>5F3qqpouK{iP z6gj=q6onkRZZkz8SE;NmhqOw~96A*|U>p(^b+SbpE@Fc`aA;gSWL^E1cKd79)y9^d zh~+?pZ~E)nBq-|m6;l*a9qS~5>1}ih2f{{hF%TTsL%*>={-)iOS_Lwrh0oT&MM7j} z1%`?Um-Jt>DN*F|M^hAGxft{=IZW^(-2jE8Vqo~iqVe3{K-bv?y-gMIkQL(8H`HqZ z(g^!V@Kwctn= zn>Hy5vwKWY$brQ+MInbb7Wp9!Z!3t3QCAMQt^kf_N9ji37gmi2v^i0$YT!i%g=o!) z81CMqO^2cv?>0pt^@1g0AXKRrJm?yrkW}!rXMjRd!TSydC?pjnQ(q!d0Xs=OW4n_y zbA1lJUEE$wC%5%mZHesxqtE%9x0N)gttHV4kIjqRN*agFcYcFkSdw?lzM@^LqTW9x z6b7@o=_E5_)y_n3AAGiU1MD?eX9O5p3IE8W$)q=qj@6_vw=%QEW@=)+Kuzon=@^Mz zY>(F_MB(?pO+_ZV&_7sYqrKS?&CCPWd;MW!gmSTJV|Cz!Kb!4$L`V<;G? zPzoku%cD=55JfP(rYOc(FlP@Zn6q8M+@swXL%~3WQZNy_9(QUJq6p?)rYOc(Fy{;> zm~&jg?A30JpW?v3MRt0`BQB| z6v6z+6vY?|=DgtqbDk@h#w*9jT!spzU?L(YCutL+2xhz~iZK?<`NIk3d{;1wv>RjC zW1vDQn5k;y^FnPx6v3QqilXjly6kOi2+2lx0PfRn zj;U+{E`VlLHuq>#qR8e>Qxsz@n~)D6Bpcxb_@s7oOl1@B0!&wBvsarEMK;fyq8Mx0 zgxmlj*$6+tpmuXiWfO1&%ur?XiZ&&RY<_BrVytBo@&trrBU}N~-c&F9Icy6Ad;v36 z*)(cXqR3{FDT=X{O~@G#l8x{NEYWU`X}<}$17@kRS)@&gBAbP#D8^bgA%8$fHo_s$ zq1_x)*#tZSvsKw#qD_e+n>JGvV=bGIOCTg0;S=cBZjPyJ0#1QBs%*AvQ=-VGV2Wa_ zWfSrWgk&S!0{3e-$5b`}zrb8oHuq^$qR8eRQxsz?o2A401>jd+dwxc{Ifk;q8l}%> zo+_J9YEz=fX0IuVnq^}g;x}73ZQ4tnxD_7`42bxh1$02WO|=SWj_0^3FipYmfcdJ3 z2DNEXMDz-wFbKym=KRzu9QQqEPEU*1%PgMO63yYLNWVsHDij`1A`}KZHVt`c1{S+5 z4C{69CuZ~_?IzZ$($kUA)p#An?S)HQ8I|2UwC$<3| z(r#g`e4f;jP6b^5^Vdy?8Vw)RraPo^lwP8J~-wkHeWygqJg{jKzX+j{=Gh#1+x?~O*E(_Ep^9F5N6h*n1P#7%dj5+Uh zx{%f4d(NEBYqzdePNT^Z2MmA( z(HAhhQ=0;X$G4fHkb}%ErYPi4$C5szp)O5SRMm+??{J|Z&g*buE%rHWHt48Bzy?_m zwJ`s*cKwPnyu>{Ge{~f$q}@Ut4hJj?;BeHSwojV^g~vZPMIk%fPfStB4#$$NXNNmv z%YUR**x`wKS(`Y)1-9T9M6JK(YuB&n!W>f+QWr)T_6}JJBdxzK)NX=KpA2laFNj)s zU7%gRB878JQH-4wMp}7wYBxbg3W06)1yO6RxOV-D6y9ixA}j@iK~0W}Y|tB^kW}!R z%K(L>f)7R;ppaDj$n>l)QUPb(Cr^UY-qj3&I^44|x4oDzC5xqeB4e$}&=vfJK=iyb z1qfrq`!Q`*iPm;(W8{JNnNbJcAJ(o_(ed{aimGfKedBf3%3Knz`Gt#B;BG+tpi6+I z74>Ik@aMIgS|fuiv*8|erYHtC0}@5P(1Y>nBK@=4q$phf)L3(UuH-swc}6il@(t$w zLG1?D%KLdf-b=dt?2j^e_iNLm2;diEEr1090m!xnmh{zLVlgyzj*fMyj4_qNf?|-= z1tk$Biz(VfDYBSMDD;OQQ$uo&CyHvH?1*@QMG(_&ZLK|Ft`tFEBA*C-vIDN);D6Q8 z=u~Zz6ak!KibBrqCz_&=76z-qAz2s`4xI`f7!HYwpP3F%k{3Kb91;~T9y%3l8ypf9 z5AZl!ZLgeNV0TU)H+~%c6S>d+x@sHnKY;D{%KQi;%?kO&s=UKp`dV$BskKWlXeoFG zWXyIA$e8D*UN<4(_C$Gu(c86&Q9AQm2!;M=YV3_vEw;d%rvA))e@MHjwemd_zYys) zdr-S}h0*sLGTL<7iZsvytd4wxx&5+sdv&<&>2xdlD5K1T&uG`L@cWadDC8`)*A#^u znOW+GG$!76=u~hgKO`!6WHvy7ynxmCzlOVcuGN`;QI+BR=P+txFx4*rUOC_lG8kfT zkioAAR2sk%f`#G$)m3SPKl5q0()G%L*0xG(A)j2**I&%#lRfc5Ur#!_GhXb0Mf#Fd zE?HQT&K8P^41CwBd*H@_w#vfc--i3(>2t5*^;1T8y(f|Fwlg`zZC9Gp*<_}KA0ol~ zW`Q_oPICM>XC5XCAh9b`dJ{WSc3-h)VBLgDV=~c4i_FU04y4x-#%6+_PU_C&ItR*? zhMsgPWoO~9>23wygDK*&4$fxOkv6JY)NNR_Rht5xC+{7 z2h{5(^3XF8tL?12LM$4dxRl+STO#ITo0MV%DN_kd=;aaGPA}tCoQ1f1@i400$u-cF z=u1~oqot@pXJK*w4A-b(Nz zJf=}swqHIx+ZXuRZa%Ef9d1}3eQ#j%S{|r*@bgjN${6L8t26 zs5e+&c5Amc+AvgjTbb9gJ)MYkr;D*%o<8V-AHEz=7=EiZ0Sd!!Hbo&V!<$S|NXwAL zZqV~26+MSSMX9q?nOV#w<6s@cg$;m~Ru`!Kx~b012#$7+LD1m5fMAmIc?8p(8L;iJ zZnpC*=H@!TLon6(K7%BJM(1z@Gn~5+G&yfTFwMCN!9=GQ!Axg2f*H;^2*x|_L@?Dk z1;G@j!nq?5OmN*utxrY!;aKth$ue^d_vU4MXCg-#K+glOLaJD0u>a1b#0|b+u4{&Y;g7MCOBWQ4bgJ6=g3&CXP zVFWXsO$eqrTM>+Roy%0>LcjCkW;{has5ed=Wu|^Ir&>oLe~e z2hL4lzPt)^Q=RuBXmp-NFu`fY-!(|};A^HT&(P8Pv5XD2^A3&8^CG=6wBgEJ6}cN$r6^D)=t{1d@srys#Y zrw_p#=K=%`P6k1v^DP8Z9Sgw}=OhG^or#ELmh*ee&2;{cAO4A7`5A&4&Ljlmod-Gh zQ3O++?=qNyV7e1W(BQlu!DMF%f{D%)&K*QB!8s1W3}+pJMrSI5=}r^Y-r#%zbCaCE zBbe+w!MQi_D+>@bIPLsfk->=w#ykH(Fx7cCf<|X1f}@>92&OxG_~Bm8tw%7$xrD(| z1XG>o5lnVo!?}-e?i&bZIC%uqoxdU&?|c}+RA(HL+vI$bAO3|Oz6Zf%XB&cMC&#~C ziC~)Z7=o$JR4g~mIl#FeB4}`KV=#vwUWedl=c}AshM>ur$hj{g81Gz$pxL<)L4(tY zpwW3ff{D(loV$mAvk^>kVhF}NZ$>c1xsxAuAUKvj&kO?Z!Q9Cdb^x#Z3v=VhhFmwH zRGEP@Eo`LnQoMlY!zy}9P$<#!@pa>G7;wG^PI7dc-8kU<-Tiaj_?rftqrp+sDt3Ng zRs9-&e%*L@atAzFHvv$5g8m>B-*x{)6s4LLNVLdhawY<Nip)gF%)OLQPFgn!GUtiRWXN0rnO3N65`NJQT68!6 zI2mw1=l)5!f618!c;0*&A#0%LXNU~ed8x=?oo^NytnrYpWos?=fR(U<3H!apGU!gEbi`(emn z-E@cm(0xbzh;{wd`;qHf$YUZzyuy!dB7=1mLl*(*M~|2 zH7yRVgq6_==mtFzlan!N#pF~>7Gbg&lhZL-3W@Ff5oQ4JSZ^Qz4(!eF%OEC0m>k69 zSCGI8(0$|Ft?=l4OkRb_g^<`}+hg6&rs2`^kk}5I^!Vsa4m{e5Nhc;LNNndN_s1#Q z;L$WlY_i(%{ZD4$(Wf!_EG92QVw2g9KVEqiJc?tIz$6KY?R04CaWN^ofYo8ufG8vU4h9PF?kavTOqN@G>00t zx-V|3z%QFI>43y0TOEG>1y`ML--_P}FC;K|43iIH@^4JW-37@6OeR5MlOc{R-SYu> z^dcrdz~o1m`~;JqVe$$l`!Ly$$pK7$iOJ-LAZf&8Dke>sOvhv^ zCTC%?5tBCYNDyIVNwwWIHB1F}WI(w_x%%Os>J?T1>9TdR)?VtgRHU9fzcm%^J zGzJrxtf4WOOu=LtCe4`4z+@ICb1<2Q2@Ip-oWn6W5|g7bITjNOlM^sG5tEZKfpHf` zIZPH|vKSJZtXrfaxOL@3Y(bFI+%8pS(SBFFn2YD_&Qdy)qAL<`M7I_Pd1 zUqg>@v<*GNu{ZPxN8->U9G63naFh-`!ZADa2uJYHBOJf+5sv3HWbdZYTs+!M!@9`1 zFW?{_dW1uM=n)R>_-G4a#$jzY4fLT$INIYQe1WEb-8A-x9^p(7dW7>r=n+m1-Xokb zcGFZ5dW7=@KDq&GypP_(*(3A_=aSGPoLNGTa0B z!ucfh2xphjBb;kOk8tJ*J;He?^av*-e1wzJZkm;34yPxX!+A>PaKe%~oT)HJO~L7F zH_co4h;ulB$sEo=;`QA$70Dbb`B6Dbp$Q;@vGKa>A%%PPcb7-!}9NH~1hX#zyp(P`8Xwt|W+BPzWMvly( zwIg$A_Q)LCKQf1gkj$Y)By(sQ$sF29GKa>J%%RmJb7(%v9NJMbhX$3*p=Bj=Xky76 z+FCM)MwiT?wS_sfzIKz@g*mj0+(&4Hg&v_v7J7sRTIdm)YoSMIyoDa2DTj}^ezfUA zFQA1NdW7~~=n-0fp+{&7;v>e4Mxo51br^abZN<Zc^(2kU7(4Y*xfaYcB5gMDa z44RnYh23N-${gB^GKa>a%%K%2b7)S=9NLvKhX$t1p`|HvXmZLNnw*$J2kUMMo02(< zpOQJWMr95oV`L6PWMmFwWn>P+JiJ_~G94qVz;GqUKw;qafy!(VQ00H>QdF6i%Jn87 zwkc6eke7FSl0Z{Fmn+5#{k@&J%z!g%5`-2sv~%u`0XL8tzt_=LX)ZwE2!xg`>&$Jp zAu34ZmqQ5I4#-bVL!4I;{%A_s$qWSlQy^Gdr4b_8vWZ?OLV-1Hm6_?nX50TxxiU4L z>;c;w!sHJjLJ_ z4Bp3J76V+40*dx41UTW%U~yivlyJl;A#eEFu+Z6z&W3D|76h5ppU@?3^EM9#lT{45(C^M2Q0tm z-2XB76N8^In8e^g1|MbcT?R84#2LJw!4d{j7#w799D{WXrZT`ya;W_aoclY2Cm6hm z!2$;D42ld+Wbhvb?`ANQ!6F8G80=-Rp1~yymNIyr!D|?Nguyo$x!G{@)V{$*q zxxX-Y4})zCaty9y@E8N!B!^}m;M@-x+{R!IgXdXrPYd_IbzW>xu{JR&y@qMF6Ad}>M!=>vev3Bm|97?Iluy@^yLZ=MgJ;m)2dC@ z((}$8s5DZ@eC+f90n<0HUhygm5_o6nQtzcRf-i{}efQMB9Ef)9jfEagLc4W9GPH5C zok-ys2ehN$b&++}0lR&#U6xN5eXohEc+I8&2~fu#)(bpO47q=CZY}}Xjho=`X4_ma z!oX~7?9HW0ctS$hp+Fs+h(O!RePgBIGKD9W$kja7Db(BDr|dLN~iQu;YcKSb#>knSSK zbJ@9;o;*Y;8dkf=t}2rcx=dD8nIaF%6nI#6-b!z7r*sXaKY(->#T@P;&vBWIsa+Is zxQpTqcTu=unYJ{`Fowrds2F;hze@SVX(%F#iqHw}p z6iv8`f(gqMOIW5*!ZJk?mMM_1?4XHMrZB=XMG@|DjwB2pqv!Wi`f*DCP0!y!f1gR| zLQ4Oa(gLMFru1=2kEit4knWkG zCOfF?>?dpvr45w+l+rAvJ1ISj($grtn$j~UMdPPTwojSj1IrX1Sf=Q}G6e^gDK@Z7 zp@C(J3@lS%V430q%VhDCDJrn+{E2X)xdRkZ`XHqrrS!X$&Y(07=`IQeEK@9CnL+`} z&O!S1I7-)1I+ap1aLQ!glqm+VOd)_}=S}qM0!rH{EmC?SrT?My-IStLQ>MtjG6nvX zoxSt~Et)b#{gs`i^!M|WzJ^jXX3EYtD9uy)S4z>4DO0dtnVec>=P&dGjhHe8`jsip zuk2h&PtbrVQ;=Vo%$KtBLwa%>rE@4n)1^$|ePw4E{f%}@nH+#+3hgUXWM7#A`^ps8 zSEjJOvU3l;X;X^kN|{3X$`sL8rU_&hO;=@_t;!V5SEjkDOtF0B5_v^>{wOD+))B3g z%6vX?2xbpXv4zEO5E15kFi19%vt<>WRO}zP1Ew~#nVfUcnwd-{&_KC3@Q#q-;-uks z_tgvV)k)-QQr?79w!Swngg2cmB+7emO{ed@*9G1yId6cxn1UzbVLjP!_76=g6lpKF z($tsFb?4}?BF?z(G~HU6gvP^wvlb9RTu%qK@M8Y^8mw!B?|GZ=`6l1%3_I4ua*tJi^zY z?fo$?2Y3Eg;I&qN!AkQ6vS+L+c<=GyZ7A3YIHo$_+z$^Uku|l`8`h>ox2@9nfDc!I zFy~=HSefhEn*oxbK^8D@XS_R;k0(;w(GpF?;Y25xcJWlIuN$toyV{nDS0MvTCS}UN5_oe%6aD&=Z z?e9Qq_{Ctg@M287NcDDr$kU(~-4@9n4&3#^!U9BNX9`vc7b4b5@I2o?fXcS`n+=3vJ^7S5+y8A z0?;gtXly@tZPUp(SgYA$`fAeFxHv>htw$r2ONLs{C1d`QF;SA(aY1XRT}&*rR`Q$H zCB8Z=SaHBv#r5qS8?4K6`INODjwzQwqb$%1FsFgqnR&Y#xMk;K+u(E@n%IXUDazx@ ziJRRQEq<{;M;+mSwUxDZSe=RFHanX_jHjyY&)RrpTD(x~&)C6sqp8g$g6-xKF)9&k z?=fwJ%oRRJehZ0wQ$MLA60kUefKqQ?f85>){^$aX6mTThJ;6-OzY2+(x>>0*x+DrvPY zz2K~cFcd+R=_0Y`oCpd_eRdvp6biXa35WMMqKfCT*`4_k^rBuS_6Q`FN{5KW(lJ>& zhNWY^(nR;FR-VlgnT3|CLDv4q9vr;?mcgf97`*BE!CfD*Hnz3B-Wq)FX_w)Y-OLnN z2VUBJ;K2&Y_hhvJr9vm12k1@1*bvXaXr3iO4@%l*AFi<)ZT2(z4v0KS=BrA#K4hE1TD>k-(9BrA_A&4W)?_TTyO!6)w@y6q!K z$(+u7I@N7sBeH#>@X1&>>X*vw<@7r1FZE|cvM8cCnRM~$xR?ln?A(m#sZ6MeSSBXQ z1Q~hCGHVSu&@wjI5y12m+&2lzZxwU!AMk#$D23$6el596v(7o)+K|qI6=5w$ z7Gbl`tWs6no#L`~aYrt{Ei}Q*!-iAQ2r^>sTqlYKn?BQ>?%G_$NQ9hWg$&~)!#GZF zxqOi6q~cT}s%|b3tg^9#(9q0rlG$9|0lnTXMFX<6%co!DYU+bX~xbuXjY|pAB z1}sz=kVxY-ZPpDUq*TfLy%s9K@O1; zgYOwELXPpetE;pmLQydixJ;A4Bp6QU&2BunD@ z8cGsnM@q`L!)CLng|uG))JPlO8v+H+5H(pgyV{TvY2%AhVBNE_hA2V0K)sqgDzaH* zLd2{m5QM5lyOJ&YCagJP))NIoHB&*Ve1=y!J;VCX9!8mYDEA8jVwn2+Ne<|5=fYJK zm<#)5L4}!)%M!3PRO-9HqGw2lG}i?qVR7a5dX)}-LWH2p-)F9i(ozg6A>s*$;|P}{ zu>2W(;e7{hy1li7r>ccW)Cnqcy1EO!!66cN8~Dv2C-BYSKsaacspt0JeE0tMJ+uEk zA08TbVE?Y&SWATFb!8IU6LILzcCmzgI#}cPs%RdSipf&J+E1c!c0(xxYLrXCed9by zV9Q^8^1w%~vsSNPcIh%CC}IR=p9q`za6g(i=z4_3bD0#$<546oVgzOkZ0-XFIp~U6 zKL!{`JEkmiy(UOY#2^u-C7bOE*$%kH6E#SLX~2>}CQXAup$|L{=p%#L&yP?5@(xK( z2>TK&M~@lAh#klXLJ-mmLLeF8LlC584#_IEX44k%2XI$Fn$8=UCRT8d98We+B1u$! zc#_->qDaPX$6czD5w;{~(TUm{{-M~D&y~7+L=X1}CB8j_L=yHOkzpG{U{{R~#x6#H zAXArk%iW8}?y*+8c8}HGpDiYKS{+%YFh+K|`=GVvUs zEA3>OoP1;olKUVXBNyn3&8tx)OH_6tWhqz-vY$p7!asoIQL!MWkUT8L4jV-=j;y}C zL^^QGh<)*58jJ(N0orcnAC=l*k_+O5G16*VzllwA@cE;Q0C7hwTd<9=D}`?a_29p; zbrH)JY@J&mDEz~!s3le$VIg6~u=FU|u-$;hA^7Qo1pEdGh_H~508tQaLns&|{|-P>uCb3a7nu3?D8f-zYz zNaShcd0*wBy#RuMcrOJ!4?EMakp;`FUfdV}uNZJpZqZ1!$OakqFw#Qrg)}4^tojI& z_F|YN2XA<0-`+d+-}BVIJ=g4eZr5wEq6Mn{p?{Q5XY;Q?^z>_G5_&+fymV=Mgu?zH z9s&E@}lbtnN7?kp+I64?viTI(?F!a##`(C6a zbi}w*NNmS0Ej$UVNkrmLki>{_hfBnSC&AS{ToD}6PRM9%L9YRhJR3+gtH`c+c2IVQ zRgqos?4ax}?l?OJeouF+hBjN;OTE3Y9^?I^MW8k028Zva2-jSac9s@NHwF*;NSX9c z3ps$dh-2x4^nDTOlm2P(c1*k-q;htLizML7iI{?mu#EzvfJ<>a3;S%np&o|8Fi}%5 z7KL%ZEgIvZK{6JQqT`F!{=04hdwp=%jYA*ZgAI>Zs(3HQ-Nin-jldZcWW+5<4wVk} z0gA|?Cfdeg3bnyMx4?cAL(C!-#-1Nc0C-2?&T$yPEJ7NE=PaeGQMkF(0 zQsO-vuvdib6r}GDNMFRHB#Kp;l#V~}lr#w>&^mPyPp$sbmD= zjxxSFjbH65c<=h3RHpIEtK0eQDg1U(;FbBxk^CmFAicd{tF>bjttR2<&GvNCj`hMd z$SzTVM`C|sCB3!*-;xc<_a%c3!3Uxtn>Ve%S7*EG14`@eO1ecNeyGe|!CsJ6@?}7A z6w8{|I6Lx*zCIl1z@d^(!bU!Zj0IkaiC1u)kFQjY@|>Npk$Rbnz}m#WLItn!rUJ^STftEWyrXU4)qV zZe4e^X;C4|Erk3$w+gL0+M6iG;~zslWMfOe+D~o8UU5Fd*1i;n6!t+R;dwT$cI~#1KIY5X6EA zg2b)dx97Hl_dPxM!Zm}B-ZFIW^)LnvUH|lfr=B?Q*fl&Vp-bV3yN5pf$k6kTTASP2 zU{mux*wh?+^p3&Zx5{x;x}N+*$X0M%4Q>fC{V3^;#ec2dRIJKK1OWVd{tD ze$dSeQ83x<@y?K)g`t#HxlahBdlwPJIztB7xvP1b7QCz5-EC}|oR=qx$sVf>IvnJ9|3$*3qbb1f)K%_III2#7)1N?UrHj*FDh8!^2ORZ9lp+J{)XjFXl*e23t(BLw zU4R2LJErsAa~du1o_(OICAybE-v#>@&ookxdIU+KS5=|QSE>G4WIb8(Db^yFFaB1< zVYRa(0XBLf6)zRQ=|gp0jCIN7i@!k3EdXoC7!{xzW2+erEh#K?UqRe?ItdHet}YuH z0b?9)xwbCHz?$L6+3BfGR|)RSCvv_y96387ii*{Q3J^JGxv>+=;ba5{6+sl0r!Gr; zszPPp=5cE^+22(Zq-$rKEo__%gs6$MmSGg6Yo}|ML#d#GoUhW?jvMf{wE}!yo9sL= z8I~_e8xJ&)_0NMJ6DhZ-{epo|1l-t$y~-3^71JG0_LYdji;zOOMeQ#FF$i1)R@_h| z21ST{iy+*NP!Tz99Fj%vK-dFpVnM{0#}5={6^fihGS``gV8VEh4g1{i2T`c|i zF;RplT79uVwaB{2#kI)l+1|Iv+TH^RQUps<`vNPO>xB~_NTt{%vb-6cdYfF#_*oIh zRRG+wlL?CVNF-G*X8a{$R3eto1VwwwfhV6B+H>8$XRq1!><14%{^5f+RR$k^c>lA{ z?%#Dg%oP>{_br2=xrl6&2C5%%yq8wj*fXIM1?l-1(jyI2e=)GCa8Zu^6N&|iin;m* zo5T>c0x^B-6NRE!#Y5MH0@w%Kbt95?di0n?tF|hk2p>n%K&P0ObuCgCT z%)nM?VLX zR+$@I_pVqTbMIY`r^eu}r+NJ{^wORKPrVa|;A#!(12YdIQoI?Lc80(v zfrq3;M-A5?F3b(WSq%EF7&J-8TiW@JfWt%hpnd8s-BW%ob(hqgIka}!dI?i^4N@oF zQ~uKKQkqIjZ)&4gVx~7vD#rKFYD$`}zTV*YgGaBbO!CfCcwg}<5h6tN;PEz}WV~WAu>7eQEr()I%!?Aj5%JZn z-kS?y-C?c48p!McHxU>+FwF3BG3xvQ3QoFZJVf#CzEbEc1U5SXfyuBK^ZH*ua!|Tu zyy7t^9y$=g#e=+D=%*aFy=)_rDW^QI9x$^D+w2s(m|)F`pWx-F2@5Hc zmbO;{%xqZ#7M)arhJ%jQO+ro!tyNv%?7`_BJ|4A$PgYy6T=O1|r+?*|_hP&}?+1~~ zYZ>F=L3{(%!2J~ImV=u|MVM~)oR5c;)Zrv-f*h^A!r>-xVT?>?il{ZG`CH?s$P&A< z!7Z)1@Tn}0W0r^p=;&l6@~6sNxYdXY1QE%#n@4c4wQ!#j1j^exsEv3Lg>NwBj9_n8O+aLn;L3)5r~B^;BEb zFO@k|7MATBH~RgibA4FAgA75XY1jiKG?7154)fswPX(U{f$`ZZ(HPK1 zuemcH+1oPi(nE${P_pxIf~!!1+b4p<6rS<*#a()3Vs05YO$KFxW7Dx>`fX#pRy)2E zm~W<(`e0)TOuGR(8(fk3%9&f-pKu(;h)7&n!5I;p1g-XMY1#&W;{$MKLn7mD7ou<) zQ{d1_XFy5bk2HJP$^y@nWY5=1_dO^RH7?Th!lY%I)E>N#g8vib<>ED z#rPO;%fK0ar{EejxUBNlqj5MaSxEN4fFw4y|Bltkz!|r!YuP|q->Mi6P)?;axKN z;)&3?7a|8Q1n`*_f(!vg;aDPc@`d;!;=ZlHUH1*{d4A~O`-k@2&MQ5nNxJ$3Edq*g zc>hURA_s3+^11p183Kxscz-#fWL`CkR-S1Sb-R!+i}#&r6LpB+D>H@EH`ACD@({YO zxjm@h1*~9zfxlbf{R%!)K2(brwSvX`{mTor8NB&@2lnpe@B?J3G||Hp^wRu7gn*L} zw|-M;aBmdTeeC4IJ05%{dYBR}P6UB}5Q;-YVG`WEP@Gu2qyzpU8&`zVz>o(4`!Ei{ zU~9nvm0k-Dp7q$tZGAadb|JCS_6idV^8+nq{jA!C1WMa0OrR*@XVWYpqfIV8tW^d! zhiipH!0@SM?3szqTnS=adJ=s$b0>$DQ%RbZ!j*d^V^lK6C5bV|!$nMt)uP|I! z`MuTYOAv={R+d^KnTJF8?r6be;WZo))0ZF*%d*J0tUFw=#1;zX?0fc!1J68m;K>&U zAG&GZOYa?g;vR6sxQaywXpw6xst#vR39$@LFp03NM4WelGq9&D1Wp|oFAQN+k!)mC zG1yh{G#@@P%C|hg9=Sk8d==+itPsfuuelcvQ{z(mfrp2#eNLNpP;`uH1V<3K(PiDbOsW|)5GE6ZE;BK8*N=@xhY1h$#|PC8z~xco+~m0l_# zdI9mod>*_m>Et$SWS$R=%|V)^mr6)lKq>^j7AS-RIE2(9F|#`m*WgPZI(W?kgEu^U z@b1U3>gvLC`{ls+b=;cLj(s0PM7LNCyoHc*L?7>>Llf z`yMj!Ric;hX2`y0ZynrS;jRE%uY8OEPax4?>bkVAdtz|+Q-e1XyQM=^NLaufaJn|0 zF8EZLnuGT!`5dA`!~$ZeSi0b!r;$vt&uT&Mg`GKJ0$5%sF^XW7A_7`xc`jlMjzGf| zc1$5!3_M=oEaffF;8MC1NhD+ejuSG^ag4~<pCVe@A5QMrd%2ebyG*Tik-LujJRk zTZylWy;1Hxyd?Cwnvbp0noO>nC(zd;neIBNOb#=dj%5QuXGn&@#EZ0_xwN(ZxC{?5rQ0E|Kr{P1i8mB zcQa7yJPv=|=wCjjayzm#;E81w2#d~H3||EVHGTwZ#9Mltk5Y}!$MFH)rsI5qNqChfO@YuyLT&f* z5DF5tK;fflqzih0$Y+rzyjI6~j){B$AG`q{>}4Y5x=+*~iF88+s$HH#MXM0!h6|{- z=m1flL>jI_8a~A|$W=fD4I|&5BOUdkxMUKY8?APc4$$&hqy=xlaX!biNDqTRCix+5 z#33c6YjdQBLA))i7H?yhgqps9HN6vS`XbjP=W){A9fERDD< z2dMZTqylfQalXt{ymlBRh3jKr^prQ*408_-p{b$^ga+0*;yRtk3vqz9uOV%CNsaS$ zrcG`&iB?Ju4Rghf4EzzrBy%F~x`DdCg>_$nb$^@dj_ADNKtipz*+g_+fdUL{Z~)8;qz>q1MFN(Q0*mzOUSB1ifzYY!XEzdXFDZ@jSQtAb&~P?bC@Dp(d5 zg=?x)o)s14W1{@Xl~->keanr_r@;Q)XNGU5EEZ;I4egYLgBAkSSwlNz`EcdZgDQ9< zcuQ`UKnwAs2)-#$6cEfL2a71c1B}m6AY`D(uu47BQ6Nex(u=6j`5yL}|G_@sPS(a)1ptUlt2jRYT8{g(K>$q36l+;mW1&RuC)%4UPr)@=YQIp=iNMkHv<{FilZT z$k|seT$wy{A!MSct*>-Mt@6-?K%fZKhageQvWOOZ?C>*Ba z0Mdasx;Y1#jtE0m$j-eTtoo&J5r(WNJIw8HV6gofsdyJs@f)UM*uj*zL9-t^VDLWH zAWIOD?=q5VETLIYU&uGXlPM^uZs|g?urYpbE$Th zn~a7QIKpysmtF!#n9RQ-Rn&3+##BYD0EGxfy4)>d1t^NT(&H{4rs1DR176(b{EKOj zE+x?_$r;#0ta9s{jIk4?Brn`j;hM*FL(O=Hn=>B%0?T)})|0}BO#)$Ukrjg&eEXhi z^`t3o(J&2@kcNAahRIBW+~N_4Wb22&@@+WFt=iph(0QgH1$bqfGnFZjZnOvrbgzMv zZZv^RiX~P1eQ+QgdE`r|mADE<-YhggpEmX#`4X>+dtKzZ2bbZ^*mS)8&6&E4&^O{rIl@?Fz8#iS_vo-VHRMt}4=KiL;GFqP@o;mKz+d$$IT;){3?Jb%q1Zr& zq0U_cMO+Nwt8IWjZ5?$ngm?*VL_;Mx9GinT$T>%FbB6N^XQDop*yGQAfTk3u$RW zT8?L0hMRmv<3jwQbqTQt5e+-}3Jf9k5C&K95lc@|%H6yha9+ZCB9@-wMR(T@72rf{ zAYNVPoWu>38=OKVBSs0H?EL+Y+>g{qx(82ga0)CD1B5$e`uR?`fwLR26)F2PQnrvO zi*VoxIm)p?rHr2tX^5>7;lLAUq&ldii6^8Mi;yc;L&KX?iaNVMY>+*){7Q^0~2eh1pwBWsV&e=@MaB~YE-H`Xgi8;VC zOugIK5aY0Oi#P>>vFO8InFmv9L`MlxGT_{R6-IQFP(9dD&ci0-HG0nZ+~na#%1}ix zAVglsH{3`WA^}E((9L}RAA4^CFIQ64kHcSPV>V`B*pUFTllSh@eY<=1?30-!lgZ0u zX4sm$CjIiZdHr4{89~_*d1{cLqJSu%A|Qw$prW9lA}WaDf*UF*C?Md1DB|yXYP(gp z>n<S5bK8u*7bZ-yS$0(I-n?-0E zrJ@9QJt3qZd$U_O!Y%7SDCV-1N7XPPdTWeOLx5uLNNuA8YPj^uDp&ef+h{XAsPi#nzN!@#JSPp1TF}QFedmYd!FqA^jMiq;l)&} zCsvf)ijT6K*n6uKUZQk$tyK!I`syFA2GdAexufw3?r?H3ah7FfLqcZerWmwJW)`ig zI+Ds($s&w_jDFRTR5nGH5`x_x8bK70ads~sL3zy*qv||C!Zo|@Z>eQ@&9angnJiW8 zxT>vEHc^(f)L6AuieeIiTdcaGjm+LNEDq0?*0fQUDpu5_jk2uSMpk2!Hp=3~s&mzX z>=D(EeCcK0TE&Kbm>QZZR%B7hN&SZ9=v1s)d}NQ-)m^1wlHF?1D7HJ-2TJgTc9T>j^O|#_{wKF0m8;05RG8j)(FeLuG z?c%48!;+cs0uNbvO01jhAfv$)T&XcoLH3h)1tHs z5NB`Ui&7PTRoK?LkgrwzRYb~Tze1EaNVq;txNhaR@<}FJm-jn`|5Q#!##kc?+9Z=j zbH-2rP+7Dv)Mjrd3~wY1cW?|~3?M{Ci?nP9LgjM-MV1#m^-MyujnF)c zp_zRSeep5+BINL@)QbeKJTz;SdXYFJ{X`3p5<>7LLXdIqdGfihNwOuYnADh5LHEH#Xz1TL~kZU^Bhs`9UupRHjoR( zNh+s#2gm~2@HIniL8Q+W7;0gnpsG+2unX)%7FS8Qs^Xm{_M2oP>xTVQXRg4IRM^8- z5RQq;W==)8n!>q-s1#<;+Ag(1O4xZjPXiGnSF&WY>YGEGU7|jD4)w{MyidMEVU^A0 zjA6?r`^Z@H4q^?E_u!Ji^EoY} z_nJeEN^2%~Su7vavRGlH&3+HnP4RkXU(V~U5_y}3{;d*u>tg_eBWr}}6@=>hII1eG zEOYr|(1dx0jD_|fz*SmVMW!kmFtD8@Y+oa6ujJUO#1-y-0MUF-y!K~y8FWyaGe2%Jp5BtKlrDG2}?V!DuEnO$4 zG*Jjyh8V!=uGMJtUa;tWg!Qq6_5B>{^=eC3LqjLt4;u#UWpvCHQ>U{ztc~6abiYFA zDA4Zg2RJ&5rdp?($GkNI@0yd82(DQ))jFj{A$)=GgM^R*>CS$LBh2MUJOAK!!D9>a zdyu1%$XHa~T#l4f=$NlYOpY$6QrrkWOvrwKkbR^f?;6M5t>s;V0KDMcZxccajXV2M zj?kiu(p%lH39xI?Md`)MBkcmq?-G`uA}qhhvE-pfWDk&{LiIpDkBZAyMk=bU!?KLo zYk3*54(BqcK^u0o;ZeF*0B!Wrz#O~-swkI1^>Uk8Il4#yZS>NhFd(#G*AkuCqS{(5 zGHCPaXFow4zL7Zm2b{x}W4BJOBBZe8*sYhe#ui2&{}CaeAi%SqYKWjTif}CgOE_U5 z_)|jgI70Ae96{ZPuZb93H{we}2LsDr5EhE+JNuU$ORko*j}IB;7wVdkz`(g$QkFGG zzAOvnq!u9^GFJBSp7wVAw%CKIhKfi!Ct4J)w{q%*9 z-?@A}Fl+a{_57Pzev$-n6CL@*vX|d0kfX(1iArn9?-j^`<}kBXH~U56EQJ-G{SxP_ zX%xJhDa~uG>GzfKv=ZjJ~?h z5g?#I!n60qCrr~?9`F#t<`5Tze9*F=7=mxT%8`G zmaQu=aovfpafD)EeE?zY5Z22$*18i*v+%-oCziT6!$9^RLiPwkc11&Ejp78?BC81) z3}g=_WX~sL597!z>MNsvHT$p9r<#+HsM(wfbuzjw+a4_#*d9sPW(nJ)IJP>uf$7Cm z00=|DO=N89D-#sC(W#gZvb@s1)(p!u^6>R}(S{ zr#pKMM`k(3DVioS8D5voHWrcBa)450O+2!!VA%D9f&$adZeb{9x2rF9@GovqU+m^z z>``CrWnXaD7W0Cns@w$5!r~(QB?C^iYHl%VnNVd-;Iga$zMoKhoq*rMQCM8E6{V68 zw-%RdRb(XAExPO=)%h8!^HyG`=Jv~IHCBldXzyb zsKvdtj1DTH1sOz*N2tdCq#6gjMvHHcjOfIJ6Oqv}KNi`e(pr3bWPm3{L^}=@!_xxS z9N~H=;hN{TEYiQkCI98VlsZR+B17%@(7ptWo|8LqK)dSc}nB)-V5+G$`m6g`UN~GJY)h z@nS;tHbV6hj>@uWNi_0b7QKsxb9ww&%cdpq$bTgjYam%5`yN6@(O+j@&XHL(G7^#e zw>pZfMI$4@$baQ+xMDb2;8`O)A0$qFAHy?ylD?o|uCuS?04)NW1SbELUJLA2EdP=X zDi#ygBCttZ@?UuymR*hIUy9*%iqO24(7c+Xu?TE}iW=ZhLE(B`O?+63z$Veie>t7f zK(S!nj}W?}gzhyQokapEqQj}VPP3f(*P{t$$vS`M)6^R`ez6=MQxpZ%Q&dHXHZ!{ z*waJJX^uvQ1?smEYKq=E`*x1nq8gGsmj4P~%V@6B>(d$&)}k7c?3MotHcN8S1+)+x z7Fgd&SpS@`{yfKOQPfL}^53B~{HsM#FVV<VFTfzrlRbH7)kI zt_|jkMr0(wEBNw0!gV>}dOycyQ6xxy$bTz>x>^(ok}2|EYjjs2`4vL)B0};3j-){k z*<-vm=%He;SJeMOs{i9u|A%<}>cvE_MtIn+Bj_vI z_F-xpg<_rk2ydH3btT&*|E&t>YBA1=VoIL0M|Oo?Kkrsqll&KtLL%NejvEMQPOl!Z zw+Q(O9?-SOTgAFW!ObYho;G9!xq!jF$E$m>re2EzeH{R1f17w85$`|BdB3lGM>6%7 z>k44YsM?1SS0sv9vj`X5D3UEk&F>O&3OhUddmQ-_>yVqlYFYLwNHS_IM#V!13wXyl z-Nddq;?vPh2>g6F#aooK2dVSL@0-={o8|8)e4e<*FY>BCUwUfw$o`w|vvv+Sw+v4` z@6?mlE>0F>yneHQn8NhL2O~avBacLL9)u=}Mk~JEC%zSrWr=TZVc)K#2A{pR zk6;%3l?D7{_J3x6U>;|WqAcG|$)hP@8p+4dC+023oH)LN{$y&xC(x%SQt~89$jUhT z6iS%-`DyfNGbK}$FolXkpIk~jN|*t*MW5P~1e7o%O_x6PD7lgn<~?~eeY%zswp?9L zpRS|i8cMcOvW*hvSFwXW?WBZVSGtit?WW`gN^YWL4<&mk*+x^$lq^!RM9H0$EK@S1WQCGdN{&%-7bV9jVao2i>C<;o@?1)uN6B|l z^4*lYfRg7^@8(mZ=~c+l)Rae zpQ7ZaDft;n-a^UGQu0$`4A<)PRVaj@?lCoLdkDZ@>`VrHYFdWf~l21_b2b6r0l0T&6k0|*RC4WrGpHT9rl>8YbpQhx`DftUZ{*scvqU5hB z`3xn0L&@J#@^_ScmXgm=^7oYd10|oQau| z2olVIL=NBl6hsm8W-p|KIUlpQBA4LLlWP|vv~oO{+w2BYOIWF~OYOqb&#cUMi^xa4esb;p$>8u{1ztX!$gSc>YX8Z#M>1b;5guZ&umpL8 z?=~`fCbB<+Wxtd=p|F70GRKn0G0$>bBm+WE9Uf!^`uXDLhj9WiV&{8a>p1>Dg{w%E z;{`^Jhfxj|Oc^eaA{H|qQxJK7MC7GOcyjH0gh)s5A>Oceh@WV?60ueIL5x8cFte-#;HQ_IFXIS zhm&g$YmUX;M#22vsaCKMAkZuyiSj*GaXtgI@@#1{OFhddm9Gw3DWSYKHkM}_#lBt5 zaA_C8Y&Gi%jRN_Ssnvt%cSapUQG_JAlUj61y$E}6!YH+Bl(IHRE<^fG`BG7g1Q&EX zi+8q!;TZPWnNjxcYecq}FiiQTF}j#8&fy6gy@nq$isl1Dq7ip{DMFN4@JEe;`6ezG zVLkYjS@MUCk~!0jP+n${*NGw|iHWUuTeYF_+;k@pdnyi0TW>iRAt_hSbMJs^+Qq%_j-N{vY?a9BxBzh)G=SQV0R zKVbZRh58+0+B_CBcyRF9{Yyr^hshU+=|rX^?spp5ufPkf%g{OEfp|__<@=D4??G@JX5$8m#<>9=@{+axqLJ-k92zc@ z;3PuYOe61yMc$9FVSZ`62%6|yZPEWtBgbXQ>M|D}^*kRHdFT*)a&5a>GS%JPVk|Wg z%S^_FED?PES&+S&kI@2qAn!ERUDSpyNmXtgkMs+EDDN=_-RJzygx`D8oftumUWD> zIg@1Uos#C>EQ;-COu7uR!7?6pyDN?Qs{=V7_ZoSo*`^Bt6mOCaGR#{Z$%Bn)6tz-# zx}fkJR!crG`LURVv@izdAtQfoUTG3z#bnDf3`#jm?O`;`vh$)Wsen$dJxoY=cs_3d z!H^Pep^`j0Y~;m?Ib5Mf31waxG2_w&?J7>1<7uVaQF6j4-9G9^iv~b?F94^T`pEUAZvVDZer$vVEVsI~=PY;J| zUd+u)Ab)1$xQr%)I(f@HpEB}X$Qr$ppW4pj%hP47j*EvW`UR)TW3u#PjNdQB&5acp zUgWQjHh#T7@Eys2++_Z^jCb$pEn6-@JhdzgLW#r``F5~;=SL|$Xv#q@iJu;9ybq z-n{YK#q2lSvQ~^cE`BFwtB~q#RF_Dur)F;<29V{FxDp5Zvay*w;72~B?oaR!=^*=Ix zeynlNDc_rtK?wE4ysY)pqR@Ga<^@avBU%5i;k-vV;`1LX#18jjmS1I#+ z-N^Gm?9NctF2j+Uz4;+?{kxefNv*m5&B*mAnrjeF@hoXc{{IpAAHmR{zjG$NQ&#vb z5GXK2!eM^47V1D10-!GcqE8{?De&3P#51HS0<@e7tzwgPhG;4f+ zuItDGPcQu7$`a2h{GghAOW_CA=9$6|s?j$Weo(DW3qPo4A1wT!+P%N>f(sFv?7{18Y~w-ae@bAAH5LZ{qTJAhmQK;73L3J^}`9{hjS!nX1~+;{yf)FC6X*9;zvPX7Ug4L#^)D#=k~e>~@JrtQI}5+$40v(jm!87*y~Z!+Vp<3} zV9og9JTGU#%L~8cEO=Srmz)JJE&P(R;G5zXGX9=iyPOPr;c`ma2AC@)m~R-F9w0Lf zS5}o#@9RdE`$K$%s!f)UFW@WxgIOg{Nf04nc@V9xKv567M0}JzYTp+cdD7m)^+hQ~ zGEsPj6~2`F??Xfxs*U9hB8SIw9D`S0DxZnxQq>!c91q|*;>Cq*pakrnFtS|EvyhgC z{E1{kJ|{AfDgUJQx}>~i09_5cWq^O_mVtSy`hrn7KVWlJ08=_}ldM$m8z;lRFiPk5 zxrHYzPB_Zzm}^-~|6LQxXAEL2qB*nHjymg^<^IMfmnj{RoAzcLE$RZ0`xC2@V8 zk0$+pFz8ou$L5o568o}2EI&Hio#D;0Up30+olM4Uo71{k`b$P>Ex-~z0Z%@S#XBcv z@qaRk=Xd7B7?JMHoY6xPlov5mXttSjzGl#QwCXM0Pu48)MWaN1s|Z7}?2d&=;GYcw zxfX}H`9l3Wh>!9qZ5I1WqgZbGu=-+}ML%s6%`F(xTBKisF-!iVQ8Kq+YzvoGR_FT% z(s%%^yfJ(K+9;B9RQC-xOMKQSk(;aK-41b$#Vqs{qfoAH%I}Yv`9E*uf28VYb$iRq ze$M^*I)0Qbe;4D-hBa<5uh!6>_?>*bAmQr^8^vD;b4~Z_L{8?qa}e2?V-##$CkFjl z8t9ITtpN_W;y|@Zt~t-2gCpr%=8^pFQ6&FCe||sx`Fi?vJ$?EI`r%gk^l$XtXX($s zr%yjY$#dz4K7IOc`t)rJNdAQWypsO>KFa(n^yeQ?@~8CY_s|d5Q1Spu{+WLG4f^4} z^yh9$GWzqw^y$s?>8bSTnUwGI^yyjj-6|z-r|&*P$zM|PPxR}A{rzITc%^!UP3=S zjXs@2$#zQqg1*~ApPo#~@6ew=NA&JbpXMof2PGjTKSMuUOZnC)`8s{~1p0I_efoF$ z_1%;_mj3(%C7+|@4=MRB`oW{jkEcIBNPm7OC6A)-evy)Q(GR~z$u>$JLf`#7Wr-=d zivGNtl0Tzgk5O_L{rRi(=|?F^>CaD5=AWWJUqGM!hLZcypRb_g2xa+4`tEu3>2~_= z%ar^TefLKC^#9Qh&!In$(x<lzfx&y_`OMk&=`2=PAnfKlJG}lw3wXe4IX=M?ZX(l9$n+-%H7_(XW3; ziAz5`gOXpSWR{Zuq~t4IBlPJ;NN;*52Awo+b>k#$`%bIV3Y=-w-(SK$#l>5O<2HkY--}ybn)TXIJEi7y zovhVPlTH@2J-6pZnMpzcdA6VuvrS-&*ABXYo5o%oM(xZ=;i?+%pZD+k2stcH3^&j-!qfce+uQq)sR5MTr-5+d;2}rh=LXvfTf&7x__~w9xD% z=|!m@wpwuzw-Yb*!fxcm$+YnLVjh~xtRy-yHE3NOhe_M<9BOp09s5z%^~1K?jXG&7 zX}MmzgqDIf5ajM;T)ZYt+wIJ2`<>Y7W})k+PRmVOonFvshXHsy&7KK_RhIT#Xzy}I zNCEGtLGSvum$bq#^!>nbLof1sJqLSv5QeRGyA{M~1w93EQIO=msZVpjw>ap!9!6|8 z?ggNq_AuZ8vy*sTXIkl9`KX^aice#h25CFaLa*D7lAag!f^I7YoVJ%`SsdrZ6@a@0 zg;z2jUD<9sT}+Um(@EVFBqF~ZIPG4Lg69}3o#|mZKY$Rqyc(~pLi3LsQ;x8#}!1*GB?hP551`>V%Dp}SFT2U`f zJU8m5q3?8pb_2Q!@{bDArx-umS4BZ~^g$4LV&nOFfW^TS3-t2kjv7TVdq*odB~VixV3i1?jbd)YJK5;&c-9D5kof zW!-i!Ow**Db%M+dV@%YnHNBg=8!z?`QV6D*czFPWfV5Z(c&|5TZV%kBgQ3=IwOXMQ z2JNKV!nAN>FG$=Zb%Pq33hLVgS?(g;$!N+aT{jK8Y1c~v-|ux>8G0s+yiN<_Svoan zzQ6+D+YL%rhDj$4yvX%2aJnso;fZ@){1>OaR))p6XQiZIy-N`L4aUJvh#kd=yKyV- zVHkRDyVdD-opv{J({9ge1=AMKW&!IL3`$paf~12`CfxY%MSu90AA9@ z7Uf~@^+WuVI&rVn3BkIwKtnG6x-!gY-UARm zz|`IWOEDPf&t4qUR%WB5V0}su`*sGa>jy1t%}E@GX%vSYH}bH|b{woYE_l~*rfruB z1g<|aNL}Tkg*3S$>{fm!!#H%|Lre|!yI~Xsc2Wx1rvH?q)Ckp5Ya;+GX#U@$hOtQRCbAIo*9oyL`{m>mz;gt}Coq86%zZy;#XgQffCamD z6ky?j91@~)Vy`9UP?2rt8dL&5i6U%vKGs#RpB5dAeROd*^1UwlXM~D^bEzQ2uUg<> z=D1!51X9Rt?KYh>{I-Kb6_$J)8G>n86IO7kqlo8$2AK}T6$lhKCxTblbOVTLUV?*K zmZ3LVemF`-0eZNg#P3b?aI*9eQ#kANTHT)Cb4YOPbvjs)Q_sV}gAWKg_>yL>un9lP zpmlZD>UC2(NA)7CTfH=fycj}k3o!J(ZU@Ibx~elmOF`Qt$nm=xT{I47y$B0t7jrOd z`#3;husXeN=(amfYnor?pz9tZnsjJ#q*L5MQfHyrCQxS8s(+zwq7d`~r(6^IP zz^)V2_$7>+BH#DZw1;`rzJVEc$dHDb6)5GQgcZ)%N zUnh-1lD{$OgVakr&+lQVVL!rFf)iETn7V?$PgL-mY)W*(4o)K;M5HY4VB5pmjRTSw z1yK(J+D}{4+Ig7Zul>;yBy7Q})qOuQJfP~`NiloYI61u?qx zd2;RAj*GoF=q5M}LXK(&u8W-*vKMv-C+zwiotSXf%U$%?F>b~nxCQ51rvqI`yVZpN zge@5&Dr5$XCj85GSty2i{)X!C@%G5!K0PPNtAmPvG7@ z9Ivq837$ROpx^~jfRz?!+cfi&AjU=!V0nVn7-NpO?Z}{@V5EY`ZU&=`Ne_|9!%)U4 zo1~y1$WqJ+h-9u8$C=(VZiW$H5`zwUE5Zq?3k=voy%Zu?3;QSJ#w={P*nll`6r_P5 zwU0r<-j+gE@q-S;_avlgAK}~r2{wVM2Ra{})B-%mSdYybG_dJoSYj1wyDccKvH&MV z2a8b}U;wl+TnjW5lm$WNLI$OkxEPln7I~bxF!6&pY`2p*3$hNTPwE;_m{cv$EE!}v z9jvb|EnnDyW2h$LUZ?AJJq*kijwxMZo^Ub>&~ZWOQyfs#!zSdkpoHtVEu1mCIAsu^ zq}7RWEKZDe(G4O2=x&1yR4HvbJI5*h2e}DCii7ibgslkr1V3{}$tXb26O`!o`N_35 zEvlGgSXhF#--E2`p-Dc5Qq~SIkRzQE7ghzL?>6Xk(>4x#9v0^`OP$0?F$m&bFM!g( zbD{F`Ep!y57YkDSf)ge?PD(9^x>)vI&~a^KS;SLq*Ib-Am0E_(84wy zy74sLf;kq#c8W(Mo#+i7>AG{f=V4ZtL*x4JzCvoC5pNd-Lx@uVR6 z(+nciAdqUXL9|I9lR~Eyw6MqF_zi`DgNZXL@X|Fd(TP83(7HNw(L$&JAeu(l5Rx9P zBW-9MgD8c*!YiSrpuItm<2SUR9)_YKf^q;-bOiN462%!Li68(ir=38CTgXP_o7WpO za0Rei=_NP< z;rtV45CWlilTx#OV@)vWjRvW!piRdP=Rl$8Kr_~fajbv_50e=BVXO<7!gx<%ZVoE- z;e0M8DPV6A)P9Zu!{NLQ$rPs(oa|yOb}$m)I0f#9Sg$%Qd9qW4w9fl!gVL2a(_x~a zMQty2u*@K40gg@%#2RdzT`1W2^ff6dSidKTy_dnd6({`|YWc)ZAPPib3Zcnww^B$+ zX}1$c;q^cy&Gn~qLT`Z>4EE*7X9>IPxkN=d=`ydZWlp>~z0T1LS5Q4@) z6;}YhAt=x_cx+cr+KRm>jg!z%vKS-M#bO-zu%`5~Zrbs=YE8csCAjjR2A!_&_S#U! zhtO$b?1fS6K!w@zA+uwMpz|zr6r}rzdkrt;kRT~Ts0aWpf@KbBFdUe$q(l)kkT6F1 z)7%kjw4=TyAaOcfOjj=;i;fF>g%`wG7Y9mM+Tx1-+3=aiSydZ&157Kp$pM z7&Bu)O9jDW4BiyxNZ5u33DQ~UrBT+y0u9R#hFE}2yVW7B z7W2YVgZy%XfQvOH@I5S@Y+_(ZjxgG=DC2a5_Jz<8I4)3>3()VRfLq z!f`c#EbNjtxCeu0tLsmzNA7XgbBIV`^3_xGJo!k2>P{T+5*#>i9>eH_DaLg?*u>&a z3T;~q`K^|!g8LXj_|pt-+rvRJ0OLGZbs>g0kSg&n)FC~rVj(QCBe(EGXFkrL)9v*# z3{VFuBOk{hDBo~w@V%&&b`oe}vyO$1g7gGI>WvK2l^Nt(Y=J!(4`Izg2lik|$87Ax zeh9T5bY<2{g#y=83}V+L2|Cb)9SC+S2sDsHf+Y32P_;n!hBd8>m;%=k^ghPGwc1er z&>;;ABs0pGx+eiNMV_Sp_t6rkW-c9B{1D&P=KBjw!th;;c)@UBthp!U|fn5D|V80 z*fl697zYFqeu4D{947Zv;H@QM8@ZDmNzNwo)aUH=A zCBf>3Ge!ur2oCj~3^vXdcH(BF74S$GX#&-;hp9ll0TVr>C!A=~woX8SNCgdk#q~M~*fkFH#8Hn72iQ%p9mD0rbD-+M z5)we#ff>(EOo2Nl=)Hk)=xJ_};e-zLhYtf+=J;(WFtCI~7;8~0>p+(wVucI-tQy6q zdoZrVJ*=%!1g5q;2bdrNVxxgC37D4`R{&lrC{S>?lWRRF7djoci-k0XiYV(q_lcth z)-Q}&99fuYj8wx?t;^*ef#yX9t*cYl??GmSe+(qa1YR*=gw?+d>rd2kp$j21n}wEw zwkF6ugwMX1Y(_9(Lw(+BCa3qcLT80#DMUjqz^kae)znr`^bFd9!aqnQi z_u(bd0u`LaF`41q1o;xAj^pwr-S(qEru_xFzc`{qe~m$O2VA&9^cLHlVR7yGDYP}1 zX;ArK;fI~RhNuGjCPDWVjDI`QE;%J&;lvpSa!%r4>cXBMLtjQJGk_(3j=C4`(YbFl z=-zc2-06;kgtW063!2>NMKGvNrDX> z3iY%F`MaIKRRHoQGpFJ_sZPv=zJIGha0||6tzO#6dJx}fLuhy67>s~MJ@Xwnj#Lp; zAm1ryQV_(GYgb_p2%xd>VQqp=4uV;3s2mmgWqRRAQ7?UU}MT~^3EJMi;+PS@`l@rp}r1U1_cGvaS<6iWac*PzPB*$4hV5snhl1cJ9J@m_qN>r;k(_FjB(Mt{bjy$9#^ZUTd0 zj8&5~S3Y+5R*VB5_y#Ar{5)SxTS5PVApckfeQWGM*^WiV>p)`znIj3IdUZ)L2nA@* zgWz2I8a@G}goEBmatc4s4jTdb79&AWm^1*}% zQBPI@{<@(2;|%ciJ|s;C$9f#halj}4w-90pTsd68Z((34!1*il#qsd(2FY!3c!4ex zB5elqEd(n_9vvt#Vk{)I#yiy{70~|@RDXbT*6ns+sv&hz=3){gaFc`41u!8c!+$ZE zE?CR(xZ%RFel#MPe#;=cD{Xo3W5!V+40}+`VY_#`K?lM_4{XKBw4SU2`~-11oX1AM zRu3B(t;m=Q5V%rE%&?@x2PekNhZn(g=}Y$L|0f%?u12_1xI9AILzlpp2>xx@;<^ER zHn5#z$uFU$pap{5PcdFj;cSE?vN)u`Su}$(94dbtl;Kf`e`B410&$(7F<>CBLcIy?vpDqNSO=p9EI$xaAQF&A zxYs3n!SE>gi>~zXl6`T|U1LzY7KU!j<0t{2K+bD>U_BYfT&VA`Ou(>GLQTQDQ4qY5 z!Grz`%DfKA?Bptk<1zLZ_(b>t3_*1Em`2oF-0e#cFQ&gbWZ}@*hH{fZrUQp47;a0Diat*Q&>g8bGVt~ zop?FsGm2d=x^BNgrh`*z3J-oS?Z9glGB+9OLU`UlT4>|g4n`HpC_uLfN{?fJdXQ#t zb_>Z>2i`tz8wOS^(@EyKF~l#-$kK=FF~ILIXk86cF}(P2rhuuv3neoS!l@6%9{f*W zdB7%Tr=_4hN07ULL4!X&WNqlqdRQ=^;&-6n^PH%I)fw9c)>0gp5EccJk@=22a6QW) z)FVA-MBabxvIY z88aQ#Zdr%n1&~U-o z3divXrfTeOU06KZ)0TJZ(Sy%7sGuwk&d?#kLnFX>9AcC2bb~GyQ!orl`VlG$&Wi-0 zcQZIwkr6V$Ntu*S@VbP&kMpY!8v;ftq{WCU)>ZhTBC}p@P`egZHrP#IZ-rgWgLf{} zJ~%nTHVw}SjMrW%H3jdLg5bAAS3()?!ZM1D28Rb~pGz7~Xo29F0@o|)>1KJ=9!xuF z5W5DKO5h|1-*BAEJES|sUW$nbhj~bCIJB1$Q{aAF(DNC%U2x(E!Fdb=c&5Oj97OQl zhg}eEqtFtfPy;7aSkKf?0nJuv>HK?Wj@+r|b&KC+N1 zx=@P7&*YzNvL`~x*Pj3xnO#SohS)InDJ=lcyZ&ao4XlB>5&{2^7K#<}wpsvPY1olR_cEN}il2`)$a|-=1 zWOVqB`RxL!JJk_iAp5vM?mCF&xOE51E<8T5-a~T_7qSGRIaFu?lyc?d6u^HJ6n}?x z;%*#zVZWpc7ZAl@0mbxzc{asphdLV?w&@}6TjQjfz>O5zLE6qKvNjLxR9xr&!Jxf| zZZE(E5FTyNo)%6 z+y)^Moda30-RjY@RJT&n}0W|%QB;vFn2 z@Sb+b#}F5BV4D+`P-gU{(Li@v$;-h&`cQ-BcDUZhq$7js44N5|im@7kd>4n*9vpdV zXey{(L3Wlwy%IW6x0gE5)j*U5eYg|gTnXtD2NNi4g`N+R`uq}$N?~H`8N{xE;|QFx z=%N7DE|{!vp8*a>h$9DS0qcF2EB8i;DRA2bJ$n8GYHlpe#V68_?a)V$Ys3NL_{Pg62Bds?BGfY z_M$EpURd=>C0ZnN0I2nJ737Z#(wlg9d+1jj6L9dr2^pTfWF^7A22sR;P7gDB9*6%l z5q@28>>tX&`b;fV1@|um;csK36ABbK5u?vx4kXJsyb=;v^RY}oK}Pb9 zNtmLN9~-0yTg4=>zcy%H-GLU&$65_L3cPF}(7|2=r^YUnDp1?C-4a>~+TROuUuB#m z^%?B_P*}h}F@&K89v&&gRcKl>7{{RcFgVGsDi2nqQ}AaET36%H7Q&4buG2Wr;|dmT zM^FNH3|P-$lq#X6pnXA*`#OW>K+RA0X)z7ypo`%Q-Fk{6VlM?v9}?mMv`%vL31)rK zAOY<$R(Z%_@Jztyg&Gw~CoBo*TnNHYPn#qZkpC1^KEr@q2`^a+nLu6=FkX`09L5&7 zDdR*!mV$_Gsi({Ev>&bxMonw~We~dt9>gBpfk7rDmlY_VA>(0bhNrRvmn3$D-bPG; zdz=WCGtIz3q=yn0*G*f#i^+us!)XhvGfoZUvECM@r6Iq9oGqv6-7sqkZavW;brqIP zaxKS|O~@{=AVQl0DG5HWG`VmR=Sy;tlmg}nYF}W$reTDHx&!VKU>>Yp_>Y`=UF?*I zX8>>f>0|SV&5xk8i2fk(OdAxi*<;mZ4&~TOv9!bg30|&r7Y7Xl3k?bi#w~)#e=-=` zAveMPLdO-Ta^S^=F^;b5E71pMoA6b0fX!=*f%gP zp=iQk1G_%_sUcKDiiQ>$x&b(m)sj_!-z6x&lL2-kcw50L)`brlnYVGw>tK4Pn2T3Z!HN-#)I(D#J!dBdT!Ktnw+3R{0Bd07~-MKYvEQPob+(B4~sGG zFSKyth5(3ZH!Yn>*o8r3wfYZ((v>l6Bq{UY@Nt$xzy%0PxBvxj3D_C2=~yW#Sl<%F zUdv!z$DD}h?g`z>q1`7T=YF`R;3fn7o*>|qN3;`c`=&v0D;;s*)&YYu?tnNcmOkkJ zp_#(fDC|HkHs=b83g&r6=rzB?H25&~Vn2l(hbaYTCFr|wtfc)c_vta$`Ev~_*mYp| zMj#SM>afCKO440Bs5o)v$A*aUs}75T{|e3}g3u!4+Lb++GjR-~>uj*XcyMNfzi9x) zIYe!U-(4s;!r>y1V2F^Vb2CTLw`5W5CjJucWdP{6?pwCDAD&>!QDEoK5d z{{Xp+m;(1eLGM`%+|_jFFN4OV<6?)UJN>v3hTtwZeq(uo)rei}x5Z`@@UAe(T?gM> zx-y-R6Es#>2seI=h!qei$z{^5Ag2I6LQwn}2Jof~KC=*%d{`~87QwiafIfB$TuOz5 z6bz2SB}$L+X^Ubh@IKO@zK`zSKzxJX4{;c46y_~dTUbot1`K@`3z0x8Xf1UG|1qM1 z3)m8K6XY_;p3phKcL#?61mS=;CA4l3+;DvhXHyG&?jdG|C>8J@XHee<_XGI1LiGwJ z!@A^QCx9m$;;B$==*-5{75t}&3g{ivlWRLMF%c;X>lrQ^;_e~TnArZI#l!&#cjR%` zR=}@_o+*$&(IC7V`UD)>;UR@s5a2v~Rw2wGeiK#$3_}=w8W2{XT|xWL8ED*>!S(R~ z-aW9HV{7nn8v;`w${C18xQ*AE)&ollcvA)mteKE2px?rx3q1-(1FpM4&cjix4X;4l zXE#VFAc3I5V?18XJUI|K3adD&v0y{Q85sVsFc8Dz9cE5`M&-IE7Sc$#CJRtqgWPqv z&4Du(R8H^)fThgA)X!jv!0i>tp}1{ZPEG;5R#3d0ajFd+Ab5=nFp!1e-wQoiC#91N z!U}W|76zIVxW6sy5k>{F>kT^CP2hqB>pyk^#PER_jKC6DJaI&Vw2z@~p`##e6Qo|m zI}Z}3hy54EbNDiMao-0PVGo)iQhPvg(3{rdtO_){3=#;~fVC_}NRST9W00|(4B+6W zP6~XwUty9^K=uhLA7?)la#nIdTxio561yi00%3Wn{hsY4351DT6;)?=ohAkRNC7n^{6J@C91le zHE9ZS9e2gB!*-z`XQCqRXL-1r02L^O6%kdEQ}Y2=TNv>Me!5 zJ;)k>9k2z_g%!$UBkvgUucf~)Lx?LpOUEI@-f<+ww@*3}9BJS9l%Ksj!{@aNmQGyB z1y}kB^rRmx{c%wJv39OA<#wl>Q)^cpSy@>cUO6o}GPSsT7_0g572-iOmy)kYdVK20 z%KY5pIN{AX&9(b(KDBac?P2PhDS|#FV?Ts*VAb|J5x8>)lC@jws$xfqys*8}kt$|) zfjCe+xPU^ut7t&Dxe)|WvZ{VbTvq;|Lgk1RI5#w^zNt~wtXx&aoUoz2o)wPtDDXC5nlvQ1nSGBOPzG`s6hmY7{NmU>ytI_&TnGM(3 ze|fo*>hcV#+Dr4+jgFWtb$qNEEao`T>N&QE+qDKGYwKY}N*cw<2{x{-U5NEZ4j8rq zJt=QtVQrWazOT#lpmUrWke*f7bn8;lxGLG}Q{^RKjHNs0cMXn09gA0_`p4(Z)eP4j zsu#|6LbO&Wfj+eysC=FSVN>}70tO?WGhvjYwMmFiEQd%cBRjljP8gn9lZ19vIW%FZ z21cHlWW}Pjve+jZ z5)Xt;>(4Mr+H^Jf~dP!eGRX?+C}%VP^!`PO-u zUY@s(yaSEEXd7??`Vz}`So4Z|e%5v8;6%_AYmj*O!|f#VGuawrW;nHFSAXA*+h&Zx zb3+ppthA+b463r`$C;eqdFI2r7Z(oTp{De%ovU-^rhCiy5Q^j_mcsruf@S|A9!i0! z-(X3jBTY3+G(4&biRqyh{%qR@LxKTf=h#f)G-a(1vDLb`XNytkj`1rclCsXioM0^5 zwzzN49uG#wZAVrYjzSl10BAHrD_K8EU!t+ii0xaM9B5z|e?~~EvgX23n&IEEaNFQ$ z&!~9U*xVOHWxcjO-@SMHR-@MO`<#)Kbw1KE&UW86v*#eL!UsmhH;&!hoNklaI~!Dc zM~!zIzxVFjv)ib6e10>Mvc=Xq5A5GI={kv|tn(3;KHj@Jw=(dZqei{E$L?Z9R@VJ! zOWpg^g@uD~`ia5?v;Mtf*Kd%P7;HShW%B*ZNXj}3iZHf@+;Yo)gWcQ5ZZ1)*s`0?V z9TTpRD9Rdb>*UNWt6R3aMy2DglY(e%z1~LD>#6qI#?j2oL9^EJ*9%5cw$)na!I??# z2{S}e)@j=lW)=@GuI@|kGWBue?+H0wS-VZ%x^?^hn@u@*e0hu0l(pLUeB0#L2u4!Y z`R$gq5mLtBAWi`=e;R{%&)92)PFW(b^|Z`q4(suII;SgZx9tsgga{n5Wnp+1Y%B%? z#@`zZ(h@`Ae9YGAJJPwOlCw`E+eM|oTOclRJl--E@~rAmqMLFWoz)v+Q58r$+Srt; zWL(@q>?wX$H@aqD-PqJ96i%huFF9?AK^q@hJ_MNp20YMeYE^1`Mk7%ULL)9w*f{|N z+-BB3%hUJCpL#u$wF{uTZQTqZ4X{ zfQq^`lCs(-=iSfEK>2KXKv!lOb-?p2#?>J!eNUhRJw}<8}t0FHM@r2Us zd$t_dWrtI%IB5jOq%ZMkYF0tz_C0$Kl(VLG`L4t=N?YR46pK0z6SO{DYM1bOASQ7& zdd|n_VPTWl@X=OuLGi$1lrFD?TUQs7xpl50m6%Mrk};a`K$KqQ^-o0%!19z?PUlhW zs&*Q9G${}-PwZaUzq~lR4IVFu=v%M_)h_ErbALWHER-cbH1jlaF%`lQIG1mcce3qR zZm(NhDzQ}6B5`TEE^y7TTjSdoSHK>+Gj1#|wYzR5m=V$vLC4@9x)yhThEwyTyCDv# zTkH2gr)_Hrt%}q7$lmz=>^6lw(jPj`4eDxbu;o4~Q(KbcAlb&&H`p`+1rbmCMUj?+ zP1`rLY_zX32qT8!+C5C8QVzqUUyWtkp56O55{pS+V$q}xtwq}qj&JM!9dEAiVLum|g&C~&Jt($8V&6D(Gg(IyyG~$yxPU|=|S(&yya)`%x>!!}c z(AkuWy=LXA$93^`qC-eqyv(XMawutgiCL)}0(x^NIixf@yQr9k)YPGk8(6FSu1N|F zWK#6>7K#8vl`uulcI*dZ*{D?%HdiWWHORrQ$PEC>n&fAk zNF!7bZM0uTs*s4Dl8-MfyP+en!g_k0WS~(ihh?v)8k?ar*g$OddL*{|KH!wr(xL*v z3a|E>k4CVZb){8RBP=QuHV|QHRT80QWz(9hD;ccl?wH8XvsP1$OjkN=ATnz;5}94A zV5%Uj*e0V@D5*%I^R26iT@_(PS$kDO8z|*-qozWMR&##W$mTi_E5h3*GWsl)NK~4! zN=H@HS6IP4dotik>yj9?omImq6&Y4&wL7ausJv%Ks;EIE6dN0fs91$WWS^<*Y;sU4 zwyd}&GgC_{lITXxsN$?q2KtIBZMUcP4qBx(wPb8^n&#SWEy7Lx!L+F{}7RI3E6f-_25!WhwD91?i}9oMDi3n*$0#SKv8 zlqCqwaBuR$a)hk)Wp98$kd@VsXfq@a=F){i`)eiBa-k!?`@aAk2|uwgRQGqSS!k|BxZ5`I2> z6*nM^KO_y(5{9N|(nrM{`~_E+p!iA#acXu&t!=AzNEC=mC?y;bx!JxpVU8H2B@E4! zW8sKpd#&|OYswHoTLLMWu<)1O&l~)_K+M z&q86kx`3!p2|ZbW*G*OiX;BWS)ri#ct-KxqdAN4oa3#4C5u2Fq`O-qL4P!X9>W%`1 z!YtBBWmF?X8@h-Ul3{>!#hKfvI{hAddF&!obbnS6bJ{gpHQlJ1+}Zcknik`RXijmO zsN#J3lf3nf3N|;XK>7HeTDv?y@hW{z$k*b}%ZU!r@aMmsLKWwXZf{Si1J8;G z!djFpP`e-EjV&5bpIk?bN(fq)9HbyyWF6hKhvEuYv#OY0^R(k6<- zxd~3qn-46KIyl_K&1GoIWqE~o_L@S}8F+)b(KJ$AV7l>Od-GOI{Y`rplXPwqB+E@R ztMl}F-rWd*x47`MO{73#4^eO0hPNn(gKU6nAM6(drrpGj@BA$wHW5dcsoIICuTWZ; zDz!MB!!`?}xwSO&{e=dajCwc4DXk#<-UYOI%#n*2+deL*1#1a`o`!uyx}=2BQ| zjh71^W9#D-wato}-1^T)0Hx8@s&=WBr9`)#vzxiKVPKq(Au>wOsT&VVCpOE1g5*UQ z0r2qMq$nejm&#*s|1^j{aQ_LIi5F;;8FidHOzHZJLB4innPtZSY=!x+J8=e!syoK%qSK&HUAMoK)1On^0$JA%eIW5I0MR`AW5!h-@~Oh0R#0 zHft-@W43G3>;Q$VDc{$| zS;QY@;fUmLVc6B${1x(&K2pDL*1BeGvdjJI>dQ_Yx$4N3_TZyy7qW$yKUjt6qZcy4 zNc_2WKZ-wkYVA5(@A5n~@ka$AbsR9S+3;&6JWn3fXxr|cTMoDsJZIk!K}l~$vNl_f zK*qd7&}`aDN~rRszbc2CwOm_NLdS$RHz{~dJw8VPXQm9)*#+T8&@~5w^salWLb6 z2{(d_a&vhuwDkG%_E`^kPx{V-B=hBEGRONksWPFf}XcazQt7KxykVMe1 zVNCC881N=ABo*N*h$@rfAh)NCaBwkRq?eQ++nYdF#^<9(x(ce6O@ZaQLmSxbDP}ss zHQ0J=B4`!u8n`N-!do&17FQQmmQUajWCQF3#(*MRiB#1thbs5!F0ys|!R-dVXl!PJ zVg)d&Pa?8+^meY9+POHFu=}9-^d7&X4cb*G4Ga>meI44dci--rg9a1FUxzr+3WTCo z3C+Hk?>KmazkNd%bB%HpNUeT})Gnv(SY2M6*rox2Wg+cH>=m&1(iXXNu`{AFAxU4>IeAi>&2-kssmlxCp;bbOIl zlC1(MYnA}{MeyQ+xHFuimk1-he>7 zZS&+XzEH`DRsrL+N@#YWa`(P)Wpx?PCk#z#V|)#PM!5o{mP^ft5~TAm5m?R<6F{0% zu0opUQb_GP%x=oLk45g!r^om^j3ir!k!qHmZr@=TrG*qRa*U}m{tlB9t^>(yuYtM1 zB{t98t0w?c5w3!%GAVA_XZKB`vf22vn-i^oCu)@(w2#D_5QPcvpqcuh@kgR0TLn+n zECJfLk(&l9E9B6Z&y(@D5k|8T8r3OraW}i-Ho|D&l;~N`40n&cqZFvuVbyRnL*3p` z)Pi~g)Dnk8Z9g_oBx9jj4-vagc+k1Vb%9$Z{qHjpihJ(CpODtM~y8jSRq;?NJ; zlg23NR$-KR)L^uWytj-_>G4HgPP77@s8zDhu9iB0dqePXNW|j``Cd4_T1qEf0aMSW z_-G%GGh2lXYr=i4=vKf~c@##wO>t)Htp>XBZHk~+iR)H{$gUZi*|B%W?wd_fVtmb* zpjw4Y)GG&|U7(mbxToNvG`>K=XjUO(bxK_JISWz9@6p3Z`IH!c&T^tv$at+1ntiXB zIdp^Bo8t?HM6wDN)hI#PkAO3Ax{%V*z#@B%e*`R0uYy{@AyJp~GCeU)ArB|o%Zz9h zMqaCgW?z|SSSAZM$6uLs(zP%Jf*PcdX{jCsCvE{uILP;@JBsyu2W*d3Moi}3D4B>8?uO0Aumk<=Iz;}2q;bOmlbn}W{c z(G|5BHt5O@s?WfC-Wtm<_f|LH9=0;_cn;MN&n~U1UB_jP3ciUOLwWpNj1#RG#G+QY zI+V=3A@iHZEFENJ2I)HdbLt`FYvmkUL=0a8x<iiBVs<0AXU`=v`%x~YOH$#~wzJ`eRtdsE7A{YnEw@AM9;mU7@ocyw%3~H5 z_xe~}H=Ej~J{k+a1ZI;WTs50iCN-OQVD1sbxOFzQO}~1k&;9Y2E1h%|UL8TrawQSl zl~Cg=NC>i`U4vQWQ*16782LrDZR+Es2ZkbC33}u*oZU>6tRz$S|Z&MU6{4KeKe1ZgWk^+g1AHAKxgr{##vk z1wwZCSlovL8N1dsrC-D{7(4!IrIW5=uI-K&4~1M@Uo&>G1?tAL>1t2OSkR%K6*qkB zYboh(`3)biRem%E!uXqPPPl3qJ?Ct>{9||PJG?Snj;8MUD?s+sz>)bRYP(Zs#ibkj z?mD0gBJj+gVgqAe!JlvZ-BpsU86eRi zxnKhGKEF0q#pFDf;cLoL`bp~U}YAC)IRr*(v1zkyr=JN*e&~W z*rJ&yZ!Ykg zU-l{<=;qm_h`!*Wc0)p6Cdc0*PydF7eT!TKV7j3(r7le9c*kGXCE1GZms!-ZZa1bZ zvTG9k!2qGwmmuXC*DH*Tef(3CLAwgN_3DOwxnGLI`Kf#O{)RoA%M#t8Si${`DRtw* z;OD~F{#uG|1us<|H4aM9%G(rE`{k!eqm^{4(8@dttzAX6EG|y4Ag@!#B?f(>jjy88 zNmt<3vnl9yIcgXsQ~7lU9qsr7LeZ^&s`4nDc8&BfS_RH~?mC5C=P*p?Q}}95oh{cY z?89>?+@bq1JhG>BA8KPxjXykf(p7zKbI-QRE5nsJ*O|KK?}e01p4A213z<4Au7}w7 zqv5e57@ha*9T7Y4R^tqg_fuzu|Gk}etHY(?)IIEkZ&xV`vGkDPq^+;r;|oUy?TWc< z&O?zmi83g3RbH;YG4?f`(Tl4Mh~Q6g69#;h&rcjfGkoS#aGOs&>6Q9k?Rn+ zxJc*<@mEj#v~1F}BGc=XqtjSHL4&E5&obT_Ivij;M!f4UGv=M0jKnJ->D+K?%UpUK z+Wh`)>EQ4Y_6}5jiDk8Zns6%9_7Li#iV#&m{Xg2@B@kr48*^La-L|-JY+ri&N}t}Y zv4VcVWI)HLXaO(v^dnSM3f&GzHo(}viVfHkE+4kH;6)Q|!5r08-vkp-qc+UUBTA~Z z7be|?A=Omh1{08ML*+m^I9NDgZNj7n(h4f7Z-D_vHo(wpiGj2|#j}!_xvuA0;XiLO zqbQ+jFndu=DR>){M$m&Z13hQ}U4zmLdhd*IJ?PbQJ;hHIm>kx68Z&by8#8R&m>iaDjA028!)({$;^93ci(4CUVlu<)Fe;g2zJKgZM*T8g zDGUkP&`yZlyBFe=z4_EXly5Y;lI*)DgL|OrIaa>$S;0v3hB{TC-@9+i3>fb8^JQ7b z{+*M-KEDtSAqS$C(h*|;B5~VJZ7O@m4tzqVHU+%X0J#Q5La$)C+qcW#lVv$-sbjeg zq!DiWFrPH;@Yy+sfbv297& zyBH1T*gA-Pz@|`~(2_FG>Y)SLvGOB<6^ul0_%}&@=ji>usSMMXmRC%O^LZQmezk^9 zYe^AUjFKfZ1I{`H{ zYJvf%Q5#y0v)4WqCfx?qG~Zw@n1C9!p?k*KfSQ`L!2~4RVB7E1gzlEig$eC6;BYVP$exnst2P4rx)uKW=kPgYa z0F%Bxv2XMR%Ovq{|x`b8LpdBNSWHW3^Qq~OC+cwR>gp{PL0aQu#U@~Ad0Nu8$GbRhV zU9QUzywhMv&^E=9$lbM0-U%s=1f#oke9l4CBldGkp}yo#6tQ1!wd8EmK-43~1h5U} zi6U;7D?&M94TMB&Q*X^2S|XXeh;G`*X7 z+?6zCLZ_S|uLx78a+F!&G;Kic=%de-4QN35My&HQha($c+>jOu`kA{13;nIu6?Zrp zk#tBkMCBvL1W=1Lw;tig zMPfo?*|EciQAe~;x=f6Kkcf>-o?=nsnQcZSF~^FANi8ZMjP$u{N(>0xe^0 z?+mcESI1fdghX7%+T5XkgIHUBtAJRWS1*BDSvxq0ZCL9E9qXjlS~#afsH1%SDuSp- z?Aw(&6GiNo>v9e;#2Sb?#5eTamUR`IAmSsaqmsu4h&sf3&cLXcs~Z&thY`Sf& z5Y$-qhD=Detu=(ID(#6fNL9^{H(bx+%e2PpYC`sucU-6J*I4z@G$GZ1tZ|%MwMOWy z(w3Av@J+}Js+v;myr)=e0+OStSz}BmIlW&d-I!|6J=GW!kZeq|F=pIw)!Q=ZF*e49 zTO*Q?7-RA#?3C@gtKNh=UN^E0r+EdpVH0ZhWEWQFsil>uSDE`;ZZ8y&dc?4VQ&i!`v%j+hi&&aFI;>Dp5O;ByN zRIZW9%alWvi`b3TO%3Tuy93+y?duzE%zSnCz4GRNWa7gM%EsT6o>*GMBXw*UG59Fy=p*3mlWzV| zQ9WBa^fAzY0rk)&3$CeT!QOCqbhP;;bKtF$=D<8^A8CEF8Bhycw%>TmQi+gq%e0fR zb^n{sNaGuHeKlm+?COz!AcasK?!)aGW7wDU`@~27GOM1PQuJZptmEsUOBP&JIr2;B z*t-6wC*Ae-_BZJJ8ql)kwgX_kc+Sjh_Z_EiD)04`?p2d+?{JtY>~*r1P_H9@lDP$fGuCMWc1jm1N7|G&t5-}|hb zT01ZymgzF5K7Ia|h|f2j4x5^6C-+)W`i8MNVq1Xjg<^H}&Pw`#|6RI>J(V3V<#@i# z)=TF4S}}3aN`e^?s~hY*_0Z+6v#XLJB-V3g*k#ocG4oz|yx2Y#Cv5A%z3iY-y(lV4 z7w=L0A2@RCs2mNo%&-lId)?uqUC9F+1*Y!Z2asyTG}=efKeh4y)2^Jc=adm` z?cNbQbe(O=-RJc!enNf|IxqWCxj(BlAQt!sb65#?SJq;%aa%R__e{k1{iSI3E1y6%?ESZ%i()Uxs$ zKF0jQP|9J+88&4Zjd^6zvp$fi&A^}nj80jji0VUaLh+bXjs4RNX=?L@ooBHar$!J6BX%Qvs;bizK`ZkCH+qf;ujX}($M*e4rkv+72<1xVHSAHlB$MAaKGA-}$HW3x8s z0{zap-h# ztwO5KD*Lq+jBJT*n^RP=v}uKlfk*ZBOy~-~su`>5_z_Xp)i%?ed86A_?PF~)-2^84 z&E_<|h*;inIM>hS7Vnxm5N0bCA#7hg8Pl^-^K6O`qb#xVUfzZ4Xrsxbdr?2y9K7ya4Hs4hcZbX^I+vzz;a{hTP0{|^$;?Kh z>RhBRdn~}nUV&7OTAMqcLBkNfD;xZi8_?iJBKbP-Hg2}ITzma9-fV5pEZ1Th&925P zo4w5<9eTvJL4=+NU9WpM&~s<1l-)51y)^QB_lRsuhbZ^VFv=6+o8c* zCXPdYQ;eiu$&GvCx!^Q7Q6gsR%i{)fVndDx*Vj!HeN6nXI3=vF#Wo>a@AG@ZVPSt= zALoKPHiRb9x6Xl$SPgSP*cYlpa2pF)6YNqv8jCAdQTz;ZWkZe;V{*kJm!EO2l>4Ps zjTM|lMvnm#87o#H{S0$uLk<|W=rH`fFNhHLq6ZHh%lbId4&zBFz4s;*#!5YuhR3Vw z9~#3;k_I3-P@8m#@wSxSk_iQ|QY~rn)Ya{X_M*KuB-_!XOUwtR^oC5jOB%g+g_c-f zylT>vGxhM*ae88_$wPuBp!M{M`P|e-_DZAouWm1S|H|e}Se*0v%TszoCgcR8=1GHR zu+WUtnk9G(@80o3V*SEZc$rY|kjXAwClH>seg!VTX+A|z&{(?lhD>(hLPMJDB}G88 zDNVY>SiJR?Ou9>&>?I}7Ce|;&#m5TuhD^Fk8to-TK(b4kG{s!HH?k>>_L8zk6q_{V zOzkCjiLlAGSoW4;{a$h}cv8{kn5XN0bUy)`E6{{uHnS?5cm#|nDJ3X5SDH1*e9KUu zEt79hwE|CTkO@jQ$aaCi>>((t?ltc$+Jb}Ytufv?)ca*ZZ_e<#PVc$JdhFVBhZ~3e zv|e4bUEeVIp1*sjL!Z#~4Z-$upN|7%d>}=0aX!}q*PcJzFyN>224gL7Ok3I54Fg`` zdcrxbfshMM#R{rLnrET)tqqva3aUlFA2W=9#R{r52%NBAewfhBV68n=RjKz=86?>~ zHv9fCJv^T-tZ*mZ?PP8aub`(;ghLb@h*JK#Q|@A%A+Lbc#0sD%;tzD5*<|mvroFHnf>dyEN|(4W?|Q z&1KnWQ2DEr?IUFu6o%Ui@-vG&reRUnKRujDH@PBWiw}p)|hKh|n zqpPRB^4;r}{8|a1oCn(E(^+sYTl{U#?ZzO$GK{c_|0_0tZryrdwzZ^#?**HH%{j~H zRK5gH)i0&`$i7$a1yHLl!QW~6aBu+wcEdBU8zo~!bCDKt(8CL3pqm5{%0Kc&9`Z*SFv zOkjDPl|%8))ik|3CDob6Hu&8zD<014izC%9{{ z&>tB#2tH*WITNxxu)zwq)|$a%z&Nc|p*LMw6@ zvK3FX2;_LKV~QRLanHcJ-EQ5x-3ADW`a3F7+ji#(K8s$y=5waW>Lu7J7W-#_#eN-& z4Gg5Gd+Sa)qBe}_dWZ-Vj6`pZLEIF(@PW)0urEc*Zc7ss>w}ucfMH0` z-*@^C8&?5tdt;7NXey91PJ`OEYyb+Dp-Sqp_7@>TT|*W!RDgnIs8aex%itbfl;#pL zRDh%mwi@j6lM#gLmD@%v#*!=`u6F4jf@Hw~dBL)D=_70pfRJ5&BO%u9m8wyNSa+AG zmO>y9ErfWlw|Z&OmN)_)UP}-VErhuB1l(y@=S~DfD? z6oQNc^GUI?k&lnp26tew?^=JB9rJqUPcY<<>P!C)({VaYX6b+=rY`CxXxE#ccu}t} z6tzy>jaq+Gq5e7!qD;mcDO*%6HBNN=VHX`^s&V*Jk>x+P9o15U~lF)#w^u+JzTH8vK*?gMrJf0?_YyedQ5A*2*qQ5`wqCYEn zyC$u#D&XHVfKT&}(((0V)<0scUo-lw6KI{Z1F-&@0{eyz_V%qEqSIe>fd|CwfEX8P z=x-Si=EGUG3%4tz_wwy)!|ZTO5FK|yWYBg1G~QEqzpCTi*|p+4=z_DNX~$Rnu5f+D zifbp&heUmY&afCs4=T=48uv>EsB}7-&r$;EPdY&=2|54?ZW7LybvRbb?RUW=DcS+a zUzODi1;HDJ%{nPa5Om@p_A-K(C~Vq%)X&N-TEudlf|o(s4$*i`>F)P*YwphS{!voE z)hsvC$?S+gopdp(M%V#V<1U?!OpUPaZospXULO*|)0L@wS6Ao&I_BO!OI22G$Ua)@ zzn*;35`^-p=P%?24`%g)GJok!$^@o2E;E=Fdp3aw2B#yhA!|fTpix%zKOLhQH*{l2 zf%V>bK&Df-#|<`2(ce@t&Tw|F^(`Zz!?-&|WrMUGwDFokZ1k}l@srOhjX@#DvGY{( z54$zZ9xj?S4bpaN8m}p9k~$C8>L-x>rPE^NwwWPg)K5E0Cq)DtchQ^XSubJZi4~MS zW6)1JWjDsSlM*D;af#7L1)psCZj8+;6{<`YEAUBX&P#f-!mx48J>3+VoD#)6uTXhm zZ@|*h6)l@QC28t6us&6Vd9iYBet0{3L_iMP=F$dPGaMPOs8B?lk-Rp`0VF#_f}m_2 zg6yL0fIx4ZcUVb# zF(U*Ltjj$%@?k#xc{T&Y1Z@oWK(zgE5eA9(Ek}FX$VZdBpfe=n2u>mB*5E98ON?ab zime1GYdW26kCMam#_aKgqK)CgEGZ@&YH(|BtDr&h03^ZYkk1qB$qiV;BRHesnPygPjOfXd*LeX(oeqa@a3DyyeP6{e0?~ljqgze4P)Y7xcEh- zS&}{=1>Bq_j|(>WOgv&51Fxj)2P@xFNL?NCtz@)6NC?ar9dk+6i&1cv)+cAnAywYW z#%VI$lTFNA@%+mOTD39pgSVlQqPV<*E!@D+;iLFop(uMntGAR_xVpQY?OS{KUOFyv z+Tvn#cZjwZEqYJkCCetrNp=#t(%56TPSKl2U&p zGkZ55T^oEjFJ`+($#gPKi-H7)e;lE;S-I58VB(V6cXb?s&%psSRw6`-3di44yzxm#0 zKKmK=A1RIBVK$EPtiLFSDTxP2AW%riu2EEJR3nRvF^Z~4hrngyI0=?aNg3X<3D?mW zyhE>*3LIWN4vCsf2pe?mx#-`H)-o0S0Oaaj zG*JOH{tAtC#_ zp}W(;0;W4krE}T=fJ+P#uWKryqzTJ1#Uy2Qku-Y8m`X4>1YpN_qy+x9x|0_$!=#T8 z;|PEdeLe|H6d5Cftw{TkRtO|m*OaMsRwTxh zsU%zjRLsdpn6B2fH_eW-WGJQ{*n#Rqw=r6m$-)oaL{uk40%N$OT#`FI>xX2YCCara zShaFS)E;9He+`r(%<9!QdQU|Oa+G#G_EWyD7-9*QwVlTKx66*D4(vr{10&9Ky4tX7 zLJ@fxT5ZME9x>v4McUgYs@GJLSaui!<3`J_7^>MaF2pmW8Gycl+j&K1%20!QyD=&tz|>GWx{8}^j6sRX!rOYy*Ht49cBE6e;u|oeDrGlj z_+kvHD$)Vk=LqC<4k=wnu7mzr5?8CQ*n{HDT1)Z)_~on0bI8dU2srwukl~ar36mQi z5o+|$Qh;hj7F!|Sij$%rUJSBjx6$zoYzBy%<<0Rm~LWD5z7OQ&+pIJkp5 zeapuIa}cGa@yadsr5JM%28RGg!g!!ln;;GW zqM)}`ybA97NxZ&Kk`EC>Uuq7PL9O*-Ys8a5k`ItUzN+jHoXL{qUMxqvOct{U zkOjZ4<M%g98%G1BacwAVGN*OW^HOx(&f zWr8}!#H}P;gIQawc5RD*Yy4o1PTw9HW4=>S_5xLJDc!nefB2hf{gtRSM%<(1>oHeI zWKQ6!Uj@o&@e4P*81<`!dL3+pL!x#yK}L6&j3(Ff`FH?@x7YJWY5d&?RxY(tn7E`g z9_K;JeT#4&M7|b3TGW)lT?IN!L6+^LF~VO(x*jmyRO(uR;}rQaBJ!Fow(*MYO!yZO zx*HF#dT|^Wr7>LVL={iRzS$VVT^o}?i4ZC&iYM-G%x4RV`z7UC&?SF~)YYegKD^7h z|0s?#={)Mt>+h@n%T?A5a;W80+zG^3Z9%l_a4QT_@2;X~ph*@{G3FTKSB-uhZh}Q( zcUAo}+SY~K7;Dg&cr9v$LPB;`ivrc3?`+;AUDG&@YcslaKsj%T(GxT*OU;pz#gcLz zPQhOyb&G_Nvur ztnWx|PZ6(!t6o&0*^?dOb!ZGa($E5tuY-+VRlr>}@L)N8B|OHwLrJz4DB6SV0eJ7` zbrRGf0R*yj02ycLtsc{}IbmC!Y9!Mm^0j~w5((V38U{8hC$oJO27etV#90}I2;<&1 z?#Vg?H?zJVQr3a#2MR&=kJtE;Z3}rsUlQa4k&}(&p0U1AimSFD#>oSf$09C)VxTWn zllF{4OKCQalJPhl!ukyySZ$tN5@{6b;uR*D1*2^FwN1oQIT5vq1ZXTf zde`!WqHZ76#aJ&gS%isDA(A%mj7duG)G8COFMS-d!=`+~#G&7)SXEY%WGV^P2+ zdu2gwpM7nc*v>yN%DAGo3Be%D0uqgMr`l}8EcJ+*ZPXtYpcGHf3-HXMmhAu+R^Ubu zX%^LB5~hEQO4^_{)z~@8XZa|dP2u8#tbpR+g-m!0i40zWf*Ieb=3N_iRhbDH%0-R4 zibbF_MlnlmjIylKM~zV>{V@0fi*&Hswo<-t9`F#gtso{%q$p8IQEHPYSsz1ODQXfW zIRpx!7va=6T(caM9Vs6~=kE$6(sMi| z4z`-KNF@$}bRA%cAOvh~9+({qY)QHntUwS1b}^^BK+eCHbJF!-O9T?EXKDyl+TkD) zX=F;aK<%rbZn_OyTaG$W_89RP3&e$!tdnuGxO_Sm7e7}H-JMG}|NYm6VUUibWzEk~? zXYANZ#0f&DtklSpf+@(SrWnJMzbmk(sV=~^g#mgDg}0o@*gVy9(Vl5skYkoBVNO~7 zv};dKsegjIs$s_6R-|kZ9fDOCW6-NAtOSd}eChNq-(Phc6ku4x>~lz;d>VT;Pd^P; zqr#m%P`YftxhIl~A@X%DhF(=J=BYRp_^ZVo+(04~GAZJ9*wu>)xhIDf$WKSrjcW@r z^ZwF9%AVlUS;OKBQA9diy?`AlQll0+L|p1T%KSpP*1Mj7g@v*dE@06jWvwMplUJC4 z=66a=&*TvCOtr#}g^M~lDmjFSB;Qto_|h$GuPTUONusXcC>CL&sMnP&uHEf=xH!d& z&7sZbQ@&sr>UC;Sk0diuy-u+R^E&mq^19GaAXhPnC{aU!1)fB?bDw6^kF|td4YJl$NmidT32LS%QhhiduousUY-nxS4P*BNirV)fi$@7o$q&M<1wQ)gS^` z%1k1yw3hG!i%nqKIUfluG7D^An)1s}LqVTs0ki7Uh3aG}9d@>;L!^$SeZC1vEeMce zIxJ7rSv$-nto7h8RP$*d7b!|xm|U1km|XY^C0B!>EeqAKNKu1!r?NTUT0`Y{WdR$O z;FK27RSh2%g^`JoNW*eOzRr!%tIB^ob=8#!vi1w>J<^PbAYBJtB9Q%vFXX~5gXGhA zG?Op8EM>|a$MRsiL|Ru6cafm_&+?d}Izzd>Qx4|~Sfi}y!{nFmo|Q<6nZYDbE?)Ci zRyRsl^o@VHK;&Q+Y^q2}8Kz$+27XtW#8bN0;}V>*GfjMRC?#Io=^>_M zX*o$KV`XIRs@8oGz(lXg$FUhsLm9j4-WoPPZxN%aCC7q9>exHiwR>vo4(4OHiaZ}D z!<8Od^MUHeSvoHADeI?X>Y)6No4#t zaZ&=r*TS)Zw3e@x+@6twpZ}*;V$aF}l2~~ak@K{AFRfcY77edhF~(d(n)Z{09u5}2 z^t`S7kXBh*ztDCKwh!?R>Y>O1ha9kdokWd_Zn>Wc$MFwa#{`Y47bV?C^)&~&+ez_& zIKoi`aEz!I8|Nw&N6%fXMBKX%(=&RX(f-^;ldu<};x1vj?0X+B8qbLeW7wBd^#UyU zN^~@KSF-l@#W~{e4>(BtQxpa0a6Cw&Qy3NKX`M(4o-nMOj^IFd2qTaq){sv@h@cr6 z0?4CUPxjTlqjWfdLD@=?&U({yHlL1pc1>Dm`z*TRtI_wiQ|(>VU(l6_igs@%|GlDO z5biymUIcXd@-Yj6E2kq6(pg8T%1?(&xH{>F(}bQr9HWzFM7@s7xr+W}esXs5_$n+H z9OZ*g{_KyFeB9Kk+#>mG|S*{G#d?xKN@df z46>Ib6QTMSZrH6SLQNL6xG4$=oCJ%C>b=d~SvrNbhlRz#qIF_y;o*U9#UZhiwZMvQ zGMuITqt%P6PVlYg&umOQ=PUW|rwbU7SaGMAuWQWUVv&Th0nLrxuYOfJozGC8mUcH2oNcdzw zP^FN(pKl}+HofN-pmpVkosCBX7aA!9ncE@MZ=?`;m>5now4M!d@bQab$0Ox%_!123 zX4A)Os|yXE6%(HXRwNQWnaok@xv_V{sr+%<83;n%4Or(bk&^vL6|FM2*~*6l*u-;? zjR(E{FewUctoi5NK@&zE_~bnTsEH(_>wS31Q@3P z-G^0*g$KM1g#=FK7*)vMN`^zYd2#Ou{->yEvmbYk`!;Sqas1e%WcCzpD=Cg3@9~Gv z2!4gx_+)XQkwVxuP4I8taYK*LCM1hG|Az1-Z} zy?5Q|KCQP5X!PBPP5u%uIh>1-m5AW9`vjPOh+Ms+j~_`b)3#-sndVD_o|3V4R{kt z4g7JL9k03bnF#PJCLZ|JOE%}XN1XTld2siLBN(`0TM$T%+dch#*n%+2`tBU2yQeD_ z9@sV%61ctVd_SAbGN+Sw?>bBRKFB(MiI?nvR(%_%2Qvq2HRHe5$7VP=)yUw$6ei8( zCnk;LR4XmS% zvrp0-4#{4i(kmW*=q3)SbbB6rYxjdYPT1Y^U{2nHSm!Rm+9RdEQ|cZmOZslOCVz>S z?8Q*=>vlF6z*6iS7Nah%UaAQ&f8BYy%*xIqO&vNZoIS(8ogc%zfvFN)W6?ds$6P$3 zIIu_w>;dQQXq+7m^F`*yiiI1ydc_uS>_d~gkKl~{!S?p{-i{};@4iw?`FKQd;*kch z2cMmdYqu8|d^mYGYJ-5Yv4qA{e+)TM$Tf+ox3TrDIqTPY1iZd+s^m?lT93jT=6B&8By| zzwchZQ7(Zm&}S+hZur$ZHthBqirwoUI8k@6p+h+-4n5rz6Y_vU*fgL5J)rE-+kNZ65V5nVBkS)B9M^nedF%^ z_uO95Ju&CxJ#cmI60ChnV7H%+Q#RbI$#J_+3Fw?WB6u)KX&l~?jb|zB(seB6MevrA zfd{*ZKti_nIJ^9V8tr%QaR{3__!cxZLd=peOKdlig|0;IVm2Nj@N3u?q!4!J`Cwzq zw|dvzc?1JDa0>zn*&b>>*xlK6dVBX!!^wN#>f9w*yQkm3yJ0U1#pBNIo=(`f!IRf) zPGXOj@Y!y9I7;CVZf~(|_jsvu@`~cbBu!$^6o0vWWAok?j4+%|)O}=B@o-B}y<@Wk zX|9>rlXWjmSnVoo$?35Jzu3$TsrW3~PReKu4A9!|1c1~w+5M}1P^2l{oc!PkA?1uE zLefMHgtK0MKAnP-_lnsxO-4kskDnM`1BOIT#t!+USh%+YNzyY>((~;rkIuL9XLd4BQ-8pqZw{d^qbJO!HAM z8^Z-0y?y3J1#$KNx^4S(^KKxW7iLG1hsonlgUAG?6q!t9b4^e4kJ9n=WY#}oXT&)| zLF-ZjI}5uZok%2jl07iWx4{iFen#rOeEZrkI~-dZTI*E=2M;TJ4;G1^Tw2U%@9cVU zx1MRzXj}1GcuSn*%mPJgC(nmg^$xqVbPj`)cB3SmB}kIoaFFSAG>2**+3(?ezV)VV zOxO-k<0|1T>EYCC>DI@ZFno%#6`=Z6>O~?n6bNq;O-ECpB<#XRxJr0Nq}u)UJWW4J zHy`ygG3t>LVW6ENmC3>i*?dhRk>JT#f!SzxmiLd60_uxyq?6f^)k#~IC)gO+fjdx0 z*kpJ=neqO!5X~^A%msq(>mHt9yX0s9X044jz8!CKjo1l07N?njih$rqDM(XA{XrsF4 z*NQ%d3t=8!_!cY@zsrR%ZDcbXD`U72W)ms`f+M9M(_GlT`qAQ6Tg14&f{ohK>5NzO z^5eqIv0xA`DG}Lcg1*#m3bP9Imk}Db!N_MG<7GY4k{%6-Bd_SPiqX19voY|&H&93` zklJuW6`!hZh2DAw*u}&L--kbqf{JxLR4?* z$jN9L85^$uvtn*Nn$~Fh&|=$B_T`vWRHCx27;*F7DU>-i)_&r_EWFt4y1^Xr+ zY1iCaCHdzOyx-2PP9`@#X&qMwA^7o|8LdLa=pYD_09hy+DT1qmAkz!MOzDM_{A~uJK)|oXua)VUO%b z_SC8M0+XRB#im{k^{Vbjep_rpvw-aY)`ro#5Z#nRa0w7Y!z0b%8rBJOh_8?xu~YrS zXig>76)p&ZBxUh;95;=07>m-nvc#}S#iw4F>RsKtTq$~K7kam^)yZO{=vHR+QaR8` zGx<}LZ9Z*b6)9edBAC>RqM?x@xTbeXg`vxHt#ZVe-Z44V3uD72CGz_l{t`7j+<^XR zv{-~Qb(h6iV5K08)mBLa$toqg)m@M>tkaY|av&(b#rrB|p48;uIFX5U7B`$^^ z!*eXGypp()NugY`zHn!rXRSZRRD8w3Cqng>bP0*v6_NNC=0ZC*MU04~v8k28L?i`q z^%NQh6qK8AJNk!n+CE- zL{bpfTnaS#Qd=8Gc?P@QQmEQib9c&b*|6+Ni`r^RHbK%*L{bpX_3)*}@O-Dk zLjOff3t@gia^VjUz+eIK)EfF8hli*FVtzpa;tvo&DWGd^Ts2`eJB2>R(#4n?H<^Wr zW|^Xsa(Ql=-%ZBZ4CckrP0(-^l??2^dG0fx{S5mL7V^J}5qcnZMI8Ujvuh?--#uV0|J1ijSL&Z2sP`a|xF}Gt>Wg(hYSm<|!OIMb7C#JG0 zl0H;eSzp#H2q!5FdI#B%o~y;F6(eMH2gOKwK#}OGx6Kli9xuAIO-0cI2}cV(w3gqS?Vw9PglKwD(Uw4P zjiA>a7Avr2Z1)!LK(X)f7$)5yy(wt04LG|d z1SDbLgi790fXNnzBjzw9;J0wPARJ?mjtfXCXRB+g1nxYJS0M6Eu;?A-!(OOY77O*t zYCTkd5Tw;B?=DoUSKbYP`fd%uj|2tIuKm`zItX@NF+L11(KVR@qFc z`+30*EVCQ;H_?UF*@eicf1^YrOCg4657Nhz9M0|K5zZ;%zl$xRlWl;g&To~-WNpq6 zd6X0n{Nn!0*y37Q28e3?PKinGdkGU$Z>ay{6OlBmnOcR#jg(BS8}d%!;T*8ZWgtiR3LKh{kfz0Eq=ww4zgmsFY=#x07$`o)XAk_h)7WBaR@b(pjs=&~~)hv2co`y{D{J51Wo#76RKncA>DV@k>2yy1uv&*zPop!mcu| zdf4lWcarr$Cs}XcB$pNs`%)n6OATOOUOeo}fv_((fK7XYh4}WBK-gCrzM6>U#FxEXeb@nGCm6( zR@8C`r9el$F{>G27r9fj{!j7cxAANuyX|`=_t!0%F8hGDdJ^MWpH3_Sk)rCvuHI1S zY%xK-)q9v`hetE2|JEztI!Z~s9<6*+p(gcBh;E6OD7E#e*#=oJPQh7*TC36X{E$zM z6MVm}cjpp`e{^;ziMvtCHhE}!T107I-UX*)s67ZgHU%NdOmHg9{e zM-$wDJ9UCED(Y^O>J^34W^IM@Z3;Bf@+cx-j}#!tw(e2sYL5=%*8yb!f^gEt z9vi275Gj*K9IUGPX`RYZn3`#<2z+r$v4a?vX zf?NWUUQvtREcjRiet*#iGS7OC7JiV!42Ax4=)vHi+ui}(bh$E34rb+AG%-TJ-iHt) zI9NF?;doy)(lBvMn=DKmzhO*qsC8^p)^L>G81`_KH|nXpg%~H&l(n6c(>C_km1)Rc zb>V5`6Oy*z?HT_pPH*pI7A6saC!2q*P^jtA$h!!kFtaeB@E6Kbw#7}NJoJ@}huB{K zasl=-SvD3>LY1~7r;FGevRvg`eTTHIfIa&mfsg1@G71w(zOC#PD9B}+Of623%kI3& zA~wL179l&tofdgCgPUieFzV4ebSF^2Rc`GpgBUij5c;Z>fLAU(y7WW^`(Iq(XYiApkN55~SqywFN7gF{nq(VMxGUC9n5%#IcpkIRrrFK!Pw|x_EI! zT{$*p&Y>Q22_y*fI}69mIn-k=fk@1@sU+1r-qCzH(o_>M9dtx%Ysz`xa?! zRMM`~<2wNe*J;IKRD|p9QpHjPU|z37ZEh?oLeF$qi4e_zecMv)!e7F(N!Z!}=eUMU zdg(m;R>xqZZflU6vsv+x`zNrFh;+`%Rwpc8hK+VG&!|nq{aKvpZH+~p#uXH)@E==T zrAYZjedXHFAWbL3WFNMYnv>^bsQ^P`!ee<}F+fSqoJ9Rvp zid=z}=C(~zdAVvKEz%@a4a;_Nq5w$FhZIWygy%tjEVf^_RbTB=-TDGm$7p+1$C=lu zj_zcQs5OxGsEd9gas9VF83V}nTzbPPx8-0j%Ybpv-)$1dsD zK`uc^w6?sc)IzaN%Sj{UMT&S0PR3q>v{exZI*`kQKr|PQRH{Ka)WMZNf-%#Uw+PI2 z4UZ-Jpu8$cuGKTmlox^7oh}n|R5`P?r-P8Z5A`r4w#7+aQJ)=ligN|kC~E`&$D)rBm@G60OWSBIQ=oeqZ!v@)aZMaY@gBV3%7hhW4SgviRa zCD(_L>{RO`J?f86G?5-IP@k zb>os;CA2T$bt@@amd}Z<{-l0Z#(oF_BIt(1xJfvq9kZ|d!)(&q&mW~lZ{ znuWL>rsYKinM|g0$Z*~85RN!xuzR{Hr=9R>lpSETw-i#c&SFE_8|DRVy{+#Sc9IXn zTq2QPLC!^Blm{tX>owv{XpLs_tq*B2$l8HY&Jv*E0|PitB!L4^;`@M3*#T4MFOeEP zpwo-&16J~3n5hqt!5lXh+!fl}ALjiBnhUf({79$jfQk7^wR+HLL(NF&)(3Uy&=}K* zs%5ku!u5wRzO+QCPEplD+>X`qqKZ{yBQG@V|9+R~>f#U#o;oZ!cZNy8j$G!w z81K$V2RrV9o6@zTrSB*$zoGa3diM6KF2I189S!5+Y&jD+{XNfm$uK*l>o1*J4yI}c zh2K!<$mo$7QM@(Db9y*qr_2oz^c)MCgNkqT})}xwgWZa zQ>r9u(HyVU%B`>SA|xH?6i2B@F=0UQ8#M4Yfw`m0lRVAc6cTazrZfUUlZxJlKd>txR- z{UYC_%Ggu7l07L8t}et~k@x8)!lGS6s!t znfGHD1;g(J9ejV%Hb4fkYABvUDD6isP4RL(OhzL**YWW}B;$May(b=HT=F4AeQ4`XxEq)y_BgxG{igg#LMk-LN(0+qAFB1aj_9#5#x{dbWCGuZ_T zXnv{${ce4aY?$nCN0tm+B3KmWKC&f|^AqhxO5s=?Hi<%9?jOa)FL{K@Am3MV{6W19 z;PQFxzT3YWSqR1;SOShln&F4_@DDN=_8NZlmvKc&PAaRt8$8ga#vE09jFQLh?iKOP&O5#9UmJ|v-^ew=a6{qGBa(pt51cbq(16XV% zri&Z~IfGC+N;DFFKxUem>&cNb(~?7|00NJcARv&BVNuWQP$LI&#UxY?^?_<7WD(6C z@g@mfmu$U|>LecupCOSp2*{)->9m-naEr__O=}`&(uhs4APAWhD4#u4BxiSJ>k&9|TTx7c#ZjoFC;@>BcKGXZL=IdfhfpB|9w|Y< zkh=V0U?!m-$L;$upJvhsY*MCxiJa--K5I8{gVN&yRvu_Hh&+*_^9q(t$0+3s@w$8l zS7edyKDO6!4#BdNc%%dY!_OigCPoB^Jp7bALZy)Jt1c%%4hYR=%ZV(9R9mC{^>jIqG#X4PCix)|viN?1AS>ya^r5-vu~1;eY7jangE^21vv z7uE_Ze$9ofzE%F|T34}ZR;?P6ZY{>Til1EzNsV<%S0|@&HkT@6baFN(O@yKgmVq$^ zuM1+=TtG}gteS|0K2r|qnogxE#7l%&wiwf?PEHL(!}w(9PR=`XcJBRQGGf~|=Ho#& zKC~1i{@duio{eP_S#5}=&_4_6<)PbT8+(Y@P`w9Jo3!5O|A;TUn{yKtxTz?|CbzM< z&95)V|AY7<*DddA4FIq3y2_8}C+UzEGm>5+M){GIO9L}WT+%sRbGsTJ+mdyRxm`P( zCh|yRQXtpNfyT*LyN)q)VByh36taTt8f8-+)p9ZJ0zQu3U=*JQ@~CfA`*+PBQkm#_ zF_tUF{Go?e1KB7>>3dbts7X_bKP*F>nu(`Y>ZN31{W4jpCbGrvmkF;X(peYA!vcp|wkEQD z96fL-K278@R>;G;V7Lqn_H;vy^MiB>C1ymj_+7BZt$}>nmnuAlb-`lk9mo6lU2w^y zkxZnNENsdOuhkQ4#h_t#fdx2ZeW3vD z9EDCZ;zP1&BA+bd zkezs#K&nDvu>wgp4Fr;(G_(+mq0N0R@hv3TG!aN5lNJi=0f3VlvXcNAzX!mqnh91R zl)?qNpY1fJg;pl(+HRqWiMRymO@Hq)(}#B zT~v=Bq(g#v>zOq#3omvHA{py`4~K)2!@)3r$fkYG8oo(4Z4<&Sz~m*RYjUnm33HS@ zNTI*X=)Q@gZV(kw7d-WXf<}(=Dxnn#Y%ny{*ZM#rovI5Q;w$VsKY3~L`04~!F(HyY z{^ZX-`Q8cLV|y$%Iut8=_xJdg2RJP6IP23w=YXTR%hRxC>44TnS?C|lMniJK*v#^h z03qF!oPut99|{IWq?ygzI)aUQ5M&NP0w(d-MiR=2v@P1lPaJWHLAlD=Vm7!6*IvSG z5p$GR6DY)(Esyg-x;#!s+Q{$c^=J=Lc5X%5OCQ0CKkN|7#gzyKU8%G;_hH*_4=OT> z0?zLoBs2I^3;3J$Y~^=lD`6y;1<7Uk(Xq3iCol2R zj4?w_yPZF(M}dkQxc6XEC*RqfPav;?*0Pk1C-d17+pk|NCF8*oeh(nLSyqRzeXzZX zB=Pi{Ex}9~(Pc#RgEF%CX-@E}YKpoQ3`!e@fV(%>7uRt;jRVN}vv`|HqSm=j)(_~z*)Li=RkCv)e ziyv_pDrbBPX2KT_li@I(Qf*#us?BUXNFSBPl=M!%xG8kaS$2c_^7UqK>f&hw}*QI(;;s!3>ZUlvsw{An% zFf7B?WSTNZg`;i;OAk|aAXw=N@UH0!YxVplkC)}A!W+&5xA`z#Qcm%meE&n(cnYV+ z!IpZkNssvkTN;BUk8-TQej;wNThAD{f=s2emkgGH$}(fX-GDJrL4*DD$;swj4rJ*D z9OBHoxgP<@(qET$(Y4aNrR>1>`B;UN>LcblpMygQ31Gl6n-o_sT$nuOiTX-DJ-onT zR6f1{9QKFl1$K@hHw*jrkE`F#~u#&^GI@OI0HX%M}Ef z#z4xgoR{Eg<@aywJf0na$LQ|=3iJerX%BJ+%QWbjuk8 zxYMSO*cNYS+Q-Roo-XlMnZLeJq{*~Tk8E77XI*~9*+P=F%V{j_B!?-F^+h^LAm{4y z_WZvlo|T zva>9hoxE_DXFW`bYhGMEo)_g4Ik%NRT$#`mA>bejD_D~-j|g7i%j~0Nfo7SF|Ca&H z$>qBxzNIaAa&>8Enhr9Et`I5Mv9)kE%&g4DK<1@;*S7Y`9+(OLM*+f5)5&}a>+!5< z!x=1WeGFnMoYzbB5HQW>)`N>js7lcH&@L55uAT4Ps{~l$lT0v@nB_~db{_r#cOWor z{478lMSq%2pnZ$U0F=k-3JF-Nbt}ZfCR8Vq#4;=z!TAg*Ip%74V=sqzRKB!Sl!Gj$ zgbM*mD9=GnCYdhtM=e{f7=6GMdOb!pR78$r8NT2WoxRWQ;9I)3v(4mqH%Jb1yra4G z$K50{>4(dPzFp>HF)rnoWWLIq;S&1+)}BiTzUY^^ID}ze+J{fr5E%}Qq8U`c#XVMs zHOYn;usDRUEWj+6U`}4!fRtul2AHMt8CdfB4yjDOq!$Ued5(%>((}p@F2FY(0#tbg z0p2CqtnUI5)01<1a*WL5-yhcEEW1OQ%&L#|Fc473M^#^eqUmzQ!Pji6ugeay#HRDXPAw$M?LuOe4_h7Ks`^LA0Xn*gl8Wvb5vaJuL-&5FqgS8pWV(L@pK*j z|APq=_nkm-D_`lQYpE`9z$(38V2ykek*iOa0T~zir+caafuCPp+JqqsONU|dv>dQ6 z!Kl0(h+iO6G$LVUin-BTG5SDIYZw2vX_s0_Rz`>FZ~K^&A+{v{)n{dxKz|Fw%VOxt zmG`Zi<#={UJQO)J)+p1@_2&A?hHx7#aJS~s|9wR5P)04Ci4ftM`RXcj4INNq^7a*Wf>KVrLAkf2o%lCB1q@{7ah!NlJ+Jjl~tC*bCs(1 z8$jx0?tr$By-*+<(_aeh-_*Dv-47!(FL`s+$jR0p~FH&$|d+QEe$Q6gM@rneh1+9vV zXW-IV?5Z!+EFDekibIgCU1F2oSBm}9y0}$Qlh#IK22J9B*4@yEcuQgF$VAF{t*M+y zZp%pIH(e#w$hVTUq9KPQQrg=cq^%iV{Ktrr>#VwJ!7|Q}8hO8iMo5aTk4gXMi29(6 zx@v<^V*`bL$sLA?U3 zg_EUjf-K-jlA58SgjU!m6DmxqCJss*3`{3KP%@Tf9a-m7!ip#R(qR;xiQoX}!LJo*}Tda;(Gn)y#khL#N-DX zQ-87g0BWh#niPTYUKjr>cioiZ11OMktb4t#VhEg=3+0%svJV?%zaE0qAbfdC(U(`Z z%D}L!_?^7PW+?~x(l*!AY&!4HmXako4e?W^uD2AO-hBLUnoK5aVRk<~N{-=1bb7PN zcyX93-pdv5lMCBRM+vlU1$k*7N;bzJ6#L;AN+gy<>GaZj>2UH*CeS%05M7Q6i8)$q zu3{~e_eibr(DFQAKqCeXC^6w5mEo-X{^a=&*ai^>`^@obFQ4{~*9g(8^%}3-y`+4+ zx(utcK*O)Asp%{vxFR8lxobSX zO1~1*Tqgg3Q0t~7V4%8|?^<6rs!oUsZr6Kn7*zqMePPO~n-7}n!V_~ukjA|yo_usL z5Hf|AlU#DkASbKL`86WO-|S)!HxD6+t0(-n8@HOfA}|9sI0TRssAv@jpD+n7Rwt&?<#M^eRDG40=UgpbxGt_(7fW zt7$fZ{1@HzUQrgH>q-NDROd>J;Ftpt!CBydo?1crba;D?F?Gc6)??3?;kpmnL(d` zyVn7nNm}5u_ipwLcmW%!dwV04FW*B2GBicRcIy-7N&!`}N2|XbP<7emu^h9CJ2If5L`= zZ#h3Tfdus3erk3I->N=R6-?D$CKJYX6MeWS+M#^K2E|11vvvqLAv@#mRE*h{D>l2v z_JOcz)zUdk5Vx9u@DQ~F`g#SZ2FFGd940M0`|nol`7~m=_iIHp@Qv-QYxh z;0>cHAiXG=Kr{J+urDc~J54m>6Z4`#bVeY$$Xf3A>LA_Q+=a>NG$%?5=wm|Z3Q%V^ z6eB?O{kpG{ArvVdtzKLuuy(quN)Z;g&TXhCOkIJ%)-GRJ3@{+90b{HH*bizoHXSAw zO9o`m;gkimmo}1$8DK+U$?l)&Fx|f<6!x3H`I*mthW+QmyTxZebJ8e2d8i9$FKm>& zLQDz!=;1C#I9edKDHUO5O7(=9@`rT_&-?jC0{gr4gB1djs|KV6xbqvB9l-lh01dU7 zm#8ja?9+s{0QfQkSTPK-EL@Q?n?7D!jUGJ|VP#qMgjp8lC{|a!v3G+gtWl2Qq9~wz zju8(qpID^a%7?HdN6>UPAE7PHM;U+3_MPqBJp!$JlqiV`OfLu)0H!XkZtlIe zeq$kV6;T$jUP6zUqUzF{&G|Iny+$?FJ-rcB1*R7zlK?zhoA=f(uC5cyb;l#9N<5MY z;He9wTQ~1-T+62YX>veMI_MrqF=>J9JbuQ^SC73$7vI5o_`8R{K zRug}>;6M~uTi!c@|0yh9|2HC_GdKvKZ`hcJSUD+$ZI-`ZHraKWUj(d& zH6kt`e!hgLSOUnpu4*gK2l{9(Lf24I6|i2EOaKp>KeOgdH}`h$T_?tDG=Ju%DX=_W zG5{psuF>#&H&)*#KmwLl14s%S&vEhqqb})s@Ai%BmubG-J?Scm3MelK767I$>Ds=- z&c;iIaCi+-P4~epqAXy&gdVZxR*P)}N3mG4=Lpy;$_iWch+(VCD7M+_ceG=j?sSgo zlB_^=M*htp)kSsw?if~d=rURNs9q5ku+CLaf`E<7{AP{zff0Zy!U~vr!hqGa#P`ii zrh7{)i3&h32o?bz^*)?g1_$BLe(z3akCJ2spfmDsrk}dd{eA{#PLZ(CJ#=%L0?hLz z13=;xwZSj z9b&oenG7Q-usp}f1B|-(V201`@qyD6K%Ord0Fw2Z7JNG!3}EJa4pWgAS1(x_-ye7O zA{z^V^9#1$m>ugfoZI;^jCV{mcF%ASWdZUf^eCh;-W`pzLpTwQ_}QJ#YLsLJsx$I$ z2B~g7{O%*z=`h&d-rn2MGOz9vs)V)x_cD1H(lB>6uH7aI>)tRKNrC4%P979h7qxbd z@>#y8Z&>IawG>?e=&X9clv9gpnDotcx^vIP}gX+iaXp{iT!*}eV& z!P9-M2Pg_8pJT)UL*1;)?&j^y?Yp#7?mp`xs0u7EN+y7(u4~@iyQNiQbnluuO@Zb4 zk^vy8YhRF8tiSsg0X0>Y@a^zl%x^iNd-^35~h{`HJ?K;jBx`;mlN66|`jr z-P3YHTVQ;dJY)##GS6Rb-`Kpj1=%OjVfV~a(G|$fss{|!AJq(6+5Td=6`!4rkB&Rm zcfJN(*U*WX!2ebaBoNAx2xa*SpA^2ACIdJjo+`R^BBWE54nSD}Dn~j5-`{7)7Bf^@ z2~O*Dh|&~@Uczhuk0U99ZwIjJcVN4ft93NihzdmK2_vtH#G4;ZQhF~#7Zo9zQbp(y zYaNbMt&(PimDt$Qz{2N@+(KY7*jbFNvWLb2?OI8 ze}P)zD2GAsAk%K+Y(4(M6a|#C6$`J=@Ygc7C`Uqk7oVv}O0`r^{5In6@!h;}!EllU zOvwZ^ z&J#|cLB~Lge-5_|UmxcE2W#|d=GFr(ji_|M8;DOJqV+`}S}!k!gPY70BH#mvF4#L2 zCXU!Az4I8Z#mfdz&-O5%(kiWhvp5=(7kYcs&KvMLW?DJkY5q|qf$&aM?+>-3S*6tK=AE&#_d+n_$($#c5S(K^W|Bn6nW z91Q0HSib4@9XQN!G}j6^1CD2`B`9#bDCq+V$Ecpcx0|`y=MHtn!cj~m??O7miLbmb_3~+ zbTXqiVYV)`wGbBgUeWmhI!{-;&jL1F>o*?Jbg)xbjED+UFQG?FUmh2SYYEv|i*!d= zCl{9#1(q}NZwADt8UO;vwjQTbT4~iyH5E~%n(7flO>#1bxN5KQ32^C^oSwy47{i5 z2<`&!6(iWxZ}Fc_18Do=%X{4)23Q%X&1BS(ufV1}u3wBDtB}IYc zjQqRCc13nL$}?ET&SB!j3{{s_44@-x zs}AQ}xi&w9YhOwDywf&oGsp^PF9;?8$k8atm$Mw+XD9a&RILqbr!AnpbPW!Imh1qZ zqo=gf*va8ghsOkE>z>lbL129iVHKQvEXdp& z`7odU95$|M^x=t&M!>50@sThf=!SMvV|L%f8bSh zH)f9~6kQA#G&o2XG=5-OTrE?$Svt6YkAFbYZVvfe*Pgs`gE(Tq{RE8}2)wTvi~+7= zS`NY8%8pZ`y|kW|vk(^W&L~Cz%Q2ilU*AmTMUf@r>qG5oo7Te#2XO)KJYfhB9sM1q zGELagfm(%G>;BG0S%5oxQ?UYM^&Q=GT3J0{fu=rt*xA0dmzTFHkr)%B zJ3+Jsx|h%+hR?BxhP-$up-aiF7ttt9f#-9Ke2|{*!M$@b?ZK5YG4zCJOFf}S4BwU7 z#=$cZasH4=-qy%mW=RuGb-nu5uMP0yrS-=!50p-QO@K)tXIMDwxLUK_;QuGDVSG32> z^!3?L`O$m%H2VnJdoqOc5$SL>MmA()B2a(9_8Ws98tu2uHQ{)zz9cT7ifAtw0>t{X zs1)w*RNqw-P_g-4C^(Z6s$I~w2K(&j0V2DFIf_u58ekWc>Aju1?q9c$` zn*iO-hl$|@@qkM56sUa4fQIH%_hH%yuFEl_YrK34vk-tqK81f_pzFu%rQeYL^-hd_ zi?;*;?ghaF0M*Y1!pPESKQU$l1ziE@Mac#*)n{~jIgCR2Tp&?YjEt@#Es&k7o-hm6 z&!kxg<1uE^Bw+#UjQl&SHSA5Z<18795%4cz&oR+mjMiYX5Kvz?e_@~T1BsrsWib^RFADpoE6^f>{V@onk#1wR7W zxRZV{USBcOyuSK@$?@YBwk)jkTKxzeoM`~XOGxpmFoSx|gs9IXF=2CdD@G=1a1elB zNJ@SHvswFe%^<~YpNNlue4bqui37{qO`HUdoPwc6udgrL{^xQ11F;dXUqX+VSNyaQ z>T+qaECB8ejK#@=$mmUWLW(y)@obTlAOUIWM|Q{q4dure*=h6z-sdMU! zS-?f6sz{;=L=3>k}*_a5d zXDhCN_uVGOITTC6P?oE$3I9plmPQx}+%J=dELL1?gdMgl4>Bn9VaHL?0{0{`c*04b z|2*3ujrarn>rLVFeGa|xeAI*8JmYaXq+(?8#V|PvalXjJF@J4km68mbE+WIC1z4rx zgsoCNW$+sXnWF=J;y7}U;S2=W=SyyYu~F)jnN!7)Q>T)HK>32;2QVAO!m)LgKXNQo zOa$1o>H#x-{Y)VWs}pT)J;nqaB`+|3j&TBXjqt9SL&rfh#@;xO&EbH|j?~YD@nYxgSwX1mv^o0mIuU1wLMM z3d|V@oX?ls0Aqb|@bQ{$yGe|)QAJsxdI45;*tQmcRi8rgkE>lExJo8Q3Q5Tefcn0Z z`jR6cgZ5TnkTFV*2z7x`+sjeEy1z8_&=$8E`F_wBO(gGdcl2V^$@z43N78!qw4It?*t{7>S zhnK+q<&ARk*Te#9u8;i{gKc&~t+~Y}M(npS5%6CV@DX>w9TZ~sPZO*}9V^qu`+5#lm2vomB0R(Qk_5#IN zqR{9Ikj8eP`qD^7$U5ALQ5uPf3y5@6P<=fQkoft|=1tN^#i-{IbOoyCIFHaKY}u$3 zsR_IGD%FoaKpyLEA>1-zr11_uLXXZJOZ9a~Kp5iU2ehO(MjetQEFeB#asgWhHI8a` z6V_y;#-WJI#-Sbr=f!w`6Gj**Cqm=}Mtw(BeT^U(fbDw1=GkQ6&;VJ9hH(H73mVz5@@CscuSga|xQi;+P7 zrX2;y5Y!`!ug$WUNIf#9FAy91zJgss?#05*CZbCS^4KLLM^Iv9Dnx+ zT3`z2eCYLtQFDCEMZgw0KK`Ylrqv$Ig=t!HpqiFX8Qcb%COa@O^zlbn{RU2vUwxlf3p*^cX(<{5lIGaK1LhE7L z!fd4J6)PhF`c3PP%ngDPBYsbc<)FYwi4h_%@Vy=$$#8eRUqA_tb^v3fA&rZd5aY|P-b!By(F zgHpq(gA{Nqi?JQl&PE_6=Qjiu?_%MNBOD?X@9I1R*ygb|kGaerl()6LP$&KWCx5>6i_c zCB$L0J!3~z{4txxO$hRe_L#}hG({EL|FJj4Pf<%I0yR2uplM(8;UuL8D#!0@7z+XP zInEAr+BCe3t!E>|4=;+308EcZ2wD?FO5IC)XU8!w9P$hl< z(b);~ujlY?Qxr)X=+x2#P69( zCIU4&^rGqHNlC|Y?nV5`6U<5gH;%q&8dr^zC$PiEkE=R6A%^t;jHU_A)I0-Y0dC_s z24kz?3`rr@-hFdFqv*3E4z9uqUvm7++HliRtU7fA`&0Z;tYjl3AcuW4g$$=TnCE@O zhb-Ah$nx(tT86=td6?z`APY7E@^VlotgwOiG!3fots1J4ZY+LK#jJ#U#(^e{Jt?=G zXR;8p@cG21X5k+(cWYsm>bw-(uoq$$#Y)Jx8tQiHLndR>)DQdtTBKe!5kK`)e1vrL zWS8xR-O0RM?g!}QdVjC5F8EKP_b6`0Lawj6-(coxIsjpZ_p+-h%(<8N0}#SXi1RXe z$Ru!$wvUA$6)UK|&T{re`_Z}MKPf$I5^1)y9}W{N8Y|l&PiV& zd_`v)o7(dT3R{Q{-W0D&YDN=r;J>Lf08$ke}I9pG0dszs;U*do* z2mrYw#FS(YhWSIbj8mqOIQ+H_F&4rC<;#>CU~@#`lEf%^kiyU*qbEPKZY>&7f$40; z1@Jifsq)hzfrH~sMYWE5I#q$_9O46z-mJRLV-|CJy!4So-XAx~1Q8L*@Wl)LAJsG99|?jlq2!)X{7*94Q+z*wTrOyR=SJGk*-3Lt7nU~1;-B0I z#S)x*vBbsUImQd4e4wAszFg0#{7P_p>o%vsDNm;9GTfE~_xlc(9;WOTCeG&bcESQ8~b$(Nl73|)$usdEO$_r?URw9Ds=P}FsYfO!=i}w%Ueq>kd%&K<_=oMhIgOjg60^v8nu=e9OD&6gC-oc4%o4T$E2p!(d_ z#@$^8^@oCN6&_L4St);9u{F|weJ2e_3s^5oPJnDRZfFyNMa8+*bm8`F#012#W4LdzH! zp1`>R)(at|WH4S`TO~m#V6@PXyukSq=GYkJmBpgGvTC3Nj?GcNyHH(TdDlewZex^d z7Z<8aAg`lj96^`6VU9CP`Nf$lWhcja$=)d6&xS1X=pC>3cnImOuU+gNOlaTsQE)fp z?P>;TBM3s;?}Xt6J=~3{2VDopPgV!OUdaDVzx)g*$iCTHc35Ty2e@oneYil0F;gMu zmyn$JXC~cyQKai>nP~om1O&c9#;-bLWXM3wpEeY;pBFHv=P+MDHA6>sLa5gc3>+ZK z&1S^qOcD=EPMOBBE#_n^Wc!Nq1!k{}W-_uFFTZ>N+g~EE6tcZ(#{+V0MPQ;gwoz=; zSDY<+ntlGYlZKfjt>u4uaG=4paiu&Cn3ps!X3cB-KE|aC7M*uB!Oef_Qf>>rf z8e*R6v_MSfU>AaT-R>29vbF`{ON;m8OLoMUTDH8)i${Ffj`(s*#5AHW#4E1Y5npME z`0d5(_-#Alw;AHgjf3U!T93{V2Gkk1Vj@t#Mq)DO-WK*7~N)01Lt` z7Yq!27Yz4uhzSq#{E$x|5j_W7-Oz}*(C^ub8{oSbLLwXY)5#2O)`kf#0x_WEr73-Z z@;u=QKz|fMXp}rU&SpKjmKks`R1?|);2FgWz=>rbMb=n-o!O%%D>qZw{oMFMqAk&Itsh_t=LhA1;F zY3tP6@DD@ukwd^QOQ!ROE7Rm)R<3Li)dy7YcVH!(A7TzJ(-OR?{DpzX7C6Vj zE6oQ@x%_&bjNyb;Uf;J;b=J6MF4B~Xos-Zz%@h78#E^s@>A*4gL7W*DCo>sr2mtV$ z<|3e$PebG)M8M3X2>2NbIzdzAL@|hhSeqm*IMP&k4ND;o4M(ch;@!rsRn8x;zC%O_ zIC!r$BO$;U#TabS7WQSDwJZ+yWtqST*uWTIUu&m?N3+$7kX@`jdWTlY9xb3Tb1fr= zLi?}k&pV5A<~I=q*Vhij^+mkqWWO1_edXIETVy%EM)^Xe`y!BG&*{w z{{)1p(*M^jU}9KmRT~FB5uxO?p(zxfIc(m)Xv$gB#$-=GC}8PuKL!RY6;vh(Cs44J z$w$4_D~AW9Ux`#4M;HjeFO!E1YfzbF^;J&?8>#M)au8@gPoFkd?fTk+Rm&I{s^wf8 zt9HGogN?0P&cRS^$+t1wOBXMWsN2Sd%Q+ZuOTLZazO!(+oPz^%79Dg22Lo=apbNw_zl|GoIeh_D2Hlb;cx}+4otO*I%GDz++9~1! z;#u{8MSv#wF4LK-xcDy1;uMJwxBRwro-?U8w#2H@6d=}A;@>$2uV zfCFC5G^foYMFnS{I=U1xb;MPVCU3}CD&U0YHavuxtrJ8|L7Q_z@j=&40|iw{2~ESE z1DKZ6=CLAG@MtWAp5eGgSjc|Fb~}`u!EtYg*bSc>u%b5g)>UNA;!H6HGZ#{R-3t&z z4k~|kaOE0gQ>vtSL@Ix-<0%AuqY|)!19AmT0(p68p()ZNPz_5V)$6)c<+S%t8vEx# ze=G{sbu$GVi`tEw5aneG0ZbFLghljJkH%vIjqp)}M#d*?s_=!^P)muZWh3L0##Q*ZeZL>ll-RyG8b|^T zJ_{x+?D~Ak1#B8L%fa97?bBllB26Sn+5*`b`8RX8V1?1@*@z00g|l2?yk<67Ve1Q2 z7^969#(6bS7~RJcQDJiT4p$i8vlFbaD+^Q@qm32Dc{NcOJrX6N!sKBnTw(kelwgIu zyFi68+E`(n7bq-fL6o0?w=(Ll_q5u(NOSX;z5w}x;06$bCdC8^whQEVRqIS6O^RtO z1kkf1#j_38wI1zQ7l0L5P^^q6U=7;JRth~`n+)g0>Oi-Dq^(s36M^?7%(t1dPS*{v zQJuASP|;RpTElr&OB0p%bto?%%W z=hzA;Z9d%=k2IWEMLs+Jxm?PyD8VdpW740!Y{Hh$s zTK74>9lpLNzZbmD-h>CY!n~`<;Q}_3%BlF+uhm0j>%5BGGz%joBCd`ICmQenlhAI##_oz zek^6Uojkgq@lIWy6E1dA6YAmTgp02Q`4?~BxwdZL#CdVgI<;2CJR__inHi z5Cy^K{B2GYI4zZjP=DEEW^wSJwqZ%y@fRx>*CCkl(pjiB^2+HZEH7`)ro8Ks2=dr$wo{cjPx!If>{G$$xqH{P_E^)B?Y1mvCWOP=ZTYbv{ldNUQ21m;oSmr9 znmGHoB3=mMZwMbOiy|!MxEkz!n1o>TYUO$NQpr-bVg9~$6n}Ud7GDcSFLLtbLHsgq zi#IGXg~x3|L-2Y{6N(=HuTG&Oh6<0a>U+WM>^**xpk}UWC0h$n;pW051h1EO%l&o0 zOoXVf2=~A*TNL`UU?(vN3Ep3-v}&MuO`=e1szkZ(gmYH}1lM!BML=*kcb{GK zvUK}?#zVFYeC2z*ol{ofEeVql%+8n0cvRwvi_DqJclBAY@bI9%7mUu9jCR+#uYE)K zf_O_aCDG)KV2`j96a3#4{7vtWq2o9!*kMX8&kPS8CLw|0wfmff=AAONK|?g6fbi4? zQ4kzo`X%_%Qf1xGiGnt-NYAt89a0e0ckmk@Op zJ>ZivR#9dF(WClO@c0(+C~2`fjo1xF$(-LC#{MktHDZFEtL_aXt`Neqy0-3UHX43% za#r5#$5r?|zjlfc4Y=N^ysN6D_xuO!201`EpZ~=tN2^B{fBu92@X^7aee%7Nv;E2B zYJZp%#V72~SHV%T{OVQq-;JaB7_L-2Ik%Tj`$x%q0Cz&2JioTGzH;%C6YJDEf9FEM zue-W1%=S64m0~tclM$Fd8KhIL({J}Sc6N?0-MP$PSj+OuoY&?jAKv`+XFmhF{2GFB zcRmBJ+T}#H#|P|Qs(~SjRv`+iBwtE>!u9SQfwv#uJOA08H8S5D;9M)pQjyTqVNd@8p z0-?tlP)#;umxT?|qCd^}5s?Jm%+}|(hGz!4)ptw)74&cWp~H|MVfk&PO}Kh*HYu)N zxG;GPpZ1Sd^6BA)h;Xm4VMsEo5dMK5A@jQ)q(ST|tO}*|Mv;gpS1)o$#HRA$Avg8F^0-N*A$4^o%$xV&Yu0y|!?f3B`!))ibF z(aji8B%{gD;-_)@MoZ&gMVu?Je%%)NeAEB%D1F>+I)Fjp@FPRu$8 zF5Eer_Itw|2AyLF{7(|D#=3(0`^Y;r?UvsdNVB*xN>l8`ifaWDHz5t=!DwbGbFnTe zSyuQwO00TXV(tYivEo{RBtr^3QoMTA(z#oA54Mj&)XG=%p53Fss&{>o3aq$R3iNp4 zD4ivPWR?(!i}gauvcmUWcT>i_KEY_+kQ~d*u580&Z3eU)B@vhlZY~wqN}JztYZGN9 z1f_KwbTnn!lcC>p!!%Qi{vt!SmRHPA&a;8{!F?G}coD8?oZ=2??s~7L`7jI5JiBtKH`D*Wp;i{DGqH+e={-_v5| zZd-pRhFtHf^#n&$Sz9}R;i?H`^SGTj*xyK~c=F<4C`g=@dg~m*VXZR9AwtZbh)q`4 zFaQL-G-kOJW$mo4US(hA^O*?NFcon?SBL)e$w=_71;=KlTq;nIV%k3yf@nC9AglGx zlocXs@#Vh9#Gf8L8EahDFd&x-5P)Tx$PO*v5H3w^f=5ZjCLcXf zn_w85gQsW|7|I)F3^f!ngh8d98FAqO?G;ti>JRgRuIM$d;%L#BE_1#p8wr4V04F@q zCFdstmGebV-5s^kYCcKX*+tbN{$D+bsCheE_O|LTdz^0onDlXV^}YwRCg*-OVoJ~d4T0j0U1WjK7w zf+7%21$F0@!lE*LbEHG^XJY05C$5#X#8CsL=at&evGPjk8uOFa@RHR|0_Ayp-Rh^# zwjmN>U4!azSr14w_}jLA)m}N}y4i2Fa(>*}b6}$Cw^}oQSg#pWZ;m6vu%D= zO7Oe5{&~HF@_LqL_q(XWfVgEkAgV_Hop-_;ZJe+y?%_q7W@h!f=!WHdr*}Qkbi?d- z-uZsg#`)L^mSqj+chT(vyI(vdWbJ;RmC~qkFf_&t?4PaLwe-)=lx$OSU?C8Ls zY1pRWz#d-HFyBmR@8O@R*{0@zK_W{5sG5%+_L6=-9pX&jnR;#N4a~5pdP#=$Os_V* z2Bu(Cul5w|nSyN!4yY_a6|t~g4+?zp19nSzH9KC{N&u3%B? zDWvvmAs*Mc{w$!Dlof(qy~@rlBd!0bR-pwHA(ycE5n3}i65#Y;->aJpl1rJ6b-L>3 za&Jqo$UdT``CTrjyBkfrmetT_iuFwWR(?sVjzl=De$FQeoasp#r=&28KJ*$sb#~j#7vD+0^yH_DS7D~rP5zsT^EWkMKMa+8R z^vwA2%ti~a(R*z|oM=G3axUIHhVYrC7GSAPt*ONGtUKDabv?Fc?Yg7diutQo&4fX= zCda8z&l=ML8dE@CYZ}T``tfYzqddPVUQ4>#reAuNGl+AB3D+F7Voczf3W;G_6##;`qWXQ03)L`z?sGYijld3#d?o7onz%R6u~f*RE}8S%`X zr^23rBQC2wZSxn;%z7%!x)qjMI?QUlapPCdOnWL!+o{ExhnPPzYjrfStrN99TSUj& z$*iSglBus}t@Tv2)@xk?v2i&0v&MQl8f)O#lXkDJskLV<^;ERfz}Yy>rpEPY&zk7z zXrk_oH)LT}Gv~9+7v0ow+D@2j)k2?TymH~$Ek`AJ$uw9RYduD)=5Ad7hlY<0svl^;9x|kAH-1N4C4lPSHV>0n_lt8Iaa1oIfoG zQo1+9DhpZ!rW;2;EwTo9t3_7*QtVHQw85@irt17?qNnf52u#x>M}u7%@z8g1K2hT$ z98F~nc4frl>eZ*}$_PnQY27=2M3AaBqgi(pR6o16SpGJjEPLYKL)lb)W|7p%GtK3r z?YsKkUPG~#O_IOWnsaX_GgMR4WR2})ztwvCpl)8q2)pV}&~&4dOr`#Ci%?eB8qU-4YiVPTd1n zf3-%b?DgB(BLcUxQU%c(l#H!Zs@3ARKiIu-z4zWPqJon|-QeUKesI6|U~_kOZ}n1C zaFVDSoP0xp`^=`h`2-5x-GlO1IJ#5mgLFFNLk4jvxp4p36f-}g##Kb_j;`14qDU=9IN;MbKk ztPSgLZ0_EeK=0fQ^)3l=$>V zVb<1Gj;oLJte>v1Xn(3kWLBLHroH3-?7@m0B;iAJyN1`sBQth`t>K?=ee}msZ=?f#TxC5GSVn|G%p7Gy`x{Rs3BNPl#-}hm+}q2F5w8!qL{5- zT2W)Mm?$MtH%j@2LTL^A1sme5JmrxUJMGvAs--8Y4pti|VqHGvv8uJxg1MbxHXp6X zp&G{9wbN=mKK!OlzdXNEqcx1LYde=j-M%T`P`=5|`8GV@IDZ6Js=y#|#W9p4G4wBD z4YTNw)FVXAaFN~N93m4Lr(rvss)3_5dOS{xalZ1DhmRQ9!F&v3#(bO%SN3vPQ{0^- z^t|AfS%HnN;Tg7{W}mq6Y)9>GxJv;oG`U0Gf(%5MJu+`a3UT+3A_Xx4(h zeu1AD%u`rk47lpvD;r}Q3`nKYm28zHt4g{yuOut;R8{(BW!B9{N%Cq2+TAowb9nS1 z57Wb%HEV|9!>n2JVZP2^H#<(89cS-|9glP3WL9;v=;o?2&fdS@jvYI8yiZPw5fEVw zuVXl~Wjf}x3m8+<)CCF+iW=2*!bs;^6~>F{@ReHT-c|phUu|bb9CnLdAi5DKS+M!l zn2&A&VBcRAAnIxA8HOpWxWkRFaN^B+T)3mB*)knF*#(TL=)`JM=<;Z|d{pq|_Ktm~ zBQ$^w)#9|70Pb#4Tn zGVb3k&ex+}))lx!A1G9am}odd3F|xiPmi7~iq&E`nH{J$!78-lN}*r67pnjSaev0G z;-`-u9WkJPoK?L_oDW&03ZdMPq1-8k=Z6JMBcCx)?`MN*1c%@?rA)IBfF8cTo}52E z{vLF!lS}?;L>^Es*awuCGC=8&p>~_9L{0KnQ8`j4aGXuev^XMFW5 zum3PIefUfPV?`lEzdO9V^{`m2tgbCDL^ncx*qRas9L<~SDpsYQ7o%Hl#OatfOL9XH z8|7HJLc|7?1vG!wraLZJHTaao0J2IUVxq}iEn#pruDX$3jP7(Gmj|wv=mUoe5uDJS zsQdG)Z0fq?RdlagZ9u?yIe`6^vjSGq;J>d&j`hoK$1*Oe3-5RLj`r%8f0!e_%8G=p za9_2%B~8Qrd;ukA8Q|*8Wn40>-BSZ!nrRn} zoXmny=vO)oBMdxOI1RJg%#BdITc3~-;?xV6^O#l>GP`7wgrdxgQ;krcGc+ZPBMAMr z!g&dEGrN^z?A{k{G0YSKvYZ%kd$IhTgg;e5Rq6^F&e z5Dt06ehR_6{wkM`tRp~1{=hJylK_MXTV4@(blhbV)(~PL0YV3(yF@GvO_yJj_~A!B z@FO2k|3jnZUuM^ef@kZB(Xq>$I-&h-!^b28aGF!7kw4Gn;K~mWa0?ssbXQsk{q9lm zawWI=f8GEWrmYn-3n+RWy~82M^ZDF)?6v&+4KS?rwBv^0kQJTJY*=B!ar^M8;CdZr z2m;~*99$>}oeoo7*#hntxs`xewCn`XH3&pZlYbZSz1srjjv1<7dID+#1aZ>=Zb0&F zwM)-hvi+OBY>uFIYb`B!;3pvctQ!sgw21;&5c;9olqbla&6)Jqy<94yk!r56H*OL3vU5ls|q9Rsr`xyeQU`*le+T(nIAmbe_4T_|9L#v^Dr zzeWy9_xd>v;0$iT8k|BzwA_Mnxn`a!^TAALX)zJT7XOqRA;Y=?O)&hS>B875pK-wE zhDZN{k|A9<%+7m zeK5ONdsd(R-;I*xin~(hQj8(kq?Az4gUi!XaM|7Z|2A`pv{qQnUprU+R-~?zD53+= z@OsUC{JTB!w!DX0;lE?&SA8sWv5nL7zE+6i*S?362U)N`Xtq>m*Ot3?hKu(OM?-6m zQ`f}~6Hz1$flwwDH!+JXzIioVz)9c5{1je*W#OsoWKn{i7JLXe>~ZDXff!=%Y%xC{ zx^yBI-$dd)HZd;Ya1}=eW_7~w4G9R*DiQ`L(E!; z@6mdzS$S&iS_cv~0Uc{^POGI=c#VU~FObS4Rd{#>qJ7Kj7cWw zJUJ}~3$~NhdR!dM@7`evM8|n@pX?x51_C3s2Qj=`0|V6JZZU=9{XHXQvO|bjL1SZ& z8>l(B`P90MCEpEDY#3*)8jVVCj3HG8XWPy%&W83$^7pfSwGkYG*_1N2q{k)*(0lie zkTA2oHk_LZr6}k*20(dD?Nu3qHKUV{i!!1ntT04%QEcFRFWI?4Bt`=^yr=n z$IKr)zJ%*a4Faqc$4po(hcG(jd3=7He_D$TB1F{)(UZ>~PA6jsJ?~CtgPYYC^9g@wvj-bn;)9^A zvc|@qfaS{p@&gu;90#mdsL;&xVj9wJL1Mvedz#%hRWc*^Kq(@lM~rP`Pl^THGjQy_ zE!gqwO-OzeF$06>Jw9+WIWMHqe!dS7$sxp~n6Y#K>){ISspX&-JsZzlVcg<;t3YL>IJ3*i{kQ2&lW|oA&X)eV^O*T)6?Lt_Xp%J?$^e8)u9t#@hN$4h{BE)l9Kzj{GN2Q( zKe9%`Q0HfVL~;w z9QO426-qYuPrc;YEJP&u30)JQ9P<5yNDlc4Db~in)n~Xq&_C{u3lyGxh}6HYbg?1@ z-&HPLd>ZE4;q_wp-#vI9bp%sxa3qoigO=+kT9~TM;W@0%9~9%suu9X4h4D#OA+DpS z4IPq%`b91VtYsPz5NiSB;8Ar9VokDdh_dZCL{yCsRS?p22TQDo!MUml^Ww~dxd z@G085!{3e0PY_o6zCXrnKgvvhhtpv5 z$8r7Uh&T%H0&z+jMC@5BQ;hgN#WZYzsSy!J)s!{3Xpn0xCAeoi$l0IA@mMZPj|?=z zn%bo%8niHxkq}2@iW&pS71zv!F=uX5agB&Ltfs8N^%>H#mh+c`;^YJlNb=KskE2E+ zU;0pxB1Spw8VEL8LGiAk`Ov4jDPc5!oX}pcCR0v$FG{%j#-~pU#MniHi2m&4i7vnSsqY)VfXo{Ko`Z1_4t84vg6iD@rt%>yB zAJhdbxxbqz*G&+rQGtQ{5iQ-d;N3(8x)!V?1axSLSZ_Z~)bN_6&FCzulX(_uVFF!C zYACD_(qES!fixIi^!#Kr zVo*D-EQ^BUNGtVN{dD!mk+-bYy4)MoIScoujV|r@MFW3|8}jI-OQs z;KFR(am$!rx`W(b)VK%j%}Md$cs!Un*W%3EwLSDuNp1*hqa3YEPft^6)9J-T84f-fT&aVWvRP#vX50k{8AIV1yu9I^UZe`7!Jq45IgV^RXxD_2D5Vo`w;dV#Y&$ zjwB_deF(vMlHHGJp+SVYPe4O@dJvTez(r-S)acw)mfwSL;UTcRq_HR+{}YRj=5WAy zxa7Amw48?*`eqax23o5|yZRyacAXk$UWtuB)T$98&48&aSoK#mKjL=mm;sA|gD@NQ z2$YVmiM;V>>D;-|@%jZA| z1jn&f7x^Jjx)+$yU#TAILfw2aIKlHaY!va=*|Bt7NJ_#4q%Ta^@^l2_$?D9SY|rlq zw9p_}trjiqabnnTvKovh%avNvVg}B4VkSETl@&DRq{lXhZ@>kC!>M}DS891J_hJaW zfh|6W+lGS1_M|T-CoAY|+zui?eIb%VfJrf9W=~IcGMTQ_|6@Lp-`S$rAWBq?=Ja$B zC)45V)M{Dz9YifP2(VU+_&z6RfG}Ph72^ST>nXqZW}O|osOTV43IXAI8WzOa(OKb% z2Kf!k79WIdLqX_tj+?}U)8T|$xZ|Y_mdFsqN+rVb^tY$_O3-OPSAtS-MsN_KDP^r`z!OOe6-Lg#)Sdr znT61^YVO=>{wxHM9E4d->uCV!pgyeRNIT8udcfL94q|PJ8N1RQwPY}IvFzo-MJ_Rj z4HTmNJgM-a$HVdj7>W&{!!ibPYOk}ihMU+Q<{2jSP3HZ))my(cXA zrgZYd0+Ad?%x`L-o8)Ot_H{M1Ei;0TTn+6>o#15gF$@}oy$JcK6O$c6$_kq9z|)If zS{vF%*;9BRF@#PjL|^+E_FqCkFL1)Z3;LBn(IGMT@IgD0}krTEERgezHwoLDE z(ycRr^u+d;Ug4kuv<^)>r?84V7^=hmgX7@{CVa+x#;4;9tRU8DPC^;uPqa->=T>xy zHzu~L9@mSN92bNVj)tMrVfCpywe&lHcOhr6#s(YN_-cE{=`fFI2b-syflH^A>auvw zZ?qcWjT9^Zbes{e&f&a^B$Pnv2q9V$`hJ-ZK@p|+vO9#B0 zGE?q0xPWH|7O>6WUHberOzwM)jIuQEjM(eH_*3$7vBA*Fn6( zeH;WBSS>=U;H4{NJ+=x#dKzpE1aZ@-T-)PpT%4~*%Yj;8Wq>Cn}Z z1VjCDMoxWC$l7}OM2G5Jn|_Dj-jm8BT&hZ>tlEf#_eM=4cSQbLTri{ zLrT7=i%o~HF2ia%(-(=@2tutIO-R=!uu8NnjJd8YJFZOx#77`=CGj|;N zhvcV%=Y~%}Unyly(l7c-ekytm25nF0jXbt_=^DS|yirg=D*hS{5}?y_T)u$2p*;@53yWHL*|dZ@YYDpC0{Nl%EP-gF*N3qF=84 zmd|UQ8oebyjNU42Y%jDZ8#Z@3W4jtY=Enyu^nIMbHiDPyl65v znB_%YCO3v(E5`sJ#MN)a~a+eE^;^cXR&_!^0gX!g0-s01!c?p~(J`HpY zCB?>WgYL=3mEb5`tsa326I#XyFQ?1J;O%49jpa>f*`lLh5kfNDTbqM>>o^TAKtQ;{ z^awY>m)?4d4>|LuM_l1)kSiDnnr?n+n(_494PhNOzc@kzAWAA4lx zXiB5zd}g@Okzw^4vC3QwU#VvsM)n@_zv{8}h>kQiwl74emzjWfLVIs-j5jz0CUcM?t2QB~C=EyRook%kYrg46wD|vTF z`G0SLeWf*zJ|B{H=C6H-*8Vp5clUWy{oMJ3!P#uhI3tVPlyYCeSyB|QW$7#9*zypu zZq@deZe?Z<5ks2VQ{$B;r>wO`xIb!gI-H4T$FfsaSx20Y4GLqgdL{-pfjJ$F_0iz+ zZI&7QZBOyWRnwY}g4T`Ft?f{{)q&Ejj+DN%9ZFy7KGZ2XQD+27zOm8%|-Y@C6jY`ne zibVqkdC(qCkgj-4=cj{d0qcM)w02yd7IY*sXkZ|Ax&=&-tFR0Hf4Ob{uQ4F%gkE4? zy{js^|JHi}3k$NKPs)32Uw_&7934&n#kOm~L4!;Z;waprvV=GBcu%(VIBHNJ@&r%1 zRByrJ@h*;k>z-s`Y0bj);na_=h=sv|EFy7qc|GDNhk@AL7ND|t-Ktd(Jzm3;V~fEO zF6CuiK*ud$T5zL6j{nW?HUxxC_b=Nrs{^CbOKDjTcr}<}n3;YAOm{nofU9HMYT;{W zz3FlH-BLd`%Rbh=x}mRfOrv6#SGtAsr(PPVi-M}go&{;gWX75ldh0b$c2yKQsz z&9Z>|A!sa|<@BlPmNvQ(Xw1HA*b}lkQ+~yJpe@A@g_lA=*lzmR*g$;){q6C5Ia$48 zMqX~u$PEC5tVSL3%WvMv2kIc-Z--shgh539)r$iusE$(pRK@wg{KsnZ-~|M2V4I|X z+I*|94FZI%CSm>7X7dUZbjw~+))00S-K&!s7KE%0Wy=E9CuTB%!fhG&Wa)9ZMmIuL zfln5upz?_WinnD9kyXU;asUWgWg)V}2DCh8YZ^we);D zL8DQQU{&Ys2P;fVw0yNymK`^)H5n0(#@5)M8g@%z%|d|IRq3c~0p$wLP@e*CIsGGR ziQC!1fY8I?&5ZFWW=Q@~qt4humW*rubrGS~(I!uE$Zm5eqKh9cfV zc;m`zuXzNN1gVlA!t4M*#B`#mLHzjO;PIp9k00#q zdr^11&q>tbNA3ZF=tX>oVdyZywAHn&Bfd@o)sAhifOZ(^*AAF%qM zT~*7Rz%ei?h(cxv(8^-eeE8tb(+7u7_V@Shdo7(CHK`6SbXrKVIGs2)7N;LE&eZB1 zwx`rewZ+-2S7jkY#X%u)dn-UV}--2me zryF}df4Nsoi{rN+jA4uo2Yg1u6>Prpa`?wgFY)Q~Q%V4cj`Ymo|bHrjPKjsi}@v4Lg!;q)vhAIFmVQMQ>4a ziZ0=ylp()}qUF*K21`eD6lSd(tx5M5)#n`d@Xm!@*v0i?xZrz>I@Y@*+Xm_sK;?*3 zxH%1wULFmXkBXHD_5E(`twDmq{aCR?0@%AnaiJ%QHvpCh_kblOY_QZIWze=Hp^2;_Y}gGoZzXJpc%8EnGbR^wFau5qOam z5-PDCq)a73qtA%d)63F7yVDr!~So=_2WB(ZMQs02JEd?IfRw=tb zpp%icIjS!X%`NaE@{S8*9t|Pr0ub~RA&os6j^?Yye0EDjotMTovORd40=AWf5Z4rT z-8nDUY9vQ-awis&?RVi$`iI2|t`-#ynwM-7;U1)7uh=ftEBlF5r;|))N0?RyrpDOsB#yAsxCt6r}^V6EiX$ZyfRK zX-!5ULMlRt6zo-7VYw>!6R`a}qDVZsHJ1t!k`W#f5y+^C&XdUup2a?UbunL^70U?^ z{2e!~^-)72Hl#;y*z_x#j9)GXt2z8HJiy9{{imyIM;0oiloa0{9_&JWO_u!G!mEpK z4IZRHw_kZ{20mMk<_kVj?YQdgRkEAhf()G2Bv!)(pA5KK5)~XIk<`;XJUCpz#m~E= zGdNwwg7ek&G#nGsNow-u)A{+u(DJXVYw|WKq!j8rpOLP>BoQ>J?WumKo>+sSWep}I zLwlTy$we`R*Ljz_YHI4vdN!UGyZ7|SVqXt5U?IwgptSy%Zh<*XqfIdFD}xiM(xrG& z#F6T7o-F2Y9}`@5ClmdjdL(M;OQLCg^omD9vw3}QCl*PdiYHsA*0_TyCXy$ijkRE#c@0lL|a+MJp`iOWNsmF z$dX2RQJZ2}<#X@`c-_8Ot#w>>5p^XqvjHI+*$WTn>&2)zETD&~cI(vfQ8BBM8OEpU zP0A($d$jqvc|K_1Av?LQ_zY^0TgSsbOwyib2Fofx`CwTGbK6#7GDBf97^zQMG=)(NCT3jBYM#Dpip4d>)ud`kyzz z85Oo-iyt{W<&Y!rtO6;{|Fe*j-7E!dt;lg`=)3H3B@^BRUDfB{zn&iAf80PFwx`GO zAxAl+dN^KcPi1xYH`jq20z+1GB-*q+m<6uZA8sE$CBbw$JT9#JKRXWGLYn;b6-0%E z=u}}yP19%6-l5~cp^&1sd~}|Hbm-KRtA$jKo1S!>@9=7g6LH`m3%dQ(m4EMc{o(ED z(fBl>0FBSo3`~vV;2vJp<3|J}jWH1xo=X@(jld!&9}cp{`99 z1AA*WE>mKDQexSTmSIuw^`w5s9*Yc*XT2{oCRqpKyK29{Vqi}`B4dUa9k znxh2=>*dgY)TQf0fKQLZ##c}}8o}C)@59Q^q^l#k#sHt9WGW01*2*0^hBPWFZ-i@X zaAQ1rLwuv`|I;yLZK>K%x*c>hgIuMJtV^>k8h3-x9I$I^6G%6TQYbd15f&0+y;M+- zyC0-$mm5^mjt<`~La$t}ZpW)aM_oJjC-)}r+4rR_$yF68Wi`?6(Oc+WnLxAL`&kVWSn;RJgHtf;b$Q(whF4-0&08 zo5ddiBXc$fA~1jc&O5L-s)+Stl++^&l$F>RfA zR-KXAea6PTMxP1U%iTM}#e0Xaxv>x%bk}*muqHpRATX>kwodNVbOFaw7xUA_@LXi} zPr1HnLnZps`H_$8AjL*r63e}_#r%Beue+{`u`yjq>?Ckle{4%fK$~D3+QVi?7gB>Y zT%xfJOY)gri)?O9;`(5w?tCr6%`p2_YeLmgn8eii$|gz=3=wU&$Kyxy$x@Ck9k0HS z#M>mKGB#wo6@`{RznD%|>v3^3zk5fF9UWf|^XdqJ7r|gl@-TqwFdiSwP>214V(QN`I?jj&v;-*l03i=LedcO_OCW+t zVaMsSu%b8{2^JFaIR3+XdwZfUkB<9C)BR&MzhJcVg zmOa>DEs7!SX=JUHxH{<{ZN^}S&RgEw`4iJnS`3_*jhv3@53n9}pC8P-}nUOfr zaeIPaNd&$C2T6ERz=QR};fuTK^dek`Ao@vu63cajD2QNE80^nB&%o%2F)#(~&Xbe6V)ppcX&6^B*L;2eKG$sVcHr$_gyz7C7iL1xFBLZDCBT;#uo~!%IMhes zsT$e#9dE>OWQXw*<%pE-RI{Z$DHd>J%dx)r7psRx$ox(fY+a0*o)`mG7(pQ$kIx)U z&Wl61_7f5v(ev|thH3~fpv7$Lo)q%=Q1+Po6jDhJV5N%DzCMg|`KH1iFoNU|Mxq!o zDvySnS>bT_G^@i0@2(~T{$K(2eTYYSht>d)aeW8mTK()!dj?65hR zGyAukeF~{c=a8u;%epNLpkEpD2kHN;-D*=vO-hZ}P>_O3 zfI_k_<`;v}*?RUKzqIJ(cF_|Q2t3vz>g{E4EN2Q+JfrvEWz(x{5fU7vq88GEb)c^o zsA(`3Egy;tX-V-SWT6dec8t|;lY?}*S6CG1^UI=c(F}jfL^>Bg2ZHujgRhX}Wl_Ax zP`A7uI3zp8>Xm*3tLCLb0);%NdYELaojnpmlFQTS*&U-FC4TFz*Ogr^|a08-(eOxM=!b6bY10U%so6hZ6G zFA9EvW)D#WWv3Xo(vM($$uJ63&xea|2ltQ+qmC5N3j#WUX?M-2PukGS&J}b@(_aJo3{?tK(3cPT!07HP7>779J zDKhsyRddgux=e9l1)h#umb}WG2{&&^2Nsf2^9pFE<`fgTvhNJWA=6@Zy5jeZwhTvM z6|3_pb=?>a#7XVMo+=}88Ay*g> zGj)4W=t8}eJQ&SqD|Mlb;43Ys1M_`FM1*|kCLEEEUbh{<#cVt$YdK`fr$K=rdb(^V zqc2X+VeL?=hn91hJrLknkOMmtWbO{|+&M>$Ky&+!&sa7#^XT(85zhw{ATng<)Eb7; z-E;JF%CGB*ps=<8yBIj+M)&v-YpTzk+vj}bx*o#gyvX{uQ(5DId1^Z9w*R~V(x|f)UHpgwMYil_0OM15 zT}5*l8U2=$?3l+jt;JR4=jN8Bu#l3PCviOpzpYP$(+?@1j;8`#KDC}W837P7VW(i7 z$}#r~`M7l4>ELoPn&NCsQ3?wA#7=38_cc&Kw5G1@O$8J%GH3m~IZxSGnw?Ll0x09I z{d`QHQ>(ELC_rSW&izXB6u5(7T$~KoQ@El`y}m0=!?%34A*2flh02I{+LB>YoV2R0 zhz!GnWMV6Xv-SC)St#Wl_m)=(Z76LhGz+9xPJu$HDXhzn!W7kTwSp%p;f$*@M|HBE zjnrH9!|Cpkx-S3l0xt8iUkGYBw~U>jC>z^Iun>I^h)ywx65TgUI!-Z&(v$FN2o?r8q3rmai!>U!HwdiqGcY^Z1d38#752$62g3a31f*rEmpxlxU9;89@(%@$+ z*u$zG;^Gmx7hE;nxag<6kVvw7y_he?yiTsx zy)+)AK?iWQq12;0q(eqIo1fSlQ@~2?jBE8?u_@eUH>JGJmfWJQ8QXwEs|(awAcvlNr5+M zmyj;P-1en)t5?f}pc_&b0z#H;dJ0QtOE~GsQkSjR)M!S4>NtRF)AQlW!SUck9mC{- z@nRbl&$J`ZpA~_=zf`xLF*|;58xU)~2u`H{+KTm99!@O4ZVfoHfUjWf?x`)CNAT1n zy!mxu?R;$cgtFwMc06l|28sNBoXF$#3hpJkttKvXe!Hv2sgPmKX7&nY%cY7QctyY= zO*Qovv5+f?&hyZu=kM|zu4V0ou_4LZsU+)agf03oAOMG5juw*(HT-7n>L0F%rXL*= zZBE*FTc5TVih^ryhkW_Jqw(+F=jQ^@@BKLeUE--dheXN^cwY*}wx2p3%LyGE(;noz- z3bhY}RbR_>vW?KIVIj5THb+hLVluY2KV4Oub5S9&gf3lgV7R7TdITKOOz6^GN!O=K z4`V};YT+!>{#EytZbG(H&T^m75fV!1 z-`M9Qd!vJ$?e}j!R7k9COcW1MTyab^n2=Q4+EPPsVY=puYm1;lV#%R{CN$S3N!GsT zfrbcrskS2g9CX*#l3}yT!g{Zc z7q!+a64hx6xZmWk7=k`$-Lx)6RAW8RHM(Zo)ZXJq&yQ{&KH5JT+_`{I0O>DF>BQ9r3ACPZ~x%lU++@9rNw+dCZGfAG%z!NIe`yLT9?mS^MK+H&Own7D;a{m^?>L+A%j z9zHu{6j~1UQz%qQTJg}Zuqx=z5<=$Lo&Bdr1K8#}czFBiJNt}9_92h^mh=#OtEj02 z`Ir!q{2do~%S~&7`5QD^d>Zl^3Yz?e?EPA{3Rle9@3))Z^MY1_<8UkW2$Wus<@knc z-j2J_WXW-;8USLYw_iIF1z%{n8tOG`svlTBpw{qQnFj}lgL}7G^}~GO>SFozH{ZN? zReiEMU!1;K?Uj9Vxf&i%i#JaTc&8Z-VvXq%d}9JFGhohIDH>88#CMS$e*4*jgTdoF z-`w9jdhnckXv_PPqQV1MZ5Rkzj$*p>;WH6+b`-OvM`05nh?{NyHr?;h?Y+lGPai+J zHF)RggM0TLJbDPW-@AVsg7G(n?*4zvb&zd-$MAma4(V+i!hqaF>V3?2(37O@NvAn{Jf$AF+;UQPIJveG#O8^Zi z$!F#v9Nl`pzjup9hqw4>z2jES#@w=w02%oM!$iLCLi*@{RZPcg&%;CxTJktBG*T<% zYhT%Xg(w}Zh*Y4^wd4s0Rw313Xz=!17M1J?2al3eE(8{mNvIb5in~|8?ZoJ4OQmtJ zF&w=3}1o-ZXsauO2@C3gkDAr~NQDQ58I`QPr-Jn(s_7peIv20f*D$ zzSs4Htr_G5*d<3e8z8o*mR09?==VO6K2^nJ4|$n=dnpM`IaUl zv#LbaZNBKOszw z`kP;3@Uv&FEa550YZz#FdDe=_9lXsKL9%D9Z0V`66_7T#Z*3I!tvkuM0SMxjmz}sp zzVy~xJoINTJGt_cu~%Ra{V$3WvmpK9LA4ynyu0JAg{=A4a>Hm*IimD7#JZrnDAq?q zq{5T%@h18=x<{Mq-i(BY(X|?#+v{$u# z#B>{J0_xi-d8q%_jy-HUm0dX-$k>EpwC_K-_u!q|j|R^l?>)W?8v>qxNuDV0k#<03 z679hErnXscD3~6u!g+AWr%t-|hFg!*@H&^~J?}!2y1!J-|dQ<*(dPmbr27 zp0dmhh33Yi=Xdw_-hA|Y|IywJL<3CTa+!?IiqU&JtFvO~^kTg;oQ-!z>+x{s5+292 z4`_Y61BHnA@)!1${u`jbssqq}WAEAB+c!`@fPUKp8tSdWtq#Y+9WOhh;l=QHGM&Jc z#B>$pX;;(%`Q)RzAo^aQV{~#^xu0_+=MjQ8(PmX{(02Q#aflY`D}1o^=45pdvMZ?6?H#YQPXO zF5s$ocsFu1vCcz3>VP~XyZqS)+U+o0FwL^DQQiy;J%P}m;^a=XuYKpNx_V~G+_#Id z6I7I+L*$R1Ke+qg_KoLNyxvnM8E)LKaR7mzag7Zxkt{AJ#R~@Ww>wzY2r57L7-fRW z-*Z*2ml!@&Shaj}=VUQIC%1<%Tz}dDS37Ox&NGG11l<}Pc6m1xx*JC-Nvuw6sV?xV zA%d{HyM3;_MYkbw1nC zLK&X@u6Ve}(qo=4xPV3`AE{%4+dn?&0Lmk_{Op%^Z&ZCx)f$*esJ>tI;8W~W%2a15 zJpSG93eS;R{v_)bjW$5`lPPr&0_ULDFG=aRkT!4gmyo#F02?%!Bkb+zVp4+{DJ}M((Yxc z<LC^j~i$)|viVcV9nCyRU~zY}IL=4@Zv=l|epZ zYt+3C*ycR&9&`lY5naZNf}?3u4L9L6t65R? z3{C&OvnVd+%L)8}k4sZW(@ix+#h0H`y_v#L^=1u*8w3NG81sMzI6Ad2j;H1U1gs>o z{0s>JRv7<=Q|~AN9{7M636)e1;nLPi*pv;U5A`Pq9FxU-b`GyjFi-rG_Kwg>SNSFh zvT%*rcv!U-LQ59M82yHqA4VhELEY|70mYS{BwZ5;Zu<@p6NRw)aei1&Z4F^c zXt{zBi~4z04_TSPPuipHq_g}AiHdisS+6Q)SK|~t^EJGo!QQCA)}ve%S3X?Rwr381 zBN4j}l%KA&Ld4Lcq-Aw~j1vEgjd&f_R8*Sv0*M;v6Sm3vfbs=%YwfKfhK8|4LDurq(Lbh@f9CE5YM*LCnIQwK2C zdRL34Re+_H1u7_#%cfQV3abpjq?I3oXj?%cUUt)ETw`dWF{^;P9ZcX#EI;)X#L_ef zWfM$}k%qBJ-RaeTXOL2pW0cvL#u8fkYU-y2D^)?0;rLn?(`Yf}k5yq=SpZWPM5`=d z50z3=7nD&kuEt7%4oxyWb~Diw<)+o*Bv1 zyalCeTLs0JHy{Cgpo`o<1TcF;5I{v@U_-$a_WAPF@)mQR)WC+)7)&j${5a|64-UV3 zcuV;cPU+x>6b5#^G}fn1>7YCY1O=9#B#9I0%dywNj}@5d5H7br+i^|ODdaI}<;NhU zcv#85VGQz9LSsH(Uh?Z@zS^ZNS5nF!Jve;6r!0S4P?VZR=%qU5A;(=HwbWO>m7cKZ z^*cor7aVD=a>Z40QLTh}bBxplM^sYzU6Pja^EN4fgX;;^J&~K#@AKM9CE_zv%Mk zpcx%1%~iStn(e`Ylt#ex-{j<#Cy(otMmQ3ynd9e`9-hekTB{fSAG=pkH2Z& zmIW_kcwjR`aRNLoM4U%2_N!jI>m=0wTTtNwK3w$T7EK5fI8&X?TszuB5|C8GS%he{Ht_>8Rrt^iw1cv2Q0_SpPt zA?3e0(9%HB&pV3X-Lc6I>@ZaKb+d~6-PWYenXK~157@s!`>)vA8|U9?z%vx_HL2!9 zCloe6!5UnnYnS{TQ2msRYQ1tdCdE_YMySStQpz`;)$%~sTk=&EPN#NqJej7<`(_naUv8SV z>m^&I?NOgb`zwjHy}T$!tHt~jo-uJe_1&K8lS(?rR)_YDk$H8*@8+H)bww*sOgKv z9G+oV*=Hi2_gUFQNBQ9=jlz~rxqNkgY;S(;)tIQDd;|Xr5Z-HHOesQ2P3g2x>q<(o z*|SM>8niGdcxDJp(Hgx9QzT(EbL1*fQGtR*N*b=0TVl!puvE-YscphaLj6AKr+#Wt<%Q`2XM>z;|F{C zTHn{@NA{XOsjlkl?aXOHS$-7$3C~{F2%xrp zFN2CR@zUo`NmDi8Yi{k-(9^88McyMt{*lc`wp!5g@_eT zSKlAHR|>>WtcN4ZJ4b(TTVLS*y8N-~AF8YJ?EEl<3>FiAXr*-A`C+6tn2dNQ%ZrWV z2|{Hz)~Do-nPK~305g8>KZRU>;DbBAvR`iY%Ph=ztSX* z`bzGYIfWmKS0%l+%yKyj5_rcJGbY9P94=;ZW{Pshh!6G;9`D_Lf@8$`pQ>HPa$kZ- zH61yn%FTT#Jg&vfqGGEC7GNiF${jM=SStliFlmFbM$8&%uP9ML`39-@*r1l$QEG%J zls3KGK`pbbq!jVXgIfF*+&VU>O=QQ~Ic1tVs7+N|`oC*Z}xiHzL&D+_|T;l#tiRa(lm5u4|B1XZgM zQrvP%GM>5f+#a415T_{YN>3{X-g(l=J0;V;cslr0++VEHC^G z*z7k_Y<50zZ^nsVtQj7LRmcuNu#Pt$#DA+W^VJrhcs@p}CVoR+3xr&aoA!OFC1fY> zJL)I0mRuQ8Ev>-^QF$V=;26M@)LPv82{`aY>&g z=gkqgDwx?b@+al4znxM~4LTk#X>I&bZf!ic^Yj6M$~C!>IksEF zGOG!l6m#xw4Pwhko*LT`W1}ViW>GqKM~s7*Dk^Q~h|QOgkHa~rb|A(icfQPFBF62; zso?slSP5tjNx3&^4w6V}6*@Ymo|m0_H^j8(NkFKHC=hv%iLW$RZEjzN^=C?!?rrI2a}=&0ekCW&7+jTY)+{($BlTh9s;0w+iV=Icp6{ z42#)0D+OmXIAiyuoE33a?gRf|F(f-@Wk8JzZqB5f6=6#LX5>;&&(2vHbV;po2~W;S zJSHh;O`*uLKuR||XHBNdAb4_C6h?z$N^AaJ6Zx4RX1C`0wfQ z(`UD43eIR~-;2Y|ZEE<@k7T_P#Ud%5BZ??%CZtgZtmc){Os7>6EDK#rBz@X>0W<;oMEUCp3 zujSTkeujV*Yt6{OI{-5UX#1cpmD`#TZJcgGYc|3t+JwIO{dKWiuHOD~@2&aU&-M=w zk3euep^g7m?iZWTrl3??leaPCPG}<{)1(_U?zBm4a9~63eL~woEAM284GtJi{0D2r zx#BT4S$dI~?LT;9&1#aMy# zabz+%g*OXdl=ww&QAXU>tO+sg<>$S%yvqtgmA@UM9zN?8zos|5^Fgn!sgtL-AKk^N z7LF2b8H@?wlw?ogHcx<6m!<={aBv5hm=R1GI~RE;xBGysdUv}xrY zRpTU6jltlQyK%#?55P#n_O31|v24jgEw$1QHqaI%JeD;Xp7PDMUx1xrhc;l_@N}|v zZ&l1av~je5_u+$Q2bDj(F5jsCsoXnux_}^3G1`f!xu**#GNZtmx@?0IuV11L(<@3; z!0va79e$y9yf}lW>dxWaVEa0++`})-m`qFg(fXf*N-0!)Y?Q?SH}^wPtLBcfINU}@ z+Y6~E)cU_!57TSyqXO27Vq4Z3LiNJ*5UyyNH+Kf1P-@-WE$hs>Qmm>A@Rume776?n zTqSk_CXpTMG$_+$W;jn}$^ghGU{I7bzKNZHNwolLgwzD9ZJB@}kY~%#2COK!L2P4; zy7Xo6*4J*S9Ei2Q+{HI_Cru@|p03A#tNtrC_f0{W{)JjTckvCu=v)iCNT&yjtx+?a zQftKm%(A(Y${f6;7E5?0mCesk6|tcLGVtcerT}eyw61c83W(O97n>3kg4|5RqF{#D zDu-dI?(b9o*nu{~YBhJ2!yv2XjE#!&gZP7LII-QUm-CmSVp<%(JsHD|HRfd-r*Y@* zUVT1)xmW3V!1d_1{!^Zx6@zyogN^_LKHWfF>?|`7d+?g*5L(BJ&4@+_Ik|c6jA)FD zJna!X+7)6UMIcXk)?#vxb_JPApgbQyC)uVnIPoIGi6vDYYq8Xa`ujg_(%&V39?LO+ zta%du>5Kpo3c;AsIeh{&+V!{PVPxq1I`@+_`FK@fF1y4 zsCS9&12K%N*97Z#-<;ktcOQu1RlQD#T6Ev|lj4u6XWUP10ycJkzZie&JiJaJVomB5 zW7Fu~iV)NN+-dYM54lG??pz&GlNI^0#`N#|3P6t2i3@0=NnXnv5ahDpva`+Gh;=bE zVE_F!uonX-U(_Yqj(rDqoNvL7taG4-{DGT3#ryd+n-d_*h3$Qv)wfhxl|NP~qJ{da(MpfB&|uSTzpaONyp_>N}ED(_Xd zz~Dy_@>vd}+?FWLNzMj^{`NedyT91ptYCaerJE>5|`Ffv*yLale zh+e1VFRVP)8Dw`>+RdEVPHN{q5Sr z3*_z{e%)Hw9-fO;=tmb9(^rGzVt9TsU!21e@{X5xyjUfuLkDpBerc$Ntt!Nzf%1Hf29C?bw)(xa;NS>#nM!IquhM}61m4S zXvHctGR)7QZ4KIQJsGrBSk+%VgSI}3_^)Cs`EY&)ZR3deF$Lnwpe>Po*u!=yQv0kA z+PFPJKw8)%o=u32j=%%uuK?CE6b#0B>s87J~EOpqI7e^+MvP6zCu}9nL6@ynmzyNZJ!7k6Mb#-}lN|AKKD~6eL-gW^T6D}2t5V61XyAG> zKJZm7kcN$39I;^&Qyr+Ae6p4|Y?G|0I)&_;@rbx6hN_<*xiRrceoSnHYiGRSiHfG2 za>pkvLHoR-61oG-SZsX1Z&q>j<)&#f|7dJUTjC~Zd(@}Vj!(wI4Y{z7VTjAxPT!qB z84FkCG7Z{UJ(ICkVdb&$$ykAd$8W~RY9E7P%X~L~^3eis4`b<;AsdKq^3f96hdro6 zS(e+bJtz>HXA66LF&fdvqvhG;#EroR+0hCmYoGpkIRMv%RNZ~E4OX8IYc{N|-s_b~ zL~*$}p427KY&6hrjHjeHf#Y z(KshbYwX1a7$$)zNvRE5!7qA?R`7#Jwn99a9anWcTu$5>tNdh^2oEN+O*!Sj@np6s z9~kC0g;-F{&*~b%!Cb%?_O&moYXoJ|c0EN^=+s9jt+-xHR-?1Q z$)bQOn`fg}PEOnLCA+vH?Yi`lspvPVKF<>3u#Xstay%fb4|Xa`>=;Y1dj9JkBD07} zS)m;)_Ab{pO~(CEVsj-XOMunhWbtLN@nm&YES%<&zYJCj*3HAS45rJd<`7>7Yk>Ov ztYX6IE`J$}un4R5tr2BYWPY(dih|lW#dvC5fIZ*_!sTi>8@Y3}`Kd9Nubq!n9A(9d zDj$re#_W?oa-qt><&K&q^T_E!#x!Z*(AcsXWBh4yE9H+i76s?0x%W*HI<(qL$QVTwv)zCX*(ER1+GXvnwG z_y~nv*uH6_F#kd%HEPz{H*b_6lr~0*Z}2)fS>ckDlP=_M@S@VSn|n5Rk%G#@;~Tul z2Z4}HO0g=;-{3_g+kuLi5ZZ<7-(lgXVr4i!to^hUY+03>pcuLz$^rYrUT9A|x$ z9jc6I?WvyCdMu^fG`=+fONV^4X2cvce?{164g_2*^V+vaY6|3#Wj?W8vZCq~vhk&e zlj(4FDvYu6mm*NIc07 zmsXA(A7a^Gg?f0+Se`q`A5Az&LQZW%@r@>Ip}iP|d6(q|%*i)zlpvHgM)|d9$U7ZQ z+$jCc>^N45)sFo$@^%GPLe<;dWQd+`ZM60m!*!YG->!X0%Vo994q~S7u zLn2B~m_@~+2*kGm56j^cXAkzE4rPnqsy#wLTG+#LSvbl6Co{N?by*DHiM!EiF+W`l z-FW=n?9NisqJ90>54p#_Bj9PbXcg*&*y%@alMDbp(%M-U1N2u{tceFB?(! zld6KYg{{~q2B@Wt;F!6i4eVe|8M@2K*Tn z`(};s_Y9uYHBj7EcuI;Bc*b`lOeeEqxEP$kWf1SVI~??yeJgqjq%+G zTzbGKE73ceC5yWGyAe2skbg1|zIAveF5e1%15>}sjo=QmWG8i(ObckR@Xg=CJvTT_`p*u){Lm#V%7Ihb;4py85<6R#fd;FG3@^{Cf^81==Y+_Z;xD$~EKn9Pn>~4q7qA!4r)r`G@;06rsSX4URB;hx@s} z9!$Y~h*mmt;!T?(03+QL@fnKq;qpCLMVrq~2g8@bX^8w83R{DAY|jjZRajMLe1^jM zDB#+vBrInE+a1N0RcQVUg^eTN+%^#3h};s{hdroc+2Uzi-?%+OKw8)%K0{%#984ze z4gUEv6p|M0>z)}3;R98_@fix?!*rkD0rt%A^GDwjo^;=@0QpAWg6O_%6mUP~A=|f6 z3{XoOCB*(>x*QFsg>RhLL+rOSgkwK1oEYo)N1=95mz2hfJ;XW-N67yzAl_KVMfPD2 z=3x2jY8DDLA}ax*@T((O8>r!vm9k7LnTotkoK z19I&M_>pA~!N;-WcI^=Y5^3`WFxVr$-}C%(ycoPFU^B>SIasVtltCEP{QaJe3hm{d z{hoGd<>vAIp7vK(y)yR##yd6R9bnAZ=5K9ukc6VS4aK*$(H7c^QJ9ZeZm?ye1fjGs zO2Ui_Wx9klfWqDW*~5&BphdgAZ^p&_KvitbJ!|1UQC4BTsuCxOE&W~vUMByMR{M8DW+;Q{Dev9iYgC{?-pU71iZ8=w^OrZo|?Z;f@26oVh+N$PlAcdw*qw@E}DAphOOWS zk!*$dr9Txr*M;*h{iy|O-}PMjqsyr3ieLKE03{89CeXDoT0!}j{ty;nwZ0p1vMD-V zuwX55QxpZYafbsrY<-DTtx{_oz4I0flA%oLDt)gOjZ=!YRIqcu_3XHTmwne2=oL z#E8}&<=I4xrIcI6HxXlLtG(0o5Q{Je%ilzdVnb05%Xl{tn*upxsSg-|v^8yxtf<Hn~ymJ^+c_HZ0)O_`ASnv)mD7I(i9K*DX`j6 ztXNIu&)zk@-W&hud44)JCgCFe6^At&3p%#GZ+4Mn_`^~ zr`)!AsHX{aKr{1gm?r|Koq4_z_nzt+lHqhPD&Ps&xp36y-F%;Lbm)fgtDc5n7gz1z zPr5Pj`CYAI2U)XL@aG$1oD8Piu4S0ZImV|AU<;NBgK1@%_yhyFhDLSw%nR~o_^EX5 z@tzeaQc(GNd_{_U5J*!*k2Rsl(;|lEbU0p1{{^pw(uPW`k^Tp|#!}WMF ze-j>0Ii41YIu(PU(sDEGtcu?bJ6CCxU3|c%4@O-K-HbSYz;>h#T^%af+S5K{{-B~> ze48x82Gy*NaDg=DN%`Ak4JeFksHWt2>RLyjTs# z!_|=C>9`PR@K~bDAHS_eZU><1u2KcqJTox{+j4zzF<-29maD~jv|3wvQOB8>2A?aw z{KTPFdE?Ni1e~7nk-^!ReMkL`S+V2zs6lB9|Kaa`;72~7{->0x+q23cK;8A%e8*J| z3G*(m^zx@0I@V9E?7X{4J8R*hc|CJ6lexBLadHCJchB9k6CLMbKyGEfeUz))xo%1L z$52ZWaNQhUTufgvAMM(bBy_d-^2f9qs8!DhUb2}E8E8d@vEv9{w4kM?j!e{^o=jH6 z48ikkKIYqCI%cvmT2xTJ0l~9U1y=Q3+9M)__*o3knK?UN+9Lz3<(L1a{ttlXnGO`; zk&s~j&M7RcAwhlts%m$^Sj#=J8sCdK{^v1P64f&O+kCg z0N(>o8Y6`lZrG}m!3Mo6IO42h)+5FquA5aV>Sp%}IgA?z{#7sKi|O#ypyK7EaQ8ct zAwqSG|8Vmc<#GOi)Re2-P5pDHLdV)p_kcv?D`Yo`g3}GMXJ#ME5p3$cQ;p$8<*0Ty;K8ortR0 z`4T}$7TH}%Ae}_p99dCy3R%zm({wJ(UUr;+s$^+bqZ1P9&&u4Mxf4V{`eryxV9iQ) zoI5dy9N}zC-yY%aCJ}1kB0|rs!#UhEGF|SD<}l~9fQvz$bhP8FLoIjD$kny`A@c`S zubw*zB}_LBLKYi3-n%KHBPvRc(~~%hIKhlBh6_G3-Z62OQKEwK4g4>#WE+Gy6+pvI zuLw~An``h4=0zJe5qj7Doz;HF!Mto&S83y`Y%p(st~}YZW5Y&ob$t%IU93`CHyw9u z*f5>pyi)*`vlT9HDPZlHKWbQC4pzhE4Bpp1hI@^i(9&`K$R}P$7<%cmr=+Sd&z1|% z7goLP=wdq%lP-5OLr7hgy==MgA+S>y9|Sfx;SrW?0OGi;idpOIxZlEq+2_8h4yc#C zPBnn%4kMyo*R12V9q%xz1w&A|JQ^+^6|0KT>+-|RUsSz##^xd{)ni?1l+5xS$L2CZ zs>BBS4SBLg2759bL5zK6mXP^u_n&kdvv@GOy2?-7)B11RThB(T$sF!z2XlL#oANLa z`u2{`P5E%w8d&Gv3L|#Dvv80cw@`VE>#8M9kKID$2vDx_ zq>Zz?x*CdNFaLh8{_m=9s2cU`^(u$5DF)QTiF$QUJPaL1tC7ATUl>N@CF+s}-Q9nL zC{>l@nLe)BNpjSAU=X5jyD#`HXdS1I1KO%?oT@8r2A)^80x}f?x55Rktdr zS*3Jbp|-R%$aK~OPYX?7mmeGq)PD>H3hwU)gBfB3N5%iFn@Rmo26~Vcx=?`w+UQm} zlCgfPMvk&M_$gn;?x&GA2y2@g_@J)*X!G;K14Us!&;HYMIJ~mr1CEmoR|D!SKS9YH zRycss?T(DjUR}&rXT{Qb1n_uMY>2+{$AQWHMnAAf?mwt&>Hpq2E>0)>$jD|~i>WI= zs{c9A+PgOGTBdz&Vlz#fC@Vi)!>^A*{9YF?s^u+L#RUsYf4UJLqT0%j)bK0aVEk|% ztP59}68@(OO{c|b=VUS)PIriN(gZ#)4@Ol@v(+I=R9k);{yeDA3BM~-{0v{5y4Ei2F0SltBur>A4X%4*U|{fwVU$E z;igQnYqCD-xj(ovn>2Vz2nyy9oxfEZ{9q-|VO{HEs}=aQkb=5a>Q0ne>OWqcr5L92 zZ9k93<969MV6oB0{HoSuXAJ-0%I&2Pm2bAOR-Jo{H*G5?LHWxoH&z9ye5;MMFx5HV zn7PCZgf_~*yE?mx*vhXZ8BqKd8tLiAENLY_)Q11*>TGDCD!-IuJ?ks5Tk=$yj#bs> zhVV>TUC^2#=x3^oMCr&(SyK`w3)p*LR!_$YfavK32Z$#v zi)hM&l{^=pS+*s~ff}RvU9>3(R&tNt|GO(|XF$3>hW|xBdg?-T@lBh^IhlX8Ceo+$ zlTCz&^#_{@+BnZfgY{orp%dvDzVbKHe8|iPZY)=??Xx>Nn@ssWtEn_*nB9m~LYklySEC`NhyWJbZN-lyRLJRaypR ze+72?!`@wv%o)-E_HVcEWn^NX-R)=f^Uwj3l3ffLVj=sNmRoZ6NKSzm1f)OaGJ7-Cml9<1bf?A)rp5nOsf*YKH# zbbRdGQnB~U@)5P%P5!2)x4)j&&sbn@RvQ;+H}Z%5bRz^^y;|??kVstaav+mGFk|<$ z+~q>23SG-5ZZsf5s<>16O%q=jlb$vj$V`aN@?(`7HO{X*DZJ$rCwgqRzln=#)S2?O zoT4h~>e`u57hAwfTo|_NL0C9>s!S8qi#*x-!0I(V}AE%8*2Q1D70?F z6LG|X%1aZoBfGZ!NT^YoB{b>^J!MCPNVLPJWz8~OaOp+-0_>GInbOi;B$iN1^)#76 zxx^-PRap|p*mL$$cS_1`%$pkP2&0lK@}`D2j!Z%edEBb?7htcGjf5m(uj;l+J~;WS zs|ilTU^S@VVxDEO`jc(An45QBy^GbkcMBIY+4t8HU2HrYKmzXF7XJsmc+F^SsnI)> zKW_hB^-P|JvaBFve_7{*ah9%UP@jqhLc$_hJAt4!o6>zpP`LkpLXZZ zdJ8B{X=$ieMCIW4>rTTM_GJQNR_Xnup{UEXZdLpEvkRpR+u<@PFrj!?d$=`tzhf5q zr(U9(S63`A^?nG){rnBZ{}p&w_^{}>fT_xhq8ObiH)5v9J1lw^1RrX_x($4|`HOP; z@L^F7>t^#$hA{82XoE-B3Q+n%as~TKgqyW}3t)sl7mJL#093mx9 zy|fWnC<8Z^2hZ5h01MVIgCZL zCG}}Jl+R+F=XN)tH3*Ro4a?lIxnHx}-K>vQtMXiz){dAtqD||h;|*dK zMqg}0f=0D;-G);L2#3d=SXEUUbpyKj*=-(q<4%LLO1fRe=J&eg+=vzds^LTjxeTh; z#l?$p@)8|Efe!1x?1Fd8D(4KJ%W=Q4Y7MW)!Gb%Ase3_A-nkqUPRwZ4VE~5I9lHX1 zFa<8!3&Lre-LxqJFw#vCz663ZtfGl>3l@9xE`g9VXvhAQm}6IPRCR`Tj7u8$cv$u+ zEuL0r-i~nzN0M`EAkyUug2+DXAv@L;*dqj_g+0Cy%+$`t#rb;V&VN0~O407$)l#)D zzfu2F)lPWV1VMAtz3+&6W8SU_ice7Fxmd~bE=%Pa%Uy#SmJJ?T3R?e zP2yxSV#+NqJ5A$e6tjmII7d?kxOy&@<}Gt@HaT@?GaqFIy4s9dw2pT4Vrc<@s+#af ziOH1v>bl5|V#Jzp-bjgQ_Vmt7HM?uMZ?f3`QB+$ZE2>T*`^A*bb}*g4a1zObUi?r= z)^7OoZs0&eLZRdUfmq4J049v+2})dl0fKDSmI4|!Rlh=iIG&AOkdDG&S_DDdi)t8&5ZF|R-X?xVC z(T;@2^>MNAT&$cK9*Jascx(zKgvX|^&n>GG?i^8G{&Yt4`W%ud7Q;p(B8R7O1R}1- zZlIBBcLS2*1fG!`QR|xy7pLy6-kCWf6|KEb$`MH^RV|Smk(3VmU&V+8#mpR$Y7Tp# zRxPGYL`W7{%NMpuR#crrHhjvZZs53GN4{o0@05$ELObT?g{)E66$7N|EWA5O)ZrP- zR0_?M@PrgdG>TYADie6_U_ijAD5eBB|Vfwc^biB?zUBQNmk#Y*Wf1IB!dj ztV6r}uf|D|cn=XnD{5lf=mYcSFYW6_Yx@$)U?bGIw8 zOc+cn%e3?UY7)g6o%QSeT1T??SH;`cv0;+n{aOXh9{ctFhH)~OlsfLwGCqg963c|a zw6cun;q{6ZteIF*>ZJ*ptgq|%@OoH@_Wv)$qrV2F8bJ7#B|n)2r>m9FCXjc9kOxg- z4^YD?w{0Gu=UtI`B5>N7$MfVL_fk#N=>R%D`6tTOj{l2Z$FFS-{vLh;toE=5vER*w z>dSiqjOz|Nb*;SIEMv=6w#!&np2Rr31xDK$MP*C-r%p1NC-e zHR1ER{FLyMio)T0qdka)Rel<4^X`onfL0s?rJk(?zmqVqaBATu?#!i3{y1yc;AbLj zIS5|>;HwGY@2t1a+qUmzAgT5GShxDXy#-sS4^+jrF@(2*2?nsH4tW@1{>Ex3Z!4I$ zhTI-WDEeC3`XrTuND;oCD9avZ_W`Zzyz7Ys5;}?`*~I{o?%k0@WAFew{Yo(UsI9I} z(7%@zW}ZHJbW}(AA65UY!g_e5fFOjBN^2l*q+nnPT0DU}ysFTk7B+-E>c@np7htEp z!fzuRT;H2p&%1o9Cs38(@<*%x1C^U-CX8ydO8YVs%4QKW5f_BQ@npnz{`Q3nWtVT@ ze}TQiFAtgOyI9Ou^VO@1Vkf*?^0=p34e2X?_6ef7A-+qQ=#q*Y>uvgS$x3i(;!U`V zHzsz2uLCeIGDfAeP*#0Rx~0TM;995R z?S!_z8iA{?08&s<0Oa0D$|J}$0VbSPg~5dkv*lGiy^!=)WWj;@C&hmMfsnYE95;R zDVf$%Rtjw{d`^W6sOENrOE0P2^UkSABm{-NTQFIf*JS#9T3Nmvb6jUh1{9-PbAtw8Mw4IU~@=T zZIwb8rLaEgDGKIz9!(srQ0d~Z%;84-7ungP-9xz`EQa+x0>aiov0$`kTfV=ZoDb&5 z-z!F|$z`#L9gw05o#_ZPq|&N`4)1`JzOtMg542Q8cMRjccR-3rJZq*R6lt@cB(xW! z;FwTUK-+!Z4oFG7uk}l1#k-Tmg5W9PJz(}%@-l1Q9xz#lc6nh3q*z>4Z+M@d_*tUU zSFBmTmbV8?#**mv8jQ5lNfg_UWqh80C6)<;X=Rxd?_aLN@xBl5w{=9k-zuJ3$JS>- z?{CVwF~1M*Z{+JdSh>7v0O1{w@^@A}^Q5O?uK&&|I&TN02Tf`lsJnn| zo5$M>++JWC=83?O20*gimG^{aHLLGT60E$2IYZv8=Ajx?JjOnzYVNPgpWuI05W{Ou zE<|Cc0L@YJ)|@yz9i!ZZUeC^igt)_uZDvj>{=B#&;+Hm(wZ@9mdz;0IT3SpZ3Le7$ z#C$q$5>Ya*rA%`1@MIJhV8w104UG3NN_mq}5+!#6f|n8}qpTv(vcr>69cY`iZ0dx0 zlTjSCFDbD~g(jmsMZp~56}-wEP2cPU`0Hr=G3(DN9ET^o1(cC^oHyZZ z0c;tNzZ#tW6S)Yx#=e_1!6!42LUMbw7%gdY*Z^8o!-Defx3;ZiZx+Lb{oB}9S4!Ug zv^5JiHrk44Z7loeVioF^NYui}NNtd}ci93SjL;;&ArR@2 zEL$X&1)GF-%&mr_`D!tr-EyLH-j2B=BUcX)KV<%(B69fdbcRXHDD&=4H&E)>D@Cqw z&&CnD3n+O#n}x4l8fh*kZ(}_Sbkuu$wH_*9ku-cBh+EJ6i$%}8^FWpb8xbxBR4OnaP$f?=gy2byJ+b=dkbQ$0qeuC%4@bcEQSgneM z6X5fn;CUAWKh%PCg#U2!7Zu{em%VdXVvNtb?7aaK2=c8kVxXguv|o&L^@S=@0@X`*#|y=P zdU#cfFjKc4HUDIFnYXG%a8+@MC@HNb9X=^3DmQXwAhB02T=fPrJ?QKIFP_wd%I} zwbZuj2vF_!2OZk4BdApyCSMEf_+K{Aj)}&)zFM_q@_7xoynZ$hHy1)dTY$CgE3tW7 zz?n7=-wT5+PTmHYcP|W=t=p_{OA0HdT4s23%8JL@pL#5c)p*|Ml)Exf^6GD^Fq^UaL0-k}vGaTdTK(Yrhn()#l|?HN}S`s>>W0&}3r5Nt)by z2lIv_9IZVh@u-*f*>gdev>gxGE^UwcG}_?E&16dQU|o7H#qlNQo-6y9(RL zrP8YQ!rREDuVO*9s>7X%F=LyzV_HNK3$YZ6w2fR6+KW+S&(dzNWupY4v@uFzOqK`i zJ;h`#JRXzvcD3}FY(R%%vKC4^&z@p(!z!*m7@Yc`?fA=fX?xVC(GI`9Yg+ru>2fi6 z``C%cd9Uv};q#B@&^WNI5^Md$9=e>2@w(d0aP@tpu+)03Z?GK8ZfskZ=zn z(4Hc1`=r3aRp&YL5MPs3F_7>OHrVE`$#SPLJ0#eRG;NXM1_Ns6-jSjbwu>SBj;!k& zp*sR8`n-401TP6Gj$TffHl^Koj(MCc2UP}|ayacrQLCe79Dt%FJ z8_-s9;tH+ozvw%#xo8-{T?bA1R_jl|NY8sV5^gi0wt2B_+aL((7%R6Tmh8|)sLc_R z)vKM8^$f1@n9q1e*LxS?sw+S7OhdSF&p-ek;cGv+OXJQR(`m3~opECOk4E1B*y^7u^9k>>1~Q1o^nlds^Y&TSFm#fGUdlSy zXx?bhxw}QP^G0Ja_rA1rt6^`vA*-Qy*4c;8ThTgoqiOvsYa@B*tynF)3hSR=m!I|j z27Ve%V2mfYVvsSq7_E!!1g7y4S20pY#nLGny9{uR?iotp>b8fxJwpi78YtuF5Pz@ zlC{JAd{bGRiQZF?5{kj&3|6npX>qhd@jGL_-*wV3i758hNj6XJ0$b!MDNf+|4S6thF}WzF zlUcFc9nEK#tKo81tg7yIFr6GPCb!NfFP%X6C*4L!jjFxJkDedhK76!)G`Ms7aDVXd z!JVfMZXG=MPCab;tha!Q7Vl;;x!LfnI^!L~lQp=Po8=flQHI%1^VpLT#|Bv#ck zll<+5O(H_`dqTO}@&j-k&v>n|L~#xyi1T7GP&daCV=OOEybS@jgQzn?@ zvInz>UWV9YKVi1|r)}6u1Q|9m99-@46*!w`F{bhAvvG009xVrFlhd=o`Fc5aH-B_o zjA?Y-zq^0%Z0~Sz|G_)=2M5m%@7}3f%O~AmR10|!a|Idn&HB$fipx&Lh1Kr&a%)TY9K@E}3m?<)J24zgw2^?Rd>*gT=>J1mhOwmq~`is!IRu_LV-kn68&j%JWD4 zSM%V>!)J%J&;FE4wE9_bILzQ6c<+wl$EtL-Np4;QWr*`x4rkGmT(_<&ni=A+H);qG zmapE+FSaTUZsNI!q-i1g{m#JmLeg~g-nfgB>R)$>#n~ftEG+?GBwie z+R)vN>~5Ap_+zquk*b0{r%jrVh&`G&(HYf_r%f6agz9&wM}ETjK_T`$$JU4w5mWyV zUNP_Z99yH*fm){rRr9D?0zTL-v+^95X%xt;M1OFKzW(8dKky?TQ2#@xcsib&X&`wx zi|lgrJ_dv8_ag{_c;uBv;_`JG>$b8^pA1?^V2jmH5oHj>t)F6Mv_ zocL%MaKL+W27ZdvI5kgvH2PhOya4cH^u$NMC|+=Z-4^DB(yBmZT63$A5no~^73nGR zB}W-p-)qD;D3yPCD$knhdyO&zk9e4>G+he<`_UlOjE$&!57;le?^>U4TxtMg~ z9>mu;p!qQQ+fvyzxg+4J+#mqT~J^n|p$IXa#R$^wT^=!D|-ng?8wM1zptLT0e8w-fpVt!ZqM6?T%lKR7@BLq?V zs*tdlYfhW;;0<&G$%#)w&c9kZIbL`bltOzt`xOX{k5^6Ox(-YnO#k^K$EU$bj$lel zMA}ARIIvjQ2tq#B(k3$_8##>3_$SOaJTnF^uQmcGxV7D4(cLZvuxo8b;^9{YQqcuP@}N%j&l4Pj+oqOB%nclD)_+DZlR-C}2}ylTc+z=xgO8*45l3 zWON&+k##I5v`RVq3b#`~;kP)tzQE&qi^+px+=bm(gJM3PP#Efe4N z3=Am0H!~6`_sPATAinOEKv3Z2 z<_hCE%gq%?4{O*^nD_UmqoOIt>rInnW3V=*70S(_KT`vt7$ z@+9WQdA@e(+zYS3c#{{A@Fs{+S5m z2<#ha&jAPTx9k>W!yc1xxN4UuF_6I#tL0a+-b-*#|kOh;3Q;p5ihFQJSM1dG3=9# z7x4x;msTj9WGpVaqp;cz^J|w{NqVP^cN9h}3!`Awju_ohXe7gyJMeQ7Qqd+2eT7ic zct>G`l32~OMWPnwwK89TC_czY*OZB*&c5}Eo`l08^KV*Au0D}dk1zRu<>@^-p%*ql zOzycm${SDU`N7IUhCv5)CDLd40EFHjAFZY;>`=)Tdu!urs>%wbkYx90EmdIwq&nYJ zLE~Dg$_S*>o;HXsHLEa1wlm$~>&8pXs%*hZouTZX#d2qrHQw+ip+9Sy7b^|(>t_`i zVW)w)-c0JJhj8%EmdSw^l%F)Xyf^1*$e+>0P=4#fwQAsblk9MoYP=ZAPeVn88hF9L z3k)1b-vcgZtMR;b+?B;_{-=+K7ZQMh=1G80Y#J~cI6dAB5zRk581DBb_kUNwah`|n z-l3YO#~THkKYRcB&ED;|e|q)u*7bX8|IlgcYu*xx&NX|mu8Hru8b3)Yjpv#zkTNQ4 zjm&3D;Lv+Ri_aEs=CK|m2G%_E-k|Ur=!IcDc|=Zn4+`YP8eKplEu0?&eX#KY5($3u zeai`-vA^eV7%99Q9ksjw}cI7UPlFs0BN-QXYo#d z$dPbI3ER=U(;u`0t91HiH|s{TOrKUsk%Ts0T8R5~vtZmur~iX7N5qocz+Twql@#(Ri7!uyIp2t4R~%MemQi zjgeNv`OpU%8ST_?UOSLRMn{7$B~=SvD^$IY-Sd7cRe|3IrH`~T(kf^#epKya6WXbu z{U#ulc1t6zJLNS5*ZbI#=G`eC#C}V#PN%JLyS`I-L!Q*R(&~;aQ)k*%uH=&nh&Cf6H2-}(Lvt}HD3guj848S`h&@0HW_d9c4xz#o#A){L%@T* zJ{-9ByTAd$jVIr>E?vI8b@%qIjov$VuV1@%{niZ_6~6rLB{+ibr{oafuf?C_&6Hs* z7pEDyrXTAXF1nnHuHu5EslRKQrQ_C>0jSC-jEf~w^~Y^dHJJf12iwC5Is;Ji7xX2< z-@jiOe?G8r@{a zVGJ&K;a6uxYQM%^SOffnOZTqAYCvz*_m#+FJoEvq7ald~Nr8YCqqf=}QoPNRg5Ly7B|F7O9}EPrC3@|K ze%fOTKkEX2;Yp7Cm z__a&|4nM3J^4Tl7l&YkSx%}sk0+$L{ zV1-1W1k_u=UY!OHucUPy%|o07>oOWVTcGidYK@4{<-H&`-pF%2XVs~w9P``_zssno z2zHsCJcke8sNwCdL8?;6{=B~gfA-jRhY9Cw)7{8c##V98DG$(r&L9 zNbifAOzxWJav++^Iuc0~Ht&l^qN}Vx)l(X{g()pe-)qII#g1Ki2I6QnPF-qdpDF)< z%#%L6ps8E;l)10h?m7Z}lQ=^2;RRL1rVH%}>(n}&yb8x$)_V{5{fm}drfLE(R5E&> zHO`;^?W$bOgE*R@G-CFnT8xto;(vCG)O%w5zkZa7SDE1l^=LQwq|RVL+0JvCXv-KZ zxF?5I%EsBt9*-=a;LWo1=`0h1$QZXl)_gk4&2rcxsgd3Tk-jL!Z-ia>z^aiFFTHf9;EWKt+duifPOX^k9(O~R`tu}u$_kZg!eSh2HQGkOf5r)hw# za)0iYKa(~?<6{8B(I0F!DjY15I-*PZT^rX41&J*xg$EaYA_UVPxfFTo{>snyE8 za?~4=@56?n;Z<3|x^8=5D*x@WeygcfRq6RS3`X0yM6dy*BFnBQeI`%51x zLpaY>2~hU^+|t48T!H22QFMoskEWC9!DuKhUFNq~_RgJs0Eag_ZK1|T(cQcK^Es?Xj0(>F(K+>Rkr6vA7&B0ell5aey9<-~%L4xmuP5=wP0B#UH zJTAzDn3&MNio1NdlXSsJ;6@t4Q{%(qf+k3w!YEj^>(mW`V!W~-xOz+2coekc>a8Y0 zAT7xXf?`YxcUeJD8t#V{a0uWca137fg$6-Tk{574i>GA;f#NBQBH}u=gJ8b8AlQrr z!Dgc%5SI8oP18!NLF@LFr3HaB+z&0})0??LAjqp*6BLp>%@eH&ES{DY1SL;l6yYEc z*4GV!9rv2hWi^Mc-HimnwYyD%Kw9GWG)*fFf*pF_*Rq13G~5p@5Cp(QUQHm$s~ZF* zd73901Qt)r3IfGb7)3A$r1f=!V7ORWO>liH5(L+`ngoHg#P4aERvH9DI(NUUASey@ zLkk1}aFG`TlDxV>P?D#4qCsHsw5%XdJcUsNgFspzJ-ZinM{FDxgAMEkXZM^4_*K*4 z8Q2)HaqsHo4csX{`)=v}FZqAvz8^iQGi-q0yZq0SPC(<6I{oGdWBs7~FN99&3_J~N zMUQdyThEJoP5p!&{Vcscvhgvle&mvvfPPlt9MNM)luYd1`;K!rK8D0+*3HtlU-bUS zT|0ULK@h#)iM)>!$8LNAf!CHyzrGndfxs)A6BS(z%$NTlR z<5LzrrFrAt1z2Bz+Am+Oe28cFMU5(%TIKh(N-{`M|HBgMY>Nm##Ajt=?b{3M#JJR7Ci)AY48M&+YV}c2zo`atJct$s-EG69KE|GW|H3{ ztKK3p)A;U|Dg*OcNy__SFy~xu#N6au{<=ZH2=}1lm9j!n@j_cqjqg^C)252h6T8ro ziaJ*PN=8+$#7~x2$>_@Ts3HUKhniI~%BswG;ja-QmRHGWBK#189wWHPtz^VYjVc+= zOsEwmgN8prxLaN&!_5h{$Pk(Y7dw}nMfhqyXW;*CYZWP9<|%ACVyATB^DlWIL~o{7 z>7%Dm`n`%gMhdI(&GZCwN>w0iV_&Pz{fdAeXBU&n?wk^0>u=jHG)tSO2se@~5H*qG zX`8Kq7QOe<)t=VHCcfpqb}t`j#My*Fqy!!=!5BXX%RZL$6tIw9q3Yr?KHwVMUWIB( z&(_C0g&DoaNoNFsxhImR<9m(oaiXQr6K%iJ17Gm{#{DpQpGye3zleQL6Q68+pNr3s zltd^;(*!4>`&@jYIY-fpeSB8aYFw0iSCl)UW87|tqB6Jqw$#mnju5?`Q5*TuXg+)W zyyL!&uV>Ws|NO@0T~HwJi#~0A%?l)YrJ)CF#9yURq-+{rX=ou&@lt7e=t@INAg3a_ zBiBcT`mXD-y77)&3#7E#*2sLt8oi!TN$GLiy>s^+A8dR*BLUw#_jc)o&)DB{>VKJB zg(J8LZU}}EKm3E%as>A-Wt1O?V<-DYbw_p8|Uc)XG8 zWZnYK^v8{*`{PEyA2;5v;g1ro-wkL2P>xU!HVfin|H|x!q0wS|G*0)c^ZTu7Kizc`uB?wJ-({>G>DB+76CtMw^YYY z@G~RJ4`4v@*o|v|d!JMDv70b{sm;11FS-dt#R5gIPDQ~x=o{~Za{NPbuXK?USZcZr zIsgSjUzXb-b@q8H$s;h7czoIkwxIb4jNfsvKIe3m->;Qzs%sc+F3GKbw49{mhvN9* z5&NdUF>Z6l6WZ=FNf8I+dh*`i94kK8JLoH(&&3ynI*sF3GxT23DN*Xm;7R1 z{B>Jd4?#w%tfo@(l4XQjwOugk=1Z1cqSurn(nv~f+#$rM$$~+**0{q|BVBg$D0+IM ziVFlCw^cCq#-}$@AC|3BtjuW`B~LOU^xi6fT1gU4^GQaJ8+k!c^N&K4j6@s{^xxJ9 zbT0tP0;)K1DgW6rl7SZvL`x(jN_X$Ax?HNNcsNIHM3X^9mwJ+H>z%-vdFRK|{ zvND4|V;3BE{p68T3|I7ud_~gQ$SHwN)X8h$lya~jxm)8{uss~m^LtwB*0}J6F7_lJ zdJ=yE@Z_li2e@a*ueGTH7kXf(Be_rJz<0;qTI-X!=)LnC(F+jm;1|P-eA-9cC@}n_ zpr@ZTz5vkzBrlmFZj;o`AvJXKB~!kdta_S8Wq{xk6-y+q1e2#5 z^7#i{y*-Y_YNZ}L)cSrdKu$4UXSCcJ&lc%+rKkWmV9%f(#ZtwK6X5IqkmYMhQc;zFL z_c5r{ypP`j&XSjN5^u9J9BC#rU(V?bK1U}k=d>Q=m4ALeM*EPn@V)(h%$92Ii-dB- zUbanG*H3U`lJ_C#(jmsUL$S^GAy||fyfQ_424k;fj~!7XRHp-n-EQlHMVfbMhf+#< zI?>yfY#)WzMcKWJFKBU#kVIAE+m^zfmQ%TDnnJfNh1GC}e%R0#ye*ar*7e{gcAkH` zZ0GT!3=?BUS_8K&rMwE{M(;zbAPTR6QJxqW9cg?YT7@~H(O|JPjKI9ClQ#f`bX@fbUl5_!ktWfRW9cqH}GNG2Kd!un^>p9&9vDm=RSgq z>0&9fjB8;V=RShZm?9#YoZ6fMZ4$^Y#6MdEdPbt?t@USN=^Q zpV#q6>~ZmdyL)KpVr?s7sGPaY!#5M53f5{*p& zrb4qB?(2C>k;unX)t$|70cBD}5HT`5ACgU80kT4~&iehGgYjT7oQ(UU_5L;-5mAf} zi_rus4tuFf-C5_jCRt~Y6}Zutc*um7&_!Ri#%sDTfh=pwu3@9g+2|@ZNHVFrgidK$ zH(D&ttzq>PU~~yxR7IP-t!v(b799_7DZpy*7H!L*a=qW5J($CIY0=xc-yc74dyn7ZdLr{PNqJQpCH^-NOLHkW?qc0BF)xJ(6DlgrSsh_5h;j~2yvyEh#! z2JS73b%#Zwie%K0n|osKa3={Z#E89{6l;=+u3&<=M%{%NQB+A0Mqtr9GGYo^q|EQJ z*m;hHvIJQ9l!ewS_~@3Ixd(&D#m;2r9z#`ky+VpE8ANBi0~)BIV?pFj5t=nm(aNVK zjY@xOQL5}JR)}lVoi$IvmK0DnxWI76su=XUuw7_)WMhR4rh%))VCYmZZ#mD34-bm* z;N#wKe|j*Q7rj|ApH9Y}Bh>4j3YMu>#@<^d5CTjEf%7o@%Zy&zPEb-(<)&ZnmJD_k zgCscrLyJ8*to@Hed_l<#s3pr6X*-W$$T&z zjrtI4uu8*wRI)dvDRz3b*%MzQbe0~V0Fg$0SV(aYY3x9vY!;Y<|PR(UPG8S zgqn64^!vH36362T8B7CLi^1qLC~D-)`XBcev;JT>-sS#B{HgIYXh4sQuJ6WbQ3Q?q zMQBmEFL$6C{izVftfBaL!6_{*#f0V7eP`y zskbz|_%OG6MJZ~TM!zRJN^uRfN*WX4)uS`&4=TG+nunhtGXw{q-&JH_j;`2 z^1|h=^GQa}&nqM`495ev^Msw~-?iA^^W#hmNFPx4=igcfzC%*O}h*tr>;1EP zCAFd|-p`FRA&RilxD{1}E;rUByg)0eLQ%^!Mm_p?X-tGykH*lsMY?I|6a!3hZ5+b& z8~)0z?zu&&`efjp_clbUp>n4=j5R~6MP!7ZV#%%S{C>d@VCJ1z7GzAJq>|ZLoi)UPcUR zhAKbmO69mE^^eO7Pl>Wld`g(?QK2@;`;VX644Cz)eXqXPPG5mWzJJpq5xHTkz__*Tf4@o=o55y}Y7r#GktzbWYCf(ar~$iq5!`4Y3iS3} z(!$wafhSANG9mo1ZbFc|jUglaU7K9gjxBfd^Z&3?CL020k8U~S1=u504t0RHP!4V6 z2HA$R$GTRL8%*mJPROpC8)T!frQD#os2ySw4sQOhA~zT&8v=iX%ONks9-(rm1H6TD zh^`J66rl+w)rD2;{?7Q5YY!@SOu*?yArTQt}Nr-M} zNj7s$PbzttAWf&n8(Pv?h`~xA>EKoNtK628mjf|exzis&vi?}_8K*}K{b5T@q3V*C z2M@VO*t6Fpy3Vz7fB&32$q%)72U9sA^eTw%;r zL9Z?V4V}H+f)FT>H_{8_u-KO?N1So{pSQ=|;Z>zX_VJ$rKJ<4y^+wmGnb0MGd9|m% zAfeZIZJG%^ja1erL?v@f$yiLFk;@v>Q)jfbm;m!#){4FwB6I_hXDWtbAC7mdi)8BF zKxC_OkxO0darrMePi@9kErK(~@)%dzNSzhBOVp+TJDu>BsziYwCP7j6E>RneTPRg< z@Y6@^)#OK^XfxXF)FG>sV0v`w#XittyWPqiRj@Ek8dmk{3hygGTXg3}D4kZ}Beb~z z-+1RnFyU5#A`Fz7fn01->AKk|L{*l(y@UJ3EU?hBtrX%_CM(d&6=1&icqJR%j!>3> z?|m!hpzY}LrLKCZE17X;#M)W`rWBDP;H*>*YN@vfyz1amuV6(j)94QRc$MPZv`QKi z;nkxtdU#R58^za7W3}<&MU~oQ(D@H9s(O*TOZ4!fDgoJHCxnqYzwzNkmH4s)PXY`a zxKpL7Z7$=^eau{@0<6hpbkAy87<yv=;~k(UIm4tcc$ z>-_2h>wK-iI^QU;gn4=1dww;6CE3V@mgyVql9%AU$3Kg+Uh=10%Y>3f@VFhatPa~@e&Xi zx-3{H`{{66jE3W4zOH8p^l2YGxXouVa9VA3FAMhQyn6H6?YlRx-tFDJb!$sp_1U}m z{^r)@vibJ;(C@t7>BWL5&9pUTw>i(FE9@o-?@yb?j{y_1N%}?*4XY&Mk6R+c>tzPJ zLT65dkv>AW`uD5iDgrh{G%RJR`zE+uba8VfTZ>|QG(6aMyF!f@HygDcySJ`hxpDpd zo2py%#fnFGXcdjT3ESw4F7-Qcn!jGE(-8YBF|imo(FLKVAUx5cY_~=?QJ*5|bwXX^ z1))Y|gE@lQS1-R?R%lRJrED0LCY74OFbuj*w8yy&qyCWK4o%69nugYovrz1Fbtu{uT{Z7sho z^~sTn7kt0*7~4v(+(PD*H`tE&X~W|=U+PT!;-I~{%x8p*CAfC7yI)`k>{)pg<%k~z zUBUu;Z?$A^S*XO)$*L?>%GpV7qxuBaeb9n+zG5b3ezXcRy(n1FjepvL;c9RKcYGhL z!d9i2jEdZB!6LXHa|&xHhXvglHeQ8MNH;ri#{g+52Iu|#>8R+=;LvK~oGXbztel;c zpLzlcSQkBs%p`1|lc%(WeeV$#8lRbEFott(tP&<8=CU?A3Y?i$t&Z1I(KBd_2p>Cj zSzUK45u6?xAAn*|x5~2zHoID*ygYKCEdIQO)D!{ZEkj({;Zpc-R*}ylfW5_s0ka=B zm2iyA;}rK#f_V(M9`jfNF#lS*&mZpY4(IL-l<&9arT5->=lZ7VMSn(q;z{zCbwHw- zaPPp2G>23#f3Or&Vn9ke**7AAWcY~Q9%|CBDYP|@!HsVZHHuK#DNPI&VRX%~ktA^j zx|NOB3>!Uw82p)ZC!fOKanH->R@tyc_i;F$9xV8lmq9U~PiDm1T5Qr`*rwxXD`(I1 z#4Wz<8AxDdbPuf|&1msZ9YhGU27tl(;(#W4)m z3Z;U3aoeci|2tDy*$OdimgxS&5-AP`3(Dh zl_>#5<~`sty5G(SA>8D0iJRb<&Bpuf3_e0mHk%k=bQ+zg!fyhj?=+~+FvTP-?k%%I zBU+i$9*nL@Gev+Ut;-KQzY$X!uSqlNNHNF{B268!=RH61B%QIwAz+Jl@nefqtsdYq z_38yv_>ig=>``qp9F?oEN9iSP!9~sBF}{|S;pJ<@J^x`zk%rte2GQdJM}cK>m9fAb z{tu6XQ180K|KgD(RznS(>Qzawei?{Reg^FfL`YK)?+HNNVJJo+FHsf=lM%w}01x>m0Z`lAuaK`l?b)rMJdmX zw10fmie+5~2zKKC<)2*n7(3YYrUhkWLDKlJ?GnS0Qr3wygOW)3*DEiHI6jtEt6YpR zr*YEdd59W}m-4$rRXi5Om@-}GM6k6oEv(M@;c=Zq+cSe#3-ZlM+6kX$SXQWR9 zm6e-O$fynX>vHZ-kO+ZMi4(ejj@t}7&wczqriQ@hywc! z@R8^uIrO^4MtJh0;vF>*hOOy@1aMdOK7gfGBF450JcQM}#kz5{*}T}pwlI;`a65>u=?{BTBTyp#gr zbPUbPD;}Wi&Fu2fMgqstYXA`TA>0}T>kH%}6a8b-dxE()j9fgwiG^EvGnd=?2Ti+>+210==*JgK^$JbjK-wTraeQ zta7vhLFHfb0$#61fCkCB;uTyhw;LjIgtOC)5Uwv1p%m^#7#N41Pd@4uJ3BBwHDB*f zr=yS6r{2!6y>aM>7FqIm{IdE5?h}DA-s%^vXz#+)-O~E5uwH-S){|^mbBs5Fhg(iO ztQrs*n6TB0Vhp<`oH=>x*W26K{mUzd+x5rk6V;&z{aZuT8Z3Jp#RFlY@+8g)x;g~i% zQZ{SW$RYVMLQobZHe)EftncNcN1{oMAw_qEl_U}#F2TYi5DY!FL>9uLac!_<7Q!Hs zS?KzG0X4+?+uP&GaPBsAZ`CVeB>K|!_AMb=`tOtKGk4MpS-{p5O5%hcw2ROvVFc=p zJgBJcjJWU`u-~!)e$|?G_DbXdD3`zzL60R?O}g%TM0L+_(9~Qah{P*{oIa!P83loT zv)Xvv9}MJwB%Yu9FTWSr9;(uYzWj=NGcIg<#mcPUM9q{nt2*w@K_dbCk28R+!4vsA#uDUe-qC! zO0e=cToEGClr81`H~{~odDc-_w08!;P}&q2(jG(5{Z9is@pv3e_F+|Y0XvHq{npxJ z2-;;S|B93^>$6kj%d~iOaKgpL2s!cE=J7}X%6O#em}^5k9*KyGcqGpe%bLfd$1;CB zk_UtFNS{iIM`B$n3%ZhNHy#Q6s#=jg7>h^$)4)!=Rmty=os2xgr?(m>AAS?85M8z^ z)#tQUB?cxg73ZReb2e{PDnu&cB;F(Tr22tFjkhWZRKIttM~DHmYfx&0v-oCTI^(k?&pEY;- zYg@W{lfHlQn)!-{zz=c}uI(7a1nsX|M@v*O8~NRA>w6x0fhFw7(jD~{0=#B_Ni3+jgdOR$kxI{XlrpbLzhA2i0&NXP zC-%%gT24^~pxC4wg*p??gHX=#&cyC)xU(}HkB07!tmd7GcckzeAiV5Mm~YZL6BOQ> z`AA%^d1u1ll1_&du@mM;4m#eMFfUhhCd@;`l;)iYgSIO3o2P=E3G@h<9q&vSi;~RN z$ri^}^Uj1poo2p9qAV_t|)} z-h);x9#$3*KW*Nuw_wWBvS1uBpEdC&h$W`NAFU^ejm?`NUK{<*5bMz+a&$1NB<<&* zbOTEO(My(<>3rzuz(HDbc^krG8BrCf_M<8WSvQGCZ2<7}MrzE$g;T+O%0F)_Y&Ve- zSvx*g+KPVR!5g?Q1kqU*uLWDhFZ!Cecg_1kkX{!riDImn1&sS`%`yqJmRu%?$$z%2 z!VAE02|5Z@GoDAG?Dv*UkB$!<;D3AUG-+65Cq%XDsmuVh#fSPvI|KKA)aFBdH?Cb) zSD-$||K{-(J*7zU9VVe*2X+%;u)3D-g0u9TbX&tc5+XM!zU!|ZlG}Nc~jt})E z7^WQ%$3^p@z7zws>d;W15Q4ltKG8aw9Bji)!S007t;UglLy4Ak*puor_x$+sJq&D3 zeIOCge4p=1VFYSCYSfDrj-(zT1~gB#)BwK&sb_*wqaR3$8f8g>vD#(ZjT(iwDr)pI zDi}f|iq3;T!ue=}l#_tEHg@c6HLh_uETllzJ5SSZc^m~!a6^qq7pjORBb>P8U>V45 zh0J3}eCW+%h~MGqgT%b%LvOSQVlIeSW?%QCr2=`G#=DEu!bl_<4BmKb-d&^?q*J2d zurxeKagT{SMgX zeIEnXuTo$S^?j6K2^Df#_KGBs7{Y`X&I&HXbGlHj zxDD||-vn`0?j@?Qn>AnbO<-4MTwHL$Mc+gmXCb}`qZSJ~g=03FZ^9t(liAQdTCH#5iRcQ%G)K8_yqp~iQ1swuQh(`rKnGFr5G9I;96psn5!NYC$6o=*`;WzJHxhw2D zf@T-|%^fzOHCTdK+lN1hBeu{QREVT-11q65s9^b5SX2q}U)KeZVgbbP&&dATCFnumxf&DT2_v{mWUJQZB;gdPF2 zuZ5RwgE-irL8H>+liMsvt#5aCA0bhws=Ea3lmEv<@GM;-wZ} z1ea~QP7RoY=8NDE@X8crIM6^s>+rEil%!sbPEJhc+fKcIz45sIoy{x4vLp6s_>-5; z_fnCp0U{DZH(Ns^L~BIx*^rW(K$5g^HlGbqtOXQuCfOGP@giA{uZ)Y@q+JdBeDjrY zaoe=wV7!AWQqSI-K0Q?KLTw;H?DT_sx9AWy2#+|}cYJTR~|^?^8j^XY1ZNM;zV zgb}Fm{*ZdHqOwqr5CfX`ho}L5w^z>ur>pe?P%iOB9?FsgW3?yZFloNXL*cEe7xXhK z7(&z4&VxWgLez}Mi_v5$OQY`Iy0vwKi&jxneol-U1Z-_qejrZQLeyY{MhQd>f|?LD z7^>fOy#}-pHN*hFYHdqsX_S5-Eo#z@T~^d&7_A`$qecl+;RPhbTQ9T44j=S#s+#7l zm%Cfn(9q!%5Ad4(B?+kJdwy-CvL)asWnPowdwy*}6-^!cQDSKGJ->cK z{b6Q58{G5jJP75y9qoGBmS&KmBL#=*Up4Mu*mhL42c2hCP_p$jHnj~vR(!%>4(q0i zvA42oK4GvagroZIg!zWYY<$9i!do*RiTgI6Ffh2v2-UP4F$;8j!oZ-cay_E~J6rP! z1KX5<*XW`NP8b+LysY9A2AO7SKgH%ZpD-|}E2B)CuVJvjgaHz$LJ{als2|1Z%l>Fk zjNww)p*t|wLj72(xU5vD`qBD6v3~RbUXyE`jTI#BTBsi_q-FG3NRFU>v>xOpCDf0W zpsIMZ9wmmhP(NDuE1lDNHe5g24+1F(^`m8J1}QpNaLl$)KU#L=kfR|5>qlF-iQ<1a z`KjOg6#q}cG*;E3|K`(J?u!4D=qv8*@o6jzVHvvOI%?v~&8M*tG#s!}6|<4YyHYlC zf0c!vBK9=zN;&rU0ief@Lc`kl87Q^*G#0Wd8i?|0apk`_2AfY~A>i@wqd-E_SXiV2 z4V-)@-h!VNg)%VM7^7JUpi0CCq#)u@BNYs!}{N*b;iR z8k^r~UBs=_+6u8>spOV@vFcY~{#Lpt1ZL4>$tdT--m%=La4m@1~WMjafQ0{+7hfu$?k;tnjF1e!JqU z-MwWIC~D_fVr}!)?oQD}GIg2t5{TL*i$W{c66L6|g*)+fFQN$FDX^ z>9URxrBi;D?pFw*@T>AOLEDaBVYEb*^ecos&94Y@Z?ST}^4ZglUr~F!0JzU6yFz^v z{0#V2yl;Z6io}#+$k!5U-Zw$Ot7<&_m;w^&oA{muPU1`K4*PD;r1=uNdmvTD)~Df5 z9#ioJZ6%UGTLgY3k=1-bo5C1S$Z>}jwDI4-rugJBpsw&V{;Mij+-_(-c?W>zD8>A}Vo{SQGTOtX# z8eDxt7;C||ON;@9_dsFLx1~)9z8$kkyI9M<9kop>4*E8TQ2w9h+oi2`NwwhH${H>j zd|R>~h_-{pa5P`v+1Z~KyFK~AZXeY|XG{Uw<3 z!|c+ye=re&^QtWg#Sxg3# z5w)V`fg>JmBBA=!vFD8)1_W3VSOnvdtt=T$cDtkEu%L~gnu}mOdbABj5j(}v!{?q< z47dZwO?%`i+#biTdEB%|i3VM2VJA4^@&mxl&zO^gMab)ykoYZaGGodwvEN_Hj@?qQ z@j2YOyx)HKI{MfPyd+9f3=AlfycPsV=^jGng!vE}y-UcRT93@0`eQ9eIvj2nla;j~ zEN#+}#Fq_Q5K^$NzOfrEAs#Gk*bEH;N+U0O&cTIDQo|OsoIR-`b_zbz>^aDaV>BD# zNqxaaIyUex+l};^h{#s+98;jEf88QwJR@1HYE0H2uaYbe7IG}ShbGS}OCv}}+ao}b z#*$8uegz2nRm&bkdIOlAKU}r{5F}(JT)=zC3qZ{WEmNcW8<>`lR!xgW!M;GlZa#8B|SPGHr9=k*+ROw$naQ*+gX z2TK+|1`Iow%Bgt=I0~$n_uxw7$n?E1J2ltKdr%~@V_=Z8+B^ce=a{E~k@s6pF`n+^ z;i?mi>TKe@0|72fSG4VhjMYoT{;~3gjD;nop0-{APwBPnDNf%LQ}m~+_8A8a+lXfv z=Ov)2?K)fcaxpzCud_9Zlsa2K40N;|R#u-Gld|%#vaqCtmG#Qf2+|GgM}Q!WC7mGs z3J}z0olSfEn46W>*%U^s&ZbWTBZ2c(WfeD{d=!{et$DtxEta=Qj@W0lp6HB=eo`!~ zfEGyi{=v>pG3(CZ96mB#)M(7ms1dCuTMs+U+dfirPiO`v1FODmlX+usG@LKG1>hbm z=s;)9Ro}J_0h%abPw|gEr4!(Ozp4s0_G`GaqQBjRB?9|>3-j+csa}mDgPCYz&kErD zyPnbx=mVRjY$7!JhqK|L@WQXTAko%j;8RuXIe}k%i4CY688@tO10ZHs;^np;cA94k z%gZ;?-G!{<9hJRH<47rV(CQ8I(WrN6K*T~r z7)Vi&3%0$4(C2}Xb}|L8i*T)p=~z*wupv}t3j1Lo;$|zEf(v#U0OQpJh}O-jlDdAX z)xyX1`Y{zgh7c`${4fv^*fL{>P$VyKYE5GS(@=BEjIBSG5-0%X4&a*XLLUVRtYbG} zhZp>pZ-MFW!-;77#rCjYF4lCG)8ESTZz-B@>=B}Ga?#>4u3}cMsejS?Bkw6&%lslJ z*ZSMrOt{~l4+mjGGOsR4GQ^{jy~NEC zKeT6*ToU6co#h!tRAQs#=%Oj98qP*!;|#D2XCum_v)LwC9mANj4fYPk4;ICEKA|`H zWOfXr9)|U>lb5;HEvXd(#M&hm!@OPW^bbaAO}odFGI!EM!Fv_57s{`l(5Pt+DO~JH z%QA;3H0Ct)sGZ?xR1W2kMF zB%(;J%G7!RwzV!c1vX5nb!7;^+VGtTL7%xUHVM70Pp$}uZ+j92tg`?V^=z5X1}nA2 z)+cR&Z*5zw9UifA8P3&MChxt{v8&7-9?>$fb+OaKx$2oo?NAohIe#(y;F5b2Yosvq zoWCe;rGq_jv(yGSGkG2#?01bn(vi)!dA4=2)9?*n4_^ApocnwY{Kf~Dk00xj_>Hd% z{MPn@n4f_4u(v?0K=stZnaio89^-0b&)yaYF7fjzHbwWMM)H?(JqEO${D~s=l*Dde z*CJn3)*kH3As=f~8MJ~g{G5fSF{bO_y3~Z4(1wC!%o15Ua2#`o`U6Z zuzPIY?L#YP+8;b9teL{L>s+5c_I&wm4^Y6xY!U_7V$B#v$uDh@5=he_bH*?lyvmGH z6?p?0`)Q0~lg$vWXc2Q@QeyGRXopJu!l=b}O#q0Wj=lnVW2)HpY?Q!8b8~ z7(tGo2WEPCP8-LAm|34%t*Ojq&F!)y(1?u_=?sZ?fTe!hEXmG8sFM5hmIFUtYO?o& zt2}nT&Rf9Mclic)|m-^fBeKzaO@{FSfnC=(*5OAD(|uE&H4+vCiOpg z1Q^BG*pKTFiX{M_)=oN^54^RbShE|~NX7zieUQ16u7!+8#v#P6%SgH-F911{{7h=F@-)Ez^b*kzFn8&=b*tNXToIW z-ujk3Pa$Hj=dvd)0mgQh>W8v9xA=HU)7{@3um2%b?9EK((7V9iaH;IcjvGu4Z5JOA zulu{><&WTE-_K-_ybT;Ksnv)3yST16u2vuJYp1vR@LRyuXgU6dxLV(t_4f<6h4L?s z$>k6M7#jOgs@DYs0GWHsCv&eD!krr=cK`MfAhLwT-l{`l`7#i=q`CupFq{D z0Hv+>c3nzwe-Jae`rfWf2ga7t+pU%We74@(m3+z$9m#;J@9j$CW$*1MrMF970CI}9 zt6EIX`u*X;ZLs|H%IjHdw86yQh*z@yH-Wd-+j}-|^B&9x_hc{-CtH1c&nAIDOKI;_ z3IH z)cO^_1zatuX@|JN<7GHdkE?n`1Yl_C)oVZiklFfBp5u7ykHk=(<9`ZP%1~bL<>lo) z?2V7YP@YRc`cPizU10A<&7Otq+*d75+h0~6LU!iu)oAP$oz46YfU(wLd&zUGUSrpt zy}vk9WgfPdKD+8Q&cz~*$gPsZof1W^WK-;D+ z-5bY@e6rGJ5XB)*POYMZpaxEU+d3z(@Ug7M%Djla=F*!DrC^_~E zOCiU&=dqK6p(K%mUjTBfa}H$&^T$kirdib^Xoob8sLXQ?tI}vnWsXp=Z&!Eb*U_`U zM!VIP+Nz83Lx0m#wyZ z=nib`Jb$p-HV*|N&Qq-lQ~Eg2VjZtrl|&NqjI*&k^LX7V=qVXS?mOp)XI4p4+tN2% zbqN_lWD;nxT3;v;uy4fd*C(qa92r^OM6rw`Bd?D6YJ|X%k>!tk6LP{Seh8&|iX#rs z7EbZQuw7;TBO_~=Ao};d(kHNTGl|CjJ2$6HYM1@ZfacrJZ0%U=l^_ zDSoQ39_9kr2}fEG*rIAtvxem_q)u$%NDGSJtI@(2(4whOc_Qz^cEe{pk`e3p@h2vHDwe!7EaafEfQIP&zr8oxrui6Rc|4aXTa*~Em-~Ge9#}! zM&$2SVQ;CIebH-a`779%u(rmVvSdfCs+MeFZH+%?(czNvnWNy^8ub7eo3OSf-B@=$ z3(nXr%no|gwKeVYLuPo7nID2Bi68O?_>Xl%M{=#_4VHDcdzpDdM|z#- z4Ve-E`?^jMRgbl9zS|F6vH4{;F=oE*MJ9|hW@Hbi^VY&Rql)dSaYprw?AwLL8Oc*n z^a%?QGHfS3G@KP$ScssIr*J@U1Q#MGiR5YEkbaK`&}3oSri{Fx`X~;k9Iur2YNi(gkJ>JvCoU2dK^iwMADN;z}MXq za6JmRIg$s@#ijWt;CeI&6Nn0zd3UVSBZx!g*QbcA-GxDMJ{LsSZRDSn?9n3tdla$f z_~JNOXK3xfa}Drij#)l#qe+p_h|s&!y();Kq$_i zWb&xd6jMFySnt$nyM}$X}UqC#_2u@^Y&r2z&3 z@Sj|#g8+W3IUnw)d8FOEr&Y+jr$6Spifk_GS`~BMuB%vzq^rn=sn%W(yslN34PGn4 z;PsaPJ~{6}AG>RE62{$L-lIC$Dc-LqdCwi}2t=hEIP?4%Yy@MA@&`LSnnZfc$Dxjp z_ecz4hjMh6n|TEAd=*5*(}>kz#hm0XH}e3f=EQ?Q4gGjzd7f^W2OTHJ#)C$X#Djhs zcyNbAJrqX$fi$Ht3;9E$9`$i=Ao|s^ZjU7H3*=c~;AY~GL3Kpv);YF*+**}h8I4-E zT67t(Tt5d^yAvUvm!joPoA=oC{Fwlc{&>Mt0BUodM-(r4`Y@2-u7U8pnMi_ZQehhM z*Fbm>q|#s@s3q7QVTK6vI8bq`l_)TkFeYKLnlLcR)e?|^`Q|||++FeGc`NDzp1xE5 z5)hB#c+sm)RdsqYy{&c{09Ho`m-dPp02YEs#b-SY<^Fyv4)64*FcXKX@p}h@+L+?; zCm#LI^T0+sm7wmbVHQ?Y32NPuN>D!sR<{!iR!3hvWW?U!MzFzv*aQ<12;%!~NlCxcImWmj%s+^yZd#@}c;J zvKKC6U7ed!7r=VOg|%J4MvQGp1@^_iKdu3X2xCuO!LmX9i>~_N_Bj#(7iwtbGT4i^ z#a&kYQODML#-ml2Usso3SC=0Sg*$cdR7z)Y?|I@3ELMSrH(}=0IFiY_^v_c!CfA1( z?vKE{kjR_LW#Z|=FWAxq=B0c~26MHYI`g1E+8*{iRsh1qbpFn&cwI^57QJL1c0y=tkNY#)pYl)?=z z%;)u743L(P6aNHsb zN*H1RzEUi#(}M6s=sIy392U1TT`?-0q1KL$M5-TrCkL`!kgY-%1zQcdEa;6yma&Us zrsFf%Gz5Z7V+CTtby#f5V%<~1))$nVuuR>#K>?;Kk_SIv+{)^Ok zplrZ!I&~ed@Tq?&8SIIBr8LlU>da_(A4J!x>h-I#s((^_mi4>(#9KmZ>I11?;`O_F zO(uEu>4*_kUon;>87UA}YY@U>e=?dEJC zEx2x}y?VsHm-TpKlg*`sD>d1uO)?oj-q>Vw7sN_UHfobh#*a5P*<2>DQj?9^B$M&u zVDj}Qv3w3)Lq=_m@4>7{L(yQydco*!ESl-_VD(R%SiQk1gbG^REKkjTu+$tz6ocLC zF}tl7!0?+*41XPND#O=WQQOB$wcXYY=AVn1@4nNR0a zUQ{;@QY&|s8Nga6*!k^xWSZbbaYNO_3?D(?`zmu1ccImM6rM5gIYt&6Wx$+GUkZLvNdcZ-Z>F!qdN zY~+nLY&UK2RoiYfr`nF+0NZagEO*>4rN+k(_h?w~ST$IGHlgI{D`0+JW72hd(mbX1 zx7?U?-I(YG0^G)A^qn>sn2SrsVeR8~@zJUoz`9czpzi)F#b3qA{$UTaqR7vw#w zw7_@UZH7AVOQlf8--(y8ez*l=eLah%8!MG28mk@#V}IPNWNDGc4;*L~!(g5}X5lB3>(AB@5J1Zl9dpKAWv=;ckTdmkbInJ?LyREWU{p%!!Tbs)6t5@BWQT^+= zvvP6Y6|nm%)JOj@)dL<4yx?{JS8HA;m$1vK^EkY&+M#h>^z$cw?^B;zom*mJj>9dh zJ^qOO?^#a!h+6|L{mV97`b|~Epu2#qdgc#S;zB+kyt4UGYN-VT08zhbfvAnMiYQqZ z_wJ7-P$xgwwwizOqxM>;l>K0!&Bt4PZzmE~B?L(O4{eaD|Mdpu2dnw-^@F9py{YL-p6tZO&I@i~pxx&foM7W?UBbU%$Ok{qxm3 zhfY#J>E!Cw;hk&4JBN3){a5c?Q&!(G_Pfn`JG1=HjssK!dqi+Aj{e~%pMu6L{3mZ( zD&}`25w$xl6{F5GEfswQlFu7CQTe(!(+(I7Blg?W?Ny# zM#0JXelj_px7*`~uPlYtA?0o9^JC)2LXpXj`*yqhpj(iSkspMj20!#|;3s9`Af9&K zEDsPV{YP9PUkphN-pa&5Jcam>Tphx+Vse}XB(%$wDTm|c%0g0uD^~(=l`^ms^{b7I z9ax~!yI;)J*@ETRE}i>qWnd@jS|Knz3e~_)6CukW4Ud#sIcxQ#VKB8xvxER?->YgN zz+6;$h`aP0l9FyVYUMei{kQ8z;R%a;cj-2VM@0K?&i!f?d+t3HZ#SY$%43g)hLVs~HkUHk=QmzU$m9^#Q_HBM8B*4&3dd@$(I;8kBJMyb;Tu z0$k=JK>Ah{B)%j9&Rp5qDQ3ji#y2xpL-Q(N zFZrvE48SCM^0qIh0VWDCVDUrQmg0aboe-K{{@Zw)IUx}%kK9)MN)G8vRiX2Dp*K+` zwJzU&OPn!&a7-0}KI!sce$#^yt*RuP(0W-SPFuRfX|av-Q}CFKPFt> zXp{$S$?UY%Q;uSTUKc8Bx{JOUHd`_~ZT0Yyu$dBQ8yl7^v6*reXX8{>{ot!`V}Wdy zI04eE>UTu5XKthY7eX7j+&8OS4i*~93!Erx@pHJUA{Pl|C(KetUXGRdq@3UF!bEsi z&hb)I&GLy)I(uHtDWl1Ej`KT}q{%g5B}Nja?==cj1yLG*#GY2@$}a%e*>qrCF+on? z{j5cJrFixN1u3WHIfvh_g8Jb>F@q!EJT1PTHo{2dvQt0fdT>jx5|vyT>1(AoLq+AX zQ)C4u=c=-WJS$+aTyfYRdHHJALUv`dXYVR~n72+90`(f zAiFjzGAfsy+EmAVsJvR4A|xblc{NKBmSFbu<^mcE`?#deRhE=^9F|_<1?Qyb?lvnr zuYC5RglR1_=bry&Hd-~KO;E=#v#P4GB&!xHS`YiO7rmNU=2om%T5&L)PG+K=44p{m z>C$Q~ezsO6bXPcgZc~2Q0o+O>fUKPO69@Cafrw@Dv$!B!H=Fp2C=zFxMUMz_&nptw zTDEasQ7I^PUeVPtKl@rXxeb0Suj+ciG77wIg0TN*+3|@i za<;M9i>XSpC>&VTfR{1A`Wt(OvzC~}(a*mLOA6Xx&spVM42SKlajRY#7z0a5vjHlq@ca=|9E;|ojJDONjFNhmr}>Id>CD-C2^6jz}r zjxCa5dtB}4CeiCi$&CFU=Ena2PvLb^0KEP4M{U&LZ;0xtyjxDpAQe1S@O4Ooy$g$C zJfFJtN8q#IyDL$LLjL!%{|tZmXawoU}|r&uzqf9E6x%7H%=CNG=M=|xJSEH z#YMHl(D=yTLsJ)$I7hq1ikEj8+&Ob(zO&>Gugb}vGsosRqElD%S@1+7&^J%m z93By!x|$Ec6O|+h?)=q!m@+AkJud%+vU4ZCuy(P!uBC}D0)q->Ps`!Gj+#OSVD9=U z3Jhj>T3N(r!7^gqMSSkMO9V+&lP#8%l*b;I{{kWIoGsGM+owc%{+ul)LWpCJiGN~c z0aG2^L;BnOMV~;(U(1Fe5V7njJfXsKjyo@k*nmQWX;d}qRaUtKTmHN#!RD23&x@8d zAxG=Zi^kBZ_5(qkKQ9_Zt@YURqEswezzO||N9)>PG3b^k2(3Sw&OEvS%*8f8|ogg46ZEF$8ucfnIXr8I`gxq7>iSX~|~Q1$R;*wXeha zUMfG*J)SkzmF~ga;>$?7i;+0Rk8<>RWHCR2r_W4>(_%Cn7jq{P;t9mOE3JG1S*d^H zhCWBttPQs}h;{M6*5YJ=aslkK*T-tn zmj0X3+QUvqT8w2~$I>^2wv|keWvxw$FFvwh>2<|{-C708zzzS5Zt)esa$MugEr6gubuMk*{Zi*`@I-5oX;CRL2Z~o!IaKAgb|2w#5b$CbzxZ{^f zTWs0F*y&9!zH?iP2Lxa7BA6fOXK*0J+vZ*fNE&-aV%Rha0K~T}5R3j`vY1WA8{I|m z(E{#U@6M-1G1w!~72oq~feA`wpWjjnJ6l}g)}*^B6#}?58=SsIxT_TqU{`X}jcGR` zi7eQhw1e(p|8N6t=E{lgnKf&0zP8$8o}?hNcxTTB)oPm6Uv?hK>D zZeQnO++$rKveWZrf(#&U~%+cK0FmsI(JJfolS!U3h1k0Qw|ox(QrXG)5j-7!-$nU_Qd<8WYGU2(l1Ar zoWO`*HE(p5B4ki}(d%3C5$>E9y}H+`Jf(aYJLNAjoD#uHQNv;u;P5JC^BD`xM;FF+ zfP{~`DjMe9$qt-0vgrF7`8nZ*Ey+;FzH>)a1D$IUTjyGt6X%`DPUmgFhI%Q`J5$fE zo4U;&OHAmUd89}udBy7_S{L_|S3@Ay_J%vd-Tt_HIFTd8*e~KUvOd!|C`T+i{qFGE z@SRJyI`>LNfa*&@RKsoBEB|4Jhib#sFd=l${ew1D`su)7BmFRhNQWt_^wQD2MtXz8 zd|wOmuKWDh4=y)gUkkK2_)!o8#AUEn)n!ZS`d)o}Y06kahCeas^7R8=xeKwqKr&>@9H0j|0nddwLoE;S0e3e zs~0#R-28`;zVV!2t>|{3a+?20jAX;#Xf=;<9B(3G%r8NXy5<=|SA1EFrg`0nkhO`A zIjkqp_%>p=9jDLC3OKwC*1CA6+|EXm8G2cAcjB%V$Hl*FiC;4>5FWmts|gEYmeOa= z%qJi93OJN*;OSeRi>ktJORHWoT(6^FxrJY~m96!s)6vI#u(d=$42?JWk$hRsjy(3v zrBX#lsQ@6~a)21nT@dPp6Cbm4-~^J;?z8|CF`~%z_eQWj+r{$#wGcRwHssyc1XaAjptW15utaupi;sM5io3PB zmz+Lh@{|+y@p=utEW`bT`G$-CrX_yuKEIa}jt1?+|F(zoX@4=;v(7|~A7*EC$jl!Q z%3gX~YU_Zu&K08#fIV*m8+Pd`x%g588wHoZK7IYnZEmkjjx-F`Y^R`H(VN{5qm_^;i#hIbd!`CDhsOg|O^*C(^xGh#*J znfaoBe^i)PrRO}UL~;6FGQaX}g7^szJ0h06k*C23VMNu5Qk8AMcN4`+^p6XO9Qrdx zo>WOd$6HmB29ZysOyb_I{!1l#t)Zk%K7c!x@rnwG)}90h zR!LFJ)(n{_+)qi!MCN5_*^8iluqQkYbqTnQU$!(sBLR+AgT=l)mT0{gpOQeJMVV1q z?9?S98?>+4+RI9)3lq3A7@Tx4#52E*!6%VDUpBuwSCJmT^MZ{BHtkXp;;Wu*073+N z>;{+QBOK->7DG75v_Bpfbh0s@a4L(Px=Cb%_HWn*8ppuhK zJK^VSR6H!~iH~@@+h$%#A=4e-IkSMa?`+r~&CkG&x*=bp(VKrfUhEZfI9OQy=;ZKt zOGv$1EmsEQbC*iholT{hJI4>x!L2FqT@9Wj*Wbj8Er|yi$R%2&iv>)0J;Q|i1)P=( z>ukofhZCPEPN#Ye>0l?`28A7|5ZJzz0d)XNkrupzE<$Vy)22JK0uF2)4?c$V9=zd3 z^Tec0`css%waX>Mj)K_H5IYKDrjPCQXZw@!aL}Fby$BOnV!b>c^XOvFy;}n4+|~fV zgdb-V+;FS~!@4jCcL;o9#BbXyDX%v6!gURzb4P;!L(XRy!i(T=SUe=)x7q}+HLxc+ z-9j0F%!%m0P+hALjda+fco#GHocA9tCX>Zp7uMj=MSAi1cOg|ecw1$ds$r+LO0^m@VR$~{ z7ca=s>)ylRVy_4LhkE5Erf~J2#c-ky*%WvMma}%QD@Yv<$=+;q2fIk3aNbpf1(9%r zETnI-RzQq1@O{Pybg9vYInI-)UA7v6>e&}AmA}cA24YZRvsiTApYmqVjk@-VW(r^1 z1?St(`mkZNn9*dvzcgFDs@aROmBt};5G1hi{kk^JXZ*Gj>A+p?Ex`?Nhf6cI8Ussk z>7Uj#|30h;hb7*9=wWy_*F9L4%|6BK`L_WMEC=Us@Mgujh3iog^5mrzZUh5+#bYyX z)u?a--~LIX!X17>tK;~hC{!KiCAXd-8BRn)J7MKO8L{g3I2lj_G1q1zCxJed&q;*g?B)uL*!)_|Iw@E-aMuM6mq7 z3+q>u1CtV-Ez9f*{p@97ot#zza2)`r9GaJP-ORH)D~j!py=E>g^H@6B)9(ln*qpjm z!(K6h$zHt*m=xR6ss>vrtYQ@~^nzbrK=0M`$>A7=rNmUhNR|>rB{3_0x@FCJ+pC!m zvS>gZ(Vydhz`!5WG!Sa=(LS;0*UO48sfs=RUNOFLvq{ucr2nNwjir-4?I!%Xl^PY@ zeOL@3R!EU7ty1%=W-qGmJEDT^l#sy9epJ)VM#V?Y!8h?0!8JoiDPvFEDAhIykTJhB zm6XQP0z|4}kIR1n^Sd?K9#5*8NW*0XxT}^udu!rp8j+#x#Lf&K>d|AjcJs6uoIG%y)4p1zH`w$hy)a-qweT=0I zQ1}$H=eJ5YX8)_`Wsr%+#FCebPoS!z24zh&CaMxnCOWV4Blejs-kBD#zaMchSoN1S zocsF?13jonj_I!X#&kWWNX5p9f@;!7cbkqA1tByW;_Wpk$u&5G!sLr`3>0t%2SWdJ znWdeChNXJMFPrcp2eioGXlVHG50*+v1W3vlVyxd7^h+KZQolWr*t7*4R4GEi=(I)? z`^}1UJlNas&mKrO-x>AidvKD$-l7X@s=dAAKVNdmrr=@UcpFwm2;6c)%i!+7Dsb67 zlNS)i=C*>Qi*kn6_=E2J!Eo9&P++d5F zj;jO}3!k<%d&i6}H7QuP+jxJeW$5%BW8IV>LA+#i*9R9#({4&oqbL%slJ>S@lORE% z+zi_P!L~G=1PQ7YwotvEe%ISgT&wIdU~>jb^({{y>??W$r@#kuyKv4Kzge&& zkDBAGLK-SR4#Bv*C%CpGNT00=@|O8bnatfllZ1p*`208RGUaCZpnKWl=d zL@om)9L(GlvMD6QFK%)>~KAy5VB6@_0|Mm16@#F*dOF&1`GOv+lXG-R=7% z&Bo7xLUZG3WvKPA&u-qj+c|f(v;8)&w`w8YSP^2WMz5`gI2?y zVVr9hx{ctk7Kco}!SzDB1Iz&vDO5hARsSP{<4lyy?hP4oWAa!_9>z!I5 zNM&+7aDtr~%i=$WTc`A8PMA3Spzg`kahnBSmJT1>4Trz-fP%yU!uZ+gHr8tSlGm3d zuj*6;dzjEo&(%T=-{o`Rv6lSwT&)_FgI70;nCcF?RO>UQ&inhYEu4mA{-8^>He{Vr z$4}LOA+644sUBjKtV9$sS}m2^fSXUap_a80F+rEG04sCaYIV><3w2Nq=aDLMDd@2> z*dGh3%Xs1Gs7|Qxm0NP)RUav^--qdAYd!T+LZw1CdzmjD6JxH|6tK?C5?D<)vMTuktxBu|cH9n)N=;soCcBo81rG+w@6c2#Mv2y^8TK!Wqu?Si9rbtNuD3jg%UWT>)PeZ+&ReVmbkBR znES;D?rY-HrZ6`SH#6fVRMzU2xH^H@*2hlYEJkou6GzZ_nz(OD|mxS=?5cf_{{z)d`2i?kKHVNrbfzF%X;{QAbno$=A=~Y zKFdh?6{^|Gx68AC_+=mhSEr01(cgX}yUnpC4xb_+@$>8vfp`#0E$s0-{4_4^{_aF) zr4Sy*xMPCLAb+B>QkC$1tjp;H)xeGeY1!DZF4+Y_5$i6zsU(B*4u|iRM~(Af7T_+)B)=v$oU$2j#J@5mpS$65r(AvNrC zKPv&0KB57DpSX*Duv~&(7mLqF@)!MJJruvAh{lI>Z~_n?UD_k01Eu zR6b#`UD7zvcD5q~O{mZq>(7(@J;4Iy@<6aIY-}n)!yLW>-6=uKeQgLd_@_G@X5KT7!};Ln2nmTr_uPf<#qNW> zPl$_V9i&igwNDlMJU^*O0_ePY?n0;gqt3<7gLgmqHV-p*rBZ?!uU+iE_FDIxV@du> zC7&`;e#jE6jeQXt^V&sj%xkZ$pVRidmK=Q#`mmV+hH&h2E#7Z0+^`CEQhw?Qg}{6^ z(w)9_0!RBug$j*Sd;+9y2h~?>+|@^uhtvLiu7<}R4!0L{?kB%}i zZ3#X;CLw?k?m(YUGB*OwZsM25_2J4h@Q!k8t6e+i5A^xe2}6SV*yryUC~#LRf|BJw zc=Q2}7PRO;ScTIINKci9BXJ73a|CvasnVy4J%88ael;}4v!vUSGq2NR4;9~Nva>@H ze11#LCtdi863?EvTPn&zH$T{i{pIwM=@!u`@$8AsQW2m_&mITUvYHf?3#5I!rfe~L zcy+NaykA1-yeeuHUb~pO((MoW%892CE&U>|@@+Hn`-46`!XI2k>?LD^s2-ulSCzfn z9rp?520R>&p$7IJVVB<>_h}LEZ8hxl2SRa2-Jop;A3whvlJfvA?Stmz?wFrR*XvJ* zBnWEGmVtZE{wnyy9 znUaZX6YSgS*y&3a0I=dWs6iE%E3DW)t;UbK7_LNJ4i6>+VO!c?4@f4j^&N{)xpjI zT$yCD4{^yQR0p;?cKR9s=xp&Dzx2JC`H5n;7>m6ckSU7&;hYB-EuJML3a?J~!aEvD z$3TII!(&@<2jE@@$I^lsLpc0zynrHtrD41!!Y4Gvfk2+REoW>ijzKtK8VL3cI4oC# zh1#qH%jY-c=|$pT3*KVEXLZLha2{YxjNh_^ytJ}{U$kGrCm>*7zawEHU-sAJ`Hm1! zKRH-*1C5*|I6@i-_N@R70JdYdX>gxC(G}1(JY3!6^x5N@gyUC^Hsn_!!v9xZg#@&+ zm$vv3m=cavh2Vp5<5cnZ6iUQ>5wPkaP?h8ygd5i?3MizOeNGq$fZ((=_#dfS@U(nf z54Vmkn#N9-Gc6z2C2XR~JS(*E;TLh49RI_~Y`fa;at^lAkQm9iH<&|oaD`vU3# z%3IHSa44s<)a9*=+>XR>Oh@b$d5L<5pQS2p#k#uB$6#Rq_wKD*-7Q`@;hAjoKIifN z!EhuliZGWYO^4G0`kwV?vXKfwTa^y>%4_SLw@VNm4FYarEI|N#JobWQbNFzfNL5!0q4*H@f}7 zhX=zs+`VY^p>ozAA-Mv%BbYsZe!X*rpK^uORkJLGcKLa-;wG)4^sw%1Jnqt?&6}_s zQIq27Uke7D|3tdW^&`&+WGBz9i<>vqRge`0&HZ#AHZH&j#$-@fwdf_~Y<(V-_ReZK}bT#igjU%et6zjNtcw<0rL2xCc3O*u>5Rd^_zl}gwv z5Gs+}^xX;roY=$F?2QKOy6J*F4=(77YTOvb#*3sQN~qgEOp5HB#wgY#(@<0uOLG{w z3SDok##*>NYPmM)?I&D??iDCtYl-wo$!}MHfCjdTZF}PLr%j67lFOcjD(4Q>1+iV_ zj!uSX%^e-d?0KlweYpoO0hWhAO=jT*V0i33-x0IKD(C-t9}`@3%{K(pd^uy=+OYfd(H1#3v9WOjms zDn9_Mb(AmMw*@RX^A1jBfn`o_ZqRK}w= zNYUl2f_5cSbRe3Y)Y#w?Ap2I7xxwCKc0gnF-R6{)QrTz9KhmJ^Q~274BBip=h(rEF z>cZ=vTvmB`@#!9zI_4wBWiR<0@%NndE3O7nZax+4dGu{h%q;xy952T@h~Hd3;x~_c zh~MOh<1sOqeGKE2u+JS%=*M}ug_yvi*-88fki{#m?P8~YFrpc*g^EjwWlyNT0L?d| z5n4bD5rVEYk53_!JtqE1qC`3|4bB!QQDWH>SLFeg+;!pwRD2|kAt9`^fu*;q0Ey7-$o|a{1HGc)QLzkJHhvZm1>emg3B<*yH;$qK#~&6o=|@!q1lDT8tk_r z47GqpiDgf`Qz`&7@tE4{_o*+p5K}@XdrbTTAmWX?J-A?H8I3zFmp!TfOe&*tU2EHA zq{Ol()L($+>(RWoKRr*7Ty38AxJdSC{{Kk`CcE^i(H0PJk?hm_{{aEsXyQ*T@E{Dv zirT0Pi*TVS1DCsw`t+=VoQ)=~8qpXD>S14kpE_L_h7}+>C5XA`5;UrZ>N7P!%J*^~OuBtRd|2YuKv zO#3P=0Mc^Vlk!j5D~Wqg`6BI#vZYKvljN?X%8$40s`MfQ|J z+2itGD5-c07S_V-Pev3;3(X-VmOY{V0yJ?}#Ap}^sTNp~LfPYD$S|#4e+Xw$K|m2C zEwG}*vM1DEz{>y2+?y`RktAti)ts*Gy6^kysIES$j|^l+-qq7bA~R7y4>Ey9qENjn zyBq5f;gK1IxGIhW(B!O8c7?k_VNiHT%?N*S|BxaS{@?@fsrU#~H8XWLH8*o}bN58; z$j)pb!%e?W)owL4HGPpNm(}fFJcq#U)TajxhEWMwBsxT5d-)Dx_2d;H3CKdX^%EV3 z3~a{{ij^fC?$pp`qbK^LAxgq?+LgBOxs#sMPCoJIMkH=p^zGx$HN*RLlOH2V6f zltVJomp{P*5}UO>A~)nz%7G+wa6sj?bUiG=AzCOwNg?q{?-Zg5d0<7zfw==kDv*U) zy^$uQyhqs3-h+wLrC!$J>nEPT=)}*oi|qwFDsCFDyrX77R>A*6adzgABTol}=q4t{>ebr{RqM+7 zO;(36KtZf-bFJvUG?*g7W4dTzHv76ufO+5OT@V zfg`9|fmUzHdy0U62KXu&BQCG?AlA%9MfgK|1ZNrpycGxeFyw2I6bq7xs0;~W4aGv; zU{i9#yu=7{;Qg?aVguuUP%-_v!B8-)F!QpZe%KW9++ZlSs6-RodeiY=YtGP66rmyB zgA-w#Nm%n7UzUUfdT_+U2Gf5R;6)9kA{EZ(0?#d~540HUIX*L~$U=qd;mn~N&>Y+-mj_>-U6bK<0MR3 z*KT>`+F2>A-ab@+7a_?j znc%b%a-T3W^sm|s3Ul?NFC};l!_NSt8Vo(IeE1>I)sJr}c+liuRIHFOCZmA}4eGAi ztr@+;{_UzODTl}EgVU6xXzv*MLc zBpUAOg}W&UP)T=^XJ%aI$~43s?3OCmpr723Yf!Nw!CSQQ0?^mdW$QuQ74LnreWCbT z%l@I0RJj0U8W|p25VS9JV#vjn$frOcmPdK?e7J7)#UjbRvjsc3q7=bgMCi$z z-BOSyJmSz3x06N_@mR&fc=!bNvx^JyIy?+W;{FnwGeVL#yTOGD1<_ZZ-vF9o^g){N zb_LRe?9Gdd#^?BeHSrWD=K3{JH@;9_v<7Y6Ag&KRg7$fd?Nc9vLoyAxL8a39sH+0q zrg;6T`||KI5#{p0@c&NKft@PkY=mR1Aq>Dw)f(%!Ao}Wab$=h;DI%J9C5UJ?K36k@L{e#+itcR;$|M`DMmD)BHmEEn=%6( zZ)y$z2O#PQ?!Nxud}4Qlm1+=~XC9js^r{QF?&pv#sxA?pNlu{8 z$_@$0PM?l+f+4fAL%blU%U``BFEdjcz|rkmu~sx&j@L#IRz75n2N zTaFti0t^W1iwB3IXh+quMGB!VzdRYTcyJ&HQyLJfH?|?GyP7^?Oxy*yK)B%eqCHwQ z7juOe%$a%X8ebexs}HuDn~k&dfxEew8N_sfihQIsjnQQ<=K}ff1KI(XgoXtdACQ0p z$j0#)60&whW?4BIpFB9a2WiD4kq8B6QJ|%FdoB#y0gn1lASrrUMDJB0-JZ)9Eg&m= z^$s+GX5#=+8#*cw)z@TP7!uV!hFj*iV3;lX_!(;gA!{;@AqcxcRv+y^(v8$i4Z)#t z@BR(6IoerY3v;-8&KYi}fjji_n=(=RHVevw-+cBh)2iis0fI zLneRquEz83*%4&5QOM9DbWc1NsPlzp%$jhBC!R}XG*Rs8wH@qjhqBJFv0_8b?`KpI z^95YL>|$mIc*qF1_Kal3e&zM($f8&0Gu>b}18G~B@?Fv__AWT85LX)7R zwb7tEn@lezM*6Uj8G|DUTl=6^Kih0#S}VawEJzbZ4UG|~qz7?vAfXaG_ks`DsVBWe z0FORQhXiqP=~4}g_|Aq^NE!r-xe}(v5xnyBSQ}pVsO{9shKpOo@ck^&TNHN(w>1GUZ^Kg-Z zTOu>FA}r{e6Ti?waP@&_Kc$pFDWA__FXdRGG5En&zu3W*S)N*w z6)4uq9Z@wbZH1~grL$_osvQ6~aWI}~3h>ph?!Dv|!rFkHA?&;0%6PKxk_`;MbZ(+T zyq6qOR7zpYux+6p(ZEqrQF2JfYu#ZS!E=_`h}V#a1`Z(9av-ce#`Pc6(1XDo-xq|u z!h(So##)p)tTn`Y)Dt-VWnI5E<_rOuZ*k_ZxDann3kJ|5^jA>1Nx03GTzHe@Jcg{} zS=)y^U%`P4+gp)VKSxbqhDz%|X(AbEb)jFD;6PlX(ctj{{ooc|LM}^i2tyYGWAzhk zNlXj%g~mUBO^~+Hai$SfToah0SMMNOm@!hDOH61sA8P~Y_!5$Nxv$dxAz;ijM4>g| z`tCuu8$(7J$ivoaT*3l=0y!!mK?a_Kh&0Zp4~~uxao*BjMKwfW-AAdMH6aJQ=2DIv zGDQ*AEkj;KH2_6RD25oIq5cYx0f-tVFA1)RAEjDw_yA5K_+LmV!n6x{1;_vs+WFB| zpC%6qHbgDS3Of^w?ny>aZ+e$CfKV%uQ(CUtXK-OirhYa&DIs0ffDpR4Fjns#Vzz3z za%bqkTfZJ^2o=1+V-U@RUl8u)iqKkkkM?3>1R{i74>eFEbvI1%-Y#?%SbPW$4dMU_ z=tl>JXjDLS4>%=+xI9ss&siZy2ZnILJ1c$l`Vn?W2)%+3JB0`=_1V=Bq_do_b(g(p zO~fwo-Ehe4Y5*{%9AWh~v7I*#zdAZ-C}e-b5SnAV5TlTKu1o;4{#mtQnvo~$YSgV7Ih$Qc;I>Q0c=dpEyMn=`hR1RrewY3|gN zaY$URHa!V>s~`U5!IuX(19`!D#94K42s8V;qS%|Pda7e%hONIA)SE|)Rma}?ZuKL% zV?wj*$?T1$gw6Ha%kzlo9+J%7kSCg^5SZ4wp5e^+9N}RkgB>>`5RzZakSGW!k-7~$ zP0utz)ha-FNz>EQa2a&b0JO5qMuml>;W7jZJ8;RCC?$_o9vcm#s#Q>4(kb{N87?~4 zwMb^7&<@r`vPj^DBfMH9AD>zl$xIa1Rd&fra%hnZ|7LADY>~_WMI9DHv@Mc}nV}(H zBr`zNP+zvfkNP6{(QE+kc{A<87Rd}uXy-@ci)5%JeUbdNWCUXzUnDai)XKGh)!kQN zi)02Nba7z>ERvZ}Z}?kPTG z&1sW|Jm3wpI|3^24YS{CjmIVkO=QI5%DaZbE5mB^-vl%*8q4D6>coRrq?ze!ew)RxVv?g= zeH9Y2=C=tJRgp-}91`ong|_0zOFz@qsf7d=+GGoAx^UZpv7V98CIks$IIZjhaD7Q- zNn$-SBqN~>L@>3Ytlm}eyAnTrY0%tgPv+ghaEMuPYZ~+{@{lHkvEE63lJTua@PcDJ zhS#_!(->*#VIK}!pG7@*lrJfy*Lp~-l1;j>B^M9(wUOho#!)|yk0G8<(vhjCfKCJHG$b9+Ne{oW zp`cE^*>Z%Z>_#kNNcfdav`|2ky?WsYfG|!LfPk95!?l%1YU$r)Y`U}ghwN}up=qBN zWYZrkX#NhY2WF(AQVc^O$oSBNjzLX+@Lek4*$3)N(s8TN{pX$Dac+}To#nWWg&v-gB}Fq3|M zWHT;S*&KrR^Z|)Ywjt+7HULq383ecnDnJ{M-7juHDiSf3>E4F_j*LhfWlil092;%qtNLPG8e zVX2x(z|0&kdYY3$0!74cq1c7?Rk1+*| z$a@!cC(HQ)?r!#B;)YlwJ_Lu{&n$#46wHNReRQ0#gC(3~*GSmGSovpdvswrgRaOEZ zFb{IR58!r2_Mqosz^=6ru29wi47tdq!68tOF)FK|is{FdIaKa=-klAm#**)96m$Tu z-cc6_@OVdO1Pba)@j{lw8pL>T)Gl+6BV;LF2u;)*gIm3XVdtm`rGeE$stXB46%vnt zzO@SpsV;;h=qFG-Nrt{EFC+|U>)ryLdC01~5SU=Dqh(TO==nYiiA4VLLkI^+=3056 z2HU7?>Z*`@pM@9*rMwhYMJ8bu(>RA9vypqP5E9d9h(gA&fx8cxw=QJzhcm?bqHzij zkU~}%c%pT12{|p~s^MThhqp;Z!a8`GUKC0$_v#sE4G^ptTscAX*&M`*Tw>?5$r2N+ z&6bM`d0n{!&nuzdnomn1i2@B+Q5zw+tLC1(SSN|fg^?r*!x|D5{+^U5jBmOh#lRP8 z;{+eC^#*frOhLrx8pf>RiG>K0r+j*PPYdy*7=TjYLWrwhqpMqd+DOPXJ{RnMrNVz3 zL=V)|QPGIr2 zHeYt|Ic(^j@H5`2WriMxtZ+E6pd5z0YVC?w?U8Kb1jsh-NV1JHLALSvS;F>L@PVKU zm7zPI4Z~q&5Q&MQDIX$2oX-XbQ#Fes?zG>PbBz}w4>JK|b*D0{o&96Qc9x1=D?_E0sY{P# zF|3W1NKsw#$}~D;;kKG_xj!V9#efhM>cYU=SlW#T$Q&d*!jb@VAl)l0Pe@=)hsgSN z)VsvY7d`i?A;jnA5sfOqxyYFoNZ&Y61RCNQHqlwwLRz~9U?-~*V5ujUd6y4bNarI7 z^UI}A0=0TYENdF-HD*CxPx|LE2R0fhk?wU|LaqhqM35MQb)JxY z_$(Vf+t|3)P<*sUo%B>U9vEzHW>{oMsvD1Zp@j&Ow9Fd8G;_U$z8#uaUYmq7JtbEG-9Wp`2eVq@V~Gw8ggh{#Oe}Z^{jBO;H;_N(ensEh7;=C z`nEXaj-CfYm^lIAgGu0OcRF|siSeON4B$1+>{(LX6TAg(^~PP~0J+mN4q$UVw$@`0 zv^ks=^qfIFWPSiY z5=4VRqy$`c?ZWdztjPzRXy&5}l?uSGetMR0Y)FpRh$CLe6&ykF6Wu?P4~-Rv&nQEl zFyS~?Z(|SF;>X|~g9A=u=|2u}$mBySt@E*0KRFZZq_>>dH8gghFZ1)|gGzl>ARepF zAU|I|h|-KuR?mx|7j*65P{vN3^92dE+9zw|cYzd~nS@?Jhq9Vbi+@Bapna18_Pb*O zJsR^TV{kuV`~ajQf<)&kBA8Eu$16Rqo>a3?mdBedqqbG98r7WNNuHAe(1;5!&s z&~^+=(KqryS05f?77Y=t01nk`^KovQ4J4tR$`OwWPL@-6io@D5O7AudNU59~6LW0H zocgGqB&7F@@~SPsSNOD5W05!SkM_|4vwfQ z6KM4+Bs)cDow*)w%obM`=4zB;Gh;}+ah`m^m;hEkRvrSJ5}kfk3qx?L!D~|R64{zO zQRCJvJ)jy$f@>CP_4*BhZxB52*At87SpeI{g&6XNu(pDO)!u;TY6wXzmIoy0XOLE} z-AuqCGY*0SdHoJio=hZfI=Vvc5ar1he1(_G7+}m^7)F-6yJ{v2zOLubLQD2JCY1Qhaw7b^-k2gW&k zQEJK;oY7OB0<2y}4>|l><^@L!hw&8q@2lh~0aBh1FyI1tu4nq5sc+s`7IG`t-Co&H znHj~hn|d3=*0Bcwr;T8go0GcSL0O62#zXVxUIL-V~-AIF!R%80WKSWN%(U_Y$mNLZKYA z)kj|)L9_Y_xHOIw7v7+<{yL?QF*So)tTMv=b#}R^!FS*f)hD9sslN`#o~-}fE($F# zBiCf(WPHQ@?{*MjafY&bNrtCM6_9Y&O=XvbgyEcDJR*smb+TkGBYlMx?t!yI3i>&i zJ~vf%`EAER)#AsNi8XxrZ3hsFBnYeLk01X^KJAGW5Xf>cg3}JxTIyyg5hTl70u5MZ zgU;-#DqD)7TpgofVjo60Jm}1hMP|)_t=>Wli;-O&mI)4^hMtp0c09Z2j2h6~Ee#|j zCr=(+R+AKO^)6Qieo2>P&V@vFM1&?Tu4Z7+c^59(j9|W1?;7wpy3z{?15+vG23>uu z{GJdP2=_JW;fS%so36h7nRODd~@=o)C$~ml1c_g=7fJgAwL6a8|F}6&{ng zaVUYINr$WuNL=Q6ZmlZ>hO&BzDB~Io`(QR?(cZq$&MIG?-XOw57VYANeU*GY|8dC7 zB&#>WTfKQE7LT~|pk17BL1+D+b}OKf^;W3+i`XO^?*Fs{3bQ*A^B2R} zb3!`?DuqvViwQ*fzL+lI=Y)0~p^FK$di6dWO$%svNfj4Yft^$?KctBm?OHo2Ls`8f z7dNsoAz^m2O5c7NlQNoG7$Kj>yv4ur6>hOv6#YfNTrzvZ7JN23ZsnuBpRl&;n} zT`|_6Rk2UsboC)>gM%efY6wb=&J+0`s2#hNx9rFaESGUxMl;O^^O|nu<%`A^|J~|s zxOqzi8VLbp$->;yj~pyNQ=xscCrLWM7@yskPR7RTVL@ST`M9Ff<^r!iI+%3^py2EY z1X#jrJdiCn#^*RBFHn;$*7M=8Z^I%QqOR3VeZHj)>e%^6LNNns^~w!}EibK?s3S`E zh1~@bbxr#Hq_Uo{zEXD`6rSAd_rX`e zHx5Bz6Zud=ClhP+>emvzLFmwzuj}Vr`9cN%0bELW1mi8FJB8F_VgzJERX5~>IUi3d zVFO&f^|k(I?V_RX-CsbGvc+sNZngah{6f6@d2*36yl{9QGO0lhhBcMhL_DH$pXlHa zs(14|d1!M;{(yH8;B*Dn;b3~0GsUYH%2FiS2Fk}~ z((?cW^#p;>Yq}3QPX>~lUQEU@oc-pso)8~&9-N@;z+1g@S0}<+j=rMElP}b%A$}+i zL+YS`WSoW}#+Q!ri8vFbgnY&wpjwUZz+1f|o#TQ?gAxD&5oqwbhb7N2X#52ZY~Xb2 z;$0>qC@RFml7}NIzytyh3qa#hE;b$VTlCG z9Fywdge@>rgbb>b?Pkr<(rO)4ZD6Z6zg7u%j5el6bm!R&YYGLQLk6o1E22@^^hY{QCf`tRy@5k2_KKVLa}!e!J%dN_jR#{gaf{JJ+Q= zkumTH(t{FO)p3nd4W_C|X{{$J@cg#qvcqyFVnuKWPhAHOghbcEEV^!h@| zW=sVoi518E=F4w?@C;PPM&Tkdlg+I=%y#~JsI|~du!;8lVA}1CsMl(3c6Ya;?CCA#$L3yvCESu zK22pkw8|;l-|BDfuD3S!dmB3&+nvqMcB|EjqV3JS?fzEld#hO=ty0Ric6PTrd+VD! z8{K$2>hAZV)_$k6v$?Up-QU>Q3Rp89OdN2`>wTf6HU+r8bL&E3v+x3#soyVHp_y8GRzyS3Ho_P(!X?4?yo z+3l_V4)l-K)<$n@Ya9CO=H_Ovx895TyIb4ct?x@&FRfC_?(DB`^mjHk_j=o%ZmYZ7 z>#oPG{f+(oo%JZ%+}-=0nz5HwNoAw0_3dt_zqP;K*=vEqoAGXMuNTGp`}-Tw?)Rpw zhgLadJDc%#zqhrw-tBI$$MJUD-S2Gf?eA=DbhoxQ_!npr*{#j(omQ*A zx49F+;&^*^H)`$n*Wn?#z5e#z#{T!EtdCYXWp`l#vAf;xbo*O7+gq?S-rw5Y-D&l< z`f(@P+WEee_0cM&Y!npn*%+2g zz5e>fPQSGub+WAlzOSjrON*2(-~>CygFqvjZnzT+1G$Pj!3dLR7I1>8B8ekP_f&>E!Aj9h zu!(j7CzwGS94{Ntdv^9);P=|z?{074EZ^z(*Vi}p`}?iEeZG+ncY;;YtOz|)zJL=< zDUaT!^{BVM-h~JjW)Nz`?Ur0>`uJ1xw&0+y;@dTFRfC_b~pB0 zakK*~)xC9a1nofN(>4rK{mr<)2X$L@qA#ngmsTlddt0!I>2|<(3#-haPlr)($Qf$kY^M(f~<+1P8v zEjXUo==JvYwzhlSs_WIVHQV>mB4yu#SJKoOZhJI<;G4{w8wE1TBu^;GGuc$+S}Jn& zR(e|8I7yJ;K=#de9ChG@yz}H@s(bo#kNIYxeu2X?!j@kj%AcI~@#{9@j2XZ+>(q@@cThfsd zfk`5fD&RSYK!Fg=_%Z7iP--!qe{t>F^ocl%Z%$_C*FAemS4ImNnQ`J5WLQsGMPe%LNuIT<6>k*iNCGUH{Ve$0VK48Iv{m11POo3LcTqj zVqc7gX*(PkIs0yUmCd$9lA5+fl)8HRjzVi3Q5(g-LwkBrs}W}EGIjap-6so(ZEToT z`a_5W;#owtyt+}W@?4rxNLYOeaXoAI8%fy7HGJ?h`B&rM>>ld$qj?;`vu{kD-+BRM zA=N5hJQE@schw!nFXq#W$L;gstPNq`V|>psX)SZ;M?JV$Wxpvk<)h1g^wOZlIlq=C zR&-S4v<95kh*Q$c;B8XHDZLGm{I~|3sO8_t)oVU$55|4CR|L0{+88O=?k>7Ch$jYU z8an>(AvzX>@asFD!Bb_5tBh&{t~5DVb^nJ@-Iu+nkOBU$iUx4vl(GUyTl1OXkGZD6 zgdc6ZG}w-o=lG7USVlPO|9=iq-zVFzGD?uQEOmC)8s90V<~&|#cO8w^{qIU?$3+Gx zg$1p;T=(muUUn~5YyTXqSHAdyI@0U&-nu&|t}g^g<3$meUftFBU1@c#(gU^CWLPVA z-LEWkNt!Cm0eBXyn=Y)ND$wZ&U!PF+{LJB+E9SAmEdfa|HTd_z8rXyu)Fdrx)#y)o z8sU5h&zj8sfk&`K=}V)_|W?(_iIjDzk95qxsCN ztdJ{LniMa0%KHg3yS8HabrF)6S(g4Y7;233Ys3=86s8Fu>pXM2u)KIUnK_$DNEglu z^Kzyl)@HDsXJL8O5!QhCx{s6oe-qHk9TL4d$a1j4Lnc;5PIDD8do6U6_6VLhfIPP2 z^CfP~aK%H7!ff>aPl$$rP=3{gK&?ju_cfinTn`a#MdA`@$K{cT=z9bNX^qs2D?jgbrT(#FrN zY~cc#dq-^eUW_I5Fo3Qh$;+2}c=UGSA23{x>q$Ic<@ zGQi9>abD`O&>C>Cwvc@O^X>qBs5x_B5Pyp}KmVkVmH%O${pIyZxUAHjoR7i#GZ|ZM zJ{ryFe+#IPLh`*Ds!N_4%Qf<=Syj&MBlB;UgORhfg>-5|l3xu(wi5n*ZXJn)SWaiR zQ9G-U+R2yfS4bI|{V!+Odlb)5u*r`Q0i%U5U}~g1S|{WWRQ4d5_;ax8m~d zOB>pSbgMkEUe%Jq`2+Yy(yeGP2|Awm$ACUXCk*ZkNpw7sQ1P8gtll_K#}*CwP9`Ls z!vmePIVPgS$|rI77eAc%rw|QG9Zn<^#lk3|n13d*`UK9d;0#n9V8~3{hxZTRyiT5O zgB4PbZvtVpg7f&mXuJQpqA8p>yfG(at@g+}omhQlGs;&-2MxnAsb4<<1E+V`sl|T^ zv4&5!(*gw!D^~ByX9bQhOXGod;DS9NU7*=C<);irbuUXP$VK|~%A8lMUP;x#A5n{a z+bAV$nt!HXX!Jh@Ym_fOUpwzf#p(m8>5VvAEN5}1?o!u_S$9NBI~H)Rv;T+EN?WBD z(^)IZR&%TOxyr}s$qUx=FP-(QA2=AbItW%!7nZM&acHr6UedpH?GDnt=A@e*5jgAR zNic1j(0ux730@1YNj2^z2P>$}u0?sD>YYy&6^@N)|yjXooj32Dw-0L81>(_Lo;OrnF{W>emWpVnFcZjz{ zhd36=B_}iO1@P3zn%JQ2IDjyE!aSgVJ0!YvaGzwX-nk)COF|qYo^r5;er#zu8DBg6 zA>dHs{|wQw(xFCT{p{%^Q1+ZnA*JW-)BJ0!Zaa-Vaoetoip_c$A8 zlO@={ah5!PDmA+)j%r}Tg9jw2-e;Bu&QC84twP?3VuXhiMAYDC77dI84MT;Hw6TUHmk!wzk=4%+y4`pfLpXTc(*vb} zwp8Zy!O`)dTLX5&QAq^$}8>kQz%ug#o-BmLA~Pjui~`g1TG2WT%E{F~^Bg&WjJW+Dp!H{NVy2 zwU;N>rCUY}~QE?hre-+;W58|!hu1!-mat#~uu;@NZk$I9in7U5A$9Y~J}`5qwU5hP^W+S^`- zd$*84veW8s?)SGlG0%8$h3a^DkUBrN*3KRA=<%5tn&IG!KWppH1s_}s89btQvk*O~ zzt(QF3ptn|*(_%L>q66kI_PwFHX*gv{?-P+`uyK{r<2MW6rmKZ*q>rtz> z(^~IrY__55Y>7^8`J8SeIXB1j9iy|dokhb*g` z*oL=To!#hrXs)|HO2JBY`s-Ve3akV9Z+flGs2{f=QOZt#1Jd5~;&|)(7+t-Tf|cxJ z+Vbwk=5B8T2G`!sM!y3&Z#t0St_w+Ix4(}*>7^8|WC!x&LUyYC4M?`Rw+CtLdV8(i z%?@M-+1}VNvSvJ;J_%;dr$kEr)Vdfrn{^!v75`Hr!P7hkBVxyXVz3@q?{0KkdmF6| zya2Ec8I`tRrLx)E>Fjj&HXvstPgvr=#ZirW5k6t+ZNLPwy}7a8gAAXoUIdw!w;)|q zw;%6!;a@GD2JUsHuskh&P?bl`;gIcgX*uXs* z>c#M&!safx8FsrHd*Jiwx4?hZ?e1;#_WJO+1m6HW1@*jq!qn?;Z)|ojk98F7 zMO(f7P1uHm<6&bPGF|ULFMQe~ridnsPpI*0Zh_`R=)7!Ujz_?ufc)sX;(VKL?`^WD-Up*_*+A(DRb96El z9(we@TfKE1^WtI5Mt?RLHRd9$1`je{(i7$}fRLt#&LLMldDX)yE?ihq~l+Qs{BgZ`i^5=U`E{@#n`kfOlfrEvShVFYin zrXWDzh5m9Z@&H9cX3%v%W>QeWyshb|Nd=JKs7FTQ-ZkwT)7;H|Co)dO{^Dg3AX(A; z)K38@|GJpqQNPRcP2a7FF$z|M8+n8U0pPn)jPHC3Z^_TZ)4r^_{l|~N@)i4E=CRl5 zfD*s7f>3{H9-e%4aPRQ`twToLpYXDvR7Lpt6b2~$+*|l)(B+96{SU+!lBwwY80ZKH zAoD9v!8<1>cTOMNxpjEVEOe(_n@sJV%2lLZJWT(D!7*aB6F!cGQ!8C}_QN@!v_0`c=X`ReTGdi&;I zYHeC1l=#rU3pB02e06+wcHao=sA?Y)N_^DIREeX5{scuttY@E_((P&!#@EH9EwZmJ zmc|3|CFdr$bVcvy+8)XMFpFE7mXVYlRT5HKQkxj0m{Co;jgcf8%X^$s^ zIS)3fPAieCX#K=)$>cM%Vbj`yG+p84iYYis+MU6-%ZRT|{0~Wl30Jg#=Ag}q6luOm z!^Kv7be*+=>dn`Xp5J_pkJ0pYFNJRU>2&y{4G)wicLa5}TS+fPo_wW(?xo249F?$p zvofVHDGm1xmGoxWB`e~(H_QHEA)G0Sb;_FLe9GE~NZC736y<9HXHjeSx2);B>S38@*z^T@6ENIVHwm*E;Tbk z7159EgSi3*j@}6fJ>$zo3^{p+aQMK+@ahu~7p^!vCLsPT+V^wc{MMbog~DjgU81Mu zmYkY}Nvz`giQUHZRZ*swli?*_lGMUfi1jj+;9yhxS%a=TBL^uc<=J^k{lv8-C9!w^t@xQU1(9 znb9cH9;EOHQ~&A9qw4J;6`bE5((kZ6?D!46z`=@NF9&BV6FAIcqA_8#t4l-@w_Y zXxw#QgMk(T>8t)0&upFZLFJ}midXc1VQ(bn*QkMa576%~U^2?iFV$B@nqu?NsT zM9SWo8*?n-|FVX1TG`knR*`kg-1HSP_0BK-VKhEBI$!nqMM+gW9rFu815LXxTAQ%+ zd`HZvC4JEj(Tea-?X8!Q0M_2V2jg@1B6f@$)%%_)Ua@!dJ@ad99zXMq9_P`3yTATi zxe=pC#qR8OB-=Q_V`|Jxisk^#;wjo_H zcQ{0ikCDFJ8?N<~0c6ve&11|!V~u<%=?%|EP-^_j-c)RqKo#$>H^f1*_F+#+Rg@jW z9zg?5@3I26;k+9SV_R3Pp(eO=PfhTTk-m3%1xaGhV>sr3 z125iXt1qu~(TccZd8L0@%;?MZFjCLFV-7@p17CyDxpa@w`NtvjDU;yU&?o7I=+nnY z-@CXKIV~T>7<@Eu&ldc`VfDqWDPAeySlpUlqXypf3@Zc|8X!c0RYDEp55A*DHj)TR z57+pUEr6h-Qk&aZdvL!|5-XJ=!0ad|i~Ha6AA*+j0Q>lkN~&ycKl zlM9n_JHF%%wYqOlNmWE0n_Pk}WK*Cyojfvj<2Bfn)C1p|D3YHu%-=5!c6kx$7n>)b5aaCCu+%L^I=FtINthj7fTUbKU}FyIq1 zZuOm(<6{x4Sm}#N%UA9`Hk=rpzGNRmIf{$k$Aow=lYLYlK~(B+-aMQ@2gPTWSe=#Z zW2Q_+>iHA|=-BtEY0=C3(fl;#htDPVsTrY)&4kN?DK|5#pbyL0=U?xE>-ZRdV)rGgOr@QxJ1R|#{>XG><5%oYZ9nq7lI;>u+jp&I?Me6zF4`{F45glJdxg9UeHA=PdGZm@` zy^#I|8QDD{%Fgsg%SmRCD7kC5$yK~w=3qcAcQ}QwW9Tic=Bf>+N}{6kV*&so_G2}r z3x=$@1v@jvib1$W1lJXUjvR@C%kHOH4&v-T5lRRHeUK%LH-@c1RY1+7m^B~Qei z!l~_PaKO-h^kfS8N-LyuEP3>lBVMt5=}?CRp1IR0SrXqVRsYQzWwq(lB3-e3Q3nK) zTY1xHBF1=Kn=$>Dm8Mn~grfUe*MtVnzc0cW+;3xCptq-L$rAVQaZTe1FaLv3m9Uf+ z@4Lx>I=MYAR*$r{g>N@AQdH}4S>cMX9)qGCq}(#&tC^4nnq zK{~AZPph?4O{^knYp2>*$TW9yzK|c&h@4&cRGXY_;uUi}E`%C`jSOgDKO1or${M}o z*+`yzrGtJplJ_}QLy!_e7;8E8Dk0<-S3=SOCG4kd4%HuLtD@v-TP}c7LqBcH{T?eL zceA7#t%ZKI%@UKVSnJ2eoV9`nvbi02j;~p^C$u-Oy93+AE9#aGZ2Q{V_RT`V3^lfW zt9*Ccw|-twiFx89$<{-)4lG$2@_kAepQ94F9XJD$t%_c$q82UnnS22rWKUsUak08~A9s3!AeyIZxPn#omaScYo$8IsLiY$so5=f!GH zUM^VCwJf&zcgQz)YT=)^hnG9+{N2uKYeSoO#oaQs*uE}q@ob;3$>KtA0gFolVDVfR zWTNEb;e6KK;FwNoL&5e^4 zu9#cgIN5KJd+q@P6d8`PV_vlbhE%BHs)shG(-i>&$K0*D6qg<9s%_OZsfwk=1EPI| zrYt}+J3iDwQy(0hG?S5G&pOAaZ%G_Ndh7cKXQ#*a+t&}yj@u#&ZtLXMU)fsu-;|r! z3&1FQzwhP&wzfNhQ|ZSiH}2d!IlkA%15!;7OP1b}j^LtLN}W$Uj6f&*&OODsd31d8 z)!|wD=B+PpwnYM2RwE@B{(15h_ctuaz}KFVBu`%Z?(MJ680nHJNxUG6`MX)>k^|7U zJFqp$Ut!oo`{3+e`}V=TFOM1Tk`8RQbVc~Jn3$tj+g_2dUBKV>rD6oKdNbN$c9@aD+_J|dM|nmdIn!mpZ`U~Au8 zB#WGVW#w6UE;6MnqOX~MM}ykadTTn1=fBS4X*3hBEM3ob!jfsdeHe=MJ7;zVz}it@IGSym#xyja#R;p(`HVJb?8UJ#?Xm@4$6(&wF5%@svtGEx-))yIuzG?#(-= zu&1&qcyT2PazLfwXI2gQr`X&7P*}yU4;~!DNSsrDz53L%f+^L0lB#C?4AruG_0#sA z6=9f0Zja0(g|KiCg?;%2g?G>%K<`-~mebR`M`=wjLZGw)B3z&Yyv+ypp$L zDEjZ%e?{)THLU@-=&IxK$x_UBg?CPpVYiaK4q4wr; zr6&f-oI+G~r8Cj00$yf+M2p*#ZKPYmq<|O&*wUwDvJIDPMe!8_5jgt1WxPaNbXdl; zvbW5Jp!mLJ`wcB?kHxTP|JU1R_qI0~;mQu*gp?GnxV~!q8EN_)zN|=lqn0hpbY?I03|55<*zA6fazu5V<2LB75-EGTvRM8qzzR$BQC zE0wGGy^#K;U>8!nvgi4AbRk{1)`j#xBTe5yvs5ZOfL1w z0R#?1Y=OlISNXs`BVN&bJ@W&S_0C0#tc7XyxroVDG+!Z_3K2MZhf5{r#({-pf}o#c*Jp$6 zUd$$=2(O((b`E&=kq5Mw-SrhhQW|dfG|W;26&;QS8!#NhKmsuN;27)qWgQJZ5T%&@ z%$T)ZGGd^UV?eXP$@*$Pf?Oe(x{Ik*c0enDqcpqbt1^=wD0gI^Z>*s7C|nzEDlLbQ zX&aLAPA6j{1<5xhC!a7#rScbEmEEMns&+E(4u-=B@F1Yw=#O<)t$|atYK>wzoH`uz zHapKCJs^gWnU5Wmby#{Zlv2O(Rh~`@6bhIh=7Z4^DhrzEVAdYYc~7i!elUTQYTo(5 zEQb~52rIA|b3Pb%^Sfc$!|cLnN>lx^pmjL4Qw4Q>Lyx-4kz^>O<(fN_T;-vs5TsK4 z6Av-a(0+?GwNeUqd91RvuqmVDE!JEB#r`GCvzUMaSI3c9(i{}mn}ZvJFAq-XfL{+} zDSITA525(JVgLhU-@L3CL%uATM$?f9r}E(K#!=ku^Rl~Gk+rbBwD>D)LY2q593Z8h zeXPqVhx$1#;FxV8tvpy$iObU2>ttmw;1tACT5eh=tBjVMCMfC%fhz!>t<16^a7DqC zs#}4oN}{0a4bNiIZ7p|VmtocAWI<4+``-uZ&WVE!zN~J8>}AB!Q!s)+RaW?YSu05D z^_U^s{-1^!1Zq_?Na|n)-;z}|&Lkt5%Ds}w)>hXrZUa)v<__bwayX3pTpAAjq@~onUjQ}Q2TO& zEiB4LpZQ^wTFtyM$U?4yX04~AS*w(0ttxfK52&xK&NfSFwuzcKZh0ilBt3Pu+<=B# z%=Zsj<(0kV5rC(3eb31UwDRq3bG5pEe02NPS0}vgD(`IzK`PxowCI+w3R3UptsA#s zzu10o=kU%E+^2uAX}`Quqk1`zq+ZS^*d~3Olhl-aS86#tth_nN$5INtW#s{yI1WB7 zt^L85U*0<7;kjiGKAqAP+aD<`;OCoMQ|+P5V18k-aOKI>j-j}|#BhPJBiPNZbHcbO z#jv5OY_MA~D8>Ixoj> zxWC79bQH~-*WqyS3?E%))m1heEf+zl@O%mhRDF&ulj;^@OA3+h;Uvthcfa?}}-*cCP19&svLdm}8!%*tzTUB2X zRLCA%rk9j;)E-A8BR_x17#x>urGWmZpzBj4Zcn?db&rEy?{qRSj?PcZHE@eqMfbS` z#%WBw@Mt<5Ea0{B`;#Lchg;H^F4>CR%Lfdw2*tw*gdQy7qj(4}ps-$8og$M>6xkmO z)hr&YO@_wMRlR0OEY&Ri8#&oSSvBj!6J{fP>U+R#Rx*^;Dp>J)L4yKj_LNDQfEzdN zCz|L}QOT4^cFBs{i#iyPvp?mgi->xB2Ksa54tfJbDmp*J|HkUGhx_V0D2U}Gnm;sS zG)jj1=7?APUb|t!7HMi<&IbMdV0?SP7o*jiS}K^DTKX5XqJ68Ysi{^TC-E@5 zbxT(qUo}C2s68qmD+-=Aw65z*Mg`;oD7tSbx;iv4_I8xpHx9WQu6jp7k&4w1g?QlM zomFp7mc20~kzzB$Y2{8!Vilj~=-=4vytX;1-!>?cY$L=M;_={!UxKe*M<*aM;eq0d z)RDFSRj(rwOLav5Mo#uiU0R30j~%_OdI zKPS3u#qnkKM>J$HipS%tqe!wDMfxLBv_ImfS@G`K5gQ&#KH|qEDms6M!hwW$L3Ver z=w6(`DHeZBxB4uZ3RaX}NdJP&ybCgjuCuNct1rkj$%@;H+Mke|cYMcOeYYpIkMAT_ z(Rz;ljhyURnYG%#cmD>CgRD)J%*vdVsu=y4KnfWto=32;;w#tF%9G$dB{nee*d5IwbEBii8mPb!+mQu<6ks(s?c|OGeGJK&k zm^9)4VOxquFiD=kBbSj_<{MXHPs8T$9I=Yj+jh)C1jU-Weu7G@ogiTX!Jo1tBTzNl z5?K4X8Em_(Kt(Fkw4Q}kP5hX_{l*I?$|#BN-Ji_57tyjem^6+i-Q@`8cR3e;rY{Y~ z^F@SL&&xM=yk^uPB~w+m5<;B!}l$roSX|2lhLhR37X0PX>^S_$VNg?M>ro$QCh$vJNe zzxHbnMHI%X_pw@X!zagb*(KZX(0F&^^JNKoB?bV z1)w*@F9gv08K5Rf2f*i(NEL>4&5Mz_S+m zpaj)HvBiOzfn)v%p zR)9i%UQUT?4%T*mGB zlkwsrhLiU;{mAOh?{}bLxiY1)t2ZFtL%=r92o{^_h9(2j!3@T#>$M*Z78mXAqT5#U znw_KH2@xz`@%;ocST$}Dod(ir9Ns@{9N{4cEO>zXPQL7AFY+tk&nQw3L}~GvO^dIN z4op>kt)bwesEsLv+R^enS?}BJ@Ao_w7py41D_3PlK%jA;5kQN7YLhmP7mgPErN5V_ zy&_SY$y20WNlD?)$YsssqK4W6R`Z{U1<6(%Kad>Nu$-~oZ(TAWsSG~T1Y0Fz z;Z`sOi$q1`HAzJsXaFQK`c29R2SkVj@50O;VRkj_p6zHluru>J7Xu_KhM(dfC@C}& z3XOxiw;Ci1DZfSkm|yF~mjie}JDT%NqJIHx6QM|aawLQ{aC8$R^RdcN(SY-@HIW1U z?QHQ&gTn6uDvq=O8Dt3J@L(;6hSrc}JSZgTA!el;az>J(^pDH# z$c{moX^>x10rP7YPdc+f57t(rW!Ew4hqMB_IK}MOkQ{K(ZOF&V8tMCKlHg6j1eR6E z1X;dIrkYXTe zl?d@6LdU0q(8sBTCS&NeVz{@nIt(zAMV6xW$sGZcHv#CJ(gbNll=Z_PPFY!s(?@rb zpBmA)*El$W*(u3y3GL`30-s--pSR=3aToTH6BvZyY>>Met_K(?D@yTsT?U8?=X^tA z0EwnXLi7RfBzGt0W7wMk74q2F>&_o=7A9N~ZK%$8FC~&4ytGa@$L9p?3`0607o)iR z@qV&{UK7v%ebG3bjMoMb)c~W|WlUTT=5q+<6ywHV+z^Gt|KoR`!%51M zFTnl2grGS5C%Qc`L}c~jyHCWZ^4;q1TFp(!zHO_U-lPk2$s+0uW0}cKDEFC^C$k)X zM-ElVrrBkIS(v68EM0Ch^FPaga-liZ{ zKaLLa?J^oK27eQ)8Ji_1i6PNPF94cjj95!Cj(lCni-8hJ53<|@{@BFz0R%$~x(v`7 zJ?c_wO`W+|mE#yhK^|m+DcR3W+5K@vnd)xMuTz~$f<=_%EmRk!W`8*s(TyoFs{`Cc z%x@baq>zY~JTK4C`ZmHK_mqq^PpFGb@d|4q4pI43Yo2Ml!B2=gqhw9RQ4ggAkEqG~ z<2EbNr%jj!F5B5!w5IfRu`E!Fnl*GtA}SMbJ+EUFuvc7@ff89c4;LXj zi-${A`TeWsDlmzv3{1#Um1D2bbFC>ETy-AOSrRm&^-D*Wp%0tACveN&7<{d7j@L;q zK_!}M31$w*YF3GRRDe1YtLkY;RhO}52AydCuAp^^Hns9hYh8q>P-GA=>(|PF)bKVE z+q8J~jf7B%rnix(0?p1CJTu045JWe~!X_%wm8mz~BSKOoVq$>M0@kPpSJonkZvsn% zWhTv{gfkZY=IJnIqpr-~T!6BgUNWSuiHKc8U8!cFBa@|H)yEBUC1ni^a8dFOXZrey z_DN#Vi|Yj2;BUQ%UIjiuA??{zsnMVg!TLeHQ>6`!X#K*d6yi;^)Zoq7Sr5@%#&R|v z3o8O6a+#{5!BJm>*I#vnLNq=yZKMw-%re&83#BZ>Ac)A%T}0whCx&n-h&Y%`E9~QP z>xvk0ETSeuHPx7eRZE}Ck$_pr8iZBJN(zL?@OC3t1?cl)EP_THw`DZx1kbyA`T^O5 z(Fkh3MQ9`_MCaG6)nw^3F_`C)?qsB!TWh}0@M_8jB$CVzKz@2C0p!@VV|S8E1JS8EGkCV+^PV^AiW^=6al zWXavuLG3Mo7hw@KnIkhZd=NFhlGNAq*4Ke*FdRoDn#^aBZFOni#`85ec;zeXdVCgz zV2SY0^4p{w@oFkI`*pW)s^5#-A=#(d*yXe!H zZT$-~A9WQ9El5YbTGziBB(jukD+3=V7uQ%N*1DBpC`89GKO}U>UW``V^FtPm=sDJP znF876XWi>M2P6??=V56F$d zdYdXxBFoMg^Xeiy@C5DX3XFzXt4d6w`i4H)S!`zw^9r8Y4Er#bpZqP|T(GLE$K{uS zAnn;yZ+>NU2GldvJE4de>y@sr$)Q{S+RleaG}*kGDP$Sm>X}zvNJNY6Br+doJ6%0H z2?r37dNJ*3e2H5}Ak;kBv45b!G}~iH5i^7E;rSBsg0PIEJ0M2}hc1dv)`h zb|2H>r0Xv4Q0-;~q6!j2P~xT{6){R+-ZaR3S%dFU2qiFW+{3?PK;HDCJ;HsrNZOLx zp^kCS0zpJ%-U+dF)V`WV7)H@gsfrbZ$e6ak>%UK?Ms?I?i$prXn@w{XEg+H5*kXy=nkI)J zBHENJ?DZ|UV=zEk-0_3HB3cM*qjgNlIZ#AQ=Eh0;Om-Tvrlu>?S@;so?5vOC0SuFt znyIa`G6d3JMXbX}Ih`%XW>mNJ@?@CqB$fcvnN0oCoWnSYE+QTgZN0x=3R(jo5~+_q zL!t?nOCW8Bl~WBqdM_SPOb=zUMY_ul&i+=8H5|(L0f}U~pv{&UMxzd7=diP^VVhY1 zk!YrUEh&WiNqDl?XmmC7H46gKuvjahp_*OtZ#EXzX{`hygGe-YlGRvNmnH`M!fRNN zqVjw)hHK+ud7L%mr1~N&44lZPZc0n}?BHI5o6?Cxlv;WARD&}5TwS(&cqO)U02Ar- z5MOyZvat@Q)p;@51f8xG^q--*b|1#$p1NAa`bQ0Gg*+%Cmc|g~e4WR$h8V&CWTKr$ z!{!y1SEc2}IBn}zLo{qbRHB=Xl6eLDo%48vZw#f2`5H#a0*GNW$IxxWTVPL(ra~l| z+sWXQr`x16k7qKRN$gLUUB~tIbEAVaGuTAESVNeM03*-B-;T#q z7{HieYdF9t0!c(u|8-s|`6%R!AAZ;1zb=GHRMW+8Ua{<}Ir^>$I(_$0hh+yi+WhMI2!?>;f!o7zz_;GWPh*s*ykI&^>0mOWcY< zRML9NSE=wK%%5@Tz;8X+RM% z_lU-Q>w15k0_?mYfO1i4U-HR{?Zzv*BmHBCq2zGKg_QFYdFobgLufu z9jsxRy2&IUL?%5*VWg*v7Vm>W%jf*?{VWiXacqK-OtZIy#J*j~xY+J}+s4yqw(hBW z6YPK_qG>c_Mww>(7!&$i#)%rDAw6hBZ_mEI7fR8SM@jfcFYYYQ)qufl`Xt0-6IkWR zW4d-4q=;h@lZuD{iERI^dlJil5jlq^M0_ur0Braok)1u$Tx54aS0;;K|ck`syhtAwg(=F>r}$nnNKw zH1Hx2IWBS(vMwG(xoAB*aEY>G?I*08?ag(s{WKUN!zAS#aSwXqyz zlLx4#*1XJFk^69Xbr4rfF1Esi3r7uM};;7CNvv8$qwdFWHn zax-8$O3{ecmVLRIdFfu*iC8V3JZmCMr#} zfx|C&-Kw|jLbG+S!CW^Di9j^yO2l$8!6d}210VY82$LmaDcb-}0ttxB zPDP^e1THW?$>v%1hP@X+Z8GUZfilq&1$bxVQ8a_+oVePjHK^UxWD`6E{U`9tv3UB6 z+5C1b;3S!#Gn%UpB7FBfjX|nM^Hes$)A2NEj%_Ae@!p8~A{C#C&I5-KX(Q;SHgGAL z!08@=ruh_7%xgCH#?lwm8pIN)+0fvH!32Ch7eCA%!;^#*VHq~(`u=RL^46Eab1N0@rlhlu2U(? zxK2MMjZNJtroT74Q=UiJd#^4jnLS8LenO$7*_(3tk^TmceXyI z60BP2B#nMDU9@9(9b(C2!o3TfL_kij(PR_6*=K1x#TS^h^x0H2ftv&4<9Na!;izR` z6jBLNE$S0%;g3zYFxWO{0q>$d5s_nXCY>nAx7aCqeBM;sKQ<$H^I8-_H(I!wVbK+q zSzLK*SPni^7N3!|%(e7$(wASRV)*1qhpG5S-&iG!W~~c1ZiO(i=kp4~n8x>g@}b6U zDrgfov4;=w@g02;{Cl5t``bE*iK2+RYL4p9#dagT{my4rSW`r{TGJOlY620Tw&&3pUMu{Yv6t{Jp^d^0$fhQqRHI&o zM6s&%TKt1gJ%=Sp7GbEpf*^@SaKUeX1IoWvx4t#ykWBcxg%Kb6{m2-)kE^LlA_-9i z2_?MrMx|TWJ4NSP*!l>S%3Uw8QBzi>fAZ-midjZ6tWzP4R8%+E#rN@SHsR+J2UT#S zI0AY-?R+xF2j6U6uYv^iGQCLGa%vwUbb@0ve6QBf%iB)!?3aqP={AZ-lNsN^SJF+% zBPhLDjJsXF`mfY1gfuJ6<$@=qsRo162u7{Ngtf^|Zr|y(!$48I9T(lgUF) z%X_U(7g>~+2}msWVc?{t8YoDF!=;CDe9U=Sxhr)jbK z{Hf?*5FjnW>LKn&%i+SJ!_%n;22UCsgw(@m@EBf=h7iH-V2-bJXM2G+sRT_ zIFK$uy=IDc$gFBSm0rW)NrRx;(9gXs&FiVuhJ^#^qN3*Xj;YNh-%JMFZ|04C)CCou zGXxAVQWqt3K^h}ST^$eG5p>rm^TM+CqOmTsFgX*Ec&b<%U8b97Q!pdxq<1FonH#aT5~fZ_Z2Z=Z@bd2C3(R*-(#K$CBtiY7e#Lw60@! zH`aUNRdu7ud6P2gLh|jPLy#3L`w|h6b6ONpUf9A z_Z9@zYGLzfV8l*^y}H=p3m3LaL&K19N>jHuRUMhgst9ry+4+1L^B3s7SHc{kiqn*s zL{LTOI;7IoHP%tQ*ROP8g?S}V#7tfK(}ii(l57JQHE-~+F0C-N6pOg2J8QZ$jhn3p zdv6BlvI;XJB;u7n!l$vn>&o7%+`7;* zR3#)a%^wGaRr^bRyl^$+U;;(V^2eGvw1((B@D@@@(@7-arEYBLvb4I*ZWO$?$aG1C zE0k{xY@8;;VT|vq%B=z4RMyGK#34JW@B&>sh@OCI9xpfVQ9ZM<6$&k4EW;A8?m4Z$gd$1 zPYf(uTJ=d2y0@`|^17B((QBfpXXC_Sh>vCU#Xf9ej!$FA{UJ-Uu5TLD@WmeZmXZ#*~*?>F=rb-+1av#CLQ8SXq9{b z^WMo-Wv|Jy1>2`5K3E6IX12}~@ zCMs_m(%WXSWq=!)SpR)-*7IdYjSJQm^dE|jFj+YzyF*q`GVUB#QLAZfTC4v8^h=ph z{oSdgsKtW%!t|g2OHkRuk(9Tb61sZrA{q?w{E2PiYCI+M;u7bamEsKE{)qo}Ia%_# z#T%NYu&<@%3wEfqK+v_Cv*&poqJEl(FoqbN>yPhcr$(I;)Bg@0Vnn$QP-2_2Y0<1Zi_bB>n%^SuHfyDJm9ZL@j|!Ox=QwpV!sx??v1HMmx;o_* zICZ@Eq(hGLOp}py;9r6BEQ3cJbKId2hidp83%f%_(SkF!gdskbbA0MnQm7eC;`N2; zJ+xTQPl1S)C9aOM!tessktz7`R!%DvA7)mISI`PmAhJ=;I$M5>$&cA;>Iyuv8WQo^c5m3yubbT` zU3i54yluT0=k?`%vBqK=QESbM{pH(G&OVfJg&coYf9v?AboQBx{{Qt zz#7UG^z|$tvCQ%J%0jTIg^Wa(F%JW{0uR0kM+_}tGi;!McVxuvA7;ZE!)EMY#4g8^ zFBQrzIIqByuR{?tmF+?6D9!%7$FGHZQ>b7G&)Pu%TrO7*t%|=*SI`&;t@wnOou4*2yR}p z&R1hhM+!hJRNff9Sq~$~qsPNJyh&8_^7$)KC7tjsEnI$Ktj}v~;fZ|Wpi;-_I?y+n z)zE|bdK$wZE|$m^H6W84pSv4tjBLr^5GQr{U$>9(!0GM!tdh+`#&I(>Qe)d3kA-y7 z+Y-MbzkogcXadj2z|EcIkh?!>j2^aP5jV@G0>1C388G$zS&f?t4nk}!qX>Lx=3B3~ zrcgTJTb2zHzX=(*FiLKa$yZV1vcU#L%q;y`eGZo&AhdZAUs-?7;1DOv>8<%KZ{cm? z%I2jSPj8FDlLjiir9Lu<0DHzSC)HEyHafW*?WezO%4*Vy!duEzD76OTArHd3}S zS9Zh64o2)O8&PY4i07fHaU<%2BZiix$~H)N z#IcACXBmc9X+w!d{46V|jMeAod|0e;1!ct|ZqEJ-hq$nz6=gH|=4y0=NOC3^v9knP z$^v#?-s1~>s?6V@nJ~o2aw;f4<;f@P{AxTE%m*d5mb(hFpz!UmAth*?P{ei;f|#gx zHuMUROhlR>2rgTWd(pV7tr!@)L48{*A1pDp?8&EtX$&rIzSpU7PoBsp4wn55ebbyj z8S^_8HSTXX2(huurtCvV0=wv5jN$e!tGgO!Qx_aDw9Hn#NP4e|QLJ&ca^ew3%OQ_Z zW-{dm^feyxSdfU9*LJ-aa!B`L=%i1_b{bw`ju3b>n}}xkbU12w#L=<~=T@IyOvc=V zHSWS~P{hpJ@~|+o+m*FEfkeD4>o-FU+qhff`ptnx{JeIXKOFGY@0Hn2AQ3OiE|zP8 zUpI%*lgX0bu&!|z>jos2mRr`ALbw8i^pjoQ{%X8sor_6ai&+%kA~s&`xmt@VKw??U zqFDLU%xfoCYta;wxLWckSZV^_uzzTrb<~(gAqSCoTJ~s0sl_ag_`;^fJ(?AZxOr!k z>}vkXW)!}v_gd}IWMl#HiIc%UQ9Ao5gExem@vbmkXGSMQ|D;S)#l;9?D1K&9kOs&n2IfvjG8n*f(}U7$wqh&@ zgP53WYayiz!AAJV2c(r|qfGI$!$M?q7~*4|C@DV6?gd}772g3Cq#_WAg|&r1p6wPh zN6jrn$R`Ho7$)t2iPmNjEbi?avf`&m#f)NsBYyUFlN8_sf8FgygCRbqf1K>K7>t*2 z@xGmo0_CEBiW)47M+~haAmj@fbT5W6_dVA<0;V9u#oQkW?eu}2we#YU!-cHGaEOt) zj}?;Q$J2HnF3Jyi-!HyjE5t`bAvV_54c|@1kcP}0qHAv5It=kKV?%{r{lWYK66=oR zUfebIMa9on3R%cNB37o?O2|5oMk9XzuK2BlLS!TWaj^EP^LQdtY_VosbFWH4h>LaZ zI$w@D#yyvs=PrdnEUaz!A{zGF-6%7S*4%b=7(XA3g1FihhTx-Ma`_D4&|aS0^O3k_ z`{*#l$MiIaPB0ilx=VOpBHNpaU$QOKn>Y}0GOw@+QO0ZM#eFY@h-lBATU+qM

-v z^GDH$PX;yDkPbuEFz;Upec(~5p?MTr+^bp0Bm_Y`th4s;;WzE>#ROhSc*qS?^Q_Hq zh>>;H#*3?#u3hu2t)UPb^TN8UrwN{1KzT_Ta?wj_precKkN7)>}c6Q*E~MxFvQ1h zFHD1(Q?GT~%K}IIOnz*Z&;yLmjxqk)-{u*tJb_`GS&pv z8id6@ybHI0Ws}_-QgaR3;Bu`52NCgN!j`x-TS*}h3+p@x4-d`f#!KKe&w~U(Jgn_` z2Ioxp45odfUvqoTf)O`sOQO%8QcJSI5kITvalTkW%_)PQ|l@xDaBn~HLr3s6k=oTh0E~(t;Wn$b1x(a z;$hwWXHPO}-u?5_4D0Uy5}v>v4d%vm*_wC%DG1raS}%`cc&B^Fz34U93qj=b0AEow z<9pk>c_;|t@sd1gLU)z{{72v6mMmjATT;RZLLH^4&$~-V`7&xxI^VEv;C%?ugVxmK z60oXkRgw~Ff{CX_t2?czYSWNS1XROU1myn*Lnefdz)e>^40!kHKK(P&iG-R%<4hk1Q#esjjtW(LIqt(fc{qM$;J2#QK`NGDpO6NV|J4Kt z;u-q`p2+$SWnq*o0#R{X{l`t{De(+)T8_=={G+l^Od>a-fanghn4KvJ7Q;3ioi%6=YFOwu>Wj%+qI?)0g zGOTBMW26i5V&aL4^3-RkETT3n)Vqd-yc2IhCaH8HqORa%hz!7-;6>D{j*q)upKvis zRvaRy(!>@bCu6upL<6ft?;A1YdFqfv`A^9htPf_*kxfsnd>fuhlYF^6F{P?PAyEj(i08oLzp#BYw35XY$D;9O+~(k!QZmor=HoAi6<(`Q)=2nTNbvn z-XyP6vQUj>F^H7IKH|;@v=?|^YLb1ex}Nru$|e#j%-gIaxJLsi zK5!Rd=~Z68QlUD^KoBM6jm=VeG{dagtQ&cQnF~@;qKSfXU7Hl?mZMADO z=TmR=Mj=8DAfo56(EP~=4w!p zaKz5BkVg+U#5`vfLG>);b?HRJ(Y>@!VYzAe((37683>}JQk^mjgH zGVvy;21isK3+BACxB=_K7{Xnz^(>f+;SzcE)>nv~v)$Qym>Jw}%(|7BMEdvkElRHD z)Jlxm)q5wkI&}@16xb`FKz1SNy)ajuy96cLWm>ujAL<#;!as$Up5PLBmBBWzrE3ic z_Op{A-)VW1hXtEEi$`P&OcUAmQ2#W+tG~dsDy-fyt|it#ttK!9?DYih8PQ6gS7?3q z;uu8AvHQ7<{(tJ;^jESZyALD3$repfq;?CoVSS-&F=x7are{bF$*H|-y0)%YHO&DuM^*0+c5L=i-onX%t% z2gUcEnPCzMFmw(UtJU#f4nLaCHgFfm%(Q#ClY4g#bkRfsZwY`RZ;z?i!ZJ2dv)t=z z+*lyN(LCh)Nz(iIUSAw5i2!gV4Cv!V1YvT^_0YIAKkEyYNG0Gfcet(ga=}aQxkHpi zAfbWle(+P6Faiw|c(vl&F;^=wb%RqMs}2n%!MU|8?L)4X`15~@{vcCo(L@okB{t5qhE z0KAm|%iWGDE1$kK1HrH;R1;6w8aIqqsWNGI96*SmR^NF`w0+Y-{T9raG@gW>|k zLNg%}OVEkQ_uJ(H;y%5GYN*MXV1iG=%{`TNyN8BbESJD>ZER$AqdRml(js5HjjUvO zCYcB%l@DCqbl?q=p_Px5NPtP3$o@Pr|Fvx)wX6+o6Xh_7R1$)AR0#T-NlS5P2r|J0 zpEw~6zM)RwBRq+|_GhhSJXBvMnDk8=AnvJ)BOEfQOr#HOfTYriNYYDkkJ_0TmCDdw zk|v+XgvDr>rTN3}7Kf{;Iab?Fj6yNlDyHha7_A#5Q4S-8?EU@bxSQD(k1)%ud9?RP zVHt*~h4C=EVu3X!dyj`XQ3Mg{%>D7)^&fV%GPB>i&P>G;bQqR$3q9;aKGU)Huv9FN z;C|i@F2aJWS#5?e7+86Yd}i<1`g0&^F`pry%BjhFORUWfn?smMWnD1`}zQD zd&K&TVqK93O$8G=?g25ct~Tdz)+`H);@*ZlBuXP3JZ#WB|JBjlt@(A$OT%7N!9X}_em}l@M1(?JU3U2v>>z}G6-@Z`XzU1CfF|05Fv8wiO zL@X5{+&c;c3L^;YFXH3wALl$)Op1Mn0^Wp4CU6WM1$+VrHAvqTH`jLIKmbGq2YWRt z$)cp<08S?&Ry@(bu_ToSTsM)7Di-G+x=|qrqJt~jG&-gsb-3DXj+cB)rMM@&6QdY~ zNa5`}8Yy#aoHDgn+z#D|Qv^bka2!&jbWGy7*ahgs#>polnEGIPVj<^^i>VJ^(sBlh zBNS|6tweS&HiX~>O*)7n$vDYp9<1NOid&Y1%1JLLAB7PLHhv5WG|1EQ=ZlS>tRg`k zVPVtGty6Mm-!Im@z9{DtyQ0j$tl5x1;q8e%41qq`!kQIk+T!?#l#tHk$tNrZSpl1X z@|mxW^^v#7%0-oHTDAqW#taBCp*ly1i3)XmG*Gd@A~h=8B|;)j8SB8p(|3G#_X(`y zK!^!8YSu8A*0sgq-ckI4!UzKQFt530#XZb$7kX-25JFve z@(2vu0`LY5E%B~saVby^#!5;77SP;a^+|64D~SL?nTDlKyTy7hR)-dQ1lVu3?dD&? z-l-n#0f4}<>I6&p-(Ub?euTp(nX1KIEdcmPQ6bX)khhvELt4D%gXlAPf-- z$skzgtBMCfv9^k7v~dcXXOtyXtgDui$ z#YMw0zmm@)BgA+_5x3N5DVi&-tDQn}UP^*}NisyDiIW2*ns5T#k-56K({&(A3rHk! zCXAC*$N!24u*S4n7Y7eTgs^+86QU!Qn7xW~K7)vPNFsS6#xdvjvH$ zhbF?f38Nk135IeKm0xusUo7C{c1fDSlLE~lp;c-p4he!Jg3Td;PfyO*utHyy^-e_F zTUA05QM_q46AJW}P4NlU;x3%Hn02QbK#44#aZn(ei`U{=%){u$utXTAYJe~WNL>1h z!$0tz+LIw+1cTk}00Rdond6I-K4WpgP608NOW-)*9)r&-xHR%D9|tKe&?-WcR00m| zSqjs0vwzeao4{&=;$(9PIfx}_93G8yo?XE_XT98C9WO4#jNG$Qo-E-D*+e4MA4<#t z?iUivGY9J*#1eGq#**nxVP#hD-Hl}u2`~*Z*jsq0*5Wqx!9nJw5-@I7h&(-q1>y3# z`Qm1Ul8Z@b9#%UWaWE_iCD_!j$zf`P{c0r=Ag=a{%nO}j>(`_h7ia8BHfEBEK&tVw z`kGI%4%XO8B)~AjMuF}s4pw-IJ3mUgqD%r+w3OF74%gC1B*0Wlr|q~}qD%q}y=O8l z9ifxfgvI?WB@1)WL?KNV+iE_S^CN@HEeR#qv>0s{@AcYfa4}+%iGZRv%*c$dHwqpo88@m?CV__jI7PKT0!&o&ZDs_T+LM!5Fu|v7 z%i|Vq5rL)CV$yGL+cJ_%;9*dXbhj%&nZ0|D&~uRl8D<~MCJWeE%jXq)&pvo*1Qc|m zpX{8#IJ$9>1R0vG{&(1pU75pNQ%!p}TS?l4%O(;bSA_@Zt^hIY+dEgOl8HbVdiIae zhiSFlit7rCn|g8ygk<_F$5A-Z2nEYOxvQaAnQJCk5cDosid+I$Y_JDlv&{l7mVqV8 zjKOdl2;oE{%!e4RaOP+=lWj_Mbi0`a&&^B`P2mLKXSGkA?B!85ZK z=TSQWdkE4vR2&fjbs%EIfm{uW2;trW@R{-yj`J}C6&EYS2GWO08jy$khM5IE7jP0Uy zmx>oBb+e4lPrIo)-g2Zg$x*x3muQ3PqfM?E(^ugqbR|SE0s7!7(_)Y zlUNtB;5tc}Bp@P#YvP&HsAA5{BNeZY=wcrQi>QTp-rzENJj}|(p6gTtmOPh25wXyd zPKhNAx8e?hKGw1*L`O@jM4qM=Vk>outF~4mAR_gPe%(-NqkPM<8m*ZC>40p&;fUZb zH4qGi7LQ%vYvhXOe)e&xf=N_yf4Evkm7HI^DWnfQ(JXFqFCQF_Bkv^c<#1%PFddM_ zpR9yBt?X-CAmX9pq)i${XF8@iUYj(5A?x67aEPcB{?|%n5Z+P;lAS1m2$KT#`^jv% z*xKuDSRL1UGDHd`*icsR37DF$cjhb&9Ae@{xpFTqH~5_A}qz-M;HH3#iI^%V;wxX^`lzsdyK zd!#mqBPbbId$__3W~P>K%7<9lGcd5YV1k!f3zj1s;MzNJCgH%W6@(J33?;Z2_VVhG z>O3%%VzC7MpSpI?X1(UuFcx(*Z%pmW``K=>)eeQQLJ0`x*35U4dbiu`cquJrC;MVr z@x<~73X6yRiOyByXvKNMCbS@u0MUQ;C4Y0pth%_UKkk+cn_#8jM)0e8372Y}02~Dq zI1bZt&0)Z}K78~|hF+Y`Yo$6#ZUO(%$>2ZoYXTay=Z+s!`;Xhee{wSIKWPL1t&_oj zs}20OPX_<(Ht?UG4F1zL@ZUKZ{CC>GfA?hY-}Ufn!nMhPD_?9Rw9h(0_dGaPeMIm! zn*TDh`-tGb?9Gl#+O5%S+l@gMn}JQncH$_n<6*awTZCqUZ*$5P5l1A7obZ-G-vU#@L60&5K zh8HQpcF|IV(2v}V>T*Y$Fs<99Rp@hlwgU#{d>gNO!7Rx8Q)jl~Pe_%c#k%Y%} zOV9@TZf6A&79Q8*d?$-txpHgtT3qU=a4#bE=*HVRh9^s-jJ(r-Se;Xx5wIFu6(t7lod=tF!-!69*^7uu3u zfP?Xu*Wx1Jq6g{a)Q9v7i6zueok7IU6S(JTKD}7%;LK>)i9g+3OwV_lH}zVbz4}pU zIFzIpX_aw_H_kGXWK?Ui*iYej%@qvJr@kuAf{?H>O$kG+a1x6I5i5HL>vUdk;S|w& zJzI#NEv`!>d1Yb>5^=*r4M>(b)oZ#x?BG1OOl)8@zzzbOvJ(EE8Fkz~TgCH?g7 zVr8y~5LJJ%bwh9Gk-c2P#hFfe6aSso?-l&wDpHb?$4}%JczC|?MDU0_ynNz;bDQc> zc*W)dy`|LvbhaJ=VF$#&0v8pq+NM~S`ZpD8BiO_UB|vO9_}AzILoEk4iEcpkk_j58 zW$63K_WE$OSx;>OXaQNu-b@^KjJ+FogQ@eEy5*9b(U zaB+)#*51#dbmoRG1Z%<}O1P~@K8n6mNEMsUOjN1Fn`z!QDjh-+HLeN6n2nM53wYZ}HOMdMi3Z*TrT*h>X^RCB{>@JcE^|QJb&~ zh3Meu0i(S?9M5@^wb;R7?-wdCC%%b5n%_nxz^7etv>i0qFLu>>zUeqq;)W+xoxMO( z7WZT;FvX+M+&fBZ6NM23b{OH3^5YIVt4ZxuoFdHW!z2moX#i@}T z92ZG=Xu$pA5(b|cP|<+y9mRksj398n8XtcL!_1p^yfhRCISNn{5=xLb(!e48Q}H0u zvr_vgYffu1l1cyiVHUD0v=l{WsBBmJj%HUUOe*Of-`A@}7~JKvz5SKcWfKFOB{8dD zAzE4V6lY2BB~?u)PNIM(t%Fj;bGj+jZON{XYINF3y!Zgy=s@m~e0*m$dIlbmOw>g_n z{Bu5qVJlCdPwMyP>?YBLD~=L)@oi}Y9J0no&XYMllk;V@H`mKT&Vp$!sIK{h&8(E^ zo#3pa$c~ zot(lDFFatoffugRQ7#B9o-NUX9!DdVxD~q0GQIt6I#%>WHbj#ADmXmGihSfHzbD{hAlmWSZj*tzvH2hb z@o9`6rP(ub^oTZ3CJ(s~z|5tP8Z8fLKx8SL9@Hb-v~u_aMR97NTU6wlu2`X{@p56-6xlXK}Q@AIp-d(`u?<`fUOWeDeR5DJm zNdw;7-W(3gdR>c4>5C^_p8NOmJx%|JPZu~5Fb$Wi zDn7dcowpls4RcCyn4uXtl1iw!5X-$c+rT-&v%|C&cOVp({}x~)v4o3fMItWbNi(ow z*I+S)i_5AD$V_k+yMAwO)|O{ljDQ^k6E<#$akS0B!c5)bD4%&F8`4%B0kM9Bea%?- zUA3FL(TT(2e6d^{_!R*I`w>kr#EZ4%> zPG?VB2;#$9^McPM>{!`eFBqMHt@#WBvB3ohYDr$m#rwsxqAXauckFCyOEcQoroPG5xZikuseICTTf6bJPt7{ zmI~N%1UJsl>)A#&&`wY)I2ds(mWn-`YXuhtii=!MP$~itaVvUue+5l$N$mul^*F?g z4O?hM9IDv5TEYLNV+T$d6|smRn+Vk2vYCO^p~V5-?#aY~5GOX>EI7fo4@RbVorrzE zWi4ui6N$9%W+b`xF+3OQwh`xmQe6WK@oEYw%PU)hjvG=b7BOrpj^VA-7DtXl%t}7> znfbIn^)SS%sY_}!Ny}hy{d1=>7%+$to0Sz|nX)M^J?T;ic`j&jnbQ&HV@~HX215pF z3Uc>?R$Y%<=WrZi)>KowH}>mlyT97-Va;)CY5_#ta7i>0H{)m~GGK)c%jv~!&F=kT zQa5r58P|cv$YvGS;@q^X82YnegYK@dM6!ti8&tPX+1+0Zd*Ik|B$ZIpE~(pd2DUMc zHQvW6mg5$N7vhOW>Un$dpXjHI;dzov$ZV8*ZmtDe!P&#Gx^u=%U!1;Tuja>p831v> zmE#zFOS9>nffrYf7Yy$t5*mv%d-?+0Zy+Yc2S!>Xl~9?7FP5;7V757$X)UJdKo2vy zgv_jawb(8$_=tMZx^5^lmrqb4p|MQjeluHc%}v8%j%r{gNn{fPRwvR^$9Xk9Y^Lz1 zzBg&$v_caM@nVeze8K$#<8Wq!KZ}Hc%Vkyh#Dq;S;FH=a>w&X~LNcM_wihh3o6Q@Z zWs9dqG#BgvF+f;D^a_a|s87m>EM}fe)NElA;Np zmGjk`)9>12c7S6p}e(D>;E}U^!1@69bmV;TVQ`Ih`L@y#HIw z&=E0-Qv8Qe=S>2`X_vJu~~3vp1zxI7qd6wcD#YJ;IUZJm*JW@ z=*{kY1LH+ZkG+ts3mTd5VM)#(&}zf4@C4d;M~$O9d||rN)RM$!I6@pt8mD`@I238sT8w zZE)P!EU&wZp3iFH#Uax1$A4ve{VOxrsj~mcAO7SQe~fAO?n79Haro%dGq9xG<5rA@ zy?e=-(z!y)6MEj=Y?d0-ua^v}K}E78%=Muj4JMK$VD7;<|5z}wEP}yi#ml{eRU1C`T^9wHaz5oWFe5?WWi9IfjpfL8# zkKfgh`ota+MnIV3zjzHuAHV;WhSev>OL-dHx8AEp>T|5{?n`3J&d< zj}mZr*$JGlek4JFQ{N3a1jhI|2FT0zYk?YlJY6seK zTq5a2rpYLuRr{;c7$rz19=JwRHOi}dFH#!C;hfkBQ9g^m_JWB8cI73D-F7y4asBdT zeZfk2air3`mw}E%5;$%p*T7$HXLn)x1x|8!4ug3xZqIlWqocqhl}?m0(P89$x!Jv` zcaPT>e3Y#?)>YsVi6s(v!kV!Q>|tC$DV^N8yo3`i($g%8eF+i}d4;};WfC+Fv&GO4 z-olaN%>2a`0wE}%P8z{Q=B9V-1E0Y$RB%a%`-fo{2dzm?4x5W6A~=W}>wO02tTX6h zbEN^=3L`Ka#f!nrobVKOejVXt0tQ;_q&9#up#&b~9e*hE3p^eA4lE6PD|fmSE$+oc zCimYZqKOA)9ypt1QXLPQSq1kPnBivs7c)b#Eo9_G_$1OdThQj!W&#)9F4nN70JbsB zCU>8`te?F8m=7Z_OARF1zsyNxjB?0ikVb}|oP^;g^D;v~E-<_Yw=LgYe>5^flG?*|e9*zZW5s70F#8Bp%+$X&$8h}_%6h~XZ^Nk{G?Rz~FB zCSDBpD2L$2?sCj15i_`EF|p|6mhuRqQ?ztqEn;Of*5ybstfM&T#9BnjXspXIVpw;L zkf`>LbIM@WL2grogr|Hi%=A0HstyyE0Y!~CxD>{co4Cf$wP!10ctp0%Q5@Jtaa^>m zh}{v{Hb-w@8^tdk1Sm6HcouU@9JhZkw67$kw~Gjo!;?Nssx{YOv{>e}FY*9|c5; z9I-lTn;xUevyTFz^p2=NyRv(C9o475+#`fc;TH|Ak<)#1ms3{9zC83*MugPJ%CrqD zQ4jQ0MugYM%CrqJQ9*pCbC{tuMz1rdm)g!N!YBRI5FWYx>KadD)v7+F-jKCV?2-?u zHteR=aSIdnr>x@zK&g%wkNceV-EzrU+NlD#gk^c0L=BzTPou zW8$L(m;flT7ms@t@O+D;*c@S(Gi-p&%zpg$gBy&A{6+1uTTg(^hwkJ>7D z(p%pCl-ot)zd`>PA=Mo-{v(}rh56Foik5h-MJecC3FWXe9* z;!ONAGovupLzIL*=qhS}ULSO&H9#*BgCkY|6cKHsFg))w->`Tz*yhJiqsh?*+I4&mQQ^p|Pf zN>RYQZmG4Fw&|z2^=3-O-;Xmg-Bu4LBTSy0y?V;R?5bz>a%~KAV!f5AlnU{L&t$CY z7IS-gTpkuzaPIP*1Dr==Hi9vxJ!^($gl66fBP!Xyma{Mw7&w4y@z(C)nkZu8ZqJ9M z7#n4ZjYo>@U{B2l5Jq?v8kRlZ?QPyOqdOyFqbo2G@e%Y|!w>e8iWiirh6G zRkcP>O%+w{TH?UDThV10mN>l3CR>`OCZJN0Yv3lFJqkCin~CKC*#l||Zo<2xaBFs~ zv0LO*UQ2oRo2OpE!A<+^W?u{Eem%6b2;n6!$2`cSZDk4w880G@Uf32kVLkQkSC zIW|1)C`j-)BbiPgi2WbuLjwZ@HU)#hqX58j_!3I1bGUdzo>jjdOpL@f(xZnwNw$13 zq=yIe;9YSZN6+OJy5v?=4FfVM9#bn#`tUdHF(nU=YiP7=))hZh<(~{SZ6dyjck-|& zpD9^Q)CZR=A-s{eIVCPKA=x|=#*g46#jR*Gd zn%T-I-{7WfcC61gQpJd0rYH49ly>8u_28aVB)G|l(PQ3>crv%FYK@yeWq!UGn)0p4 zCVCE&G7=s*BZ-|YE?1icKiA<$L#d(ACUS&J^fE4{fzwAXc_|s};z)24&FC@j;!J}i zdh}ksmfVK0Wk77%?vGG0$1)Qu|H06>mD1a? zW_He0qh7WhBW9^!a5c(hw_@#BkhKdT{qotf#Mq;SGzxFSns^ZHPn6ME7^ER{(9mUm zSpN1c&!>uf1t?W8qpu%Q4*aN{<&pO3f(LA3gtrMEeAK6Lwv#r^FcduMxcBYmMz->* z%sjFFhmj{cgb|dG3lYB=p~+1$L3yRla5g@5)Y}AZR7ZD-F^RTO!s++wqElucxSa&MEK|winMnP zDiV1l(;$gFGJ|~wtQ9plAqe3uy)a5k3G+Y+}-hDMXc!)R=-6lOXhoJVB}9mO!pB+OC6#&ye`_R8t4H@U6QfIm6^Y*PK~-)= zEY0w-U0Tjm8M74;AX;h?Uhs;PQ>z;qU`mXcT5;qdKD5{#w5f(5a-oPSdtp_*w|xpR z`!%K)0z^wMgcrOQ+AAVz=u;@tx|SwIqMEv#Y~doi8g4dR^6~UBldVT+=@0+BcSkwd z9=Go1W>zf5Otu8jQU`k6tB@H0iE2H1WeS&trUR}$_g|@{HbLsBRA5L2KQl0*X=e^= zt@r#i`F}BDBgHF+KwWhsexzEamZY(^Xz{FB5fpbdZgK@uCcG4uVX;EYbv@JrUTl-S z{X?Zsu$V{eHSuGb|yX}x+^?7XR_0YbO7u&?!Kjf|aE6uUOsmF_tMMXV$I)lq@Qi4A@ zToX}UkE%&?Z5?Y8Ro1(C|vnKnwM{n4E43t<#ODLq5rx))h&(5HUJQG2<=8Q?h&VzM-B7TwBjK7A_voXSn4y4WU~0h{a@_5-BSzT8#Ytte!D z*1TpV7pW2hVjGedlUdE@Q~SkqUfX|J4D{)0HH&ZJopK@aVHAQ%KXNVK@fhs-U9PQ1*g31){2tP5*3UO(UER3Px{vz1q3bzWL?ia0R;U54#H1knp?P$9AO#*i}=>m!daR zj(Yh~;`hT&N1qK)mY4RpJ2rMm zW3p#}9XzeQ?%n+xeJl{CgIMtoH(B*^w3bR(X&&3r8ej)UYp;7p-|OROnIvLofB2~^ zY-47rYzEU^^^Pxu=`-1`32pKg;Zki9_AM|;^ZKHKWA3K)+iE$z;0N6G898qf-b7dO zAljMs%tiI4cFk+JXkhXX{`vxUD6%3mI7Q@fnv}`EBNsJHmPxZQhn_|A$o3lHo;agUa|JAtqr)ce!PT%#Kwkp*0{>C=k z#ZboJYA)E%Bu0tVT}#iB0z1sCH5BT4-Q>)_9M_o%SbHs#SG_C4@~*O)-bQhQ7(&gh|$=alstiW+=k7QZUPvyq1~e4CqT(xM4O&);ls5t1SmlD>NasQ&C|^ z+Ldai)S7;|u~bj`i&mCcNkZ(VzxmAk>?IN?%h$}Hx=$EI-q z5~DbHF;6781x<@jRKv|EtjgQ&HrwjbT;}{0Oaj1)jVWW?=eodx{AS__8{(gt)88IG zt|#^T?PhnF9uJG*aK@pSo{rzKMPCyjTmsMh#o=C6zO?FzBes7s^<~;8_?U zyh#=Ds4ugbflZ396|BjE`i1B}b$_y`8$7VtjMYM^X@(`a=7HXBm$)XE(_|GS17F5a zI#c@p9@=p42;RjCB|XS2nTd=>W|(#~lMJ57=m6Z?9D+ZYB3$ps@*)1gXXpA{@25&_ zRD$L_iD9NGNDSf7$Nv}>C5DC8x<$Y}AHghqm!NJo!(&V}sfT@x3} z4ygchT^BVe>uB)s7ZMWF#^oJen(&V$fr@K{_NEF7n+PRNdYl-ZKw@k}y{ z3;OM*(@dSahn-ma$%nWtD>E$M2!EmOB3lnF!Cq`rX!wVGgl7hwBC51OYSehJL{M^( zFfpL$&5Y^AwOUN}Hfz zK@kPS+SlXVsq~!}Nto2Mp$Dq<29931Hmw<0pH?60*+(<4tQ)Z&Tz*JxM zFK2a5rGF;M1H?2H6DE8}1zNYATHU;|f~`)lJ9t-DWOd6?JiI))XH!q1*t6? zp>D4xk03l2_4@E&e#z${hP7J2KTuEAO9SV@jGnJ4)xX?YxG9! zQ|h1c^8n5CQ$D1Ej7pDCuNH^t;=o6yhDBv6n^?%a%%5DpJ@Ap_VR=~*PCV#@pCnZ9 z9hNno4k{F$1&JmOvKi(d+}WjwQ|cZtF8!NfIq}T_CAkp!TtT*LktUDLT{*B?{X{xYVch%B>9D-pFQu*E-NFh#o1v8?aWtZGbGcYfB!8jzl8=d8}fooTgo_9Jm@ei zZ7ITu2d=HblV0|)UvFMb&hEds<93EK>pdw&u9p%u9Q}7vGBLo!$)B6vD22c0%CM)f zdb6CsN|*DE*!ut3AOplwNqHQDjFIPXv9ktV9E0>iH0uL+EST_r&S?%!$O%MgU9FhI zUzGHfsVc~ci$(a>7hfC^55L^oK!ShIn+(O~e;yvi=`09~jPSRD5zI)w>HZ{h0KZW( zg_r{{nlWJnh66Y9cQ|{A^Z1kCTPR-4Y?0FASoPM<$?TNsp*m;`@C8y)=TuhPd@n zoWdGX)ak%skYPUETl?OGspCMO*KZdy-hS*C=uS`)=qR7e9%pCw({yveVya(u_Odbr z3<`0GQ=T2(Vfg)0o|TheJL!b`pGSq<{<6Qd3MwvaNX2oD)6MBDf&Cg=_*V65v%9vI zP^zhz&uvzdaf064ln!^!++cMXwBsJr3%B%9ZcbP-reH-c&PU=mPlTxDGavb!*e>km}y#^Jc|WH-I)06yY5hA zpR;g@T>Qv=pn;D)*zH7<@~otHEGfew0U&c@B8x?sXHyo%zH}_2frXPy@EKb?s}Jus zyEiF|v24KrhzyPo$BGzRoIym^DU~lqa!Vwhh$v2Z2vY?1Nfw@CI3-9X_`i=uFe)35 zpjC7C2&4NQ`xNu}7LHO{t=t?4E04N#;-Hw|vub~J8WRM`1do+!911T!e(`+EtX~{m ziC@nY2`80cadahq@5QdZSiDd5el|k*#j=S44lTtLUe@#DtQN`_M|WZg8RflT0$0qQ zYCeY9om7HVbbfX3MT$Iz&R#Hq<6ur~t}h|?u}FI~g0rnq0>w5+3|cKOH#=DKu-Z?4 zuvzc}UW;vzjG!NZpj@Gsctj0*a~X+-+Glc3`=X0^BHRx2EM|L($w2-MP_&pt@ll$? zBgI8p-frI2yR%34ZI+(Az`x*ttpo2({^O#ZTc!JcL`XB-PLzoc>rxXWto+<${Ni*~ ziQlaUaZ8@J9?41*(To5=A9rr{IVFSe#U#Dk&ayd43Z|gL9gne7XIJ&?%@!i<06RtO z+1O9u^pzJ&b4V8-T6lK3N4$+)as7q1@6 zIIL`04@c~9oFgNU9+$44pUm|!B5`cC;7eG{`1nxs8MD(_(8IN3M-g#D{`GLguGzoz z_|5q@MkJ0(%8p8iX|KZhh{oLEkBvYp8@D|t` zU{d-AndN(F5QkPgz;^O_Dh4JW;QiVeADESq`)gR#x|-N=3j0xs@ZvVojQnzhH!&EX zgA)BWtb-^E57G`plnG#E>I$|YyHmFA?x3M#795x*OR!}1%J@}r%Kvb(%C9vY^3eC& zYj^*8U9A?gr}d$V>)5!U6i+AUA8oOnGfYS)T&kYIy4dfx^=$Ic{-ZdjcydTaZi^D5 zAot*`l#ma-j3 zyN4rNHfI6yJH2*uevc7}EAFZ;lq6gH62}+M!^%i4=PR;Nz$L!TZIitjAG0UP!pa-? zcpuJ`eZD;`;6_On45zEtn;4J|%{I3ZE{;p50eoQ0PiONKm-yll%o%U)T^|SNekgsN zPJER*?c{wkQJX3KTwHLos`ppW$uVn)p29~K3BT2)DVHg785nZB(z%U-U^@Hgn>RN_ zuNf(f(K#+RF(0TD-oz&HBwpM|J=Fvuo}3o(FtVsZntUNA*X z8&8>J!6!1tpF+f)OtA{lXJ?huPwRb>c5~{b>8Q;nFfs%q)#eIdv(?ajdB=Rm%6Tyx zp}222ahZ}{#w7Rsa!bNzi`8~nXK5EZ2K{L($V6UgAgY=hzl)Ks;_~1Agb|HMD)mzX z$w#}*kuP$nOPPNtQwK?O@i@<@>`WTyou%#)PjpXO+SqL1T28S_n7Ss-6Z74JT>I#so-UWP zBSSex=`B$`2`87W5BrJD;>oi1;ub}!AW=%8g_mFvKV?`d$M0-&gkvvQ%5Gha_hX5O z#1*ff)3V5_hK|k5856c$?Key48=J2_gX?m01@^J{c2_a>9` zvBBbsIx3D*a!C_&epQJGDb$eRC9F~C$>wr@9}b;kC3fFBf&{Z3ig*H~KvOUYI8q>W zMRAyRL{}IM90O9}PPd?X8mWcbL76*>XQYg%jK+o3>KIxtG+k~ov^)V);CtQt0zHry zQ2h5wH{|*TONgLB$|$Qvs8ZGn`q}XuQ;6o4;w1QpA(k>Bl{%E0+U%@?eVSK`<@{j< z3rptdrk-P4C!w&8*(*nZv}x!$N(Z4RtAf@T`RYbAVeq6yhcH7eOqqcy(|F}5hH6`v zeiYTuBZ2^F@_GBxkMQ=NDcsa+T8EPdCgeUa?^Nw|+WQ3HHB!C`g;Ue?e`y0rF6;L4gCN(5q4gG{dRNQPhR?u_m*(pj*>)*o0};!Mp6r^Mo;Saq(ejFRF|=V zwT&|~X>DVbH6n@!e~qPw;6S=G4E?FPq#CpyK8xh_@q|Mr-pXP#s%9gcmp+bQbLFgt zx%UU}7s|%l;<@7^c_C#%`ZP4+RDHBGux^_MB8h!GLD zIV#1vb-N}K+s6xx0BO;#RG7YU(Bwm`?e4bnhR{RQHt~ScZP$3pf-|M&;QFM+<92Gj z`#pS-);X~^ZolSh*COQppc*LFkKax2Pe}Aq{`f%7^t~7MIh>1Nb{wO^en)I%%}F<3l>O%SA$_&qZ8UEnrWZi@Nb5 zo!j-PtZZ7p3O+rvOIca0p0*ar5Fjnu_0F9T2;|xZX1X-_wCxfVo-|MnxuD+10lKj} zy9L)2%H6%CxkHHAzIen6WkM&a(3REkx)W7`%)o9;Z2jwqE?y!Jsh~*%B|x)D{#u$@Zm}HQe(fmQhSk;Bp2=6x-QQ z@$|`TD4bkOMy8h+8$WJwpNu3XKC)u5e0!3&>g@KmyhVpU%(w1bp)n^hKuZUv+@@}= zr2E>O3z3V1ljeGig+KrKpZe*aGXJBX7_5lmgp(>FN?yZ~7iaO<`bm8f7sJ!m3Zg9b zq^%hHw6uk_m5pN;`}x-2>1($4L92~#$NZvHO;{0`HkK})qE|T?(!Ox-#p~x67fU$# zgEjk#oBE1OBEiH#$yZj)Ls$)Jc37|MaFp3^4GWVl7MF}sajR;PQ5J^yDT}W?zb0z0 z2D{BrlL*AB$!gbUS8zWx+|OMdDl;OvT#8G+#<7|TL;RG=(pt@?kfK|Ed$8^DIK)tC z6a|LT>~W%dJq|euLA;c6-7K%Ci}&>$62xq=hXow06cq2@vI3eigb+?#ayBYDaJY?B z2;!ye#j`46;H&S(F8tlWE^I;~mdcjVn57JWnBbRV5tJarEmsp+ynIz|Ih(WkU=GCMYb}a5CA8<`<&%AKCDHUb z%+TLE$oMziddOue!zrrh)j0K`nsvy3%Ha--qm0Cu-f3GB z%ECL(EMJSp{BEMQ&b4=pk1fk40}ii^R0#4d-j*DX0C@|FiZwRd$!hH;Td6@Bvl?zI z6@qM~EHCu7YN}IXiZ@exEBm4))25g^c@5rFBP7*qY`zoL;<>((DWy%uI$ce!jLrrx zQrp7Uwy~K`S(|^J4u4rz7trIop6*@uZ90ek+jNT^I9rpcU9On)I5n9HLnT zUU*}oeH{Fq^jz~n6O2rZV?RvK{CpE3-)p~ZV zQ!Sn})RAfqlgKKyj3aCRYdrpeg@JM)uOqyLFmNN_=E{yhUw2lV3T`$$lqEM#0kHK3 zmK0HZL@MN*7%OqpfrIxS$KkkLZ0qG>T~GGc>)GT5{Kc|av6}GjXOe{fJ;ju&SQ!d4z%REmRR6hh&TFy7YDDDBuSzF6O25O%dR4=L zB)b<-;G2mRJL3gnO*lkRxjWHFbtf1-USDij#6BMAu1G8qP_mFAaPBVOgzDzfH1e)* zG=7yOVTO~b1>r2256XW^h`H-jC%(6FZ?k;2*w^axQE|&_oPwm_Oqr06Nqq9WlGWv_ zFboQ6V9(?6dVAz+*N&xd9D%(;ffP`V1Zz~_`SBn%C~nLcTLa`kDzpfnmz#ID8a@)A zs4Iy>TK~+f)LPH<&@V1J9l`Vo0V1!Qd?U&457*G>l7%O3QQv0aRd!hE3Ml0#*5Q_m zu(E`?g&H4VL2eyTvN*-gxQT$0_*5d4EtI+^k}?%*aI1w{wmxlR;k@3hH!v0mb9?lO zHK~e?JfDWFIIYgj;*f3S^~CtXp#n~aiqR=HhFjAi=|n<@k&EZTRGa_TfQIJj~WXS;M8T^of~wtTe3Q5HUGHU~L;)A&g|hPmEr1tSuI^S4S%fXhc%3_Oq|m z@3+$nxLs{|J$dkcyII2~B1qZ~?Kg~P`w15-H(Q%E0uoghD!&>I5mW2p%j4?2UQQm_e;B2)>SB&SWYl`(s#;!5 zXSP`|`3ycQErhY^kqlIs-r8K1xU}@1*^kUvQlz?XDq{MKtxT>O(V5;yK4PrYL8ldTkRImXA4~4 zy@cQFS;zR3!o7GVZd=oC`Y<8od3z}z1E!-~~dmgERTMy*!2o5g;=Sx;WLe;J*zs#S?WgycZJ zEgm~KUI2DlMdJogbuA7r-PiiCMe)eDmf5o{HYuQ%?^H-5_p!=%3s|Bp&&*|ZkBbx% zZ!THwhwm*;cKCo4XhncjQ3t5^hok8ayn;2)?gNYJu?DD96e1;0XS905NauQg0i7p^ z?Km7Kufh-aX>BaL!8pGgsS@Z+f>csl3SQcNa_4;S^_@H9VoT$`A!c&k|Vc*vj< zX*u~XNy8HPh3V(Oom`9c;*d!hZ^o|K_Ry5g0TXp~QYUiO3uABH&SOpLIyzn;OR?Qibx>go*~Dxi}+L4M7k5@~hNIr7P? zYJH`19c$1z3q};xLFf1_s{dG*V5~uB6^N**gB{29!t}r0P}zhvjdRFWtY4(^z(r7|n!W!oAuZ zCSSULPeVvx5TU<{vrz}R3+HaB>EhNxPOAf4Vtal(fS2QzqLoJ=f8Bx9YqM)>dbtxP ze-)?hFY9$}PK=pjt058;gGOKfgrITHomm$F7KR2j{6j~YKvlY~%(MlwcyXN=%8Ilt zNGC2hUdo<^dn>kAI+3R(4-|+9(Zm9`LNONR?57R*WyLJ<*+2q8s*dfpZ{LF>#2&0+ zL(NFoQYvBNz9Q5+Jf$1IxDzgGd`&WO!1e^b>;8ceGq@Ym7$3tkm@V!Cjqi*CnV`o_ zcn23Ig2dR$|t|#s+-p4Q=!O$*ls~#lBM0>^*JnzVV*5kSFNc9`5pL} z+n!I!$I2%@xbiJyAGhlyG0<7>dP6!O0_eghG11tJn2mT09oH8y$_b65$wT-TQp5hv zyxPLmc_aBOFP|)g{TB3Dc>eJkSZrZhw%)mP$`}=AXR}e=gg~7BhHC*{98Gg;568_U z&8|D8prLo8gh^kaI0E}w1baWR35KcpX%Xgq+@!o986=w&!S5AAey<+_N=k7ew=qq+ zWvU?$4ecRKS%AtXKc z7=FNMO_{)1jVS5$ z;HzV`TpX^01DSsR^Vs^OcwO{N-}b$Byq&M4FRtKtz1~BcD5Lbh9b4%PXcx^hBE0(8 z?6_tA zf`)W(e({w{x3)OIS1>cE`Qal8Cs3D7kh%f2aX?u zAzeRt<<7#iot%?(L~z&?Kw&F0^&eruhyToKpY9FgSP~@*9W!o1$0MWNF=I)D`SZR@ zv4)P&WbEEhhz=O+eSbX}zfbfFPJtgS4wE}HC&PSGoZFJkcP1(>BJ2lW0DdkIIBoy_ z?*yQ;*>15tJUp&v<{&JlZgB!$Q;(tr>Q3~VlcFkbM#tzR()43oL1u-7< zXWpIet!Zv47XFK15+V{S!yI)pruo}}5uCvQjg0BVF}drcxQ0)Q875A;iT&s!=4Tw4 zWp%v~2Z-G(#Yy9|D+;7=_?rl`INw!pVBHhEhP}d40Al&mn zK(Fk{l;<0`fh1ox~{*MOe&x8^%mfh8MKdDV{ zO|1G%@8T4r%vM5JoU6o7K2!bIsQ+!lBR!l`p%bYkR? z^Aa=k{O@H}BZeHJW<$>ZUS>67$RTPr0qnK1Uh^QRIA&E=RA&N{~8*6;AFgHO|e5SeBw$&Vg zf}|HnK7|3!{R1?ViPx-YS?sAPuttc0v~me9l)-zi?jlx5)`EqF82J5npf3& zT`$kBj&T1lU+mDi=bwm^EI1aC!LcIq_F^}K4UxMS)m#+5&I2M+nxw*z8kvY9IFLzF z2qT@NVyN0g6vTl{lA;(fi3(%H#GH9qtq&u4Czd9?6aVJZqsn9q?*z2eJMnMLOvdm| zKuf(7|K^$Csvi^WoAp~!XrA@xBsejtKa6ZDCLC0Fpf9Lq`nOSu;Gn|TeL*!Vzm0+) zht<)%c8xXdgbN1qQGMb0L{7=@5#AZhM|G3u6Zs1_a#;Jq zpiKP$j(wcZVRR;`TZ`NKwAvi@84H<--;yVMslicM&+TjhN43H^Xa~Lyu(&@qODqUf zS%sf9N;?=~cmP{YHrwmOR=p?*fs&H=*;5ML()(~5BOI9oTVd)YYl!vfmd3&amG~!5 zBQ(skj&Yxc8Oo91*zKkQ9=e41yht^Dx`bYmjvXcT1YIPS0q99eK~_;RNzg?a8GxQ7 z5JZns2hKl1@sth!;x;3tM5gV2BQ^E1Pf#qv`)KMV2`~HaJ$fi&{`_ZwcT=<9f#_Zs}-4ol=6h<7K*>wu>ezW%sPFFKgy9DP&(NpbUz<%mV7|E zPxsRZk%&ev!9^~B)zxN#uv&)k%XmRaFBhaTC7JYzHrzyB7=>GsAs$L@QLYGXdL)xY zA2%5x!ZKDaxhbTkM`BE(Pig`g5-dth5!OpS{?QBTWr77#Nv}}K9=&{huU_(MzE3Gb zIZ{8APPn1f`lvd>gm&J74jqxfku2n#rJ5pId09^Bg;2^ssk@ca_|U* zj??x~@qGp}%KNL`V*Q4}cU~mLL<#%|g9wBnNBg5YJccpoGvpY_(kLJbaR@H3@4;Pa z{A$uZF7T2xe2YNnVZhV817j>4yw89q2~x1Fe1gX1QO0G^O={>c6_3bLT0yBuNhif5 zVv$FVaGyz1JbQVBBuN_dy-!WSBah9=lCqQ5$0H<2VAIzgI*iRew&QKHTA7UKGd9b` zNg5oByr7d2-GZTHlDlUj>->kpko znuCsFEVMJ9oV|L=s>D9+Od~`Z+Q?Om3|}V=vR;~^AO+USC+JX`o>bTMZj>gFmn6YG z0-=Wn;gjm?Yd<9^#$Ng~2!*_a2}djN5kWtgPa6BN_E8bY*hiFv!F@^A2xkl-p!&fOh+Ghc4#;kPJYE!=KHYOg zX2vNoDtV`Yn{d-8+_L`i+#<&{a1$OJgu0srRSyZ9JDVx_XYcX=w zr~CGVBuRMs-nV3;=5ea}vp&sZD@Niv*`#t<*!E-tx6;D#xp2wh-uB*D)2+|KwnU<& zk{}YRC=y^vu`;;QD-yh@gonq_3Ai=Q%pQFSI8h1##2^A;nDOb^I13$7j({fVgd5`F zX|=mttY5+vSK3r`pLj?lN-hZ^u?htfNBTu>?^7_nq=W^n3D2U71U>*g$=hKjBa1Gw z^Z@iEIU{R9iD>|ZxAK* zwL9-E25Bt`Jb~M8Mj~KDsRS$r5x}d^jcLq2swWj(0_!qoGG_LpK2A`CN>a)rJ}U6= z0!Ghl`pHn-4Wh^eXKC`sJk>A)U@e(p*k=Sl$kT{LXyn<@@V4(?)zut!_?wY>vB|Yh z!#fqJvErCSEHpN>ImJG6nkYw5AnAmQN6SGhy-3>H#e;j5sT(UrU^>Z!7}m4Bs1`ez z&#KKOHr0B@SCRKwJSGK79ukizg%!eP;TT*+UGI{l*Jsr4aNB>{St zEC+_wJ}(yU^@aX@R{O-lq(x#JGDw)av2VipWFzf3;NmnY0ZSp{Zb78d6fb${Gm(Us zD(Xd+|L9X|SaI?4*)vu>_E~WOGK39`R8l--C;0YmwdX~(Pj*5%DW;XK;wBRdJ#mek z6qijagsk{-l&ol_NK7l4Gz|^Q1h7xT(g=}wW+;W=A_d{=Pg(f%N&5!xQw8u-j~H44 zFKgH_WLJ%)J3{)j1cbbV1xF(bWcY|)&0s!B&xWy$dN&z9qK7k>Ptwa_e4?ICsHR`m zTR2YDo&%CPtWPy91tuO7c;vDiCE>H-loY4Mlp?R?C<(U>r=<8TrW83YWRkN7V(_$2 zCNV;UgRER~O6aVe)n6S=OSw-^CdEf)EL69*c!Z1~Cq)AKGK0$2YVI#KlP}ymw1vB46OxZOo#V zFPt0&epS8qz6fKXhBf>mGEkrKKrczhj&hFBdNF*Fxy4?rHDr)Z)(#6=%=6}2Io53G zv&@48DacknK}SgjphsG3YQUW+1s*Yo0N34ITr!I8Mvw+>3@!0kl0nNxQQgrCVQ#Ig&_2>pfk$HB6NyJnG;zOewFqT`S$PE}KLtnx1 zq{})t$lYf$G?AEalZa$Jyr;&7U-XPQBZdYulbM1)=oN$w(wo>OOo(~NX|L&a9adEO zs1Cnm*>cdLcE`}KBTtssb)#(ml?BuE02e6n_!NWwQ@ z9-q#p5pBjk6G@s-of5|-dSOvnkn{|W&8hbX!LHAuGDT*VTtFpmAy9w2-fhx>hdzPo zB?%t>dmpF?y0FIp^ki@W(W4fAf-Z&=2B0V72#6jHAcUZ`TUgE1*yQZ~3v<~p6>A0Jb+R6Yovb(s^0H@z@9GYN?{p}XYo8OU&S3K%5VL2)5DEsu{B3YvJM8Ei0 z31vKIsvF+7iZ@B;?R1di3w;`C#uP@7Vj(M^ic+I_{Muob0{c|JUXtMBzxV!X3~h6` zt`bFkM%jZXNhx5Ek&2w$Kq#|PUrtVx!U-{mQ)4A?BkS|DW)8##rQjx++ z=>tBh!m2SP3*6M=pGFclHP_x4H)bZA`Kiy)rV%1MW93rhHk$!nzKI$6Ml;wszIZmJ zj~R>*VFoLg%+So>CT8=(0qRPj(DH1rNhO!Br6n+nlQEj9DCxBq6*afo`JZThtFcDJ zhezlTdr8tVj%3s!F5BkDX2BZUE=HppofvDZmJOScrcHt<#aCk5q-dcVojz;KF=jSs zaI!Z-gjK9uD%g!aGEa`=qaaFQBYf0Y!u=c-Gfkg1ua_hlC9_@Ma+jmTEh%%?JKRa) zFDFs1m53{-w>^d>=-!i5v>=>+(6_HrH=moc+ShO@(=DD2--?yU<$ZdjeqK5m-i&_f zW-Br1Ifzv%B`PgD7pQf#JMhm+IW=`TA|h2~YK@@Qg{kvZ~9XU%l_zkP}WEOiuNt zCl|Rj?Vim{;WCxC(N?sy`V{pbN)+|*gEv)yjd0-*Hi`F$P1Keuun|5R!X|MSv57qO z50iEi^OSe4a9N*~BZMBw%=j*P!aK1oQQ^%|h-TgDiAMfyOH?>|6rx#=d!mu+(?|lb-^41S-Tw}P6>UImm*U{lJbQ2V;bET?)HSq&ECA+Crp`i?uWE3-uGExVIA~y|Xm?Wr}VU(r5nPjO&>}Au+ zjNcTV?z2846)C)(KHxpxk*)Ch7;F>IOSX~sJF*oKFb3Ns3MAVo64Hj(5}a>)nNRIF z2SD)2-BuLnazV~yntD5t%CYbV#S^_QU~+sFDeoE4cOpp_?lNlT}W9Z`7&W9-j9 zz3F>Gprj~%_WYEjZURo+rNr8kea1C~Ji$)<>dB>ZEY^7G%{Gi*pL#JBDJZ57c$VoJ ze#g?^YZLpnPlx0)k|a6N_a!Rf3X`E!yd*)zfA6WJ(=FC2%847#`XqFFaEBlvZcND} zDmp1RHbtM|n0Dt7XA-(QRq?|(lsFyqv!1f6pg*)zJJY#+!PTs>i;k>}oxJN2XTbcHAHDCC#Ic|Ljlw^iP@p zQSnWiYGx3yS}wkJ+e!VEn9T2eT0>rvVCKK~elBschh*IFZCB}#54Tft*95aypK_8& z6n0B~_x4NsF57B8hf@$H_ZGX^aarxs69xJ#aAMK~JN8>QW@2z}AhTp#FJcxA>9w+% z7|0vQEE&U#m_@^P4b0%Clml!~AIY1sH0jOww>I7k&yV5FSX!Q0J8uSAV|X)`mS+}u zGtF&OHrZLEVmQ7}n^MRV?8L9$r!DyjuMXyylv2ho@@z|f!ncF@C1sWIi~O4oa0UOy zXO;>F_Zd3sdy;Hhio(akDJo8mO%i#zEk)tx;S?1=#}p$+r@aeubU08aZprm&GI>d& z@cQq4u`RL@&K$rd@glN`+*f2H{5F71;xJ?rc`6+z*_y-lX;(pfC_iho_301B!i3Y} zpS<7FdE}H^IEp`xr#}5cOTmlN`1v0_L&bV<2a{<`(zdWWZ!eXLjr%lt6N!Ri@_Tod zq8yCCGAR#&WmGO&+ftN|5m+YWM6hfwFT&$+eb&ex_YyN6_rG`WIKDHY$Gya6mYqC~ zGDq~dm)OiQ^0<<($>VC-?vt;5mXNGG0u4zN*$9sgV3U?z$0qV%k&W=&05)kEb!;L} zDfI<<>fz2D0=8LKa9Nivox)0ercf1`!h6aSzJzw*Dr`6k*Tk9$*T}BvnIz_>K~u}Q z`{hM*z0VpC5+p20UwgBas0hFIr;-G}qY}k_iHdMre=3Qu9F@pH`C^FSEXmrljgbPhR<*h53Qxz!J!n7Uh+esKI<_l0WyT2j8yVZy66CL zN4fS2kd$k$@LSIz+-4K&{^ab{Q`Rf&a}<;jBDA-1N&R#p*QjqEN%ZfPV^NSofnEHi zd*57z7MIpO-Uk^1+(;$$b?@UPX$-s1G&agf@!4f-Sq_N@dU8-A5STIhr`7F#TkZDs z#4n6v#^{sAy(D1{|Gjrgnw}(?yVWJ*(`UTI)O3ay-Q^IMs6GqdA`&Pv&yq07i0N@d&16Tv5&;QWxkcLiN`%&i zraK=-G&G9LGbYT=hK}!uV3E7+QPoDF5z8&o=7vto|Ir=rZ#qSIy8X@FC6G?Pr)+@O z2Xwta8mKDcaQ1&3sC_!X=o7GlmnmGXJmC{qm~nwBr&=!S<-}a(v0I!U5B2)c=*$qEF2g3logvpFF#7`x?UYG5g5T!2i)1 zJG7UKI`-D+$qV|#LZnYDD>8+Rl_$KZ!-|RU)a&(Py)f4^F21hkcaIkr;tr=iOT!wa zXZdPOsKVf-&{>r||3Wo!-%{8F(2jrLLn?%ozQ@C2xu2ksc3^i35cq5tmnEkx{kTUq zX@w$`Y4wg0PWayLxUS(;!+re%K0&^HS|6@9{C2cH;nXNy*C4}$d=XBLjb-0E?hl*Q z!`)`}wA#O6W%X@;2UsdxbOUGppf`2s2*-r|Hn_No>~s5yCbWU1$8EOflaFB5^sqb5 z4#!>1!(gaAx#$L}{6TNe(4&l1f3iN)>Fx%)KNj3XHpVC0hL!d)RV-m}8j?F?k45X( z1L;cP4V2}h-oiR<*dQ|BtTI*}N?QtVpe-Nuw8Lue*xK&#Y&8Fqf%ZR z&0yIJb3xPG9bh-({gVDsoeEY7r;m9%)2*SK>E*8CxuN?&q7%X>pj@&Hw#qi^^?PVh zR+sC|{;-%mhogjHp&~0gPfNZuGN$wEb+y{Wh#ApD0EZCmQxD#6H@kxd{&)yD7fZm{ zUA4fE*KeVnH)jt%*zGp_*3Q>MNaP`iP;7}GEDmS03f5h}y592G?7T41D#+v|-eJG` zNW`0T?fcK4J^RfUyA6coiUq}^Ats51k`Zv{yaYX~;bJY*66YTIVkG!TJQ2Z$g(vdz z2zRxwYAraQ4P_x@6NR{JK8M2P!n59`kvXVrrlN@e-d^r(00dsvm!<=H%|f6!x^G_3 z_hN3BeVNq~NenD~M+L8YfcZ=TH$y{Hw{Gvq$%ti963=Y`h#s$$#sU3|`xe&(EuQ zy*yM5yYo;ym!;qn3h9nFXZ!b(insHj7)+GPz+w;qZv45(v3-pXa#ZM*H$GnV>e;To zWR~wda~KKIk-zlNcxPvL1MX9aJ8PY%s$xkxcywb6Q~b%@hmXz}cu&QxpcLE5Ctow@ zXRxM{SExOqt)LXz$tUQ)8JF?rrYt5E>i0`&$(i};uv+3!f%_szBQU1t%dzydf>J%5 ze1c}>`Q_8IEgZJT{M)lUqbLO)F^B-yJ%R7(U`d3WF=SAQ|SJ~37|&Ehw`j@09|$%)(XdbV85goAct zD1?Gb>>l#K$s-@uDd2XvDy+E2XA?A4_KdDyd^Gc8&!^kAKz?U9t z5fAQs!&6YTXCyv(S)z)Md8#ywnue}DqUh{UZw1@;BSdc`yFfU4(sRyNM)qmkzx%cp z#K)+NBtRSXF&_%%d}Z`}UEhO3E6I;h83oY=+TlTObDZ{4O7@G*@_M~lrD>z{v{ylR zfi&YmcFxzKFQNT111mpYzkmbM>*~nr{xRy%1fifn@_Y;9hYOrUu#aKOD)PALr zO`(Uo+FSv3tNo`o62h_=`fd{MY;rgk$&o-T_E6(DR5CvGu&A`8Kn$vtCbHNaJDYqH^@yg8Riy7My;JsXe z$9Yn+n_~&x+SK;NWdtNcvAqyW;J8YcUc6W=>#1McHQm+QUA>1+k(bz;@s5;B1}gD!cCBwLSbxclkZ0}V_}oRv8+ixSyxV+rnDDVN1J!4W|8{ZUIlQ>+ z!HX#|u%d~Bw88Xq==2^o$aq8>2*HGp(aAYzir}4Iu(W+=nu%tm z-Tch`!HoPHB_orBsH8Dr6jRtvp~qjZ4>`y?Js^cR0>!y#SLt0W8_qJx=Y45EV_c1hq$&Ku4hhd9$aCsbAz!QXpP;ZsXljwT&DxerEOW8 zzS~vXEikkEAWuMl@1mO3w_F;BaTld2j)5B}v{?N+yPNH(uyG6q63(jC78>NNz!q0u z+t-t1mI|ffkz(7~d9yurU-M)!1e*yZY&_&X(i`^hz`|b*ytwALL2)jX&{=M>ZyVev z8(28RZT_HCmoz{}A_*54{YP4xhorIZ4g@vw2oYD`mTcX(bYOsVZJxm?HC0$WuuSKYoJ3%}ufP`Vl8uJy~pwn~09bhuXuCchU&iyGF_lHp){^ z5r=#dAL1!4l`N6w3u2+UW=Osud4!Bha3be<5Z;z7)Z{<)}(N}U{-HVCyjsMbjzHq0X`2o&)sKw^5qBk^DCr84f zbW#=@-~rd1k5RwpUHZ-!L?q&L7KBA)A|uS}w+nIjLN6mYIT9YF6Yej#5iP^o{W9HL zu*fTp@M-q68#O6F50if0T~OAAkHa+v{Jc z4tRdqPyX;HzxZPubh-Nw`T&QIKE=tG$=u92Fvk?DGn!M0(t$2jxZ*CH*`9|jPO@sS zi9`u`eW*u1d0n59=Rh6HakqOtOyqm zPmzfwNQ(+}_)_F{Os$_)%Zt3H`;_NYqR{&B`jAJw*TcPuKmtS^pKR8bdBi?CrVysp2g)P_*Sx$z4I#fNRR@~PD$a=i0}Uz znBbZ=`R;VK=d;-J{?>7bMq(2qi%6{S=mTPPs8@UN7cnu z|6Yl}!Oq)h`5z=@Ab1Th1R_)ccybbI0jDk2d|g?w0cc*CPn|l7*_=dDh*vo4bLeVv zxV{yR6Q$uh3?jg@{(8O`cwQ3O4FqZ6M!pUW<2C#w`@R*95u`v{`2@|&@eanhVH49n zJrcBUIc5@7GBF~t;;DBB`FgQdNcBy2~e6g|C-|y2?(WMeJ zE~O9;>6#b!1Spzk1rq^W$CG<5sbrs*s+0~SSbh4;^#ZER1luBRciFi)(Re+d&Nl0d z#pUEVtgzX=wLclBP98sd@%q*D`RiBapJ&hEF@juZJ1b~$ z5|<^b^saC6e7}>X$2~M8;S%AT&i}`WbXIVCXs<}|cEAPXE$wI}!7BLa?5ct@wU*O& zS(E&Kr!+~HLSO4-1$smMM)!cp8|UAh(l`vZuR)j)Z-h>z<_Z=#*@M(?xYTI4-OZp$ z@pgFJB^X$2*;T1IgZ#gz35!Mo-7V87&YS4hx|rx)qgnp#Y0Q#~I0Ty3=kZPL4?2=C}m^az(?T-!ub`d>_(_As&bCx-%RT(L8aQ= z`JMT7aOz&46EyzXP0ntw+-JUgFUY$D!tKiwaI+x9>yC?3&TCa2R>$Q84n5qwo1R}l+j3_wq?k|P#Oc{$59z{v zlO&GKaK7EZ+v{<$y+u8W;G_p03en(?!^J1O3wk!P%`E`&!QGBAAGqJ%MMlD;xZ~1` z$&@56nmFL%JpVG39eB{6)5vm6al@sTlBWDIm47tuE)|zddO?~Q6yd}}`XhRDe=zrKU-CMAm_Ib>#N<0Jo6nf0i3xl*`rH@8jh(uXGZUX5iv0?VQj zX`Hm?%AY5%>m@I?@A_oab?in3;8fiDaUOi6|yGRvy-oh@5W0tHsA~S}6Rd$6q>%?97C2+w=g7 z`O1F@QA27_F%4IT|?6sZo8kDD^KZjQ&^1Eb#IGJ z3aBxi6Os#$v0}OnE)iE_IwwF2ld)pDgh_&*F;)jGheZVOPCgz6@k^T1i)Wc}aoJ9dhC{^E+t{nCE|K)db)wQX4%nVvjLBYs$;#E$JIHkCw%1oX|nBDW4+CYL{{zM@>ex` zj@8B0k%-){Xw7{)EQ7B+yNXfJ%G||WXf1=Qufvl8%E?+H9OFf1q+Ui(b zMs+PV#u|$&KoZ@2kgPX5SZO^mLGsLfY$|u721yy3=;wnZl@WU@?wpJoB+alyJ0B$J z`zH^QJS5RoyHwG@>Ev-3ux*^48LLax7Mm3KbuAUbed*B7ucxlQf9(ExRBWhyHBwIL z08eVDg|$IWF5<^3tSzC5zFJrtWN48;R$*-cOSIMKe{+Oul&bx^YIQyNJo?;}BgcyV zw%DYA+Gx!Q$;HfAjn+1}L|h$E$O+J*Wvl^(5@sXeWd)1=;co6H_-|8)j77MFNrcsI zfqXd^5@U4>n(&CI+GUk5Y9TOImo{l<>@L4C-^}*kfY~Zo`1}nn zJKF^>f)ZuiNyNo2HIsQ#8(95?TF)%wlU&bPj;b_=uI*hk7cxI^;IQ#0+0KedRQACDFAqc9`o zUyrAJF82Q9Ruzv~k5@&0h!!2){N^a+PLt`^Jd$y4{; z|4-eUKTDD%=V6PVWco!1i9-MZ0t5*V1jXX+EOv1pbIGcxMEH~YhO zPgkaYpL=+CczDJ^7qymeHUAPDdcKxP$uuTV?#*=NT*q+d_%Ci%F_#6DQfCp)!jD-U zdF-<8SR3V$==bA+f!3FUzsP5#%c?2_5D1*oI8(zd*! z0|su&dAl{@k^Pt84hvVMT&(VC$7b#?`#Uz;wR8+T^jFPIkXRa+KNkpKUdRoEZcrx2g-=96jUt+mIuG0$o zQ9)YGz5Lfhew8ctiX(!oI{Wiq)jTBE>@SQ4lJ9HrijJk(9_VyWa}BOr)|tKE{qP2k z=b?=}(UnBMpDAWdCIyw%ocOd|8HMQ})8@~Z-{;DS`!GRR{q!$i4*7hpPyaDI5LK5A z-OxFEo7JH_%znPwKCJ%|Gj6VBLjzzzTV3O)ydN@gu7#jIkf1x$x~%f97Fdc*oiPFj znrb(r)1WWtEUeiF_Rp9n{f9J>|=qQFBc_Ls%fFTa;46wJ?M%j4>-J|90aR6`o>D2nkyEG^l+eN7k z2QKa2?^gjg5dglIhzE2h36u8PCpT%;MO@MzgMLeUjgyK`s?j{!*Y(c!^rTNZnf zCAef$M+Ym|cLx;_3y8DgL=03M(Ul8tMy^Fr@uX}uc&!iesn6So6asw?pEKVa9}xY?}s==sUQef zCis}k1uArzX7Dw0_BG?)d(6)nxYr~=+Achg+5JFM7%D8%&cM~8jHF`hQoS`K=LQv*=nn_FZ|F{dq5~%jfgWllg&+pOJ9i#qd7xslh$^cRBMTLaugejKJHeERyozkB%;6#A~K7<#f@;Enlqw%?L@1bt8#XEtHHM@W8P+&=WQ$hELHQfAAikk{X&&xZR zDi;O>I)9;Q`R>(Cv8DUJd^Wx3eOxuBEtj@p)QMEtxHus5t&)sqlin*vMzW{@0Pp$8 z;Z}U4LlH!tzTCWJE{~tB4)xiWbOt8t=5LJd=9)x+{zr}R?agn+1&`{zS4Bv}cXHg$ z-2H2NBi(;2apz3Q-up|!z;hjW-a>zygs#?9A!G2P-M-VX7N%2ZaA5gwS7~rFj4q4` z9syg_L^^|rwpdi$36k4_1Zjpa@?nHO$BjTgaRa>H=jh`o#HsI$a@9BQcmG3>xI->k_NPEJ7@kQTX@+)(a`~H$uhlYf(D9!2kg}*mYK+AG!LYlMyZ}NTD-=$6>Kt-7qUm;9z9w9BLHU zK?LFD()`K|ksO4rurQ05DQNpkHdBzS011NB$ zaQcPUF=e-y&@o9=2tTGi?-Eng4|IslP3r@``l2&TQU4~SK4HKKy_n3C&IvJjuiJj# zLVJ$4=gvRD^80}1gaE~5F#NEh)7&#ffLfNSeuDxIA{ee$SKE2Pld!k@5+QT>>vDc9 zO=UxagwPn~v0{qn!6c!;6bZ+gN803sgI1+DlT8eVBptZYzU#%BJ_s>glLwo1BTQ$| z;DCncV{{uVqmbOkNRS3^a$CG#DTte6RkIn;_Zu8d*UK!2zazk54nFaZo3k76o>rGM{W2gLH?iW$6@Z6c|DF&8z2hZ3Ryq)8k|#OlQ&HfQDT|jG4`WK4I=x zOYz~bcP)D;k8H(hRN5cg4q}%VJ7i853%cc-XLh~&pdxInyZ{}b!8l@8MS~A>lH{ok z2~rt2E-I!K^ahWZ$k-q$E~doD}iF{Kl0}4p6nIfc8#=6zxut zHBY;fAPwBehsz1e(@#8UNVdF@6aeoM24Q*gPA1FOqC)sV$D_A6{uK39x33Yx#?R#T zgrd5=`S-TzedFhHdjk{F-f??ABwf(LxaY;5f4NH?k|0d+0Q}V2fv1ZXh5scjb#%6} zR1yseJVBbG{*}98x+xlAVHRC?;2-kagG5*~O8t=EO4Epx`)x&A@>Xr5@I0Y?mzyLt zPw2$OxO8R_t#fJCw0!3C%qq#PV})r%fD>?%)z&{SF`0%HrqKWnXz;A*Vs)g=ZRNb! z@}8TTH97KBG94QD*i}z9i*w%R&eFS;FObH$0^^K2hxuN%9s&~9LwTVeygqT5t%jrV^J;6;jwM!a-aYmhq z_?I%dHY@c5G0D*gIIB%zJO3AI@2-K)J zKev>GHC~FvvB}mTK^g@kAJ*X0islkJ?vAO`3M)$?02FZG{er$(uGJkcsV(9P)Y!Oq zpd`$)tWI>%2lJ0)vox|aA{GT4xK}L7Rh~X#1Zn6-KA?HM#k|3NBDLU9OA3H@L5WZK z7xe^#**>+>)rivY8;pSZ=GH-mpRB%-q`}t+Ko{*!N0u<~)M&6EK{|FfLh&giF8N{b zsdG07Qz&2W+exWT2u(X zi&~=Fu2)?9uzdQ zq!XtT0v4 z^LyJI(gXQcp>z+_HVQ4OZkv$6-JRGdnvAiFVk=GM0VFWt^N1xK-Br+3;$uD)PMt?|;#4jz7Rc~% zlTI>X(IR!+BsnU4_tl$sPkO#s@Wd@OR5qe?bb|rKdG~DI%F{iqtRRK1d-Abzxhk%h z^;5@6BS=Fx@}a(PLi%Z5ZZ0w{oHhg+aRC|@3uHu?qPH*C1^2|{FlB`Wh}1Y?8r4>m zLZ;9#!U8mE9MIrJbz@8O^ZY>9&(O(*%tKO(>QZQgR*MUI(rGXGG&kL8FSRc&%N5B7 zwCJ;|tAf%mW{}h&b=k;L?a-irgY?zQX5x2!amK?WNT4G~{NvJP| z(bZ;N?U%wUlZR1AQw;zlFp++E-~l7u4-e|tMOVYLMv%tOGs)GDhcO4xgj5zMVWg|9 zo`X>zI|FDjUaxLwmksNA$>Vh`N^S8P0|aE>H$U=jm)`elSwRZHPA8TOCU-h@so>IC zA}EaSuW?8=el1GVyupC+1%bnEz2dzsnLsT{BhX-g055cu>vBU^de!ILGAB%3dEyFG z$hbeZo$)_pUr)-97?DSbtLe&*H29BNP#$^8k9ZGA^+1xN!gij|%Uov4!aotEmbq$4 zDz-sD>kF;-JmW~#daorMB}oS^A7bbiZtm20YXoUJ8~H)#1@o^7&*+G1SX;bzSwO(!+Jn+2Q-p&27~}~uOT*{;qE`7AxKmRzw-n!*3=?1bSQ`R*o3!8eZqH^7O5pEBpL*u^A!>GZ|wx0(MVkp!9|AnbeJHnI&$Znd~`77qhrYzKBSHgR+dJQhxh0Ut|1_9`N z^;-STd{;de1(?*;YmU4S6N?5uJXSmJ^B$QRt6hO{MqLl}8c1v-n$SS%1|s6x>AKn>>k) zRv>v0(a#XNH1c5(2`yF$q(iG~1TNhb0uov*4@ifu)Y!Qp`OsQ)O!|p8e{#n(lC);8 z5r8ff-xql%)R!bk!#45(EflApGAV8(1;9H$m*{4`=dK7zHv66=sptj)y7PE=RUGM< zCV3obuB7{-$e!<23MbEF7PNZ46Z({0F!KJ&BNg8(_H1$Fi3J#*iKpQ zY|4VNRBH# z&lX(?+(fCfMJBO_RNPPpT93EjE;P+hjldu$iw8rAAzQifJ$blnWa&iei{-(A=cubK z-QvwUcxsMXOH%O-0?#gmf+D@@hh;y``r0RCY| z=?+lKQb{x@;2;9XVZN{jo$y>GxnDQ}H8#%AtyhQuYaZF`)+JvQk{n=LaUnVl7VIP1 z$h<91R!MH7MplSM@O%}zw7fgygLT&Ai0VoV@{uQp{6)5InOM~y*;m^u`m`@EcwDDW z_oP&voj^w0dA_~cUee_v+gyXAxjo(r)Ooc(x4tdXn8SQ$A|>x@$!QFv>0~StjN>sm zl-`k;6PPs8bS4%l%!KM|`D}8ir3IKYNMR;)3`|BQwX^_}1_?}L*zvE^ObW45Jk2FeJ$gYzt_0&%-Mv#VWCYx$`BS=T?=B?c2)>KE#v+Aanq=DB6P@MO;`W>!%YL9C~ zh44G|`9}nCBJ-oftWv#Dm}En1;bxhZpsdv;DDx&olkXZbbnbz>QuKA7vjMe zRPcIu_ck|3YRT7;7p2n~M+Bed_yl*wVRG=PMQJP=473hU!q@g|m&+hE3AeI>6gne_ zSXA+oU6O~qN;}wPP12#e2nf~HXZQ!)L(6W8&3CV_$s{j;E-v$76%vsV_#N>gp9%Xi5&qBuKaYD`Cfbg}3|!%fF%qWa1Q2 zoP$qLJb>Lni||`r(J7q!johu69DX}_dJD8@=!3jKM6rRsU(4(>wLsKL)45nAFcG69 zm~fv=9wl3GF)p2d@}eRs(wyTbEt6U>cLnN%Iy~6N3m0^980)VS!Uc)aX&4L;@Lbm% z{hjUVJu(U8=~VD*%g1XYJi&YOgf?mg#u-I=cP+u(-{$5M6M8q~MF@p&i-U=?-4^Ex zj5F#?}N2g78W#37HUtNmRfH&Pr@=yr#2V<)}1a zyl$lFG%ONKA+yIVpR}YWQCof1Lh=DE>P6fE9;Mcc)Yk8sUd+)%yC=`l^hS4DTqw(r zDo<8cJE?r#9aPRs!Ryo9zXd6^6bxaSlK}?}&3$ZBhzU}vj~PJE)?^L4odK6ez{V`Q%Z61Zn6-KA=UvDCtxqetu7CzPG7Gsqi%h2#9tUXFnvj zyL$A4d-8*5cUlyZt=$`0n(7t>y7SD3t{HYm-bbmCTl)+gyuz3ch2S5+lbwwOX(}7} z&{w1!)$&B&4e7`rzHltHdO)f`o=yb6wtRRJxT$VR>i+x!v(zLI!c-;}2WAnjNHpY4 z49Ov=krg1}9%RjDots0o=aY`qS!XRt!>2${70|&jok*Qf!8Ez-&hQfbh@M+6hff9T$;RmCSf z$-$%*r?F{&Y+HwqFXHa$M~UN$dhxV#>oiZawwcxhk{nHEXHB5Q<)!r01do<}tGHbu zohNwoJP*~W37!$8BX_}>59Rbmaa`T-xmM~>4q-Zl1_wUR6DqvP&5#_Qtx^G7)I`Dt zX>P4x0V&-ejWE?97AIto=XCql?#MIUbc0xFDiI)oiS&@?^UIUiC!cPRMp%GHjT5Fp zCw}Ld1#ipeb0aK3qs9RZ5uE8wI!c;miOfNggL5k`K*eH#jO;bf=jI||Zj>obQcDX^ zX^=upUL1={d4yX!6Dv(+0wgez4P<}kp(MS5ATGwG3nn7LVV$Q_*WlitY_U z2z`?cog}H~1|ficl0iCIcOywduMvRG1H!J{Z|G+hj#2}Hm8CEM3OMj?NE@~1n{rd_ zd1{q9Ky>0XCLI>Y@Z^f#_K&4VO|BqJC&CY=;6ZX%tzY^ZKvIKbD@`NPBEcY{b?|$h zAlXvUrUKoMZD$d!LmP3kO^(cNTO&+0ip7CV__UNhNV6W3IxQtRD){qOeV#ec^Sl*O zGY2C`NA89v0lm+3;=Q@^UV}FBVQm2|51UHXT0ds0KFkWx-^&)vd^D%fHD6p8bZ7-F z@Rr~Fwu!|TU#wyg|Do1CeNcs%HMu9G=4Yek}`M zM|v-5=h@cCe4zZu+~+JR#Hj zixrJ)6d;&Sre?66IE_b#1v32WN%uC-6;i*RIP#)&y3Bzu?4EWg+n!ptj6TXIyv9l^ks7P+F6y(zJ{uBvCuW6~|+ zNK{EVzqd~OH`&;{r!#PBR+JYX=f#5d-JR$Hy>d?HnJ;~+f7EBEtCEgBr1zI&VPgEl z++b=xkJ^`;!W^KQ{6!mR@LWerUUsr!u|8RZboiYX;hkt)UP$!j7(S zVa=Rw1S3lIwHgEM&QD3CV@ByMIyR7^-I{K0;4YVXN}?wzlF`s1s^`ZYjy! zvynin2Uu51&plgt5kdwHCX#%PH2l|nI}@K)p30~FwdKQ0S^G+Swoff(89^EYBOj&^ zGo*&9hJxIqY^pXkbXcdnfJm1AF#Bo*Bt09~Xz<{ds1Cy#@*s1SbFRfQi? zy_M3?`Y3YO2+94Tlc!SY&|nbZ42O?0E!*E4Ng9V50qCMR%x{^RqZSpy@0x=TB~)ai z>&N+=Aay9QvJ?tHff0BC$^OdCkXk^3urQ0x6x=iMro5~r)iWJ=5i$l1X5oXH^FB9C z>Y(Ndj5F#?#8X5_Q0|#XO%b`s2rY5f1mDifrEqhlZs!#;d#QCs<9%GYYa%t|25*@V z_e+RYtGD%jB9W-Q9rF-?rj*?{t47NxI(7m4Ke&*O@xn_FBijZr#jN{5n@h+g=A0 zCj>aTRQzLJ#7l4SkF}*r2dW^o&|>Uc(}YvafRe{PSEAMm?(Z!t5qapWJb7Saa^z`b zsZ1IaG>V8k;s}N0L};Tez&<#KC)y!HbhjwbT{xsnJ(3-g1gYpw z;=$|5hh4Ehlyh^OfNO!&@@XedqtRi(4r1opJYY@Aywmj z^9MflEuS*~12+*u>6ATj*j91~twpJPY77t%o#k}Fnku=ooGvtIk`7$aSxy%`TqSoF z5~L#s!_?{GxG%)*$jM>K3ezbxIIsX;uXeC+ax; zl|raWOwaQuoZc2{mAIA_yv$E!J zjrqZwx~FDku0V}T9bGJ5pe@Yi8+RZ|b^{WmQE)f+h!9jU;76$;sM27o)&cmqLu2of ztip9p4fqhI60kThJ5Pk@&CRp*a?8KYr6xkHG@Xb=3NmSmRID*3FlnUeOe_+Z@OnOJ z(fmHYIPkAXsr7s&F~+Dy>}SQ7ROMi$Z47i-cgHG(Y_+I(H=53hBt~sz5c_Pk$lih^ zG0ut*`&s2~!Nnoog7kaKiqC?N)p~W{d0*-*xDlmVr^bL;#3)?t_?Lm?$WMY)aFP#b zF$&XEltd=N zx*75J@Hxnyj=aC3J#l;G4ww&92WKHvB_?oTE8(vD72kfE?5-q8rx99PPDLhhAa=UD zlB585*Djvo{3@Uciffkvk#^m6K(e2%PTVyoD1HhkP6%jmUMe~6Pv&FljVuUMJ1AVC_qkq>9!Umr}NTW%an{rX^K1qirX#<=}Yv@A_*J4v;FBT8XlF<=Bf zlAgAgw1t``q09wSN77cBN&`q>B295wt$8Ig-4sTY&cR@S0H0T$wyR5TLu~5262epx z76&w>9ai)ylQl=W9gHZQg24a*exwjlrytE8yF*hk21)6+2O=rI zV5j@7m8Mbx5}5D|@U*qR^Dvs40e0eIT)J?|H(Z>yCK8#mEc`F4sT(eYOqCW#g`v1( z-xTYU_*#(a*o`QKiNyc`UZ=e&_}nqIPD^rB=x(0K$GDrNxKucGj5C5XWFsFc3+PqJ z4}wdECP5mskq>A-yx!1HxrSFOD?lJTyx#bA+GLljMQIEg3>blDch9d&vD7FvyQ?KB z@C|~F{(=^t@*^u#(Q8QxdV>IT-rwurcu-6=ej_S`-vvW%{Q7J#Hjt*OUrSQp8w9A2 z&s8P@KWzf=?BbFx1v`G`^NhwjeM6`X-waWe3TO;T?4hdS)9p7V!y1WE$d}@z*6EN& zVhoawKIBn-GGr|gkeJW9hF#D%NS>he9!=BNpp8g?;`BrYT5Wdg^2K~voi4=po<~#L zb-`tW#`oFcl18I;Yv$AsbFpYdgM``ubngleEYlmH770+~noRQ@ui?BtSzi(eK&}5S zPRoK>c)DjBiGb9i)v`Di^WBkmsL9c)l?rGSWnA+re*M-|3tO3h#Wcr-rTwsUbI#FU z&C|PrqpwRd$)KQlv$?1`vo|*)qo8J3V%{~m3-Nxd1&{iPADfpyvia;KFE~sN9$Yju z|9&Ncu_sR-GaI}&)#Ida5W%5SuIu61&uv~|Bzn*H>+?KUFbKpfK?E+h=duKZgNSO0 zJ)O>Zak{(|Ctggqgd-RPFkxm*VV6Z zx+53x+AwontS=ex#`^?A(JlijJ72uLk;*j~^ifv^9ZoH|&UfW;x$}TYXBgm1rqW&?V5_ofy9vuc+KbQ?RSNooJ{ulPAtH&j>c^aY!Gxm zq`f`00U#8>T28|b+hFZKIj7;GK|)I*{nI)oXLF56fNDM6TL3?~r?Z{nT2EJ2+)VE2 zR%T37uWL`%w3Y}+&7W=2ojKHGe}+&1+aU7g=A*&WSjj3Sh=k+<-nOuOOqQ)uT3D0W z11n2cIbhx5RlwM0=%Nh{tf6xl8*<}Xd)2cHTC@6@^=;7}eg!SXw^gCg_b)e7Klu!= zbh)EN@7Ew@+7*`$Dt7J_c(|UevF1;ig+_&gNT4yiYFduQVD&URW=WD_8jvz(DI%e* z9$vhvS`LqQ>uP#GZ);$#%Vp^2tz2kr%X-2tN_8!ztfxx_v@KhUhgcoV)jp+c9g__j zx|jP^whUg*>udpFuhNzSxE2bH^#Fr1kY8=f5Ma1)5cw-=&}GkxI@6aDa&+MYQas4m zY(4O_th%LS>k-i)5w{46V{W&|Xc349nSe!{BAH7hheaIGAYluD(spgB%%zZ001OHS z0s9$1Jm*x)Tm~th0m70&K_8mDN?eAaiPhrtVOUnivaWpQ zHgN_g>ja~Pg9MbyTpj|VHmAFoSDnk?Vyr%=xAtbo%X1l8+lYj*^_)j33uef9L}5_Z zmoAHE8GQzQjY#OLM=+;M=el=>2L{9TAj-vgMW8|LBLiZMXW`|&V^5@KnBDD zTu-=oz0ReOA>rb}K}1hE{c>Q2l#>?(_3+}A1T%yeRut5Gx>6R*(9=a>P}kTi4Q9}o z6$f=cKQ$#g7GyH`ImE)f?2N9cX4~!TBf4Gb0bNN)t6wkcY|We4T=gaM@`yc8@bz)C zwv`+2HwP5_KG)1Q?4$KXlpmWf5VMD;^>KAw7Ry)7-iG6<+Rm1AkCM5mQXG2r$BCTd zV7?yl=N)p;?UfO_(Y}S}#h!of`})0549uX_Usbd!m$TQa?agPFA-_6IQl%3gYL)H@ z#m6FyUpX&h65qp^6BuCQ&z_etiSJ>|34rkr>t6BZ=Av9KSKF(QW4xT|7#%`{clVIu z9)F{U`fEjy{cmJrZ$O49AjrV{0T+)4`^lZsijVO234rlm*RAfpK=-H8+WW0oRr7qR z&Bw9sNPxM$Ym^OH6n~a4>2k`|qGy2povG{vOvLu$NyYO&tG9vnVrK?7EB^hv)utnb zw)tzFMu*vad)k!y)na})t&ZjFL3MRiQs$$Kw5vWnB4R}g^udCu<3-*p@12gj(=o!g zIwM~d9IWlB&BpgV)=#gCW%Ya}Z+R-u$kl-aLuVk0Fr4qpHD3(=;jPeYaKZIIjkr~( znmJvc4uoJch4t;QwaDN*p!Ml0Bu4ZWTHio|VXXgKi{5ts7qDPDz?O73_HEnJK!V`_ z@1)1?$U7Zm@Qp>(rV;KaqN?Cv?M#4WyqaIWm_2&>zBxr_KcfOQorr%q-&D(!Smpd8 zJs22>o&hYz0!sW;IFOmwn<3?OTDei|SBGjFX@}m7I*v3zmmV@u$(g)s?V^s7ZfbNo zd!winK)-7dTQe!@63RufcvhO*6{_v!>T32{^Pe<#H~&>lwqPnCtCel3jg?-`1Lj1>S#qFHI0351Ty7Y7_ni=zsWx8KwK!^plBJ zq4^zOAO6qotqE$X@PeO6(3j3X^diAOy_f2ODYX5<7;PUno!$mOn!3!FrgpCdf&b|| z+H(e@!y$j&QvgPJJ>4i>q;-e4|LzlDjgC3Y@Wpg9m}u+z1`me+^C!R@z6LPMgf3%* zUY-tgV2zTPeiFKjr$9!d>}fO4@w(z)bv{W(X%&D`MkN$HHW@=#7l(3xQ>UW-Zma+0 z6Vit~C19L4r$v`tGZwMT^S}Ru*aX~Rig%`&f<9Dh@#NoqLagD?he5tF%^+>1du}H; zdcgg^J|PB*r~`w&JJDcOrMl4n_(`#l!yhJjHQgjglHC;Uzx@Q50=!{@VN;nm-lrTs zTGaR_nRRy&hv)F_TYj?oV}qL8l>uwHt^AMfou*)kHho*y^U_=vgJ?Hy})$06@96-dN&2&K`af*juzrlu1=<-v~<6^ILQMV{`XIe!BkaXr`IOf36ac= zx04GagIZ{6PXlvUA&^>lT;8Io{(x}vZ?gM_2Rz0C-phWVc|6b!JW+%C%H*kSe?v^N zM^Fj)$Iqsk2ae`;k$-*9y#t(~{Lta}F=ZiiFZF=_k$*VWu*bNB_P*as0<&1pJ2h#> z$LfuqW-M-MC}t9?48{LHVb)mZkN_k`F|M`ir zS4bOJ>z5{4Yg=vSG#yx!W($F>Ak7!+;&2eBOZ~r}7?VX+g57@M9CkC`5cyY*|L2o! zwMHS>?1PCmtLjCXJzaBhL2giJ%@N9i>cCz@ClsMbw!8fag+?WZtyEQDr>PPDK$n^> z%_X@!fU(a4pPYyv(gxQ0^2A=~%lB4k{2!l~s1;BKwi-HB)!ZIAt(%AEpQ>ueQ#%}( z!wP|^h|MVXvxlqg!{Wtz^_NCkH%V)!7j&QAk!p#QoKy9Xb)?BlT0*c9twXQ)OrdhO zMwHcZLV~mv&i`O)CkTNhC<=a1@8|Rw5JEKL2z}czM`ac-=5${SZ_>$&vO>5CnkrPG zbYGjkXC3&p;!w_>ua4LAVt>Uo{gZ5M%D{%`$zJH#LAjslX;J@ma{hIlw0m0qt`y&pvUF@_3MHT6JCqpr1*y$peKLt?q@KhvB%JdNdg}5(V|{zjA{SuOU+k{ zhfNhAumbsCPW6Bu)QAmw-t;RZfzhc)jtOX2>*}K58$SN*-YV`8MvDikWCJvBR*ucR z#BFjFxd%JF-Rl9U-iXn#h7AI_e-95Kjf!I*mWyM(Kx$s?m*PnM|LtBoh0~Ub9eX^}!fBn9wR5OEGKO%bk zW!N5@V*iY`TJ4X#ss8XD=;cs@Vpu0KpuOt1&DX2t%3KR&&hYZC78$<`a{%y2hYazA z%GfP90Qpedlyizw^`261`2NN{Xi}dc)Wpi#F>2a?%mU}1-X|?V5K3ZpK14}VW2Cb2 zepRgL#JRc2&v^N5{L0z^up^zfo;rFgq3$dchA>9Feta==dbyj$WeBV~ikh6X0aAab zO{IdJ(R;5a@{C`DL$GyK_P~ZK>%H2x?~e~sv$t!G zuNX#KSM6mZ)K&SSWj`HK`Q7bqO-or|^O-rQz#CM?pTOm5DsiGANIu+>f;zzjRlbSX z?7HaRo<4X;m{Hn*6O_Rrb-gx|Y3Xm@u_EsD)0^TU8I`6Aj0At@j&*TppgqTC7~o#KH2pvh z>izW40Iv=+EV<4wg^*4&PRHm-_PG&?o_1yv(~&kmF$FVZol_Nbn4tv+4+A$J@_OD~ z4+Dk|l)!OrysZ0^Ga)B?R347y^4<61`BH|#%ma!l<2~(VOu?CV z@YOkW8#={H+)X@wiI3Mz9%7nm9X~io1IBq z#s2>E)WZWzQmmr~4TIsr1C+V%@7}pmZuT3jFnfA9d8XS&fA7xKafqRHuw<^k2iGqv z*`=#uhDw%a&2erRVhMeR$H+EEY~!q}>D|XjpC5D_9#dKw2urStcOO$cde9Jy!uq|o zKNZd}Yn$k^I!EaG`N4S#$#HT{w<-VV&O;C92Hl2_4Kg9V`?0}IiE;Bozdw38@$cPv z)3B^qYGS@tnEh|%Y_+wQC^Y}+-`kwtBtZ}@_6Hws7{Rq<`LKJbmar!+ zA6(INcR#lUMN?R(f4Ef)>@Mha8lXbAkw5xu;z;wQ5v#luOvsS1d#jM=IzM zgp#s09)VnK7yELfwqg35Ac8kiML`b=$`LXGxZ187|5O?=ePR~@9IYYe2Nh)rqD8cS zp)<^O)&4kNT+^kDWpjW5i|Ofeogq+aa2)bt8)oEuzw`EpKcqxQv>I8h)yV~b)8 zQ;D%cW64a~!#P&RVhwFrGyUDd3+?kmjf3YCU_GzQE9Vyz5!HE_UV+ z=M!Jzls?M|;KX`Vm=cr;jmFKJUo7{u!%kVF{I$vL!T|bpU`$4l_ZK4H6?wkwIFv{< zhIv?So|FsPs&sgDv7i|zom$iQ73&`9AE3E2akT!{;Lp44&@^(L9LIY~$KP$Q-Zzs@ znsd_SxlF6{B`aZ+ew}9@^Q$-j%I&x&#>V;Dh?;r)f~T@)uS+8Ai|}p0c>Xh2Aoa$>Q`gUC+UKG3I zX9w9Db;*3@~ow5O0!`D%75E)w{B zn`f2h#foQ}U(QaXh5!S16nm4FvF^9UnsWNG*w94<(n+qYr5(dSTbKmR^8kJQwJJEBQ~v{ zKGeR-+W$6e>SBYc8{&dps5hrq^DHY)b{&QS8g?N??S=LM=B=*#rKK`)HVh1;+|sI3ouNgcKXOZssyNhmBk;P_i@EB`t1g?wncT zj`CT%YQ#=BSr_b0Yg~zrSG)iGS~Fetfk5taO$>A2Db`ojo|bTJ4zn**tLOCX95s^Z)r~N`BMS0BghN%k+gT! z;dpnnJM`hS>yJvcx7>xb1v+TIANBL)(rn$^Y-&RvX1nTnxqtfh8})zA9^3zVdZd!y zY(A&226U)39lktg-LVk`BI|??( z*&9tI`axAJA5+nAOKZf|6dP!%I_*89!@yXBz8n+R9FRc6I#2Y{fHrnZ%y4b!qLA%@ zR`G2#g?c}`2XK-U@|ZxUK`r!@R@R6XYR*@@-4+VdfHs3#$Q9GsMN#PNEfi$}o$SJh zfH%0E$HYvU=qR0Mf40sO#s`0Upw1BfG)JdE-W*e0e@9^c_55~}@JT=uyBu`5ChLk$ z^Y#@Pm7+O;s=w#6)@T%QI6x13cH96xE@?sJ;o8?=RGyZsfr}3A_EYBo?rR!W<`*yJ zrINj+lz`}Q#&^KM{73zq$FYpta#Rkl)^yIB(vc6h(gy^A@fuJnFsEVMdhzKss$ZBY8?Z2dV15BBkRLs29t}A&({#WJfKfJ7uWR(bnElYmU?MGo1UJ{tU|$dIrlop8GCjB9o+4nm_eRZ zb5GlS7?9teYVbzj44{Ku}^JF z)-=7J-U5OLyBCKB>p>%ief7>qj0g|tGibyRa_(xx2-AQzgCdp{<1ZOHd&FYM;5;Z| z**8VRdS3Sq)-BE+v7$_%)1ZiDB?ZESnQyTk0YJykvy#o=i76q&b7D*a?w8vM<(jV_ZY!V30w_*_;9 zgu>o4Fa!AggVSguI1FKf_wsl`oiutWckf1k^Q+zwgT^LD%HaF8U^P+iJ%Herv~I~k z^DpMoT&DNE8wzeiV>k2vr97I7A=Wgxm=yeHcOT(&l4$d<=CQQx=)FZBnMW|6~kwcxdh^VRD5c|ad~s7Szi zzMOz6r?W+)C_}&EVf`{_)lN-)P0n{CTyfBYo(! zwCcon1@(TUwetUFBR}9~2_&GBQr7O5wm<~z-WwY7 zD$003v4;~BGY1ga>!6x0#@q2XZ?_#4Hc-;uuiG0rH22uh-W0Ntbyu!oZ?Pb614=4T z@68EqNQay)%a3m=anj9;+ig3C1(cf7W>jxG7IcD?=9RbHW|9ijdwoKi9j;HuW%Zno z0=?hH^ZH`T0Sdh{MWJA8{p#)dA$J?7HYNB|uDetH@Rox=;{nBn296Kv1nTLoT+B>9 zMY-1gWxXoazoh<*fun~7lu|x3Sl8!iq7_%K%w8Sll-+Ep2FWViz29`x`&0lONIz4Gx09Vi!RAx+wYDy-Gu zUL*x4XeD_-9c2~_hwH|**^_pleW%_Ty|25Hws~i;PLA{*b(|;TJfM^ERb{YF)RW|Q z;NBG;=tvIHsVZ3-&`A0AHAo{04Ro?L9R|pH)8H_dNuiDf^m!{h-a43mYj5eY99n;% zW_`W&m(0y1xj?r_F3~Ypderu`nQ!T2jl}6jpR{g=7}%zf?l;)MWf@2Gl!j_aK%2;<*n#x4c~YN3zJEEh>v5YS zF!(Z`-b2#zcCip8Xc|dv2Wg63s4O`C#?YkQftb*Kt&S}jXctK|9O$kc9~XN%l%7@r z9n9d&bn2~rW@-B+^p#yXx$Nm*2AJ;d0ePb@J;&nm~CD4&l?3(8J^P) zowe_)9Xf`v!?293wzgR%P|l1Cn1E5viY1?dpEn~5Qh+AIW<08xdc8aw!p}S7iI9Lc z6WZl=Gi6m5Lm`7ELt_ z&aT|g-Z%gM`gaTJS>POCjX53u*-Ta4+AxE}6d%p}75lI}q`+%92Yg0Qj+4Bp~s z`?OgiQ{US#um7EY(S9~`>OR)Y8Zf9w9NnjG=0J2o5c$VaQ=oU%d#ayU1r&Iwq3qWV zw*YDtnhw1O=uOl?VnYFC)4}CoxtqOpTCZO|y)O22#rhj`YoVFZuh(?9OtIUo`B$di z1MO;of!;X;3|y4~EB<;t=+4cDzN+G}@v6_~(>Zfca92`?9`5VauDR@UYtH9kk$rVW z_5v3CAN#>P&i`^<9BJ+6{LuK&yxLK}Zf5ZF@e3x?o1>QpG*s5*^=Me_pHu%}EmNGY zWoTY1X7aEL?J=04V2H#ai5Wr=ErJo z_5iRZ=sm_P-FJfc&`4R564$6r3EQJAnJ&HCmD6=mkfDXL#Gy|MbBCq04%4J}N!Juj zRCH*gd{mBWb6A+HX+NhOCOsowZ}}))sW=JfHhSc1D}%Q`@@de}L)pUE(?%wv9neC( zrKAZh6rljUMn||onfe(cTo4}`jh;ir@~kt?p(HH$kB-oX(}vdnH?CG^D?HIUV}w?a zp@q`#x7&I}DqX!@(WwN@6oZy(ng4oN&o}CIkIlc&>5lbF7M^?6*zXphgTKckLk(pT z(l5+v7|0xZYdDh>@v)(ba@0*d9?stA&X9l4OuuRG<$mVfZr^*uh`Yk85gaJy^r3>V zGTCTeeN3m9KQL#K(rMZq7G7cV>Kp-+hOy1y!WL3_WDjO0I*1C&vc z-MBJ~ijEz(CvZ9K>3$3DUE-BVrvMeGrfffstCrygfCeBMn?fzrp+kYujuwkjx8-P( z1C&t?V~w{)z`1(Av}AHF2OcUYr#1GeAfi?8cdl&Yop@z$Bz8sbR=aY&+Lkj@!I?d# z|C*t;>vrT{>>JryIRTGvfA?`<)F1E%0F$FUe);4{c{wxd%)AQsqdr=ZBuA4CD$2Di z&f^qqE?4`y;z*PI=km!+bFhl}0c~{MCLE{?5h68JRTFLFX?==`^`KO9CI{p<*S2#t+76(4C!y zS4Vy?6O&dr$i({)^>)9eov9DCvO&e(#pi})C)!YH_qr5|Q6A>83Pgj5Qb{*N-mmYM zF=NA%-NLSXeUGMal>gC@Cr7$b_-3`Bsdh0kAvdxE!^KEgD4@*chD+l0jNb2%S=b-i zxr7{YYU^Imb(|GdUsto&+P|62&()5vdbsHGht{`hv6|6)@nB<_Oh;Zk(UK~2KJVeQ z+f{qM=%KgJGKsQ82Kku?L1FSQcC<^D1;yS^T2mM|aG)vAb`8>8S66e|ihaR|_TDu< zfoKZ|s)H?hD9lMbjOaNnYT-arhI?z#V?jNO{!i;vy?NYVGfEVYl7U~6@_q1wY#qJj z#63@r(SlOj{O;u77qXLTVPL7A=G!aImB0Cb0#biN4JNB?wV^|aX0PEdns4>qL_XBF z0OFy6r2LxSG^p~L44G~V_kI+gKv&{|xSXtpi2I$ScMV`VTi#jp*yq`{^=8+k*hx;C)Q`!HcsnQ8VAmQL<^Lhp)z z$DWDpwW4ElU27UUA5Eot_GWE>J~J~!b%4`w}nMFREOC`aavrz zq#juRu~_mCrn!b$9|bo2YuYf&AJ-znSF<^%t3HrGPS(GyPqJ71jx+pv>{?!Mz9y`| zyNjC2@i$hoHFKqM3JfeJuM}4-)^;N|O#bp&+OvfMy#d~aJkVu#9&ZB@$f*;C#r5iy z+3V*2Xj_V$wC0*Hcp#u8S70>FNu?pWES3&NppE2L=EFb5kM`f5;GeMcj!g=Of1c{; z8!g^24p2y)dz%l8jY0=Uk(s}dGS}QY3J9vQUI*LL$wMbPP;=gukI4A;AG<=5?EAxS zr|UKRZ~{<8p29Is6+~sXNA|8s96Hvwrt7gMNI<1f&lqMLr7vgf8KXErA$e-lxHj^} zn&GQuGWlE00Lr|nW)(x*x*axLk9(18gc{8PN=@rU7;RjgZoLveggWpel%;)&ZFxeEO;JXl_>Zm2K%X-BT=Mg$Ht)$v+;Pwlh0#_K2` zs19y=bb{MzdfX?!RO69y_s z%N1R{q-71qb&cM2@Gh@|`ptDTJ`_=lGA6(z07Rg~!k1!cAD6@J@GTyhmQi(gjpguC9AbPr8^8676 zs31MEBPyBE`8%RWg+_XI^Y)xyJ8*u_Zed|*d1h&kXE#e^E{oIpIB#$8D)v`=y-Dw( z+is6fis4}%P)zNz6tU-*bXnN?av4?L0wI)NCNn} z+`W7yS5_Uv15x!$SLj8}yt%$~^lOk9HMB)x}t3>;YoLW91#PB1P5jpsT{u62ULkU?Iqn67PqRctoJ z?Ctvh<&^j5GfjCV1_;R&prwA7b)Q$e zO0Ms+DiEmkHl@}L&e4>>0Wmd)x+*I=k)CRjv$xy7!3W%ank$Ej;en`HnN(l&eJ@vK zG6DyhYAT|=r}|>9R3r)rs)H@6OdHQ>Q88guKh9sBHWzdj;M>g~ns4U%IIknYhI+{1 zQs|Rvmi+uX?k#Tw_lR4@A`&P~b(iPvx2c^^ZPw1E!+~bFbNTO`y>o>jK{wpFly}eExq^rw8}3~GtLN=p0Xz^5 zcP{_M^LMTYrX_s(p|7iyS9HJ5&KzV;hl#)I{9SY0T=Ad}6E;>?u7_WaeRs^Ya(y^D zlu)BZP>kRIat*~jkf5tp`a2(Nq0hcZodX52#<0JWg2sCmk?7K z_1o8KdqZ`}a^BPr-fjNt?YiKkg^pa`z6QX;%Ic@l*!zCp%k^or9~GokUw(Gl(3!i3 z=f&pb?2FFdHACm}|3|*~{63FMi>5{9XAjmMbpyVS=za`UGEA zTR+$6(~k<$Ep+CpTSoz5TXkluzv&0jTxFve z9*BNP9f_*v`(pcSzM-W-tD9oKGKZzKMt=T;etYQr6fyem<{GaiF@my>Gb-yh+wa`1 zt_>lm`XryK#*MtQTz>CPm2D|O-HdLG!N?u>?$(XL2+FFJlFjPH@wBHijp)h|tc!ct z{M%FdC%Z0ACcC*RCBxC7gt|v?m>6Zi&$UNz6alCrk1Vg(Kn#=AITsGPCbm-ziUZDt`w&a6Sh|;*uj_mF(}sry9W|<)%s!R zUDelf)en0?L3xyg6@Narg@p&}vBgQgke5Al{wHBZ`>R|QRK%J~HjsCs1o zr8}z3ceGr2(r|Prp>D_OHs$2Mgv( zea10>o#lOS^^|w0sMyktU(ZxmO639t)k*L`p?)~aH3=R?0IH~2-7raNoXItX7)b%@ zOlTRU>)&q6h>)O$Qo4t!JXW*E%^&9+xOF7hSq-J)72nfyg;Es=)YK7jSFH{QI`reQ z{ZpwD<{BXbP@t!N0+#QnT`Sio;2;<%4zi%qUCw1e(J|DJwJ+Dj3v-=zd*#4`>S}d- z()@FGew@I-`^ zz}s?7PluyJ3H1aBh;egFtHyhNs_BRHTqi)J@PK0Kk@kn<$*g34fA$oA(MHQ$N7{$c zKvIqS%4@!fbH)827$~ZnF8sIDn3HSMMFb8s2R64BN6y#WKm*Blv`_4G80+>xH`SS2 z*xb)_v-i6n-oTBsG;8wC{P@*O6QCp_P)(iQjh3hk#JQ$-sa&AoyII=Ks}6nbt{Sgq z0_7fNQBI8kzj;>*wrrr}gDgs-PrI4OZ`_rRAOjWi^g<0u`2lCX1Oxl z;pk98UDAKruFQ}-`?CF0euBxhq+i1UF?CV3d_l`kb1kY4VS%7J<@a9lbJJW?{s0u{ zspTg5jyK@uDmSS>pr+>a@{M+Ya)**!d3_KJ6bE@9#uu02xx5cpAgE^aH`R8&Sslv5 z?B}cP!}>2u&X_Bs52Jykx@uc_O>OI3tF~i!AUf2V%GiHKYl_ib^~vYu>Vhr~oqb^c zJZD4xfKhJ8v02T=9_LDE2(SAA<=&51*xp+tI z%DKXJ5DXLtH8DczIl{JN2rLk^7yD3Drh9Vhvr6~Ja`|{)UG0m_?BaBJN&AA?H93#_ zW=~d@b9Ypaba1g}-vyrDRLhgN#7a4@lsA7HYj<@WTILa|NnVSIxLaSZUX z!$Oo7eOM!YN7-z>>sm%qb6~*ErtSfD&I_)iKh5S&4geV0@jk$4f7;RvXi;r;)nQfN zD$X3eH}xEBF$D+=?T0WciaOoydVW}4Z40y4!}iCw&A&cv|M7|@ZTqs`<4j9Ss%MP! zHrbqM*c0@C4#j#sKT(c&n|gTI(8G=?wmnYU%XM))mfP7|^yjN|boQ&uVn=;zR+v8- zJJu=>83 z)xmf+pRcy7<9yCq_-A{Sec@h#a_I>J+II^y)3fK7r|rUX?Kcu3xkTWiRY9zNigJnT zYRMFRZ3?QD7svE-y=j<@yddVjY&JkIx%VbxI`V*tpat8O>(ypO!+c38NU@wRDuMll zL>p^z!2zA8Kn0?;@`qfnEP8<+rzcINB4XAtOPO1H-6$Uh^Uz5@-svW=DB~?F1 z91#Da=&7siq1@9Qhg4p_q%?u4*&mbi@E~OZ8>0_evwQBMq-r^L<^Dk22X2J|{m%={ z*L3G9Q}-tmy{Hxhl>bDa7+_wm`sG!*E%&CMdR;Wtrk+rsf1A*@ zIvsZ>Zq=VoRMmQ`H9t$cL7QCmVj%r*YaKA@b zm5w@Cl!pV2;AC7r>v%KKx%i7~;G8OJ_W^GiSSPs8qH`q=MoDKpy99tbL< zTvTSkH`T{jd>D_d%LI1UQ{CtI9B5ik4a)_G?`uaP?^$Jr_0DM53rQV<@6Wb!;PW|` zEyYsrbD3V2$Hn#B+(|co_PqY%a$jxc<@Sa-#0Qhi5dnd9y1Y+eC+92U^S*#kpm$@K z`(Qi0ab0u#7^aE@vR#xRT4hu0>RI7oPW`y9zwlwB_Y)AwXc(s6O{?>{F^0&6_`-t+w zS+O&Rm9wt?Q==Q!l?0rw5>WqY7LOH2U%T;@08bncyEd#JX(r<)vN7$(x1p2zeN1CFX-M0Bw_+kSKGzM)1&3~STt7=0gy%ft zXU9wwkh)B<{#kx3nm=D1ubG|4XNnQQV9`Y-_HaFI^(l;xN+GGh7ao1uElm|9lSez! zfY;4fYi9O|IxS$v9zT2Z zOuNv7MrQAs1Lgnw`M#=nsj2^il^o?`lEK5bxKk{5huL(CI|6~))t)#y#o_U_ zCru)7yC`j+qNFZE{aXkFS~s_}53COJby-}_H@-uUpJVAVf!&Slcuv;8$B*o;q#(|- z@+HqslW}TE!0~LkD~{LmDz7btOkj5-owb1PrsGFCCJIQNe^SDKQB`XeaK~p677N0F z=IM1bL6>1A>(z(?QkSm~6}w;026y#4>iB#mEEgQQ@!NY=>5t>b?~qjBcUivsWTsiA zDiX-L=I+eL4fNAAcclWK_1(7hkMIQMa7l4ckqPV{YiBsL-lyEJOm0kfogH3oE~@ov z(QI%!%-&dSUaz(X;OL#oQHJ(kOloOLwHBrzzbh9jGQr1mRw4NTYy5wEZ|x8u4~x8+WD!#e zKCUib+NDk07XQt?wS`9;R`_y~753$(qC+e9wLu&g8BFHK#R(A4e}?~7t>n=WWNzCG=jmfyHn?Foj^@TW%h z&_z>yY5FMB^Pk)=JsD4E`%6=_HQ7DY#1C^y>sQPA&uU*>l~gsjq@^p&7}-bg*2Pld z6>GFUHDIfO*?&vS1*z6sx$5-4xVP?M$wKd+OZE|(>UnBsAE{e=Pjduth1PGSX?@z7 zEh%QgV+L(eSo&A@vB^Eguz)>#ZFsD2B8)5Va$OZX4rHJ6=4gJOGHft#hS!p?eclyF zj>RJ3pWSySFodDMJrZoZ57hJh%N05TFR=dW`)LA?Gpz75H5M?5WY>Aort{1vvd`dJ zhnx@;Pum!M*v6ilIoLy%CGD^_E8vb)Dx4Pwvwwiu;$Pe==TPZF_p!NRY1S5*kIGa& z0BsHGEy8Hd|e9jZver{y^zucGQ$GkxGr}xUsEkWpKk8>W}v&}cP zZMCIY-woCDwO0L?_ex!zFSH*!ucJiBUbVX*3Vp{WwOmYS9J^mhZJ0BxFt(IuR|T@*eZNY1Ui%^0cGRm9*zkNjS1EHE3;{ zGS@l?rqFokw2H>y#qr^4`>=S?t*@BvX_dLy*_!<$`%@iyj1hDRmOLzBm$rYnI?i6D zohfwM-m#o5=qn7LHhy)i3v+=EZT>@p6eUC7=*kx?Xq<~og9I{mGmGK-bg^IUj&Io` zGiD~?S(X>4D=N*?e3NnOJ?d62wNc~?YxSUmuU(*}$U79`dv2N1nu120WDN;s_9U+W zGqWqGIsJ?ovbq(H4mjBUr6wA7Z0!a}vlUlaX?K;*(+XBC>4SowU3~2G+wInTaJ@J$ zwHgns?3Oo=)kR&T{>Lc!!6RCpJj&&mZA7^U92ye3C|mgYdCNUjaaK&9kC1=7=`)NjpjnJ^jX(;Io3;p#3Tk3|Mk zdsltfhuZOgk)2TWwF7ain%V}C4jgdD-b_ybgJ)=l=6$C)?+lH7qX_jZb4cjj)CwdrtY?oC@_N>RE_y2G8`}7} z=br(3ue_WzATn5R3}v33_p)Ap-ptbh1wZGjXY*Oh29IOKc+Jn+rwI&vLf--C(^$FL ziH+^&{d&?uf?KHeSRXdP%yr({V}l1)p%`*}DK30HZw#s7z$sMad2y>%9)ku(_UH^R zR(xFUt9mqG?RR-rckeL4&U)5*b+Iq@FJ}+zpR_1^CGLEAw~rZQIHN!QNr(lwZ7lhe zS){~_@^%L3S}1_6)|-m1{HXS`H*e@j5B-GcUacX+(Hj3G!~)!Q8$9)t3Vk|u?=dP6 zp zcW8Ucnhu3iZ+q#z9xS4HFAxaYbBs2-!>p{`uJMv`UF^)U-e%7Tv(D&oSxR=BDFzCH za8L2@q9}Q`;L_1 z&pxbHe7!~QGBYX8Wz&lUTiFubb~~#tgInE{52~xD)#Y(hy!e35C3#RC4m0)I(a}|j zIEKSM{$NW6D%fjD<8RTV+54dM>wROZoSDQS25SH=P{77TlK$rAqFgSGZ`3D;(}Q)| zS@NDf`ZE)g%xQ)Z!Okw^aAmw!5W%K&%L4Z33|tBgaC7lM%T^ntgqYn%f3T6lWAw~P z?@oJxrj11;$-c^l!596KlL`YW_P|2t8E?tn`?*=LMSAuO-i|=KRL-qr^&XF} z^vakeS`gU59uw)%P!{6#UVb~4g~b2~&lc*J(A>6YK|sT^1s1!xEt1<7zyJw*`&QQ= zawXl9%x>wfowG;1I^c5AT<@);BVBMy4(%oz<`P^Om@A) zJQJ#i|4Qa=BC$ZKONi{SV;<~2>9~=zH-{e?Iyh34P`5Je+=MzL5b`35xA-l0L}AO_ zyzxY?bIU!RxGUQ{mldB?S;Cy#WhE9G#EUB%W%XL_xB?82@cK=&XbGDV&grHc354v@ zzAm~nkF`mX%jlOg2NwYaN&y?elrE#(v87=IBoMMCd}*UL-0_uWqbn+%Tt2sY7+BT@ zTHY8HAe4KIa$rEke!A^6X+QIa*N=_pcz1ybDv-Zpmo zAl5crSJg8XE>j90R(RZO3=stF8j{ZR9zmM#`>S=XGe?RrDu{LkFwc@~rIcsSl!C}G zd-}K_Yma!>tjbxm_4tBP_Z?QnC zt9VL}Z38UhHTv5|*HZD0-@$=eR}h!fx`iD260FgSnTC?ofI-*GVZ@>*H)F`1!w4u) z@;pv1C2~3C_Be?JQuaGqXL7c1$Ys>~DRktVjRAp~a?h99!Xa0(d z=VGCvbd<}E&qc>Vh3Gt>4OQCxxao9iiCSlJp`vuCj4ZF~Jr^Ad6{XYMv75gEhwfLYGrjWj9MGcGp9tAzx&F4S`&^f88Y*U^gty%vbkGH75F@+&_Bzzy573nb|3e7YLUVYqPg$mUll-Dt&3z& zX+NdO&gdf6VzWd1nM_WY1Q{@#c^@{h>n4$vpcspbm;@#kh5LT zE_3?lE&VeK9EXJI83z$0hY$eoZs>d;H|Wxy2xOXWpGX-JT$!At`wP&(=||cMock2Y zjPnCsFH0YqXqm;KY56+KWhNcHX`kB7#R_xnV*wqy&f~~^gLWyd#IScSs4gBWzYzBttAX_{jy;(J|eVD7}_O^)zX7c+e za~3f0&$PX;`B+8U9*U1?TOj>k^Cjrv>cwh1yDrQP0V~=)SKoL{`<8ZQZpTN4KTQa6 zan$2x-FZO#(GWo>`jf*H?Nkhne}8g^TI%eeqTLEdo!m6edR?yRj&gI6p*dfA`9^Up zOomebySMM=_Y<`0Md2>l`*=+X%Gk3ZhAQK)Ncj3a(WqetwLa6jVXry1Rh>_;A@A?r z1Es(VD*e=OmD*Juv>1NlH`(Zm35IybNGDV%`ih>8tM#GoWmMkU)6PE>mFVyFZSZw! zzhBX8alSIC;eqe*9DPF&DLM?3Ydh>6&J)^pO9HGEy5OvwnHj=k`Wx-mdRQK>tEI`t z#Sz%Qo#3Q#3{|TrA866_w>Uzrg`Z-kgvB_}XjK|g(5DNFaTv4PgrdH$(cih##$mLe z(@;;_nHFc^@NPY=;R7wYxnaCz_HzPsa_lm*T@IOJ3Es8(>@Ew|dNY@R=`fX$p8+98Yu>fa1MVV}<|-^A-A&pRnkwPyS=wSIf`V>uu zbaYSt89KU$F`_j@N7rk+4M5NQ`gbReg$hWY9ttBkls*(H7w=ZU2SRJ1(igmGnpU%LaExj$QqfY@=q&f_hUmHvq(^l7&=jt;;eS)L+ z?<=C?1RdakEbArRY^HxpEE{03wAB?wVe?OOld;ia4|%We=+703{J23SI{4c2B@}t} z8=h~DJ_tpTJb)?Nb!|JlBI!_fqq#Ydi8cM`OWYLMah5JJY#HuHb>+&Zd43OdfWgwP zZmBhX@6n^LJlU0cp?cH{e!c_u-tliY*k@YT1deE2M4`s#fMY4H_3Qsr07FXNqa9l0;>f5j6 zq{2{O75jlm(t29%n?=F<*#UoLZq~a;exQ+5Adqu|^?T&DPwM+D>4pN7y{u-mc6q*89X4iz&797txHQ-4?5=5vW};S0ycOo z?ZI3zR2leE$U#ZBX9wi?+oVU&FfwSvH&5HkDPwZ!c86wr)_hC5Unn^`ZTZg0(N**q z+Q2qZNue#qEA@=#T|9o=1Em^LP|6k&Vzw(^>?+!;W{#TXy=L^+*ci&t7IMizi2qigFKwBT%@hOMo~v8iX9f)qi81uEe==z)u)UXE#S3A1iYxe5Xx8G=%GMGJcl(SSPest5{ z8tqk`T-V~=zt*c09JDYmah4{tXMSE14ZPsRod#`+C|(JiH9C5GwbL}Z2?r1Wd(3Tz zu-6XH9erBQ1oFTKcf@vudv|PN!04lQGY{vjVuQ2&MfLZhJ0Q4BP!0nf)#qQZ_ySGgVAU?W}&1dv}%?3plN*t7$PKoiWf zhiZb}?t1RWcc2J(Ko363!$hqiy2ub{jGOc8pmG3zd@KmGgZnO2cbj1JM^_s>V5kAU zq)`BSyI@cVb*#_EGne@I4|3c>gNQS9aJC=jI$@0#H0l5v zP~&s9+QnKc{Js{1#(#ETUfk1HiOClYj>z~`KDF_M)H;Rm7_;(-_9dg z{437n#10&+XivQ7!N{A-rp~GRY{te{dx|Hg(hYZR8>SX1`}lNdun#ZlF6(tR;gL0+ z*M_aNflr%NJsd5}OAJ%Yq4M*RXyC<*y2f5@_!F-L0(g2544H5M0kD_Ty%>9RaMv$W zi@L^6+SoY+AKZCSms!5+_W`4)$M9a>DmFOtqHd70X6p1XK8iA+!I&3y1!Fc&xqgve zN*X|xp@Jtb>MA^;m`gLYsB6UcxUY%yeMMa(rgIk-z|sex5Hkk|HseLzhK-nNrWSR> z7GgsnFY20?x)I53sMMlvm_~;KYuH25+u?Zgfj1brl+tIsBv^GGA1^{p3@*%h&OuG$ zfto$x*tOb#@y9h}dd)3t$N?0ffH#1D5E;R>Ad)@$5U@t&3}`zL;m--6&YW*}0u4lZy()f={% zechqSwd^W+9yZ9bE-Z-JQ`=pec8G#OC3?9YvRpfjzPHd-FVLcF zT;v~rX%zb)Ffe}g3@zpljo5V4`epGVIyR2J-K4V*NmdP{Afm-Ic5=9KTkkyVBqG?! zBISlOX?w4DDG;Wgr#EuMoC8Qe2XBy%>VUB6+C2Tcps`oTBf=_x12m9@O4bTp6bLlH zglX;&_9{M@djq^{d-qMK?3#V_QGJ6tVrzB{9=v6_Qdpc#;#|t(x5Bwmsn=5iXjoWQ)(wqiyOv;M=KL&?!vO;)dwVByA8**~-R~3pNEizOY~b|L z39?N$p1Dmo`g&@nTgcBkELet3D<8b}*4s~`LucaLtr6_8((xkH#DK({=^WG~9;mSq zr_rK~I^vx`%ubwEMh!WD0u*4=%030q!(IPOoK`0C2LsS&qmH28b^n0r6Q`BKsH^Cp z&8C$R+ECXuc;d8jJZpf1G#h(7(!qf;aauW)FT({@Hmy{tLOIv6iPOq4OaTj`Y#e9= zb&kWLTH>@aO3r}-AvUc9AyI5ioL2Twan{hXX=U?TH(19GUx<_RO0y42=<0X9WO#n3_Hw;&OuG$ff^ec8!ZNmORgakhsLNO2T*_lY-sFL03F-q zpExuo@&^OZXG5c)-*x=FL*p>&DmrMhp)o=m>beF`92&>71~^Ewq0uAFhA5YB;?Ovh zFT({@HZ-bKp`6P!acCUF6tE!5hQ>xv=Qu2?B@T^Iat;&-v7r%!@(hhVR6;{z^IA7x zxh>*+fgom0EU+on~d z6tOXW9X3qIa?K~_$~7CoUaqO*MW{(fbuE~fYeuO_JWyk~W+P!hqUW+r%r&EI2T*_l zEZ6K)03)T#KQY%#m}`z_4RDZVxu!>& z<$NyR#9VVIUxo{+EZ0=2LOGXdVy-!cDPTdA<(iG4&T(?&no)8N6bP|g6NJR*nOKJD zq2dgftPIn<)(u#0izVioQ6?P{Y{K?aJ$d+)j!fD`3o(h?l_1(59s`(Bf^x`m?RGAL z5)%YJ?`G>zbHFI&a!%Y&1+<`12he~TY^eeShu=qMceO~|PX(|9Ex-awu>Dk!+bYq8 zgutMgI^J6s?pHu%0P<{^LXj*7xPt(wv;9;M>DZkOWG?H(837=Mux8jG z%oZp>njj1%UA~D6@qsXuFQ7q}?WcmU&Y9R?nz)||QiBv7IM8DIsUX1n@}Ibz9r7ZC zoMDx%i@>YhaObvR;{G5A4f5&GU>`p3>>XNDCwH}ApO%Ujp(Y17*JkISChW#d1uU!11LZNKJV;N0A1a+cIr5k#vcqopU*ov{VoUuOrKaEdoqZ+iVoU* z-WjG1bzOs}&O1l51~^Fbd8Z`JhAx+H>b!FxUxo{+eBP;1g>o*_)OqI!rho-eKJTmr zb&kV^%EWIRQD=3aK#0#fEul>F&X}Fp;y6Cc)M?MEB4;rFFfgQNl(5Y01viE~yYRu@Q`@>xKn_O1c$5akPuKmu-R3d}v zk2BxuG#fA!x#Y*6)Lw7cc-jHR%shY$^s$$NS5kaf1UkN}&aWr-r>W|I3$$VLb;nq( zHeIv`jG2kcKpd<=4Wsga7Hrb)NLICg3EbvLtl>LQqm=*+=)k7Hj$lUzHqyED6Kf6* z%0T*z0hsfItMgF7916R{6ARyI#6bYOS%uFL*|{1UhZD~naRkSV?0|wFoAo(jyumrK zYV3%NGjmF{Y{8Wypc_lw=1tA|Ivo8$4_8n}!pC1<2?pd7c078^lAGK z=Hjh&LA(Cfd)CT-lopudV4fE7$6anvjSZvm*X2m;w#YxY2kJ?FP?1fR<0>|npopgX zd-p)MmKc;`18iI=Cj_`n_J{XCEr%KuW0hvE7~NxcEVjo7PwMOKv|jexIdtk^diq!Q zpw_ck@(@x)`mEbPfBTM+6>^AqmOu17oRt8RmR z<6dYe8GiGFPkqa$%>U4su{a^k)jG7RXO=)-NvN?c*;0dEk)+83b9~&@?2qq73p(VW z+s_Sk(GQCK=1EBs_QykT)cRNX)nvG%nv%V#bJ5yYq}KLevGf{nG7DiI*Pf2m`6N zL}2ysO#4l`w{qKDl^pS&KgiHOI8s~_{;W3Gg)?pbt{f=bruq7vY9*PWt-|wcu36j2 zu1ddmrz*9SpbJ}5z+9T^;zV{=oALKq`!hQZG{)^5QqU(HfFBf_i)9h%LOB9(3ldkO zeN5{(;U;Nclb-1|NsdBJ3p7v-$p@_w4#_P->yfSwIYM%aFi?k<2*`(vHmzvK0bTmP zmZ6Wg7z61$RG>hlFHohU*q^&E0Hj9)JT|f~;5F%cZbM}03ji9ZhUA0Ri1Y;@v@YoC zkfkpGVW18z5s;7c1&DSW(50WHF92g8eTNDZV7r0XIQQ_hKCYh96$6p(@Vgm0w2Kqh z!+lcg6yXmT?wisN-A2igExK64^^vU5KH*sP|1lFPvxgVcB27CK42A3<84QIU{Gf37 z!4H1&@AJy6{IYVbTv^#!Rr`R9AZDMgs_*;O%9Zz9$m8QOG-ip><&fldW4s(#k!~4= z1VMO)cKp!~EXV>uup~VMX)QTXU$(k5PxVNqSz_KcBD*1RQrcizdPE{(lhGO`*Anx# z5n-WuQXfoA_a-AoAH$(-OU&CwOog_2VK6FF?1jl51axTD62tv-%?hN!uym>M?PL8R zjn$0hvL%{00nK{A(+VdDIo1)2+ttiU9x3#pV2Hpb+GG_+@l<_}{ju*VC6A?fY{qX+^uG-Zh~KE_jE zN+1cwq(@@ELu>IiRJ(lp_|d+))YUaP(YnN%hnQ{LuK0Z|E2S%)_9VB_1OyFiGk{Dy2(2#^h5s zv}cJDkFgZk;|0Nxbcx3(g5o7KWr-4x@f4U6NP;o!02MaclNsolxOGCK$XE~$I6-{6 zJK)62SPT+fT8+{w=+$4zZU`7=|Ng2I|#N=_!86KC2kL7 zK)TxpaH=+s)kD4dQgg01wCdz}wX3@IeY3CGqWW*;T93d9q5wZB&=BFa>*39hdNF2( z?|h*(|Lb*gY%c3Hlak%Y2sA}Xk^q8S4-OFWeY2TwTc7IVwmxp2nXK$4Phj34OVB`^ z+qVm#NZfwEK2?`p$8>#nM#`lbAjutImy)#Ew;d0pj~0~EqeDt2=_tjTdb>WfW;+RY z(UM6gXdupAl$Y`oeZ`~c+Y7qMfa<&Tmou$yW)XF_s5YGsa{qC^ z5H2OReoMu~k*WKQ1=Trth;fa#aWRP)%O1l8)EkP2URFQ^ftdorw6o7teDUaCvVa&E zAjvhYVBJTegf|~tj}3KD*3FisV|K4NAa8IOXMwa#Y&FLhjV%WcF`3xv-wu*IY)vc~ zTM-ciW=gO_yLn{kw`2)s!6775&YO1=ep<4e7c>y(W>OHFGTi-!+CB@%7Zzu44FvKH zQLmDf3hm?J9SIG|Ak=jVgQpOyXvW4-!;eT%xn4I zTClDPIZ9;p4I-9x7nkKYN@Sgy&7v>bh{i7v|;D`tUGg%@0 zPHDC+nH3Z&h|IJ>?3WiR{#e8<*#;RHAW83Ke*N&mz08;Zg7hlPzi)cqrr~|vT&`!{ zeOjOjOVL1_7#MJ6ng2>O)8-5eD9{k0HyZ~LHtk$zjz!V}&Bg=^r0He7|HzJTy-ZoJ za+Jt=nL?Gz5{0T>9Pm$GqBu|(;HgaRJ3U`^?Q#87pSz~zeaj_tpP+#_H=;<#Ihs;{ zhQPi-iy1HNNBzI;-2jLBQf;eCRT%d`3|l(*ZHxuV+&J?s%GR$t;kkU}11W{_dMao{ zmkwaUuKJ1Q!FccYJJ}`}ux=3M@S(;{$)!A2+hNZ2W_NB6_4;zIHoUCQ_XSF%DP+*; zR!U`b9_j-P53lJyw3;@&bE)|up>nB`4{A|008yrKZzzp;ZytG4=W{P0Z%JxK18tey z`&d7(sVi`%0e3DfUuzXeV=PdHjwx`2*G}iUqoEiSEpZ0U9^3At=LYAgY*6YBP4al| z4?0{?9NPQ!Sy`9Cg4+#pd~&V2=3E`O?P2wCd)My2e0-pgUv1CT8&>KTpIn_n4xE;H z#gap)n=c!CcYRlN_4`b2@yYBd{2S#u2@vgaM+)@b9OiW2p5IhwJ``9y&6i@hK{gWs z;ck{A1#9yTb9C|9xhd!y6!+|q>Xx^3_5iLG9hOC-BK<$sm-^VXXPQ!bs?H6a?$fQd zO;_ECUUu;^?AxdULvH&3+F+O~z;64vK1OyGFWb3|sn{+j4Q9E;R=1Hg-Masr=a2tA zR}ji$Rc~V}HZ70`^IX&7dTI9E>W(H&cZcfyxcac#?;mJlY5Vb|qBx`(XR5D{Tgv!! z*D5zIdxX75UH2@3>_S?Ib}fv|*PHe#828pgH%}CtVd(lnEwkfA8?8(Xm znso`hCG>&ZR z3ihY7{lC=JS@*dt9l}Ocb@*_c6Ovu~=|;(BVO4eAHZ4o@?76_9 zta8l*DMY*DoeD&6uHB_Q&~docp3byq>a%@~`RWBb%y7pC7MM{V?&|GUE-1=gf-&EM zff(X{v0qtKApX92kkc`{myLE4IgS;w%j4ay<6;r>4&uEhh3N7?*)>Ee0W;_t3_mg=$ocWU z@j1Lj3!uf?!0eK!LLEH=1pGZIfOh}1V%p_5bB)_V1&#s|+&tglgYKDzhtKVihJaa$ ze1BmbArHj-UFnZEmFRqDw;dIF!xDf#NRE#$=ejzq;(*95f7ApxG!dDM0~*{N-X=ZV z^FG1Wc2xsQk?d-YVkwLYih@k*6op9_u7J-D(-jK}nV=_#Sf|G%qT-)PWr%~+lPVyB zn%Fz`rOw6=ORnX;6EZnH*FXJ{)AQ$OR{d0;FVBDW`+xS6fBK_+ruuI6usT+vnEmBk zrtZHDyy0QsfWPnHpHFlx5dCeoF>dRpMl7TGN{)$on)cg}OTh%Ki-PZlub8!3k%?cM zOYBiW?Jk^T)HLa~xo-Jlu&>T#1}KO%SJOMY)0G9(7Gb&H; zZ)5&zWmc9`i_tEl;FcCInz(^2w69bfY;((mJewVsTfJ(x_3B7#@Yk@FTl0s-=>~mC z{FP=+@@;=c`v-jy@Ab!v!s`9~dULwkcKrI%UaCDSk^W+`DYsCmR^9TUH_$B+rNu6^ z&-U(0@wTe=4=qiw><-=P*IU{%L<@9QujvokcplYl=bU*7V1pNmPrRn`BevXV#!a7+ zPd0Ve(VpV=dSVIm{4OovGGNH}`XCDpp-x+OX*P7(JMHxU^r^jetId0#-L8j!)6zCu z8m>O1-@oHubA@8u-pO9D<0wBfP^1!Q8F8@w)lJrKpQ(A%Yyt1zVEiD)mN_j{qx5=TCGuUzeKx(KB75DTIjN0DI0vVtHUf}&}1uS zgW7)))@>tvLmc7Jbr5I^Q7PWci z+QMbPB-gMG)AfAXtiE&FxE72_5xRACWe;GYZ6UjsFU!r2DH*s#3gnrJWfG+A0#Mb= z3b5s6hD?y@E~%5={I2aOe$<@m??is>8}sV}%|bB2_qisMao&huZ{>t^Hw#=Yoy*QH zo0~1W^L?fX-cCjFOL{xxgty&|jwRkcUJvUx?fJ1juP-~A8rX8jA6_tC6lxeUAq~Qe z6PAWAnFb*zq`S>LG7Y|Gef;&~eY+A{+`l=~#T*$jej=_^Odbhdjs}!pEhofcLyB8| z>^))&{yREYtEDzYv-+a{Yu`RJV!eKLF+4}rO0FCoWV#jm98i;as4L!X&u%KO9PI`Vc^Y_05B;XU4r291{Gn8Hixtn{kYtePHuiB_={OmCW5pmbim&XF433!g zo=#ONPsZB|$_wL8PN(#hTVzsL&4eMi%{8zlJ27O0FWu%oju|I)T&?}fmy>C$Pzcm( z-pHHX^<+-cV&(8+HE)s)BK5{=^qDUU!t`FO@tUTCOt)H+CpO)QR-4H_8h52F(ZkVe#bFt=|>|VUZCAZFa#uhfkLDDd&c~ z@UdF1CIO;$_)_KSI3vWWJ)G31TH&=+4=2Y7!S0X*o^Gj+)q*U$ql;q~$Al+^WVL~} zsji#dGnHiaKT)Z$R0B_;DUl^hfESV#=6khK$Ib8_4zv1Ft)>JOyyi}PmV>=)X}-4`-X6mR!F{XoQr%n+{*BBbq) zN{yuk5i*oh<;oJ|9moyK5w#nZHdU!4m+FRPN#Wt2*J{O)ua%Ly>^AriZc;gdE;dBV z6>ORELoKzlo8V`w_Oy_#Rx{=d=Oay*(RI=*b8Q{|jMqXX`b_15hBUVX*>^JDxoir%HN z+YPjHWXni?N3z3sc6;Y|@iT6=8YbCwU7R5~%5oz$yzUOr=im<&9s9QWs{P+6G_r@% zajc}!h~#!jGTC25QkckYTOGG7G(b(#?5=Q*cax_)5xk{NhdtDE!vJjp*{r_m|5E0d zmYNP5p@U4d=c|1e#oJQd$|PC2L>YfCDlv>hb%ItiEFPa)YJxV+20yCpChapH%VBl7 zRAXe65K`4yjfX28TDV_*wf|2Pk4sG-C^RLqWDLHLtT6iYQjmE|X|OF;3Ti~~m^$IY zJ*-CCQWGu-D#&wJ>4@^aGFzGZxwEg)-ybHX(XvbJ1?=UpmrI^)k83x=H%X`r!Iu^q z#-dutBrG(ioAD*BOBFJsgz%|4J)QVc4br8ir*oVToQ~Eb9q3IR->*?5z3TsripNER zAi+0D=!-_HBJ{RsjX!+hXiX8qr|D>ozkK;<9pQvvb;6ZynyCAW#xJX{2Y>JA=82lN zxzLqN7rJs$86I0|!nI5Rj8PX1jX|Be>TnXJ+foaLZsCP+wLDG%M1{su4~O_^se2fMMMb~8ClNQ6n!ged_*Kj0l#yyI zELARNN#R{}w1E!s-P5(Ht8cphMgg$YXoE^rCQT;zi%AO;S{(?H#wepSOAUl1sNgwu z7+8Lz#@|w7tVyzQiS5JM^+mqfKD_GtzI6Q&E8`cFm?DEjbr_h&_hX4s{#a@lIL$Ue zq|7NVD>BS3>gT zf1n{9h=R%ASU##5vUw)tldr2_&BhB1H^Y%iQpRH+lv0mTPQK0+h)wlZJKBk|( z(*Lq)5B(Cjbr_t?*gsmx*ja*L>aR^VH7bced8dZuOWxZYgtwCEwN%LqqVWL2TTBj8 zOC8zA7vs3vSm;tC`(+AXjJn_GHYlHC!*vo%?Kdiv0CUu3oVIc2POh-6IrlfU8|5)l zOD*HfP(rRcs+9UR%IZrE)r=BCsycF)`ZC82S1~avW^O;+zhBRjTIf^4zlb5S_x7$03A=0Gm=SbQCnzjZ|KQ!m zT%-jlrEZM9G0B6@PH5Uv8)M5=z$kV5@{Mq6VYk%wl3 z7m^ib&7acBd~Sv|rk1_Dg^#l&H_Ylx@R?d)@=w$VT&liIP(hyB(m1tE*UIC>C=UpcT;r0Fm>ATX27TtUTWI0OaY8h$Dv}V@7xe? zON~R_&JH8gVS^iB;$84d4IA7{4ij$7{82hw>ch!wR-?5TY+1$2W&TkKFlRLLhn+fy z_U&8xc1vge5*;w?D`TbFO@MLGJuh6S707^D>Qo$p_$ItmATBi(H(3l!RGW3(<+`QQ zy1u*m7=J`9r=^;8393?gvi0>;eaJ3RPOc+95R1*~nHU23h`EI}|;&9cSFS~qK{EIU~YOjH}~9<>|Nk8UO9rxP#L zXit(sqPo>W{ip1OZCfCqB3c+(0egyVUed+ z7}6MJP=BcsIY9-_ska41-zX;-EOlE@iVFhO+$%p)D~zRbZ;}iWRUbZ?_4iFzcdOrO zkKeL?M0sN=AEvm91)%VtMg^`J@?=7jbck3d7Nj3XgwN* z=$DH|ji^l8i$$Z97Dl7G##K5!S{N6um0D_zYnBw=RQpZx>%_9VrTR@Hbdag%bCDJ= zo6l2Zkob4|k(c|otFNA`({6R7$ly01{7P;dg}x2ugai_J{yyjVR=d6KYq|wj+|T@l zX=EWB82^FF_+YGLV|rhlMcLzl^S}0-ugJ1hwcoFs#RnF3_UoNIqA;J821oQcU zr{d=((it3Z46$ORJieieGdN3mtb|D55w;xbxBS-2iMCjr1P2vwysJBr!{UHrhr~b9~qU~kLypa^^p#6YP$92y5(6RJO8KX zO%ia;$=9F*K6cXEoHR^S|l%P~(Pn`pkJp<-(4R`FmV_tFAg) z?{F~nrSWQWPZy>iFYEi}fqv%g{A|m@!>)UpKxHZKpZ|j&`r#ik|L62y|MW*r&!4-$ z9?5x>j=%qBKl!Jw(Xlr9k>sw|E3?vRzo#709PfFCc$M?4!=QK%i;N^Ty!zvP*ah!( zyY>wWvus_MrM8e@ba&va*Y{U@Xvli?K=IvDfWJ96vP zrm&TemOxOt0>hDX0zF*J2?i@EVZ;fSYB47el&-*VB%MGH7juHaN=isOVN;8<)23$! z1Engk94RN5hf6uZVkIREPLM^S$*y6AFuh15B%MDf5M+@Ul?OADAXOY#4kUphfKMCD z60l1-V3*7Yq;9uZ3>d7Wgmetl=lg|XfRI#v!;ne>dd3|vJqZj{ihnR)#sGcAj~<>S zV3QKC@g9)Xq7lGdFuhu|SV;+k6J$9+7osi|18+|{KQSa@;O&V!U`7%UREmEvKT3kP zr^9>90W*@oV5KAw3!H$iCEACS1c&#y8?qx|$+k%kmR6B=#r?i*&kMQ2VyPl}mXs^( z)1_R|gQZmru8<|eJx%H{PfQO>1Eota9Pon-OY;?X!}PGUSV;+k6J%KK?X@k;4b#K2 z2UArz9=PJ~iQZHHm^&l8#Wk5d9NLJG!6CA!q=OWgH>Nk42uW8!4Df>t3Hs)}&och$ zAz`sn3Wx<7qL45ecv8#=2@951F(icM3SMi?bA?`S87B=jm*xslcg=G}qV}>X23N?E ziXOkuf?|3}WuQ{2@xBiUB`x0P5iu(*-q-7Jqixg)T*53TBozz-WXV7$2eCw$UNR7p zng)gexl+aeJzL6r1C`<*%y$c6{P2!Bkewzg=z>t@h2qr|3ZN<`;Db-x>M#X?yC!>y zL$c-=NOcbd&wWbC%yOpr^eywz^vq(hboW>mct#dn_B-yB=>=C0mR2#ujI7paO6t%y z+!@oWb%&-30TUeJ)*SdyanHF+vO5EkaRRt8ErVNRNn!>Nml>8Jq=bZFbWWBe(Fo=A zf;2fmX*rMq0bT%&cS3eFC}be5!VJ>{jdJ z^-!N_VRm<=#fH?xIhYd`&FVc`b=h7owCjymlG%gITvef=hdDueuCv26|8xYIe@SQI z+%fkZa<$Y5beU*N4aIKH)TpOv3pee%4&;LO7OiGMs%aupV|d$a_&UCq)GB$Q z^@EY*GT+d3r<)zMo!6CFnN7Dwv`6mX>_ONg1i5%f3V`~t{6`xPe}MTn+1YhV!yDu*9!kkC}#JgizbK;RMW1;qk@63>t z8W{CU}$J49!4MBn`B z)@C%WK2~@8nvb@;e2&l*K)l=4lFAX`r(H!?Xrg$GX zy{3xr!uzq=8&Aed!KgWP13hH3HdXXpe-BUdDV@Nue}7${&tgsF(rv1n1VFl*mPmNK z`{c++-nI(|OQh8@LLA11>A2VjJ~mQ5Hf%9iqq#?oxHe{_J*+q;a2X8FWl_O}5vH^G zm5<<;k1+KhG21YT@7=he{4?7$!VqKzH8zcYoo|`}iP<#M%-rkTR3i*QW>90(=vTf( zZc3^dkeF>)7B>V5y*b~L1|+5%Jc$7%8ll_Pm-e4Gdi94T_LPKGYxN(Cvg=Y%sVIi>h$V&sGoQZ^@-)tB0-?OF1UQo&^zX78j;r z0^$7dh9;|d(OW)&;7|l%j||4Y?P_Og24Bw2Ry2V>Dh@J_!&v>VK2!fK&rAJo@&PMD zUQM9wVFatghOx-nU3ETJycJWPnmq_7>~TSd$r)2lhec%hv4$D7d{4CF5w&0TPSLFV0eDpO@S2zE&KVp+#o1?Ged61yUQZ7Z2AY*f zyvTa)L^Ms_>uS^9NmphETyJqDkaI%uo>x2K%-1jBOajen44gS4?`ih}X-%Lxd4?Bh zJtpty8g(HV*H42B!G;CYLZC&nh1N6%GxfG#;Lszx=;^LMzJY>~yn$!@S#24YaPe zVo>wDIpy9D2}LTyh%f2==D6uk^iz*LoaIXmJrx1kyWW?w>Eur_+_%+seS9+iW+5=W z>7+rcnza|bVA<&QFVp;eS3AYZIp5P8-6IU+@)bo07}o$a-4|MtKpPcKR~x|e-}Rx^&cS5Q67^s~1pD6-1kmHo86RG!b81&~0Ok5hKCSQRFiM-P{29C~B(j%7d016h zjtUxG>(hgovvj@2`+Y^H>gf8imw$W6tUgHtZBcq!ZP)FQCOfw$b#QlPdg=tw%u}y+_GOFQjI`hZOz_iqdAnQp{*}YvJGb<|MfjTv+y+dCrs$&A^aaRL)%dEHPH0!%- zv**iOvqQZeBk3KF3wAY6Aw^YZERd%ne5i4&b-W$c7YCV?s;ulSTOKs&oHP;isgX^K zFKCG1Y-a15BTatMf9}rJnGe%15ZOr{sB>o)dqb`FOiBG%pO0d=E;}jXQIhTokfFd0 zLHKV;0i766L03Ihv;;$rpnQ9786?4>L&;P0s&-QG>^v3Vg8iR}^6#*#Y&+)!f^Jv{D5LpD3>;gPg_ zqoG4dgy&<8Y!Cm&_Z8-EV##PbR=cPsno8ms&G2<0goMON6JZ=UHZW#sc zrKJ1kMS+G6B{B-!yEY$1o|qQ}5i~SNZ?vcScsQklah^9cbSQDRFZy_FPc#bB9J}km z7O2BNS<^N_$gK~!qn#siQ*^e1lVj5k zBpd|*F6e$71^1aIQ7;$TZE&RR6D$p~?VXsGfpL2F$d8)1r5JbAx@qZh*oFysl`Ekl z0f1rD_|cQPl`eNQ4i?=^lx!roP583v3OzMF+um9N_ z>n>!vbJY9#p3eB+HTS$&h*Ep8pBy$E8~I!=SYXw3B$U~ySvv#aPr5E|N(N7oc*jSz{kh74dwlnstA*N^DM^6EgKsluEw-hpnk%-d+@e{9lHt$co@tY4qjcXV|r-vyC9c0jgV^Z2^j zq?(i`sVx&t8BO=3LsPYZ2};~JxVMxB-TJ@jARiWh_Y<@6*^H)oNL5q#f=^;MG#d)* z?;;++n7+##eG)k(Q@-cbx@kDCc25o7H3mAF&fR343{zFe-tgMcc0xv@(xv82{_?gH z!&0^MEC{opdfM0g9K1=@6M;xpg9|#h*O3mKk-eMZy^cKwC$p&Fa$`jOdoxfJ507~)>9B?MOSM7<&A9&4C-o0`toYo;njOX*Ft@%3535-1oXLQJ5M3-M| z<1g>>^F93LSO8G?Xc4>jCqxTBe%GD{02UuDS86UD+oL&9ng!>CXbGUW6N3ldOz%m4 z%!)VJTld9N5-}dLHfDp*6+N^exvu!p#IyAD zcqu)O4SLWVCB?m8sAWJ&#loPx5hc*17RIC~VUw2ONYo@HA(~VYKJ#ITx}K~s6X{C4 zl-KnPOR5N1;0-rrVB$=PkK!qV0Vm?_qYu1p#>Bq=eBA8L?NJUO7thrSut-6`0~r|Z zIJX@iz%L)}Fc6H=VuI*r`q@&u_HEr&$Ht78pK0%^=}MSo!qxCA%M{rxDj~y`fmygb z;3n80(M{=DJTnrtxptTKu)cf4$GWqnrX0mGA_QKB@_u1Tg9l1TFn;)Ka9-ZC-@eS==70q%86EgkC7 z6>4;v+J^Reu1|H%Po_8*cd&Y|X~2qD?KR!EJ99J><-@+}wqalbVhP_Spkuj-7rkJV znbrk%ZuTrYFy&)zGc231SE!j$(G1K+ z9K-&n1BsQls z$xhKUNgOcp5`XLyE{t>5TM2t3)8agYQ{=6SQDeKunKM79YZ4TeQ{ zx-QR#6qJ5L4CuRDr~56!RrN)0dB25~j`5p&^H?2tv`wpY1mc)B%b4*Vt@b(9=Sw42 zo6Yv#fIFsec*}ba^B0H`3ZD&KMzW6gB$UrzsF~ z@=ue#@^6?jg_R=HeZ?@xby-&UDr{GnnC)nQg0jNh^}(L_&(uw8S172eKFJJ)EYi$u z{QA_kd#&9w(R&gzRwv)^DeD#=+Ey8z@yUl0UrnkK3{0fJV#6U}eQh2zbm&-Di_XQg z`Z|PDMR+cV3G3_Tw4vI3zpusJGt=tp04^;kchYgU_z;q0Q$sGi-NQ z^WpVr<9<4DBvXIQM@U#~(q;{FZe&!1Pb)S9G)2_F1gC|~;NaV+X)>)DED*;Ov1WuJkRIyrhx=MS{!XY+~~Bo}4TaZ-lSU=@7|H(VFCOae69VdbUew3bPPIVR7sLR;9b z3vkRLoAZ{S3!)e_e zt5dfVo9Vun3piW;_cLk^P0onvB#?vUil$7&o9B8%7hNMK?5KlJIfB*6>*ZwWWRQn7 zfT29qQQ5Ujw>!$?r$r=+hw_DpgIxop7Dv2Dg0Qgr*(Y8kzpR1V%BiQEQ02XN(9(ftqNnz62lu70mTBV5>mO$k@DaOGgnIk&jy>P`y^t#gE zoVH>lft(jCYMfZ@sjeQ;bcqYpIcg*1gxcsm9}?jpUepPDm1|R}^Cku+(qXZYpjeM; zLd86=y`M1Z%GaZYP%63QfPgSR25a&{3DXvG3}A`~OtX0B|8y`^V!otV4vZ)uUhd5` zlyo;VE7|{eV!DhnsDj57!I@!`&sgC{AnV;!yU;9e}=cLo&6 zX^|DimJSYP={AYcph!lG3`SSH8+GRQH5Ooo4dUYBU7~3UJQI}oSi0vs{3gWG{XJ(S zM6e+5HxCsR_{_oOdA|qYTsb zi=NO$hgOPB*V*o9v8J8_dfZ{_DLvhq);jZoCp)%RuE?=KlRKHhriMbFeN0{adL`HLXG`%AB4}8JKM%;DR|%6zh1(imjW zyD8Stg5DR$>%lmJXQS*L93jqVx_Ed9N%}#?#&Uiz$e>S#sL4&2=1{j+o*c`CXvhFL zZm1}9XP+!@DzTn1d!%-VF`6V68UnuDj{t@r57(rxL}_VPrqVGz53W8ww(ZIO$pZK} zo2hTA)u+gSRbMN!s^19Gw=rmui`$K4{>=>gy_Yv^Lu<_eV+4zR~`7~<9lJSpzkY+*_ou%~si~-ejWbe{qr!P%ukanG zrY>lbrFMSwV&njJ$H#JIe><1-SRVDB|`u$(z~?l{t#&9yX>`lAzq?=Fo-9 zf-l;;*R|MsuteJ_W`LYTLiM#b^UYET<)AYHD1AuuiwJPg5Rgca{;hRK4K=Yhd8q{9 z3}bSxm(~n_P-(Jxd{dqIczd>qe?D#au+}iLi-Ut$Yg zTGbrP(O4;a^4;*MK_=``mB6N7D6we(W+{{10~HoBL1xHjmx0ix%q4O;^5B)*bLVAIX9TJ*GN0r`wygcv01Uc^AnMDS!>{m)Q`h zKfXKlmK(Z%wOn_YgkfgR53A3w_H44BSH^@;2CP}d*0^(94mF+rYj%(0AQ$rk%g)*D zabZqKRB)qY5czYl$l6R_H=9-cM5pq0wnp5y5B)@jJ-~|(5NB8AI=s&~yoA~tSfN?z z7l^O>ErHCV*%{?YG93|=xl>ES#DOxJem^&xj_#E>-Zu|&S!i~-HPitn<3+qSutB1- z$U{n`m4|#a&&|FA?TzXz5rqA0IuZeUx>DoH`jI7Vl`F0$IxnDu$X^^0X^u)Di_8H7 zG?uiYyX4z*M;mv{R#>L@@m9SKBInIfVkrOR+m%!M=uCSL)Uy(@$5nV=3sr?iNDVOK zcM8n7-Z>lG0X%dqWnX^vg<2OqXQ}ibZcU{aCp8M^Gn(*?hLBMTe|#hD4?0wRTYvi0 zUa8P|@3ULFcnAN+scOnH;Bbgv> zq(RYtQolXX;4feGlU@0U3{oHsJP_vgYK83yWoGT`IVXkRCtM^>xpilngdg^AxDip7 zld_AsLzq#1pu>K5h)?*vnKaPKt5-`nA;5+NcTkU%@UU<1XyrBSXy&V4vOAqZpp-92 zMu-n7%Br+}3Z=cCVkOxrnp>5eJv@Xcnb`B)fyHo-N@DQS`P`2Go<~f#!e{%tUC=?Ln&SD6YC7w;oZeSWcVGsStJ}W`1TSW(9YLWW)(>UWpJALeySRK+80ZUC1w?42KYn?QhwAO z)3QX63U~-n797)?bj4@FElVsojtC$|Po(2!vrnj5D3JsM+3MoJBITMFp*rL~Odf(6`!e&f*)jiU+#pZub=E|JmFQzSf-jv5o z1dD$@&I#4Z+|wum4Y4=(bgmK1;0=oGIJL)~qCVz^6@LHSu)ro-8uHZzsuK$eQl&4T zEZ$n8FCZ3fDHTTlhTjbsX1XOR3;_=hDBU#vrnb^=iS-~l3uJvJ?%JBwPxn+jo1;KF zH%C;ztv9qPM4Szhl{d1GYMce~+$lm~!EZh^tzv39KGMp8=p@5zUn(O?Vnd4395YC^ z-AI41k|~>iG8#N6$d%Pp2I5R-!im$?znsgu8EOX!Vx=!_iRoNuJA25?&Q_Z_ZjTE3 zgwqMf9-z+H=Q`bkX2`qU^|Ec>@MCi3l6z2)D=P`LozhFJBm^#~l}zVeVN1%wf-}Es zHJGtX)Mpw8Bq^0v)M(2lL0F2UG?;u zM#3i4$=5hLWGl0x@YJds^{E4I6VA1;08Z zzq=gaXR$Q*>LidPyL)*1Ojp^{o%ZMTBVPr6`-ntVP)GqeIB28cD|*Wh+GyAvx8z+P z{O&v&`l;D+XJ<=!c^*=a!6#TOsx(KO{#$NN%TFvIJW#-#?zC_C^5b%IECw^DM~%2H zv=W{b3KO^t2IsP9zxz$eVTpU)M? z5$h+6>Jx7uQjkvW;pJ6%3K|H`VlZKdE1>E#UyD(kqX~eK5FRMpK_~PEZ+jOXbYc($ z$;Pv|a)aJ!j=Zof&dWW9U^1w%2u^#;hhWN`_V&bB2oDr++S}9nEX2y4MhJrBeb0h0 zdwV*($7ssK%s>bp!h|{Q zqjSZ&)t4H6q*-=uCe0ZGLxCGS&=p{|p3G;?&JH=>sw5?9TG}S#7 z=$t>h89-LEIrLCm?p?3kb-v^G`#zi|JiGEdFPwpo>t?Td+3u9H`}@m^{+|U=c8DU9 z*Ml$_4j1X`4$5F++)!nWUX`7v;N|NC)4##*uM|c{|QF#r;SIrIGWD6GT*F<2xLyeKjSFElfmgv5~&6*KVcS zsAu`LxYs`5sI)^8OJ1JF(|Mx|WPLECa_HnUsb%I)bFzVnthLyhlg$I3i>4WCaa3B} z$>#kfoNRGa-oeR1F=bw7KAuzs7!=8Ak>TMWSJT0CB5Ap{*^f(Y5%5Sh6wIki%r%>$%} z77SoVe9FrV%Hva9WpHm0BNlOu!2}k5iNSq%g@L!F<#9QIrR7mc^P!O~bTJMK#&Q-y zVCiEJ;W32YnMP9>O?mhk2+m_LL4+)JZV&72{v>Co%Cp!2#7PHyP@`5gU)(ohzWG&g ztqPck)?$McEkpA*olbk=X8@NsmOM^G+oLPI%JI;XczYbl>(IfAOmP)wl9h)mAuuk3 z2o@wI{nk&P&FfqMM)L8gIkz>!tV{EY(`XBexp10gnQd_>DTrK(!U$KmWsO3W+$)jY zA03Swa7~0aqR6m8k53xXY|cJou6Z@dHTFoiu+d|*S!|HHl}gqL=E0hFf3BaZ{gn@| z-c6<-03$aDK1f16Yqajnmgb7LY0K-`04Wjy2C$=;HQ&6hHurCMI+Pc)15m{6@DtSM zn$KBIrY0bb+Tep4JvA%#iC1LhJvE0ClM*r*-L<4P@XXTj>MV0!c7dvz^E_6>?w@!K zKkWt#jox#8+E<&}90^HF`ss|<^^wj~a|^7xHOq{DJSjJ17$Uuy_q`QvtD^NJZC>Bd z6_R#USbs7I6aIRV@EA1G8o%P@g`xHIdWp~?lt_RC>U&l&>baz`(?u1{%Gd|+{FlREpRyaK%2;F&P_itC! zIHf%j2Rf>S7L#<(hr4z^%&c#!Bkho(8lH0X`mSyFYkHmc&;IY6tSEm^;$+D-3BjlF z&%5#>heAv5>Eg2HXf}U}Tc7{^;zo0_B5V1l)6KjdX{!t?XkO4vOE%5SUMC{io!pj- zm z{MK8#x-ETobVji`7oDZ)pDvxIU@5W;$`G+PrXB4arb9~T$Q(L0*3_lUvc=O*vXxjU zzx8Q%W7QdcFOzWbB1n);wbSTCg1&!Sh+_YQ=^V4f{IjLQG-N6n&xfwX_kP00SE)MBlE={W`4J`1xE?L>v|Z$Zl3rIpC>yrm)8d{U^?M zax=#d8(#1g&m0o~V<9}4<2GW5o>w;6WmElu4crnM@ZFTpL;Z=^A(8Fe#}ov?%&?ds zg0IAEYPqlIl(QhB9|#W=F3XsG)6^ob=y*VPGAxU);z95jj|+&{pvPq?_WkAg#Cu); zG8gW#p94YzmsDf9AjWMR?8Q(yLUWk3VUPwn>;-%Fv~}jD%QRg&ax77Q&nIP|mS(c6 z%LnhT={^X$_?(W%sy9tXn-%A)O(9FQsrS5EH)?5oYwn(;MpS*KTM92bx@Tm|dnd)C zmI+X)QR79@|9D?50!fqg{VAz!I31WK2RxAB79$!NXS&YOROLJ?6fZ_(P*TFc0Re9G z)=bqjG}6ZcsCZ%kD2x`!V06{o1H}P_1S2e7_v1h~Uylnqc(|vdHjdm~SMK2uN}+Zf z5P;f>`?kEcVhiIQhAxSlXxY&P=H^DwH*}+P`-Zu-c%p@4g(mVRKC`i{DOdu)&*HSzYAH|5Gxa{y9_2_Mw1rMg>SCwPy+2>DKMBw}|uaKDx(qJa=h zgc%uSH;0D{GK!nuJE|f0mh=7>&*jc!*jRWi(49KX5>SJo|hS$5E8$ zSp&hM+hT&q)!NNxncIqM?dG!~1)%}o6?Dx5RofNgC@vFv493%=g3GnI`uBK!Rovoo zATispV$v;iYYx=|Gpu-_n?Ybi1`$TNnvq&N_1kqNs;F1Fl0bGKJq+XX*dTRl7W=n1 z?c6ns15Qk9(ZTDMO!e>gXT~wt7B86!kz#Jgpt5(hS@*C6dyf>eJBEn8xiqw>u&c$f z9}{dJkU0DByALy0;54)^nOA1T1&)Q_dop6bax;67i1GN^d-a39n@{q#G`Thm@KpPU_S{@{ zhi*-`;U3rRkw*OMqdCu%H+KJ`xFji|64DDa!k=zDjSRFSGNuO@U*cLko)*Cgp@Iuy z+@K15ZI^y({wy9;5nw_Hzdj^G74cu`-|5zzIq6ElaeCL}@+BUl|a zNZrYt6bUw$SNk{BbEk&EZh`^@Q^--?@B!dU!VR4i$Oru4kWxL0pzDz%##0-)aROtH!WkVh7}5RdXe^cYOv}4J7K5`{RB-u( zyNE5y6B3RfIFrEyk!z*DZZ0bt2yLUW{Nk2sh!oO>zk7B!@?)O$6)!bv>MaeJ-e04s zp?zs-mqL}QRA%_cRXrBV9!+Zx?^!114VLLWH1IM znZ$iVB5NxVId$z=}P9C%%*kvX~hUWI1?J7BeW4*CNAe*P1skxcb1E%~BD>?S3jL6I8R znRY=5+2>Z~iEL)k(yPabSZ!J0Ep?Zum=x*XUpM!(nlH|;_frxhg4ET7oCp=SFv1F> zQS!caHV4|$boc|`W$}8Fv=}rJ7r)~D=K5(yp79p1SYAyLWMQO)9veOhN_G3d?QmnE z@;j5c9hxcuOi&Vp>-Bi;#Awi@aP4s-W@hsLY755Jf0;4mCFw;5q@v@6|Jr_F`D2xrrV05ec_8UH{ zT)e7}074#v2MX7v+0)zyp8_rJ(pU&aV=+PGroqIK5XIAAbW2pwawjz4yBOHlXKqJv z3>XB?L5LBHI4X7mOV@E0LIjH|I`*`sU0G&STyzXLl2I%$a((Ij0#k`S2IJ#XiLUv( zZ|=_3`FUkGdGRXZ3%Oz%--ZFf;owl$sKN)dJ8w_x=i2MTZcUd9(Lu4Sl>F8VVg(u^ z+?X~*nDq#o3!g2?=4^bdm<&A7xiJKM(a@X$+3Tp4tBTd7sHoKNW{gJnPil+%^^M44&LYP1D`PD6r7GKgnX6EqXrO`3o zh#12Lx47jK_`VfehqAp|*;EdIGzA79)IREZC!Xoz9Oi`Lkt=W;B#qoMfE@*ApH4Ih z#<i@Wa3=~8%D@t z^zgWK-^YjCPL10TFs-QPgCx~OblMP~)12udgO?U$*`S9PGPLLL(yX^)3HH=N#-nLk zJQI}gR%;YBQ(LVDNa1I3!l_TP4K$V704dZKA6E04B#qxTT)@t&5BrU*&8Ai#0842IYcV%vHds18>qYW{ zv0r{D3x=r$qeoM8_-Ec5yvpdG+fZ4gRt@lyYI-)L4sY{3(MdRB1^v`EPY2#9K|sg-zur%Ul{(Br1UD93knyg2Wk6;Fi$MR51X zV8rx}Tq#mM@gi1?E`HG zlYN_4#cd?O2>&^3_z-m;-sT3D*L@yGr5%h#yQqEGTn}`+w6wRpT@)Y*?tuYT`y3aw z2q)w?gCQ8hQF^qx+Xr(nS9GFUd8>N>609B{W(sOr(#yhkGBp8d)CM2aLtI%^Vz_Zi zTsa(#I5;OwnEX}{Pd1r=G-iVjlZSFotbdtO9P!03R89~kh)@r<4@=a84n%pOD zQnKo+2}M&6BRTtG0A^zC1`pcL7qjtL9oz_fKFnE;&&M~1flVZnHfUGgTyZGOWk80< zkWAP0^%z~iQl3nJ5u6Siq%OxDsw16D6K`)V&T#=yNF4m^GlFZPAFA%LrW14HoxQ~^ zWCq3QLk`&P>Jb_tqd_26wieeTJqD+=sNixXsvC`y^<{C1I^YOSIoj!JYWIFTtXN!A zhe!%HA4qiVRe7saaeGxPtD=V$8d``vN;fLR*#ExbbX3LEw*75Hzo}N zBQl6!L1fl6lh3!Wl}Dz<;7k@3T&|!y)ZOmk-0;zp;(`t+oX;VH5m6y_=9NbU-5-fJsRq4?Knvg=Cne zro#b{VHPT$_%%WpoRq>IYCZ{@qoI^ZJ_*32kl>M*;TF*tBWR74xs>pXKUhJxof1A0 zQ3{gJy(%|a%v8}9zccT?6^|Cjcu7S)n-V!*b9ZU^Na3W&VQ?dAhznv+4pWjv2LP3q z!wyAKTVyc))KJuzL&)eVB(orIV;1-K#UdT7M(e=jp}YTjO3Y*kVx8l9U_y}h4a0(Y zpTTMJ1}=yR%ERvYxS@6YM|mOKq`V)1MM44|$Z&&92Rea-XRP8uCJVtREhdQ2#1{S9 z@+S6`UG{1E$)Lck4}5uL@3XX4kaQr$T0S^ zE}XE<$k`+~9_7*V`!}_NUWgg;4Ig z^};eEvW!5JucL3m>Ul|lDj5W#r6+t(!>VtNEBn7J*0Tdu1?d}dKn}W>{Kn4m?j>93 zbBONeJUl78xXSaBLt#M-WLV^e!|31{b2cm;Th9DhJRCOQgsj7_J|DaO4LylQaEeEZ z9Ef1FxG>WV>Do7=p`2H_>?S)i9wwq>13Io?rnl*|@#96_s9jtz2S9?@8uwZvRJoj3fI@{<=Qgcl3a;vFaJ(=YK+hwheV8M>Eu6}!| z?&aMIuX0|F$~wUCbOts^T~p_HT$!twsIa5G_;*c3!%5Y(qY15j`-ZwsXWA6T+uMI! ztmg&>CiRB*eFky8y`&Y_lj#8NYjJ{Dac}Pif}3mz^dKSJ`Cp8o+ny?Iuk?PF^8?hR z*x()S|~~i7w`TGDnxT`}g<+$RA9QIu0*1kH1_f{{5E~ z|2|t1n{gy*L2TUS`43)J{0AlCNy}~GX~ys+!)AcLA#8@13&p=s*g(%sVKcm3DE@`Q z26}D^o8e_I-klpJGRZw1Qd-mT#A2HDIJ1-)U`N7ac*%=&-CQAZf7(^+EnSz@UU{Wi zJfSfHJR+3wBO4C&OITv+h4z&CMMWJEIWXU(P-L-%6prRBr!XjoM|~*r(LxGGvyW34 z6t=3uyXvyp#VglmDjZPLsXV;nvy3~_nMd|rL+jCNu@`1HFH-|^L>*WWfj_CWaPH_l ziZjjsnKLiw(83GlYd-4thjVqt_+y&mx4mzF?pFPDUf5+vZF^c)$p>2ha(P=qt}?sA zFTIU!o{h)Prrz^qjK%Y8F6XyM{x;`L(q0=n-d&{S+j+Uf@Q2vrsT#iNbHNRo zMM^KKIhW>x<{OTZ{&8RLCQQ`KwDX`N%20`Ud1}Gyk=A$OTELkFF9W_orsYS< zsr#ziM6vdIu?eD_T;7DSG83y01D6Knr`l$Fpc%Q2wzI5{v|uV~a?WhCMc`@g zN3VL%tHJyr%l(v3BTBgf zs8#(*YaO@Uj@CQ!b({%jM z*O^Tw51J8Zc_B~j02(B^;)ko7*#QLRxH!uSZAsUew|EnH0oPg3yt<(=tPZ*FXi#Nz zeB}@46^|PJh-gg>+^c8s>z!F{B1eVhW^j)>qSe3SGq~EG$Hh=_sXntk&w$f9*=t^^ zS{B)h%1-T`wzRQ={WvcM0@yK`v<}O0BgNH0?8p6j+wj%JGY7GI#I!WW2vzDh&;GqQ z2xpG-ILNdva6*`xLH5-%WsvABt(h5QKpl}cFpn#&tH)=$Tuw9==PLB5BMSXH&<$D@u)1Tz$>O`!crTX#0I3FJXX z^m*P}gcU)2jw%!Zx{$)L2!+C6G|$}; z!Uq=2dvugkykhz^ul^2k$5Yy~Bds$!MQSgmGnd}I&LG7zIz^fC z9I%)<9BS}J(%G;febr%#12ur6p6bkD3Sf@t0xPtsBi?q`Crvrn!aNc=bHqCWA5m+z zu`(TyJ#3!|mTy?(ePu=@Q`-M{W+pd+B8H3s(fd9yKBFxW39K;9&7>*+b}>^V%}w^m zkGxT8w5wAmGou}tX}NgAYg1dKraN5i<*5oY+f*KOM4jhFRI7stbc6PKCyr2^Ihf!e z)6&2RVd{hqZPH@{Lo+9I2rezia6yb(WSy$!Ok=|}4F@R~yw5DMBJeSxQU_$a>r!}Y zioqM9F|hBr<+T{qMD+vPZlgHL*`K z{b*Hq=$u^tqK{H_)#a&ex~@&kB+p!RDX~W+OBHak9-`4;+}sc~fFtTGA0(-5xk%B> zw%oWNrbl&=dE*zB%*7Tk?V_F!E=o$`>^lZeAHT#*?;S>?

Z>g)j8}$h)MmD<9OQ^9F~hDqs#(}kgf}KBaFn{tqdT;% z*|(%jYt3Bd!I4Kaas^0MwUUi`CSm%{tYjtjh+^4ygJwMxl@&B|L$QY(S4g8)nLJ`p z#CgX{2;(Opi}KHL!eeTW(xk*`f93l>X7(t7Iqoyd3T^5rsKHr&q0xXkuFo+;VbXh4 zR`Dac7x13J%&0T0(59At(c+z%)r7%IYqD(6qo$^LWBJq^P{*~2)Ko_>E<2i2HP>IW z*1^mX3=cY@&-0Eu5U=qD>C8z1uWzJPI=tgUPMx=++xciEXnL$|=Dd{xKjKtH3*7tj zS}$0j+bzZz1&N24|NXo+W0ve@!xWt`Q*EnXkJ0k{nQiqRF)i3JLX}#OUQfy@;+X|0 zFh`Vu724D>G2pDRC7%@!Gsnat@VweV2V|@5H;-&iCZL1RnChABH;H|NXsCeZAq?m) zg$te6wcpTnq8BkG*0=bBUf^BGhY3`9dcYCZ8-(T-f&QQQyPbIxC% z!6|V;KQuHL{q@+~)2smJ|HcCR9vA}Lxzcd7X7?9o@B$BX?#d+4(fmTkjr{x!vK|do z!`PE`Ege|BYah&+X`JvYa|i=W&FeM?HZ(5}?e@B_JG$S-{CDN=lj;9Wn?W~^Z)l$dO-#0YGtHFdWeJ(6 zuuDGmU4YN~R&?%jnggRq>#e5)(&^~M*y8^;7wXXop-1P|w0jf0g~lgPydQ>Ri!y$o zI!RCMzg*t-kgLqz@JnywFWs8f`1(X!n4_rvKVQyH@J+K7UweB$ceA}$+Rd8I$N%vK zERGlpZH~V8R{z>GtG)NaQvCmUY0JSn$9iCR58Pa)^;!MhmuV^9GB2c1ydOTiH4>4kOfM-WUP$4jI}nS6aG8=S%OK6CLDPZR711Qw9t*P+^4jikCNZ zgtXUqOJ~Y}p^AEgz+sAZ*bE}Eo~r#-H1UrUqD6R>ppmA)+Ly-)+N64)(y+5`?R~iQpeGr zRd;u!`y|EnL{pYkCva8eF*{;xSc0YC^%2HrLIVU3bJ+oEzmILLxpvB2 zb`m))S15qmVF*{ngmGb0Wy%ol82Bxkp#!pIRQNinThomTPxXdMCN>H(Jt{P4RkHS? z&u+ug@!l2g<#Y3??cjB*VZ?~({^Q9-Eu-jHEQt&FakrV8jPQ$9yKWl3!cI3wEg zBZSf!p6sThYJu?&zGuL4N&E?_ zD^){9Xe&1*5hr-$D2pm@!{VOgJOD_mOvlT94moxISLAF zRq}CiF)U$6wR-M9|7$<=!#`yH4{BviXJF}=029vsqtM6GYdQrvsaYz3+NhLpY7+r5 zqm+n%N3{n0kUA{b?z3_CNV5rM1q!Pd{?+94_jsx>|I`<-vZ|%kaF?1EE_A_NiECO* z$FF#wUezY?b-hV7@TaWN`tdR|a^^Z;^?9i=RSjBIt-a_Sj(e!vqggw`Qa!u;C0Yp4 zgD?>e7ykL1u6HlTu(C@WW3Kao6Va#`SaAEZnHS-al3hKe@zC|0;fl^464(+;rd!k`#=Hl$yH_N@X-^a8J7R0V2V2SIawfMeztk*OP&wYNI-3jgp z8T4*RWk@d_o?RPjjUIEjV>iIyb(g01ys@LdIy;eF>VeO-Rsud-0i5g0<=OOfX<;%; z>EB*RK+FO~ZpEclL<6sMq?`4l5_R91ttG~X3fEeO3iDr@(l%?B>LayH=rU)@17bAj z@g_ZeBwC|rKtmU%=PN5 z3u(J_y`e<_lzHiZB>LYqt$EW*lK*kGv{5Q(b8R=P?Rp%uCTyx_Pnj`zqebjE7u30d zX{(NwQZ)C?#tyEp=qB9lnoj?sB@`Qe$oRjQ?Y9vk=yFwgdw%$Y&#M+!fR^FS8r@*yB9vk-zBe7dIZEfQe6m;{2{REke1GqroEj~x~L zQPcV3MZ^dK2>DqVkHdSk4s+LT*CgpgxBSw&HGVB(wXiIO4kFR;@ySOU5ZgUXu~Ms> zH+g?!5m5{tBHW;2X~K#(UC@s!-v`r@o6vRSW_nF^DkaA38(M?R~SS zc2sk@n98Dhs?3q6;w->#<d?}5{>$@83}R*lL|Hn7 z68SFRfPlZ=XF$>2`h3o8$;$g$K}XA#jWp^^Lmnc9i>o%Egl6G4A6)JrkN)>hDMQhA zn+>JyQ4B+Gi*2+vaKu;%f9_Se9pX$?A08~|iw{gx0F#;=ACg`;YD>dWG`bKkcb)90 z5K$8qKKG7_RN;_)aYe!mRRf}~YIvSkB@W78KovhCAL&cOKXi$Jxk4Z~9N)F#Xk*p; z+nSHpW~&XEgB?id5#Si?2#Et%s3(e4@pB^0=kT z!dRA^;7JQ22@Ni6bVrUDarAR+=69!<2_%J>8|zx*hMgbARy_D+Atc{$)Y{+fD;N7# zY~)8%j67PLh>{!VCUFdJdsxwk^W*v~<}az$g z!iEp}Ss!_um}Jo7l5(W8SG zRbqXhAVN{pzA-JF4IdT(WEK-dE-E@%^b|*hK?rFqB3N7jLxOD-dC}jKRb;i3w4gA32-dX;7Zqy4)&xKaPjJ$ z;?gxlV*DWk*bz~(RbC!ZguvOToevgQSNBU`SV2=G2?z6U&OG>l~P9H(Gbrrhbqz-Q9+pMN7GAr_kJ8>giI_jEnQj(lpmSE7G9DPM5BSQ%r3_kvJ7UJreL zj@G1_lkux9FN`OJq5>+FDX(~Ux#2+*Fy=K)R(3U+mO}zCO%8bACAYZW$T-n@>q~nw zhkbJQWLNBJIzlulBz)!_;$|U@5`E~hcovdDNeu%BToI%Q9r}4(SNk{BGxx-#6bZnj zh~Sa;gIiY7i91S)msJn|qYG{yLEGP5$rP?KE^qtyAdE^}^@Qf9ymqC$`6(`0u@|`@ z`H!u(2=(!?u)B!4RS=9ji_*FH1c6cLF{$;jHpg{|bVqlEM-K$=XkDG$ z9rSi)WD4vXBtr#az%8f}p1@mSF`MoFMO7;IgToxr2v%rw6LpccBahAEwI2%Ls4C)v zB)!a`nxlcOi#z-^>UFLs^_Mo!yJ(YR%jdQ?&F=5Mr|`{#Bi|@Cp?PrJa9aowh72rx@6r?&cB>khGAt@YBbGM3 z)qcPz%=qPv*bs_Y7e4T2B0OkY=eFjpp7QYMK{#oT3$G$P4t&PAJUk9;lX^#Zpnyf@ zZbZ7YF?43RMLh_!$l-zxaUypam&XYqa3Y#F01L*0>9B*YUeRc{aA5g(aDc>EgWo+n z+EngYw|1ATnA5Ro6|9(0DQ{CHaW!QMJG_J;g&vQhac!=Glu=MVq!8gLxHw<5%m_Lr`0%>;+w-%jLbh>9cFbFT^m@V#6uS;`0C8J4C* zWL2TzL<8*)yuUtKLyx6ta4ZN3w;BVfbLHh=@oJ0#N8=`R@M6^0`fPpIZQR~ARz8-G z`bxN1MaY#Bb6!>q;8Zbq=sn~1{q>%tUd4e1OS_IXy1JFeVFj|EmSP_bpH%zq2p7C(17|#XIU_6k{lcr&YRn?rI z*HyzZShk&GPUtfqhckBq4|Lx4{);;kwEOjIzGNfY3K=0B5HpnTF&mele9xz_aO$>+ zcgW3gD)3;TZ)f#Rr4b|Ev&>$rIO0zW1|qC)aEV)=@0k;SEmzQt@emehq&??*-e;O+ zj{yS_Ix>Sj8{YQL?#>yvh|oagt8te`XF6!&iFq%(PI{cnz=2FU@a^e+Mm5WU1`I^f zfp1Tuw?4~(7A;M6;8}Pk6`_F&(?u>UZ02o5zdd^e;z(+FKoE*j5zl$l&ncn?L{N$% z%D%AYqhxc6DByw4w;=oQZ+L;9T~(Y{gXsh`I@F8)a2l0o2&>;x!TH{apK~^@Z$Zb97PJ2;bW-I7u8reYb(FlVHB20eB zEe_d&HsTRG9M}d2EEK10*f6B?qXODUi!Dewm=eALH zH2N3~&=+r`1PUVrG8hpX(LR{+*f0=`%VL5EQ+*e{b0eE~qtLkUEd+!I3V82Al~gSj z&6Io3p>T^FG8hr?mwP@}S|0F(z?ldUEO6cRj*T^xyY70&I0z3EaNYIJoFl`HDR-Si z5oA3w7`;(^%4332eCjutm?XAxC(y0*$^WI_F`D^WC}uhVfdXgJ?xOj01S07SF0A`&{T?n(l9aoeT=&84Q;Hk+*&raY64!=)`L=cXosh2x;yf6vS@4 z6`vhUUhQ4RGHSNT4giHW!~`u0AbI9pc>zQSEM*O%WNA-)BYrsxAutw$2o~4Rv8N=K zIW5X2=AcE!V}9^N$QX2pO?Q$}`KmZ$07eixY*;stp6XBAhPQX8koGWw)M0~kaOvsO z*)BbOD#nGV!8n|_ zfs&oxp%&89#ch!u zBcyVu;Bw{9^?1KG=YjBc{;SeL&%;>8*m8}ztgYPynz4r#HaM9tUN6mJw@P+UdG0RcY6yM9!Y`Tte9 z9~=xP1~y3Dj`nLuxwZ~>zgPQ*_S{@{Vo>5ztYZY3NgH|3XFxZB(qH&!*TtV&>iDmQ zKbh0A7b6VcF)4H;aTj0)e|jZ9+jmn(l(_3XqYaVSYPDEY$b@wLAfeCfz#a(PDGU9@ zW4wv8$tCoFGU~fgLa248a650FPIMKNX^hjp_th7#&3^l3{F5bb_L8FwLkgPcHxNOZ zo3Yit`0zKs^aWj6c2|0lGR^~G?n*LM*y*I}`X921TH>(}LmJ5X5(_*AXU@biYp|)S za$Z+=jr|85(sS2PH<(uP(#gK&q6>M5#+yY&7l?pKBOyRD)B7u3Uv{c4JKmyPHUu~i zgz-X%`I>G^I5x-ERpQQs^`bsi$RN?J{nw(@9LB`*bH2D{CT8-pg@+7xb5u$OwPyEn zTYYwnt|$*1HDG}#UPd$9C?7QU&pZijE@2M4Uo;idoDj@1!nV3ptF`keoo-0y8m~6} zf0@W^s#>5ZF~{Jc$L*TyHP{buK$RvWJAO4HMB?6}z}(uyhq0GY(Bq~Rm=f*{9d1p9 zY;(LXycl`J2ND+w+z?`r3g)!o_TYv$!!Brc7;l80fr6VAFWbF2Gi`NGS6!_8zgZyW zz2AQyhhmHiezz~(+1|fLH)bpB*$$LbpJE?S!Tob#O^co^P1BnT%sP9aCY|c@MA?!W z_wV6SQRb1q%#|NN-F{{YSKKZHUREV+WU*zdZYn0twX5-{T^TeautqDL|4dienNzMtqxAQtC2Sf!PT};sKB?V^X`j1_hraL-KM{F-fxUzkgD7`ostl|kiiz9fjP9JIA zwugK~UL7BUX8D+2kA5$9LA!xl>eVo&b*~poi@7Ky%fvKa^xM(FA;Lw2J|d8cNbBY+ z5*G6aaV!mUGbR0!hNG4$5(XuTr3g*ij$CTR#?;c-mZV8;h@@5S4c=Lk9tmt9#(0)e z+HSZm1vk(fjic4rb?xTGHqi4gxpv!Zak6&v2a<+!*ne2nYEE2=l>5?=F=w$=$WU^Q z^0MqSBJR7AA{$9DrY%Y{Kq4u06_n!AI%m~NiQ!qYMGRUYb@^0SEGxA_p|lhO926m! zSf!ZM-AB6`lR#R9N${O>kD#YO_|+(aX{QdUuGCX#c?mWlnzc;OK8JU8g+;Vd`y2?1 znFL=svjk0F@O7omtkm>H0vqVm)tAa0Wh>Pek`jZfE6dCno9Y%luV~+Tj2%i!AuD}N z`m6lLc9E);$cENaEf&p$rMs;%u-`a02wHOboo`)3e_W|0SK?AkJeI8*K})WFT`8B9 zTJnm>Mp8{Bl^AKRTvF*#CUK2MnC5^2_Lk~MxAk#dUQWdfBHb2B&|WPbP6zw**%Ym( za?_RCt3X(VL4advm?;&)g)<$$X+6_n5h0|=v_Qtr{BQ%8ZhAQtNOkGvarx}w!|v$8 zV8qARKl-Ofr%JPo)IUC&(fNj3?vTT+Z|rf07w7YtJ{Rbp+YY<3;zQ!umtD(ZD)ZoY z*x$N-d~|*H>gZrLe^@2lx-ut4h9r|OSYpTJ(~F~FcQn06!LfgOR6cX#?`~hex&3YL z*OzZAxBknVC4aCRQbkx13Nr4rD4!y2g3FK3!FdP$#Zd=Q&(1dEcIX-Ta_17V2<6fSFnf^%(7F~* z^25+Qy74j_q-mn1q?Vlv0J&j6I^$`l-@#`0y~(IUw^Gt|M_}_Tv9Ss&x5!2to0vF> ziEHE*tub^N9njXEg3mLs+Pt zKj0XhZ*F|Y#&{FP=u*|^lAIlO=A&JNwx-d|LD}6$5MzAB$SP)sg_l*n>b&LpVdtj9 zfCXL%8N|n@|2$V^D!3$}e8!^DCt#eh7*ZeyTp;egnvS_=s#BQNbiA$nB0E@AEEuC; zjKX0Q2BYBWT@XT95X-cSq!>Yuw@Ht|;V~+H!AB_U!o7Az`~7?4sISPLPUa{>9F>(7 zS2%Iy8{0R&>s&u9ZqbQ6gmm5_feNW$s4O~1`~9QNppW`yJ?UuHxpQZSw^yF|`pz9? z&TC5-s&HErB)@?C!pesk3oHFm`H>K<;o;r`>(7^9Z7vmxNM~0ABZJnEHo_m3KW*e} zU$ed|Wo{HiTXuk!8qNyCk5I9PBecTf>EZEFr*g?wHf1->+hCBLfl&xX!59T&l!a0t z%L$si!^X#`A@9D~)hy2%@@o9|O>T#q9az}Zc+QiII z>Covyaj*3kOVhPt3M;03ktP5v`IeCk`@Kw%=$uEB@t(;QRW0f-mIg#i9||d-M|XTN zkP5J?1cr_a;{a;I$J0K}m>pnpw!poSM+jFx?9o^PM-$*|v&Ee|of)#cYTk@oFq@zP zXc3`LQyHdeAR)%iPNR<7>B9P zSoFBEZ)k}6GRddrpg0%}_WRTEpk*+`Ob3hmM@<(uXH>R{QRWF?{@dcLtK;C zy|ZiPaC-Fib+)Zh6s(X(<&$zhHI)Z|{Y(1} z&v|6*jf3ZS%7bkxG-IvK284v>azMXG3|q2*7VlaKUF;bs`( zE41)J(L@QLb*lgnyiQp;UA{(j57m|f75ym;K6%)otzI0VP{o=b<*QNaKVZstG*eBGA;6^naCUsuvLUeI#DFGko9YD1EUe7(jSF%mbQKPy zPFpG6-Ps&BLc$eh!x7K#lK!f!n4d2zD~1R>!()UZs+W(-k1vH(&bg{{L04dEUViH7 zn?|fZ>Fkg9khasAjIg<}(?8TFX=a0SR-%~II%I!Rh}eR~79_SjXW;dP| zhq(1{)EUf>dNVkpE4e$otxOksOLkUl5r{2}*z)A%22j}U6RT<0iZO9Ux`VZY29oxr zQOq&y@3X6TR;ZZIO2*8MBA6t(m`w{SxqR1g^e+%Jf}RYmJamHK)r6|_c+uaX!MOKm zO7S~BVgNxTHbw)hR?MKfbaY70~CZM3u5DYpR~Jt)QWKFShFmMWiQbMV7B$ z?N5*4m9{nL*l$#w!F9cIDyM&sohKgpv}`StouFU(K)t!v01SpNStr8uWVTCt=v1M$ z9GN&7<&!t8IDq&LO}x<+RL9nN?fES`G!e?p92G+0g_duMcc%cs%Xj)%-5A5sN1ao{ z5d|2r&@lW|St1|(Qw^{ch@Q*JLzn-%Bn+6G=-=y)vF-r|(g9+}qJqyZuk4!By__H* zQ$I<9$`j|DcN|?x6JcK;~eUyWHZKr(5i9pu*o>nDJ{Zm-Z(~X z#W?196D5p=rqR;WM#{^`txz)0LFofq?6C`BvsG_|DPnZT+_l_z#mZ}Pqd<0PlG@zQ zg6}}Dwn=<2nrZ*uNR!A?D@`Il1(`R9Bu|<4XS2HtEH(3~E)kLJfH@V%s?jP2DhBy2r|j*&(wRm#7*Q(WTmx=YLBr+iN>> z?6{|OeT>_S#R!uEWFzS2HCs=`3qwglD|`~jE?+wzfOb46_`I}(b4b*?h2n zi_>^IOpfAcu)>==_lL;R!J?&P0S3kk>0}2>QZRup*NQDayv2EczBD?s-HvTa5bnf* zmrU)%pnrIDJRc!yFa^0jjuq10k{w*fq*4OQXAnzt;$e{&?c9<#3Ga_}?nU;#0>Q-3 zq%5qk0#PM|W{_s_;x^qLOkn{$>U?|o1{K5m{2m{jq^hldtg3A`7194rXh@m|*H;O= zFcd1K42h&7`ya7qAe4YrD5|VBB4(noipsTIJrRQ-DvY@jgc-Bc$}Z1t^LI#5f_WAr z%F#k{fuV5fQ?5tIT0K6*#wU(8pZb*O{srhB;OMfWho`Ap410rdZ;zJarhQ}&b@ylY zDM10rYe>SHj_!93$e-~4Xwsg|KyHK)<$y(r3cxD*1+a<$t33IwFgeFeu7Sx_&jfn> zbt6Fc@FAC2$E())cO6!^^I2!0V~Cs3#o!eluVAzSSmk>+9&)?V`NkOsFvWJ*Cf_}{PZ;JyVx zuOw}&gDOvMyY_{NP}_Rj5`h+HmehjQTupjzI0VXOt~H6b=JyRCaxoCcw#HyaSv|Y=tqDYEd!&Mq3XfF2b;;8>$25NH zXu#&5H%aee&n!&_I&ir;g2sw>c7E3+S$G@q7}<*W@`Y~<;4Sk649_*m>5eIFo%$jk zuZ{XN9>t>5yt7Ly(R=85_q4gQdkmW3gm#Eo>>A7h!$-kH{|n6Wr!~%g(RV z2;m!=Igw$Tn~wR2wtaDpTrAKhE8-hyI-LAsEb_}2Z#u}!@(3h@d3mU!ng7jkw9Du| zk>okx;qhdGK8VK`nsAG`Y!yb_!C}c1kg(7T8LaZ{n~n<40B;bLoAzrc@@q{vlHNiQ`P1zSEp;1e~ByFxIFjbheA_p){%&ZASftzLmE{qn%dcY$5VR z2bN#Hum%I_6 z(GAh)lGo@wX>@to*=CKdSdA{nf?%zmRjp-0w!*t}xIe~4UbDk}UAWg*G=K<4B$KLX z5eP5ew4;X$re=9y@Z9!1eQdXjnDyuAfDh1Ie9n<}L<$!J6dJ;obhze%A7T*r1F}PP zQ_y1O>j9;r0Tn$lffkgwY%wXvmoWLE!z{ND>iZmBvnP3TRNP{cW_^uGVn8Y+p=>a6 z_Sh1*0w@l+M-Jl9tl=huKP^Vi9zc}i;fO^+Imt>f+CCHhd6x%w_Jz&`O9T9EASj4q zdg-8#h^${)(4~=0#7GstC5!?HM4X_51E_|Bs4Ab}LXyim)J2<&Q3%`)xG(4hlui$(fK7k@s~D zXA?|~qh7N`L+(Wj1tXu_hvXMde)+~XSoOzw1{6VL=o=OqruibJRCj_f3#K^AjXI}x zhPxA;zu97v8}lUy%u|#{6@-8k#w!FLxmM@Y`3sk>@QU6iNzT$H)cSpP-8>~!Oe>PL z=f5m1O6>b-b7H>*b|>ACCo8K+p)W_!Z5V27a5pHTFVE_pTTDIZb!b zeL@S_oWgA~eF$5Fa2&nAAx$i*Y5vi&167yAX|LSpa2opyZtA%&Af8bZm2URUj9V|E z`psvdel24DaY-4JaN*Qrl<(TU`5S8Zd5Ib;r&rxpJ5<>_$3_%byM zGO0IJtN1Ugm!ze{i;T(oPMx}^WEO5xZ$2u2=#nsW+*WemiMJ zJ7FsMl#?A(*YBKfwZNRuOEm!{2 z4Rm;*!RaWrl%njw?EaLLaIuY0V+78D2@uM+grFo->Pg^dOMZ`l2!Bdc4) z9=zlPreU zu?0f&z1c1ftHg{5bDVC!k2JBbf8L3A5nNloc}R#A%Np4Q$;Od5=L8AIc8~>wX;VT# zw|_7^jq&io={O&&#k46Q*AP3voCCroKkM0ZS1+8td42ofw8_oNQ9Gm=`@xyh2T`v0 zMyQeS;^0g{!pmpRG1k>Hr?1|)MOF*e_7d9hrefOF(=oTX+5Jj-bk`!&q+fIc1!gJ=EDhKcnmIe}{yES=DEuwb`sY2K%F+HvGm4dle;>Vmc67SV)(Qqe3 z3ZH>&)qH|-M$ER%AQLR{v+m%`7babrIz*1E!1%Q2hK0C+-nqWBf$9r9-tH{Zaf?SQ zZh}|7x1C{x0>9SW{NP)@i*C_5h5XjeX#}OwO33MR__X`LJ{ms6S=KY{$9FfOq$N-Q z9|3fSUhF=QkAjRD)wX@LbL!WZZ-dzFAjS4{=hE-(qYH*B)DNP6$s*NLF+DtJF$qh^ zHeRMDVrWv5Q~Pf+rGyi|0AWL|re-6)hh%ti!P6btS)+@m#ayADKMn^AkflTr&lBLn zZuI$-&VsrTGUT#B1kW+N`kN~ku3h7KW~NJogUiBPl%R5L1MU{eE}yv&Ai-IJe5Hgz zy6(5MzK*N{oN}v1^ex703Gw1D3Zo!|@`Ph)aBp7whPtARYa`2GL6z67l!Vi)7K5OA zssIS{FJ7dDUaEo)5hVY%*|B%&_{d$PevT3TM#lMcK|XGKuHD@u?a?g~Nor{mB*w)I zSvW}J*g(XR%q3!V$*{VeWQErD(ps(en~1g?1rx?_%Qqyh zo!|ianTZD<=8N?QTAi|yVmkMjZY`v<5yGB*6BCaJk7L9kUiqFJBdi(G(aTp1Bj}W= z$vEf+3COx8%d^eb}@jb^M06;w0x=;^&(T!N|(Olh%Znb2OkUMshJ;@a;nF#@<`8bCVd z96OXLT`ppjz3iZ|q6;IEj!oA_dimV-YuA47(ZDX#TA20+HOrPOKhZ^-zeYaaT6iE+ zy8Hmks@LuPsWAhP55mfcGU?)(nC8S1}@PlAcFy*m`X3eon&orU(N!PU&i-HLNX%s}Rsb}&5M;zTsVuN!g zPRh-F|9CjoSBtkup{^wwh%TSzD9Sm;0jZxiHh!{=nfhsr_CyM95Yc&#*>jW|5yX-# znqb73eFiCCW2!U;0J_lTFF-rU7fom_v~iw;Y6vzFab}_pxV+z3Z@UjB`s}OxX$JYh3&|{h^!qF4$QG{vAM0ihdUnB!_JF8D$S&E)sRj1; zVs#_ct!}Z@@@==mg^>Jp$x+C_ihDMInOc~grO8;8?z9K_TPF8 zdB=M(r1{)2rKOOwM+!y4lAeO($?d9_&=4ae-5sC^O)eXMkvwO0nSLmgY6uz89A`mo z@dvHGv29T;MVSk8MS3@;sAGxBQrWX%B3VLA1ln*R4qns|LMpF{x1t9{`tbNq)p*ou z-m2x5&!JNeQ3_6_oJ6EhsafgM^H6Wjf;$~?y)2Gd(WNS9xJ59?+r?HP4hkRnjIW?DU z@^8x%+ni-H>0FxNXqAGJ1BX;nFVojuL@Qv3)Fo2cTPo=HqBw*=Nh<^m$BoPS)+jU_ zz`}o!?lbA&f)pY`&y>}(2a$S2BdQ=#s3s6ptLJm{H7@kS6$bJ4oU_Z@(*3@C@}d<5 zBVtkq;o~Wv$%+G*=&U9l5N*v47h7`HbZ<6C;E&%_>Mk*U(v?){=>wRK~!Tjg} z4S)7=f)8bY)3V2ccXfUCnc|l9VJA*_IhlNf|73ymjRKS6*D)wESXi4dSjdK=mi##< zg7U8v`WHDLc0V=cg;|1;`Zw+?G@h^xola)=`17Ectz?pqcw-yD5xF&H)Xu%rl7~aI zoBnxx8X(FJwt+7;1UA3A=y=-vaq{}xGfb4t*?!Cu3U>HaIeP&XJn40nyZlI3ny2?3?%&>F;2&_h9aTRpozwZ9 zl+{_CA7v+xNd~o|%Qt>)P;Ud3BQX}$71#k^4Q;O_#x)(dAOq#9YF4(hP1359Tz>K$ zuae8nLAV(Sr|;p!E{nY2R+wx^ZP5ufo)IN?J!@ymPHUUES%KwOW<`%Xb|HlQ?bxC% z`?u}w(!{EF?#h+x+r91U*Devk*Fu5^{V9G_IjJ!l&THZr$ShyFD%^r+pzv0j0@V{$ zj9LFCIe}*zt9vk(SVKY;6zV)3ld90yDkv+keDgajMbRe=>W$~@9Mkn+T-AgGR^*4n zLsT|oF!c3&b2So?!16mHF`aH76bALP@$;M4QClObOxWbDo zU%x3p*LVr4BS!@g5X$C#wo%*$bxtA0?`TGsYikp==vPIiZ-4020uhM;bleCjK+t+U zpjA78_^ahBg^-cmOPLwO3k(hO4EDF^&z0Sj&o7a1rU)vZ4x~a!9?ak#<9p-zY)T`k zp1u4^kNfg_^guH$Cm7-cIEBY4-{MZ;q9@U@cWv=7<0~>jTDEjwf!K~08+PXZf6{+( zfDsc8%0L(uhhpQ5dsUj*DSdUA5lO>^0mqjv-R=+o&iy6;6fDMO3*4nT{u7O{DMAoj{Q2FV0ApW*ImBBmqTX*OIcChfVM?~gz&X1w|T(BslkwCCjyI8iF zAtB;Sb>hlX(#()-nv3!%kSaZ`H+Se)9YccK9eQwjvEM($xt${%JBM3-adLXFhN4O; zJ6n_-%Yb1dn${0!d4|_i(Cl3x_*)Er!NG4Ecv?$xB!k;|cW7@Vl_@T}KH1M?aG{@Cm7l;w1U6YBfJ4Uz63t;{-$zbNV z#Gymoi+028s+?v6A%zGjpCfP*dYgp;>pj8ZTQbATVy#V;e`Wi%09Ygjm%}=VZ2A{IC16cmuZZb00NUwnTaV(;fPr# zg=MEWMU550XL?DQ=~}MGrC*4LTSqan3UZY|HuFRVm35c%-iU;%w`js8N+Sz&7!DYwG0j!K&t(5Y46Xm#Jq6mN!zinte zL+BQMt0c14wlZTRa`hOuA=Nh4>vyxmXm5^+ zNK7NF$nxZk20$2!bufeIB|4qZY}qroJVoDOQb@DOh^_j+&)BIbIEaRTE1nX~7Pqat zs)E^rB|LQ_oob#E9u@w_w*nU05iY>fN*=p5(r`C*@-lM-EieH9Dw6{zA~Pp6;cV}z_PFe|SQB4qwk^b>&JbsqKg5NJdLWSXZ;C|FudTJY z;igOuFRy&VHmdY^Oo2EH1)umD;kn7|p(NFGVM+Sb+3znf{lje$bP)HD@=;92_GzAK z9O~mWvms!SDjazzO+i866u`lp5SKPG4x;HUWzOQ1r}+mhm_eyeh9d+=4sgRMZcQ7g zL`?OKa`=4r5DFD#QZt6|ttcN;gM;YPxTSJDK#Vln!<3yVNTywn<{NbD<_P)PM+cJ+ z199cEGHH=VRQ*p3P56qxkX$%rfoy;U>wyNxM9D%)JOJkK*spPB8YKw2s!ix8fo{m+ z?o^w`CuiF$7TNvo*vfr65axD*Icl{q<;if2PJvje65vS(>=VhC1G$KkE#gb8vx~*S z@2hl-!15>OMRE){=_9dOpYFFFpb=QUa(jO~9~Q{+IC{v}F(V+)>pyP>d<)nWdq0o} zO;aaTB-v&NKdq{(<>~p+%^TaDOAZT$_+`Lk3upQuHTh`&V6pYXY&^wff;j#h5h?nB z{ud{jJ~%>V9Hl7f{H}b5>zy!05d{oXK~U&^84AgN0#&}vtE*u0YhpqR3dH29`5J0m z3DxkE9)F@6T2uenT|%G!l`4Z-wm%M3^AOcy@!!enB^~qVYK;F9DajZ77oBZ4Gs}^N z72Xd-ZjErU2DQRysI$wqT3Qmc*`h%R3X*8{bwl+BOZRJ2HtvAyK02P6_TO@2vjGH2LfBz9YJ*>9L9%W{WFJ_$_H zy>o}l9vfktZ}oTpeMd(l^J{}%K%GyqTm&U=U%$EiZSTV6TeojsKL6eAix+wqE}s96 z5088$;L+Vdkc#`Bu=-~+w*v`6#EB`NJZ~k!44(xrIw<6{V~&J*_DB}d%|KQadG;)z zK(Ja$sQ z!8WkaoAT>ZvC+K9a61~VZcZS9PS`+ljvI-EDZP1F5aWY7!; zRKWz-2^f$StqD``T|S6N>TxME_hk>fT-+2&{sA|jZ(dgsz>>-L+q9T zeiR2Xm{kKuW47g)LSNN~1lXOsqla+3$?*tdCY&*?w94+M2m~36do>Fu8Dl4stfyzc z0q*Y@_ZEK(j^VVg8&nJz>OotE^zZbR{p^Wk6|Mn-t9oe36hiso#UQ!PrpU!Sz&)H= zcK7D9Tru*1^G=9^1{g;b z&oQUl!QoUmSy~}xXU%~qL3HvEdk}fZeRde<%`>q0S@6@Ytp3v}(7q?D=^XRx39%8J zaI`_TKMcFccdv4837zWfUkK1a_VbYJ3`vaGFftfSmgqF|%V9BH7GIF~x{kARof%x) z-o8@90F+f9&+CyiZs9*@DCygORp9OWcr98t^GGPWfhYrARggpm&2V;$l^WicS6k;> z&2D)Fl9E`SxIsA8+8_4bxJ7ifi_2Si#nXCCgW>X_*SMS=K6vqkxE-h8?8>%3+bWpN0h@(fye? zL4D{tj4@(;c8rLY`IVW*>ZREBd|0MsLX9v_TVMS?2?hIjLgZlG?*4d)oTKg?oC^oX zoJ__#{E}U4apg|pq*gdl*s^}!ilxcQ+v?>I`>3yBmmg+^u(a9i$LDF!nR0|k(J@^B z*Pm#>OH5oxv|xbjE{(l>yW_C~VYtd{+lwaEePz_D5BkT0 z{f8QS`LI?9PI7Sg<2DOyDq3t+II96yDO!?(qTQx{pr4PRMfzc-V>~@Z`|4a!V=o`V z50tG6#WHkVQ~J7UNkZIG-MbwaKVpu`v>DmR1cOPcY0e?MB?z7 zfXyX_AxEYYpy*@4^ z)eM%Oi+Yo=m`CNGe?#I3udYVyjS!8-RCu5G}d;sQs6{Xkt*;2;z7@RJ2jT%U5XxLuqIPaULKEcRpWdhP%hO z^S8ga-#>^NpH<8d2!k1Z<3*Dh{FGbQ@<|`NT?Qjv2-)Kd5GSAPjn6`OUAfLc^kofuEm7de8R8IErG@e=r)>j187wX!NZeVsBNk*x`Uk z-1z9Gz%4aCfS^?MT%|R1qR<+Ghp(J|i7mFxeQY+k%ONz53}ekV(NruSL=Wv#BN}t^ zE3^AI0n33o1M9igb>au(2iPYu!gfz&U~i@quZTn^epO(wX>{Z}@w!^ghD*&UR;ks2 zFnBi`M?{l%`*^A@LHNeGhM5}~)L z$ov|q2FCdka_8x27}`)9D0?7P_)}w`8o`tmo` z6l8r?I@gwfY~&1o_qa&n?B8b)^D^YvTcSw9ox2k_E+#_AO^#<6%V(}FWxKl*94hvk zE1e4tj{L}H6^M~sjgM@U-x(UT0;ct7C`b>3>9A`{*g{e41Gm)g-$z~RVCVDr9uJMw zy4@<#Nh=duRh&#LekPD$p}$rxNXwr){T(cTBHdnnQ%w^hiz=?mFCs5fqUaB>3fhVc z)QOf876_q@+?u{(yGksL#km{;#L{kQ`5^G-a6(B=dgl&5Qt0`40RKjUJ4nM*#nY__>mf&?>Nl}AIDm@Y8oa~CDsymO9p zCM&$Jqyul9JG-jJ6C~`4ikwL$KiUp_10UPbc~e zXM0#E=49e(DP_YxN}$lQQn4l-meZ@>M`*6394mX28W$1Hu9Fkm_>(f)(yWvSVW%FU zquf>~u+dMgO6tw797%{xmD3>|r4=rdXK##4N)$RG7JDc~Z29~}K83yWt$6@K?AY}_6qHn7K4UIq#6aVn`pcTNY?{plX1k63Gl zg_P}*lTyVpUbH9n@=cEy6qelqbb5sQEa!_Z|I@)(;;>KQ9?Zx?Qg@fF{US}+WSeLX zP65)~BDWMlv!RMRNJV4Ri1- zCKt2?ns}Y55rKgmS`-NBhJXhQ*KKq>-DS5GfY z2#`dZ$%s|;Z2~a+6N$t}*0lb2-Qh!AiH17tA1Nx?Kyg*1P%(0Gm4Y2|VHSSDfZg;D zYiu(*8f@4$Br&kfMFI$H^I27qE|c&IbWTmMR5p01j|;xGY*XO{iG`Sue^`icEH^MU zZ=%krD+U&}asz$;L!p_NH!eNU_p$$PEWa;no2A^?(}j*bt|lVBA79_@wb1wF<7zm z_}j}9^ra#eF1X}>jhU5+z=u_2c z3tx7rnJhgEaZHRXzT^@Np1WjZU&ZB?jO-l}$f!HBIb9En!?$q`N;D;2zA>`J?&RUX zZIM^Lg!rMsxMrTAM0}qB7Py}Uv!VrVox}Mv{pnsrWBES8((nQcD-dZc9%b90fXK(L zK7$BI(?NN`z#=);$u89gGNn3@-~t=weMR)$`dctd9V!UAI2Cz{Iahg#!Zf!W$WT&M zou%V;&S?U%GDtNeRCMg-xZ^4!sC^#jNh4{D3WuFQRz1b+=E*>^SkQ=48C$cCryU!5!{Kvu%9S20EgfNV=B#ax@dg4A9`>S{hD%(M@8{VLG!JfA zrzwJ5vQC`C{ft|}nKl+#!O9!7L|*)zOo35;~g_;?3s}Zh5`r*AXwD#-z zWJw~=!RsaA7or(9Bh?=Tnpr!AgSDlbk*Z|VsyItq@#RaNWng_5L8Y5T=eX&F&#FZ5 zh626H)=NiFS(4BYafKC!I|M~OLP9JbMskyJA%IONV;rA~ky?izXbwxSkOmyGMa=I~ zwB1ABCS&lZ!c9f_Ewdtc+L$RGp@&77O%k!SHlQlgyuw&5mR`Oi6Tj2Oh!}sU6;c@U ztPx%tOG#VoL?)g~R4Cq)sXuuGAoe!pdjD zPe8_%uVHK0#d$095w2=L3@C8{U3R;UmL~cJBJFi_bcBn8aaYpC)zaM-tp|=PRm(sY zMHg{RIOPKKurMy?#lr*SS}VJ+RL({Ya=;!QT$Vh&&$WF_dZs+=jOQJDbyzi9B|nQ$ z6T!_5~Fv%l>smp z1?KWis*W$o8{IxmiKJ&OF!kw3VH#Fn@qL0>elztwQ)l3k=9-WLAV$ zhT=aQpPnesSk^7MyqrkPfs9BFQzNhc&5Hq?Ifb@EA?peGjkn4nc7aj^up>*g3q7i7 zX%#E1aKgwc_Gw2JegOdnrc=b(i0Gc>1TI}5%XW%v2$mw}ZlNTe<-WedM{aSWY1JK1 z(I<9f@YKPsnE1-lR_d~_LWC7YSb5?yL&z|ygHyE#0_uJsMb({*55^|3m~P(+2j9vK z@@scN0}%+N%eKOX6iMJ$8X&>!Q^O2fqSy~;5Q9@dky3^G&gou<8DA?CUkrIIJG}}B z8rc+%>Ej$wmR&%$x!#6kmmgsJ6ceDKQ|C7Uf$NR{=)Pg-()FX*MKc~8nf6_oFMA$? zNRjr{i!$vxns2(c^p=Rf$cj)QzF@F%OUnG-cywPu{=AJroP_ep>sDBx9O^QiOGgPf zh(1t2C>-gxQcgs1E{_rAj-;b(9`me(;K`-T?}>=%t;aYo({ZDN!_ z@Kqbjk_fbcbiV9UH%Z)8`WqOwt3-IH=E&G(rx)DfXffq;x0G1my=HXcQIb2OR$DW_ zBpXzsSWx)_Pt^m_K()fcmoE++i=4QPm^cbkfq{;fat?EuFa&YW664Ow- zuf)>!7hm{3^x(j^h?wx@CDdSVxMj_|;zaCgZl^|SMl z=1YcB;>#14&fU7r1GtU{MRA!gmcN@-1a!&@e1+SA5GAC2G$Duk!*YC2#6RLD?@Mn;Lhd_ zwyHa&l{#66O4g@F@#PDb1YLaU+y!Fvg8d2Bk`U(@DiYaofYre$Zj`g4%8v~o*PPBd z+>dpDhGl^5z`I-namXA8TEXMF-NQ3q_h!@H!T9VKUnmw!HZ4=!287XCf70s@2FG(G zP#RVcOnDq4xV(LHG&~+4>EXs4_mVGYHSW@lGhg!ws^>4^k8dtsy((KyFnqZ;n_x31 zdLK$LId}C!=kk;$c^DI3y$qh%AWR4Tvv0ma8sLaq5{^zwWGh9o`L*~+duh?zVY`l~SVkZeNo%9k(Q z!iBo#Arf5ZA+TR(Y&zI^(L3xvq`RG&fhwo09g+lCDDK~3p-clEt2!OJW4>fM#O7&c z!_pLiYNDcJz~+FYsY;XLwt?a zP%$HGfq*?ksae$afzBrU!iuIUXO4pp|_vgpLb~& zJ0@tjq!xVy@3EjL4qr?!0;ba~X$N%u&1N!K1R>~Pc)m`#ae$HAkEExb(siE0W6HuT zKl^S8QdiB}DB-slYlpV`_UJIEuDRiPcl=-lqk1_)-CX8O!f?K$+}lha04(0>f6%4d z$k2zJ>6&~=-sQ~S6E8(3djNZ+l#mgC;*3e3`Sj72s zB-e62+m+eLJ?So~??9X-T8qh^xgQBvq|Zu7NdWi`GXW^yGpuVVG?@C!t_({l4*JOg zjW1M%Yi-WdU&_#p^XwL2ZRD4@Cz(wh68L}r{eKB4fc1xwJ*=^R-tCNVJr0l26xD36 z6bV!Y{&_({c^rl*yy2&yQk1Mp$f$*G$TyB0HM{veNy$n@IxVCk>ljk`Boryy$r@|#kDX@LZ#iMS`uDMfL%JeEDlh!GW$t?^>aG>9)hcw)yQ4ei6F4kTkp?ad%hJT+6 zerbS!B0Ii8q3bGntY;yzaMXw@qM) z9w{Sc^I|oG5Oz3{V(f5SPBH6%4E?LNhBOm`DshdP(k0>4+nbv|F#b@ySE^BN2w|=O zA))1oYuBn!VDt;t{P;mHSoP@Aq={}Br;Rw+dLc^|JTW}AHO7T1r#{sg=-G6`1c=yJ zBbfyZLMjLc9S6;)a#Wzk*9nAJ4T-n$GQfN`>FiEsddVTX!#{zM)IxxGkpMsi1C<{{ znwTITElM~xP~?09#O){LWieG8SZu*{vNN90?;<>gtEqL-jFxKfbom>lWM8SQ#f2qf zF!@XggNY%a-G;g(N2vNqN>!X{G{Wq;6S$+Q5!t=i38A8okz9n5%M;%u@WAcY2{G8* zE^Ce5PJh0G6PEk)huA?P&uID4I2idfuKSxG5BN}EMSr?-aaf?jVPkuVVACq4@j0$f z0e1QIRY&?@!%yQ!g4I%F53+wnOsmJ?X4`!0q;oVfBAW}V?9ZZpW zpe&zFqD;sVvVlNkOnK>bwN|FcHtaz2dCg??S}U_+E142{sWXf4Ft6tVmhM$szkB?k zwlP_*d)4y9K*tYsJM#Q@zwZQ@0px8w9^BGD?%q4-AJ)>z?u)A}FA}Q>y;wm4CF$&O zH`9D_ANLjXj2sFUA zq=DgJ74aOPfpiGzGNAec6{zJgAmcwJYC|@#TWf!=vsLj}@}zHwdi6{89G-S;MXaSo zB(RSA2D71Kou#?Dze_tz@(U*)6Cubq`$Z-E{Jm{kI=AUN*!c5=0dVCUu9e5}>>QT! zORze;vAStF!~yXf7WCo~45mm&5*SQnJnFQQ){&Va9o5@clgzHyCDfPt$0U*b>Md&` zF`Wnw)RGPN{r!iS%wY5Sf-|-Wh$C@cVNG?p`Hj}!QhmtHwII2vy9)S!`27-epvv>a z6Z=_HsYzchHB{t;q1wcx7g)Y8E;S;`W|eViF+f->PY2?l0vo{laGNs7u5^0>&WXMJ zwB=7Zr}l5U9EBi&#xXq(_<(ym*I91-#&(0~&H4)YG@`i}`KhAJZYi;2MsZ=XYappS zdC5KK?2q^8UgZfkkWFkF(8=9nn!WW9o-r#`Jw(I!QBUz$Vhm{o2@?tUNVVSzgqAOg zmj#dDYtIVkf)X|Km^z9lIy7i(Y!KnW7GFhT(#*E7$75$U84r3K z^3a9T&$eV5HsKl(i3(i#QBr}*dr;`)?t^Z>!zZa>{6l-9DZ>Lp?!$deJD)`LK$!Lm zmWJULNu!JtBdvVnT!&9-L&}K-`bL02ec)s~CI$NP=T%Aw~{8*vod)pRv+rL4uSN#g{r^F8VASnIA@zE}_R2F;&HRk&Z ztY#c^&}i=CGT3P0@Y)jI%mpK|3oDyXqPDUrL&C@|Ki(D+Hv$s3?TeH;_GT9-w~7yWsyU_>14fRz0(%Tt0Ru|>lmNHs>m(_dPuxoq;KDv-MN*N(m=ww&1O%zK$x>sg zjMD6N4*Jva;qj!(D4+adJVwMxyH_Z2<(s$xm!P=e>s$??z~yz~Vh(Lo;s4Mu+2M^V zEfc0UlFVwuD>fXDv_4*6xJ0WR0RI@^X8RkrNpy5Sc07*e$aKPgDRBV*=+mImmiu9cMcx=BOUw=^A?!C3Z~qt)R$F$L}G}soT!jqPM6NRNm#q> zP&eNB0BbG2-Ghks%g<;G1tozl2Mq+m+5|Eg_0yfy z(jX+k_ejrPA%Q{nL!D!={6d|R9Yoo7T`9M8=NJej-?Kt(OOBQ@2+k5Lw&n8J&9>iE zHJ%4MY^@rMCfG|c(i_@1o7BtjuR#^6hY=MH@t{C zhb5jpxZRex6%QlW6M{%QKC*bSL%v*jbb^&lk&%%}m{+n&1SPw&WOhYTdbWINZ6TFN-_9tZWD<@N>F` z52ENVNd6j>NirFaS`p+r(NPgWOCnh)cW6cDa9=8H#2}x(XpBk>$gqfk3yhCI(P4iw z_z?(7S2eU8DcAaRF5zt%4oP=Fnve@vk40??Mr^t*T-pV!f5yVf*S|N1R^5(Zz~Z!P zrm%;Nwv-QdPSai9m_X9;IintGBI@My2pj7bI8a`>Np|g`PPm!JG6L0gMnIingz~i- zXwdyxoy4w*N}ySO$SV4PE(TQ*RXz{64CagCpsnRS&7II5AF9%SLtT zL<%*QYmTPFbW6d2(3!el(|uvX-VQth>C);~VLO>US-(!aAqNa>q$doSK02ar)WU=G z&+DWr(ugZy;*~D%Y+iaDLY23`1SNkmq#lz1`(M<_*6e4~$&7X|@y*SA?r>=MKjd1; zI*^0{1}QxG_+6z#l?v22TZbTO3?{P$tWV=9r-Jh9Y*t*I{6GT%DG0=|$BG-1PZ9v{ zkL%eFmpb>V7YrF!>zP(KI^sHM{CiCo~}CC6~`L zEB_!@#7LvUe*Ruxwr%yypMUC^%+ZAhscPb0s4#YCqxEQr>( zi24`e0mxN}%5u%>Vn9qrY6yZmPel_$Is6X1>&JNdXXD)-&QO@^;mMj~JWYDMTL?n= zS`9Sl){pV@Z;&RUJao-5o@PqI%a^Kv;P-i*Q$_wdpB+!NEwkbHI>{+_74hW>%~76$ zjS#WX#BjEuRTNz^1;*K=fdQQw(r`Y0sueD^_bZ87!X9M|J7)NV7_Tg5{|?4ZHCy zCv^4fZm2q`VzV+5#%<8)YY#hg>0EZO0z#`nkkscqc*(E?YZUQjE3ldIec^!3b z*=L=}~I1nG8o1=>guFLl~0J6#?>Tg@@&ruOwkXw7vzI@jh0} zNBJZ=<%4UsAXYNslXQq|`MiB#pc-jmcLh#M?d@Wz66X?al9otDgjpn)&qq+8Ro}2J zFmvzEd)TQEpNqR@!zO|YBe;A{1A$Y0zwVCo!nB+kl=04SG^1RzUk?DdNfChZ)!=ym z46gMJiiG)jqv~Wf)8n``8x#@EyHigXv^<&#Bw_*CP0l%p)SMt26G%13 znz$aChV^Ha=2*!NMxJhvofr$}IV!2Dj&F#g03goCA)N9#4cP1eJI7<(vW(jgRg9xL zyI#Wq3`EKUGSloY>b=VHHoBUR%DUgJ5ark6gt9TOh2XIa)gAi)23~?_)c%I9x+$Vd zwE4fxTePON3khep-DXk5vMaQ>e_1b@)+~@#FH!&G0!FCAoz=a=0ErH08-`eZqxG70 zODUUD-OHC0Q{M&NXvNu%`m8nfdG|w>Ci7-(Sf7Rd~h?E5L zxNdS57g~6*hKFb@W9fFY$-iA*6>A5Ls>&dHR>RV0qKqwz2(o;wh6~E(ubUz4aTZZm zl#HA2tXDJ^N>njjp9%dh6-7@iRs@P$`L*G&RTe7}@`Zn6aICwe(G${@|MWI#aRKAV ziZvAiXDJGBo3EGDAfAYZRXMvoaXAdJx0!F!2~G8L;HDN6b;hb~a{GGGjChR^0gY9y zbj7ziKTfUmnnKWLebg;muCmgb1TYn`ei<{B_K}p-jUwow7p#)@kpvOCO9by5d^fUi z{X}LB-_;nxnp=ye2~8?LC~1Y-)@_yipd>=TxGwnL(BW(C=>{qqwd<#^(>mK}*-rR?l{RK-`0m9h`JiD-5BZuhCYAIHEfuQAaK zA%wgQhBrjVmo>U6wGcx&&qj@ITt|Vq4pKd>=^#1KhJy>ILzxccQV~~aWITo#n`c7p z^AZ0d(f4}Mihk34D0{zYBTQ9;%DgC-nfOw^Wsw(jHwkSFUD+cpjxjQ!c|t7yi_5_pJ{$DeDtrwKl?X-M*l0#Ng4bU&EDVC z)&e!5Qx&f^6??eC^hQW4u)wtK8^ZG|DAd#Fxbd{xr1WHPahOE=nBp@L* z;$B@PTV)cEz)7*sES1%dK9z4q8rU?^aB#8u=u;u3bg*y@*{b!k0VO@sqmsM2`fNbK zq?BmPWL>r!s1NsSv>R9{*pqO`uFjMS-DRVEvk6+uR@8(JYLL3oippT-BHe*3Be-*9 zl{--~P`(%AJulSp`pq_U?NV~D&HB9!rAJ3g%PS6(w%T*u=3L%pC84^{n z`B{cZ*!;ZA*5vxhUMPOaO0)W8F9ch&&eXR9A&Az9%QabLR&NJFw1i3wxpa-G9|MLk zCUOuyQuSr^F<>ZCl#%KZKF5`IQeo9YRF+gGm%NFQV>IB1hpnq*ayi+;)K*?T@ekSN zwOgc8d7Dm_v2Dz6mAp+SGqfc0GPixw->_S1snh({-VdNZs={7nsZ)zn^b8`BL-b2T zw0_QOcZbmF7maC~tIv5Ygs^Ruzgcf!p5a4LQ|k8Ph74@Qg$B0IoPpf~7&w)^E5%^n z5~42SHylW=lD(^ihddi{jBonU%4|A)(Bq0X>kY^Kz3B{>k`5NVIbD)>diTNTi!Z+T zMR)gsIf)HNmC!G`{oxSz`O(p_xXKIHLw1$HA1pt7X~w_w`-_DC(U<392BN8_fxExx zmdf&_bDkOY(hxHg%ipc7aGfQT-v9o;mfnU<5nF|>OBItqy048)wQpg1NNdE@>ZtAD(0N=OM{Fh|DDfZ6M**xs1mrZXePRuQyz%^usT4_MsGhl_kpln^qP$^95Pp5aU$*i#EW2RvJ$?s_~gGL}P*t zG(GbLX-W@qkREFouz_a((oVB8I3&)WVP_AB;|)F7b%hJ1%+b|G@nv6EcKN?HYnL;y z%W|Ycvz>u=ETbsKePY$6RfW<2*v{x@yT?<%)zLaG_7mbN>9O^(=9iR#|F_K=_$&%q8`4+D8l?Vx+)aX;gfhaDK< z?BP6t`9ovU<$s{8`~Pg#x?g)A&Jqs|{k3)C?5{AT7Mr(F80HV+0x~Z$hx(Yw;U7|G z{IociLCF-w_>tdtrrw|tcd*69e21jzQ6FdG^>-GImU#w#JNg)l7D1J&_>iGNC|A+ zOAs~~?FrLU5Dt=|6Y^3f#t$PKx7hWR!l)od%=CJ*nFph>y(TB{W_r3IGn1$kV}_`hnV&YAnchg4nI3P<%#2Y_IyN)E zPG+v}_|T+PotYZQFci9a#|KGCy3{V4We?j_;oux@mg_q{ypS?*rBPnJ<0FJxzH!G# zFK2vsw%AWvcVC%z^%fZv_G|d=SDOlYySb^LH_|5F-<%H43gFzDD$rF!vs*n zcTn|Vdb`<&>5a6B2a%0eAG|R}J?Yqo`SpwsKR8TS`GGzxX$>EKaG0bEfT|DUVY3fE zI7}J%!C_?IHGCKdwR|f+jF*XUu$&qVo^itB!I`9a56&nrZm|zK1yMs8AZ5iRh!U|5 zQWR1m(}q4c6Pdcj&etSL19NkCpzEgDm>GlbVk5F$1P(@T{CGnKXIUxQ0#Y%!JZ>~N zzmhOGKi`!;ZCM#|K9 z99eqxR+=&DNyk-^UnesM8_lB1GTG}N9Q3P(mgmaUE%H#4ASvDkri?wrJO}k4MKCEf zVRHF#Wb_t!C25={`md#b(%gnmW_ws@lwSr-3O`ncU%d@ySxMrAU2Ve!8&18#H)wTp}QqHe4QO4W1gE@J}~t@bn19Fi#m= zMk)1eIDUFI>ELITxmRz)382PF&Q{xSdYh_beH%`1q<#BrWa-u0aK@-79k=29I184uq?SkhB<@)qV_6q@F;xfl-zihKNRzJx zOKA|mm2cMmlGF)y5!b$#C#h4sy4JZ zRU{3QB5#4pcvx${0RLd$OImQk_~z%4`CFV{QG?W|!|OFaqC%+eQn6^3DgeD8wtANe z@oCan4vQBN@Gfz!?^0=jFG)5s^y*zIA=L7XTYY+&2-gn_@kU}1fu1VgUVT_dqH6di z77-X2gzJZe^hVmmn_EO+jC#`Xu#jKRnE8+Mql91J>88vKQAx%GQHh`|=xMW=@kYwb zcpSO%>Z5OBk@jVxSLtf_bz)uLRAAw^YGpiBMqa(CfTWa-382zc&_i&oZz}LY!oYYM z*?0A(f)Hx?#!UsiOoZ!4A2?THng|2(V`bpgM;|OJNtv*#E+N=pT|fHZS5k&1iIJ&S zAAJZ)1M_(FAwOuYgMS*$X9?!?I3m7!9b}9YZ~CHYaDJUw2PadTP94*?J)|jb;Sz=( z{`L$1!54qvZA^{h8`1)CF$;`Fo(aAt9##Js+PMIB zqbWnQ_mAOFF@U_%`Un07dT_6%;WZrY930r9;17yJi+eRgfe{Tr;PU721tJsNM(w^D z49E988~UW^w7890iH!KLTyuHK7R=6{>lhsz+vo+oiBIb@f{>UI$qgCNXE3U|?Qj^D z7YrNbJ+*gR5*Kly!m@5lU)S;oO6owD(@H$<#XRmQ9`}exwIvx2?Yb?BN8bR{z9oT# zh{W8tBqToVBtOi?Q#%BZZSmKEHVg=j7!*E@-P2BT`5GI1_D(eB#5O_^v{g*?}$ z;BTN;`<%&y&ziLL*nCtLY2W7o~gQTY%^dDGC_*2no?ech-y-97g%1{h|fQFD=P0_4s8&B)?Q7 zfniDF&t)u$Lz(XFOwaH+&iuz_Ex8Tx=OJDS+=79m{h|d)6t@UCyJ1TT7hBv8!;%Et z@|Hw#i-1iRw~(~O?Jz7!Deg*OJ@#z*9aSDz#@bxqr*J=c>BeRpRH97}ddzx9@N&Do~?){_lAcV`M5OIE!0uPcGGs2lQR$#a`} zyq(rzwFH!udfcGN@R8i2((AQUz_|x$6S>HS70_;C@InQ|U0N#OT!sWjZnI$pwCfnW zPyunFZ1-(lNKC+EJ7bM-db)P^ZGE1cC$zo6^6j&LyKE`yG~rJy}e9@ z-Nl{pIF5E_+M}D$aD0vatU8_jO;p#T2hqzfPD2C|s=8GW$5G~|kSPao?R1B4+v3Q*M$77rWi!+XgnZQAdOIy?P z9uH(A1)@ex2%$A`RAmtrHJ%$MZY#4x(_w{5Qe(ZvX&6S$LH#shxOOFW#Y;VK-2VzV z!jJw-a+(!XsGnLq1{Id*1y)d@zAtzTDp)77E&!+Xr64^*aByC(MwtU_muOEXn{y}& z+M;!BQ7ZYaVS}a8LWSz01&?;^Sjg0aXaw4R(ZUI(ni={#B$q#thg4NFbc|0&P2!q# zLf<97Wjf-s!7;R<&ysblyGX&B{$6#Jt&@wSWetT(L596N=*h#3wd!fDVXX|E;F2_D zEorm+J6MjGERGJk^dDuZ7MG;e3BGdc_Elpil3xCp9*~V{njO=9Gbt=FAC31%eT;%| z@jaisR(+%huh{H_pjR#EISVTE6UgPu)t5=N%5F#FK(3G6p_BZkv-tt4aqzcNrFB|z z404`8t}%!i0eMucTL)ja<4gk}D=Dh*o8xTjeuxxsmR6uh&t?1wka|5c=)vSaoGsp5 zt$*^Osc8(OP83|=1`2<`1(u?gZp1f2t)VGjidwos-v~8Zv{X1zvtHA0d#lrLj^_R8 z;t-convxAZt0G>p-}Ycs#J4?|RHBFhCZ*A9RQm1oFmB-Vh&uJn>Jd6dh#2W1F^+b6 z7@u)cqsC#gdW2pSB1U>hLs2(ea1F8@H0;ffyZFEIqg96s72)69G+}i@D1U^HOEtU! zx4{T`Gx#WklDl~39)S~=`|I%Ur0UqyLi4tw+3 zHP6^0l~0(*#J6th;_4?NBVGJo@mqB;?u1^nYiK07{1HA9m&%@`c+fUF*csu12b_HE z{!+YJXY0oR7cGEPagS0y<-Q`OS=V&G-025o@j>xj+ch1j^L?{XIRwUnPWS>5&-Ph3 z{H1?n55dRA-{`ZVzjmK>iNG$I6ZiY3U5ycO>c4)C^a$=SNzAPfNA)ToL%4rla-hK*VFX+U>vjWPJBh>Zpyk5ywk9^8@_X8Q85P?qN>FJTC89!l97?#dF-lO8 zI3=VcDqGg#b~EsHbZW<4`j4`H>(hxc2x51JDSyoWz}A&5qD?|3{e#0U?n6J&N8YvG zvYo>)Oc|*Ba{&a`%J#G-IXs)@rQK+v-g>K47RAtIM9kS~LML`C;9oi5AyX3A%PaKh55>Oqi7iVYdGZWbK1tm9&z4Svg!<9^a5lk0e>eDBDX>W= z3NS>6-~pT{`~*$f^zD;T|L(&cE%kQ&pGuES_U#@*)Zov!PJ}A+)Ba1U(`}l``k=)o zn@K@2#5v~@&7?eRJEFo?86NQ?80!CgY*zOWLLQ%aSWnUKr~Q|!DuEu=3W;{)FFrl?j!Buao{Z*(c{AfhKktfWdBg? zH`$0<03mNbA+yx|3F_Bc^k4ROy`8bCz?COTnZ*YCvkH>ds<4!Bb!X*OswY=g(Ua1@ zM~fp@R6X-RY5B*;p``(el(g{Wi%v)T2rAYjyZQLz?t>^Kg6p87CrYywa}GV=rQb&p z7tyDRTE0|yl?p8z$J@h6TZgp5i*UX9OKGrn9Pb+vORKxW+@q9Fxv!RD>IPjkW52bT zeoMpT^nlNOMNDfFnSG&Q-yud=gAth(-JSlZth-_&vxmBDpvb^>l{dmGpVu$7Rso$| zC^G8sHmZW1Lq>R71?llxl>#P|p-4>f!Zr4ds$gf85uR2-W|`T_Iq5$f&AD>AzZCJc zUH%FI_{!-~%BS2{OI1!D$oe5Q4{t*gug{bQ?ZJj0`Y40wr>@wqh-o%ypnl-IcGAEV z9wAFRX9me(vQ;+Q=8rzA&<*}pMZWfW)Ne0ELH-b_d?xss%-Nigh2TDw!Pi~>uj090 zMivB9S${3I6zS!k^CM!FT_(5D4tow`=!$DEli!kaCxx3uD4#HoiC=0QVcKlIs+&$q z>G6Z!aK!)8J?{F6vgRt|h-N@x57dI+!%epQF9v^ACeY~DiNT)&*y#`Mj;2H0ACA{#MG~-LSG3ZUZyaF$6B33BF#XKv~%R z@zFlC!X2-D#FiG_)I+7?rVEsn_#P~vr)43vG)bj=CG`VRKQ$q3sxz}4TpfIm8zw5+ zZuD6xy~>2N3H!RorXm)7V*=$1(QBk-st-^|D9n4f5}DU(@UK#1l|CRPT=*KKN97at zFYrq(?<*0*(QY3pyuH!A{-n1%?M9y!-&L0Po4|};34?+d6uUSk^M#lL^hk|bBGLSD zadf-`9o*lF|0<&v1#)5ZTgq6u1rW>KBcTECUz2a#$~9@b{ktRSZn4vA%WCbPy29{} zls*sEZQs1yGy$t5yGTKAOFxaHOsi~3<-HYEK3N$~12~(T-Tg6zNO6ee>@(?Y9yfThgW^2WQ~*| zKeEo&D3UDNU(KTTYpq!MMp^DZJs!(dK()2xYh|G~t%WK-C9AX@AdDBZ&r3N~<&m<( zrUwWWG-CjHt~7snSb3RLzTVOij1U=%kLFz~)jm+_9&NbTBXF&(V^F?WAq7Q$+fLEZ zG%ni86Q%0C&8k`f6J6!8D%Y1PuTrsIT}fMO!mg2NKPye=k3~}prS!B9F$IYkLC4e% zOf@_3V^P0n$Ts|AVutI$drS0?=S}}T{l-qE9 z47r~NR#ib}P`((yNQ(B_dFbx=!D#r$!#;*Qi%{uq-4{yn|F~J7y+mYwdxOb@x)}r1 zP<>RsQTIbK$hf6JXfks!yNA6NNJU0X(N<~tR+;91*|2E{_$t#ncW>|d&LUx-MsDRh zmzqS7rLv*PT}bF1%!bF4(E|Gn{D*G%L78Fg&}1lCVH&3Zi^5RCu8;6-QYjm3-hHq& zIL4U&z=qOIOi3Q%1H$VzrWHO@O0FH7tgzUYXxcVY!v_lTb9g;L5Bmrbuaowvy&}3% zjkPEHg=%uah7Xk9tL&U;#=ivos?ss5M`-$@7gsCn!}$nJpVm0>Oewwj!oDFas(PoW zlqV9ellJ@Bb}lY#N}Cw=C$s5DDiC}Neufhj<`26K-zjVS&ucexF{@jS)m3h3#QQH2 zE2#oa)XI|$KPM~wE@ve>HgaLg;b`Z0uV){->8*aOZ1Rum+Qfp@a1b+?85fok!LP7C zc~rh;r(zL9D8JiY`G->+&pt3~r53~+A^Ej3#{aZ=V{Yn|g!f8DqTG$3oc;KevHXw|^2MAlRd;>bC6+FNhZAB-qz9IGG}&zmjr zrLxz5-n_jMkddMM8$qpcYea|sYo`#ICObg4+B^R>5k~vmStWX|46^o^&7#$@(6%rE zQu`xZyk;FGCfUjYd$>)`%H$JRN4?>AaMZ1N{+KLKgC-Whm#*~rc-B!t6k&mypOFuw zQr*=w!79Dw+FtvlTX~|iUM1B%jr^@$7`o0W6eDxpQWd^@sq!l6_-~hP05J&Ih`6Unmtf*Phq;m{j#z zGUXd}KO{5USh|u213+uqZsM6z{&-^*_=X>T+LAPS`!6gl#8VTmleWtbR1i~~&FQ=* zD-=2V(G#WV<_0P^EsoZ+3SYidd6jg`CVHBnWY_$w)L1*w(+D+XBXLnAdRi>-%O*&g zcY8RO*K(x470BU?vIh@Z9`+Ib#{~sj?+XMCZkj?Rv@Mh^~WxY_>rXgpbLA7ryddV@AKtUGS^tL8jl3h9@)J{%XtjCjtfQVPo2;Gk(?~#DLPG532an2Et^S%F zwEjL#d(F&HvrHwIV|z(%nYVg<%lOFb8^CkET-3CLhGm7tbeX6rzOYF)6D+2IF2vf@*&=wRY_N9bNdvgn9SnR6 zaKhGrkQa2#_6ZGey?bX<>f*7|cv6r3utG)?nO2%zzh3h*(tqh{Ze?J}{)kqQjmxJWEA2N{&C^&~d7y2l}1;1J?#IzA{>R=LNa z7DmXMudxH4Lg~-ij~v6tgVZTrRf&8&0zam|6y;UU#!>*k)khUSI+fTdeZg@C72C9i1-j_YciJkZ$m|qP_O$G!QJT>4DkmfhCsU zYvTN2rK;kFuDwy$+-Sfb6u)m+8tn$I}-OpL;@GCWCHCT+No)A8)Z63&o=#bRFJoK@~ zJoqXw4}DT}Rxu9=sq#_gVVoL9*b{Nq+lM}_&4`3Vj96|^VEnnppYfd{r1-2*xdsqe zr4tqyUZ^WDd=(TJeNuE*DKHXJ<)aFWabTWmdhZ;WnIjxmh7=~`4I=W@pX|-%IBe&OI6&>l)|eKK(q#8N{twN23fN8G#qN_HG~ zf-iAz6ONkGd8~N$a_ONFhbk-~n1-ae2Ng{?e3rlYLTZQ;~x_+j2D934X-{DTZa+))fY2LL%i z;k#R`yX}z4MDQ%_=8F!UO#!%cB(NQAHlwEwnt4*V%I%CvYE(?u*%=ohJHr~<65gk~ z>Ew?EuWy9-9x5!i%5@YqK%&^Z;5iY5Z{#4jkBRvvhl{T7)PT?*5<|23yoYg}$AQm_ z`{vVcrHpbML_$@Iq3Lj#r)-rVM=S(C6^imI0fiWZuM#4ktrBFoDxu#BM3pLZl^B|# zDomB6-OUbxm$$niqKw=F5LKE0XF&;8F6$&h8k z0uir)VT*&;4H!g^l%;>PD1|0xHfE244WrsrYy$OVEKSWRq~Y&oDaa0tu_m4 zfI~6{(;(D>44e-jPL-P;FUh_5WQH9#U&E2HC?%n2yN>>`_ygCErdLHkq%`#VdHAM^ zwVq@9vFz##P76gB9M!8kuKV|!oZcvFbEzXpEH>-N!h^i6z$?8Qw7t> zEwKI2Obb{E8Q#q+X<-uY$H{oriDz#bX#H-g_=;mwI!V5lWUymv^ zAw&YF&hxDTk3~Wg0-wHnE=7s@uv%1Ma7N+XiNRYAvx|PO`8F>nMSHANs?qk@Nq-gP zE6M7u)X8DlcGsaTgc)306-o)zU>cbwsX@`}c=zONG1{P)nr(J&V%l3Ay%m*Lswj7Z zNZ5!@-cqP~G-Im=lE4RI^9bjk30ZR%DM}xV}ma8Rnae0Zgn&oar zu@>9y$0Id5e=x+$q{;AYrPBX#e7i}cO#v6`7X+YVg}M3DgO#1KC(S=D)BJXXJJwQCE0`hP@)2jmj4Z7~{9-`rdCF%C>3v~-mvISO%HnY(j z;U+rxH>VQ%p11AbTOxI8X+!ZNgIunaje!va0S=PUp`FtTEHcaW}g ztV!RgUr!>!Y-vtnit=!ImwHwjyFA`1-(&KkIMz?hv-x6F>_Ax_-mF_&AM#Eli^C3* z-Sta6o3BMR7`{$&r8gKQb+p92j?>9(z*XZ7nHQX(G`rbpT`%6&K*uP(YPR*EQD%a62m zFz*xCA^4X+_|z|aivDYUt6h9o`p{bL_!yx=;?L1ZYPs)&1ba50q>fsq{6i(Yxo+*7 zAR%&9-JV235bdj0;@f4%lz*^<4?87%`16qPVZVgn+bJRPAz|uyE{%o8mho4G(o}tw zd!C2nv$bS+G+&MynMnoSAGA&ms08^OPS0jbGrPs;fgUkf4IdT!^4sA<_&IJYl4D8k zh;RUW$t9R~Nb$E05QJt6Ml5j&iW8JD4pPlj!@Kr;DK1DNrJ?%r3>LU% z4X#d`>4*ZLhzrm;k<4c)G0Q{sm7wqfYbajyuXf;s652m~RFmWD>G;u^`;}{7Q4uA3 z{in~d^vqjZpFvRQpx@g z$MlO1wnEaY1(Y6mG|jg<^q~lo0i+S~bX^z&*i5hBAPxVH>(%N}M+1;@4@^O&m!rNH zq8FiW$oHv53J(Z$_Ir^fOG;_?tMauvPw1e{w|EhG?y67!P*f-&QV;~ zf0j7u=+9f56ylIw&gO`{J6&QoVm#e1XCLpUxK%57QVO`JZZnS6+f4i;!-{3s{F)b4 z5t5*N1;~+oG+R!0E13QoH(=ws_RV>cq9m!GIXjj=HZ1Rh<%i6YrAhfVFDFGws`NG) zsZhtlg#KOL&~x0FRT*qGnnFs%dM_JA+mg(x9IoNl!kOaq2LF!22`j{{^SC2bE-5;tRs z4LH8utQONgZK-!2AZQr9lvCTk9^dAz{&E0&^v5V|6hXuXA&{cT*Q2keuO%g$70nt1 zG&(t4qmQOfhuEv7=+enBBVmWaaGJEGmF4~C)2T2-beQh&#=xO!{-{rBAp^3%H0*S0 zxK`iW>HKmyUhjvy8QI@zmpTU~N~3pRed|3;4{zaLdQEBXga(*Fc$gCD#Q{(b2;_h< zHoXRzVMi)WZ^UU;so^9>)%ppL_GL;t8&pdCFQ+p>h3PQ$nODRLpEXdRIjeV=*rc-d zO?PKe9Ff-z_HBS*_pG#0zvubsrS#&C}KZ4a))1Z(g>#^F;|}GC>!Z^XcVo zxV@fTdOaFqbQb3l3tJ{j>9ja5QOYU@p4bhTTk|Vg29L2*YK?O?WU|Z4}7jQ*@qk4kM_`DLP+}5PrYSbT>16lk!GkvT{~Yylf*_ z0%ke%CR^;{SG8RPuXY;7lT_tMQaZ0T3=qn}Ci<~qP#V;pejjk3#iPY&8GRpY>WRJ& znumgHvy$(FekE_y^A#OWnvJfcucHKV`x{*;{g&IbqpY!lJRJBy-PyD&NC3b1`E*5epm6xp(chDWTb;8{T{9&riP5E;@2hO$HykwT=iWTH66_rqr!zU-OFtEg;z$)lL4hEO5-N#=02B$o^6yd?R7q$`}opE)5X)N**?{9zE_-Ur*b ztZ?!YsWt6Eq|kOXze&-XRE52~2T>fd$eD}lLDUQRHhjHb$_D(Hek+LOZJ0=CWJJ@o zVZ#C1OZ$@fXd(W#WBPq04kDp&7@7`;c><2KFPYCgjG0DJ-j{%w1_6q$FF|I$O6IGj zvmg3>tSUf4qad1I74!sEq93SQ=@AgajI6v zm}y4F4MHsf7d}1Yp$oo|j4=t4F>ylmQf#+-Y;7W_INA}sE;rLHoU^sbfubpe8nwk9 z*m9~~i=%(^fXK^kkPHOKfbpX7*zYel5<%<$3ts5re`zu54Whhf+M7#OvX+k~1ej%# z70%}Q(M0qTRpq~LhrgeUj74B{iTDWQIW)Y0_nf%UI(3hwAdNXUSU;hnIATs^m6XK} zg(-^|OI~gP#PJXa&VbQ0)}gSUFzKefYB4_uA{{ttHdzT>U$vH6Rz%_C28vR(k^%V1 zR-eO(3o-dOw#DMMIYU58m#HKv-V@I9%Zh`0Fg;H>yqtZV>g6w6Z5D!=t8rFdgq(a_ zrcKUW@%&MgpJCr7E<*^Vw#NWNsbg74_~e|Adtr`QtO@KeUAlk;DwD%LP_C-i;-lM& zsN5^dkt|)ruY4Ra4iAtFAxs6nwp_LVaxwyHFdVxS^M_Ti# zL>eX$@T6c?jkG`{#z%A|%&G9%J==dP4Ns3xT(D?k9u%VD;Kxi*10ohKf;JZ*1r5>$ zOC@m%ZRdxhE=9pA-r8WUhIER}B)hGRpeUhCr(`R)3yPw8_p^LT1_}`%thm|Ou!ejK zgomyNTRv2(se$k?g77ee@Q}3dTBfcZ4%gRDx3jTxR|DRMSemqn3RUq5PNL;V#qb7> zM`KTLs^SDVU1nOX0rtv|Q}|J#EMI1_L^VK5*)8!(i>YW> zma>Os6QHehCD&aO5#JF}zLKjih#-1yB^ST*_U-P4perJjGAitQtD@{0ioS_~eBQp{ zhCz|2KACQ0hsC&NnDA7Ts8ChdcR*j)6EX&t@iTAVL2&|{sj(Z^CEO@%6*YFF5#0ne zc0=6%Ea?u``?K+WL(#qvh5u&e9M0kVDH+&8H8~1gvFAlV(9%;_;cIGf;OYRv@k~4~ z(ieLrftS{FByLy1`!t!MoYP6d^x7n`+;WoGEYwN5f(_NP4lwS8`G|SAWE$!sT}e?s zF>&OWS}X%2z>tCS`GL#) z({F{cd>4pFC~StN+j1~Z&|tcPfF+}|@o0Qa0VHTa6w?!gS2VxGG=n1OlcbFOsc@IC zAOy5MY5t|eK{@yq7?@_=*1+Un?w~ZS$F<2qm5@ZQZh2uch2O86p9Msf^ju1be^b1G z5)co>XVM4AZ!yTZx=wjW1NV{!!~hV<)QlvC@Oej&u;F@&W0H0y*p`s)96B&%FbhH< zCH|&T{2cd;@CZI?Kn@td!0?wyVOI1UsgA0@rfcPfGOBZ?twc9vFpl7%Utj`C_R6Yn z0gy^>3c7KhL+S#Tv-~aONCS!gBEMnW@aSF`B{QXBZvx3m$nwt97?0zTibYui!^d@= z`W1ry=XtAL!LiS|k}3EqM@eu|XQGN=Dh09!4#~5|`n$4%)vF{;a=15B4&%%bJVwUu zwxvuN8rs@IO2kS_R5(599$_))6%4u)Y9U7oNOu=ZmD3wnqaE(PO6ro6m6YX!_=rhf zFw4mef}@uReiAs#*Ue@+*&|pM4w)n(a29%xiC#{d)ElJdmY0R|aWMv#+rAoh=A>!= zGRc(OYT{+u;!BIuW{E&HT~$i418Kr0FNyFH2h!vy39!^b`}S)st?XcUgof-H8%R>-qlbil%(7D?cYHX|hsq@u4%LDS~uQ_`MAI5w}fb|%xy5gae<>Q&fl*_`acR$c9AUWqt1o9;2Bg)}9OewAwHx3YsAYh)RN zdbg^%Fd>F2R`Xf=10a%<1jgbypVz*$Mrrjix5QTWAqe?ov`Nflk`INz?a&9{jfBV>}zXG{|DPdDcb$R`+?EJt&0 zVdq$-3LX`rpVT3;1n&o{dl8f7rMFcf0-FTmHfDN-byD}S7w3Vn+EE~wT{@oyB}ehq zLG7#)TLAxHX@xG>fbRmTJ{US?WgwCBQ#4Z?@f?Qa4Uvk99Gq80mJ+diyM#NHj$EJw|ZJ;pKdE<(8eT`NQv)a}f`bvX!XiK2p-C6w9ob zw#0zBIv=Slf$mObgT-t3-Re~=*aX(FmRH7kK3d7D?_?aStVqZuM|yBeIvMvOiSiC) zSJyGSnsUYHW0ABuxD89{DkmaBlIBN7yyTEBH`I-c3>`+y zB%9Ch-}W|7ixb23YBkTy#m&1|zejF%CSKX*W0t9ksl>lr*n|}v6Cm{_M{P~f z*>a}F6ZEX?Mg^El$f5eBNL%X?eGfGH8C5Y?R!0;pjwc-vm~v)yGm5fRt>IhE|IY8 z64G*2lhT9$iI?BF42sfur_D`AT}lBZV%?lH!?sIE$60M$W{8lWf13T)!X~iNv%@gy z(z*LnH;i;z0>Vdva+GLwgW`};D${g5eh@?MouTjP1r-UNJet|RiF2a&; zP^cHqQi9Y?2{o@)Q7k_-CDgByIGuH}-;S=-jtjs4U}!RwC`Z+aA=f4d^NRausuRwE z5b3dH(){vf_vDO1B7{xfB`Wmg2SOBs1Uhjs(GPr3H}yihAsKud;}E=FxrjvWWs^gT zraD4Vogrync_9o#td=5vQRq;rUv2NO!g70m)-aI=d8$I{I^l?0r$oe2ZQeyMlT7)^ z1g6ldOKu6_t%s%;j`NgIb)WwC_q+Em@0iXox!sU>(v)7|ao5iqMDgn+SKbSIy?Ts` zxh9*DL>V{ln^bItAXy1h=Y{QgB$Z>b28K@~M_9;C{3`_gud{$M7nKLUA*Agn5@AhI^bol@k_5l$CP~W3J8>s4c%;;)2|Jz&-BRlg(zNjJ*MSW7 zBos$h0e;xmCH;CjdL(nyWMp9g(#eq#ju*%$EgfbYBYncZMS3bH(_}^zb09)QqigM%C7fMT4UCIx6lc@;(EKpu&kst

VUEf!A}8n&J&z1*f2=g@5dA9zeVpwOsSMmoWUW=2!X<7fqgZ)iUx1?2 z7B+5S*0%{MuH^h#r3G~Y$_fuqvS=%9#37PP22C^Rk(ShycMYQ#o!3C36z}Gs6i_$a zRjjh&f?dvQL%m3%q58OL%t6#ceR$Y)=SuH%9AW87!89fb2G^ zI;tC;5FF-_6@;_g9VpK9Y&xnY?{H$swmY1#3_k~llMLUyTwM+)86s3kc}HLJ{C?o_YKevi+S9;Brh_&wsn%>#l!257Hu9uXB{F@vvw;nR)1ay}z^W%@kC}HI zYyYUKyJf|doommZh$CmC=wQ2n?~|2Y>vnzuCaH1*PRcnvc!?}B4}S;Wa@yVAZ`49Y zkbDC80ks5vkf%LJ!i-k<`yE_-KQZxbLxT>IPXIrlmcS44H2g3F@V}W3L$DO)VzAL- zln%l6!*aVO8XBOX+I&Gi28aS=k4t1B!|Is;qaLE))U4`@Vih-#o7dIXrvLO0wFVDUHRirDq^ zlhrKHmCeG{8}QRJc?xO8x>3q4!fjd7wXT+#&Ej0a2vst@PJd4 zKFX`eQI1g!3_o8*t{^EXiS$Q+;59G4newQ>6-W9LDls%-HWH=SS)Y2p_C3xaw zc6q5_Ry2vrOAQSaC03vz4;3a~&dKa*gm1j7So5TSly{>{Qe$Ddt{dedElP1m$`JZl z_fr*0(f8mOie4!o52d6X)YdhVNn-&s{`*Eo(R#%UfDhH_OH8cG#RRYp-0 ze$0ajuJ4#&X*s&LqXG=k&|vtk4mVm&rCL%OY(g;IXHOwNLr6cprfdd^l78w@4Kg*;KI>U zP?zX?z91n?R_!?(>n>=1GIq5fZK6_L@v6O|pF$NLja{`@#R+gSAVGX-#4@1^J|^eE zZ-ugWKoSsQjGRC&wwPUgKFB6aUrWsGW3jc56^B6R`-u*o|5!lOQCYNMzt*F%JR{3Py2P%mgDKMAh|vhGSkIPu8yq6#P^`%Jl&X z3I0n3ygvIg-){8~^%0Vp?!C+eOpqUQ_(zrj6i7EjiTSG@)nuPOxP&4S29Isi@A zEGRp#g{Q9Hf2#ZYaxFYn=hUa5=d^&|(8Axwz0xHP2@KI>%?g0oDa7@G%jI-F99_a% z1sWB5;L6!;LR%7>NT#ULU-8kdJ|LlLsq8>NBk?$cAK=!jt&U7RUB_b}195FiEMeIKFd8DWgBb z)Lq{f7A6fQ?ln~48vleX!aOUGcS}cgj%@4&`I>i)D=KZYHiAt9o8;A zD|mIaOJuU>bnO~$txbb+RqdJtg|1$CY3(xgM0xF>4tgQ1T=T5pRVmMqiIvB+!+wxc zpuFs-gK~peE3~a=_H5!>|IZ>^P4yqfxRXDR@=mJfW0>$OGk9{BTqXw|0C~ zAhbU7tUy-RZen{(JFZ=0dC5}R7ZXuPEM3`sqkUg+B}B>M-le~^oqj4T#fw=)K?4acZ8zirAz9p`jQPgtgdP-( z;>A5C7y|)SS={3Sq>n6^y{yzzxxEhYR0U?QJpV1#5Db_A3}RpESaO&1)d)V{bg0Ow z2Ps%Yq9moH@|m%xtu+M(IIKqW#ThezK`@i`K;*9ifGdrxcshN zLva3lm$5fr1qAKOXDE6I?8leUf^*`#M2J9DK@|{Ix}6b44*?HZE#N$dG%ox+5&|eF z+aQV#0zCji+I}`zb$1xz75(z|L*z6Hv#S4j`}wA9!jX12o7G}CnXj=)?a-_cQi79| zX3D!8Pg_Gu!8eg82tYuSofqGj}b)C7uyQ3keG1-Qsm5p_>3SwB7hZiV?VE zOPat8mv9u76YPx6q$qghV{b<}!N=6y*xMB(gz3x**%$lEOaD!A3C9Cu!ZAQjb$jNd z5}O2oX{WGv@lr4GQ-Lb)6hJ}2A&Ra=(nHq7kP-S75RQyn!QEmL6S^@Z>s0VX+eD=p zflIu5FZavw8T~`Y&=69J0#r$R)ma=oODS+t4mstf(IeEVM`OZexl`des3cPo*Cs0H zeQMJTB~I}{vXowjFo5C0|E4dJAnBqg)qwGykgBxL3U-CzSTYG(_MvcwBiw-P`$@+s z*oL^YWq321@7*S)DnPssLz;M9)Bs_vqwSJX!olc1f^)=$; z%|>oY6(lMA<-@&zQUcsE^;;i7VS<`&aZ!PXqw(cqH@EO93TXM4)e}l^GDkm<_eDEV zZl>aEVX6XDka8N7Ae2K%^xgO0qNFtFGF_lC`8RIFWFHm2@&y`8B?Wf_hX~n-6IOtg z1WYlinq%XCw28Vem#82X2Tain5}=+-V{g#aFOV)L*)Cx-UC&2!-5EZ57o#1nd04JC z3yRsj$K7?q@Y`aGn$xdzu>}g#CF2_mz-;jcLnY-uRrMP^h!WXtc{&|CFraWL`DQ_} zzexg&A%o7ihc>C{-K?672dEWO1*tcBHo2k&I#3(mx%jY36DiX~cvHm6DyN@+JrFo0 z(cY|X9;#-AM^&43%?eZ!&_r1^D@uUs^B>fk#Yp4AvjTRvO1VTfMMkvUV4qq%6(el_ zoS4OvGt8x?o7n;v-oUkQ`*d-!n$O0=?KRFhZE=O|64x1He1;BTctJ7TQQWPRw7d-4 zN#90WGeO?zeI@w+RV;W5+ZtMt6?_oWJ zUR2usKTd7Ao*i>5QLle@z(||#9cH`!MJr;B@diY88$S!`GhY819iH85^`5+A@Z1cu zO6?k)hZ=9hk~-Zx#l|~ZAS46#y9h@)QIEWnpTeAh?H3(}~Sj4}1Nf#m!->wjG z@)UPh&Bi32{i#GNAMCZ*o_v;p`WCZvVhP{o1)oXcd{ioqIog0*(0sL>r%6h@a+lm5 z@!qDh4}jpSkHyU3XkJMRli2@QD)!ZWw3!UIG&WmZ%&|kX+Dr7*%NDq9h+y8u6JExB z1@gAi(SJX+b?5MwbPDGE0YM&k#7)njNbE1ioV5N)sn)M?t1#RNrntw62FnL)9PinES=`2+xUBr4UU#@o8zK0x=$)o35l>#J_bt==cJUSUN?^EQv>|G~(()SV zV^mzJ1OXcj+pIz|8A>DneDX>cIPEIQVQPNG=!CMO7fC5Ut5FKAePa>p(Q@^8X%;aK z{o+%-@yieR?aYG9|2VbYJktPiNeAl*42;N#cZNlx=1&jnYW>>*ds6-1m8*U;8}H!L z2fx6e&!uP(X|l4#e>}BL?;Dv1UyO>8oQYfe)o6F^9RB!0VJ~)TXBuIp zS*qgJZXW?AIfHREmiY;ODHz3PFhD?I06jT_LA1d=i6-Or0i%t*;%G8gDr5w0zu9Oq z_?fK(_U^}o!dhW8O(?E|cZDFUz*B9WcUgoaaX7x3e(WO3nBS@riXDy(2~`b5-#P3v zhpZuZlZ=itlpDfSO@*%L_<{{kNx#AU&#iu@lRxHegRaoShR0|>r@uF|vFx*%EA(tm z_MU=bufvp;Ru|n;V1VE+0dZc3>5C*v;y$U0?Vhe%B%vHt)x}p%C5&3-Fudf-spK`1 zBDs8oOW`JEj9d^25PlSs>BatvTy7$Pf-+P=C}ccuv~b1!aToto&Hw{y4G_o$2Q_D} zUg;v%Dm{*?jCQZThWmAP2#brWC#K`s)?YROnpgwpG7#7lqB|#SDOI&q(zo%CrMKk< z3;{Px2!c@hHew|G4|9zXZtS!`Jl(9;!`(Hm$ezgVfDs(oW|^AuF&*FnO6KBSH>#uz z*H~N>p;c&NJP^K(b+Kw8K|&_s)TL~ja6&s=-Ta%SSXp=$& zD>(ytW$u0#FEIP0Koy?>wL~-~x`rMf!58hvj=2(|BuJrs9fNRe!a8l4_i6M`G3r8# zEU#JS&7?9QF_t%R@T6wL;siJy!nr!tI|1cGIJFyf1zs|QGx15k6ZcZrh@CrIUJW15 zmXnp-@n#br*i@yfVkckCAyk&l88B~mE24gZ)Rmm;qOfE!t{7oUM$Fe3kH|4W^IKsm9x)pd z3J=kDBWC81)e*|A(7i|`SSo3r6`pb(37HrZ(-v=7&kfj;GY&3yBGbDdMd2&AGQl@d z)4hoxwwL1vg{^oN#x#`TbckWgBx_dN^}%Q&5B4wNI+9g zP6G&@@=6Ip9baQ1^4L(vOhZFap^hz+tWut?T@dPP`hBEQh=f97XgZ~sC*VlFGP7@6 zE17*;At?UJ%)TA62Q~T1;AgHjRETyPIX(OU7n^7rpxsiH#TxqvFv)O*v!w5{Pf8!f z!xc+JDaFK#M-OO+E5ZkelJlXn#pp_E20s;+TcuwIBBp>4ML8cznN&l`5oCP+r%#3> z*U_10?4eKea@O5qG(uNFqQn8wmVVf=CveFTWX>J0+!17pj#8AeijN?B$|*iWU5+68 zf`l*$)WF#rYzw z84?;5=(|rJa{!LCe_P&6H_pW#A)x6=VJYw5n21KhbY1^u`2bPce#s4Ov7S#QQW5)? znG^-Ay!|@L3LCkEF?H8|T|uh5-;Jk1?5*@rObm{h*bjNAu$3##INv=?fPt=48W$l* zHyKE{h$vV(9L=v*o7wJqu^m1hZI;8;5*yJRY2LLB09P;3u||0d(<8hF=U%*rS+EI< zuN%<67I#cr%`V`UVvH1_aN?Y!z#I_D0f8I{#^!aNZ=sgdTb=AksmZc3D40b&n)0q! zSOE)aTrwya5qY|W1C-)r<%Cfry)Z*yBH|^>%E@aaMY8IKQnVl=br{G%$@#i1UUiF@ zMEHr3uOGYW7QI5)Z)ePUwnV6o=@RF2X?-~(g)6{o;CX?T6~^iaE6$N*&_Co%q zGeTEFks)z&T_4U4eu9P8pq6Zkvap)2&(ewT3-zGulcW}em~n65A`~FBDMur;bRvX8 zJwPZ)K$wnAw?mF$9suM7h3{^KK`@yJo~7-^rox^oIJsvTHg9_4(fsk~={94`-05<5 z-jc5?fM<9{QkZU(*?Jqc_blf@lYHrDVmqF%{Ahxol-?^ojE1DfYm$NwBR>OCvI;)i z@>xP>4g9Du6|aH|Q4PvcmSf#gh!mAh;mgmeUo zx8zggNOTO@STU6fgDwjYz5dOI2pE*%Q$>gcM`+ zl$+;W79n~s9`w=6_D-zTayr50&E-Du0`S>1JE43y1(*T~^Stys>FHXsmTIhGhK4x@ zu}0`Gg7&QW4Ib~c5ouNZBImn^$?&<0>I=h0m5$_CN2?I zDCh`Wnu1xpp{&R!NXb!y_&$?c?^JP8XyV*pO5h`doexa3LclIjAuit5)eI8Io{Pk8 z(l4~O9{2*uY6iVQj|ym2>me#JL_;}jJthIV{Bf@LQr%WG$|sz<+scpgmo@!YmT@eL z>bd-A-_BS)KHL8ZeyW5d8iFak-pv+tj2vAI9GL8MJ+PvcEr5P{wILrSTSQgWx=P+G z>qKB%Y5?|dWD@Sp*L|NY5VZ`gcDEhfgw2E=l`vIyM^s|yhH_|kCIK~(?G(4;&1@~J zR8%#bprBRt+Ds<_XV|&8rU63$d@I*5n9gu^iPJEnG1k=rE8#qt$0Z$hF}Vu(WsQL( z4D&J!W|ugu!aSR=d9z4fCyU5-_gs=fp;1`UbN#5~sOs+T8&$t!$+Hj_nlLC=u1b0l_xe%nK-+Un~Kme0aa|R%M?RZ>;IC2||rLQEulFgL? zAGURDzJmU+%2HCMiLFd=GnpChA)>02gur>(* zv$Mj-BX<`$!J|h7uIeL4RAOj`a`=%m34oQjYCamxw$qJv=Hs-iJ6~~EtLTR?Im5a1 zeVOZ86{m_$*7+W7@G-E3@l)xqc%6@kDNsaF*7+!tAS6}!Xm=gPI+jNTrMN1Eih^Sq zxpgfmM6i-mQ1h{Pe&Lq_Q+)UZ1VS7{ud#<;=r_10i=T7<@TT^IIV(UNJHx6b7R2 zR*aYfa3oGvuIq}T_ZK@^&DGEm)WpdOKfyRL%=vWVaX8NH*Mvuk!n*1kA@0r|;s9*i(*CiM#igxLfcA31PC%IyatS zwhQ40rKsX{R;Hmq85VAx)iME?@5Y~9#8}4G``P$<1=NpZP!^>sc*PsZ5iy0+aL0|! z%>9`h--uozHU3!-as;9km1>bt_xf6_;k|Y_yOR<%UaucK| z-4~DG1422>;OK&s2So{GGQ^eq&C0iNt7%G7IE#n4A@Lkg!$CZ;!ombK8H?Eh@D%}sLNQ)BOrint!^?KUD1UX5lWk?pw_lJVUfcte4?%UCj*tJN2;YHsJ5*!A^TdZl~NSM+QvkL@))n<#$7^$T5AYw@M(C3;%LwN@)E+HphG*6BzCzb52~(~&K6jd++- zd}}6{aI80&W;zGhv;dt#H6>I%tV<`HDPf_TkuAW76R6BxmNeT5b+uD?f9h6%1SL>y zI|ZGL07N}%r<8;$N#=c49%Lt9Zlon2?c#Z#qMwIqKGk;Kr-~C`32ERC*V_{F$sA#t z#~A5p#UdSRSSCX$xY%K~=hSAnrmros34W3e|p_JfA#xfPleZz33~-V*G0)MB9YkmZIy963v4! zU(TfTUpt`>IJL_`IN}L?@FGd_7cG`=i-orx`>Hgeq_-Z|Hsp|3yD;_^WZjU%R}ZKd zT+AZwO_4N|bIOV#dhN0pZq2XcEX-t~V%kOuh(xoS4JYnQuE;^jI6xDf&#nDLI4(IE zh}D2NMI#0G64gZ8nUAA!{Kxt>s=JjR){j;2F2*tdZP^U9=#T zkG0DKmR3fU!X;WBkYs>v8^&fn_UVVdb{K0Y<=~p}eKd?^wt(6;G%*E|VU|fvMp(5& z6XDSY+KjC9&_rG#(@4&nSi|8m_}t@~to?ix8L<_?XDe$dcBW|I*(y@NSDYzYNRWta z%eUJbaRii?Z?r35?b-zh=b(dnw041loz3%RlCIw2os+HJSz39pxz#&i4y`7K2CWkL za8uGXyJTf4wVysmEd$-<#h*T(0r<(uO$FcBxBj;9+a^PaP&+sb=(P&L+@di^@FE#c z+uY&?as1tJaVs3BDfqQ>3nrC8Zh1s=3!B=7cREf6OgAR&GZwM8GMJA2`hIt?@J>c#$k6ar1yxY}ejfOCFWJi`_hgN(9v~a&8_{ zh+w6D2HrzE@y;&yGl)F1*(=)~bQ6#4bPIiTu^zh}DD$ASQoe<5Xega9Rf#7v=SS!x zbv#*Jy()oqFkpLC$JQx#JRuSq3DK0JO3a}Rhnx6=h@R_L;m|H1hGvMP#R+6}^_ny} z{8SZFVINnoMap>1JAn{+s3P@5T6yEp`;z6JNGrV|xx!AQcp~99xToWn)fHmfU;!jh zgH2G%C?CH#!jVdZx*NZ^f&?&~`bf5~CZ?d^-7TK_2-z$;KlPDfge{##tggoU#dg04 zRV&7 zQW{cIFEX3&clkI0=M(k%KusGq^`tL4vUO$dF%mB_2cc7uPg00TQg&FaND#^?lIX{Z zq%{nxFZT^hY&g0hG(-Mo}ehfO#Dq2qwS+9 zF2@bS-f%N=z?izXvE@~ z%yBFefJwfG$kIEDoRDrQ7Jm;t%GIm(O)j3EfRx4q?_)bXK^AdOBKjbGw%E(&s(n(XRUFaB5{Zxy z7Z=e-_yAF|qOh2{a53~#VJV(55(Nc>D9W(`Lmm*));5LPtDNgumq%S4n$EM1Av2xP{LfhZZLxIouYlAudTejfP&HhQFQHv9PZlacohQo}!i3+Q%ksxz2bA1~> zDNyA`!bD%Lj=5G9FVd*4wl3euH?2JA|v8uf{n1JQ*&gi`7O>+XO`@UZ*XC z1Fxo#Lcc4W2?Vq~X-ip&v_{NShKX357Q(?}NpA&wvnITea!dyOpP!E^r z6Ma)7dJFSdaxRt;{2TU*?ocLjkle}sGAU}hSnr+=$D{GJoMm>Yh%QUXs%DG#mmM`G z7K>!q513D5_m`tr^4%;!zk#*#zvt$+LR#K}9Lcv0VROMV(``Ouk_bt%<40)Koj8HX zbluZa?A4YqiggKYgW$d%>(!RL)@lmD+$4~JQ!~?~DpLq}#PB)GPL~2x2woxRi9;$0 zh+_zsGo1I79|8V2OBu361GMF@Fe$mk6F=g28yRLrEMJnj#1i z^h9OlyA5}9TUuGtKh`vi9yqD2y8$3kGa*FwGd^&5n%`IWyCiLGMFc6nJ&o1ceuG+- z`6)&@N%K9kdX1z=4q+O!PnY9sgjqnWtDtAw`czeSRULCcEI}Xe3BS?7D}+2*R9|dY zzT=|b3T5%4x*?~q8Je=FZn6nSx{l%3r?89^x}TO$2={Y^fR?3X9Rt6?J#mILuCmM3 z0+&HZ-H}%yDmKgv!yE4Uhl@p-ekDBDJ2ovA%s&_{uvuOCLVM(v&s~)xE~vS=t2y_V>f=VmKUmnuBlTgaD18WJ2}9#p<%|gdg@?NpU7cxd z2?+>Vw!*d~7O_IpE?(jEq(gW}9qd*EqAt7kz93mrvTld$V4=)DDQLwbb4w(`WfsX~ z0Yvx!QL=kw@`80U_pDIeE&bv-G6^nTK>H$pyDGFb4?+}oV z5IXwOI|M}uWwPvueC)t^fOt^YikBUkU<8Y($|64(XaTd?xH}-1BYHR%4AIbF3{?-t zJVGJTpa`Yz5-oQ(pl1vE}eDh>3nfNx>SpB zOCRkAKfyTp_9DKxn9cM^7blQXY5+a?_9Bb8C%rh*M?0+RcnIcEnM?6kO^8Ndn6mWZ zQix!s9n$p4Zgh!gxek|oR>1BScSu53BNN)PPr8(1ge_SUS}xBi(wF-x2hv52!KEmXjxnk`qbIq>;2HVKaYYZr9W(|@?u3oO zf{7c0XO!UXZw&V3pfR|VQ|mi!44zSfn;S#ocR-C{zP=t!a8dngzdH{f6xzS6F?gbU ziz!AK=uc_h>_@jeyC~OjObwF?wrlhJ}E&jj&B<*=wC4_ zmR0j>UQ|U$g6!AY^#I$+dNh1A-7KfFBBeA!*$-^K5@vpsFag)r8ly4;M&>RyNw5ht z$eFm$#f2~6jW|WTLJ+n;l|(-|N}~I>?!C$MS)hPP^McQ$3Q2DAB%pqHEx#1FA6I~j zhtrNQuD+3xb`KsJDe!C22;m4kZe-vHJ3KrR=+F<10Qj|N7<>dC_r-UF9UlI|C%&zy zuZz)cd`-~=Fd+(lt2%qXqR!qVx_1p-wxf`E^Z6i~YOWI*>dw6!)!tFar2azU0Wz+` zPGqP>_i|K^MDVCIyhC}cIW3qar*67f(NHET@$lA?tBw{zN?;q2uU=lL(}4~6o*8vR*9 zwh0K?=D9cJC!qXV1`6tNe@_1>2yawCKvjLj> zSi9Aa3d%<{P?-9Crfxwgj@UnWOBEuZ>GC9i&NgETy|5ll&~d3J1@nFlOiTM7(Y7c< zc5pp=D=cyVMs#5T#;6lJ5~Flunt{T|U0IJF(U}D#qVDWSjMAZL1_~p0YFUgcbCcH2 z)^+%Fd|g{=VO=W*z!(;3t!w`h)phuEN{p_q6$6E_qptl+RM+9tDKWabRtywIuIsPo z`n}cih8nc_qfotF(~=Dt+k}~9^I6m}DY6HO4a}%|} zS^zS0?K!LzEAnyCiq|3gpT*G|Z!`C?Rz>Z=#6tvE+0 zs==ethE*9diO_Q8_M)}5>xl@-BWZdIzeIoX*Kryj)RzU z#HRTYqxJ<`Ayc@0tZHIu^eJmRN;n=e5qz6D1iFsd0CH52Am?Ts;~iZXzCE{p6~LNV z$6Fu172smx&zjHKWI~Z!tDcN@qxEP52YRdkg%1i(&06&>P`+m=bNwpv%@@J~1TQ!7 zx2x#rP~9&DtY+eG*Ux2?>IpZ`yR05O=rZkVQD=Ds9_c1MVTXsi#t!|UQ?#!|-Qf{< zq$Bi%9UkudazB>^1e^`f6@Ho^bQL%W7-ZuJFa^%0t3~LRHhO9qTto)(0cxg)OMC0Kvrm&X$ox3H}W0k6Yh$!GIPwDFK3FA1UW;$oSV&sbNg2ztugd>n4U$) z4={9_Oek^-9+$Wo;++0b{A(6G-T@KIoX9nwri9k&vu@&}x!c!07gy~dO@XSaKF8+{ zZ-+}CnPZ0PON$>Y0eaAcXw;XUL;~qmbIdXla8LWUnLbW#c^%E2lgh@Z>=UYORPBAEXsvIZ!J+N+{I|4F5o_M9tyUT9KAPqw55$y>cG2nAUyKc^PtffQ(^zXf@+HCpLyK~5__rxqme4{AXuY;2{! z1$nZhl^^wdgDx+zW-tt5Kwv4v_x5KalmEaJP@kOTk)IsTx5Fe%p#gzIERSq==gE+; zcYB1TaqCd#I$3&D0)hE?`l19bJ{2A*GUVMMG8G#L|HhsQ?;u5D=X^!NI_w!Ze;x*3@4OmyWV<@8+J?bejBk(RS^dLks}TixA~Y`|v+bdst1 zqU+;2U!mC{pzPQ;zm{v3LV$$(yFTG?ng-D+XmxdHS9)6nrGhwgLnRUJi z*eR4Q6;SDcfin;^&A0OENC}f_9+#^I*VFH=;iyZF9tCQm8|-)2{&4s(=97`c}Z6shF{O(I3#<`an2^q1#5qHcqxRp%6|k``vA2jZcp2cSw$qcDG#) zLKMw!x1kLQlC2hLp~GqeEkp)&qbDE?NOjipbL<0v1A7J1K zPLuSJrnd4|eLV*87zW-4`9{dP@x@f1@yW4$MueePB>|4+ciI65Vv#C(mKplTx*cQO zBbONz?+)>4knKmc*<}Vrip0LvV*$HyN2Az{GtJ=0c??`I495;RcVlbp*?Ei*AnD%j zmd-B8w0sI(t}^F`$ChaggswyS9VB#I9bCJZV#x467|S0xZ-_)xC7#!-zZR| zNbH_5uJx`#9%f|9683#f@#->Esn^#Y6Hc_AJi=|OPci4v#w;^c5>E` zxbhsiu0-@YL^Ym1*%oYo98l5D<7Ozkg)N_b@9%Oo#NY_(1kVX||iM zXje9n^N@y+zSlBn$m%B=LY!VdUBd~F$ms`o4%QD3Gk(%N%(%kI{VmST50`U_K+!T0 zmQvWGnd8>2WD?`|h+ch8_}L8s6&#=2^gBNF4tF&5Z#NI^nm$5?ocDx=4pfm{WK+tFg}WAQ0>2Fgbq zY*Rqh&GNW`aKN`iI4~br-g$S1fD8%Sv#)=(S?$;D`=ciN^!uZpYnP-z*0n$CiIAN4 zdU~5Z23xrIi9lkJhz z^3FHgfDBb>&nko|{dl&$&RVj|RdOCVeR4#5q$E@=D@l$7N!a7iKxKEMWxIfsspLCy zAy620i)Xmz9U6oH3HMIFsS>69TwVx86Z+Zlc4~MYB4BnQP;i;~eUHn=HI6?{{q{xs z0M8Wc-sm{eWg`crLk9#r+2+W)Y~%=2<@bDYulE-eNUUwdYqB#V-DCS>$F)OtDr3jC zS(hXao#gCU0Kt9mu($EFeRLruG6Rew7eIuv;oUB<6tlyO>=uTUF{DWBp3l&1iHNT2 z6^`+^c(ZEw804$&Yk6Gr4#;-N>#(&r!v#yx2%+`>nL_E@M zfw{Fy_h>#Kj(N8Qewk!?vsJeTFBit(f)eblispmKrU0XLtWg~3Ja@+BhH08)(xnQP=9(f!q1EfQC zLXCQ5Ft*WVkM3p2QbqTyzQC_jX5jg5YK7yAGC>YK7njF2 zW)7y?jv1@ZR@QxNPvw|)3TlD1%*+F55VL2xGhcTdteda1r|FKIt~#C_LayD(x$Jz$ zk)WD9OvIKQ5E1dTo(~pZm*>NrMWoG*E)m)D;V=+VMV01kaBMP}x!dgKznaO{w3JGI}>tgo*Spr+X4 z-e7K8gvW>(P_&Clw;qyL3>C`=e589r0-{55LIQ6O0%BE=b#F*Wk}h&rjRXq@=AHS7 zHee4@h$-5km7g8iJCmphoF3Jf@>)Oss*zqGUGX`wku1n+V5t9e7WnY;Ph2NV=Z=URt#s&HcTQ@=on6R6x{~Kemne{HmxXxcU7{!lGV~nGT90NM?CVdlqr-c8EfR4l+W6sO zO28w(WeJ8ZaTy4f4pkE|Uc*|BGC(6nqT zGg7J`_@^zW8@LxuveT$7_GhP);bgTNt~aa6e!LsHyAZSW#xG#dw!$3JzJfzpa!;VD z(f{o@1$1F+uV{X20DJ=r&)@EdTbXiS#4bjp!=Aopi+alI3K>cvNA^9$s6%k#mOqa{ zFOncVXL-AJmt})D+(bWeQe{bYNF+YcSzjhWbU+2o+A0VcC#@jR>k_BEf(Qr%`OBWx zx>&6!SXYPB+13=n;$Y7C?8t)&Ok3D@2x>44oGaRIWgDH6g@o@Jg~qE%`6k!Bwsqtv zG=|Wjf@BpdI|_{n9@0ob85=#V(j!lq^s$YU*>y`wJo76bBp~G;(D_iw*|J@(+4AIa z&6YiKfoF$Y$c0=zM-xZ`>-jz(TTe2TWJj(v3e9fO2okOe$hJ(2n1t(bNg`eyhlPB$ z67a~qVNbPNLPX7DiKdmheWeSK;qh7hXxetuxI!}$2_vFjxv-` zM-E?zUb{esTYmUrvigmYigg&H&sIVmX^fs~w`iTl=!uXq_N?yjuHjF4jT8C#N|RhA zU^N5@S!9NCUJmn+lKtGIk~>S@zGnsa@x zT&s0P_g)R2rO#ldnp5L5#a%soA8 zUU#AgYvnFY-qPwIyZPH5g>GgzhTXpzy5n*kd!R=;(ZZ%sS*{$dXo` z7HP$V`<1PZc9)7oM;z`~Ud(tO{M(V%rYkRnd9Vge#9skwy%WCctShv*K9;22o}&i) zWowKU&QdM%$TLk$v0V|CWB#at&4frjBi8-8Bc6d|DzT0n?Fh{d!7QYf(T)(H`s&%7 zl%hk4D4y+Rr4(W>N8-@W~jRRFDj z{URQTVeMg+nJRAsj%Fsu!A2u zsthL}-Mrv43Dh67fwJeH%&T^FI5f}qYhf|10GBL1f8GGIPc3F^(3tod?w3+ljoBKu zL^Hs|!7`qAS){4oZqXD?DbEQG{ZMG$tJDz@@?Z?v<~hP*egev$EmV!>W1Zhe=`5W3D?g0Sp*3#X6v03Tjoo5~Tp4BiuayL&<8Z z*VzQOg3vYF@F_Q=_H`UxY zj$Wi|P0&O8pQ`?A#&Nen^({kHj8nKgYhLh~RN-BqY+Vz+sG5%f71ppN?Ll$9c7d{0 zN^eHBc?_tqA}whTimNYo`MK0taMg^f#~@8rXiXq*sk0CL#X7oXLuSpFGsUT{50W6L zbVoF*{gX%#n?cAdBLN%6K@tQO;)q73auNw*n+cg^Bw#Db4Z+EZ!cV>J40MvRp_(B$ z8O3{`;rM7?EG(xd{kl{5He+f7MWnXnru2 zMJi7iLoLZ7JlV0Q5#>CioT{;Bs2CeH=(AoS-^&etDZq}z*Woc}oT8fc-_{I?iQ)$~ zhEFgiO&I;l>!13CPtkwP%eUiqNP}53bMa-)gD5d!omQFI>gs;Dq!W;anYqj^P~?sT zH!FIRe=0rJf?`tE_C09^W%)o;xmBI{+6E_(9|};-?Em(?d#lx4CfJT_^PFUme%hf> zUu-Z%J#ak~*Y65hfx>-kI~3|!%{x(lS`WqbqC!@naF3Z=rk`(jm;&M-RWUWo^tbPS zc*oiZk!wCp39XfZB4*8)SSO3dRT=;{ziRBrLIXB~pyYZZKCf*<%a~btlA?4|(;M9} zht5CXSUP^Lo-%4)PKpxl+-C(1-L@_FOW~~ftlSwr30s#Z+&u5Hdhnou+1H{Lb_5=2 zVxF+W!;P#%KWJt4wWygLfk)bzC+zTWOUrEqpfHEYz*si;t?I01E8x!P$wxK>3^%`! zc=P!nn`*8T8P^@7jB4*FWI_Eo;sG+Q!%k#ei~Mp_k4GU3YSIx8khS-lCPqmTkEEvG zyyNyu47ujhlt5LL8@nxV+y$35@E>J5HDk9shMKh+^ZQxzSxzJXxuFkpp3KHO3xa+s zAT^^5=6MUGLNJDO^McRp1~sQ+%Z!hHo(R-!kP1N=(gKPy2~^JChLLQ~Xd+_%;e^HP z2^_{LF?d#3Yy52#Gn%R1G1Ym8m@)d8Bd^B=#Ym1PnbEqC=D%l~=@o=Vm|cFxy)ZiWNRrFu3bD7Y$##WXTH|9>jxSbYj;0bi(o zL&eq#!?!i@1Lq!B34|);ro2)vSDPAxx36V%|KCop`w(N9zU`Y<$KN?r$00+~>)+Sw z6$jHxjoj%L?`9PIfByUwEMV)DjJK_#|D;sW!kCo(PZi4E<4!W^+KSbUmpgm#|Ne7O zcmlXk<#->LK=Mb&D&4zL_Vgf^33F0=bFA8>4tsI<&n6)WRSyywga5yO-uf5h$J7C6 z*n0SjgNYovROHX+vNV|9^a3+rXDq2va%g%~#&t(yP$^ex3PPemxJ9Y-ivL2n(}W*n6i4%Jc4p%XzMc_EDds=;}UL+73Q zZwHHBmT2=in@lKjJ5eU4;`MZdb2vNlAzLla(Ei$SL?u8?Y!rj(Hie$#rNcneId;u2Y#)M7t zrMMtL&Rr)%-QRpZou3ir&Fo^2s4{f2Ptwm@(v>7Nfs}>88Hr*U-vZ-%0_b|Tn18d4 zd-Ii+*GSHsD<-isA5L@1()>d0*fb?fjVq?3bVl%*kHPOUa5TYX5yo6^;tHSbm$T(; zH!}f0Cl_Xlf1XKGxNCY7&+(&>KR|w(|`vqXlpm|Xh>BUHEwBGp5ify<# ze-uVq@|8}>*1KU4V5B01@sDzPq_~I@l+grfl#qrY!oRH1B2m82K`br6fY-C;3-^Ko z1TWi*P#G6y@!SA(kIG_edJ%)*BMIUdfb=Yymvo_4pd2w#K8rRoqI}3gT~+~Q>gppI zu>eq2h=Be^uELGy52mWop|rPZs@Qw{Fu~?C_b7>Y=Y}|&>E(Pnrjav(;9}b`dRFyW zGsOA8(Z5IZxk6(m%@?C$2cgAQq#_h;M;?tjTMr`eNXC|2sWQFNmQ>n7ZcL}68o>&D)r`X$Tgo9_1}Dd?_wSn(Bvanm|Y^Y6HhZ_KhH76GP@^&=1+P zgOFC#5RQlJTSCMphRkgtcSLxzT%O~9RsA(bgg>}@*R}!>Ykm=rRIjAPE>}R2cwAMY@D5i()S#ebLXqu>xI0MtgQ}h==n%L^ z_{;~=CFFV{3MqL`|EL51;+2s*3ZkZV3o2_$mPXJR}3cuxyhqdAz%PX(dIXX3si zB|seM<^`YGW(^3mwOGw2=k~9HQ)3OvbybKqpR>t?B3mOA<#HQGw5+O;nX3^ZhZ;cw zvCWObIVhw(gcm+2HPnp4@0$pb;ek9wzWG8}fZ*ju;d*WBTt6y^HG|vSx?04dc}W){ zpgA8qe(edqRPL98SL0(xoZ-SI-zHDEdER9ao?J(33kw>BrOK#7*Jn%o8I0OHJ-4EO zlaF~JiU3)SLi~7ys71ly9CJ>_RM5n5lpjhPH7>UIEk)bk*r#XBbCN;TlI;Ld)P`mt zFgC1QI7zGO039h0NFvs~K#=SMK(*-y{S;Rd{Wyt!h)@8>1UoePF&qFTx45!>x*WU1 zujlGXfvQ=!xDVRy;HyOzvU}FNsESY>=6Y%hm~d{QCWQ4?(^G%wVlo(V&8I1$&2*@U zH68y`DW%4Ah$B;FjRd5d7knmx%5{4#V&1v?r6ARGdmlU+rtacOs3=2L<6)*3TMq8UI644b4lO| ztLBxoFoAzFvviY!H%Hn-6ph~98q)Kd(lI6%M zd7HT;VhAf$CARPZRbpRHsw7NTVjNi|7FoVZ6jN0t;cFyS?g)yFTj=)%VPYmKq)$j;&YNgQ2s1qj}`%9B}wE# z%uI5L3gW23`YaM~deg>Ql=(`QUGq!17f6iU@qJIi1`bqGxHKh1&GCJY=`M#!Ol9!Q zuqDbB0hwKKk{}mteUIBmw`b$|Y(2c%j3z^K$k#b6`P>I48(|tTc2VNg#D4Zy4Prm%NRW)VZQoqkAojD*4uw2H^k+}liy23MHf0hy{e9zE8YJlL zT&s#I^JX;PPdgc z!~qM2y~J2|{mc$m=j)Slb-q6NpQz3jfW7K`eNv&$7G|W*+=z=!?Q)NcN~s2i7t7%k z_Us+VeE~K^_=@A!Z7QP-ug0OtlUBU5dLe|y#s(M5f#Dw94BtYCWd5+VMJk!uY=i4b zJjqaOTTDq_bFZbR?j*OQ`-K+_!M&F4_vHBuN?fTb1Gbqqf7{YIp-D zj}?}F&rYqp$E3qi5i0^?g3i)j zq;zI@{$Ea~DdA!;9i}XK#SY(LSN47pWlLUPQl6(7P}#-dD&tmrn8LVhMqU4WI&}qj z4pSDtU{&>peX0t`lWpBOKvC1P@o0QK4Q}>{t3gVr##VE+b{pXyO<*Kq5Izg8)@~z3 zQvZj8q@HcftupY1hNX3jKil$UH&Rw9;uO8k^ejTttC88(Ty5hJb@Vz3ane!yMA7#n zQ*lL?rbv#m;+GqyDSdo=g2plxH+A8XcVO~?>^x-7Z_v`O#9y2OQs@pStDW~9s9mX)oI&3-vOBd@SEeqq55 z&HQ>bIZslQc53!VLVo0uc8~epG5lB~DbwcVq$tVrlXlxM@{IS}-D)ws+~A+ZXd46@ z2~ltTBo7|E;=9}xF-uZl97L&BWq5gXjFi`Y6DwW|3Lfr6qiHB8fgh?|whp$lKa-l)~!h{-!uaLUjk-#Df zFZl3C20_eS<`@!@*OCvMky~> z4d_h160+u6PNi4j+9f3hZp^uf*YmBILWJaOUr*!0xRpCJ<$Q(GwcKGTC3DSfTA|Dl zf)2@XHMc?$+@{q*khIX(o6cVi37_jnCGD}j>FrlP3VJ*iHe%PjqzjP%_j=5Az8v=T zqjM|+`!Y(X`V~QIL?QRC3S15X1Wmjmm?1{8=iG`^eFq9Xp9c?0#u^`%kjw4mefOcV z)fTd9z7Q55*gxp0GLjY}Gpyq8MhKg{Igb+*{OOS&xqHm*E#bx@BrI{PIx0w_w6Dn$ z0St&o%L&G0zHal~2p4O$!vA=rhzW`gOXRZ38hyP6{SQ45{rjsEby&6vw>1{b$JEDU4K$(+OV|`Aq z=63CFAbCxg8_36xuuMc?1`bQ(Z`bZ7OIm4Popo9f!tLsi5~|79I}RkAyXAM>6UTvs z5J{Z%qcaO8QhYiQl30QsKk|=Cz8XI|Umy1j;rrHpSip!G;s&Tf1pcS(jn^3G1g1%d zon_`L4W`TGT1>cpgvB~cV06^r1O`ly0|SmnSS>_JA?^Nl@{+5|xR+pswP;{j{lSX) zc8V_GQZKZa3<=vlxuenuOAbYL);t$!5xIVHm*L(jHA4t0JD%KSh>`5=K2GvNx6u>d zwjTS4ua?!j=iMoIXynOPD5xcaqNvXB5t*FMw3S%cklKE*ZZ zm;0p&v4YiXTsf4u;^hj$M-3%aJ=V|katsXpyaojKz~jdDIM6ilDt0Sj(oFk^n_Ya! zjmPd|O*hHT9hYIZBwtD?q<+Mm1CZ4P7bLf&07K%Zmm^0SXkXw7hNy8XZXIIR1pVi6 zN5CyBCFfg<|7v9M!OJ95?!e0@)6EK25hDOIO3%4VZTGML}kZ5x8$8n%Xa>PEqt*VS1++6OmAO49({A7K?ex z8O>@rm2VdPR49s#hA4y}48_J8jd{q`6J-qNvq!RCLC+6Nf~Hq?JK+ub+RKLmBgs#!EIsv?B*yRkhP zN;t?fyR?zO&T#B&eLce|$8+~ff&H6O8%tTdODx_43r6kvG|#&%Li=7n+7S9`O@aKj z=b1Dm!SZ+s{wmPe`^=VQ$?|>i#ofOL z@e_~XF~SuRgr9WP!uAU0fPWPK+FH2(?k&rnD54gS&>{Z(;__;HZvIv5E5*P4<~#4+ zXZ}pH`HV>-1j*!`H8$T2x8%`{o8~rW<7?WUp16ebI6;9d-s8$}e2Y2WcMwdV>4a_b zrMMu8lz0nd7+}vGbKB)^zB%_ll^Dg|0vRsYYd2hOf56%gST!&BOalE*zNggnu-ek? z%1iu@GeuVhdz7L?cvRPsDxPl{o^J?GFGe`GXJ$COWeB@! z6gJIsl0i`a;($t<;_BHYhcpCU^`te6+Zj;2v_^#mGMt z@>8h$wjnH_9UELpY%>mqYVK7hsP@O{p&G&ts;~i6n?XOgsQ>+RJc#^p?iNhrT$|oume`j3qF%TC;J{5HLO?jr_0p>(NY0Bd{DrP z9WgVU?m12ZU9m&N{Gb5AKjb?NNA^7eAZ-wH9dUxDqdlT-M=45>Q+%gCFdS}w@c!~1 z^W-m9%D8zsDSBwN@SY|Gu|>6n4@#O-RLgy{eNLRDS`<5kPz?$Y{B(K3On=l+hMUp3 zZB5}>@bcw}lsY#{*1BcUe3lalV9P{jNi(f;^RH53otpY)jn!LpdOx`8Rm|5DKb z@baz=R;3AtoUQ30d5|vVD}*e<&~G;#n%hozwU8;Be+^hFg*|sF_P~@otu7)EUAmy6 z@MQ&%fw_;RO&1YK(naDZ6ieBwhBgHhI|{`$=Q(%D9*X_-u%g~~R^kZ+*Q| z`)x6Q%2KsFsT<#h*rw}l@xZb9YMWrlgh+|E46D+ML|ZbvFBB5e`5dK6Nw+*!I>)z5 zL@H#rmVPsY=auBhkgzR%DOTIimzsZ-43&N92fi<5nz-YFk_bV|GU8^jU1O*8-2PQ4 zDwh#IxO1OKvi5{7BJ6W=mo^v){i|@)Y9l~lXhIw2FSPON`SwIBXz>Etn|1c&*3ZoH z*)Q7Fvp;O%i;vir?u=ZVZ{1I&gL{=I3^i{S0d<7icbWN0*<5`r;aOJnTLCJs6e6LT zl%XlxTFfEaR5ptM2Yw%m10*yKqUmwaQx*p<;dA<+-$&vg5(2R1Q;7CGmug9a| zeDxR(^m3RODcEG=Bn9e&QmYAQhtQBb5c-O5`%$t_3SDvkVu>hZ z%mwklEh_sA#U(pA>luZ|!;L1ksC`tJig$8^r~)OFo0lS1fR%K__KGe+#rJb5Q00nZ zA_|kG>l9_5bC!+?z0yxeB8<4)$C8WUD|ce5L3O!iSBD>o)fMFV3-&zvy{E5J&=W9!vpr!2h@Rs0FjH-yiaj=k^8Oc=C3Q7kYjM4h`wzYaP@>- zn$HK>WL3%V4m0uBCetgcbNi&w6%X$$k0D9Trw zGD#_kKPP2`euDIT3O_+dH-@DB1YNO~8e2|gOF7FzW$|=ujTs^_Dx&LajQJoX*&47I zVvXVTjM6?VHTIBt2BB5mE8J;>g-LtK$`%z^2Ii%2s4AX37;-Tx++1nBVNEvS_@lUw zFgdZt5KhE6jD}k&#Y-!ma)Qh1>Puc%OJ)d!$pDP#(3Cb%7CkCUD;|Ie(HNScEK>+6 z)K-C4GAKmBD}AE4rUI|5D=dEkm}XFc;E*>YY{fg>;I~pt1rCtVS|OSq2R#8t+FinT zNnqfoLUF6Ot$~69K@?qgNe_UKtP*af;~6F~@GN#fBtgL`H)TgygL2dxF=bbf046ha zoS28how+E>gtc|g3f|pvZCSD!olSHzb2KAV{2tZp70f8N}&sWy=-&EC zsZbQ#El~(T7>Z)I<^d3rZXD;JcK8BV%e7AmNO3oAi6|`0#m#es4-h3?qs<$_Pe!A9 zKuHQ(an~5o&cGwr9M|UrMahN|H)zRcSG5=^rz)_;>kpbk4zK0X{1ShJ^$UdhkK+ju zHkfha09GD%EcHtt2`h-+Ki#C<2F z(qf6SSrkbvw%Us>IV2@ooDr=dt$V|~(X6hj?k=%5*3vV>xF4b7{WXqwANTz-6Tm?x zfOD!)rHH2pak_AT%wHz9L?Qu15XZXW5APfxrXhi1=p6V+5E83#je8P?exQ&aN<#-* zjY2~MAr=q4)##WYA#HFB2IpH;hvh_!tgeH_HtpdJPH{+4_C1%-;8X!p;lHL0ZgV~w zUk+&g9*u7%;TEg)7*>S)LVwUFrQCz>2LVM-(9zQ(Z2FEJ{$+0devq^viSo~_qR17q!>w&To)YY632gR-r;LhEAl;K?EU%BX}iF+B$zOE zM&Rpibc?Dt0!~6E4^Ig@%xg1T1hd{uhG-BM+pF^#-f`Bo7UdzqkqO>?dQGP(KryVx1n;1mF^e8$>+jZ?U>^ezu=XHX{WX!u;m zOJCw|rFZ$T6F?AfLA1m9FqXbVjHJ(wIG5Ay`Wn?qEArqkfgW+WK7FB@mQPC1su4%C zO2q>^RI1|^k2tzuv9HdzGjRwkmgn?l`(WgEv{@c}b`FCDE?IIJlvGuHHN(}4hAiSe zSSP$_#s*o>g2G5w9MIV2AxO*XB&=7z>*+V1ztNE40g2&*I=pw`w^n)WM z6a$MJOeFaGp^ubM*^8|Orzz*>gXz7&1Ep|E#u|as73!+i5;3v3=~LhFiCarlgs>-Z zIqR!1{9frDk%QxMKuVzkJs+2YPsBZ4=}oR?i%D2h$uFg+!&iDjL?Ll>y~A$pegjcz z;ZGWc;7^6+a0?$43=rtV-BkhnD!ki#4`x0@H_;GlR-_@-YMY}Zj#v`G(q)7p`majVV>_cK+9IdVQtFK1JE}BYm*}=5HICaC5zUFn6*qBb z^UxLsWm4iEeAA$*5Y4|$=rP`Tz=-7Avb)>6l^j)Z@`y{J#5DqZaWzDT23#(sf`cD% zX-BY!4m=9~h)X*`(!#Bdp4}?FXBV5l*GG<7j%JInp6kwCG-`zOpCMej{?hH2;xqI0 zN?%l69vtMDpu&~4eB}!Fq`rI((<`om5CiD~4K=|5pBH)CkehoNfcL#2rdLwi2dY5>K?(8doa zAP3>PfpC2^glhxgI)-pf5Ry{?Yur&Y_MUQ&h0^lw^TXG=F?|J(J~YmAcPc=^A;4)f zo-VFNO+VqeK@+ITf5&tl(uSYqy;!;8~N~#1!5WqD29%OkEE1zM~@G1(k%#0 z-9$-BJ%{h;MU)gYPN)4+sx}w&BIim42|-Ps;Px5T=kgaH?8aSbAxI!(K#yb&ap!j@d%?!K-Ev*i?z ztz-rR_laXD4CGNIWW_C`Yxmuc60f-Bt!P^nCYe&-w9A-lHNFbt26Om!w_=bJz%|RT z-K`3=f?kd$1KfqFMV3U>ovT3$tsH2_#e#Op&~y@6>|4(^Ozuw5t)Al#jx25n=YWE` zk1TF7l2+55cgAymu^yhwu%r}=GiK`{_P+Q;ozm{%JMWfJ1~-`X9j~zSZi}@`u_{S{ z^Nc5z!ZXTBu_{X8i;)z`RnJmY@J7wBSG!(gw8>UU^F1rmv~J8v*=9s*SO*E+d&4E{ zZPhhgEJ_kCvZB>Cx`t6!rbQ6Og=q(2Jib;bN?m7o;;sXFPF*=Eie0BE)-Hu_nq~kP zu20)_K(9@TQrBsUkrYXc@EUhLhUEhNtp=-uV}zNU)-uubVW<3=aHOl2Ci*oAem#8E zVq#w<^wsaXQEV+Bq>*(v1G)+xZ~mc_ad>1M(@@$Fsv)vYegaIo&i;Bk9)A;|px|4_nXjHZjS9MH@dHYUf_DZYs-mp< zmUC~g9NZ6g#jM@WBU_H6qQH5|p-20KY=g$f(PS3Zk?!a5u!yLIMQKfg_N)LaIoq>- zFhd+A;!AyBe}EW7PEg419Bkuzx(eEZSzl-eSBTF>RhhhNM&J;57em8O1?=$ITxeQY zL^sUllBEnO+=2#xh}hg5YhVz+jgAb5riiYBgx@7CMXq#$grCQ22}G=xh;9steitD% z+hhz0`&qGtQB`pWEJz@Mu7V`{X4$qhU#PZ(pT|Q25etdv#*pYYQeL*khXl}_LM%K}^o9lh0G#AGEc$@Z&IMvsF;2P8O^Fon ziBv>%Pqee@V9%OnVId;k6KrrxF=kwM+)5Xq+DZ&nywwu0>ZW|~)DKb`Q?u=hPsBY_ zZ*#xriY!O&xe^5fpxJX}@_>-I7R5L8*5Ja=VNHT+MhCkVKVxqn5mul$wU5-`T5K|s zjuHc>NU;e3hH*~U4Xnne@^iG$#ClwkH9z6JdmOke(+gT z&mV+x$|m~$n0}O%P$oAYcqOBZRWOo_a_`nEm#7z!x;@|sDJwMDu8yFFv8mCq9-|K4 zu8z3tv5GnL2ao_`Rtoi+w3@_=#85M8#VI1y01keQAx2wLEa19u5tW z7h$ir(InCo(1W9d8ulQShe|wbwKE#hYH}`EVM`SYVn(-rsvQ6rLqWZa*%?MkL{@UL zx!ZsqjwUxrYoJ7>=7X)d1_RN`>zTQDYfcv+P5-LgGN@##YDzV_KKL;%4WpoJ0q)MJ znG%G&P2D(UnW`I!CsQ|Q71T{!GU}$}4s|0-M%_p~p}L7j8}L-!RDzHfC%MRlzj2cs zM@+?Q+UiM;DCP0e@L?u7W(%mrNscn4Do)0Z>Pe32m*JX8j&paZHXSx*deAsVwS^%A z95SlCA*gMt%?uVZJ5(H_+M7blCAg_-Z@ASKZQaqxUkB4PTK&#JwXF-%`8I%ys?Aae zSxKu!TNmHc_KIC#HI7x=xwR$b=SmYGzK0UN+ zVV@4w7CRU`pk@jtpJ+TORCh2C%AqCtwu4bxE6U)D^}2;8^+YJOOV+mmqMx7?*KE5OLVE(}9 zcK$%YtR4pD53(R1B*Oq00$_1=T`s2&>_k9mW+tefU73CkDt$<1SI$j%i_6N@5MBtQ zQ%+NAtzK3#sT^G4VXXm41>WMal5sx{P1Vav$D<9nS?9PC9c>y%lan@$G^Ok#+B8VzArp_Z zO;c)nn?{aQ(MUX9nc*zlyGf&_#8au8Xys8emvji>x8YMS;DLkRO|1D>dxOLPn& z$dl8yQuYx;2*?*9XNC}D?-)XmBdchm=Od;?;?ROQ8A2$3cbiU!5R^OF5JI$ym~%r2 zGw*EEnIVJ<8eJdPrmxG&2Jl>)zGiioO}(phX|kfU6SZj~mDM%#NTx+jg{Ir^rqlQp zt;*uHX?-6gQU$!ZX`DF&Z`sPbS}(%+TfdN6aiT(8KO-`&JY-^>T6w}8ABt{^)z!W0 zaR_~HP;;t+UG27TEb_R8&wqdaTYvQ}`d`wn1s)9}$-4y}EDq6bR+CYDExz075=mwNulCmx^&(Q^ zucf>MwYY7A40e*FB&E`7_Y6@gAjK?`Lgh7M(fdKvGHSIGW3~5#>6hV}y#>zQs#;9i z)~2SU)2Nmx<*+gbt6EM(D=4a#GFa78nrX7ts%83RxJI>{yLA{q4l@iOMJcv=7yzLH z&}0}Oo^8VbzGswbbXq+O5cMKb)3+#ZS6j8i0Lq+b7$8aor0FogY&+U&G7L~5qt|2F zYTi0#WY*H8L{@Fd2)e+zFI<-D52m;&*{7;DTWbV)Vi_I#Pu8Xn>Ckk^=DfhMJcPRF zj^+{-?pmAE(aOS>7$D;o@XP_aC}BbEd2`IvReg-?g}i=)hBKEw-1;lzZjDlS~=X^=Z&Ipm&? zMefsqytFvMt#bEp&)_-UhBRuI4>h;F%lxV6IVAPU@cY2!bY&2AK8Dvs-;3mke9Ok z1?3>g_KoxwKO@U(a&_H47IKcMG(xv_n-UV=kF@_#+&~} zSlX2SAlx#h;X}Yg{u zrd~v<9o?LlT0v>wf5^TRJ@84IQflqKzmUp-Wxh7{#&HJT(*E4=dN92-a4AWlt=*qv z;yJL)!E7RNW>Rfw{zC?{UZE5Pw7RW=P#$M;mWFu(Wyw)Cyk1Pl>#t0tw@+1QYh8Sv zSQfExx9)gfg!KDSVdnOEF!0`tabdS@6+)TDW&W&0`E%tAZh5wdgz;JU`e&`&Om0b# zi0^laxL!vQ0SQ>7O3S7AL{V-FQ3qufsb#Wq6GwB}IKV2Bj=` z;*fM>N^FBV#l_mDZBf!`pc17VROVozaw4FXwyhD-GF#e-htkZgaqjx*&l$h^U zxVlK&|JB`!C}oinhor4iBD7kZcNPQ8JK;rekJhEC&Q(3{IAS@>p3hG2OAdWHke56n z{s%%?%%E@kAMu2~lZOpLo0$Lk ze0lv~JsF1QoTE>8Y}b8Lzz=@d;4|6983Ik9SdgF}IPP9i&NWq-WJ+Fti+~3%c5nfL zMkq6Mk82H=Sgh=LgA9>eua@QF5$M+?i)At2Os=+ztz9CAbX7~Wo_Z+SvB_7F`)ED& zO);vR;()(cCcX(InVP5`@QHdB^%6%4&45pN32J#1U7}xvmvlqxl2oPY`cYJf6(AG$ z#Civ8P6zVRrC>vsCu#gr)F`|5Qn0|K6}`R`ER<1gZ>`@Lbh1#B>-dNv0G6(Z!snz>*n7-suZSYrC6GF%nQ{`!qV0<7 z#O&O;*71S$bLTo29tcE;4opyTjBt4FSacMu7WRJ<%9%E4p~b}r^bKrQYM ztQPnDCV){YzMOb}AmWu5;9hZmAS&8Az->nZBL-5G-m3>V5Xzw@`gVY$G$_63zuwN0 zb9O^cQ%I}**GwvlmG~z9YvJ61*B;p+yyno(F?h4bb{r2At?g2Qx428R#ZylU6N!jo zl&CaZy-Ost@+xL7Cg#~Q2k27Fv&&+w2;pSrzS@{)&!Y{v@hu2{o&;N(Gv0Er-EKzj zJDlPeCP0H!9y0Mrn+K&r)5VQkCYUN3#f+Y-H*$qT3ub*3T0~?emzu|Duo;{$H)eB& zQnBpb=pCBcRg>qD!A+m~#K#!#z6j~N)E!6Tt9Mre(;Z!+Y9Y1V(b3Am7S?vt)-wm_ z(o$~(&&oKyx?MaioSfd>UK`0DxMZ;df!yD&*LtB4DZS*=7>)6K6#Nb0l_=akgtKsgMMn!EBLOUpeE2*VniZ9#DdpBq zj6y1p6nyQ-=QsmzY2=d}X5^E^6ODY1Lkng-^11x&O1?q#ik@CZV@f-bl8ICnF!M0e zi{lI>mloOdkg7q86os|c1|`xtq(tA?pp=!gS_)65@8{#$g*_8b>0ihP1-W{F2z&~_ z`wSu(AVM(`qU1>=u$R;DtdAchT&lufJtsP11@y!{nG-$#4&;lu-5MZyDD`B>iC6(S z^RctJ=MUti2nLVwd_5d&He+j$I0}d)md{F*+6V^Avqhx7=W8MuED35>(WRl*<(SGbr}&PWOn=%N`bS?m-f zsb&tUUFA3!IVYb-n6!JAhYj$eG19!^<4i&GeowVAGRZA&_}w03jDR6jTeMgwGn~^H zr9Bd>8ctV@qS|8hT(Zq#))!7YW3l=|?Y(YoPCkw%Yi;k<_quh~;3N7;uR|JA%gw-e zNA1P`_01sX9VP14CPfkemUbf2i~iF~{%dz4h<3K#0aE+;DJP*UTF#Rj+{a_bE=p6a zwAylJ@_DGl!y0v*o$wYdXU>rfTLjpQTD3j{Xbi*(>SfHva+dt9ZPlI$94&Nzs&1>< zBY;HRwpApxwSr7Ew~MDfh37~}aNp-o}=>M2kM&<5vpZS^S|F|eMm!B5mG{#@+0b~5N zLVl+*%w+s^4)50w{qvol$$SrP!1iVln;9I&Uz>s957qE;g96Z)zBc}vN8Hk;6#0Y9 zF$7LhDy-d=pQ#s- z>cAz=OHfNj3o;-+K2a&slu~Pr79pPpOFYc*FWCui$!L)rsd7QgsJGT=aU5DOYoo>G zC(y;tf8T^xkMHZ~>gvvaKNnn0)NSWS5|9u--4H`zD)tw)-bIK%;rt>3bYg@g) zOfF*qPJ0bYbz5apd8mB(iVmxHoT1gy>Q!=_4@?NAB;)!R9XwIHdJSBP$ot@ARAN_+-e1n%F+&3-sga?2dL>GE$lzdNJ^&YqfLc0n!5QqRK!r>ru03%f^viIQrZIbm zn{v^Ly}v|UKK8N(_JATd`7Z{0?GgBhVxc2?hW4;?T#~e3n(r8) zs8=1r7RjZfTb$v1xwvON`}_gXKlDYlirS-F5vLORzHl>_*+d0N>7~nTqHK0_n?f^A z6f?}#&g3z(E@|{-HgU<0He~M?LeYh;izC`l_DUh)khUSPh2~2pAD2pXp4=Q%Yw`*G zyqbY5>7LM1tH~$y#3gPAYm_C!BiSpcbzH{0N)o{4V1CAN85bq>zgKV$#`*HKAoNYs zA69w{6}wK6UQws!R9TX#IFBYF%$F2g9FL#1-X$WGgU!Lq#zdjCR+Khy`O=0h*Q3k^ zEi-+ySm(4>lr~!Va%Mu6>rpPU^CrKNR2`%FF`HZODn8z%}7j1N~P6v z9Z||6B@VXknJu7}Oy{e?2Jh8qtdgd{)|#S1DudSXFms(t1>VwP^lE7AW+W)2wTn^E z$-xA5vlu0Y09aa#;q{OCa?~PdN!?X>;((L=#-;ZOuECbLmwsG!(SW z<{(mlt+Y9KHMR=0Q3JJ`gP@#KAMj~^1M(5TQZ(q*crhE}bs{?)g>+NhwfDXUdU@0i zgbfC5N|6kuA?j-UwcR)5B-NK{hbX3$)ijveAxhW+YO%{F0~>j+eQ-xG6>rqGX|7C5KKZMKy<7tBMHa z5EFf41TasaEIHAxR^veuM(Yw4)>Ggj1wae5wY z!1ZA@UxFG%>BP3rlL?1#pAh{{p%O~>wI{X}x3VC8;b=~5tHLBx$xp8`mgCcC9$4+gs|d?A`R$b9(kldctSs zbh&`OH2kHPP9}Fw)((F}C{yclYbTn9To$*- zU@ecP7&X(jZzEDsOGdWmE&XuxmwenS^>6jGC=|j1i&vXO|Lm()3g$a;*9-f zwM$bWpF^FEAC>H_E#tw`h7ey#o1~d0@nwj!yJ={XS z3|DWMN$$3(ZSuBm29vjyQtwnwZIib%5JB5aZAgJGOH*E+B#Ni7bc!Z8*sfa@g+#zC39^uv&V)h zMJc-0Tq8m`uteXiR+%SImcsOKfB*RYIo^~sosW_cr8m;c>)IJOaLJ)2R(;}RX5dhW zwEWM7ow$(6wvZrz>5#Rau7**&4Elw`rW6TL^3F&uy7Dhu3-m#?n_8o};Zu}>c^U6a zQ;dWtJuTJb%2x$ZHg!?^v{b~ZLlAuuCp4Cw)W}{R}b<@^^4j7j+j?b635R3aKuGPoKgTs zoG)K3Lf_O(Z2*U2*D2B~Du6?k?XIFV4&M#)T}3{fu!@9WQ69%HTSe|0s;FqL<{mkM zGU(+aB}28jDzx(OnTs`79dm##xn3sox!nrlBn7y3fz6b%aKY5NUW6^6miDYB_FZBm zD44Z-R-lsw2`pw&2!=>3n*KQGx*9Ld&OfMs!O041?QJli#>Db~`^4Vf2IGqm^m5zH zJO+bPTJ%DU!d>5XnN}9Id+^09wH$MRE)MbQbN}*yT@B#ok2SuZr^39ghu{jzrVPW`#5~bRx4tz?22rp~Jg<>Q`(a}J;?E45Jfq5gLx+MvR z5_Wni!L%ePK&VT5aud#yy@KCi_gCY`Ueek*V3}h3*}iO z2%R|ZzN-x%ON0b%8N4R*%kgSFPwZ3FQTU{!J7Vw(1oMK0&-PFmnp^V?;3CpH z%~Ri@R3*d_t&M2q@iUjSwQ+JgYD67n`Us_-3N_Knqh>BCYEA~~;`(xZz9efYGwDgX zLSDVT^jz}T9VffK^o2T_zQ2|;BSQG3q&TAK2ZDJ)!skrWZ@!^AN*l=NB5Onu*@tkc z@gqHX2KR{i5H@)+@Qok9)%RWnY*ZgD?P-mD=3IM{bX60_;Abuc{QNEPS3tM&p#wkO zQ_14z^poLdY6bklDeVvRq|2DYTif)%93*csas%S@li_D-1^mJ(gI_*C|3%*fDv2|l z57&0_L!E%X!R}b=gGoo2PYt^^Vfw@|HJ_To)G3N9qV;gPu+L*oBvI8z{d~p@vI6jz z)OwO+fG%A}I$7g>kcoZE+NUbm)eBI^B8ywNCks$lgw$R1L#$zDSX&QC3Ujp|f{14U z69===k2o46wnCi`%#q{C8c8RD3QAe1#36x7iLLEnKE8rDRDELM`c%~*YLR`0NVJRn}EX~4GL^ha1 zcATVCSvwXmr5sLTYR3X$3#g@VJI-KLN|cOJYs2k?ei^Qgz>?gg+EOI>)by&U_N(8i zbX-kyr^7(ogxetn*h=AcQ+qmWdaBc5pqx`-aykt82w-X8pN?0ySt3QX%G!aSNM|8} zz8Ux_E1@hMPp0p-MIy;G$lBw{OudLypQh!!?FzN;!{J$Jy-QiI(Cq7QOg~X5c(y8Z zZ6CEHGAC0gsAm-lRK_$Rw%kHXn>U;xbEHS`rssKTH*Xp~1?2uDkB*sWijlrc5m8O9 zq#2Xea|d{8BcdW!9fIf(oTwa0QZmA)9NMavJ(8vdjanmINacWM<8vKn;4Qh&C5P4e zDdTe;hZf9w*UaT7B^RxQ#nn3|htp&BrFumeT zUkvE#$+uyZ$BrkQiQPkU%Nme)h@|h*h8VITIvz{0w4b?j)jXOB zL+M0i$dwEgLRLvoyCoKwvV?G9^P zl%y$IbBilH)0fl)(v$?%)*O@1V<#Tz6ho;51 z`w8f^2twQnlF+9;`U$d?Dg~cT+)s#Emo)i)LM2I@mL>Njod_p-%sOISI4O-*z?3Wt zz!u3Z>%vKHY_fyW5le2+FQ^%~l64_+6W$h!5AUz%>?KK7&HV_APpIW_J5DAD2cwVs z0Qlu)?L1kA&GkC0epx%uFT_CKdUO{^1Ipqqh;6*O<=&~?1<5vB;CNC6=uWx87I#6C z)@qw-?WF_Ld^-g`eZBF}v;1@hqw{-V@eJ0(Y)vd{@fpK#bIIVwn!l-3kcHZvv1qL>P(T~ox&x}?!la$J(c zdB1RC!R5<7M(qXiPeRA1E-ov_I?b;vljmvPDAC19un+eVtWZ^si>a-vlgO6uIo$k$ zaIdKWUJJ+lsdVJWXU&{Gl}{ACO(#=TpQ?>nRoq(YOgNgDRaKa3tmG$|4K}lFGCWY4 z5~9{mBIL8^nTIjCBs<|Pt@@B-g%@5Dn@iHM;b^XRu3hyteDdG{qEEbxr?4qTLX-~j zxLld%F}xV*`xv#pwwPC06!$`g9nM(S@(tpYy!p7!-p()jPW@VMe*Q{*zENLWLGD8R zQeZYdPi9*a?&T6yGp`NIcC@nkW!5$@+cSq&OV;^pY(s`AMZvAL&WTVCE73RBIr9X{ z;`lMf%T^||dB$l9Y4!NQq_S9vuU)b^&TVbgKCNJ1R;X^P*@qQ~y0O?P2>^?2718)< zTa`qm((1MV5=5IXx16+m9#>D2ulGVzfm>8_uzs^KAf&4>%NwFRK2lZS{sz9y{3enVWH+ z2@(MUNlLNIv&GFANo zWSVfyq3)7F0C1PC_~zNXI@mY{1wXRlBrq z7-dAjN1RFT6ECy0Zi$ z)S4rXRvtSq{LD(gGY9C>mKbMAmxLi%0k7Q>3)D)`Wo@WCK`7MG3FHC?d-evU{RbsN z?c5sC%L@^>87n+0NP?8s<;aE&Ks|^`nu1@uE*DaHrcQTuXE8Hd5+|6feZG&>bJMI1l_=6@Tx1JX>yzUtvDJhwVX1SKzB{ z(6Qr^MSrg^oJ?32FgOUnUy6&NOqW|5v%&BwS)s3Q^TMM5p7|uImm<{W+n_Jzi8Vo* zr{t4CCt?NY%qIh#(*eD-u}oUuV79d3tE_kVpx{@}*nv+$0LRO&enYYLG3Va-H{;d9 znsZbEoUTMTrs*@af&{`T)AZ#7DxtV~9N*szE|Zrf=RWyF@EwyZeD}@z)fxz`ZOD~Q z#(bA<2L0Mg@B^6qBpXD~2fCY5)P#y&hsB(#$=EKEsMKHWbr4!P)?_By0|95 z*)xlHb)q!^NN2HvzH!{s2{=-1>BM&Ss9yGzUhRuYjza-2ozBxIwq5?#AqB@UGM5za zNs;u9g6bi~bIC&A_!|n09peiT{-RscXR>{gj=JQoC#dd}fl<2*rc;JeBt&VG5AM*h z+3evY)gfy)`Iu4;GcmQBe8RRJYT^>v&WtbQ2&l^kd8p+7(8mn`6^SiS7ptqU&E=Dv zbP}yHr3_TzV4zB3E7VyE6-g(83QAe1#36x7iEU7~$^5;bq|-npN;#;^!9wLkKrPL6 z%kgT4JbLDEi3)D*T<2(I0DCTGK=#Q1T{2X0i}LwwJX@^H`UdG=xDN_@t)bfR$-$q@ z`vStcmYQPJNJ`6kNnW)Rf^g-sPn2@Zn*G`9l zS`NGiU`^Ceh~O7nk1uVe!%+A{CTgIUGf~6Gr11oFt&IoQe5O7jx@MD7RRvTx9!D&z zf5*oxG6R2TzvL7|D6JW6%>G8LQxJr+Q196Y7-S^XmYjn4oHPuq9hFXNoq|NW1X4Q% zDJP*UnfuGt!bHhYiUL`?1we#yAc?*)_nBv#E|b^L(r3`Bb(wzv4Ga>L?$NVP3P(1+ zKF6GMKD-{_bpTvHkOc01jW;vKIPL0k;P5`OC{@oZ_W@GQ8O49y2lu{X-e=ys@2LYE zDH&=ypYA0t&V=B0Fx@2+fhCg?d36$zg>a|Pj{olaEn>So5d6RP5}cO!@)k;$^pw** zo1&}z|DHq#5s*$rP+oaP1()spxJ4TgQECgN_4wE4thS{3IaSqnt^MaXWF-?W#{P2! z2zBW!+}G^M%e{1imK)WU5}@|FTF&TT zG+E1(76@Ojhu7HeFfBw9m42%mh|tQZ)^V{7#3e(aCEMCZju_P2!F)3@SIE|yN1jCv zx94NbBVUA?LP_1L!RXzQ-8XfKCsDVfm4WTK7#C+0HHuP9Q=;>tR#16@-Db)I+0=2Bb4uJJVg+c_sCnT?D-| z)083^N^!P$j4|1Jlr*LM+BjPwm4!`wZJe#+47^2ah4Cf|Ct^n1)z*q|Xu+)aAO$mz z=Vc`?#{(0IglCJ9b|NJcsVrdTVM0_LXDIo1#c_?w;T24b*LY9TMz0A0da=`gfB4`3 z@U6f47X2?aYieI675WkRqGNJUM;6ovg-d9)<1XB%fr2R`pds;YQrD zvdMQIcGJlzDoirnDpq2YG3hY!%}+Z@ta0^}6Ep0V>s2$8#HC5F;wo#5_Ys$7QH#o> zL?uY=qSn#MN+4Y9D$6kk=<-~_CC>-OU*&kg7SP_QdIQ_@DZ}rBmkG~uFbD;NC=b5$ z%u>>pDDh;2FLTIa2b*N6IOhBWx)eYG(FpXwKC2<=qShdmTyKTPm>tCSCPvxvQy_oI z$Wq_L8eTOwOlQbbRwvrl!Zzh5~!32sHJ;Y8JC@=2&)#(d9(r7aZ?UsMmb?w-@OX2#_x!Xh*3@;7Y4$j8$(GsUkcNZ<3c%}f=iiYSH1 zt;crOLyBonwP9UEI}06n^nN7eB$TB{!}XOpc#Z_6=h{d^(8(bLb#vDiF>F)g)!cT` zD=haE#%eW!b_t|WBXSbTl0C-GAk*m*KUu9k#>8_tnS-&%I5RNAy(rMBmRo=RVt|M>R(uMczul|)k^Bs4@z0 ^lolL%WR7tPDb z)od}bwvHq!xYg#R(8>XJT&#KNk^#DCUP>0*TqM;rlxp+R@n{2X%u82-T1Lq|v7RIY z98#2`Yuyt>IuACv9hb5a%F>gJ^gUIs9p-AEWMt|^q^A865`x;&e&-kVp%~(TM5Wdv z+Aq;6;3Y0;`(@_%P@LuLZN6(C?R?l*v zoz-ThnM&Q4JJWoapd2cY^_^)x%!3>zCe36%Z0}6-VXDlb(Pn*T0`($N+nJEJeRP^% zCknkjl|rxcFt0NTz3x!xb*j+o(<$`2pim%96nfpE&~NNgm3Fh@u3q0lzsX%lM0-)G zLXn2ysI(2fp27v`S2d>o=~I5iQ@ahWxaFDzv24~muV@o2hDtIO=LI|^mAs_6mPDoh z>UlwEWd&f?$-Lm0x6KRoLh?242#*^}^}I04T?RnZ?YtnDk{7kQxZL0k0MkY!Q30*i zs?f@5)p4=2txJYhi_-+`VvE?=;?|+ zjgti1!L&`E7e+psd8amvMl&qSBupP#Kafb};F4hfyR_a`IdKT!e27>t`(&h`A%`l- z52rV6qH#te?t|KOcmYP2;Pk?8pMgBw{hgi~3KU5hML)@MnyeitNj1^xg*s8n%0nEi zDZy-!TpY!)MP-^HQWVhYQ4EA~IElU;#V8G_#g!wz+unjC(`c%VU7}t@YHTygOHhlR zX&miYS?i3`lv1lb(@ZK0miXEb*tKv5-cl5nWs-I~5g0>I+A}66NPAc1r&1x{T9n+;Mg;q~0j#wTr zbGLUHuRVVtFWqJA^Q1~R#xG8UIAe3$cEY~=lY36>ep?DG0{EwbE% z0ciT_5m{B2%;e4BD>D{QimK#VGnoiwDwydTGnvzXyyV@Z@8^T*Vt$o6T?S$xbNq1j>@PjlQSKJk?GpQ!gUb-Zsul3N0;# z5XfzwGar7EJa!Z=#$EzfjBL zcbroE?gR8+3K@lvlIi?nZ32LJ&A~E!K_8VMwE+u?U7Ij{;%F|)QH7~e_7TdQ_R&J= z8>vqrRPM?-T1~MYArx+(dqrEPQ3dd&+TB787s*)UTN|BW)&tY=LV;pyO%cbUQ1o%H zni{q>KYToK^8>|pq1u`s!P!%&mgYA^V~7J%PEb?p_U1<%%Qc0M5US*`+$^S(wOzz< zni8VcVJYOZRYH927N2A%yhW>Xu{3cL8>A?#)m8-vWs!ouwJL}wP?k2$$#-U_ZAwx& zYd6iAcn&CYFq`I_nV^<#nnH&88h2Esa3xtmuAZnplRRw4$xd{>5Wz3S1O@ok$oGZK zx~cXGi-u3T2>Pa}rWDEWQOQ}cnhfSwxF2nG&UZW*n zy-5>Ew?*C#g>I8}vQg_h#- zHmfa#7TzS=cl3e0T=Yfhx7JS|amuQBJBELYxfwrwRFITjI@KIyOLX6eV(OswRCCO% zOB#KuIW9@!l;_f|J;Q*aI8YE9S@m-%DCKd3L(+zbEufZe*I-z5qIV3C8wRT{j zmIdwr*c(Sfp>}m&E~aLG5(SZ_fY+;=Naaxzk3`+f8R{f) zo#&B-&FpQ&fG^Rm=?TK@Y%8I(6KR@A)kB8gzbs_oA zx5W7jN|1S_g`M&(3Pm@@1>WWnl#~orPPrE&;xr8>-OgRIlB~WLJ8D^hJSVf7YajrA zX*CxzCH=xtH9eztHP`TI7eTM)no?8+9~9dg%?@-&c_z+qJLivB$;nq$AJ^3_O>xYM z#5r(NxeGwlmz6kF0TiSwO=~xU>DESANSYF*cAOPb83`N@)B9a2@RkCEZU)9xhXjSR zcC#0BvM}L_(*Z)n5CBUnslpvHt zN%SpBN(0K0rAU|(OOX;!W+^%j1-uzc(G?)n#V(cE@x4j6daJt>lgc4>+q-(z;5Y+s zX+d`HdTbAcaFS{bwF@$)lmROo%z{i3TcF;@fl~9BCMTT)DpSfp6%GcfBm!z_?Z_F- zw8v>?%Bx*F3jH!%-3lZ(wc3(vhhO5-R-imlrF2{CD`V;zu#|3><(!wG{xClyE07A^ z?+%@CCH5i3^>FvNEWIT|i{3Kf9kj`J^ntoKDkH_`BRQN;EY3_=3&9a~X0r3rojUbp zXC`Ir^6xGZ6~4_ zAkYs$_f$Czr=6{s6^ZFA}hnMqw~KyJDzRN4(Xc##(Ee`ui5{*Q~ujj|HV z%wzyhf6yguQp7r}7)(IIV4~fSFqjYr;7IH(@iIFg&gC2KF&Fs1r z10LQu*-+dg{TnS%F3m_pkjDvyD5jj zTPdhi^#2~LBE`?MD}hu>qmscRiMw1GXdgKH5zM|vx%-7v<3S8bvA-=Tc5^;lE?Et* zlS8bW*C38-;j^fTzbi!@9P<>&YNk1jZ2Dl#f(u_C^Hd-~GA7puNnX5uH<*p%YWKD7 zJ3DJrvhC44{%>9LD8op_m%RBV;9h0#l8qFSEHb1JU2HvDjJDxeNJvIk;dE8Y2QM-L zIY%v(4+#2>li!`Pg$RE-Lvl^gam;h^P5590R~jF1mY2`W=zxU7XUK$8MhdX&du~2N zs6i5dK$65lyTRR1;iU}up_G2G;UP3)kdCT1Jls!!dEJf$&EAaNlzIQqwr+M~h~DlI z8MNqcaDOAi9Yba~3y5qqVw5txPoB2>eOAV2e9HZY6=82X`fQUQi&XfRB*0mDB5CRtVU?vleI zJ56!RIe1mgBw{2&)32)KR}Kg7#W)=Nw^GT$IG99?Luh&&@(VbUS@8aH`_^!~f|0O+ z(SL(0Xg#Rr11$&Wi-LIYESPdqc$eG0!vV{mx%pWzEl6#?RT6o;Jtv8K);+HDqa+b} zB}p8&oFwj3wrxQ5t}Zf)KfG-Oastz<_ix-EfRGq>q;vU$3mkt!vb<_n~&CULNF zXSrB43MSRWJ;p1mtQzSc~ah@BD5NBihufllnghs?ZBr<|d zDDM86lZgB8tw~1(uCU5*>K)=bn2QOvR(%M7`|bxRQl!tJkj@V^KZ}g5UV+YySx|1^ z?L+>GWJua1+~4G;)n?T9z^Rdwz9|V0zBeGltVK5F=kE>36y2xxmaD~byxL4cw3(yR zNY&&}vK?D{4cQh6n@lj_Wual@jB=p%k~f%r?iDUrS#RJ_vUP_K6efr-O1gtDwN4o2 zqyjSp2NExTsdZ9}>MV(QOme~h=gn^S4L2kQNyt5@_vkKbyIRm2k!%$S4ngeVx!Yp0 zfJwCMya3NLL;4BuM_dy8>wd#Y;g1Rt{;cgd zS!0WVs{nVmsTzO;(HA8{mF=iGWu%C?#kQj^NRnjDjM-qmO&gM=X4+AenGx}@0>~%V zirihk)Dog11U)xW>fFQClb3ye>+JR8OpkU51~H&!A$Q;{iX^+L~Qr+=WEE;BkDbA(TtZEf%zlX zPlZ-Ms{ z*OMjIBG3k+opgiym;J;B0a3iBw0rJ%AAj0=5H2q_{pEBpcOKukrT@>v zff#DLm%!npk3Rd^YB9t=Jz~@o*D~0@cD=w}uNx}*?`}7De{rhJOyZBc@xYeZs*J{aBXEZs2yEmYS@qK)Hvv*gRz1jPB;r3?l_Lf9P z|NFy|&H5K7b4;9g_7_LqMi@HQFqjgvv@>o_;mXt7z4Y;%jDg{}C#=v594qMO$qA0& zjfaE`o9*UCw9cmZXTS4dsqCKoIMD6gBD&!9EatoM3T7K~6RT8JL#I_1@k=S~o@Eos z(eJTE%&LAI#m)xHB_g{g`ozFHUG*LqhT^+#zvn4Ir0+244Gwi(Y_UR7()@gX;the_ zqwh68z~D7z0CNgP?_}8HAm(Om6&rT%?a$7W>oYl7#i0RUzU~CG+`U`0Or%eM z@&kf$v7JmeI2X~o#GxUcym?rWC|oUnr!fxuRQQ66AC(cO37_gp_xTyJxfG1u`E z1P+cEYgnCn6!qvk(J>QQ45(y>?qT(oEzz z251E9F^1*lfOuSbdw&G3^zLt?xrD`qHm}hMLr*PEbNh=cBukUrYo7|oFdi_+2-X`U zu7d@a%hi_LZmaPnmK$?S)f8MmSWVUo{rFMm`X)3c2hWp68*-%4p9AULj~vWTJc2*^ zY_Rh}Hq_4d9bC4{yVcmafe_;)nk7BH?i+Pck!-XD>GUwLztI*E*gYDQz@zGuBziQf ztM2iOy&GptVfR>M2~gwbku=KD8%_u7wHeg*A4wxhcxzrL?VgQz_HMaU@P5h2*Yj;g z3EH`?3^f`v52SX_#oT>!Bhepa_GF*xtKWXMzh56S6(L>fIZxXo;v> z#{M&*Q0WIMyC;QB?@yjCgm}RVK||Ykgswas*y{V|g9M@>lnBA;ON4gM5Lcr9AyL1@ ziD1kI3{EUfQcuAC224|a_sD++TA==S5bK=n`N{k|^!l?ezr_0G`pYlL>4XD=s-5i9 z^HY*C7ZX)-z!1&dWAv*hBPO+zpXIT*A=EEAnjv1H>f9pE5*Ji%B=sDck?P^@WjB1L zD;h%lPL}A|db=biEeu~!*5j$d+<5>#OI|Ps9>IKiT0eg}23cU@Mx%bjWcTWO0fLN9 zy-ynmK>iOUp;Bv3%EAfY<6l#qx?Z|p!Gfx zK!2F`+^8$s=O+5oJfE`*cwW9@)0@J2CUbKQ_MKxI3DaiRR-nCm=Ka7BE+=6KZIjci9&_k?yq4TfNV=sY?c6jiKf_4S52{5Q0S)kqk?iqVD4t;{kiKEt*Pc?jW1Ty5D|swTdDR%RKhQgK8Y>#~US z?&%MR9U4)?4%ojUn=o+24Ish9$$uC-mSM z&}MLW6(*Hwz?}za^Tedd1d6+Ff8vRw zf{MzacqhbZHWpu8QAbTl90r9mWDV)v)1NqY%98wHUY;{q9cFrXXLx9ypeRVF`u_d+ zZC(a8y}P6+nRTzl+4Jy!0y6gjwVIs5&5Gh^EA?RFK_%b$;q9DU&C?-tuT_4^KtMY#2>lf<*l29H>|XoSfw=8K zycc~2_@CsP^ck*mL#SS1%mM7`}6J<5*KlLdy(<6VW8MtK_Y-QBWC|Gg2+Z@#l zG>2fgVbXp{mUlRbFU;8n<~RUolJ@R16Yd$pP_`?*SF+E3c7~Mb&(Yic%^!s@SeMqA zYYyAQUUt(W;!*g{F$Rs$)~)TCyTZ`4G1{TYh=X%8VXBW|?d7K}b%%)N?or*MC@3Hc zV~fYdY4cJd*IfLTT0;HtC`|?Wyd?MZcQ4!xAJ`AzV!49rEfw*M#*+a8@8k7Pth&8i zZz)}ASdMrja*g2R|Qoc>UzY`-mo)4J;y5ukOawz?H^);KTs?l{G$jY;Dl}YYtU%j| zZw=-+NdiOUjm?`pum1GQFO{w;t@D76IdMRu=hWZu92@SIQ7ArhD5&ulCJ~ar(+V4h zJ+kozFg3MqD<_eF-t!4thy8{R_M4pU!p33mZa@M2|Fhf}Jl$Ss(`*Bc2Ae@?Ej+F> z!ctKJOSZ>|rCKBZI7s!MKH`9}eL&ds!nvi1c>za}`CVF1RqjsXM>(d9fmO*M|cOn#BT(-3!q+A*QeJ0j;aBLgd~NRy-w@ zSFR8nl?M(=(a%?@*Po(aY}Xiq__bLxogJ;-hy?~8&jRX=KJ-2eAE4fXYmwE9V*+|w zt8^_k>ST($zkZMZ1$U10@P=!%Julq-MsV1**I@RF^vKe7Z87ZrMhviF?UTv>Bf*et zN3{(C+beSSz)#Vv!AmXj=t02qDh~oaM|luvnQ<-#Ys3e9`Q_yDXE=vA#zY?0+G@Vs zD>$e{`^=}0odM#~bS^|9zRw68|7P@}netb~;pGg^sne3Vi9&Eb>10Q;^Q?H0hcp{u zgoAq~+<_VGUVC3~MB|w_tNAlTD7X=+#XAu$CYyT`vXePnBEf&Gq2lm6F3!C!;9qv& z-**T!^1{X>BVR10xWT*xxpHGN3>z0hUSWOaeaBOSEVu_4q(Ak;4hz+oEB)^cKu20) zU9s&K;_=vXK~1-1oK5#2j~!>-?jzzb+@@n;AC%P61WV}QwQ@NfbQ06uJ=Vlt@L*bS z(s?|%rWeNn@_xfgC!NAY^qVmUF5hPfA9K~tM2?`$j$(8=Y=lexc&{S%rNu6ZV+YBI zhxXUK2qP(QH$J&UU+S#K+TRTa)m@*Dfa(t0GSD@&PCL-W zbdxBh7Ce&?Y{tpu#0HKYJMhMIcaMD>acMWWrQGHL+?f90jaJmL2DfK`rC-Bf_naUE zUo%G(0&uBc;BX)g=Hir6n=FGUp1r0)!2>W?i69<5r^{=9*2(D6ZTU z2+gx$gV&x=-O+Mk_sZ=C!)Js+8_6v*4#HaoJ={%>^QJSr?5B@|A3Ng^aXcT^5Z^t8 z_?bcP(d+Ur9Np~tR=nRJNU!+Q8r<|U)hf)7Zx*xv|B zn!&wd`uMT-cSCje2qKXj2dJoJnxQgS>%M-#kgEgj?u2|6J}l62BxT z%k&K@u3@Vh?Yv&T$Vj|iE?SCDn1Nf^CtCY%gcI6sS2y@RLddc2M>KK%Q<0HBjP7}0 zdY|H21wSw-asJPdqkt7hST(YI*UBPW)v+KgL#s3MX>)q;;$< z(h%`;OS=JB~9UNxC?Iy5OCd&v%^^ zGVn5r>@Hu6N6UY zT71v~8+Yc$h}Cd>>v&{tXGDV?0Ce0pQlFQ(ho#@Jy`$6 z5j!3UVwbKFx5VX$jwhEz^&V>pkb2`2qu7@s&EjloFep1#Is$Qt!MX_Y*pLJQNep6j zK0`1mQ3LIqAK(d?muIt6%n!^VhRX8;ryhuPH9%-eQLCrG${Z4`oT{;Q4qI}BstEQJ z!SvQS>Iw>S(rtDJrccLo+tSsm*zj9Aqkv}zl#nqyr4R;e^d?b!Y7SOmAR zBusWMeMbD{GE{fro!rkz^K9Xs74j@a6xk!tTR&LC#{|n52WL4pN*Usn_pAh0Q^bya z1btyA=X8bL?gz0bBg$76y}E$*_2OUBJ{bU$or+WR@w$-?01XxWw6kXY{E z0el@w$H(qU5N$Y@5H*GShCv&bO%gYEuz*say*BGmV@t=1qi0yw?%-eR-r)nR&9?xZ&B)1%dzM^MEc2V$X+!xA+;ObE`Crwj7WB;%Ld5oqXYR zniH}#!|_I2F(B^P$$+WrXt<|&E6;|)wb;0LMu>JQ{D_d-sXo?YM=a<@csDJK{lxVG z-X>z+ZV(%DNGlHz+%RObvN_e`H+X$Kbz`bQ!#MJV3&>Ts+^b<&CThFdb83#nL)(ti z?gwu3^poURJk;+pp&vg<{WxmP3gTXY`cYv)2a5eD5t}Zt)$)0CqT64Oi*Rq*AR+Dk z_bq^*CH(TI)^^b^P=o(~$#tqQlcFNO(=d}BYZ+xFe z4N^7>1=FqO3im`FwxVUXRPIZTaFkB|*2%-17`eN&IpU-a{Qg9$fu1dMcR0s_g=2p_ zew~?4ua-Iy18R7rP1?Bd9W=Ih_KH@E=t&hZNq4J9^f6qe9Wgs_=#cH*h~`=JH^Not zYs9%BO!Im%sxT}gS|Ui4fFM;O-dw5u%I8tDautHmOXiFo!hsi2`5aKhnc$4v#zu6IvXox+}UTq_B0x+LXi0MW~Sfk@|)+=a{Zfk6|7@-i}D=y zxtZtj=>Qja;{8W{YbPF7I^V(=V`#=r+&{y+nqEH? zIFGPEjoPOqJFkY8E`Cm1S@M9L=N-s-_nvSdW-m-97b_fuz;mki`qS|ZHdPbVE3q0=V z-$7CkIwPPi?>mW`Cu`}_9Z%H1gao#qG&zXvUC-9N=|L6os(~ihakvRjMH~i8%4DH2 zQ98;S;9e-M^*<9c5L&2m33od%7@^40kNa>GOMgX-#T|cmCm|nDWM@Mb8SeH z(DkH}0%0^GynV$FnZg9rBiTQ8wN)wTN3w>9Z>sX0n(B-4r@!_@IucHTDZx5N?3kas z+N7bhd&=EtB0Z9bgYmPDF`{l{M75h}ogFe}s;KN9|2QTJW=}h2ID0X1yk|Z#C9nAQn!H(Sf$R z;p|w6Y z2k;mX5$sRa{Q<5vC#i)XMu$HIPPh4k%&ot19T>NupReHxMzr!Ub!K$xgq#wibK&L3 zDv<1JlDj8i6T!I`Qi(Y~3+OziO6tPpTZ$GIGcmVw7$1k z(JSiW9H)=YbEo^@oz9^JC564v=5w%)wm89wwsYK}OaAENeIP(ZPcdKyHX7edhI(7) zm;2*l{*J`%vD+l6`^6P8hN+L*hrd8o#Q*GK;JqUtPXt^QMAYzpul%A4|KSWK>Uau2 z&KNiMosZ`?lhuOn_djng35Z98X&3)J2s%tLX9RW!&hhmGKO_@6;Ol+Z zyuT*XRe?Pk+4tZ<8c)x^Su6}vm#QFk?m7lyIc#*60es+*(4aggp!qfkOy;BUeZ{tO zdAEE(<02Pi##o=+=EqcfA2Tsfei|8Ywz9MZRC(~+^%f@GZ`_Yy=lJX0oxc?jdbsQ~ zp~b*=MPrT_8sqoApPwxd{I*z~VO(mqxRoY5or{h{%tiJc@rD@_$Jt+mI5k&P(m)j$ zOTGG>@zB&Mq+-l;P^F%urVEab&9Gg1F&KU|p6fMSCm*NGr5}7FIvD6bz1#Ct!Q}~X zIm7>Z@D9(lFY?{ap*H3q<#&$|{STQIs6XYY!{Ks?F+)EB-91^w3<3!>eDHwVL@0V8 zoC0x&c3dgH-d_l5;SHJHBhBAn^4%HUE1Up@d!iJ3*0>pFiIqFdB(r~~0P4#Y>To+6@R3)go6g;r15h>`b}!!g{Db%4SMC`U)Qx^* z()wI(eT}#&T)sbo5rTa-1+r6>hGJfcSvI@p?h4}`BNmI*tzxx~6OTpbg&BLHqD`RP z&u(j8IOQ_@3gJ3ox6zOyHU841ol#eS`6m0?*kGT z^v!QvRPj-Q#NZ(OeM4OEOY~raU49$foxUPNI>IgV1hf2&uEKZ&XU6Kj0q1WFu`~0# zv##QysPj04A?{kT8kTfZscSs851zU1*P~97UF~%4UuTi~Ud?^acdl}u`+*@6U?KJc z$2zZUBtqv7o}nk|^q?Z5yJ!3`5GA7W|IQFNTQ3Lq=Cn4%nRPc0m~p@J;JG2`Fgd!o zA|;}`d;V^gACUdfkij!htfB{S9LzCv&~B6(MC*ntPZi#SKo!2D3@>1MmNB8ocre4& zB+KL(g7iUj2McV;NE~d z*5<;f&Q_%939>-6PekEu=Ubv~WmrKm9Hh|%cbr`U%>tJb=JyKs@~$-01dk&bdz_yB zC}ESq!Z9W)mLwjqs<0$sD_AIGLss6>nmuE;ksp47>oXs{+Ii4H(-ti;1MhJO?$9V` z^?P^Z9Yx+~!V|~5(}c-1gtbD0?`Xp_=-MR12youe0sA^zKPxC*P6oUp$b$j^Hc=^As5a<&R>` zoWcB>EVol>9MPB>BkVNMV~T<>CaZ?V7jG9B0vV4zUQ!^_TR1VIPCr}@k=iFhWRqn8 z1iD`n5xRD7Ik@5t;AlT722;_mi89@`=P5V)SJAr?Ie?b ze9sODv23BkIQUI5p^!SPQuG|%`D9iMN&a^AkA;&He}Ql{y!q1b3ab_Lf_Lw54IBgz zx_nG{;eyR?^bU9DMp+D)OYi;%{{y10dZHoxMY?OU?CIR)R!ls#$WpH@VJZ|8CnsiV9<4(sxWK_@0@#ND9Yf_oF+4<&MMh znZhF5mFy*Y3>SXVjTOm)sk?{H-=cyJRYb)fNWhh*l!3;B*YGzsOkq5ufxUGx8LZES zgY9}Sr9V}bciT#qk^qRv?H;|wwBIM%VE)sTxodHjltR*Zo;e{aNOU_)SnOUbF$dHa zW12KIx_w{;tb1yVnevIQh!RhYo-9~?Pq9p~Db}5@CB?)#)PbW~8E!!IOibjAgBcWv z&fw6vynqlQyTAUN4zE$0_&enBj-#@b_ju#+|g5s2bcWFX2fP)dL7-ENWr>4zE;&1LRQ z?83y^=~7n&MKKZ8c#3@fR+bx3{i`B!MvC-$ZD94@U`KfWYPo$AYXF!ed_ZjUQ&o}O zi}6&4F~0_|Y~B$&EJ6Y|>_vS5cz7y-TTu${x1WA);6cEi5fJqF?IGVv^)T7(kj}{9 zNH+M<*FH%301OQZo-w+|2y4ICtE#bd#tA86u44$r7|PQhBwT>xyQ(lA2I6xE9-9Wz zZN|q^2@oL|<9Ny)E@*fF22Ef-0ScKeaQ&kHtwHQFf%%eysRIFWF$A0?RP+I$uK~<) zVYkx-MO{e9cL7mnsF@-yh#LC+hJFn3dv`hzq^)R)r!>hN^3rR))wCiT2@f&mKFKu`UrxnvuOT5YfvnB!cKqd?F+p z$w|pA)8yVtCK_>_%G{{x6T>Rr9m`CJX!;A>&brd}-##-9>$#yBO@iw_lZ0gw&4BNP zIk;g7UH_^D*uC-O>Y5&NUvFn`;vS{BXcT8CHQN8x87$&jV*#z_gKeZ40v{VTcqF_e zfiIK82C=Y8g}zs_(2U(cqb9F?R;f{cn>rO^<@4Uo?sNeP`8`)_zPr}hRU*n+yJnfKE+urkJ zL?@{38Mp@n@kXr2!InHHn6XTBU*{2aKTR093V__kaxDTPZ16Xj(9i@kys1-M-lU}4SYWH*Ww)? z%$Dcl`}i-cA&#&a;!+~n@{#x9eJw=_j)&FmeIKdoh>eItbcvU2`7p0$BaYgY7@WHw zzvnVCDEDYRrO{OZJvA6(TBREilt>(lOuP^QfGd1vllw3lmKbbhCFMm|<4(7WE8!zD zafEVU)@Nqe`ghFGd_>QPJ>Y`^B!$4b&9FZ8InicaPBg2ZXQWc=6r7O29TJ$)F(tTg zVkJ(u4O9>(<^oF@$A5*3ydAj4g0!dBEIA+$;KQ5%ShqO$V$9`Dch&=vz%97$Ap$Tf z(xlU@D~Xin>&_8iL?gC+ux(^~mz;bKYboY0Es~i=AWID*wn2pZkM_*l%QNGu+2Qm&;&#AYFHNhqM*Cq9={jVMKcOyr1cN zDjoQK)P`?3oh<1BYt^W_gW0;U1+u%R1Fnz;Oh0VHgj?hXQ**0N_jXSgBu{nsR6yjD z04O(G(1qK$eRO zLRELStG=LHeV>BwVl)*Xw(L*wMGm(;a~kr===*J^0p#Jrm>*BqZ}!L~GseFZRufL2 zpJ=qm3nHBR!kF!?i0|$fc>!-bxSvFD|KJbHv*>SkiM~do!|3ljx|Xp!KwzKB5*EA! zp=+a1U#}~1?g|9oQyBNVUAS@WY#Z`D<4$5TRLnzFJDy35{d)@g=N^Va{|^p5MtxFj z6BUouE#I0o9pCR^@o`~&=A8=fW-EHsQD$hz-r%GXYqW2sl46aOnK{y}@eKyIw55!qN5naJcY` zD)9=ZJG?Lh%2Vz$Wmx{6^6sVgJ=5PArU3Xm3vhfrxS610aUZCQxfQ7LqJTu<;-(+; za5`Qxf`eR64XJT)wx{u-)Oz7q(`BW?+Q}j>4KV9I?ga9zX@S58mLBeY{eA>nLS>zX z8MaHw!p^iAY~hF-Z1{klN**q^O1P>v6VdErDNi(cTPS99>(kF^fVXW1?{Pn<#+P5hn}k2H-SHNEeB-BIeyPFkJ8i1w(eM$x;pOW-eL-l>hYb+H4H)>Nfx+-! zHt>T!^5Q`S{J{fRt9L0L8uneZD9!zU%)MK4T-TK* zSQW0aERhsRi5HQSsAE~ONJ$Awlq}0>mu(OrDVBMG0MK$*bxkq}B!CowOgIxD2}gH_ zC!*)=%*zD(p(AEq=AnO>f6097viI3*pL24blVtUDMYu!&nd|%3zOKFY+G}|%UQ^3h zq1(Bo+v{?#u_qArR zNhUk6!ew6XAhoqa=qLgXtAmb1$g^+92@)W_Vr6$BHrwcrvSIdYGDI2qJuHvUMo8W; z;eeK>h|qw)8%H)C(|vCnxD%z#2X`>f3?t1zp)>3-h0fkl2NaOk!BLn(6EzmT7sAw8?e-@P=D4Qti?x0_>_Wy8*M?UoU8%~MQHhfG4W7{g@ zd0U0hgHjNT&VBCDah_N7puJGZj~axzyUHHaXl3r-yKfurXp7%hv<0?WkA~LXg(C*e zwZrLP>u?t)gFA-swqYA!bKVAkW#Az(Mg+1WkYp<82}Jw}`4^-$SQc6>rC37MPa;*F z1%fW-3O0y1pJvF-zwyK_Hpv2PR<6uqCme&=3-74#{L&rwT08iwg9cM~RC4=`6Ba&z zs4{N-XIh;0$ zfRrx&wxaa`U%AZBlMq{j(L=5}(*5E*_ z?@vD!Q{FI~YeJ32SP)4(c5f2ThPa$DFzD`AfG>G)u)S1b%bmk^xgnPh&8irbAV+qZ z4$0&98vj zFG5l45^m^Fms&DV0vG0d9qE(^$=VGm9rbJ^$%YiN!U^ZZTF@4J$Z`IBk3Trzv;dDD zO$L8H9O90+M`Jv?h-vCGH!U|6(Ks21V4ggPyjW96_j?AU2~=vEeO!{lMa}JLdUC$D z5pixcLCi@g9{BEd&b190hT{p$Kr)9=z#P}<^eZ2bp#F>g1XeX#&OUvc%SfUF03(t$ z#E5JkdPJQ}Kt!T3Ld-v3Z%Y!2I(K@ZXtbicEeAn#(QZDMU!b(4JNY0&&Wy|JvZbu~ zEyZm?*?ryZzli1yr?c*(Xd$WsOemgl6SwB*CU=UMT9b7yYl$;lGe#%G2+!glaI)*! zJka3rE-LIXZuIaI*y|DTxg4}Y9D~H2t%{=zJHzP?mPTzQI_Q2~YHXBu!!$5gwlphY z81C*OM`XqL|JQkJE4Ts)$llcw5UkYQU1Y0t!~Wy%<&#ND(B?O>HvW|4jv&+!IN;+^ zG#MBOm_UdS!ez3Bg$1+h{M%eQIk@7)!*H15D9sAEj>2JHRvdL|sQvA)|AUrHJ?%W6 zjQg7uID=gt*=WRpjbjc@i8xGE)DdZDoP}~_gYm+7Y!$-u^Uj4G!-C~i>48vMH~gU{ zug3jm%^gZol0kEXnKjPc2>uX&f}-9dhqAgTT#9lqyTJ#;!$ZS8F_b9mRBTA>^z9N9 zIO(w({9jvEG1i~RLr5ao1cNf<} z2yif3ql0PC?C-p+)(}L)f&@Wp$^m{`eu}!72-ob5t-F|Hh5O-~jBED7^I;b=G*1Sr zZTj6#+{X;8l8_3B)Rp1SXL$8;X)kYWAwfH8oWO?<&$Ag^4ZU1pCqo(;7`XmsY5A#* z!&|r3LjW}R`+?R{)}_3gNV0Eckaj5aoQv)^Rb7k;(y zwHdtW=QmM5k)+P`&aXOOqkPHzrKP)GEFkd?gZysX9}M~1f2zPt)~hU}sM);v3mBUW z<^=-nV(~fnV=1<4%wcy3V#04CR2l`Tgu2*Wbd24SYN07^L{pgY2h4!dj zddRIY-snNtR^JS_wIwG-qM5nx5!Wo*8q<4?(e#EPFNPp>B3vD0g+Iwjv_Qazd}Lf6>wk`?u72r zIku-;@Bgm#NKk&v-3P0|{8iBNTnrG`NB*e^Vm`DYAo(*NZ+-D~hHUOpHk{U$o5BPy zT09J`c?8oDnEdK05dfv)O$+~qqU(s#ja#5}`{uoSyvw!FWo!R`iY^4xRF_*Tp)TqG z;nl|#M9}HjXV;<|rPgq`-|(!0$t%l)D?p$tvB-9V6_(RwSB#(r9D{Zt7(!xm6y_A2 zshk4{uQw=U*(}-V%<0i`CIE$vMQ0}mfae+vkpFCrEuq;o!2GuXa|tKf+8yKd$CuZ$ zD+gO&UcX8Q7X;uUMQC<~PW9M@@sJ(o7^-w zDG`siJjL}}N^!BCBD7TBJrAW|DW_Zw6>q0Z_cZj~7fJ<-cAfnEgNMa_Qu9=ZR%ng? zifQwWG~$Q7c^mGI4dcHm`8vV$;1j1)jQvz`2lW8P4B73nz!>OE)1D1IfR+4MtZso2 zi=^yDGe(eTy+^^&Mz{~-5p*1qEwmwzZrz$qR$3opL|#49=S=T4e2EZ_ zO7gh~h~vs;8G}fWKY`>Qi^F9m9Wu_Sh1o@;_V%-#F&?M69G=c}3TJvc_gb`Z7?Ey+ z!`<@tl~CXlo|&KR97#DMKG{VVZmmsnNRxRi((v~Fd&uWAJD(3BANYD6+}zyf^gOy$ zXEfmH9VAa>(~S+!gAgcNf3OVjH1e|%YfCV1_;GFqqg4>WOg)ehGcyyzu4?Fktm0*4 z=H~-e@%+S7eLAfXCw=v7+9sVQ#C=`b#>vQEyD4v|sYmogNEkzkKt(l?1BpBg)lFsv z@Jt0N5|zJs$I1qC3sxbb?k-N(ZZ zH@`qh{*hy)Nf(KuYQ=~`h(wT@RbWUB9gno z(TWn-J7XJi)G)rSikL&;8y9XsgOXofo=pRdsPXnzx?8@pFSj~Fh&4dd-Cu(Y=>{GBg+u&WQ=fzbePn4}28Q1Fg|=U?kKVOZbN_wzGYqZRa; z*^=?CaJ{M(rWA+9b)eL;f+4{Vk19$C9X4AWExc`u>lJO`DL6CGQRvV-!r|#Ru0=u( ze2e(6J5$wtT{S?v{9g7+OAPIzOS0yqp=H@>TmWG<$KR5aQiqY_QuIvkSqJFD7HIyMl`js_<_KYzCd7)&2Y&bOk$Pfyj#BOelXOC`1tzTV@5f zaGRp8&_LHhLCr;XDWtZ0V?xX)gGlBe~3kaO1*T|1JvZM4@#MmD0lgs`9l&mTZ z)5AonI8t;VcckbDNF2CR7?B+Igox8Bu9wPM=oerxke|(vyuwdB^#;g;yA{&R@`m@O zUWi%eP})5(_G61GSb4&M@8VKzOE%1AQsQA38YdgJ-_2-M@qa>ts;k%wt6@4CS&j{F zG`v{XR+i%kY4YBR+2NPqr2)8JKsB#NsBebc+2y#Qh5?6Od<{Pq-r>8CixE$UtXCmT z`Qkohhy21(oYSk}E5d8|t_ZU7{pWaj@J)d=!7t5^ba(WN82WEIp5WJrhM>e)ltsx* zqK2Mqk5=9AvO&5x{|eS&u>6y_BjnLqwl0|n3^NQQO^)IL>jsiaajUf|iWKcn@MJUA za=xv{bI^UpYDq|{;>R;p3^+kQeMatO2l~O{w4I4jCmo6&j&2|ty74?r+;6~AtpFky zuL6Qs_KF0=fgXAXX~tPYzmOLf^K~-w(*-@f-K6D5Lr(nH zySl|l%7wl?2+g;PyIqc&sRN1m$y>7T3C7|w@z9(7f(M>EqY3HVtZ9yhZbUCfnghbn zY4jo%*$L?Rt4ap&gLr)io@ZkHa`zoPHR!E6Lj3tqH$ZN+o`mQ2oKey1MHl?LZS85c z+zJMC)#VuQl$qiniK{nZpySY?zsP_608177+BlfdeY1jlnK^YrY-UqgA2#a9TmI;g zn1Z@s*llvYtvnE~x`=RW34|dgA&gu_MkLFIj;+vzzyQ? zOh4ZYC5d$Z>F3BvJOde#_r_tM)z#DQXI7VaR7}x^(Q#goOi||G=IAlTFD9v8&ib!( zDFs4sg|mUjs{F@tG3?epMxKHy-yPdG5aLTilhg7e>y<^Pr?SD{(N=m7hIF#sEqaaz z7dX6j{pk~&O7Ig#D@D_X9oO(4%qOTV#CBM0rx2T8yj5T>GUj(46XeuoK;)3df^SN2 zSx(RKC-X)6d43DO9X<6Z$tX-)vy z@sJ&XEYe?neQ!RlP*|5WRT!D(+=b+DI{Fxu;3t$e6W(?#p1U>$Nki{Js2s$*%RY$j zpa?vPrwpeeKK~GkPwxc!A_G0am*4 zmTXb=Yq%1-roK~n?aIin^ zUc06X@xpkreGN5Dr`O-JLQXe*zQQ5~kR?Jab(tpR^Slph^!HKr#(VthB&6H;k`|S z>_lRP7m@i{CV?16fx5512Oss_koTLDz|ctH z4fM_h43_Y30WMg6Bc0^Mbz!A*DmfQQBFK*qTmD0M z;j2*jmF1?apwh4FRMHMWgb>mt!5P`#JrYZyNL6RFdNfy8IIUcFGa9_54vo{_Ndi9H zDLBQNaD#4|(8ITp?=Jg&JU&B`4>E#kRBPx6@;J7`tZE+2X!c39X8yw=vsvSir%KZv zd%1B)P`Crc;Hc{^KMs?uppxE+`!@7_6@0m}IYL{Yp)bpW*p3P`@<^taK6bs7;skxv zBK1(+Eh+?2vrd?a)X*aJl0^v;U$-{k>B_BH=v5<%>DqZx%*t>$hV4J!h+^t?mK0E? z1Fogctf?4E$ z$2xjUv5s8}JIwrx3Pt^Qs(C_Nb#;5FDs6c^n%$EPGp2f&S}jAYup6&dXcvCg+DG~V z!o%^cH+w>=8zNjg8oq$=vQ-tm?4|UG2t+9L&gEO~1Jw-B6&hda1#|XVHbQZD;}X?T zTJ47MrCy*g^*`b~>7?dw-*yIXfCWya-GjdEC1g>kWY~=J?H)#aCla5(ODt>AL02Cf z`Hzs{rA}(P#im`4f+g`!BvqhNdNd}?rq}TClt+*@^)N6&HhK3G7}zBRO#b2hCTyUF zzO?WlC`AVwXZ8$i_|n456yl-aaJrpatwsbn^<#KJaLyjF{}xvs2oiLgVi%2zD2PMr zyl)uU=!FYQiqA$9)1?X`G~C=mZtwFHr;WeR-A#afNGD6Z=GhtIv`@K0$%l*1K>lAF zE8Fmz2VWC1P8cuBBrHF*6w3eh&I-Y+ADQ9FfkyX)@G|3P{wKm=sH_Qv&Sh{Zn=#nX zk6bWE4Q~uRQzx?{GT~1anfdvfHE7_ZNg0U~{+C@raPr>O;whOS)bPQxCxm}= zNM7-N4bRl6eXguNSTZOeqR%=U5sud0qO=TfO3?tMn;&*S7Jo718r}yRa)l_kA87p3 zRS$ts*yCWr@Q9Qm%6I%PvQ^KA`@Q%J^|3~Cs~X4_a1AXmBLzXjxRj7Kr63TYoiG!@ zJNOJz5fENEBY|G}5H0mr@4@=UyHnf@m}YEv>Ero`H1q7g`c1n!2#EoCh7gG{mj3kl zB9Os(!*FTnAoN^VF3nT!LN6EIPfXHFs}7ZWZEb)CfUAQ_{%ugl>9#=pyA91j%xd3WwuC+=Is}{=Fkj7GkKEQOuB{`NNlOy!#@0->x7HFQa?|@&#@9 zI*oT*7Mov`+uPt7O@Rq=x^baa+4i8vm0)_CgZW#^zJnh|g#B?$RxT9Pd)nBK*fhPN{{!n*x~17!A~{S1+YeRj=bq-q*cYIaHD zCATBCx&Pek#8rc=YB+cpkOEHwTGN&m@SJ0J7p}~OMfZgYzU%Y_O?1V#IqVhIcfd6? zG$+|$^mK?!OVoR?I&fo(OFl97OwTn8qO8FZl{pDoCjg}A$q+ElBwJbVk(d+uRg-ts zK=GvnZX^8tZni(hB5ymeVe+mT2(@5v4}oY8kJC|{{QMICrOW`_^}4J^aMzb7B@>H3 z)ZrMU+hQC-kAkX@8!9^ifo!%Wk= zLsQ(fZlPvxv{*EBLDvAOZXQiDy(5~pK+E5|<^NvA2HNOaj7dfD|6M92N;e8FzF&TC zx}@P+tP+JL)ea@GE_^}7=I0i(HNjhwr?2;z2W=7>Wujub{mrLzD}!27+D(R2!zdHW zNhNZXUaFak!oiCU#SMnQ5^_w!jf3-Z#r@jQ5;9~0p&c(2sgR1t{@Hp^CQoBt9VIm3 zWc*Z?dd`R>dj)%)_HjWTGyG$-_1!S^7%rGV_9*saIE?&fcRZ7Ok`L%%@!EYwnV@rZ zi7WF*NCF>)(beJs(R%FVBY49lu11FdM_e%mC;zz6VmC?vlUyy!4iZLc ze)gWA-Lb!~Z4i29Hdo|i6&Vqhy9QZf*?`t-Y5j^eh}{|+UQ1V?Vu5%~l;+0QcP9}R z4#2oAM~YIKjgJur5>+2*7?)TDk8?0?=S6f!Mdufl5#h3NLAW;r7Y(9^QAct#IHWwc zE+)dQG&0rnLuO%Zco;Qw1;mGJI1rg<4g_v4;c{Q&Gu-kfT<-DU;&#@9y?(Jvp&qa( zCpx@s=QgaiVCa?v=BHL-jPhLbn=DmDc1xCNx_RcBmr6ybz0~~diZdXxU^$`{K+{6I z#z9-lOD^6Eqz$D(x1Jkv4PQN&h6;s~*-i$7bSi}7)E8pk3$btgiKx1{iRh=jeM}N~ zS#cmUteVcv{i!ZZ`$y)szXUcd^zja=lL zwp!k>;m*m0VsRWs4I*@f8bLuKRt=(-Pxu|bgUWwc>=_piaZKjcSyaDuRH3#O8wx)T z2HpPC@od%!lE zkfxzbZuzYt4g>VVCX(Hh7uKfsfQ1N{Lp1y49S)8M4kv$~>Ca#S9n_T@HBHy1qGe4E zhEaX+hWVNz(Zb!Pr)3RTKJv7iJhcTfxax&XB(O`v176ee^gYfQ8>j>3DTrt6!PThJ^C&(GA2-I{(^7w^o*e3^b%?{2v@&$C;w zx;Zs^FzNvm6O<(uY%H z7D*IJ(Jv8yh5(cTCck{o4uzNp6wvsrND`dD)w@nCxKeTpl z!}zQSN7NASzKhWmFgW`e43}O4Mn#HdazgYyI6);%AnIc{di@PV`Sv%CkP`#Zl{jwG zHJVmB!xJ97U*1KxnBSV^VW-*tSOygJ6qPUU94bFhCRFoVEDblBQ-rE&u9uPNx!VLz z^xceV)<%!>8k*~6siKb)-BHo`$(s=vn5m6kmJu_fH45CR)Avh&Xl1SVUY67KzslUKHB+(S z{jitf=e`njVWu4~J%8)I`(*(MihFVqQI>?YQS!hdwt8bokCigc;L1@JJ}oUpMMU!ubjT~|9ZLgM)_eQP<|aw{mS7PKA$byR3Sgf z_qmCgBK$hc5B8#F{9G@mzvV2kq;`?|mepR0)Ly)|j2l{2``(>UZ8Wsr_%v#0R*l~+ zkUzVk+09^Sc;iz>mcdePM-MMiX_Qdcwkoo9m79rw<4IRE8f{vuwZqL`OBVN?xB}W7 zBDkVH-)d<2G%SW(*A|w9zZ(?}GxEg#s_xqKzObL2EmluZ@<@$J-xh}_EHy>xNLW?0 zE|2kGa3{(L-S7leKuF*7$&wCFF%B)s4k!Q6pP=H8g>=xnx*HZKxbPYsOvbxd=eM)z z_;5m@6nIire8P<6hPz?$ZP6kC=_m+2BP%|Js25Du1QGDppu*ydT|NmwzFXg5TB7>P zUVlQtMuvOCpu$47a;HF#0072q0Fb}O2ZG@5mH;^G5vGt^=3I;*8#&PM2vdlzp&ZK3 z-z_l?{|v$!oKi>?!jlp5dti~>ogP@04XzlZ<)w>-=BJt3>izo+ba!q29xX{4 zl~R1aOZV;aqSW+o!>E)(kPr!^xQ^j&_eO3>xL!&M{C6}tCPpFIqDiElAv=IlF_ z-!bz2v%`09&4LGE%?MPe*u_&wWM(nc8fFA4gh)H7r2NM#A`)=w4=X-NaAYIeH^eSw z;CNzqH1vlR(mfA0L*@7SX4s`J1VsM6ds8o;aHXs?xgkCQ<{Cj?$nMsBn8O1ltKRMq z2KQtbonjhB&=*Leh5TG%Pr39u3V&?fL*+p|!l7n{oq_4n)u?Y7!?8T}w zh7F(e71C6LNMwF;HTn&hs8xj+!{XMgi$E3U?xShUdk+^{Q^z+9V5&yyb2yMw6ZWmW zj%a9A8Dt?Y@Urd*JOU-C&YSbQYsP;a%N-A&f3sF*E|D|NC$G%i2=re?Q|RVp2vs$O z*f>_%hMSj>U8}4E$S+o?&?Pww4ejTtYQtH1sRZf&3I+Qrs$ARx1l`b6)Kv;&mGyWsNB1A5Q8peE0lX_?G||JpV}!7)G4uNg*gh+_LlS9I_znT~?N~9T zbn!z#@gBK<;wbcnRTgI`2xxWM6l2OPd<0Ef4q{)wa@rccI>ajZYQ(xeU@|l$OErQ| zpSn9-l1c&7+lcDLui0Z^Cer-fDSZZ^?q-+NRxAXnDpvlHbV7<#-5`~3Zyh4rSAX|e z|A;nUgeXr)v3|yZz}aRgr&_~A9H#MPkcw7>hr=G>K_$h5H(COZ1uyqWJ=5Hvod#JO z$S%A?yTgN{;1O4NY;PE3ZA6L|DmQ%Da{6Hj3#|0m@oWf7=h;*OOsQ$NCNO;D)M$oF z!()fa6EZ%+gM{i)6t4|@Y)6O%N?PU3Q9^|Nun5dFWEwttFl0zv5dr!le{<>9tveaK z!jgI@IQn=3`};Nc4Uaw+e}6xOKd}Vq23=pGcyxM0Gu+?MV8@a{*6<~Y<-pG<_BS-Z zl4a&^^D*$w%2J4g?$E=H<1_Fr6^_(~ha1D9kd(h}T0q0k93sN>kdG(hY&fR-8-|}5 zP!ZMMJ?W9MR+pHQD)jp%3Q<@q-b`o1tq$@H(q$^nrUwJg)NBTG!)#*> zR8z=~hs4>zL+013)tt!_<4?o8UGHHwW={r3e6xZnkja_SDAX{#+b9IFc&m4W&7WtM z9#s+8@t_(H#MI5}h@o!r6RK8;zJWovwt5Ux`)>8}ZgKjL~qF(C|nsHb)5tFXMrk*2;0r^uHOh zfti+TSS!b{(H}Y_D?j$Vv_^Jo@jGgfx60Qz2C(7Lvn)ldIsg0gE$Zd*X!KkzJBE*8 zlESXMMt7cr-7&oZHms7i9LW*}@cT=>K**pgN+*tTM-_ho)N=7Rw95%*Lt#+lw=m$> zQ~P%T?!TY^pW5GXpu8JT_!1ClnUETJ=QF;$@JQS}}drXgsPUX+r-Z$cf8Oq4YTnPPkUwuh2*r3rBqxg7bS;)#y&by%Kx@ z1?0HeIxPjm=@hX^63ab>hkwhoe=?L$SMP8g=4*k# zF1CGCw&4|v9=Fq8YrFWc$wDeJmbCCChCFUBr(pN3GSRb$3tl-za#!O}z}>D4oS z_L}sYKx~ixt=Uz38fD+5-?<=rHg5u0)5pmxrv#EHMIXZI#4iO3*QcyV@O^L(-;h5u zn_$_co?c`SrYLJ6o)OAb&fz{EWyyQn$DJ|!85G>8kHBb~!21iTifMF8CTWV{L@5fT{cAYvz`@m96KJ|=+X(w=Vdx`m*i|YmgG*;tp>Z1u95Rje% zQLjRX96%YT8kbcCf>D@b0TsFT>FpgoBiW$UhE^Uke4aI0Rf5r~%=uY`BN2F^I-H?g z7C<3^b1_KJsYXfgB8hn*uP>a8c@#nWd|lH%uyOa1OB`_*bmlk!Jl%>?trhY#+ur-v zmuUkAk}xs_qIC8El1cB)`dg?*=;!$R@K zm|w!I%c$Ys)$^fov_Cx9!dcz6( zqP{VX8@Q**9{A}A24a5&-;(+;(RgZRe+5#cU$}+@MCGq7QHe183y43B`w&4zQ&g3# zQ9J2Nj>Rc7%k+yqIGobA@5OotGT+4ChA~LRs>wW+kP2qvlz3oBTUA);={cvFabRz}Ph@Bn`XMcqRRis-oVDyhdARD|3eJjc^pxh~Sk z4ay!w4P#cDWF%(Xl+tYq1kD%+iT-heq&Sp(g>mwaZc1t7ZnlWe;rXrbap54~LuM6C z2(ey+$ zpOu*8Dz}&X0SMsf4ELl2>#8d397w;D^tXP-s&Hx8nIe&+3MIhc|#Nh!{ z$lEe)cK!~e3R4p8y+&ARrLH$vp68Q|^CtzMVEFS`Yd(~z&)p9<%P*PsF_szdQ!kQF z5{sAI#I6hoZkJ*?8rxYaaWtp>0-GAI&Lv!Afv`|LOHDgCaA>r>S7LzVm77!eH@64T zJ!JAiIu<33!txNy32FIpB*0|hx9LZ~e;j|OOQ|Xlb3Z-WdpyP~HcD<4mvc_0yNrbj z5s{2q#v+;WY?0*r+?qhHImmnR2hb}oS3D*cTwO|Egx3zA`|~YVEW5l~q2077x`%bE z6}RE%vAPndqvJ5;#!W`-#?qxRgSjd0&}#R|8V6z4IZQu_Wp~|S@aa_V+F(pFo$5R!x%ruOJ$nL9n9{G&@8@DE-SW}w*K>9lY=g!;xQ# zGdT-kMcW)aC%bPSY3h(U)Q-0~?VkY06|i(TD6*nB`G*e!I&uudlPjgO;ywmN%4Z-d z!UgO58Wp;=jOW}qMIho5Auc~bRlHdInyx0_#!cDt4cQ|XNpFl~8uXc9D-8y6&B0}_ zZAVw2$|xl0V4Dq~!!7qi-poAnY@O~#WOxP)(cr&qqHZC_9ZPIaBx7A0fQWV;DOBd| zHF4t^qXpc5)j(`F7@&dXq31anVAudg*aui4|FhxfFIo^9TpXj8)n50}BmOUH5y7W* zFxbCxH414>JI6_m4iNe$iRzFj9Cc&av^f2=26$t4JVjo%7(YGL>hKZD!4hF#MLZl7 z(GiZ_;PG16LBB{&o&r4(k-xE6JccVkXfw;$8DTbsHXtN|VpOJBLEgAg$OFg+(y%yG zPY))CazTTjVJZ%Z_ds-gVy8~pC@XXeg?5}!xsw5rcX78|j|pmLE2s@^0^e?nmNsl4 zCqHQj;5Yc4jx%-Y2xr=YKopDVc6_y$_U{C(Ax<4H6T{uh%rB{b$Nx1%EO=>s+5YAa z5SH!Y0X^mI!z-mIZCV>%T4q*ccAQMSYJ|-ElGdHALq#r#X#Ze!A~4BV3Wy0 z_-nEzC@08+D;G3PzI>?*%7HMp! zm`$I(dS)bZ2D7#AnVHTyeAtd@*u%&#LOI0dZZgQUV;Z)wlbK%vek~$eOnDvjIpu#b zvNSl(ew?pF#Qe_HW{$5ZQc>|@D`3j9NLd6`sN|W#m z(_?cd*!sg!ly*NB4N@sA-r_GJNVTZ;Z8OD(!1q&|=?F;`d;EBVZWz>hLy)a=`xI}d zBn$lq6dmjS$gSXS7oQ?L1u5zIEdLS3Tz2RQ_2G#BNdc=;ZxFz$NkiLd#^IjvCnKKSqU$Fxait@?;gDdYdF0Z_IStm?E?_2+_-bw&*_N@lpFX zVgSCMsNinE7e?;m9}v$ri*PdgQypPgyezyEGyX7O>=;y1KIM<-81JhCRLRLWor&r8tybM$)|4^b_@!k*FlCn|Oi7^v&v9AhrhLQU3kG<3 zmkk#d>_e%fFR|2Po8u0msgDsY2)y&Rzy1$8-2Ag^Vr1mwXP*7Z;~~6UlOx3B%iCuS zPv1LoP0eeB8a13ifSP?`*N9Q8c2@9?2S*UUf@^;HBiH7(30#=?;9%FZO7b+W^5m4{h01!tLdC<3 z%ZinHM6}!oDhR~LZ$e8A1yPLAg8CQRY)S8qe#;SqP}z}4D4I|I%)Dv=!$IS(BSR~= z-JtOz@}GpamVVH{yCVT4n1vK1NH3lc*v{6c)xO=J@p3W2C?b&Ms#S|YvpN$NZQwUt zJikGfXJiPB=1#i}HA?N1pUq|1QE5IZQ~_1aDmT(Ej#WpTeT7=FB}r)cz)eS7Z=(yK-I1otkg174c53W?6?;dTTSMltGN1<;^g0+$cyy>|P|>xw*I$t;XdZu}Glq{@ zIoqA+SWdAhov?C&_?hnzL^B<5NmBg{5==j#x$zgOKnt%f2BRU8jLB0uvQi?kHs%KU z){#NRxF=Md7viypi}?J*^*R>+f`X;)W1xN7(?*yhWoxsR^VjW0f|rrMzV81Glsg`U zLRx??&(g`Eg9S7?4B_wa07FC6gOoIJL2*CRa_tNqj?Y084R|~Xc6=(r{DgO!T34~d z+JkuY!67*>#UHJ4#kB@q%aNXs9?_YlC)c~UpQiwU_VImYn9yAyslkb^ykM$Oj0>iR ziW{R+abhw;yyp~Bkm$H{p8930Q9(l7QR)pqJBa|o=?$Uj$UTA>ZaTYlHv0PqXaLj8 zNfSrB*OVl{857k)^Yf@e6vAZ=j;RbLdxu!ddYeO3w&cu%?3WMCiDb}cmCqk{qAVCW zsf^(KZQP3TUyvEg{e>?*D5VI6JY$MiJM_~o3zeV^QY9}xv!cJw&@BGm08Meh;lq3S zWHf%ZODKAyJZr=gF~nfG@ajQK>OhzYdx}-<(Pk1UzTh-aoXfRWe_q zlP!!GAZ%lO`sx5W43K|xkBJ106cf3<@{q4)-gEN1^beZB{H{db3z$JYM-S5EC0oM1 zKfvwS3c+B~GK@Yqpb=z=aP)l8jxS53G&Jjn(z~Wb=!>{f6e}e12_<8YoFqG>ah2%B zVM6JM#s#APtr^hMC)kAHo*zlx89RJh4rr1EQ>T!XpIVE>1N<#VynEoc#BfbXFQ%%L zC|(GO_Skn^UQBp;#}tr6PZvukfuyk^i)lqlw_5RS^KXJE&Un1>X>wi+3cec&nEA(_TOSct7mYWGO-Sb)hZiHSwb?xIewH z*#OSF-)rVc_oHd9wENdImzw(eJ7nlnTi^WxiXPiPqVpYxLK~>hlRZ;>k+sC(U0+*Z zm%){u#7$FUzKv~zUi^N^Z+BN;p!OVq8n+`}$ z4PuB3gzZDDkUc-`drz;MrYbdq2g`q2%Qn+MX6n69>eSWRH0)%R;w*;$Fg1YYG$A8wP^nX4_(21Q4q1Gp?I@?R!14j6YN` z0Qs*Hf`z=7SV2A6*a?Jyx`%PZ&oFWSYefg`&k{nrV!-TXrD~Q*t1Tf}=&JaR6tg@o zHj$z=X;n@oRah(Kgs88kRV|Ef)jQ_>d(o=Nk&KP=8<&Sh?5tAzzM7FtKrZ==#HUJ2 zpMx<~#Q<%7JJE4LMKV7%abtyNj}$ElYv*80ZY>+3`9o?CNr1{|De~-jWY}Vi%xN?k z7|%128U%UYHxRzE>=qAPZj~8A+utRCyW!t`Jv8{|bx|_wWik>X6jrgqiI#~EA(PH` zhlsq?(%2bdx44*Np(`z>e=t&9awQxMQTP@gr}zitJKO3bMXc7ne9qci z`>lGi5?EI%L3hRnV*NUTP6yb6C4wEUEH@z(Fh}#IK*yx$!DISFx%E*lAFIPSaH}yk_i4-niSgj6C+EHPU@lP zkEx^#Oa;v1>Cmnu$qdX@a;2$_vn0mI&x#8p{ynHJREeyny71?|eNOli>&q;+Oz@hA{K#^v4~%H*)Px;v=R3Fqo#-KNS_t$(LBe zD;5-w;R|@#bk7|q23@ERHbMN+T zG-3bMj_fM9Tw{@AMFK|Y5fpZo8R^OQ5#cvoH_O!YBR%{GB8hwhn%{%tufktAS;deE z|GJ>(l%AYF4CR*?IhB;7vkq3^N)2L4Q0SYGazdf4{*ysZKW`VCWITHn%8V{RkpaXv zd8qtn)#_M6&}N2Zxq!hJvRJ@fqC7pR>Y$gf6skLD>p3b;P#R1b=q@5 zJJ+7s`{F$%q`pApUgY0#h(S z44NhOSR>%i6)R=(O=c*;O^sPAivtNZ*HFZQ`#ZQh4}kb}OV(o5*Lr*X{Zg5cXqPcQcwA_F}V zhrzH#-LfC8i7&Cl&s-!NQ7TV8Ta^hZ^81jg>wL8+G|OAHPek$*PVLI~65c228i90M zuZ(=>7*Rw#XBNHIIr(<9T057Grw1K>Ua2FkCiQhFlVO)tGG*ec;Lwp%U5N5lD5G0k ztz;d%8-=@OFzO?V1G`@UpomkG~U5y?ygp-559`RbiqH^7m*Qa$h2zIBjm;+G_HmqJP1$Mi;E zA7M+#02+B)lM!Q~Af-f47Yb?ln>R@OiWd*~i{ZCWOKNWqF*$toX*b(s9+FUwpo=iM z;DjId#F7ZVIhjxbcVHXeNq2yV6@C>ys2_33r#594EVgP)oxjO|l_TckP)^ev*2$!- zp-^d}m&jjj78-xG9zsy{UR#H&)j}f--KBacn9B4%LmaicVgD|eZ`m#S8#?!D_zemO zoFD*h+@B^sBFIc;RS^6pn|bUc?OV_ zH~f-WIg+n{!*5C(GbYu2ryyo_(9i{DFmMGkQtT@lxx0E#RZtB^^_ozP6}CM?0kP(~ zcK^^_W7-v9j-Daee7EKgsKUf7jgmm0HjKbhka)yXUNky8)w)}oKCHjEKlG9>nq zP=c;c`*;@TJ({>VQ}YT_gLKni%nG?C` z#{2EJNbE2OfYn&@=;&M#oMG;c43SjSQmd;NZHi!=RKzhg3sJHLTiA{>A~5DK*h0y4 z>)#^s!k$7xK}>OaxVMMY7^bJ^IE93AnV^%Kzw=$t(DbSbyNEzy=>0zYUex1!NOEfc zn+mDvnk;c0qE(Fof-IIDvW6-r@RwF4ChFHAiXEz%(smUM$vFGNMy;7nnPU|V5u5>J zBh!$8!swzWMnqZ%;cK);d>YEK9VJe8mj?iY)6i~p?Of3(>eAPhgrw(}4do^F`Dd_7 z>75707tuBToGQ8+d1y_|WNy;15o)=5(fOqcqW-U7c{!A4S(eUF$yYw1tO{;&b~jXw7rd<%2#|PJKPM)u|B?i!n!%KO-Wy6Xg9#y!G{koi#ZyqAfxTNhjBuWFhr{VL ze3{=ig+qJ(VFWf_H1T55ei#AR9YLqpz>)ttqqF4HX&UOKI!on+oh8R6YO2q}ChkuA zPx%~-k?hiJMEz&CoQLg=YJuQU?Xqcj2p>^)lxJfj`-x=;JaJ9(%^gV_N)6aszk1#-t zx}T-gEk+c+ng3{YWr>>bIDYMpOm@Xi=DrIB79#SW=-G;w-6eeJ8fv`4AbO1KIGa6J zV6N-_fx!HY@q}x@Zyxf~6iR7?!zE6en@Hb+Dmr1SCcUS1fYQhg6-$Job_7+j9SJIO zx=`(&PZp7IgG+b%4`+20(UL!_L*^UN?aBCXWJAc4FC*#%iYjy;s#2*2f&T$iuGM{$ zE+A3Xgm!M9h&ZmYlRSUd2^U%(p-5Cm2>Cf&PgX&L?l0;jQaxffa*Fz`2<AcS;)Q&dNEIQhGj%~%I;<_85_2TTJBd{rmCT7k{MbhvF(8YiE=)*;N`uQ2(g zO8Uz}0_?BX$u{h1xK&TdWL#C9{4#e3qBHP9$ee~a6QD~CTDlhM@w#9AU_-OeL#gnsPqVN{j5%2cMCh8#DVwbOMS6yTNkCwJJTwih|2nddhNTE08|2UBR!dfi>@b1*LL3awD@66_1ZLn=t zZeY^9EWgygXV&g5u2wbh86rxSWfx=ka1SFSu9lU&>u?eTKNOQ6TMUGvS>AS^t=oZ; zd0m|V0i)Sjv*TQFpTt9DTHLU!_orjJHZud{w@q5Ru)IYU_G%|9KPAf+3~u);=y~3Q z+qeG)I+^aq2@zc*N%@<1O#T3x)4btxXO5pCJrvgv8D#W}jB4s2%UcvC*l5Eqv}dWD zg$pMdNR@QjEH%IQfFaiq3^mABR~;m!MV2Tj5$#87VsbtWT6C|zT zq@k>rla{}=;vm-iFG1l0_suRHBoG4u4K%%plVbYkf7YSwT)~TaYInFbz&dR`UcYWP zOu2Ksp!@{)$6Y5FZNc^!eX2{nR~jfXd?=UjWSi4@nTBa(j}@ba5K4nah7zR@b_n^; zX{==N0Fq$^DvR!ep#P%ZNs0oaLh{Xk1CUWRTLnRpR0J^6XREO)lsIt> zO^jkxR;oh3G|XF$%1Y)eG{5k$s=eu##EXt$E^^Y&&@UQ{#bSBJ-U(aV9KqfY(ReIu z1z&3+n7^F=7{yFU3izHPp}N%bIoh;Z^P{7#@FF5VuB$r*E-?&sm$ByD`3;34v|fh+ zZqi-SSeu1OUs(Kw(EM^}%6XgLSMs1Xpgqr!D=fkA#M)%fD|0Gj&9Expiy7eOnwClW zh4Ixg3;Yu0FJUcpS(*Im*Fh>CuYP|$De8DiG{4P3v zG%BOM440Rrcc#88lu89a{*~iNLp~lQW)8puy+=hcmOlNIM$g-HqV4bMRhIl<+BA8U zCEt-rDHBAmvQ(J6%F-W!c}f0hFc+R7W9;~uom)whCxPvS=4Z6CSXuvTa5*_e;5-Tf zJf3dQif!?e`L9Ud5!W_Qw;Hv zqDc#?LeW?r{8*wdIl~1=S@0(1^xhbc%lPv&v=@}W<$xbN(8z6z_^P^g!wK>&y;Rw? z8`D?RwO&vF7BQ<-g1J!vE~-96g>4sZeW0_suhWVtIb} z$RDz$>dqYRvuX44^VAE<&uDCu4~=2RC9hMWItpD65kxw{6C@PisF*(Kb*kLll|u8& zI+WK4a?L}A6X}w6I&yuD`$$o}0Y;U*G7qatq50*91y&~TasT{Ue$7RNkvSewPuPfH zs8C&l{zROHk;)&2lNELXfl=IB2Cj=&`n{n3B=Ef_)cI!)s?dAk+UT*ZM-o*^}Yht*Fv>JV?e<8A1G-jWrF32~#p3}IJOwv0q z-#4cKvLxN=Sa-0Bx}(^VUb;Jqji~4jd&VkZzp|lFY&9YFjG>?h6|`7o>(4V3f2k~#1@jgeytcF5rPgDvvgirn`M7S8_h>e6tIh1GUT^0ZQLg|KXG;S zg^WEXhO<8zabSo^9v7V6WaXC~x%M#X)*%@endS{**Pcieyr=>WYvV8FV{qh+cjYpGDpk^`w$STE1oEAcn^sL7NuG0Ma zoC+?qA_v93@QP77J--j44+a~JwqFz!nek(L_&pH%0v@sE*EWpX9L!|Z`g=l z1dzW|aFcx_yC+rvHQibLbpJqK2$Z7=l4&qRM6VE`3gd{h}$pMS#i?p zr2dsFWx{4MI7#~rwRNBOSS_iSXPVWE%s+fM@}o;H5wbgYclMl&v=uZzvMI@BnX-90 z96aN`2(?bywesa2ec2H4((>b?c=ktpgaLo1-zkQGMi*tpZ%mUUcg2!GLnV+}Gt4fR z1n9E7Ie3bUiiS)wlS4_Ck|FyIuZLKm8x#5?#>9K2uQ>{(86n zDG#iQm6ix)vr)~m&H4PNcar#EtMh2;2FeEB08fio0;aaV1^zbL(+47U2kbIb9T8YKznbe;H1zxQNymv;KR0qdD8NB4x1wy1rM8){jzj)Ku z{R}Mc8|56l0ww?Y#=gaHamGxU+ zUcZ_l;q4-$Wmh=Ru#XM(D&C*c`p(Tr{2OY=hy~^ET0RAx)dx#^ z)D7<+?7*g>x5vG~=;?4W9#MJH-cw)MI^5us1tSx}w9OnM-nV%~JZ5mUwDb4Z-6xPJ z#eX6*)wX|^fa?0c;1g|J}$EZ?@bO=+*y-m5a?Q`zry|>JDF|e6XjnMq(cL{0t2pJX#ixzQ0 z8)9s-qwtXO&Pv$8FGMI+!#HR8 z9{n4b+K}$k+Ai)#(;{i}y#kn3VlOwTL_41O5K;Iy`>S4me9*&j5TR@1Nf$r(e`oz2 zQUkFI^hA*7-VjwJG53PtW~raj!HoxuM9MZ4u2lbf(zY_}3>9g}fKSKJQ61&956c{m zO*%JuIzC0x;^KpKoM%P7Y>`!Zu+>>7m6o{c3zgQH&dulh(zI-V5Y#(CiU zlC2ZLv~D;<2i>AuiR;YX47Bd^Z@$hp_79CV4Y!ge@ z%R|qza-Hs!7M6HLb1=Z5V0$&(6dGD=euzdmm5i}F6kv#i^bO7I;nOYt+F7+mh5=%0f52?w3ARMU~MB(!uCqH+O z2=EvNfhGS3Q2)(rxm~Sfl=<$g9U%RdE3%g;15pNu!l7QGE=_ibyyxCE7DFW(B!5Wg z!+++q{bMR>@^pywcdVTB&$L#({a2x0fR4RJ&{aA%@wVGgBwy#a2XU{U5s>sYE%*u@Zk**c6xY0a0b|Lb z?RVmkZTmIU$aX6d{W4&BQqy*aEPr1bR7Mh3divS7Y1ZF@$1KA^z&$)RYyY72NHS=Z zygLkuy3GY-{?kYkrG>+VOOHTC!RHCxHV2Onw~=Ca+o@-CNyeAYmM*$@2-gj;#g{#- zb_8+NI^@ARYg(qO*{AHvn!e4o272Y7_LB3T+ySj7>VBIHBC!*Tmc2zkl*Pafcr zH{G;Q3zc_!+d`AUHk@jBbBq3rMy=`B_Pf2ok$w%pTmf7^k@HKd0hMT^k|y!#FzObB z2@eLFN0o!J?ddQQE#yUhF(Thw6To0N{&O_AHwT0L&EeBQcW3;JVxfj33Y- z7An|HGbtX1K$Gn85k7&{UACg%nZ_TrTp%2-5C=Hg4m$~hBY}{DcRYCK@sYHyfaCb` zZ6m_##dh?&sxERoWDx2mOTUC)6z|EyIncI?oM=%oXgORv5BA~Xh5Y<%KrmY-+-3TG z#b9#c3{x^jCwMk)mycJ+w2*I^k_98UV0wjh^B#bnXZmahFZ72<@Q`gE;@Z@Xn6^ub zlPb+gqB}#x$aYvX+%@0FV6)oLF>@V0#^Pe>B~v2SC~fJ9e8h1;K04cRT&D6$RBe~1f)jS}Z%pw~?C5of^=#&3JZimZHNPn2y0q*>b2-(>q^5Vr4O+j^p`aA8{@ zbQA$r!*Fj|t8MA;FmPi>s1??AG-Y_0fzW!~nvte7<#&|fjp7LMHyuI!Mb(@)V&Dor z7(Oi@$dfe<8uWM|I)CF{fdf+USt4pRvOjQ+#NM{CgPS9ML~h!y?ODRgm$p+7>|p^& zeufO55_Z)JW!sU`RPzESet*NZ^(t>f3tPyS1ymgQ2!>k+;%!>3#Vt=eQGDRBYIhGu zY$0uCD0qPN$!O0DBSNqJ9+(9;yP_lYj{18Zuvkl>V&n#ryIAVGOdaV$abwcQ1?}Tu z)XZ&{(m=j4M;SC43?8Gy82NcDot5Yy{lSa|-y9tDhml#*@bbF8d7aSwwPh6#7C)cC zg4EO=Hyxb}oUfND%|(KJJ_7X$7Tcp2x z!k2E%U;zbwIYR+DCv1*UnSmw~-uz=-BgX-~0`Q}Jf(KvKJzABE{kONnCRV8OO0=>SItUjQcWO%%*q6z^lvo=FGV zd^Dp610x_jqP4x)ED;an#>Pc_6BT?{Uw|Xm()e%^mwa#Q$`9m9W6G=WLU?{sUWFIG zL1V?HZ6Kwaw0qi`wt;Y^DAr9=qi5CviHJdt03MV<%eBA_#Cn_y*2uyikRsv+apD5Gu{Al646@z8V67)OKmY{JBdvD&#nO z^ho|lZ>}CaqLNgjDYY{>e1<5%hrOup-wI|sh@spi6)45H`>O8Cj~hzst8M>i!P4%rf<-narerBgVXHk zuwNc8wi*69|A3)pP)cDlAUc>RaiF+T;>bygWkkBuVLxu7JJLi>yP%1n9p6<^3~{w~ z<>o6}8fZSW45~#%6K{bU3bU`lw3>ggIOK3*5pLzQ`E1F3JeW94Q%D+ZXPCKDM{`U4s4#lGY!Zq|hhmQZkk zaa^>Cmot}A7!hTo^UvK)TqI=Jv*BzR;mQMJE0d5xG}IV{g)tuYccyk-_}}JjlTBP4 z;H53VIs}IC;NlY*Os}c2XD^SjE;e8VrDA_9t^QC7Z?9YjQ{1$#*F>wa)uyd0$uIWM z1}LsrE=7Vn6khX@2M20|JeG@3@MgqIx&}SVGBl8B%BLkaL-jA1q&i?}x5TrX*bUy^ z%+mQOCpX&B{LZCFz9u+I*Dmu(GTiqn_@F=7@)yn8+3 zRjRNOrdMqj{-^l|Bpq5=b)v=QTE)`D@p`;6W4Gz>`sEEEI9+cCZ9`(%o~&56L@$!V zTJh>u$bn9^a}?{A*f29%%{EDUuS7T+#Bw39iq=4>8&+60tFU5 z@#|0Qsb+cJF~<@+DltEPTVnqNpk_TIPY&%^yqM5MF_|le``MnDi?-+IUeCyjLt7Cq zYKqc1-0$p(4U6@Ryc{!mfd9>kMkM~c(QqtAXrrPCB3x3XrOs;9Hl)Rm1=5K39L5a| zQO4DouL~@^=cFHa-oa}$gr#JGwJAJ}YCOWr=i@)~{XAxBb!RCS!kC?wD*k#xns~i}*Z6=Jyag>}G~XR>(=?}K| z!~F$gOFf-;%D~}mwAvWO64oD#5>i`FgBcyZ@5-;-K-BFuayIQmex|g&- zuh(jU2KrT118rg<8*Ux(X_lOtPf3H96C9Z&4$wmtt0 zqoXk+cO0@_GTFUAG6f;jRCJY9-F-tZp2D@s9b0PmZ%#S}cPrxQ4mc3U>i(x2{>_K}z6>Dt~&FL;)5!L#I8#>PX|6>Ka7z)ZVtX9%qnV~a#K!sE76!{UjV z$$i|Zx2*JRU(1PBsNcr}#R7T7bjzD8;3BKuwru-iiT3ZH8AG)kV21$%dog-F9}yy* zO3Rl;DeL47YGcQ>-s3Dxr80_yO~bakv+0R`=_=pKMS}ZR^D3{h@k8OIqszCJbT5)% zV!vrxc#Dv1eP{t!yV!&;{#*C&{{HXi|HAXu-Yc6FIwyz&`!NeUkv#CqA-}p#HqtT$ z9**f@_zb@2mWz?{uuXc?13U&8*d!=zhfN@-a>(HCxIYk_{N!!5&(`!e72_ok*u}ru zoO1%g=5D)$26Ba{3ZKm`j*|(bbVq~d@ShwEqCAal<75JnLX6~s70J!txKAK!`~w;* zzB&oMi^|kwi}mRhBgP1iS59hRR)w~q>;Zs~lWXxly;f8d7v1{K!#V;W9$#c}-0ieS z(KDQDZUaGEOdl=*`CCy9BJB0H2e1f7bWkw9)0PheJjO{Jn;%J~m(w&%n z>++uv4X;L^KNXW4dhTb0zFpqgmFhogi$$(3BSnyRfC{|wpdy9ZLuEiWPC9i2v4^LhQ&&w z4nZgdZtp2(d~%3L4TLa+IFvCt<9x5XN4AL%UR@JYG>0@ZC~yEnKmiZJT*}#9l;i!B zqB@B0od$f-2)}FG2)Mq4i3jIYILfTf8?RPpTwxNT9VT!wk%~2Jpi!LlFKDY`?3#5o z_(U;(%;M1Y%~&9@z$`Dc!N-bu@FM?dxZ17+k64!7GC`|ad?_0UD==}7Cg~gY2K_13 z+b+!v+k>xAQNE{#XVD>-COjUW(gi%-dbrP2u!E+5ipQukS*2!2Po3ahPB1^EC>!xn z$=AgErMyV+`H**oPTFur#BaRX#&dhK+Om*d7Ah2kBaSSlLf3LQnhvl&Qn08{VMi-H z(Es8F<=$^aA8iwd9MrJt!nez@fgI~n6}9-N?cA;I1W{knBzVO~G@iLtMFL91v2t}v z?Di2uyTd*&N=|F0Xxkv?8VuntKHgLkfEkcO2IFDPpRPzHQ?^y)X+ela}Jm!2vN5#34v;sOv8M zO*!PBd~XRC$qmbd(G2k_%f4(h;vSDxWU%e;_aDRQh+^AV`LW9)(w#V9@jU(ZrK!5=5 zK*&!$5YYPsx`XdHkd?OplU~)m>VUeIl%sMPb z8>lsJme^M^VI2b6OAzu?YYz0D{t86nK)y&p+*&Eo$>15TIwGcRb9zS7rTH8LPL2wZ zpY~K&-S5CPH7&gKh~+Dp7NPL`*t&Z%4=6B;@38%cb+e&j9mBuSZp)4bTyFWD$n<>M zOP>fw+S7w+Rhtkjzx2>k;Yu_a$}PA}vFeB#A#|ySNDmpk(O>B-Sal1q`zj{CBI^Mq zLgtq;?z-U0_e%0MKgU{keI=biBp28HRYH6pbO2L?Qf|ZZNs4y+8#r}x_yXHi5`d!? zM>Njb-Umfc(t93HEPM_45i1IK`Q=4VXg!GXSz((^Mq`{GFv1~~4sn=9^rg$3YX)K4 zq*jr5uLffv>82(HMtuxW7vN?8OH7_`B7-%Ohx~y3?a`RK0M0Zr_OrocGLG(h+Q#HY zD8jmc>L^r4q4EpM1&vjuaZ_kOhu=2Wfj{XStW}z{b;+ePF@Rp5_XB;_L&t1ZXcZsw zBP1kI=DG2705@ZB5HzEy?IAzHkbdz%*ds!q{QON%Vb%NveNwhn?98t9tF*UOj9{V6 z(!C$$xGY6{(Fjs#2e|ECrY#jO(*j*-OZk0bZtUUx zyF9zol+Wr^fd8*zp0^DpsMOL!x}?p;g^-)?KfUK^X&z@S_XAqR3`y-C9!OkAv!?wk z**!d->>du!&-%-SR&|p;jt`3(up2n7i-WhB@@?b8A_N(T0Zicxz|DW?T$fD`yL7b; zW@e?iK8O$v`}Q`N!BO@{Jm@=gHyeW?%heG#enwZb>(<^NO;Y>U?(v+OJurM>=Ob?MvQ(t~>|ckbToE#JKH@HTbbaYkB@tSd&3Z&G^5cVzgm6iuh{ z;)mOR{`(~7Wxx(ZQ|$uEdb)grw7MY3bXSgq z*hq}+v)337$s)6n7=bQi<*(nuWr3uR0P6eE$MulqSs3hwu>k(df~`Rl5s+_c|7mIj zS;4!HQOa1NZ2J4C@l;oM`DUuS1(Pd=l1RQ^+GUZZ-txs8cNf+H_p(!ARx4;1ojW?J4FM!K-%Ucc*!NKF*Y>Qq(g+|CPTfwoA z4hx|mFOi8F!_P=J2Zak|8WSbWT0yB0(d+n3{ZLkfTw{hzoX(iPPz=dE7(tz z$eJVa&yL7FM??puc&WP@s)DDIGYbZX4cpL5&CFH2W;Q^Jkb{NO3bIY?>JhgoTrAO< z2*^hk%bFqHFglYNk{mO>Pr`p`B%`C>mccD>c&>lY-?r;ua{pxkvMo3%9hQ=xka+~D z>m)TqgEwOM7hR6S9%zRaN+GoHXQ0WGI?Z-l)1bd@F?}VoZ6FADIS3J&M0<-air5hl zXFAv&PHp}6Hj82?gYOi)#G*0xF%J%&4JqeJw1u^4OfN+y+=&%0RcF;D87O}~MCgVt zCe^Fc?_0EJC@ol;&VE;k0-be=%vv4WOp(%}cycvbcZ+sLM3KB{f2nr%QnZ~{y;N;y zosd&x5$?nH&2z-8{%v~IO36>G8L7}sZ3V7lgyC9Jt&OeVgotLx*QhWP$yCL3HlirP zW2#m{`I8a^yg&nR^AFjy_-4aqt-O33MNqyY2PpPvA1_>i^DdykMR(+S+KG5lY#+P!N} zJTj(SOWc#wjmdETzzmK*rTXrN;X!W~NhS_)8{G4?se4bao93ja%&_i46nBjNgdZ4QRtU<~fTsb~%NfEITI|o`#fxZ z>K=ZDlBUJ4KwMHKR1%-;+xGpB|6ZfCLrD3#)d7kZAhcvM-oO@!=zYqF&ci?+SX7cc zz^I`afv4De$OLBwMDmr++>J}9xIpo!s5(TWceVHpnpUhnuKnEGgKp7_)n@O>!mo#u zo%4mO)ck!Lu*dOS_ZU$g3DF3ZXRM((++L!_6+Mz5Zv1W%2TS{QGU*JH)r8onjzUsI zBm9{}^D9XfjVUCU%5EK3ko*S_)J_gWbhI&e+YZBKRTILVkv1$OqlSQ& zoS#)Ufgr9q#Of|~U!&4>xLVY-fo7J>+r>^aRji}AFqq&~FE;RVjuLG-G$r&8ASmwm zP}4XDmJ;*pc;xqRhG{c*d?;QT5&@AKc1(xzVCKMUjSUt4(FXHJ9;JuEH5mjw33)o4 zqW;eCFHsmnGgoRTQwh@*Jzp9Ig7Y(y`ys+Zv&uoN7d#&B6)(p_yDhnb%kZugB+U2& zb#I0*t&`cC)jk-Os!Y{9#U9pid)078G z&QFK!aT8!{jEPwjP_PH~SJo-S0WDEYLd;en(RqA0+(m?$Pw#9AH9B0Wh@QVfD-V(~ zO8#EhKsSU%W^UfXp(DdA8am1M?z6gVxOu&PsD%B56`L9}+zVb3_^Y~}Iio96=jpT~ z{Sz;X$w=YxX!JZhD{EiKif85KXV&G{+0$vZ#xs}TuqmEk8=WFHksj3^WPX!08R<|# zUsYtX_PwP1b++{>+LLhJVjL`@RCx{0dSkFVNig;v_4)@|CSw|aTCv6THSr4$&tbpb zPvKP$sKS>($_BFaXj2@_N$InsG`EmmC1YnobA&w7PFE*F^(EVZvh_lay3rQorz*VR zE5Z{w4o`jp-rIqGpvh6jM!U4jHPQ}0@(_9v4WDC-G(AEpGP{;1XGxQORJn+<9!%hS z81Ig^kEs9tkx=b=usGkiDF!Rn>VI5ku>g4Q5RqtbQTC8H5C4A)(*wf=wYH|E36i{G zBM~&#h>&5369twQMf6wUe=tKHDX@6S$pGUr2oNb9@%fo3km|ioU zbY(>m;Ri>-MwFix|7wWk7)*8U5F5)Nd2P*K5zNq8yda|7aF(9{_vYdAPMB0AoTtf} zwzMTK96s*_0#sWoG=KBqpR&6_;z$a1B!H))DR{d@sj|&XN``kxYtyMsV5>z^ zX?hf9LIEX)LKXml0*UwC+c>IP);S!Zs1-^B`pa3{^xvnZfzZJvd~fiauHpx}UZ+6t z;!t1Raq+Z=N+Y|icf>q0&$~wf*hHm}V8xASa_8RCP$U=U9}CORyRd$2o(2Z3b?N#3 zVOMU!^g;$HwlyxnbX@XQ4}zq}M4H~pAgi~NmY-jhyS4j#Ig_bl1J5(T;~eoo{=7jS zNrLFb@Zc%@d$zNZmqVU{3gXxx6_mfVR+bLn69kOI(Z3<{(2$u z;KgD7+Vo%(1-Uj}{O1=}@*iO!8K5hvQHU>a+oD?H;^Dy<7yGzByElAJ4;~TNJ)BaQ z4@FhMzmat$;A(+Tpx{sX_y$gq_6d0>38~*w-0KCdEA?k;%3rli==K z3jU@vru!{vb<$^^>y;POX+Vr*|bFmVD;kNOFZ|2*96yK`?DgH_z?;&_?4;$>k(KR~rZ1y&Wy=@BM z8}-S-7j7OmQp(K~rBvQ`LA-%|u}3sHhN`Ad()pV-(ZBZcA=FnkR{GS0z# zRY5d%S=K)D0YZD7egj9};JHDs!(*ze@#(-wDjqx zB=1KX(dL`n6Y&L=p?fV!fTVvQ+tH9pcb>C0v98Nj!!jW3Bpaf=DdxpN$={zIaU{3+ zveG@v7j|NeWNThB&@K{MwZq&flr#zJt`A`{BXy9xMee%B!o&wLR1y8t(H> zd7>CIFpAAINiKWltIEMFd*%Z)R*xZ=SRHqE5&t}?Xz@iw`o(hbD|)#X^mS~?hp1q2 zDfk)HF1E*bw!O1AU7*-$(*nsu+YCX<@?Acr;kZHJ*0h%$Q1<+LMe>Mqp^U(^3=PNR z$*o#ORYNU#lh~W*)nBIWdOQ5n09QQm5J@`rDg?NJvd-6^%RwjJR0JTO4!=02z+}@g z$r#|$*A?|#h^GP1Y8{zTA>oP(E`Hd6w;C0ZAf@s3I=iv)KEua2S9VAAZR(Q~UNx+0 z_FR~ru&%M`t4ie>B8VQlj6_CunGqv`!;d$2X^NRvNiS9W9YvM6Sv|F>G*V6n*)<%* zqwu7pa^|ZFb3%tyw#f2;aMpcn;}Fp?E{NV}lH4sTML5JIBNvEox{p^pnN03(_PdI4 zn%_WD=+}OKn|C)F7zIw*_0t@OzpFSuzA2I*{FEo6ZamXs$wOTHZ3Vz%KXD2Y|F_(S zo*d#J0ncRQa{vE$d($mRa^qZ(8j`)U7dAI>5lKlD7m3MUD2j_V_DT+`i_NZXQM$VK z#*K{d%#5yx@Tgd_s`{Lnc>(^sdYO5;`3x|?VFtiG0QVlAqgJH@@!1D6gJA~-_XNkk zXE9$jq2_HHUB2_X4jxipaKFM1K6}Ds(#G!p2XHcg9ZGr`Yfi+rQLewRu7@S z!6mi~2+MonJ%t@=^TBDgxR24pUXD7?)@Jv6miEjaI>b;AHZ(1pPj0c+T1*AqZ=VWU(2B_DfvH zDFhFWBl0-R<7M18#1g*q8r7Z^tV0QP3`5h(6&-x@qj*}&BCw~-q82tT3c$fx zX!k3}*BXz$#(N!KFqtpuez4gV_d*FtgJD?xm<7I!)35dkr#I*y-?>Y;8gv@@TbA@U?>R8LcuJW}X|a^Rs|oapguiS6O`xT<GiInkp_`?;VnO)T;3|0zh2@Kj8QdagC=!zkH|_R<_5rHC#^9oL zLbO10_7WdS(cjJgk~g3U9lSGS&Otb4@;ozfLi(vJuri?+@<&i%I7P(?0hJ%-i-8$$ zntOW~W5Sg-K-7ZzalTgBBb>PWKJ2 zdG$gu54YC9>q9A*vf|Bta5^)2GvCSO&l;CXU^>Mll5);2v)<0vr>U74%rrAA4kr6v zR?iLg{a_Ow9$ipJa|ic(odwCfcp69u1FdgnF*bAAVIEw+?n7b{+$kq$$WApW)>!sR z4Yf8{6UQYSv*1k{UPvz$dxrwH{)Dx>o{EE$RNPn6%D;AcH2aPDNC)3riD}`(Y>#)s z4nKM4-`{@al~?}ZmsgKy%h>J)=WB6C>Q;8EuFr32&XV@M*MF_$aZ$dO<%2@~OIe|Q zPKDaGOLOIURHmzG%k*8rL#F&mWVABsx!>MK+tx;k6<(csD8LLs&!B!)}y zf+;~D9nAl&4D{7sZrdOG8w_X&Vz!gxRwDaIockgQ_J2)kqE}x#q^uet` zQaEejd)5_(n4;|eURL&>Ij^vHpqclF*6n<0?zEuB35SfYX}M2sDENP-Rm0CZw;1HX z8hOQPq<}w^^XHv%Z0G4+zb!hfmE3DqtMptMVp1Te@NV!6EB$aS4+Ll~&EA*>Ye_={Y)F*&3%1}_Bd$6_Y- zPF(L2ET^B!V!65%QFH_q!pc!GazG^;(U(igBGpnI(HV@%sEF<)4JZbC6em**u(FCF zIRlD8mgy8jU|Gc&Nnn$W>&vC8L)9UbkeG*x>qZ7h^weZ*)fL7WQIi41G*n0>8YZIj zDMMDCG0JdNCsxMoKv>(TYBNR|w|Qki3XGEN6fT!?HgH6M-?Kqfr;sG{`{rJH#Rzlk zogN}{Kn6(UqdRTlmHRX5L#n}IW$5T`<$y}I#b3(+R^8&SUGP#ZKJXzv8`0NmS`wV7 zkIrDM3l-6wB(TZ4=VmUafUDgTKxy|R3B3$TH+Sb6eH^gJFn|Ow$oeLJsMS#In-(kW zn=A)ZvY~T(y_TL)T~`T-X{fqtWPn7rf^6m7M0Ew(K4t={f&d@lv(4CUw|*=GR(0ey zP)tHKV^&HZkNtv1bKy|Bnumc(^RQCDBkP_fhg3+lds-}JqCzLj8Kfe|j^n7f(PN5= z89!#js9~!{kkuVy24lUbFzO`r`wA|*o61)JmGc#n(r+N-n9NrQE9Wal&LEY^dwWU{}?bp3*C(vb$=WjOzIAhToE>gf>TvGe^EbQ= zz%onw$dc>wCZvPwj|K|eah1ya{bXcaGsCA(l}4U9XkX6C9lXiv?TeUbl)`-CCH6qCat)Z&0UtQm% z>h0L75a2S+bX5rQ5#7HXsJTIQ>3f5Z_7(s$;qNA$K`=PO?vIo+jW!uXA0=2Uu1jGd7tca1& zXPQ0sk1ue^7j6j<@xIzL0btrRL55!4JXU*+t91jQv~EZObdy^gUCd958?{PEL=Ruv)yPt3y|~mu3<(g@8#jg&BI4v}{kfq*RcqR+7a^D~aXw)TTwVnx-}p zP|{(pRvEH?TlyPm6(MMvf-$bY;K}cy5Mg~Y^gAHYnA+I{v7$~Npf{m2| z9=V>>V!e`=1XR~^05Jzu&q+eBIaW#$_2vLl#vCN0mqe?cr>!Reqznm?0TS7W*W&e< zgL(&{I^r=HQ&ADmNdlYPp%5N4F|rMd+WkW5dt03r+V%gy@G z^+v1flfL+}c8a}&V_tIBr%NVI*;c9DsnJSxN( z0(bA(s0vIHz#uyUI&G%fExIsJtPeE;vQh?ks6BSoBQXf`yX;~fcAs5#*7UT&Z7gyj zyLv*&BMbznoTHEw@aQoRa!93& zFc4wo3}oc=7>I7Vob8TshOX8?4lHRPm)NJ6Wpn+Se)F+bF^rW|jFSV!+_m>QhNKx$(}jd2pIz$n%MujjJ8+bZ|^bj(56b;*@Kd@zRj!IMuey zz+o1$WhQ)x&jo%Y&(%Gdwe{ITF$o!PSqgaM>a)!;O?_r8W+DTwlhdn`TdYtCqtvT} zpfV~kQotiOu%Ig{1&i8V0Rb@w*()#-z#v;+@WWYy*AZnySY2N{9J5jN#V3=)=9)v| ze6^m-N>d$e8I1YJ=Fm$TVAJA~LSd&dYzQpN#z+F2+`0%craUuTfqTS*dV*E$x`+m4 zc5+=rXCe#c{rXDI9Mt>um0M8Lehmp=kPSAg>pA+nLOs=Oq{U*bs9?i#dL776k%6z? zfh<_YfmjmQWE&&ZR#!JhE7z}6jS=u6KHFhfZDuVV1(A+h-C=NOtPa&-aH;*Ss-C>9 zch!Syp0%q&La#-pnK$TeSke|T^9K34s;-EsSAf4DMk~Nx50mYntZwzw&(*E5fnsk^ z9TY1ChRDYZ;vws4eatXenV4ba^!bF^)mmLk{ccv}6LuGC)*|sPEyj!7pAey-1 zOGZ5mvv@%)g8{wANt*|9fQ^klEBcE-^lF$FmzZDsW7U@tp5 z)jHU_evZ-s@F6}Iyqo=%v_Wm~CLq>;4BkdUKLh!e*9ZoS90T(@Rn`yoR|~0xYCj;P zv>zB5P(veZoMceZoosk6fP{h5(P*T<*xN z?Q?rHW+VIDKD9S;KiX|x6~0kjV+o0gsK{+(^jl~1s;np@tOKZ=bw~<$WcwC)>2ZtB z#R`LZp_A&qMF7a0RNo@V&}XKr)ml-iHIqR~n#sz5dU6|VOa?#qAQV))!A3$dExEx) zW+5fzqTJO=-W^yQ<$%LXWRxR(h|hHZkSx8XHp&qY6ObJMBLNI@Ee_4p9UFN;LT!t~ zSjau#^EFCpo1%hR4a>>mBoe z6!6IP&EhTo)ggqAWwSP9q_;9aBDb^BWSH&RhicZTc4uXP$Ask0${?L|lMDPoHd%#h z1Ahp}#AM(PGYnWw9n2eHHGd>8vYI`Nm#<2#K89EC!UUD6N=8b*nebywuIV|d5oYp$ zIWzeTWTxD1D45gdlO9yN8%iKDH@O>1%SbK($@W3DCSBR9slL{dzy`|0w;>oB$5Pl3q1 zWcO3#Aac2BBau-mtajQ+LNYx$Z6vc0zijxItD4o}-wlaX`0w3taILN;stz;$Mj{nv zfRCc*+TQ56eQlKvPTR}2*B!Rc1v;FBUmkAuD|I%yHqdo&>=d#A>XJz-xk>t)W`4Um z=rLyPB)vytMskwgrxKxDi+FxJic;6*KRU>#$k2YMfKsVRK-t7ujKRiR3G}hIh4@ zXty~5F$>x78VO*KYvgbAu>rs`JH(2#{CpqpISM`9#lu}iXWDQn5WRe~=&dmv~$96^0ms$J^|0hyOvk_$7CwsM2*FrQRd?OP~^hVx6f@0m}iE+`wwJ-Ky!N+OE4nVj6N_Wo3Xw zw%e-i6tC{KZe0ja-B#d3e70kR&D8s5Cuh~FJ4Ot~nou1hC#lyt;ydQ*ox@;doWsfi zm26cy%ocoElo3G{hA0>5tfwZfwpVz=Ydck6;DD=17?9~jHPL4nu;#j% z%X0@KtVviouQzh~Dkw9sije~<*|FtewxecGhRx~@u0vxws)OrN2OP-V zMIbqi2<09y=RiIKG3!y)p^0wN9-%6WmQxkW8X$ye^66}MFlbpqR@ML^T*o#cA%m7B zWMvHy+RgPvxMNIa(6WTAED-8x?+zx@Y;lm?xDoALhseaD_O8p(A0gxCF^kJqU?;sIiBU(Mw{h9@MKR z0i+BGlF@6IZF8-aQEwLumaz*<>SeQQBh%Egv0xcCED3CKi(IP%_B_ZbwdzF$1I0|# zqJovu>nKO{Vp6@M04d`rBm*R}v*yP}u0GZ-S0f0xD-+bLIZ5bq4x~pXkE@-7!P3s* zB=xYlf4sS!uTOIOS}hv~mSp1+NjJH9jP*hqr*<9#ILtxLV-S9ib0AsH#??9p0WksT z97X~dY1;_j+Qpmu^t)i2zD_B1!1;M5Id}sP;rcN_(P_0TQ`rjSJo7 zG1q!E_)ADtg(L~RYB;Fdg6q`)q>LI!21w-AHAxM#cw=7eWL*cxbmU}RmrR^;YlvMg z=_R!bV*wtsl52=TI?>9;uK1#;>eywVn2d^DRtk9J<}%lOcT;%9a_yLfv6zV*vp6}R zk_~08yp^uHQElBe0oAAiAL6r3T6_Jf+|g5Ag9wSWpqexzqt7iUgLKqtw=hs?x3E$M zlpzEA7-hJ~9xJ2w)W{k%Rcs%l3?JN89kEiNjBIpouU`|3>ebO5Kx_~d-AO{fIn*2I zBh2wyCc1+|e_P*POV1pk21g-MgJF=3J|Q;ATv9d?AI+g7*39*!xgcGxEqr`*B@h~olpTzRbZR68#n0x~bT zun}e;X4$5=y~gFOqJobIGk{_?QJ5hq;L+pV^w!K|?_8t&4v!f{-tE!{4Ck`R>OaD8 z9x!J(pWz&Z(c{Qr|7AotFmi#{t1yz+@97R^T7}VD%e@Mt48*J_E*NI&nEi;jz;Mhe ziVIHK8D5Vw<&zo_c)dm>d1ug~w|l4bE#URiB6(-{mU+21M=qFNc4pAmD<@iB9sG)RT71Ak^&w*J%U6_H=;*i(U?utBVbt|l<&fB z<>0Em@3wWLE8Ta41Te@>l1b;No+NXgAx}%Jjay_#mdYopN0#0p)X36$L$>HA5kjhq zeq#HpqMu0ZxrM;>X%@c{T03vTQt7pC^u`2J!d%vh`rIcx0XKoi*}rBS;& zs+$x5F$vYAkOVNu)}RI#Mar89Ydf7A1H~*<4YE@Dd_rA3RqYf0-YMl1{V$v0O|Bpt#m$9s z188*@r^91Ds*BU56RliNbkp882pe*pw6-Vez?hKiiMm8$lZ{|tqaP5fj$jrm?X4^a zRB|Kd&7s}P!BOqV*&s0uIdZl#KqA|qs6Ie-@Hn|sj4F5lAL6r7{G{&ut*$iyVhyM$ zP7=T%TWe11<7(S(a3Qi7tyR~W4v+b$TGOTX)*8yTTgyYa)wPDfn2@S9P7;)qo7X^3 z(Xf%-?Amz^kH&oDyoOID^<*Qxy!^g8(z~~BRirmh*kl9RtzFa>?ow?U21}d9N$N8V z=b6Yf4lQjOmrAC|b?C7Zc6MxMTh&dh?a+5{Oi6a=yX3w~-sO^Ns;%S!9VV1Y=@PZeZiLAkUe07LooMAc z{osySS5ftAJN*`l$;eJWOX=mY$79hG@gS%S4ZzhkIF_Ta4 zHPhweVTvAg zn2id@KAEhOYrVH}q*U8_Z{0Xaw%$O8>|BR;JJH5j;IIZ{hnMhs#mn`W+Ws~Ud1Sk^4gu4C)+$ZkP(v&Us~ znvosbPFAma?Bj1Dve&D}f@Rdhl6uwi5YP4Qj&c}MuO3EYK3Y9aR?HBT8%Tw5L9n92bZy$OD3yj$0hBS6e--O zdR$_$n2j2jupCgyHdxs9DR@+Opa8@qRD(qldX*7xJgrxT!OAGZ$^n&ZYlVGY@iB{P z=XGdIM}=dTO1jC09G7V#=k;(*NrfDrOq_Dls+f3agq6`tVlx>DAZ199j6M=49r3F*K}cy5Mg~aaqUx^M zZ;(esv)VwySWHAlRVN2ja`hHhm*Do3O}m#JyV^#lgJVLn-ge1kqujs%x#D}VYCBU7 zjQPlcflDMdxlp@n*N@|)TD76pqcI;DYJDmZ%9_j(nkLkGnQpA2Ox8*3GZ}6Xm~1RZ z7X=Vl+GI`=*yKj`*sdY!R_)LlILtwg>5z_H#FUgK_Ncrj-gGyb2Iy?|jcT#TQH?!fTRsBF36-oDw) z=>l>&T~a&T^JvUe4)=U25z5zSCL}9QeT{Z-Oi9;hmrR^;dmnH)t)7joT~xPF%th{f zU@72{>m%44QZd!-k13NIZ^=%alhdn`9p38`HML$P1eH;VkpdpMdya9tIev^Ae-S)z zi>_K;t-a?sLS=UHp5rJN`A|OmJ~*xR&A|i>p||=77a%f09e#rxL@sycX^+WuPfq$* z?U^SD$@JuzCz*x#_3_EUF(DnFT=IZ= zR-dTt9rba6?m*1N1(QZpdelQdpR2pMMyQA3a_Vu?z$rK2gvHzSZ4=*NUpwFo0hyN^ zaE2L3Tlub{WriIRA|%vz6+IsF(p^QL-cRd@PC*>0>S=kr3@x8dwDNYOY>5b3Z^sTW zW5+H7G0P5wTD3EydLRTKW}*f{BmoSvY;4vrZyg@qA%C!JNHmRuE79a#}58CBR zJZe_kgO-rYPWGT>7UGw?H9+Q+%B#IKKw&aNd24{mLlkp?JMpktZQu@{H2aeb+}#^y zSyP&83uwJ0iVfAK6p(3CiY%n3TxWyc`4GLu+Rg?6F&Ej{FcQEZx8QuZmV4@J7o35^ z^5udv;rA)vdOMK<0F+h$NdSXfZ_ADn!{w3Mj*dZM4zjmpWq?F(MgbZ24ew@=`ly{z z5Qt1l&M1f+{TiC;jPKzFNEr>03}`6Zysxe|?Mn7YtDAR=#Y9x|&T>E{+q~N>(oWUQ zJA*M9)x0}NV3Q3YcnD{j5CR}(p+X2r0E27|Lb_B&bqykzIb4P5H(nd-iv zzkEgoE_?e-Ruk>jk?w8^`(o9auvlqLu$(@h)jghSpY1w4%4fO1lbd|!SKDwDRp_I3 z^1Xv&mB_V;E}2|4JCk5vucPbP1gYwogbt5cshNZ>ooHnTc{Up+>S+N%FsmNq2}mZV z#_J*r@%u?;&jBl!`C;GDY=PxXb!G5}l{*b`;LQ1ZVt+v{GqKM$rMtE2R#i8pgv7km z_{hiriENKTPjpt-$8Mfe)kl)hr-o>jvsw*=lvab00TS716>PHG%f_^NTE##y4K=M| zrGQ5^QkxvIs#Qm7i^WV-o5gbasWgr1V2q$bSUD<24ya_ug%3`YMXIHGT*zQdMvV)d zq&_yN?8~KU(W}`oSelKK1UA{O#ZeC3tGgCQx0Iy17Ql!2Z2Zu#B38$b?omV)Kln|= zY?VPEo?pwlTkWS7EA6K&2g=B{mp03+y}H8e;56-}fMjB-y%br2xW~R$ZG;m&`!bCg4MSwl8h7Eyb*%(P+^R>(nNmk^4svHZs!Nv0k=Zl+* z56wLy7p7aEJ0_%--)fHu`3}82CS;HK<-+K3eqZ(nYQrc2vFc?QH4>oqTu*?~XY+Nt zy`JfbhT4&{gk)B-Cm^%*)!3uDnz}ZQ0f(8$I7awTPu@Ti&7?z4x}Bqh0S41dAwy7l z3Yij!L2md@>9Sp`9rqd}HiI1gTNxmc>k--;fo6wjDx$VW7y>dS*&_@y^crZTu6C@h z!vJC?st%I`=q4M%l||O2-6hg+Cl*rir_Alw31te!z6XL%l}>i8*MGCK>%|kPqmMP=k9yFH(bfM6X8;C+WQ-)NsnG0WzS5+>Fq1e`+wq zyw$U(wKGBi9@|CE2nFdxD?6^}Xh{`Sk1GN|CZ@&}L56?y_Cs|ttJWwMDrpp!0v@@x`n0{m#R(WE3oos0t34XCk!`h4?ekV-YS(gxw_Y&> zl~Ih50>$J8#i#A+3ReusdQ&?nc3{j!4vJl3zgAXQEEYDZ*9t*pv|^+{E4e$(z!g8H zbGwITaf&Y7yIa|BiD8+aywfbsMmo#8_Q5W&3$@j|Hlr~!?b=Qj2<5t=r!8laPF33t z?ckV_?1py9q@>&_q|=sy6&_L-OlB}w{{vEILts!V-r5a=epvz%T^9?Ynx93Vgj=HG!pt4tQvW(WizSvlvIY50TN%; z(+j8`hen+z|Hsm1nL$|e7wq(bLrxWahQ3lWU);>*mvSw-xac90EP9xdY%jtLBmF=? zNk0%t13VV$wTWVX?1TX-$AhH6C{fT9Kb8t99`#5pX2L;JrVXeB$Du^s7@?BxWEBU^ zjtEKVR|#@VrV_%+sl>D3m5k%_!14v9m`v=MBwF@#xb=2F1 zpfdhpqzv(p)2^dtB3`^?u+$$`43x}!qT!LaII-(dUy`D=sq*6v0 zh_G@7GIDwiG{w{7-Z?E;#y~6yY@)ed1t3*ZJlCtym=DkO>Qt&q`3@VVM1;fCH^@L@ zBDz5)8NKd;46n*d2Z8az+{q`-={AM#_-qz9yA2%0RC>!EGEAimg39=ZkpdpkmJc6;yEhhuw-#^t zNB}Y?-tv*iKpKj+m?rW`MHO!`O(8Nj-v64)(I5BBHLgNq_0=l85>{6$D+hYY$32rp zs;Is}uwbkm9rsug*yQ^U2fi^Z+^kdIe_%A`qx%m|76?Ua#onZxNh+v#tvG^XO1xGa zC6o8$BM?oih6<{WKtN(9x=%wgKq4QG&5UZuqCOlG6w}b**hm@TG1Vj#gykloD5<|n zQx54R^;Oznu|{;2wsQJaLf3ChWEw!_OhZz@BR{^6FEbvY61vVKrxHr*uQD|49%`h% z$^eOJ=qf`pdhKFn+(Q=iRfeE4b}>?V?Sc)RYCmMXT?|&nE>;exI=?6`W4E63 z3>T6xA?(X3VY12kWsNk~R6W~?Gfh-%zop#BS#H0j+rH`S2Sk+YD^bao%S&}h&aaA# zW-!=x&vDr-E<{EfEpRQ*0(;>_a4+6y!5}P@H(EI4oK(DZHeM<~VyT3jbe!l4qH@O} z2$tv^$DroqNzGQtyN%`DrfcDHDfjl3*Fqq$G*=4=Gi}0;TfB}n)`SK`o6sUdYFro9 zdnn~~(Z7S@>Y{!BB#x!)^7E3kiZHx>|2glPQV%j4@Hru^jGi*&g!H^I1A35FMo$@aLVDh?0XSV;cNj))Z(6fmtb52Ig8`Bdz)0B5sTihs2Di)o?(Zo7jXUgu& zSykWxUW2vOdg=fYBBxq_!PwRTC_furJ40ki?aaW@0Vq$Kkec_kr>uRfr@b;1G&*XD z(DBjO(4o;;dqHf28zF=g(o_bXn5GXW0ZnV@LYm6h6Vvnt4`^DWUz}@nGP%;_y{SxY zv0a#PEr!)&5kaNJNeOx#ssMc!!60;oGwPEN?692%yDwB>UO&ggS9^1R_2m|aI_F0@ zkNfXa*jWi+sxPR|XY)Pnmh)pX`}FuK0gkWwOnhG()bDA&J>q?WWqQc?$I9dpIs#f=fOkY7(#n4ZItZ$Qipt6y)f~<0Z zPl2p=0#DYqO9fHS?vVJ*0K>6TE0^Z*Y0qbi$1gx3Fz-j~mi{>=I*zljsR3n){ zT2T@!3#T z5jR!yrsL)-VaLtZ#D2en-Y9CQ=6;;tc}!OcSOOGv78zx~NyzvHJP49!kx>Slgp9XU z5HO?Hu0&O4m44{%PgM3Qe(h=ioDKH^87`Cw3zqRzrks|ix2fc5Tfj1&%F5I7^yZd4 zZS{;cR%_F|ttKIhH&!PA*}k78Y}hoqWGec}=CWBXu_;NkPIt!!*0&uj^Lg5TAXb?f z$1X1W+;7Y!vC3(^G%|C0PDlg2SBKi8cmDmIbvr-4gPnHNe$M4yk$)Sjya=9&z7!>p zG6$UCeKdmczSm%oV!&$6;Gv6-{4_7#*9*#Wjj)iOaTTDD{7Y(UPwHTGNWI1f+_q>u=N>Vi!lalnUg&=7giy}>`wqjC} zzNru-ZA&p2rSHriH~Z=j_%s! zhN6Qbmp^3Mh|!~i0GQSEZ19Q97d>U8n|`v~&qP!!e##~Z$$UO<@xdgzpIiUzUgBU- z@%`KxP-gR_lL0=1R&&z`?|vXxiAP&40A^mFB^lr}*op@~eX~&;4M(@)3f$=o+>9*n z8|<<eQ@_~q`t}Aj=`PVIazSKe;(?JU->@x#e6y6(RI1A`R(;=*S2fb=U9yG zv-Qhj_AjSsj4g@kn0%@w@g0@8B(}Hm_a!z-o8rGsX$mibE$~cWe<;3&uG06XLD#F< z)3w?itdW5iE}FG`GhuX%RN$=9&ly3`vYVdY@kyQQ$W?at{&W z$Ab30 zy(v}OiEygzzLa```=x58J`K9Qsd^?53hkD}uj9?WIo#;iPo|7tUIOd(Y5###TN1xc zy90Vq>Uh|c@yiKdrcb%QiD+h%PBIR<-_0&piJDfqN#{ICO#P*p0?P2Kf~MF5(D8sq zy>$4$CTx$jATGg+`a2mRHBrTSnbX44#aqoEXlKX0|Fe6iGoG32E3tS5Knac2s!7`wSFx#}t)4DleRj>O)^vwR} zX#N4R5X0P`6QV)NmQyk#U{FkCFJFN-EN!r zOg*x`_ckullUMgWnA}=DlDU-M=*dE*9h?tw!Q|pMt{?dORD&~mJ|r)POY%}o0Q~=9 z$XXuvz18-;`J*KH|320*86nL4c_sRss?#Cz+(5IRUpERUJl`_9>YO9dIhC8RNRdM6 z?w)UyuypS?`#0^dvZtJf>1=h5Y%cNlM2WLRQTEiP3^7;f^?bK&cfU{7rJAMqVG&%C z=Y-fI!j5b-n>ZceP=q5Kexr~z*oL;O)Qha0!iqDx4ILE61^HT*4hl86a@R>&&le4C zh-mgsGoq_DdgZQ95*Ov=_Y)*git}5O51K{0r&FxSGECQ+L~^(UFGUIDT7zR3uNyZk zT{f4e>zVs33^97_;!rQr!nh<~NvBeA1}6Yw3HJIHUeR{RqFAFR032#ptfWvb-e36Q zC3Dpk^NJ1w&mN#JidBWQ^`977w_xN zig6Aq+TbWPlH@*!0*xM}I#gdE|KaAiS^w`pz37VJz7zSu0fWozQFq}4x}9xvc|>_e z4;UQkIg;5@f8~nUM-rue`|LiR2khF6bd~#fvaVg9NG_*eBH5*Ap@4Π;49iqd@- zrW`%D=uo{Wl{7BaS6$InGCAt`CA!9QH%_3rFtM2}R}1+%!*nIeNOL91BvXmb?+PN| zF9(Y>T~{zCj?475TsjqMaBIiT&Y}qa8ojlHL7Cu_P6qf4?rG$_Gu*r-IE~)Z7yvV` zXM<0qtJI~BVkorRx4Zc@U8VV8VWtG->sB?FJ`UhB)0ZO2#CNa_-yL6TF7W($i#OCx z$JP39fw@_%v#t&^`?ZlT4UBHX&k*QJ6f;4I1~>k&-Y@=;n35g6@kfC>?{%`kZ?F&S zAY9C3K6 zk_SpMI0%d2-N?Y!a8Z`ggRlW%TpHi(^6_o&H7L(uo!275o)@QyGL5eDX9(nS`8@?G zPAFSy!@h`*S`^v{ubXfdre?$bxq`SXFFTJ5IiL)K>#jXznBB^E!AGyV_RHdu_#uB# z5@LeF491Q`m>o1 zB4I_DETCnCahblFNv86gU11ysZoWFM7Rh=)S%pcN`)ER{pEbwK=?VMl&M2A zZO4vf&lbx?{O&Nnl4=&l`#yJ^teW)*#${CCUxSV<~r;oDzkiw6B|;0>Y9+`k6qg&bX;>yNH025 ze9=+#Qb9F!T|*k|3j1~Jo}k&)BSE<4oc2`3^@9=QG<9&mI-RMcb0GP==8+;;e@k7_Riu+og%==YwQ)e)o zI{2Y$i<=g?(2tZ?h$IXx(%?d5{NC-JlH}zmdj<1K;(0(j3TMw@fSceeBtZ+{QqTSOXqoDCi>HF)4H_cv#^YWL{8HMG# zm(m?J1b;mmX&tcCxnC{S3d_F~w(zU!e8*h z86C3YrsXi-@8@#2a=E1~h_W;zL+Y2}5-W%PMR{SpJGwg%f|T*hpucsGFE)6QI!3v-A8Qi7FYfpER+3qj;xao zuJHx$5$MOa@&?xO3*J+Z%<&sJjwBWQ;+y&-uv<)?3bU8r)Stv;hTqIFG;%@lyHQ+s za7m|pr`pU8j){F$5p&6;ws=O$abnxg=F5wZwmZ6PY5CS^zWy+7=l`>sXs--r|HXuK z5RdOl)(?fb(r!|#2FHptQ$p~ z@e6X3cpfnI!$&Jjsi#$5J`Xr7fQ#}&<=%l)HHr~R^5bkJ41Twvi*%?YB3yhhg`az9 zX8%`t_C70FAl|E#P|(R#)R=ksUZs9;=Kj4r_mD}y|G0+v4Q`m6=Jp#N9oNb%-pZ|m%jx9t{% zySl>A7H@dcp?6`N^3BgRBDu)FI=jdT)+m3xqoJ3~VU9N*5E^E_)eJ*)`HqG%VO-|F zKc~zwQk_)==InfBN#dC3e zA*1}*cc8+xyvF43RU0q^AEUilG&5>Z@;uTvp1WCmSjanmgBU%U&aG5>mdzgH_W<6I>L z&$PdvaP3rfs&@I-flOk5<^Lr-y}otuco*Hj?D1ILI&|s&Uqm|IY!(`~Bi;Qd94?e^ zHXA@^wf{|4?Zl(wGNkq0&Ba}cGMnazhvkm*>9nqqnRr6$Iwxs8-gOx0#rkM|$Q5JXTw^l? zrY~>W_P+3xQQ;*C&xJ^Ymt=PGnf&}~pekPmY;uc=Q9u9MBY{hz=U;n%F&K8Bg4K4h zZ#I~mnc*6_10L%T_81j*Qs`WWMA%8?rUK-rFLBoNYPD|m7jJJd&9Z1d+O8g)WJRu@ zzD$EN{Vzy~V43gMc%a|mb*E!{@7U}<+|#0n-11Q0t;q{uwlBq!!8kvi?E%es?d>i7 zExe+BIy(i;EcJADDrfiPUOJ=8PvI#(%FK{q_st zvi*3-c#;`PmG7r`fqQdVm+x+g^3?ZJa`0S|7qnDx9c}^5r3n|mr6plJG$NReZviDZ z^L)w+1Hs{@#A5so&lRZ!_3=$f2+ic4U_qdk@5?zu*x$d`Z0y}=hhHxiLV@F3i-ZIw z`UNQ#eDlKq$@d=iY;LbVj26`DhXGl9=K5?X5=^7*l$Us%>vFRZ$}8SZ$skTYwq84A zNX4nTE!qYwX#B*b?XivRc$__4ZI|ssA^ok=sB<|NV9esnX-QxcZD+lNhqtHodL?)i zZ)f!|%z(GE`p*=XqbyoK1Iuw>ps?7ouVZ$u_o9r4sI-m~AzDbIf` zR(}V?;$LFbcL~JcFLMmm&DC*sxLI9ECA?cpq{CxAUz2>g^j^hmTgj(dF#t*{h9p2S z(I(1ER-Br}E8axe;jnz(MA>~O@qd-G%ig>y5gX<=wT1}*nb4n0%LEyEP4h@;rrIv^dQB=F} z^J2%?Y*^sa>BRHnSTREd-;`GhDl8&ut$$nk0pkvESzNnQ086Xk2r6)|19I=-~Feq!8TwPA=35+~PV302a!1k`N&&I>@oWiz-sp#RoYI1WV(C92OPwqEjl1W+ewnzbIBM z5Lg4OCb^q=eiW8r2QFJXE%rYa*JWPKQjsocmC|K zQTiy{E;w*7v4sPKE*zmk zUR1^O2-3cmojgQX%Tj|TS?Wy0GMZ215+U#5aKa2VZgPQNV@Yt|9I&fJShjdRaR8iI z^MQbY%)~x!Vyyq|aqUg)h~-U;LSufeiBYLUD4MeKg;<=Hb7OBb|JdY@CGXwr5^LXb zjkS2nZWy0Q^UD2j{(imkdw0SO>h;QK8NE7L&}(#V(3b<(0^5IM3RJKvJ~xL&T}XY%%$E1V^yMVd(P2mbgEji#=BPrmRU7w<4?CtYnJ6E2 zOy?nr@tDX}I)tM}Mx*jBo4{g9uFEFUh)S}pTQ~9!jHj)WAqnmyZkM&@z z_>vZj!7`uYL7>Hj$Y@U2X2<@^qiooV=f?sd7S40JK>`&z9;CHuI=Q^}2n3etdXI#e z5%#f&BsIc5j)Z+o!lF&WDEY^;-Ob~}YM~bEiZ=-hC>GC~ghdkZh$lJP9XMRe)~I|? z$S5q`4GJB0TJV0qXdAhyq(ZPo(SjKpg5xQTR(6xir!@S{Rc=ZHh>(=<-h=GrRXEha z-4x-y7nl&1a40PM%y4M!lV&gH>na>7fYJ^XBoU8FN%L7{jutuu<2#mm!Td7u>!5TGrqCG^Mi0%>_iR-rK^ zH$YIS(9`J$X-eqD&Tr?db+m?GMJYs!DTS$Iy10)8-gIyv;Z5azEP=&jTpvrMW$Sjr zd#dWT@ETsTBxmltC0ds=$&a_R&u*(1ABr~=C@|Iqugj@KQbs&AzHbk*%_^U>BM6r4 z<_HaH(ho3Xy?FDZw|@O@G*40P2Lg*3Jl%mqesq44hRjC(`|H#7HC2sYW99_CU$stK ze15VAn3;Wrm?gx5X59V|&9`q6e?@~=?xP-uNqpXdLT0p>Zc6a>Bkb|o&e!+i@LIf> zo&aPP&nq#Y6OYD;`tMK2-(O)9Q@ej0pA{+}ji(@)k{gYuvQW*5M=+E#p{DW?Ob5hV zf=)u*26nk!3m%^1DQ^QKJSGu$6XFR8`t4%AxS<1SGy`esk^PtO+wuvC9%Sa{CM0@t zlHH=cgT^ak(s&LE_h<^%#d`;Pp_w*sL+{N>ywj13)^@q8F<&fj?t8Xt)JFfh$dv|W z&V2HlIVTz9HI28YuQBDzy-DvSQ)oH^oziqBD``4zp^ZzK4JEV_P%tfTp(Pk|b1k$? zBsS@=jM=Qsh2L8t7}bSk3COH?kCU~tl$f`#$cGN_91Fn9-8jbtw zM(gwoJYk1RQH46oJI4x**}49@N+m*n9c{|+nfA@{gcH=*=_*M5ws`+Q0+ES*o#*Bf zIfz_5D)ku;2=C|}2xjG@QVqwnc>hr6drlfSMTabHE)FS|>-k}Z`n^A}3P7eODzC^e%#4RCVMk&dGYi44`RUzv=V1WYiK8Axa8 zE?;5pQ{NA^hAyC;kd;vL9O^c*E}whA4v`@)wcbuSMs8^Bp!_tXJytx_T`}xEU=*`G{`1 z;igh?_UNF0UBj&qnPS**s~l(P5*t48*4J^R_9TziWry3Z%Pt?$jTefYhoE<~z*P^k ztM&X^PED0B6els6rdudZ<{^stO0&m!m!98~VW+;*cs!=2D~(U@*PPErK}gi+dd&&U zjOIihqL}Wmk<%V9^NHGWdAg3T399R`B~Y1W*kMcLBBJSuw|Ea#-Nc*0VKSe$pn1=y z`Ow*}ZP%&3Y^D7)X3Bm#52+>ED{opCJTW3$iQ>KT9)^kVUU~nSWTyupBpWwB&JK+l zTGn-cLOA9Uc7MWT;*{=wtab~Gch~D?A=OgX{Rq&QQP}+mQhSt?Tk)w>QUI4yQjkoX zq6>(uS+SRjM3c%sv#B0?441TuuqjQJ*zq1;q}^hg9tTkH;4t&zj>x-pUj zWSZgVO=ciw=}F9wR~U`c%EiSDcdVc_n&HdrO76F)n|jGXGuvyXkYr5ATfSSR)jIwoop9qs#hQ0nM52-WVcMY=AF46t1(q>)XHG#@B!@g@G7ZFW& zlwk82b#`$xrrfGk*9QpUm|ECT3X_RbdKI_V59?NOH6(KjS8;U~;+G!Man6MA)eY$c z9y1GvbRwN-W#WsizDa+pj4u+AsfqX^a}1I@Z0Ebfjkt}*HPLsaCvQ6 zY0y@BYI%FhPgjURLfzD|$6_{as~B~ed|KXcCX0Eq7Q=IS;IPhc5-?#nnSq$414Nkb zr1k^X)j@^G+`<5%auB)n0{X6fNDm0@=OgdTG5v`Sj46c+=v^YQiBF%Aoz2k>9FrR8 z6qTPo>j!7H?(|uIW@4Y-V-vAYG*xwbY%<8qJKSTF$vH%N*Uay`jwnr;%6L46bcCEG z9pxm_={c@wbWu0QMKDY!oZ~X+kR9)^C(oeNXdqF(!#;#!4(`ZCm_#~A*WAoL-MXzW z9T;;7Yi^fFY@)l=Ox346ShsMaY3EB^Ar4ZtEyrWX#tqCEXhnb-_a@01oST*ZyOgynWg~1>_Z9{5G?RBr4wh7Q!HQ}^P zkV+~^6FOokpXNNV^-LIGNWP>`A@bUI>%`xA4^f(Qw9gaWh#p&*qA#YaJDcp}fA zmLCN*7%bc!1+}<2k?P2Ll}P_+bs#eH2K(Z)!Q`x*W-32sYeBf2?wBnjX9|kZpD=Mv zL4gtJmT)05F-*YJIy?(6#o?anUGqu1lBKQ~Cd7zL#}5x2r1_ z?A;BRD196{R@ZYhR6^_Jp~Hf(NDkmjMuyZxjZ)j>DvEe;wbvIBm=G2Riq*)&&dZfL z?2Hd2DQffaeWhOPDsGo72CI@AV8%@rPR$sXM?rs6t&4&{Ocw62!}dYpDCLDS7^-j< zH!U){w5viSVQ7&CHzl%JZAW)4EQS=xxDXkg95owagm5Q7O}QCLR;F2xiUD-J^zg9UO}XWXPF zAIbHRa!o#R_c1z60x_w{N4wWV(aJRm1f@yBgs|8lAMG};3TfpINf0c~g*tOPaC~@fxHcB5Yt(n~Tk94`>r8N)3qIqe}f2KlbWlNh^ z%XUUrvW?Y~?zRHG@d_uDSm6dcS7=I{K;Z@^R=7p)lRbgLNk~HB<}(>P>ZOyGC^fEU z#l3U^#pUN-x=6}8-72bTRZeGM68d+QEgC2pc9bfOUp!Fia9BDIl)CR!^t^a!|9bJx z0kn8i<&xEXwFgI0=jt?1FbT~Y^lZ^7bqdWJoP_2rey{i`G*4nunm6Cc@X26DsY3Bp ztqY-W$%Af%!G_?Z$th84y~^YUCN{Z6hwNm#PN`9!rm9_cNX#H;*Ii0B+E4~*_i6<= zvjpW#{51y_rkr(JIfY?CA!WsBSUI5WWO5y z$N(X*JRY(eObCmH?3A$HixL(O*)0YOxKQ|DU&N8uu$j8gqaqmmh>xx`2~G1%r56AN~YHGD}=Sqf4wkZCQF8m zXTojEg#kgSkuV`FcGP{Nrqs$El^~R(8dS)Ot0o?Qo-Nlq{pd(})$D*+wyT<50+l#! z%qg9oT^BkoZ_6AEOLuLV`%JRqt}CT(v4cZy&oA$~dK{MSx~~3vR{Z7Z>Pm&hD)AO4 z7SH%7eO!z1uBcFYxnl!?MY>ua<;4(0^$EC|1zv z^rI+v@urv*A~WJmF{vCxF4`ulGU{zA#oI(j2q?Nc`Cr`S;8DBi8Cp@UUT@R3$i)+_| z6e1DFY|8NQd~x+q8mByFcR)4>}eR@%GIaxu_vRj zY&Z6F*bp2YRx+Nl#!AV2ud8bDVI_&hB>1qBOd}oqRIkpOEc<4M*I03bAj0eA{D`}q zw(WjHcdeXoFXK!&>3@{2-<~6ZY5&MBx}Nh3Dok{e-u%!!e#YDr_w5v)q|bmdWj;xt z$&`1y+mEMkJD?=oj>Q-g=DdyjHTWKl>C4 zz;c-UGa&CIgZLYz#NVc!54bO_Gl8h{*HafDmd6G8Vw^&*{BCK1K4{kSN6qr1?P1p} zGNoEiU8;;wF4|W!$yC0dmzM7yJrn)5+NkkArY?|^!Xi+ZvOv&WpedQju)+HF#gp7Nq%LOh4?ls@^{+Sl){WG0R{`oJ(#_Oqf%gL=Kg>iXa z&{d-ax_d8(rtwC0%`oj)j~Pp4v_%-5l4fAJ4AlYxOpH zGj%=H(zv`oJI}iM*Hz9OfE@Q~l4f%ADq&^jRX?WEzEx`8>(hL{oE<23wU=wG?X)L( zxxs2`6Q?9{xqo?{nNtW<_+sC_!JYe9^KNhonnr)J;FJ5dmR9E5`qxz8;%++LxS>n6 z6Y#OUk``h;67U#NEOZ)NE zWlf6YQvd3_QYRs({68x$|KrU}Z6E*7$qQ^`a0&nJ%o18&C{nbmC-KTq@fI74!IXH5 z4dX&&v@7d+A=iS6cVz*9h4HQ|LWHE~OqjYduJ}yYwL7W8XTpF7G0{ed>*j$vrB%EU z!a#7Lc*l-KO)5|=!j~(sae=`p5QvZzE%?%9o#>9vPiyy#glK__7kpzpE;BFq#_2>W zx<^rDJ3ijYCD-Dc0V6mj#rG&i$;2tT3(e-jrPmvbs}2Z*xt9cruNCVT3^mA zY3vM}A76hB_s<=1HwLbj|bCSn=gR_5}i*u7QSC@3&y#kZBIL}C-2J)k`4yS<9f9tbFA!eyK4x|eFo8ngB#p?LC>u|Ty2-Fyjrt(!-2%&0`rCg znMNg!HlEN)(G-v3Z65&;li-afK>{&|mcehD`7Hvey1b%z8QjCLbY2GcpGkJqBe_8f zBo~K^dn5*eWpaIv%BvkKHBGLlkMZY!h?(Vd4@<#f%kcaDLo_(*qET+o2n#Xky0dBMp_e@cepA@ zbV!;+mqMC|n%)&|sF2;v;;>~PSS&Za78Ua1%Dug9_GfSEitI4s-we21Sbv{@JUSh#z6p)H6iG$TXmKk4Z|ki~t5!3cl8zHaxc zcyi)0oVPuP;yMA&PP9aagR|(XEFC zVG^$OU}Q**W`R}*yZJ=eq<9v{p|D(@1#(}hxN)EKF!tmpM)d9oy6ck?CWOU30VK%F z+sbILcI z8A}1h@}KUoAw61eqMzJb>{q+vJ2>VMJ)u#&-W20GYbz-r6WwCm{rEj|LP zgE>?t#}7;7awUTjWxi_n_l2g4V}nC+-eP;!?kfq7x>+U>o6bIwMk?;-bT}-WyII}$ ztoYS6&eKgG-r~gK86Txjh7GeGcZCCfLibf+!$UENmpcRaBvM1P0zq1$CK^+X=$Z>6 z#VZgJi<$5WgiOnNB9>O=K(NXa35CUTCx^rvZ0H~woKT{uq{*J=-O|BH7M7{;;3S)k zl=LG#q&B&C$JK^*s-oU@!zy9B-&c`M;xgOsbRN|v^JQ&%nBPjrsKl)@ge>sH@Yf z>XyY}5<%T!e29+*!^H97d?i=tt6~bFu;`$jFxU_rwb}RQD?ApRS|l%Svjr4W;5J(% zkwZj-^85Q%UQkiIP(%nUl?UYpGo|hO$D8<)j$&;)6sc|Zl}Z`ydR#B$dTsHhJpiyc z-n2)EkQB{3tg#d(&)ydg84UzW<9P>*3VG4Osk#oSc;R&I8bV$;1s=piZnAFnvQ))x zLI~1L3}#x`L2f9k5Oz3dVZem2C;-v9*~Av1;sDg)uwV{A-FFfn&1$UU=W2>)H7o{; zR!C6Opd!68n_VtmM{;T4ewysSLvJaY-cK2u0Mo zBmpr2>5@hQ7(@enb{C|h8J8itcz`dlm}}YahW5Jr1Sau99cgCQ|rjUVLGx_6F#&R^?jKwl6AB%?)wTT zCc%AQkwiSAAtC2jFV{GRy}+D=s8+>8!U&G}@KSq}Oq`-C2%}tDMa5STrVyDKUqP74 zLFA&*W03LCuGLIT@#s;bF)1EB>Qo|>Ya`c(<3YYaRog}yBqk!;NGk&*qVc?AdJ^ta zJf8P3ES|^n{&TNIPALzrwunPZTg0Ujq3B9RPnQX4_btAXF#*W5_)5k^24a@$ORP_` z*mrAN3i@frD+w)oiKulh+0(kH(Z_bKz4-Pq{%|^f1`zu2(Gs z0!lJ462KtWT0M}Ro!Zvwfji48TPvVLc5eJ|Shv@DL|Hq2U@X>w96vZYppxr3#7#kM z&%q!u4cT+BGC(5NB$*7lp{#9^92irPO_EC_>qP4~+>qKlXb$GvYdjGz{iJvuCj-jt zcpWE`iCE@lBo4Q7ZMSyp0vzTd$1a2q@mUwXT~0OxhA6^f8p?%P4yfe9tKDI#14?ap z^=M2-hF70Ty2-WMHj{CqN!slIk4edPJ4h#5xvthNt~XJK18Tck7K+Kpt`qjJTDsRGLzVgK{g5aXL#V>=JlP3o(Rr1`rR3IN;xfGZ`{&WL>H(Zh0f?aag)*Wc_y%A9v2$>&0nLDz#tVw)qa$k zpyoHDbU_WMkQcYR?e!GxE~9W+UAybBAvhJ_5>>n=z*!g;-32&ChwOOUgmmxnZ4=I` z-L?s%+gOa86D}8X;zBtwr?d%EbDHH{Cq_{wbl6D~o@S?Q^d?xj2_1|wq5DjQjzZOD zzQw&RvqPh{juqF`0Ep#tunZE2K{T+~%n$b)T=W_rye{t03n*s60}GKvJffBg^Mjc8 z67jmYrLq_-nOiExg~%vM^OU4+pNpe(hr^;dN_XF>#8C%~svxRFy|#R~umjG6HQfJ)4>xrNCu-lqSG4n-ZC4vg7+-XcR6(MmKi zly?~Z;Nyq?@1K3<<45?-6c0pU;ZA{0L4cGyv zFP{DPnm{=qfa(6Q3z!2x$eNXYm%diD%B%t|HmgV`PRU??c)VTQ;6RLi^0O*f1Ypc3 z2?PjHJ zgD4;PcR*Z9H}LNgh(TO|DSfw=J)!an%qT3|RbYn=!Ew)8KBHUSvv!+BT+cfFXzu1V zaV(|0e2k*X=de+}Xj%ccoy?9cT`(=$wc=@o4u^&Fv_kit>>Bm8ksJ+ri^tgv!h(66 z?T{fgng=y$(df5$63xS~WS$50pObY7skj|^dqkH)XuP;C1wbsH>r#+F45EQQ(lJjf zgclF|Ee6Zwfj{G>Meg_NhU5y7grP+mT!@Tf)^<)wxVBH-Q(2*B52W?%6G+cd=-5gF z7l)3m8!2<>03O6d%>Zr=61FUE1^~bX<7R*mAt?&N_>Kop)F$-eAmvb4CI?~nl?2E2 zwRv=$U*Rf3QPA@G>R?#3tFP`e$&Q8q+wH}#mvh{iaNGR)_WFIi%Jiz7zbYOAq!68F z#iGvR^xEW{UUR#&UQ(PO>O4-bPtNJ}94CkZryuLyccAGz?e)F(>WJCbKjH?vvS4>UCkqAI1RfRBTVRO9x=nox>__8 zA%9r!Zsu>{iH`OpN8-gp5e3Ffo)ZG#K+z%%{Vo}!iWg}@Bo_a42i-4QImigvJ_b42 z)**VztsG&5Y#(c!Y-{+q1HHX?BB712gr_{;U_G%{2g(;mG4S5l zF|hs^_j_T56?R`XY9D!dzqbQo{XgY_q5OC#x4l3;_(*io%7=0mgav-i076)**1h@R zn~~So)H=ptkxx2UNR6g8;gxUFJ1EWi-p%RiN{!%(=fEO3=J31{0xHo~bo%XTzo6p+ z@6VU2x)pCl*Jw=S3sS@|4^`<#^6=FzxaQD55at*R*HLr4e1mUx0edqgVT z*NXH?HzI8<$dyv5xmKjtuMue-K3avM&;iAMh%<=?+$G#74HvIM#dxgh7ql4Ye2|S& z{%AJd3X+XA#~>SJm(gszfg~Gispx)oqgh-Q+PuBFY?e!0X&AMi#rLzPG1+1-ze)F2 zD{-(|bcEfb+{4Y7Xwgb})Ykr)+&ksk7PFBtEG6Z8H&xPNJM5@!38s64)x)_H=Kj~m0H8r^7WEEO!26rBb zB|q&yP>FkFt3WbBwhtjrwhbOVvQ^j^A=?KGC)i*7pe#Bu6ITRW!*w&RdHYvWNiS zg3C$zK+axNN&29Z1UN`a)vI?u_~^}MEe{aX)GNl}vOVcwAvM((eRqC39I)s6?wvbP zkEW(Cs_>Y_3+glJAl10NyKhfBnky95ttRYyBxdlm|3I>%LnP=N{${>k9&Yw4b!|)W zArb+_(w_;yAwD%lXmYHsH?7(VUo%A*U@?JbgHJi-n=B7k2YHQOjq*K`Q@;N|vQyKO zlmYW2QgqGqqyu8fPr1KIaCE0TnF>Q5H5v(<+2T9hlaNg2iwR+%m8uB8IbAmUs6tlR z!XbHExDPp7{C0_L$9lL`V+#l5Y~lVU!Kr!F-}0LkiN%7Nc~l9&~l@;F>us3&T>M zU{Hum1*JRhC)V3*DuM%Y6~XRs1;vm@6gnMP03`QZkUYs{@AMRQE3uG7X7sUKt7e~=-rur z@;F>84O_XIj-J9}9xtfRXR%R^KAMg9cgeBCJPCvP|i<$v;0+Y@0aw3WB zauzdXph=i{OU2Br$M zpydr2(Xw_thn6zq6tuh*BU;voxrlHl-n>#95iC>~4;dWBN;cZf{Qlz)8cY#|u2VA< zyW@~p_|yIaIZCqA8yCB((`#T@>JwdYQyZJ_;FR(Dg9hui+d~ueRcf}7MTkt~r6?iW zBw?d&Vrrzy13Z-X0RN>=yxk`(T%cCGg$l(pIGi9gG5FrSX|@tF4hw$L!9r@v58j*a z@v`v;xOF(SC|u(Q5u)>hD1i)-s){@tKf#)xM`8|7`ws)MRj95B1Aa|G$+m&Hr`#$Y zkC5%duq(HXzNvXhu>EMei;pS{)0+0-xxfcTTnOHuWvM**H4Hc2F$( zneIz2!rL5oR)?v?6OX05i$2btIKw5KWEZP5unOno+#MV_Gk$&*W06&a}yP)6AE6?w#h- z)dP<;o#_~oIejrsAzG=JtqyBUG5kW>_iJ!NSkeAvy z_Wpde$4XZ77OG+N3UoyND?Ye;SG2)3J05_+LO)Azkd%r=NP1&_kSC&RViDu8#3vnW zUTQS?Un!Mv0;vWTQd1G|gGnNwL1BrXw~&yR>M%y)YC4Pr!qPrx0CR;yzMl!FsR{2S z;b*>Z1`_g8E&T@#&e@oYa^mw8H7&iuV-7E<&*a8~Y}6QKG#fuok!;uZ(8n z$1IYK9k-+!;t!hL8W%lN_a`=0O+%~!*;X&=?_{iDLdsg>33+oVLe^fxgp|R?6Y>^Q zgz`hpdvB|$&YH+UATDwkK$s&n?z`7KI8pCdT_RL7wbntg;AgroLebTD$d0Ue#K&$-)6~d7pBBQ*o0a1%fBq$4R0r6bpZ*`$FP#c!2K2&jz1} zL28OC$nsXRz@5$VE~c6(t{9T}d@)WTTG1Qem{*K*n$1z7N)*2Vp2uZ^U(JafR^Hp& z$(6^D3FSFq!^-2FlPfR8O(-u+CKIO?CqLZd;>RX88C|nD86h&Wm!bsX^h)AZDUp$G zVR4g>(QN)l6&FkOqBGZT^=2a8sTlUr_9}6rt0sndBP5bPCSnN~oZz^kQk%!Z5-Vl)BeMNY^944vi{Ws=|`^{D!zN~T86ewHbnLrHG5xs+e z#<%l;b+KgLsyB{1I~+3Uz-RmZ;|l}9(LXMcFw z(PiuF=1P{O_-6Gp1aMLKX7w|EKqdJ>uUQVu-F$Yx+2f8W;Wh7#GDU#Ooc|)B{va0- zeKkS!>a;a;@$>b?oNq;)&2O(~iA_WQR>8O*o~eJ|Q}54SQwA0Or!IqU6V5AxZ81vi zpqi1X%i!CV^U7dbo^#89X|+$&mpb^fe5uP`;!EyVpOPEU# zC0*_szg|C*XouQo`YsolJ~gTh{Nyrq|7p#rHi5|`znQB0UM?uU)*qxUS9qTQZ;;X5 zUo$L<(k)}6zxT&+(JF<{)PInsp5TLG{BwCRW)CqRh9L!AODu}Cn7&A%EH2(p&n;f~ zTXL$@28+M}7R_2dEnKs~Lg6uGeqT!lW+M-@Qd6QKOnj+j&6H?_$kg~vGDXeGJdd1; zzY~!2u{TT3#@#bCr(*5|@7J==9%m*xjaNMwc;FDEj2)@S#gdbncz24=66!TFEw!HMH52D4 zQ0Dlp9*&TFHcJ(er(x+saUV+?gU{2Y3ck~@^ij8ur46^Koo#_}bZ4+;XPbm$EAwNy zvcpBvVBdirDss(4hkIlXmGGEVvWIHq4ZEFhk_5Mr2KAtQmBVKud zw*@e>O~!4Jkr)rO_*eGUSUkL)n?oAe;wJ@g36d@T|Hs>X2S!n?4HyUMz4sQ1bVBdF z_ugyRB%5R*$%bq~6$C|51Vt%|q9}@@D2k#ef*`$vz4zXGZ{PduoY~zeo6YQUzx&7U zVs_>|@0@98&YYRCogp6^u4P<6j2kZT^4f6y<>jM-1205P(EBS*$Ie(Q*sg#)E7)#^ z{A?=L`Ao;xOTQ$6W3BzBVw;hylL(E&RP_qegv|7GYpW&3#-Sy+S{JsBL(9bZ*w9ls zkcSS4j&VaLUS1ozzdWhb2q&{tQ&usa%p{yj%JyVNX_8ZfUVOUm6KqEBjEe2rHzcge z(Y6;qWHNG%&@r0In`|$6$7nFB%G9<8H#ilE+Kr|NX=bG6%H?5tf=`WK58V=@8BGy3 zvPw8Onj-9!`KaAA`*-!m*zFvQnpf=xr^?4B>z~->)itAH+hjw+s#I+^*^tS|H9{-f zKegrkzcDt-0zp-twyo^IL}VGEBcEw=%tOp$yfoEgsvK=EP4#K=S&^h@YC0AaPEeMFZg%e?#7RhIecUsuzb`hPA>mVrK>yy{ZxUypDo z$nd`#EkSO8^GZtV88ya3flYX|71$mMY$ngg?xlAcnr;ilxO)Yo=CykTr*e>}Y0JGt zi3T=Z+v9+qsJ87!XuIeWn>OA{lxSe<%`;JL^R;^xHKdb+M04%lq#4b#sA1x&)gNbf zThLIx9AERDu4xmvWa$Prf(Yqqn?b(QHEjr&EZxAS5FuS{V~B8HF2npj&lr1siKkY+ z?R`0ad9uz~uOHj)Ze84K=94t)Nya%NDD?nQqx{t#y(X7}m zdh#enEtc(YxjbfL*&^%-w)c`^+!OSedF=`MG^7}z1)M4GesHCG78^TfVr;bqf~q8K zTWx`f$TC9ThgU|RrFo6d-No4Vp+c$*ZTmj-QYF6#H@dQ1#z$LYywN4$R9?0>x+qO@ zig1j}Qm-$SE-jn)m&SOEvjkW9+8*O96O+B&Ys^B9Cs|}|=!uKwHD>03D$5#nO&hI5 z$t*$_Y!+`FO|X04XN+C2hQKOQ+b&qcgw$oLybrP3^trb0C>xFlshSd)27@E%_Kn&6;DY%xy=_ny1ar=4}DCL}m&3*vPV(@KPQl z{Q>i=Gk=LvXAy3s_yZX$EymtpEuzZJwl`RnDam!q`*7%!&R}S`kLp`226)Owez`UBZzy#>gsF+mSWKDM>oQ zi962=xfoB}=Ga=|8w(XESb+bnu|0#EXJQ#5ZLc!Z|s7qo-s!M;ll469jj%74ejE7I+snl%GI{xw^uVN;<^s6`+HLq11 zoQhQ(p&us4_9dV(_QM2%sx)o;VFDB7V~+_;Yi!%axW@#e=2@M34f&hKJ@ank1=>|v z^39a=ba#4uvMa}xp#PVlnU@$_GcQ6>YLVIpCJX742>eaY%ao;THW6-T=4kJ*4BKlO z?Vr&_kW2@Y48^q>m!&Q8STpy>qeevn?4di&f zO{{(7Zlq_Ssp%O_#pe}VCGY>-d1#qZ#de1iJ(TwU@!9TF={}a>h}wV4qjyPj7s!}z zxryMNYpC;R4ku0uQ_B%NoH&`8wKB}+;29}KZc2(QyH*MEDhPQ8r**--Q5;93ELYV* zpTHqC$~aVq-Fssqgp=2s+pqg*-W%hfEVbCd_r^GwmqqR8e9h~Nnw8D{GSjA>dg<4= zxjePVUGlr8&GWO^1EN^$TzP0O{66maA1t_~M78MM^1bMm2rT@NSQp-Q&1d|tD?l$* zRYI@mDnXAzMMQDf({``_|HEFma#dyI`>+=-4%IQz`F6oIh5u`j5o#p+(r+Aj6s;QezqquSKfs*K(7AAs7pb^`9GTHlOq+Nma$s6@+EJ(c6eY> zI|ty(+;Ob_4Jl5rx*{rs&9LuS!@iy+VFD#uE8 z1?REW{dE>^m?^lFp_d8KuJybMP&ro(Q@o^Y*9DX-Be{I>N$H*}d9kP~+4^ikG+jV; zK~;LeE+D&!*rn_`P3@+Qy$i@Ts>(CiX=*zaiP}AQW}bMyD?Qh3%yd)~$2 zaCFXpj`?25_Wy4S8K$IsEM%BDS(A1{h_zZu$(4bx{&(OdW+u30%QGA!qZvXRCazk5 z;1J?4(~+*-&>)-1waw1>Ubkq5289o;k`4|H3O^}%+uaronL~T@E5WX!qj}*#*vKmD z;BC>cQlDFMxX>D269NC`5{!S2Iyf-^1&711YH0_(wjFygAf?A5;Xz7S^urQs&o+vB} zdZH5_9pCj@vL@iP))9E4anOLfh`Clq^0%UZs;rKc2(k)X+5o(EAL|USd zSy-Mf`B)ye-i+5bKmVufLtCLUFTo<&mZFxb(irVJ!jOPuZ#Tfzym7kYlUzw@ZsV}# zXa=~33#@Vs4sZ=OVSaaUcf7~vzriPsbXj6k>X%{{x0IlkA^a|GnS+I~yLD+@_&^u7 zY40-Z6w%ze%zsg8@q)K5^FJ%g8NSUMTqL)2)n|C;yF*r-cBnQiX7p{|e3Yb?(%k0F z$DAyr-G#HNrtI8IcYHsW&pk%|B@dg9bj!)dxI;yA;hbl5wJ;T|#Y(Q>+k#pCT>Izx za=aOXvb`B2T|VP&k{C|#HlbCPWlaT2is3JjwG@XY^P%q?<16i>zeF|$RcRFu6q1iR z8_{;6ypknb29f4wn+`d#)|oN1UT4O?vI*vKIQQ56h|KZ!3C3_Zw**${l{OS6$%Stc zYjrT}wGZVsW%F*|$*hE%ooBLI4rX=Y|jjU|{u{m7gu{N?S(N*$|%@>XS zlcHs679i4LM9ma-qlxt}ViR92g#BT}W_lLGZpeJ-_NKMv4NdoGhNN3Vs$_#h(yfz_ zU-$;Dy2=ROWfFa3%`UXc*WB4@Hz|3CZ^5ZKLc1SAdk~^;!C3>VoXr>H)(InIEN_?} z!`FV3$Ghj{x-*lEPnO4!u_ds|xU8u-snGCkq-=?jCF#ipXL7PU1?IC$GWs@BxbP~~ z;HX(`0}eMiRUH0CLtrl3xmkI~xX$x`EN74|hA{V_UBbd|dK z7#(J679jlXM13aP>K+w!C!RU1O4)on(L5QshCholwY(sRE!;NU=+ELdkyXa#v$)Na zB%Q}mP9+^?v*J6k#~oMf1#yDW1wN_{@vx zcPi3u@Q9i$>@9(429MapROtl=aobEois2hP@-B)Tw+t!vg?ubDL7vDp-Yt#3!4o#V zO5NPx2|GQD5xzm8-2~%ynCd8WXJ4wjr*@%L^5zDG-K6Ag_Y8uzroy!(qIm|v5>aIt zdC#w499e4QomV3zWE0WDRSPISJC3 zGL_oPd8sOlD!80pupV8?u3{-WH^cN<`)-cQC4?%olq%C7)oxwNn}LjbyW@391mn8& z$F!?hen?37%r!Qo9an51jIm+^e`cjxPI%tT%!Tp8JUQd#2<^(AuqexzgyR#QHJ-|* zjIj{O#nN2x&nsi4JSm1O>`IrsYnpc(uVj`H-*^1r0fq|f?R4J>#!(p*_Q#YW>xL;Z z*_G^0&v6-w?H^^aDwZm`cwarX6kjK7@eH;!l-@7u(g~#sFD8ZiBj-`u$u8r-hG=VB z;sk1&m{Me|u#1~9*|4yEqF&gH$*RyIvZxYOO06BfRM$d7v3;X2*0oTTTa*c_x=#Ctt z1G`5ctV&b$vV<>Pat(7h9e1hrbbla~PZ2Gulp5xoHE!g1d0Ulny+wJ>QlV7I#q`K| zEU~5JD37S)2ozXie^e>eaw(y$6?3!1d5hQIypb@f#6m=r^5X1ISmWhN-siTg+=0<; zdckO_^pe59kc8#QC2gV8vlD!byOXD`v*Y`xF(x8;y#5EnLEZ5)EcqxvrCQ!nuq15h z3$cqQ?Ob{7NzRCIhEyHjT*))EUY{~%L@!Lzvy1|^jlp-f`)10+_cDMy)s&^!}BtgUFWUV3pmD2S zB#%2KnJVA;MO*m5D%axu^@1cZ%k2r9#UHpZORk1xe3>iVl%3<-6Op2;6w4Tk%x49T zaAhPWyG$uwiVD;N>lLW~H^-~|tl1I%j{yBI5>tT#iRlGNVwS-eHg!LeH>Quzac7xw zb37O$@7OB6QlZ63hWRj?Xq9Bi;9p2D%+-Y9AT!3Bz9`e1VcnIZyqX9bT%}mrP@p84pYzc;InO6a4UWzn z!}sxA#+SKXit~}B1eIjPAe&u%RCLWa zo3JXeqN)%{$TQDwQaGbBAjv)1uFDiuVP ztnL}*T7gu}rdW?&!1u-qIiY%pCb{jqu z8slc=51~p_yNwoA%ClT&$}fvjT^Sk1erU(nnSn5>Ty@JT@MktC>#CIt0#5aYDt5kV zRTR^z)niM+l`PwocY&eIE{-=R?*dg^3AH6jL@CK~$5XEFjeYEn?~)Ngm8I@@`eRCA zmR=J1A;T-(hdFYO%6MhuxR=BbN)=y8Evlgu$)lpVdQHdS&Q5DLa1bu8m8czoEt`+r zXq5|<^cXiEJ&JMj(f`UywR9$GKQ5Lhw&WFKNog**m^KdGaNL<_7f~goIuq@tAUVsM z`wbK3xHEmG=ae14x!)$BN=?1F-)4e5t1VgHQS_y(XkTriQ$$Ek{}7(( z(}FQ17mOG#x!@G}OwRNzxl52-;45;b4K7(8Nm=OsM5y-tILmVsvif}gS_LWiVC92R818iJ;0;2YY`^Da>->=7&o#Bq9(-6{}9%fj_f7+Ej05vV2zDu&hy3uRn;ndbP+> zs^y+4IZ3J3g?4;TH8heczoK@k3H^mdx3tfg!1xk!$Cow!5UNV}qSZ1SjZdlchn`n9zRkUh->wgVb&#A^^NHq1F>bBIg zM73Y9^Gzr5D9V!%=JJRtXt}zVFUXs&ZybLY&k{~0qP~k~`I&049CNfd#;~By52b`q#p$O=e^mSOa!u{7D9V!%=JJRti8g~ zf~X?ZK}wG-rCN>;>bC?LJ!aTw9q*kXfmG@0_z>~~E7dX}RR3Mxo+0-_3`sa15NeF2 z@~Et}^^CufisgvylXvnbrAeQGyfD^~h~p!6Xe5<}I%0?ZLK2pvmCtP|-1$Z)5mcf2 zMn_C3%+f%RZ@0NkqwO3w5VRPoK-EA{ac$SPzepM6V%^-GuWv&v)A~02#?o5`xBJ{V z3CZph7iW)T_k53O^K(47-5O7&q@L!o{!Ut!CX`_^x-$*iqT?o%C7eo1HK8m&lar;N zBXlaQU(I?(cihhrCaB6!y)PonL}Y1s3R0U^j-v93GI{s2CrMUoVs0v5fiPC0&Qr0aw);{EINHwZm#~4o~7_#dae-FEvX69ySmml7&1imcgN;cjOh-x#n32NO;Z6+ei zdgfaMY$8l+m)!uT_X|wHR902gNzYW0WMdipNPw(txnN^#i}^Vf$Acfu(NsQFgZUWB zl7uXGatM)~nW_y3H*8jp@8lRlsZ`XR9K%mxSCf1=Bs0O4zQDD}xDiFQnnHqES5wH3 zWMjE)=QDl&&+%n|On2uPuPvM(C+vf&D$q}7_7mkR%XGQy z%5WJ^3NdG?g65s2Ub57sG)xd@Nre9>S2xW)8%KSr@C@|KF=jy>3YySSGqnCSy~1Jnifhs!=+1K7o(gF z_3C&)V4k5>#_BovJSQb@%h=E`bEL^25E&3|NZj$*(7a=-%+-s!@}8E|EiZX6&0?3b za}+|1mZ9P=wNVqLi^W}YioFIQ5uYZhcCnqGJkO|yU?Dv4mTz#mykwKjW9 z-x+k?>pn-uCTP23)4T494su2!mJHy z8CLGL?QwD5pbibCmQ`<1hyFw!)-5RAo0{x4wz8aWL0S;g7NjEEZb2Ew8@SH5pbY&% zYkdonh_=h8KHeVshBoKRrv))BpNcG{S~n%>uZ(e1k_e{lmY7nQwTsmMj2sUen`+g0 z7imZ&Rk+?o8uANCSX*>z0$+m9|1baJqVkNK>86D97G2o5DnY$P7j`<*?P$5&*CzKT zsAsJD&}0a%D_dH3rf0dPIqn3=PZ4S%>PARJ7Qx!xqs5oKEP)T#%b+O37U#UX#}ZE^ zr+4>Qey3(FH>0%GA8*>{d+ z)UY(WDM-$GQ$?#kyLIKflid(YC8Xa}G5nTiDp|=MSE{iSCF)ePSoW!?a->!)!-@3j z%Qc=59FGJE#!)G#ks!gpQxn#HeSc*oB>IvPY=)*f@7FhnQ_1N4`sSbW&MEuS=A?%U zlau~4Ia%KNtW~32OJ+zvxX&j$mrZp!e(Q6%s47GC*5`0jJaobN)kSdRg5KaKrW9tqtt%slvyI&_&Ts4bW2nW`Z|iDtrATYrUf%WV zUTiGWdD~YDq6*co4pn3+)iOfUC;O|VDe8EHrXEF=t43(*f3@FyEJI+NZ$5-DZ9e{} zvY^(>;2dLryz`5g9DPiHei0)PZL2g#2EDsY9gfbcR7EjWsUBMjw(cQ0DaIYr`5qz> zRDt>)LQLEG%uO`3V4c@zZlWqmuTP0+Tc5d!@{u;vAPeX9siK(bQ;%)Gh{k446pLuS z?v;jSm*P24UoeoWQhm5m@CWT4;L0%=zk6 zQB12-k8Qgh$&bmN3}XvAs)C7PE!ZDh3btNkEy_snj}0*FFwQTs^f0Pu{US^MGqr6! ztH`f0KWpLBf~a!!vxs?aF(RmCQfD!LOj#hyWj;U1=mf6}mXO`ouzxzfwl>C638>3_<8RchrGX-EeKM5q z_-rEqRH5pGN<=BiriL?P>^hgorml1TLSdGcw9S>LYyL^v;7J-Ki2Gg7m^67M12<` zrtQ|`%`y&UcV3u8Fcn5jDa>-wNkh&i^c zm6umY_qaUsV<_735IS=-m4zBYXa3cGtIqZqpLTP;RZ9d_u)YfsQ*)Nl_u|P zH8qQ!AFx6qslxRGR>&{mme~0Aq-d5n*RsU9;g&e}k}Yu{l4XelzmSCGT1Y-P$jfr) z%NO(v+neJ@H$nob6x6j)$PZ*-b2!U2-7=42Hm!?eAeHo3CjS6+{|owkjj6MaU1VEIv&7a z2&Ixy0~icHk%!IJ;8UHEp&i&!Yz-=md27(4OWBrZ8*+WJx4T21ZE&Thdb2$_X{J5_ z$Bzl*6OWk|6eA}1j!E6cw`*4Ccm!Mb6Bs^ry>;xH4DrRA-s+O+cg zwkt#4;1gjLIDYGCr06Pd^-;D+Q?me;rj|AngZJg39(hT!;qd6Vsb!9)5>!ns^RFai zJ!HyTn0)a*>77$I0gXL$&JUTEcq%FVkZJjyv@GY!`SR`x(+Ee$Cl4)#Dqfu{Ra`03 z(gh$xSqy8#aTkCDP=%>303u3BmfJq^_e*e(LXV=#RJVQfzf!QJ?_s|Air8^0lL)Fn z)vor(l)@~J3C;Jo7bLiR{u|-xrt_ZT=TA(*R0`@bA=8g6x}}w`Pa_Xh880myxAH?H zsXSCGKlB&-`p<9~-+=GD{w0E`{)s6|Y~6*dT`OKel5<-TGRMTXp1 z3>2x~S+q3b7o@pOw~8G%;{731rK(1}7FBB1Qr>kP<&Crcs8Xn9a8Yn# zc`bg9d!cc09gnfFgi|S$(NfUMkW4HmL}pFO&6YOCrFp8_8c*e-PKegu*_-oBOTKV! zUOSG@)1k#`@xrI2$_ux#*gSh4)yAU5(Ki+qRSLBEn z=3iMkmJ7U)iM%O>9o6v#o*|SptP8EY*D!{%9w!O6(g_SnrDw}0q4s$;hyoXSlN z4ApBeSeoQyd0@&imE31Ew)-4EFl8H3<)$8(vYmuFvs?l&rRDp}j)z0&QB)S{5STI+g?>L?!)OeGX@ln?ol zY;2F5A=6m)uBeWjrhqD|kRzvQ0y4ARvn(5SRC^XtR1P6~mOr)>Y`MZ@)8j`=T{ynN z42`4`P*<3tzp(U{Ar;yL`q|fTGIKnn!Wc^>qJ~r$et7Ocg30`@LU0kv^Nxoj5DPL6OHB#g_$Mn2I#2jS?y}JD|$0ucbvizgos>n|X ziMby6s8(h|irlWXzBnl2>a`7_%BvhwUR*z|93Kl&mATRxYvD?DCuF-*r0*)zG^8eC zhnam0Rdn6ZqDQEb;>HC^k|b)_2S}LT&ajh3>|zQVCjY5aCPvmGxvQ2LrZysWklIC1 z2{ahvj~r*MhPeJ-`7VvD16E2oLgZ%pa{N8Xl`hlBh-HW0Z0;*N}RP$U&J$ z#Z=wADvm!oHVz!)=fqS{Ol z7R2;~#a^$WJefW3eIziODoCC6^@8-6QbMr|X==!hW{4kgqf;}f=xXoKBT3Xk8Ck|v z7V*R-GpK0l&3s7y1f5?X8DPn7q|Ycb=pWGsUm7z4)- z(`@8X)_?cilWBMMY9DEJ80S@4)Egx|Z^>~J{9nBB#nIR0k`)n`6mpm@&78K+(zeY{ znfjdidNP#AQWedV&(ba2PinY*t>qO83GRjd7bzI4 zEaJzrtn;g~n)IJIpl@8?+#IjGQq_|bH`23E_Kz|8dsX8C#Yq-rRTP;xRlaazSj5P? zqqYQUUR8QU3MN)uhMP}hd6N9cAGNrN*7ZNkhCm)57 zkArE2Hq(|aDJxgKZ&XT6@VAD1{`S1|)7c$|Mn&9u{0p9suz@u)W@4Q7##6~4PKKw% zO`uJtT~)*dvye4XQstbRY-|~{&Sz3GpDMMie>*T#NC_=?a zM_QnsMENRYa@+uyG(*O?vZa$;`{qeGZF0F0D+AliD>~x2#x%1kvBE$-n%)fN5K!4X zF*~(kBaV0tU>8A^*&Tlu){c)zR?d-SAb-rYB$9-&yYesYgcAd<<=aO zt$k=VeNkLr+MID?bLITve?e_<3rX>r)?z-l5av?_l^isFz?isEY|Z4a)*Cyo^^HRL zTyKGyRS}g2>(PwI165aPo~X7&nN7v7JY?vYxTfPq_s?i%-1qBfD^{LMkgH{R7)QB)!oN9pn7 z0`aBr^4e_j&`+{AL)vJ@)fVxx#XPqvtlT)a+#QuqKX}wlZYimfHm$s&QEsw%7HeHt zp^dhPBMWT;sPd|f4~=TvUDQ^o-U@6ue&utk)L$r^mXndbVNI#Y(lsaV7mgd$cPz)2 z!rshGW8YrHOI_wrnXBP~{umOh6#qy_UL>u0;{{!tNE>>{j4E_J|CxAzKUS+mm%MT( zZuF>8Q{o27yK?1Y82&++^+IM#;NRIYaKs~{i1l40bOlB1V2%(>5dDs1B`R60SNLn&(Xj^nWGDu=Y&3x;O415jz_45m4pV z$X_ji@(k@L{nF2WC@kXdVldQ6#NK58EUF;Y&8|g}>Mo`(ZVeG5Uf`>lR7`ahphuFZ z#j`wFZt1!*-lJ$0X*1U6QgJJfQBeZTFptmwx{Bg*d`Xf17Gt+W`V!H?`iJFEa`i>cDyg5)*J3ktVi`YY|&7*G!T02|Ck>x3ron>s#N9+KT8B{RC zMasA_{o@8@OE1s@Z?^vd*U~NOoHB|H>4l2JrOR7%Ar>1g;L8(Ez2Wx1t?c!()r5C6k)w7#0A;ox2 z5b;Vpe3=r;SgdNb@G4D93n*gOrdEzVuQ9M1n4|xg;PUd#SGkOnnG9~3*=)8vaztwyJ`njjY+avz!{^EWzz*9Y<1bxSL`jFEl;x7-w#RjxYi zgBfRe42eeUd^IPUcZatG^}by84nE+Utpd8 zxGL3J{peE|qZjS3GS!aqSCV=Qs=g=*Nz#)ly;)gl2{O>gbmuhUcq&tNrdTSYa&*v2 z|5#R9+ys9SQeW0AeA17vUuYWZ$axlqSb;2Z`Ey)oU8o~@pe~Z#Zg~Nl>52G=FRe0F zf*wSbTV(=W;M#?^w6fhOdVZf~9kD&M}HF85^r0p9hREp;RVi{Yl835>ly){U>^b>7NZQ3wg_jy6q2p9&DcQWQntPL-?yLFkRyJ>WDRNcH+vR1L zlPk+(tahhco+*}E^k$)3fE+oru2ZIMIt8&q-QRd^}gTstxfD_frC=N_}AUFNiQOtAu4_=|`etrsC#)Hm%?`e{dws9fip z@3ll6CmS)G%B7ZnP3b41xWRHeORg|fiISIkX-Z%-_ZUxvksHMR5lSJmt8xns9p^tb ztI_U(2{JS79)XW|v1VG_KonJ4ZGC`MyZAP7qef}{>T%<>v0ZF}>H|iBG-RlOboR>) zNBP7^vdfodZAC|X5xyxU+lVT?`l0EK2^K9k;Pj#;NA-e%V2=8F(r$eEpQz@AV4)X8 z!z1-KnX|Nysq$GRjFb%3SQ9n2I< z<=J$yyg`KBTt5XH3XJn+#`Tp;jkuxX?9=n+GN3BW>$Tj=cAlOgmP)Ty=<1%3ZJ30N z)O&O|0%gm4kcbrG0ZD^qW=YrC_*1tjkp$ncs5{pD|W4xL>sQoV_Rje&ai z-=7}oj~_SDr$$t2t?PVTdF8KlZ68Rl;t3pg!e4Qf;0weI5-{Fnkh$}|ofeo)l~ZDZ z#EBb999eNi{1?cE9Wdf`oOVsEZmnqRPKzS(3dv}AL$ru}WDK9zVyQu5M3BKkxvMth zuBjp~os~T{E6pSKSmYxua=VlbV5t<5v#($Q{(rvw|D46J1eU@wSPm=TYFG)^!Ya5P zR>K-t3pc?!xCPe3M%VLrz*Ddn zo`HR^9}d7lI0T2`2pogsa1u_z88{2);R3t>FT%_43cLod!<+CHyaVsT`|tsL1Rukv z@ELpoU&7b$4SWaR!;kP2`~tti@9+ow1%Jc8@E;U>R=5lbLlGzj#i1mWf-+DR%0mUH z1eKvGRD&8&6KX>ps0VS-02;#O&={IRGiU)VAs$*oTWALzpd)mKF3=6SLr>@heV{M& zhXF7M2E$Mo1|wi3jD|5V4#vYom;_T`DolqNFbfjE1&NRhZb*eRm;-Ym12Q2C=7A4# zU_LB>MX(sIfTeIHEQhP$YPbfjh3nvYxB=F{jc^m(47b1r*a)}6ZE!o>0e8Y(a5vlo z_riT}KRf^r!b9*dJOYoxWAHdU0Z+nH@H9LF&%%Cq4i3Wea2SrlF*pGy;WV6qb8sFm z!VB;cybQ0xYw!lV32(zY@E*JmAHqlQ3498l!x!)sd=1~ickl!J2tUIw@EiONf5Knz z5Bv)S_6r4}5EO=@Pz*{yNhl3vpd6HkickrvKvk#?HJ}#MhPqG>>O%u)1eZe-XbR1t z1+;>AXajAbJ#>Ih&>6ZyH|PO9p*Qq_e$XEV!XOv|Lt!|KfKf0S#=~+58-3@1U`e$ z;Y;`mzJYJyd-wrQ+fKNtW5 zVK5AVVK5v1WK-t3pc?!xCPe3M%VLrz*Ddno`HR^9}d7lI0T2`2pogsa1u_z88{2);R3t>FT%_4 z3cLod!<+CHyaVsT`|tsL1Rukv@ELpoU&7b$4SWaR!;kP2`~tti@9+ow1%Jc8@E;U> zPPhyTLlGzj#i1mWf-+DR%0mUH1eKvGRD&8&6KX>ps0VS-02;#O&={IRGiU)VAs$*o zTWALzpd)mKF3=6SLr>@heV{M&hXF7M2E$Mo1|wi3jD|5V4#vYom;_T`DolqNFbfjE z1&NRhZb*eRm;-Ym12Q2C=7A4#U_LB>MX(sIfTeIHEQhP$YPbfjh3nvYxB=F{jc^m( z47b1r*a)}6ZE!o>0e8Y(a5vlo_riT}KRf^r!b9*dJOYoxWAHdU0Z+nH@H9LF&%%Cq z4i3Wea2SrlF*pGy;WV6qb8sFm!VB;cybQ0xYw!lV32(zY@E*JmAHqlQ3498l!x!)s zd=1~ickl!J2tUIw@EiONf5Knz5Bv)S4hjXK5EO=@Pz*{yNhl3vpd6HkickrvKvk#? zHJ}#MhPqG>>O%u)1eZe-XbR1t1+;>AXajAbJ#>Ih&>6ZyH|PO9p*Qq_e$XEV!XOv| zLt!|KfKf0S#=~+58-3@1U`e$;Y;`mzJYJyd-wrQ+fKNtW5VK5AVVK5v1WK-t3pc?!xCPe3 zM%VLrz*Ddno`HR^9}d7lI0T2` z2pogsa1u_z88{2);R3t>FT%_43cLod!<+CHyaVsT`|tsL1Rukv@ELpoU&7b$4SWaR z!;kP2`~tti@9+ow1%Jc8@E;U>UbqYjLlGzj#i1mWf-+DR%0mUH1eKvGRD&8&6KX>p zs0VS-02;#O&={IRGiU)VAs$*oTWALzpd)mKF3=6SLr>@heV{M&hXF7M2E$Mo1|wi3 zjD|5V4#vYom;_T`DolqNFbfjE1&NRhZb*eRm;-Ym12Q2C=7A4#U_LB>MX(sIfTeIH zEQhP$YPbfjh3nvYxB=F{jc^m(47b1r*a)}6ZE!o>0e8Y(a5vlo_riT}KRf^r!b9*d zJOYoxWAHdU0Z+nH@H9LF&%%Cq4i3Wea2SrlF*pGy;WV6qb8sFm!VB;cybQ0xYw!lV z32(zY@E*JmAHqlQ3498l!x!)sd=1~ickl!J2tUIw@EiONf5Knz5Bv)S4hsdL5EO=@ zPz*{yNhl3vpd6HkickrvKvk#?HJ}#MhPqG>>O%u)1eXgN3l%6>fd9>D!k?N#b7%pr zARgL4TWAj*pc8b4uFws7Ku_omeV`xohk-B%hQLr54kKU`jE1o=4ko}vm<&^38cc_o zFbigb3z8riQXmyPFbC2h1H6z0+2Dg*m=6nK5iEf#U>RHqE8r?v3D>|XxDHms4X_q& zgmrK;tcMM-32ueWa64>)J7Fu_4cp*e*beu@4tNlD!o#o&9);cTIP8HZVJ|!l``}qP z0MEf8cpi?xQ8*4K;1ryOvv3YBz(sfwUV>NPRd^lVfVbdnco*J-58y-i7(Ri|;B)vA zzJhPyTlgM+fS=%J_!WMGKj2UJ8~%a+puiE~GAIN^pePiF5>N_CLs=*X6`&$ihAL1E zszXhv1$Ce<#6f*%2#ugIG=XN&99lvvXbo+k9khpz&n>A+u;G& z0T01Wcm#IAW3U^ZfIaXO?1g7wAMA$%a1ai`VK@TE;5eLwQ*Z{(!g;s=FTjiNGQ0w> z!RzoQyan&TyYN1I03X4}@F{!-U%;2}HGBi#!T0bZ`~<(iukbtk0e`{Y@Gtxa1&<1s zL18EY#h^Hpgi=rj%0hXl0F|IJRE26#0}ihdj>0iG0Vm-!oPl$29xlQQ@DjWXufl8a z2D}Mx!#nUEybmA3NAL-J3ZKIl@D+Rw-@lKKC+G}ap&Rsop3ocmKtJdY17Q#hfuS%QM!+Z- z4P#*(On`|n8K%HAm<}^x7R&}0BtbHyKq`1(4x~c{cp(e2!3Vi89~QzQSOQnTGPn{} zz*Vpku7Oo>9jt~MU@hDT>)>Ws4;x?;+zOlFcGv=U!dAE&w!yuy9qxx6@F47jhhY~y z3cKNP*aJ_(UU(Yz!Lx7xo`Xa1JRE_ea2!s+DL4&h;T&9mi|``61h2rW@H)H!Z^7H} zF1!aHz=!ZLd;*`r=kO(b1>eB8@ICwhKf%xNEBpq3z@P9p`~&|%fn&mDPzZ`ZQ78^2 zpcIsbvQQ2xKt-qwRiGMFhni3e>OftHgZj`A8bM=d0?nW~w1igB8rncRXb&Bs6Lf*D z&>ea}FX#<@p&tx@fiM_`z%UpNBViPbfw3?iCcq?^3{znm%z&AY0J9+xlE4iqkOm%@ z3+a#vUYG~jkOR4}02abxSOQC787zkta5b!iYhe{!536Aftc9Ck9oz!zVIypU+h8-? z0bAfM*b4W+Hn;2fNXi|_)x1TVv@@EW`UZ^GN~4!j5N z!-wz@d;*`s=kNu51z*Fr@E!aBKf=%O3;YJZ!=LaM`~&|&ffGVOCc4pzeruoiBFb#ODRhYhd^ZiUToJ8XeF zVJqAX+u&Z<4)?|h;h28Kt?13j?FFXzV;8{2T&%q&h9*)3KI1VS^6r6^$ za1JiOMR*Zjf>+>Gcpct=x8QAf7v6&p;6wNrK7r5RbNCXzf^Xnk_#S?MpWtWs6@G(1 z;7|A){(=9Xz)9gUCFRCkuVCzz*ra$6JQcd zhN&=XSFU*5%$bno~01II;EPDxQyaKPm>+mML1@FMS@IHJ1AHm1) zDSQTBz?bkfd;{OX_wXb91i!$q@H_kgf5G4IFZ>4uPYIVnVJHH{pg5F-QcwoULV2hF zm7p?Ig=$a(YC>(O1N9&d8bCw192!GYXa+5yCB#E(XbbJ219XJW&;`0dcjyVdpbzwg z{xARr!C)8)!(arAgwZet#=&@)2$Nt6Ooiz%17<-2xF8Xd!40X926JF8WI!fl!94Im z4$OxIum~2z6|fYpgynD*Tn*R2wQwC=4>!OXxDjrGo8cDN02|>}xD9THJK#>Z3+{${ z;9j^7?uQ59L3jurhDYF0cnltgC*VnV3Z8~%;91xY&%r@>9uC7%I0h%+B%Fpba1PGH zMR);Tf|ub{cn#iwH{oq~2i}AC;Y0WcK7mi+bNB+jg0JCQ_zr%6AK_>C1%89y;ZOJr z{(*m?z-gf%6oSG~6pBF!C<&#Z43vZNP!TFY6{rf;p$61~+E5qjL49Zdjo@-<0!^Vg zw18F+4{e|=w1*DR2|7bp=mtHYC-jCs&=2~cS5ikly!&n#x6JR1thAA)& zro&8_1+&2gNstUFkP04{1L=?fUdV!M@IfxjhlQ{RmcSLT46cL~a22eCYhV>z2dm)* zSPM78I=C6u!v@#{x58$)9k#%ouodoxZE!Dahx=g%JP14CVb}$a!ftpR_P~>{7oLWF z@GKmF=im@L4@clA9ETHd3QogWI0qNtBD@GM!7K18ybf=`Tktl#3-7@P@F9E*pTKAE zIeZCU!8h2`~vJ!&I0CGhikpz-&l_Byd9tq=5(KLONuE7v@1WO z@Br+9hhQf>0=wWb*bPs>9(W4&!ZWZB_QL@<2#4S>9D!qS98SV1I0I+lJY0Ym;6->D zUV+!(b$Aorf_LCucppB1kKkkY6h4D5;7j-#zJc%Hd-xH4f?wcQ_#OU$zu<597yg5S zXNAk4Fcg7eP#j7^DJTPFp*&Q8N>CZ9LN%xXHK8`tfqD=J4WJ=h4vnEHG=mn<65^pX zw1sxi0Xjlw=mOoKJM@HJ&^7&2j;^9SOkmV3RntP!g9C@u7+#iTDT6bhZ|rG+z2

@GR_y z=ineb4~O9>9D@^Z5>CSzI0xt9BD?@E!OQR}yasQ;oA5Tg1Mk86@F9EzpTMW^IeY8oU@F)BQ|G>Xc;G9qp3PE8g3dNuVl!Vey2FgKss0fvy3RH#a zPy=c~ZKw8E!1*hRGoP!H+5nhCs;1zfk zUWYf}EqEK=h41-+p!^n(E~5C+2#7zV>(B#eSFFc!wc1egSqVJb|6888zPU^XN| z61X7+(!c|AAssTo3-cfwav&ELz(QCIOJFH1gXORSu7;IxEv$m;VKuCQwQv)xgIi!d zY=lj48*GL`4?G2X;ThNm`{4i_ghOx` zj=(WE4kzIhoPo1&9xlKO@FKhnufS{YI=l&Q!8`CSybmA1NANLx3ZKCj@Fjc=-@te9 zJ^Tni!7uPD{0@J>U+_2l3;#jE3&Lek7>YnKC=Ml|6qJFoP#!8kC8!Klp&HbHnot|+ zKs|_q2G9^LhsMwpnn4R_3GvVx+Cn?%03D$-bb)Tr9eP49=mUMBKMa6DFc^lyFc<+N zVKj_^aWEbx!X%giQ(-#HfLV|LE=YuAa6>Aj!5o+i8ITECFb{l?1M^`4EP};w1uTUt zVL4m{SHm@MEnElJ!ws+oZiJiQX1E15z(%+gZiCz54!9HUg1g}!xEJn&`{4n25FUbu z;SqQg9)ri>33w8of~Vmbcoz12y38&!;LO19EJ)t-Bfqu{*2Erg10z+XqjDS%v8pgsnm;e)DGE9MKFdb&XESL>0 zNP=WYfmHCo97u-@@In@3gAa0HJ}iVqumrAvWpE{|fU967Tm!4%I#>-iz*@Kw*1^rN z9yY)xxD__T?XU&zgspHlY=e7YJKPUD;6d0455q2a6n4Youm_%mz3?>bgJZfDhqg_yj(K&*4k>3ci7F z;d`jITBrdvp*GZkdJqQZJ;f*hYrvQIzw0J20frB^oBmr5BkGE7z9ILC=7=YFbYP)SQrNrU?NP0DKHJD z!%Ub3v%v*PkPIo13LcmP>5u_l$bxL}K`zXPg|G;gz!k6zu7nkE6|977U=>^ktKkM% z3pc_#xEa>N2G|6*!e+P~w!odR74C*@a4&3!`(Xz>2s`0n*aeTmZg?E_z>}~So`!w! zEF6I6;1E0yN8l(NhZArLPQzI^2N&QXya+GBEAT434sXC)@HV^)@4*M~A$$y z2`~vJ!&I0CGhikpz-&l_Byd9tq=5(KLONu^1Ri{v1e0MZOoJIP6B1xHBtjCnAqCRF z19KrAGQkV;ARBTZ7Z$)mSPV;GDJ+BKumY}zm2fSrg6m;5tbw&~6Rd+i4* zhC5&j+yz_V9@qx=!FG56cECfh6CQzG@EGidCtwde1$*Hc*a!RJ033uva2SrjF*pt< z;S`*Kvv3|RzzgsqybQ0vYw$X}32(tW@GiU$AHYZOF?4RxR%#6bgS z2$w@+XbR1s1+;{CXbo+l9dv+>&>6ZwH|P#Mp%?UlzR({Az#te5Ltz+g9!j-Tbu7a!K z8n_m&gX`f2SOYi0O>i^Z0vli>+zPkB?QjR&33tKWa1Y!I_rd+}06Yi}!Nc$fJPMD& z$bzP#tPOEvOB3p&rzS2G9sDhbGVznnMd{1@X`Z+CqEi0G*&SbcJrv z1A0Pl=mY(rKMaIHFa(Cea2NrjU^I+{aWDZU!ep2N(_lKxgjp~fT#y9GkOHaTfjN*4 z8Q_I1$Oa$e!hBc=i(m;{0n6Y@SOHhTO1K7A!F8}2Zh*CLBdmj)VLfbsO>ir0hTCBa z+zDIZZrBF*!gjbHcEE$M6CQ?L@F?tt$6*gV347sb*ay$T0eB7$!Siqgj>2&`0jJ{lg z`~iQ$-|!Fo2LuD8p=XBr~nnAGE{+TP#tPQEvN%^Ar9(8Ludqz zp$RmD=Fk#aL2GCO?Vvq$gig=}x0M;60U_+ za6PPsHLwR2FKwfoPslO7S6*3cmZC7m*Ew74PJ*g;VpOv-i7z!1NaC& zhEL%$_yWF!ui+c`4!(yU;V1Y7eudxR5BLlIhJWEdD7Zkl3<^ULCiC2OXdzbcQa_4Z1^5=mmYC zFZ722FbD?2P#6XyU?hx&F)$9s!$g<_Q(!7ghZ!&n62JwCkPL1}g*2E0b0GsVAq(b# z4{~5W{2vAP6g7qsgaI_RZM#Wh+qP}nwr$(CZQHh;G)|MI|9!bz?CT`;n?%_Tj;t`(U zDW2m6Ug0&~;vGKVBR=6XzTz8x;3t0JH~t_{&j5lTD1svdLLoH5A{-(hA|fLSq9HnB zA{OExF5)8r5+N~?A{kO3B~l{|(jpzwBLgxaGqNHZav&#iBMYy&_qX8PBF`A+oTA(FbqYc`jJvyQjx}Yn%qX&ASH~OL< z24EltV+e*}I7VU=#$YVQV*(~&GNxi0W?&{}V-DtFJ{DpTmS8ECV+B@WHP&JsHee$* zV+*!nJ9c6h_Fyme;{XofFplCFPT(X?;|$K>JTBrAuHY)J;|6ZwHtymc9^fG!;|ZSO zIbPxw-rz0X;{*P|Cw#$Ie8&&`i(mK;e-OA=06`E8!4VRn5C&lp9uW`;kr5Tq5Cbt0 z8*va1@sSXTkOWDQ94U|rsqq)m;%}r!Mr1-3WJPx5KrZA)UgSdo6hvVZK`|6ZNt8kv zltp<|KqXX0Ra8R_)I@F6K|Rz*Lo`AYG(~f?Kr6IHTeL$5bVO%#K{s?qPxL|`^hJLR zz#t69Pz=KejKpY+!8nY^L`=dIOvQA}z%0zhT+G7)EW~0g!7?nzO02>fti^h4z$R?Q zR&2wL0J^sN7_iAAlifX8Vny8IBsE7J!h(>6Frf7~9Xoc2ji+1RMj_8ao=!Wj-iC*Y~ zzUYqu7=*zXieVUmkr<6J7>Dtgh)I}&shEx#n1$Jxi+Napg;{DpM*8yS!hnUMwAkR3UZ3we+i`B4CcP#8r~3?)z! zrBMduP#zUg2~|)P)lmbrP#bko4-L=|jnM?n&>St%3T@C9?a=|9&>3CP4L#5kz0n8# z&>sUa2tzOw!!ZJ*FdAbq4ihjDlQ9L;FdZ{73v)0R^RWPnuoz3R3@fk_tFZ>_upS$+ z30trg+pzc0;NzI zWl;_lP!W|;1=Ua;HBk$7P#5*l0FBTXP0MjcJ<$t&&=>tN0D~|XLoo~^ zFcPCN2IDXu6EO)>Fcs4=1G6w2b1@GKun>!}1k11-E3pb|uommF0h{o&QvlBc=-O&p zz)87w&TwM0FdK6*4-2pmi?IaDupBF~3Tv#+fwuo+vi4Lh(CyRirRupb9;2uE-f z$8iFua2jWE4i|6{mvIHxa2+>s3wLlA_wfLa@EA|=3@`8!uki-&@E#xW4?g1yzTrE5 z;$Qs6e+YCXfWQcfUjSDh1iITcu0VRNQ@*%hU7?zR7iur zkPd$%12Q5rvLG9>BPVhp5Aq^E3ZM`QqbQ1@1WKYb%Ag#|qarGy3aX+yYM>Tsqb};9 z0UDw)nxGk)qa|9Q4cekTI-nCeqbs_h2YRA6`k){BV;}}$2!>)fMqm_1V=TsD0w!WI zreGSTVBFV=wmM01o0Xj^G%M z<0MYu49?;_F5nU_<0`J<25#au?%*Eo;~^g537+CPUf>m8<1OCd13uytKI1FC;Rk-= z7k=Xp0$mLt2!bLwLLd}EBP_xp0wN+Zq97WgBPL=Y4&ov{5+D&0BPo(01yUk4(jYC; zAw4o66EY(!vLOd@A~*6NAM&Fh3ZV#!qBu&R6iTBk%Ao=(qB5$W8mglvYM~D5qCOg+ z5gMZ@nxO?+qBYu}9onNKI-v`?qC0w^7kZ;F`e6VDVlaka7=~jcMqv!bVmu~b5+-9R zreOwVVm9Vr9_C{q7GVjNVmVe|6;@*{)?ouSVl%d28@6L7c3}_pVm}Vx5Dw!gj^PAO z;xx|S9M0n+F5wEU;yP~N7H;D%?%@F*;xV4!8J^=MUf~Vi;ypg#AAG_We8qSCz`yu~ z|L_NauLTeU!4MoF5ei`t7U2;Akq{YC5e+dA6R{Bo@em&gkqAkU6v>eSsgN3fAuaw! zdSpZwbU;URMi+ELcl1Or^g&#|fOm zX`ID5T);(K#uZ${b=<@)+`(Pk#{)dVV?4z(yueGm#v8oDdwj${_>3?3hVS@^fAJgt zA<*>z0wXAbAp}AqG{PVp!XqLgAqt`*I$|IeVk0i%ApsI1F_It|k|QNjAr1aQI{b|c z$cW6yf^5i+oXCYd$cy|afI=vYq9}$ED2dW2gK{X3il~GtsEX>Sfm*1Ix~PW+Xo$vW zf@WxrmS}}GXp8pffKKR)uIPpy=!xFwgMR3bff$4#7>eN-fl(NZu^5L5n25=kf@zqJ znV5w+n2Y&XfJIo0rC5d)Sc%nGgLPPsjo5@O*oy7gfnC^*z1W8XIEceIf@3(2lQ@Ml zIE(YRfJ?ZHtGI?6xQW}igL}A-hj@f1c#7wEfme8qw|IvS_=r#VjIa2HANYx1_>DgZ zbR&Qu2#VkcflvsIun30;h=|CDf@p}2n23cqh>Q40fJ8`)q)3JoNQu-)gS1G8^vHlr z$c(JWh8)O=+{lA`$d7_3gd!-4;wXVqD2=ixhYF~O%BX^BsE(Sbg*vE<`e=YgXpE+4 zh8Adv)@XxvXpfHQgf8fc?&yJD=#9SUhXELf!5D&J7>&Der%*p8jpg+17d{WyR_IEh7&l6(>Q~3 zIFF0Cge$m;>$rhixQ)BGhX;6w$9RHgc#fBNg*SMM_xON+@Cje=72oj#|Kb<^!yg2` z89)#OLvVydD1<>+ghvEKLS#fmG{itm#6}#%LwqDeA|ydlBu5IQLTdblwD=q8krA1Y z1zC|DIgksvkr(+;00mJPMNkaIQ4*z424ztm6;KJ4Q5Drt12s__bx;rW(GZQ$1WnN# zEzkz?CT`;n?%_Tj;t`(UDW2m6Ug0&~;vGKVBR=6XzTz8x;3t0JH~t{d?Er!x zD1svdLLoH5A{-(hA|fLSq9HnBA{OExF5)8r5+N~?A{kO3B~l{|(jpzwBLgxaGqNHZ zav&#iBMYy&_qX8PBF`A+oTA(Fb zqYc`jJvyQjx}Yn%qX&ASH~OL<24EltV+e*}I7VU=#$YVQV*(~&GNxi0W?&{}V-DtF zJ{DpTmS8ECV+B@WHP&JsHee$*V+*!nJ9c6h_Fyme;{XofFplCFPT(X?;|$K>JTBrA zuHY)J;|6ZwHtymc9^fG!;|ZSOIbPxw-rz0X;{*P|Cw#$Ie8&&`i(mK;e-QXi06`E8 z!4VRn5C&lp9uW`;kr5Tq5Cbt08*va1@sSXTkOWDQ94U|rsqq)m;%}r!Mr1-3WJPx5 zKrZA)UgSdo6hvVZK`|6ZNt8kvltp<|KqXX0Ra8R_)I@F6K|Rz*Lo`AYG(~f?Kr6IH zTeL$5bVO%#K{s?qPxL|`^hJLRz#t69Pz=KejKpY+!8nY^L`=dIOvQA}z%0zhT+G7) zEW~0g!7?nzO02>fti^h4z$R?QR&2u#?8I*D!9MKAK^(#n9K~^*z$u)@S)9WKT*PHu z!8KgRP29pA+{Jx7z#}}yQ#`{9yu@p~!8^RiNBo1&_=0cvj-U7!zwsXe-3=fxf+83~ zAS6N~48kEiA|eu^AS$9G24W#L;vyarAR!VX36dc>QX&=7;4h@Z-^hTB$c!w=hV00R zT*!mG$d3Xjgu*C_Vkm)uY=#4(;hyECdK^TIe7>*Gbh0z#`ahQOKn2afyhUu7zS(t;ln2!Zm zgvD5jWmtigSdBGUhxOQqP1u61*p408h27YTeK>%FIE*7WhT}MiQ#gaOIFAdsgv+>! zYq)`%xQ#owhx>SlM|gs#c#ao%h1YnCcldyh_=L~+if{OVpZJB}_=7R$RhUkciScrqTh>rwFgv3aSWJrOONR2c|i*!hj49JAc$ck*pft<*V zJjjRqD2PHRf}$vn5-5ezD2sBafQqP$DyW9)sEJyrgSx1X255xFXo_ZNftF~EHfV?T z=!j0}g0AR}9_WSM=!Q9BgRvNo37CY*n2Kqbfti?%Ihcp}ScpYf zf~8oF65QR|$#ZVk2Q3_>H7Ucs7$O5jQu7t{{ifX8Vny8IBsE7J!h(>6Frf7~9Xoc2j zi+1RMj_8ao=!Wj-iC*Y~zUYqu7=*zXieVUmkr<6J7>Dtgh)I}&shEx#n1$Jxi+Nap zg;{DpM*8yS!hnUMwAkR3UZ z3we+i`B4CcP#8r~3?)z!rBMduP#zUg2~|)P)lmbrP#bko4-L=|jnM?n&>St%3T@C9 z?a=|9&>3CP4L#5kz0n8#&>sUa2tzOw!!ZJ*FdAbq4ihjDlQ9L;FdZ{73v)0R^RWPn zuoz3R3@fk_tFZ>_upS$+30trg+pzc0;NzIWl;_lP!W|;1=Ua;HBk$7P#5*l0FBTXP03M4JFyFUuowGr0EciGM{x`%a1y6+2Ip`d7jX$!a23~a z1GjJ+cX1C7@DPvj1kdmsFYyX*@D}g!0sr6=zThjq;|Ko5FZ_o;2>d93AP9!w2#HV# zgRlsX2#AEph>B>4ftZMmIEaV%NQgv8f}}`}6i9{C_zP+AH_{^`G9e4HB0F**7jh#n z@}U3c7LN}&wOqC6^~5-OuAs-XsIqBiQF9_phZ8lefAqB&Zi6dZ7>cqCW;;5C&r?hG7IoVl>8J9L8fJCSeMuVmfAE7G`5E=3xOAVlkFr z8J1%uR$&d+Vm&rs6E7t-NxWI#q_Miyj4cH~4ZPUJ=&w z!YG1bD2|dSg)%6M@~D7HsEn$ph8n1e+NgtisE>wdgeGW;=4gRdXpOdLhYsk7&gg<} z=#HM~g+Azu{uqEk7>uD9h7lNv(HMhq7>|jVgejPc>6n38n2ouZhXq)O#aM!6SdNug zg*8}<_1J(-*o>{%h8@_6-PnVD*pGuagd;eL<2Zp+IE}M7hYPrf%eaDTxQ?5+g*&*5 z`*?syc#Nlbh8K8=*LZ_>c#n_x2cPi;-|!tj@h^VkKLmOfKwtz#FoZxzghm*ILwH0) zBt$_}L`Mw7LTtoEJS0FuBt{Y>Lvo}~Q4y6;1yxZUHBbw+Q5W^l01eR?P0$R@(GsoD25r$E9ncA#(G}g$ z13l3jeb5j6F%W|=1Vb?#BQOf1F&5)60TVG9Q!owFF%z>e2XiqW3$O@_u@uX&0xPi^ zYp@RMu@RfF1zWKlJFpA8u^0Pr00(gxM{o?saT2F+24`^|7jOxeaTV8a12=IScW@8) z@eq&j1W)lCFYpSl@fPp!0Uz-RpYavn@B=^b3%~IPfu08t1VIrTArK0o5fu3Z+pNg4(-tqozMkc(H%X| z3%$`7{V)InF&INI48t)Jqc8?zF&+~z36n7u(=Y=wF&lF*5A(4Qi?9Ssu^cO~3ahae z>#zYEu^C&i4coC3yRZj)u^$I;2#0YL$8Z8CaT;fE4(D+ZfyM_A1VIrTArK0o5fu3Z+pNg4(-tqozMkc z(H%X|3%$`7{V)InF&INI48t)Jqc8?zF&+~z36n7u(=Y=wF&lF*5A(4Qi?9Ssu^cO~ z3ahae>#zYEu^C&i4coC3yRZj)u^$I;2#0YL$8Z8CaT;fE4(D+Zmv9AFaUC~s3%79> z_wWD@@fc6=4A1crukZ$M@g5)W4?f`wzT!K6;9va0fB1vI69Nc=U$jI7*@v%AhRDqXH_SGOD5)YM>@+qYmn!J{qDCnxH9~qXk-_HQJ&bI-nyuqYJvB zJ9?rQ`k*iRV*mzWFot3nMqngHV+_V&JSJiireG?jV+LknHs)d;7GNP3V+odFIaXp7 z)?h8xV*@r}Gqz$Ic3>xVV-NOWKMvv$j^HSc;{;COG|u82F5n_A;|i|fI&R_??%*!& z;{hJwF`nWXUf?BO;|<=SqsXVu=z?zOj-Kd+KIn`77=S?-jG-8Y5g3Wl7=v*bkBOLs zDVU1sn1NZCjk%bI1z3p1Sb}9(j+I!2HCT)F*nmygjIG#)9oUK8*n@r8kApabBRGoV zIDu0*jk7q13%H2OxPoiAj+?lJJGhJccz{RP-7A2-*oOl+h{HI7V>phJIE6Dfi}SdE zOSp`yxP}|JiQBk?d$^B>c!Vc-isyKNS9p!Lc!v-8h)?*8ulR-^_=#WmjXwy~JAfbv zir@%=Pza5%2!{xWh{%Y7Xo!xOh=n+ai}*-@L`aOJNQM+hiPT7gv`B~a$bd}9jI79p z9LR~>$b)>ykAf(KA}EUDD1lNajj||*3aE(6sDf&!j+&^2I;e~KXn;m&jHYOY7HEmq zXoGfWkB;bsF6fHx=z(77jlSrI0T_tE7=mFKj*%FJF&K;S0R(KsO;At5WK6|0%)m^{ z#vIJUd@RHwEWuJN#|o^%YOKXNY`{ir#ujYDcI?D1?7?2_#{nF|VI0LVoWMz(#u=Q$ zd0fOLT)|ab#|_-VZQR8@JitRd#uGflbG*bWyun+%#|Qj_Pxykb_>Ld=7r*cy{vdFl z0D>SGf+HkCAq>JIJR%?xA|ooIAqHY1HsT;2;v*pvAqkQqIZ_}MQsXbA#otJejL3v6 z$cpU9fn3OqyvT2TD2wu_fJ&&0s;GtK)Xo}`& zfmUdZwrGbA=!nkff^O)Jp6G=>0d#G3DPW=#p?Jk)cMaEZ6Sr^&cX1yN@Cc9b6wmMi zFYy|0@DA_s5&z&bzTg|a<0t;bZ~TWqF9HaRpa_N#2#L@LgK!9sh=_zJh>GZlfmn!* zxQK@YNQlHpf@DaJlt_g%_zUUqH!>h2G9wGJAvp)iV~7)qcdN}~+Q zp*$+05~`pos-p&Kp*HHG9vYw_8lwrCp*dQj722RJ+M@$Hp)6wcr*&f@|u;WDn`8gAewZsQK_;XWSX5uV^Fp5p~x z;Wggk9X{YAKH)RI;v0V8Cw}2K{vgoH0D>SWf+GY%AvD4w93mhhA|nc-Av$6r7UCc- z;v)ePAu*C78B!o6QX>u0A|28r12Q2qvLYLDASZGo5Aq>D3Zf8-peTx?1WKVa%Ay=9 zpdu=x3aX(xYN8hEpf2j80UDt(nxYw6pe0(P4cehSI-(Q0pewqg2YR75`l25OU?2u# z2!>%eMq(7kU@XRC0w!THreYdqU?yf`4(4G#7Ge>WU@4Yk1y*4-)?yttU?VnT3$|f9 zc48OyU@!LL01n|Wj^Y?j;3Q7t49?*^F5(id;3}@;25#Xt?&2OE;2|F437+9OUg8zr z;4R+c1OCA$e8E?I#}E9AU-%Dy5cpL9K@beV5fY&g24N8%5fBNH5f#x812GXBaS#vj zkr0WH1WAz`DUb@O@fXtKZ=^>?WI`5XMRw#sF62gDMSl#yAPmM( z48sVF#AuAcIE=?cOu`gQ#dLi1KJf{k@fF|j13&Q#zwrlwgjfebPy|N^ghFV9ML0x2 zL_|guL_>7ML@dNXT*OBLBtl{&MKYv7N~A^_q(wTUM+Rg_upS$+30trg+pzc0;NzIWl;_lP!W|;1=Ua;HBk$7P#5*l z0FBTXP03M4JFyFUuowGr0EciGM{x`% za1y6+2Ip`d7jX$!a23~a1GjJ+cX1C7@DPvj1kdmsFYyX*@D}g!0sr6=zThjq;|Ko5 zFZ_o;2>d31AP9!w2#HV#gRlsX2#AEph>B>4ftZMmIEaV%NQgv8f}}`}6i9{C_zP+A zH_{^`G9e4HB0F**7jh#n@}U3c7LN}&wOqC6^~5-OuAs-XsIqBiQF9_phZ z8lefAqB&Zi6dZ7>cqCW;;5C&r?hG7IoVl>8J9L8fJCSeMu zVmfAE7G`5E=3xOAVlkFr8J1%uR$&d+Vm&rs6E7t-Nx zWI#q_Miyj4cH~4ZPUJ=&w!YG1bD2|dSg)%6M@~D7HsEn$ph8n1e+NgtisE>wdgeGW; z=4gRdXpOdLhYsk7&gg<}=#HM~g+Azu{uqEk7>uD9h7lNv(HMhq7>|jVgejPc>6n38 zn2ouZhXq)O#aM!6SdNugg*8}<_1J(-*o>{%h8@_6-PnVD*pGuagd;eL<2Zp+IE}M7 zhYPrf%eaDTxQ?5+g*&*5`*?syc#Nlbh8K8=*LZ_>c#n_x2cPi;-|!tj@h^VkKLq*^ zKwtz#FoZxzghm*ILwH0)Bt$_}L`Mw7LTtoEJS0FuBt{Y>Lvo}~Q4y6;1yxZUHBbw+Q5W^l01eR?P0$R@ z(GsoD25r$E9ncA#(G}g$13l3jeb5j6F%W|=1Vb?#BQOf1F&5)60TVG9Q!owFF%z>e z2XiqW3$O@_u@uX&0xPi^Yp@RMu@RfF1zWKlJFpA8u^0Pr00(gxM{o?saT2F+24`^| z7jOxeaTV8a12=IScW@8)@eq&j1W)lCFYpSl@fPp!0Uz-RpYavn@B=^b3%~IPfj$Nh z1VIrTArK0o5fu3Z+pNg4(-tqozMkc(H%X|3%$`7{V)InF&INI48t)Jqc8?zF&+~z36n7u(=Y=wF&lF* z5A(4Qi?9Ssu^cO~3ahae>#zYEu^C&i4coC3yRZj)u^$I;2#0YL$8Z8CaT;fE4(D+Z zmv9AFaUC~s3%79>_wWD@@fc6=4A1crukZ$M@g5)W4?f`wzT!K6;9va0fB1vI{{#>O z!4MoF5ei`t7U2;Akq{YC5e+dA6R{Bo@em&gkqAkU6v>eSsgN3fAuaw!dSpZw< zYqUi>bU;URMi+ELcl1Or^g&#|fOmX`ID5T);(K z#uZ${b=<@)+`(Pk#{)dVV?4z(yueGm#v8oDdwj${_>3?3hVS@^fAJgtA<(A)0wXAb zAp}AqG{PVp!XqLgAqt`*I$|IeVk0i%ApsI1F_It|k|QNjAr1aQI{b|c$cW6yf^5i+ zoXCYd$cy|afI=vYq9}$ED2dW2gK{X3il~GtsEX>Sfm*1Ix~PW+Xo$vWf@WxrmS}}G zXp8pffKKR)uIPpy=!xFwgMR3bff$4#7>eN-fl(NZu^5L5n25=kf@zqJnV5w+n2Y&X zfJIo0rC5d)Sc%nGgLPPsjo5@O*oy7gfnC^*z1W8XIEceIf@3(2lQ@MlIE(YRfJ?ZH ztGI?6xQW}igL}A-hj@f1c#7wEfme8qw|IvS_=r#VjIa2HANYx1_>DgZ^f`ba2#Vkc zflvsIun30;h=|CDf@p}2n23cqh>Q40fJ8`)q)3JoNQu-)gS1G8^vHlr$c(JWh8)O= z+{lA`$d7_3gd!-4;wXVqD2=ixhYF~O%BX^BsE(Sbg*vE<`e=YgXpE+4h8Adv)@Xxv zXpfHQgf8fc?&yJD=#9SUhXELf!5D&J7>&Der%*p8jpg+17d{WyR_IEh7&l6(>Q~3IFF0Cge$m; z>$rhixQ)BGhX;6w$9RHgc#fBNg*SMM_xON+@Cje=72oj#|Kb<^!yg3x5+ghvEKLS#fmG{itm#6}#%LwqDeA|ydlBu5IQLTdblwD=q8krA1Y1zC|DIgksv zkr(+;00mJPMNkaIQ4*z424ztm6;KJ4Q5Drt12s__bx;rW(GZQ$1WnN#EzkLwhGIBIU=&7UEXH91CSo$CU>c@lCT3v{=3+h; zU=bE$DVAXcR$?{QU>(+DBQ{|RwqiSWU>9~{FZSU84&pG5;24hMBu?QB&f+{S;1Vw5 zDz4!MZsIoX;2!SdAs*ogp5i%P;1youE#Bb+KH?KT<14=52Y%uge&Y`UeG4E6f+9FV zAQVC)EW#lIA|f)PAR3}0CSoBD;vzm0AQ2KHDUu-tQX)0dAT81%Ju)B@G9xRpAqR3I zH}W7K@}nRMp$LkiI7*-tN~0{wp#mzRGOC~&s-q@qp$_VzJ{q7A8lx$ip#@r^HQJyZ z+M^>np$odAJ9?lOdZRD;VE_hVFos|lhGQf~VGPD%JSJcgCSxk5VFqSmHs)X+=3^li zVF{LEIaXj5R%0#JVFNZ|GqzwGwqqxDVGs6VKMvp!4&x|};RH_NG|u20&f_93;R>$e zI&R<=ZsRWQ;Q=1vF`nQVp5rB6;SJv6JwD(ce8Lxe#drL`zxaj!@CSjv2M`3o5F8;9 z3Skfy;Sm9m5E)Ss4KWZCu@MLH5FZJV2uY9>$&mu7kQ#p>E&fJ&WJD%pK~`i(4&*{^ zvXC|2eqhsG#fpe*Cy_;lc$A7cN-1 z@CFMPE?l^9;lhOr7cN}5aN)v*H@v}uZ@6IL!UYQ!-eBRx8!Vi7gM|}suyEoH7EZju z!ihInIPr!H7v5mO!u8|v`~2}Z&-42GectDDUgv$DIDqe>7Ik|MLYfxCvXx!KqtEJKDzPGIE^#-A$rk=57Cc*#W|eEk1&WKe2iiI zJ1*i9evDC!;Zuy`KXC-YlG_$j``EdB>`n8(*x!2jVJEcxq2eg=V9idzwcpTlifj-N*eLU9Me@Qb(;EAdN+ zKqT%)6n+KwU^Tvl7{uZ}#NpR)Ki1;ck$`o05Q+FrJcJGSEhJ+j9zhCz2ajSieiv!j zg2$1L-^UZ!hCe_iw&N*e;g9e%cH)nbgI#zQx%f7o!ybGG`6$2(D8&E6i`a`lLkUXp zGRp85cm@0Mm#9D`UPBfB8n5F3zKdGa;Z4-zZ*d5R@jW!632&nre~+U$hVP>lZFm>$ z_(z<;N&Env=)(Kx#y{gU&ftgWMISyyKmHZxa2`LxAcpWUhVk#Xh)eh}Mlps@F^>Pl z6sje1RMIDP}N>uP}%I#n-rrKPgxw7rXHs^6(uzj{^KD3Q>d?QH(#s zODM&kqYV4-3d-@9comiSD^#HxucHRv#T%%@-=H1`aR?3g9^OI|{tnGJf}?1`_wf$e z@DFImahyO0et`GTg?~afPT@3q@I!onKKu*%aTez=fFI!_4B_7}j0?Dk5&RgRU=06( zaa_g~OyDQ@4A<~qn8I~@foc2{Ut$*jgE`FOYb@aZ@UlLNefSHMV?SO+1^x=Jp&EaU z8XUkIsKwvlO&rAEq5+5T78>z)cpFFX_h`W}yn|N!1K!1P{3AMW67QiC|AhB(3jd5A zoWTd^#lPS~oW;Ll0O#=$2JvtB7#HyG7{Micf>HbjKE-AHCnj(epJ5XJh0k#v|BY$f zz?Yc8|KKakomkJ}N7UqBdE;7)|&mv9#%@ym$9 zD%^u;d<*v?7Qc!(tik<=$FJi7tix|05$o{~lJHx27#s21NWmsNid6hA9>W&=9@4QD zPap$-fG4pXe~2vXz|+XaALAM9!k-`)yYU?I@Etsl0{kfoQG^#!j6cImD8-+n4Eyj3 z%JG+Y6_xlaRG}KLqXyr_8>qwIpdJTt2o3li-a-@p4$U}%qiDhR@ebPX4`|16oInSD zfcMaae?m7-;WT>iLwtZf{0sVV7UwX4AK@bm;omTf3%H08{1~5L4F7>~T*ehl;3xPD z*YIDM!gYLsY5WvlVix~{In3j0Ea3m}4VL`*B0qybEXAz|!q4G0EXU6y1fjSCVfaPd ziIw;zL?9A(BMQHQd$1bcLJVSYAL8(9xF2ir>qx*lJcva6CLY2D{1%e25sx4Rzk^4y z8NZ7(Y{BD5$M53_Y{MTQ6Wj3=vhYWE8awgF$iXf=i(Gsg&tVU~gM1X=1r*}{;YIAl zpP>Y$co}8*3%r8;_)Aov60e~Oe~s610N+I|>hLD&@wYgH!}uN=(S*0rjK9ZG9K-j~ ziZ;B9cKjnw;3R&4PITdYbmO0K8fWlB^r8aea}ZZ~ynArM2IlHu>oyFMRvU|9=wm?OCHa%wqvJ5iq~V5(Hu? zg0Kw1SdI{cA`B}Kj+KZ&B%-hi(O8Wb#3BxB5RbJ;z&a#iJ(92i$=HY#Y(gqFBMn=S zj;+YRHe_Nuvakc$*ohqMLN0bA4||Z00u-VM#n_7yl%fp#P>%hmKqabBjT#(4E$UE@ zgJ{5EG@=R3ID!@&Lo3?Qj^pUSNpzwM-8h9FoIx-8(2uhiz9<+8+q7+d=#J%MJUEzl%N!4*oSiLM+GWTg=*B`0BTW(dK^Rp4x9<+8+q7+d=#J%MJUEzl%N!4*oSiL zM+GWTg=*B`0BTW(dK^Rp4xn8YmMNWeNI zVm*?u0m;~i6l_8&HX{vNkdCd$z&2!JJF>6?+1QC3>_RSfBM*C!j{+2;2*uco5|pA0 z`%sSks6ZvEP>mWKKrQM}kArByVKkx%%{YP<978MG(2nEiz)5tX3*9({9-Kih`p}QF z7{GZ9VhF>yfDv56D8?|3%b37bOyU}*a2?aQff>wV4)a*RO$7YkB1;g6r3k_@1YGY2>_a*BqXLzvLN#h|0JW$?Jr1G)htY^8 zG~)GY2>_a*BqXLzvLN#h|0JW$?Jr1G)htY^8G~)RwD+nh{GDhV=WS}4vAQgBy2!3HX;R^kc!Pn!xp4t zD>ASRnb?jj>_9elA_u#Wi`~e>9^|6{g(yNX_M!x(D8oLKV?QcTi7Hg11_w}!I@IGJ z8gLkmXhJiNpasX!iZ-<4I680=o#;Y0PN4^9(2G9w<17Yn9)lRdFfL#OmoSPkjN>vU za21odhACXfG;Ux9vzWs?7H|^*OBPvzKrBTNmLV9+5rR;JVFkjm5)p_*6jmV`s}X}( z#9tOBlr%#&H=FxQa9L=JW#7rT*%J;+A^3Q>e&>_rJmQHFge$9`0x5>=>14Gy3d zb*RTdG~h5A(S&9kK?{zd6>Vt8adhA$I?;u0oI(%Ipcj4U$5{;EJO(j@VO+onE@2d7 z7{_Hy;3_6@4O6&|Y23gJW-*6(EZ`;rZdqgr09L=JW#7rT*% zJ;+A^3Q>e&>_rJmQHFge$9`0x5>=>14Gy3db*RTdG~h5A(S&9kK?{zd6>Vt8adhA$ zI?;u0oI(%Ipcj4U$5{;EJO(j@VO+onE@2d77{_Hy;3_6@4O6&|Y23gJW-*6(EZ`;r z0vB0=KrBTNmLV9+5rR;JVFkjm5)p_*6jmV`s}X}(#9t zOBlr%#&H=FxQaquma&&i3mg@ z3ab!})rdhX;;;tsSc?R#Ln78A2^)}%jYz>Jq+&DDum$PZiVSQ+CblCBJCKc?$iXh; zVmI=z2l*&KA&O9py(mE`%CHaR*pCWSq6*ch!2#5w4)r*Q1{_8sn$V0RXu&bGq7Cgh zjt-neC%Vv$Q|Q4N^r8>_IEw+C#~_98iy&n~hAfmn(lEJHAsBLtxc!wQ6BB_a@sD6B#>RwD+nh{GDhV=WS}4vAQgBy2!3 zHX;R^kc!Pn!xp4tD>ASRnb?jj>_9elA_u#Wi`~e>9^|6{g(yNX_M!x(D8oLKV?QcT zi7Hg11_w}!I@IGJ8gLkmXhJiNpasX!iZ-<4I680=o#;Y0PN4^9(2G9w<17Yn9)lRd zFfL#OmoSPkjN>vUa21odhACXfG;Ux9vzWs?7H|^*w=S{-fmn(lEJHAsBLtxc!wQ6B zB_a@sD6B#>RwD+nh{GDhV=WS}4vAQgBy2!3HX;R^kc!Pn!xp4tD>ASRnb?jj>_9el zA_u#Wi`~e>9^|6{g(yNX_M!x(D8oLKV?QcTi7Hg11_w}!I@IGJ8gLkmXhJiNpasX! ziZ-<4I680=o#;Y0PN4^9(2G9w<17Yn9)lRdFfL#OmoSPkjN>vUa21odhACXfG;Ux9 zvzWs?7H|^*L5nOwAeJHs%Mgs^2tg>quma&&i3mg@3ab!})rdhX;;;tsSc?R#Ln78A z2^)}%jYz>Jq+&DDum$PZiVSQ+CblCBJCKc?$iXh;VmI=z2l*&KA&O9py(mE`%CHaR z*pCWSq6*ch!2#4RvREEbC)eX38gLkmXhJiNpasX!iZ-<4I680=o#;Y0PN4^9(2G9w z<17Yn9)lRdFfL#OmoSPkjN>vUa21odhACXfG;Ux9vzWs?7H|^*%NALJKrBTNmLV9+ z5rR;JVFkjm5)p_*6jmV`s}X}(#9tOBlr%#&H=FxQa9L=JW#7rT*%J;+A^3Q>e& z>_rJmQHFge$9`0x5>=>14Gy3db*RTdG~h5A(S&9kK?{zd6>Vt8adhA$I?;u0oI(%I zpcj4U$5{;EJO(j@VO+onE@2d77{_Hy;3_6@4O6&|Y23gJW-*6(EZ`;rZd+st09L=JW#7rT*%J;+A^3Q>e&>_rJmQHFge$9`0x5>=>14Gy3db*RTd zG~h5A(S&9kK?{zd6>Vt8adhA$I?;u0oI(%Ipcj4U$5{;EJO(j@VO+onE@2d77{_Hy z;3_6@4O6&|Y23gJW-*6(EZ`;rf)`nWKrBTNmLV9+5rR;JVFkjm5)p_*6jmV`s}X}( z#9tOBlr%#&H=FxQaquma&&i3mg@3ab!})rdhX;;;tsSc?R#Ln78A2^)}%jYz>Jq+&DD zum$PZiVSQ+CblCBJCKc?$iXh;VmI=z2l*&KA&O9py(mE`%CHaR*pCWSq6*ch!2#5w z4)r*Q1{_8sn$V0RXu&bGq7Cghjt-neC%Vv$Q|Q4N^r8>_IEw+C#~_98iy&o8nBfmn(lEJHAsBLtxc!wQ6BB_a@sD6B#> zRwD+nh{GDhV=WS}4vAQgBy2!3HX;R^kc!Pn!xp4tD>ASRnb?jj>_9elA_u#Wi`~e> z9^|6{g(yNX_M!x(D8oLKV?QcTi7Hg11_w}!I@IGJ8gLkmXhJiNpasX!iZ-<4I680= zo#;Y0PN4^9(2G9w<17Yn9)lRdFfL#OmoSPkjN>vUa21odhACXfG;Ux9vzWs?7H|^* zw=c2;fmn(lEJHAsBLtxc!wQ6BB_a@sD6B#>RwD+nh{GDhV=WS}4vAQgBy2!3HX;R^ zkc!Pn!xp4tD>ASRnb?jj>_9elA_u#Wi`~e>9^|6{g(yNX_M!x(D8oLKV?QcTi7Hg1 z1_w}!I@IGJ8gLkmXhJiNpasX!iZ-<4I680=o#;Y0PN4^9(2G9w<17Yn9)lRdFfL#O zmoSPkjN>vUa21odhACXfG;Ux9vzWs?7H|^*A&V?QAeJHs%Mgs^2tg>quma&&i3mg@ z3ab!})rdhX;;;tsSc?R#Ln78A2^)}%jYz>Jq+&DDum$PZiVSQ+CblCBJCKc?$iXh; zVmI=z2l*&KA&O9py(mE`%CHaR*pCWSq6*ch!2#5w4)r*Q1{_8sn$V0RXu&bGq7Cgh zjt-neC%Vv$Q|Q4N^r8>_IEw+C#~_98hH=psuHh@}X^G6Z8eLJ*2DtUx$cA_9?!!YV{#HDVBpIIKZD)*=Dxkcjn2!UiN` zBT}#lso0D(Y(YAquma&& zi3mg@3ab!})rdhX;;;tsSc?R#Ln78A2^)}%jYz>Jq+&DDum$PZiVSQ+CblCBJCKc? z$iXh;VmI=z2l*&KA&O9py(mE`%CHaR*pCWSq6*ch!2#5w4)r*Q1{_8sn$V0RXu&bG zq7Cghjt-neC%Vv$Q|Q4N^r8>_IEw+C#~_98iy9g8eMAeJHs%Mgs^2tg>quma&&i3mg@3ab!})rdhX;;;tsSc?R#Ln78A z2^)}%jYz>Jq+&DDum$PZiVSQ+CblCBJCKc?$iXh;VmI=z2l*&KA&O9py(mE`%CHaR z*pCWSq6*ch!2#5w4)r*Q1{_8sn$V0RXu&bGq7Cghjt-neC%Vv$Q|Q4N^r8>_IEw+C z#~_98hH*dj|1h@}X^G6Z8eLJ*2D ztUx$cA_9?!!YV{#HDVBpIIKZD)*=Dxkcjn2!UiN`BT}#lso0D(Y(YAV&RBT2Xwjdo_k%4W<#CBw12ePpfIoO3<>_#5;ARh%NL=lRy7bPe~ z8TO$Z`%!^PRG}I*IDlHzp&kd(fWv4+6Pj@ZEjWf&w4oix(SeibL>Ibo3OzW3Ui6_K zXEA{D7{m~UaRDQ^gi(xP9G5YHtC++!OyN4FaRW1$#T@3bfSU;T#YL7N5K9q+WeCP{ zgdh}QSb=b?LMx_-JEQH5&M-~eh-hk6`D0}i7R zO=!juwBQ(8(S~*$M+Z)#6J6-WDfHkBdeMh|oW%gnV-Q0a#s!Sv5=JqGaa_g(u3{3` zFoo-w#tqD17IT=#0&XJU&PA3W5K9q+WeCP{gdh}QSb=b?LMx_-JEQH5&M-~eh-hk6`D0}i7RO=!juwBQ(8(S~*$M+Z)#6J6-WDfHkB zdeMh|oW%gnV-Q0a#s!Sv5=JqGaa_g(u3{3`Foo-w#tqD17IT=#0&XH8e32yx#8L!d z8G^AKAqYhnRv;WJ5rIfVVHKjW8Zn4P9M&KnYmuJq+&DD zum$PZiVSQ+CblCBJCKc?$iXh;VmI=z2l*&KA&O9py(mE`%CHaR*pCWSq6*ch!2#5w z4)r*Q1{_8sn$V0RXu&bGq7Cghjt-neC%Vv$Q|Q4N^r8>_IEw+C#~_98iy%0-qS5K9q+WeCP{gdh}QSb=b?LMx_-JEQH5&M-~eh-hk6`D0}i7RO=!juwBQ(8(S~*$M+Z)# z6J6-WDfHkBdeMh|oW%gnV-Q0a#s!Sv5=JqGaa_g(u3{3`Foo-w#tqD17IT=#0&XJU zmlj!qKrBTNmLV9+5rR;JVFkjm5)p_*6jmV`s}X}(#9t zOBlr%#&H=FxQatOBlr%#&H=FxQa zMx_-JE zQH5&M-~eh-hk6`D0}i7RO=!juwBQ(8(S~*$M+Z)#6J6-WDfHkBdeMh|oW%gnV-Q0a z#s!Sv5=JqGaa_g(u3{3`Foo-w#tqD17IT=#0&XH8a*-tn#8L!d8G^AKAqYhnRv;WJ z5rIfVVHKjW8Zn4P9M&KnYmtC;NW^+1VFQw}5h>V&RBT2Xwjdo_k%4W<#CBw12ePpf zIoO3<>_#5;ARh%NL=lRy7bPe~8TO$Z`%!^PRG}I*IDlHzp&kd(fWv4+6Pj@ZEjWf& zw4oix(SeibL>Ibo3OzW3Ui6_KXEA{D7{m~UaRDQ^gi(xP9G5YHtC++!OyN4FaRW1$ z#T@3bfSU;TMx_-JEQH5&M-~eh-hk6`D0}i7RO=!juwBQ(8(S~*$M+Z)#6J6-WDfHkBdeMh|oW%gn zV-Q0a#s!Sv5=JqGaa_g(u3{3`Foo-w#tqD17IT=#0&XJU?nRa$5K9q+WeCP{gdh}Q zSb=b?LMx_-JEQH5&M-~eh-hk6`D0}i7RO=!ju zwBQ(8(S~*$M+Z)#6J6-WDfHkBdeMh|oW%gnV-Q0a#s!Sv5=JqGaa_g(u3{3`Foo-w z#tqD17IT=#0&XH8YLO)f#8L!d8G^AKAqYhnRv;WJ5rIfVVHKjW8Zn4P9M&KnYmtC; zNW^+1VFQw}5h>V&RBT2Xwjdo_k%4W<#CBw12ePpfIoO3<>_#5;ARh%NL=lRy7Y#2j z)+d%qW!Q&u>_-JEQH5&M-~ir0E#5>u4xs^Wp%HJR8As8AchHJ=(T)@7z4L z^xy;Z;zRV~90u?a2Jtb5aSQ|3fiT>OaNLCm+>I#QgJ|4~7~F?A+>dxXfCM~JdSicfebu}Ogx1wJdJETgB(1ITs((7Jdb?5fI_^8V!VVByo@ruf^xiy3cQ9Y zyp9^Yfm*zYdK^Ln-a;eZMl+701@E90@1h+i(1G{RiTBZs)9Aqm=*5TV$2kn(BMjnW z4C5k3@CiooDaLUH6Zj01_#9LC0@L^sGx!Q~_!fgGj_fNW#NN#v@30!5gT>o2bVjG~g{X z;%zkJC|d9iTJbL0aRME951n`)-8hXNe1Kkjh<=>I06xMXKE^OEVg#RH6rW-oS1^Ik zFp1AGg)cCTFEN9!Fo&p}BLsIK40j?NcOe3IBMSE*8uuaw z_aP4VBOVVR0S_V(4k%1&<;Xk0A|@BOOm515Y9oPaz9WBOA{k2hSoG&mj-b zBOfoI5HF$_FQEi4qYSU09Iv7Rub~RBqXuuF7H^^+htPnx(1^FujH775J7~qbXvYb3 z;5~HWeRShAdhh{y@ge$g4g>fIgZLQ3xQG#af>C^maa_R!KEotF#}vN6G`_?PzQP>7 z#sa=UK=dNFAP~1A2)7{^w<831APjdR9CslCcOwe-AR6}~2KONj_ahz;AOQ~|5f32= z4p}BLsIK40j?NcOe3IBMSE*8uuaw_aP4VBOVVR0S_V(4k%1&<;Xk0A|@ zBOOm515Y9oPaz9WBOA{k2hSoG&mj-bBOfoI5HF$_FQEi4qYSU09Iv7Rub~RBqXuuF z7H^^+htPnx(1^FujH775J7~qbXvYb3;5~HWeRShAdhh{y@ge$g4g>fIgZLQ3xQG#a zf>C^maa_R!KEotF#}vN6G`_?PzQP>7#sa=Uz_%8;1%bE~LAVXUxE&$517Wxm;kXMC zxEoQp2hq3}F}M$LxF7L&010>yiFgP}co@le1SxnFsdx-&cpT|?0vUJ`nRp6WcpBMw z203^Zxp)qFcpmw90fl%G#drxNco}7Q1?6}Z6?hF*cpWu(1GRV)^*DqEyoE-*jbEnM;OG%7{*16;1i7EQ;g#ZCh!?1@j0gO z1*Y*OX7Cl}@HH0j4Fc|6)n5p}BLsIK40j?NcOe3IBMSE*8uuaw_aP4VBOVVR0S_V(4k%1&<;Xk0A|@BOOm515Y9oPaz9WBOA{k2hSoG&mj-bBOfoI5HF$_FQEi4qYSU0 z9Iv7Rub~RBqXuuF7H^^+htPnx(1^FujH775J7~qbXvYb3;5~HWeRShAdhh{y@ge$g z4g>fIgZLQ3xQG#af>C^maa_R!KEotF#}vN6G`_?PzQP>7#sa=UKThyJ*J=bl^R7;(c`EGdhsFpaSj9c2!r?-!?=hMe1cJY zig8@Q1U|zgKF1Wkz%;(Z48Fn~zQzK+LBOvrati`+D}rzvf^j=Sa0kM0C&FX;&4CW@cq95llfR8YUk1>pk7{MnP#itm@6-?kWOyYA);R{UT zOU&Ra%;9S+;2Q+ox5zCB#H|RzZ3xEg2*Di)!<`7nU5LQlh{8RH#=VHaeTc*Th{pp+ zz=KG{LrB8INX8>b!J|mUV@Si}NXHY%z>~;8$i`{gn;hv`{JHkxr1EqDj5co*$BfeyTfPP~t9 zoJJ2mKrcQ-Kh9wQA7Kz5V;C1Pf=@7tPce=wn80V4#OIj87nsJEn88<=!`E2AHwcJZ z)n5b!J|mUV@Si}NXHY%z>~;8$i_3s!L!K4bI8MoZpVD-1r*{%6yqh7;ANEI6_n#uRNysK;dRvD4b{JHkxr1EqDj5co*$BfeyTfPP~t9oJJ2mKrcQ-Kh9wQA7Kz5V;C1Pf=@7tPce=w zn80V4#OIj87nsJEn88<=!`E2AHwgH(MQ%YLZbcAoLojYf2<|`_?nF55LImzc6z)MZ z?nMmlLmci$JRU#-9z-G@LJ}TEG9Ez+9z`l1LmD1OI-WoVod+5ab=*DUE-~;sHL-gYu2JjIE@iB&R5hM5nqxcl#xPl3MhDm&mDSUxxe2E!+ zg*kkU1$={m`xm(dfw&bxxDCO$9U-^_VYn0FxC;@u8&S9i(YO~exDRo-AMtnq33w2R zcnC>&7|D19DR>mAcnoQH9O-xh8F&(zcnVo~8rgUTId~Sicn*1Z9{G3yg?JIgcnKwV z8D)3{<#-hpcnwu}9W{6ZwRjWtID`hgg+{!MW*kKe-a#wgMLSNQ1Mi^|@1q;1(Sr}r zix1I{a~Qx!7{tdI#zl@EIoYIi~Ohrtu|a@D=9pH5Tv<0^%3B1%bE~ zLAVXUxE&$517Wxm;kXMCxEoQp2hq3}F}M$LxF7L&010>yiFgP}co@le1SxnFsdx-& zcpT|?0vUJ`nRp6WcpBMw203^Zxp)qFcpmw90fl%G#drxNco}7Q1?6}Z6?hF*cpWu( z1GRV)^*DqEyoE-*jbYN+fF)G$F^k*I=)+?zjduxa-sr9K{Ko#2K8$1zf}xT*VFC#2wtl z13bhNJjDyV#2dWD2Yke5e8G48z;FCPkc%XMmA(eF62f&@~w>$rv6 zxQF|AgvWS>=XizJc!&4+gwObf@A!q^2s|->AP9~S2#qiZhwzAm$cTpMh>2K;i+D(g zL`aHcNQqQPi*(3{Ovs9C$cbFYi+m`ELMV!2D2Y-ii*l%lN~nrzsEJyri+X5?Mrev= zXo*&6i+1RMj_87}=z*T-jXvm)0T_%S7>*GbjWHOH37Cv2n2s5kjX9W)1z3zFSdJA~ zjWt-04cLq=*p408jXl_p12}}kIELdmh0{2P^SFe|xQ6Svh1wNQgv8ieyNMR7i_-$cRkH zifqVHJSJc=reHc|U^eDpJ{DjxmS8znU^UiYJvLx7wqQGU zU^n()KMvp!4&xY(;}lNg9M0nsF5?=m;}&k?9`5529^)CF;}u@x9p2*;KI0p{;}?D- z@ZBub$y%Aq1Ep(?7OCTgKB>Y*VTp(&c7C0d~^+MxqFq6@mB2YRA6`k+4sU@(SY zI7VPJ#$Y@qU^1p)I%Z%t=3qV+U@?|pIaXjb)?ht0U^BL0J9c0<_Fz8_;1CYu7>?r< zPU9TT;}S088m{9OZsQ*A;}IU?8J^=6UgI6!;}bsP8@}Tgek1Ud0D>SmLLfB4ARNLY z5+WlSq9Z0^Aui$}Arc`ek|8BhAuZA&BQhZ?vLPpOAusZwAPS)13ID$x}pbqqBr`WKL%hhhF~~GU^K>HJSJc=reHc| zU^eDpJ{DjxmS8znU^UiYJvLx7wqQGUU^n()KMvp!4&xY(;}lNg9M0nsF5?=m;}&k? z9`5529^)CF;}u@x9p2*;KI0p{;}?D-@YDc;AUHxGG{PVp!XpwQBO0P3CSoBj;vpdt zAt{m}B~l?R(jg-Bub$y%Aq1Ep(?7OCTgKB>Y*VTp(&c7 zC0d~^+MxqFq6@mB2YRA6`k+4sU@(SYI7VPJ#$Y@qU~&Kf8*x+Q>6n4pn1lIPfW=sX zpgeIE`~Sk4w0WYq*YExQ%k5BlFZ}^U1_>I8R0tkZO2!YTDgK!9sNQjJRh>nNQRV1g|tYA zjL3wn$cCKAg}lgzf+&QdD29?Kg|aAzil~IDsD_%Tg}SJRhG>MQXoi+(g|=vi4(Nz3 z=!zcbiQedg{uqG47=qy#fzcR)@tA6D(j$inV zz|#W=g5U^&&hk|>3;D2IxugsP~9ny7`ksE3AVgr;bQmS}~xXon8yh%V@g9_WeQ=!56n4pn1lIPfW=sXpge zIE`~Sk4w0WYq*YExQ%k5BlFZ}^U1_>I6b0tkZO2!YTDgK!9s zNQjJRh>nNQRV1g|tYAjL3wn$cCKAg}lgzf+&QdD29?Kg|aAzil~ID zsD_%Tg}SJRhG>MQXoi+(g|=vi4(Nz3=!zcbiQedg{uqG47=qy#fzcR)@tA6D(j$inVz%v5~g5U^&&hk|>3;D2IxugsP~9ny7`ksE3AVgr;bQ zmS}~xXon8yh%V@g9_WeQ=!56n4pn1lIPfW=sXpgeIE`~Sk4w0WYq*YExQ% zk5BlFZ}^U1_>I7`0tkZO2!YTDgK!9sNQjJRh>nNQRV1g|tYAjL3wn z$cCKAg}lgzf+&QdD29?Kg|aAzil~IDsD_%Tg}SJRhG>MQXoi+(g|=vi4(Nz3=!zcb ziQedg{uqG47=qy#fzcR)@tA6D(j$inVz_SAg zg5U^&&h zk|>3;D2IxugsP~9ny7`ksE3AVgr;bQmS}~xXon8yh%V@g9_WeQ=!56n4pn1lIPfW=sXpgeIE`~S zk4w0WYq*YExQ%k5BlFZ}^U1_>I7G0tkZO2!YTDgK!9sNQjJR zh>nNQRV1g|tYAjL3wn$cCKAg}lgzf+&QdD29?Kg|aAzil~IDsD_%T zg}SJRhG>MQXoi+(g|=vi4(Nz3=!zcbiQedg{uqG47=qy#fzcR)@tA6D(j$inVz;go#g5U^&&hk|>3;D2IxugsP~9ny7`ksE3AVgr;bQmS}~x zXon8yh%V@g9_WeQ=!56n4pn1lIPfW=sXpgeIE`~Sk4w0WYq*YExQ%k5BlF zZ}^U1_>I8x0tkZO2!YTDgK!9sNQjJRh>nNQRV1g|tYAjL3wn$cCKA zg}lgzf+&QdD29?Kg|aAzil~IDsD_%Tg}SJRhG>MQXoi+(g|=vi4(Nz3=!zcbiQedg z{uqG47=qy#fzcR)@tA6D(j$inV!1DtLg5U^& z&hk|>3; zD2IxugsP~9ny7`ksE3AVgr;bQmS}~xXon8yh%V@g9_WeQ=!56n4pn1lIPfW=sXpgeIE`~Sk4w0W zYq*YExQ%k5BlFZ}^U1_>I5|0tkZO2!YTDgK!9sNQjJRh>nNQRV1g|tYAjL3wn$cCKAg}lgzf+&QdD29?Kg|aAzil~IDsD_%Tg}SJR zhG>MQXoi+(g|=vi4(Nz3=!zcbiQedg{uqG47=qy#fzcR)@tA6D(j$inVzzYKig5U^&&hk|>3;D2IxugsP~9ny7`ksE3AVgr;bQmS}~xXon8y zh%V@g9_WeQ=!56n4pn1lIPfW=sXpgeIE`~Sk4w0WYq*YExQ%k5BlFZ}^U1 z_>I7e0tkZO2!YTDgK!9sNQjJRh>nNQRV1g|tYAjL3wn$cCKAg}lgz zf+&QdD29?Kg|aAzil~IDsD_%Tg}SJRhG>MQXoi+(g|=vi4(Nz3=!zcbiQedg{uqG4 z7=qy#fzcR)@tA6D(j$inVz>5P2g5U^&&hk|>3;D2Ixu zgsP~9ny7`ksE3AVgr;bQmS}~xXon8yh%V@g9_WeQ=!56n4pn1lIPfW=sXpgeIE`~Sk4w0WYq*YE zxQ%k5BlFZ}^U1_>I6z0tkZO2!YTDgK!9sNQjJRh>nNQRV1g|tYAjL3wn$cCKAg}lgzf+&QdD29?Kg|aAzil~IDsD_%Tg}SJRhG>MQ zXoi+(g|=vi4(Nz3=!zcbiQedg{uqG47=qy#fzcR)@tA6D(j$inVz)J%Ng5U^&& z3Zf8-q8Lh|6w0C;Dxwmqq8e(V7V4rN8ln-Jq8VDE722X5I-n!EpeuTyCwij~`eOhF zV+e+01V&>F#$y5|V+y8Y24-Up=3@aCV+odH1y*AX)?))UV+*!p2XR;WDn_I&R@M?%_Tj;W3`!IbPv4-r+qy;WNJBJAUCe0xu6B2!bO7LL&^q zAv_`>GNK_mVj>peA|4VV5t1SqQX&=7A{{a!6S5*3av~S3Zf8-q8Lh|6w0C;Dxwmqq8e(V7V4rN8ln-J zq8VDE722X5I-n!EpeuTyCwij~`eOhFV+e+01V&>F#$y5|V+y8Y24-Up=3@aCV+odH z1y*AX)?))UV+*!p2XR;WDn_I&R@M?%_Tj;W3`!IbPv4 z-r+qy;WNJBJAUCe0GNK_mVj>peA|4VV5t1SqQX&=7A{{a! z6S5*3av~S3Zf8- zq8Lh|6w0C;Dxwmqq8e(V7V4rN8ln-Jq8VDE722X5I-n!EpeuTyCwij~`eOhFV+e+0 z1V&>F#$y5|V+y8Y24-Up=3@aCV+odH1y*AX)?))UV+*!p2XR;WDn_I&R@M?%_Tj;W3`!IbPv4-r+qy;WNJBJAUCe0 zGNK_mVj>peA|4VV5t1SqQX&=7A{{a!6S5*3av~S3Zf8-q8Lh|6w0C;Dxwmqq8e(V7V4rN8ln-Jq8VDE z722X5I-n!EpeuTyCwij~`eOhFV+e+01V&>F#$y5|V+y8Y24-Up=3@aCV+odH1y*AX z)?))UV+*!p2XR;WDn_I&R@M?%_Tj;W3`!IbPv4-r+qy z;WNJBJAUCe0GNK_mVj>peA|4VV5t1SqQX&=7A{{a!6S5*3 zav~S3Zf8-q8Lh| z6w0C;Dxwmqq8e(V7V4rN8ln-Jq8VDE722X5I-n!EpeuTyCwij~`eOhFV+e+01V&>F z#$y5|V+y8Y24-Up=3@aCV+odH1y*AX)?))UV+*!p2XR z;WDn_I&R@M?%_Tj;W3`!IbPv4-r+qy;WNJBJAUCe0GNK_m zVj>peA|4VV5t1SqQX&=7A{{a!6S5*3av~S3Zf8-q8Lh|6w0C;Dxwmqq8e(V7V4rN8ln-Jq8VDE722X5 zI-n!EpeuTyCwij~`eOhFV+e+01V&>F#$y5|V+y8Y24-Up=3@aCV+odH1y*AX)?))U zV+*!p2XR;WDn_I&R@M?%_Tj;W3`!IbPv4-r+qy;WNJB zJAUCe0&ff;2!bO7LL&^qAv_`>GNK_mVj>peA|4VV5t1SqQX&=7A{{a!6S5*3av~S< zA|DE(5Q?H0N}?3Xq8uus5~`vaYN8hEpf2j80UDt(nxYw6pe0(P4cehSI-nyuqYJvB zJ9?rQdZQ2ep+5#<5QbnVhGPUqVKl~K9425QCSwYwVLE1F7Up0s=3@aCVKJ6s8CGB= zR$~p;VLdit6SiP0wqpl&VK??+KmNlZ9KlJP!9`rg6?4b(;*)JFp} zMiVqg3$#WXw8uZ_gwE)O?&yVo(HH$N5Q8uj!!Qz~Fc#x55tA?#(=ZdWFc|$ z;s<`>4+8ZIASi+%Btju9{z3#qL}WxkG(^YWh>6&UgLsIKgh+%WNQ&f0fmBG1v`B{x z$cW6yg6znF+{lCcD1gE!g5oHF(kO%SsDR3-g6gP&+Ngv2Xn@9Og608qX%#D=W4iaG z6s_XunvRbINQ@*%juc3ZG)RvO$c!w=jvUC1Jjjm%D2yT~juI%1GANG95a8?g}w@sR+Dkp#(+ z0;!P(>5&1Mkp-%*8w`#3C%kGOWZZti?KP z#3pRTHtfVM?8QDD#D6$~qd0++ID@mefQz_-tGI!ixP!ZRfQNX3r+9&vc!Rh2fRFfs zulRwV_=7-M0tkv=2#HV#i@y*75fKGZ5d(iCHsT;Y5+E^>AURSXHPRqGG9WXuAUkp( zH}W7q3ZO8Gpg2mPG|HenDxfl|pgL-xHtL{08lW+npgCHgHQJy({y`^nMmKavFZ_$X z=!bzAgrOLQkr;)s7>9|NgsGT@nV5ySn1_W}gr!)9l~{$fSci?+gss?yo!EuF*oTAo z4@YnmCvXyHa26ME5m#^(H*gboa2F5o5Kr(FFYpp?@D?BN5nu2XKkyTO5GZQ^K@kig z5ei}P7a|}cq97__;BUl69K=TgBt{Y>M+&4y8l*=CWJVTbM-Jph9^^*>6h;vgM+uZh z8I(r_R7Mq4M-9|Q9n?nyG)5CNM+>w@8??ti=!DMbhVJNvf6*8HFc5<<6vHqQqc9fZ zFcFh571J;ivoII)un>!|6w9y@tFRX9uo0WE72B{AyRaAga1j6D2#(?ePT~yC;sP$> z3a;V?ZsHE^;sGAw37+BwUg8bj;sZY73%=q9e&P=TWeXrEf*~YAAuRqv1Vls>L`4kz zjo65T_(*`nNP^@@fz(KY^vHnB$b#(1f!xT0{3w9JD1zcBfzl|0@~D8ysDkRKf!e5p z`e=a0XoBWwf!1h)_V@>#&>7v(9lh```l25OVi1O67)D|g#$p^MViKle8fIb^=3*We zViA^N8CGHy)?yttViUGv8+KwB_F^9n;y)b0QJla@oWWUKz(riaRouW$+`(Nuz(YL2 zQ@p@Syun+1z(;(+SNySt$8g0-X z|DY2(qZ_)T7yd$~!cr{5O02?KtiwiZ z!d7g$qXbH$49cSdDx(UjqXufD4(g);8lwrCqXk-{4cg-$bV6rzLwEGTzvzp8 z7>Gd_ieVUuQ5cJHn21T3ifNdMS(uA?ScpYfie*@dRalF4*oaNoif!15UD%6#IEepn z1V?cKCvgU6aRC=`1y^wcH*p7d@c<9;1W)k-FYyL%@c|$41z+(4Kk)~Fat06-!4MLm z5Eg$S0wN*`q9O+VMr_1Ed?Y|(BtdedKx(8xdSpOmWI=Z1KyKtgeiT4q6hU#6Kxvdg zc~n4UR6%vrKyB1PeKbI0G(mH;Kx?!?d;Eh==!|aYj$Zf|ebEmCF$hC33?nfLV=)dB zF$q&K4Kpzdb1@GKu?S1C3@fn;Yq1U+u?btT4Lh+5d$A7(@gI)hC{Exc&fqLA;3BTz zDsJE=?%*yS;31yiDPG_u-ry}h;3K}^D}LZ7{vc4U0D>YILLwBx;x9x%L_|SU#K7N( zjW~#p1W1e|NRAXpjWkG)49JWu$c`MyjXcPY0w|0kD2@^+jWQ^Y3aE@KsE!(_jXJ20 z255{XXpRX+{FVt#1lNl z3%tY|yu}B6#20+U5B$U*1j-#iPy|CrghE*Sg$RgQ39n=2IWx!l~D!NQ3JJ62ldeajnM?n(E_c}2JP_= zI-xVVp*wovU-U&k48$M|#W0M-D2&B8OvEHi#Wc*sEX>6`EW{!##WJkKDy+piY{VvP z#Ww83F6_lV9K?S(f}=QrlQ@I3xPXhef~&ZJo4A9!cz}m^f~R_<)c2g0J|2 zpZJ47c>)NEUCf?v_NaLL3{jzPUwto z=#F0a7k$wW12G6gF$^Oy3S%)26EO)>F%2^@3v)3K3$X}Gu?#D*3Tv?r8?gynu?;)1 z3wyB-2k{?{;3!VuB+lS0F5n`r;3{t5Chp)a9^fIK;3;0bXij|51JBuI`FNR2c|j||9+EXa-=$c;S6j{+!+ zA}Ed$D2*~Gj|!-aDyWVcsEsHAU+Zx zF_IuTQXn1D;g|QfiiI{|`n1-2{g}IoAg;<28Sca8Y zg|%3Rjo5^(*oK|hg}vB^gZK|ea1Kmb7z3?UH;VeuCtAR?k5Dq`So#6}#%M*<{95+p|oq(&N~M+Rg@ z7Gy^b1W$3N(V&gh2j z=!JjL7yU30gD@1sFcPCM7UM7xlQ0$2FcY&d7xS|$;s<`>4+0eo zASi+%Btju9{z3#qL=;3t4E&AQh=ce@fW%0GZpO*sDt`wfW~No=4gS|XoL3n2c6Iv-OwGq@GttJ9|mF&hGG~- zVid+=942BCreYdqVix9N9u{H|mSP!JVine69X4VUwqhH01`yDQwoBfNeK?5!a0Ewj z0w-|>XK?`+aRpa#12=I8ckuuZ@dQut0x$6fZ}9;i@daP;13&QxfeHl>6u}S@p%4~- zAp#;I3Zfzg{zh!XL3|`YVkALwq(EwCf?v_NaLL3{jzPUwto=#F0a7k$wW12G6gF$^Oy3S%)26EO)> zF%2^@3v)3K3$X}Gu?#D*3Tv?r8?gynu?;)13wyB-2k{?{;3!VuB+lS0F5n`r;3{t5 zChp)a9^fIK;3;0bXi zj|51JBuI`FNR2c|j||9+EXa-=$c;S6j{+!+A}Ed$D2*~Gj|!-aDyWVcsEsHAU+ZxF_IuTQXn1D;g|QfiiI{|`n1-2{g}IoAg;<28Sca8Yg|%3Rjo5^(*oK|hg}vB^gZK|ea1SO7s03?UH;VeuCt zAR?k5Dq`So#6}#%M*<{95+p|oq(&N~M+Rg@7Gy^b1W$3N(V&gh2j=!JjL7yU30gD@1sFcPCM7UM7xlQ0$2 zFcY&d7xS|$;s<`>4+0erASi+%Btju9{z3#qL=;3t4E&AQh=ce@ zfW%0GZpO*sDt`wfW~No z=4gS|XoL3n2c6Iv-OwGq@GttJ9|mF&hGG~-Vid+=942BCreYdqVix9N9u{H|mSP!J zVine69X4VUwqhH0Vi)#e9}eO_9KlhXz)76JSzN$HT)|b`z)jr2T|B@;Ji$}Ez)QTr zTYSJre8E@zz)$=^pb`NDMKFX!D1^mdh=7QQf~bgrzY!a85FZJU7)g*EDUcdzkRBP3 z8Cj4WIglH9kRJt57)4MVB~Th=P#zUf8C6gnHBcLMP#+D@7){U|EzlZm&>sJw6FQ?C zx}z8VMPKy8Kn%iA48ur_!dQ&ML`=d|Ov6mf!d%S5LM*~kEW=8y!dk4uMr^`XY{O3M z!d~pdLHvg!IEoWEi8DBh3%H0YxQZLNi95K92Y84lc#0Qzi8pwQ5BP{L_=+F+i9ZNb zGJv26hL8w_u=ooR5D`%j6*2HPVj~XXBLNa436diPQX>u0BLgxc3$h~zaw8A&qW}t{ z2#TWwN}~+QqXH_U3aX<9YNHP7qX8PD37Vq?TB8lx;~#WFXLLh%^uoXBi+&i0K^Tf* z7>Q9Bi*cBUNtlXhn2A}Ki+NaxMOcbuScz3wi*?wDP1uTU*oj@(i+wnV|8N9HaRMiC z24`^r7jXqwaRWDT2Y2xR5Ag&~@d7XL25<2JAMpiW@dH2c2Z2fj5EQ`>5}^08a-=|Nq(ORQKxSk?cH}^ALoo~^F$!Zb4ihm6Q!x!Q zF$;4s4-2sfOR)?qu?lOk4jZuvTd@s0u?u^#4+rrdj^HRx;3UrAEH2<8uHY(e;3n?i zE*{_^p5Q57;3eMREk58QzThi<;3xhdQ0V}IA{as<6vE;!L_kDDK~%)R--wMkh>rwF zj3h{o6iAIUNRJH2j4a5G9LSA4$d3Xjj3OwG5-5!_D31!Lj4G&(8mNsrsE-C{j3#J~ z7HEw&Xpeu;37ydm-O&sGqA&VkAO>M5hG8T|VJyaBA|_!freP*#VJ_xjAr@gNmSH7U zVJ+5SBQ{|xwqYlBVK4UKApXM<9K{Ko#2K8$1zf}xT*VFC#2wtl13bhNJjDyV#2dWD z2YkdAe8ms^#2*AI6F^V|Lr8=|Sp0J z1=*1UxseC?Q2>Qe1jSJTrBMd|Yw5m&e7gQW04vd3^jOh@AXX3r(Ssn`>IBhQvDme0 z5S`Vc2hpRqAli!FqPOTRx~y0&i2nUN^ZWhtoY$P0b7$_IbI;8C-aF^kMjg~ceKbO2 zG{ZM&iEq&cZP5W8(HY;NE4m>9JIV-n2c%o2{Z9C z=3p)s;1?{$5-i6Gtj4cchu^Rfo3I7HV>@5vg0ATvHhHe^RG ze1yFC7zOYN3gJ@}#b+pi&rup*pd8Ah623%Le1#hL8nsae^-v#;&=}3|4O-$`v_V^R zKu2`Ocj$_4h(HhYLT~iL_ZWyDFa$#}0wXaRV=x{+ViG1}8h*k|{ERu6iv{=vi?IaD zu>z~{E7svRY{VvP!SC3P9oUUM*pEMO2#0YD$8idO;w;YLA}--7{=yC1#2wtlJ^X_Q zc!($X7tiq@Ug0&~Ax^CT@$nuKAu*C6Ia1+$q(wSp#0SWX50MSokqaLoFFr;Ae1byw z6h-kFO5k&p#uq4u@~DI_Q59dI2EImZ)ImMeMjGxjK&y@$B&qV$(V+pFcUvx4(4J3e!*fa!E&s?YW#|I_zfGe z30v?xwqpl&V-NP@4;;c_9K&&(!k;*cbGV30xQf4U12=I8cX1E@-~k@u3I4@%{D)U~ zjdzGsJ3xHAheSw>WJr!wcpqtz4jJ(QGUG#JLw4lCN63qhQ2?Ky5I#jwe1;PE9HsFE z%Aq_e;Y(D-SEzxnQ5$to5B1RqjnNF>pe4RV8?;3SbVO%-hpy;`2=qWN^hQ5?kAe6B zLogI0FcPCN2IKJ~CSfwB;U~<*&zOU`Sb$%!7)!7mE3g{BVjX_NMr^_s{EqF|f!)}H z{rCfia2UsM9H;On&f**{;u5anFWkUQ+`(Pk!#{X{hj@a2@f`o*6<*^V;?xNcAMYU% z5+fOsBNg69TBJipe1OdO5ZRC&x$qJ4;$sxRCn$tZQ52t{1U^S;e1UQ(k4pFwRq+*S z;A_-I9n?d8G(uxE!#8M&Z_x&A(E%ON8Q-BRx*-BR&?yzum!(kJ9c0<_FzB$z#$yQF&xJ! z{E4$Thl{v`tN05ya1(cM7x(ZF9^fIK;9oq)e|Ux0c!xN31Dqcg*j(*BDG?GQ8ImIv z-bY%bLq>dn%=i%5kR7@35%S_=6u>7agilcvpP>XkM`?V4awv~V_!3p|6>8vX)J7fD zLwz(tV>Am8_#*Bbxh1|u8?;3SbVO%-hpy;`2=qWN^hQ5?kAe6BLogI0FcPCN2IKJ~ zCSfwB;U~<*&zOU`Sb$%!7)!7mE3g{BVjX_NMr^_s{EqF|f!)}H{rCfia2UsM9H;On z&f**{;u5anFWkUQ+`(Pk!#{X{hj@a2@f`o*6<*^V;)Dc>^ zXpCm~1}*U|+Mq2upd&itJ9I@iM4$(Hp*Q;Bdkn-67>pqpjuD8$XpF;n3>z7^=O;;1 zk49l?!tFadAumKwpjV;)Q?bwCg*oXZ%h(kDvV>pRZID@mefQz_- ztGJFExQ#oA!9B#{0UqNCp5ZxO;uYTF9pY^W5FZJV2uYC)DUk|kkQNz`5kbg|tjLC( z$b~$}i~J~nU=%_T6h(2AKq-_)S(HOXR6-S0MRn9bE!0K`>Y*VTp(&c71zMst+Mqo; zAQYVuhOP)l1bU(u`l25OU?2u#2!>+>qA(icFdh>z2~#l*GcXggF$eRp0E@5~%di}) zuo`Qz4jZr$(b$4**p6M;jeXdUgE)kvIEIrrg)=yd3%H0YxQgqzf!nx)7~DfF9^f&a z;2ECdC0^kz-XY$`0P&F!iI5b@kP@ko25FH284-lc$ck*piCoBoyvUCN2u2|kK~WS( z36w%#zYE5sfX_hV9se z-PniyIEX_yieos5Q#gaOxPXhef~&ZW8@P=-h`~L?;sGAx37+9OUg8zr;vM2`3J@O& zkqAkV3@MQcX^<8fkP$)1jI79poXCYd$cy|afM66t5fnvnlt3wzMp=|YMN~o+R7G{v zKrPfp2gy(7|XC6tFRhtu?`!s5z*L!ZP<=o*o}SIkApabqd10>IE6Df ziwn4jE4Yg5xPjZagBaXHEFR!7p5Pgt<0W3o4b(zygrFW8q7j;+8Cswv zTB8lxqXRiB(8ofBd!5HDfnOn-Ptz*oK|hg}vB^12~8yIEoWEiPJcP^SFS^xPoiAj+?lJ zJGhG&+{1muqQ83KvGf$r@B%OK25%8JIzT)mKtd!zQlvmiq(&N~M+Rg<5V9aEav&#i zBMP#h&u3T03h6;KhCQ3cgd9W_x4brFIFXox0gisop6R%nfOXpc?^ zMHj>}^g& zj6xK~VjL!5BBo#}reg+XVK(MrJ{DpTmSP!JVine412!WXTd@s0u?u^#4+n4%M{pD; za1y6+2Ip}BmvIHxa2>aB8-F7P_YsRnc#Nlbh8K8=H+YM6rrBDWCQ2`ZE8C6gX)ln0*P!}O+fQD#- zrf7~9Xoc2jhxX`%P;@~Ux+5Hs=!rh)i~bmZK^Tl-7>-eh!dQ&M1Wd#fOvQA}z%0zh zJj};JEW%PO!%D2e8mz^7Y`|tjV=J~{Cw5^k_Tc~y;s}o71Ww{K&fq*Q;4-e@8m{9O zZsTvn;67sU2#@g;&+q~-@dj@ZcW{7sNPvV$f}}`+lt_&#+fw5sj_bhMm}jz1W8X zIEW)SiW4}A(>R0kxPZ&Jf@`>rTeywC5rg}P#Unh%Q#`{9yu=&4McknQ;voSNA_w5a%h$)zg>6n38n2mXukA+x-rC5fQ zScNrMi}l!m&4|WUY{O3M!d~pd0UX2;9K{Ko#A#f|E!@W6h{1it;t?L>DW2g4Ug8bj zBJS`2@sI!skpxMR0x6LiX^}^g&j6xK~VjL!5BBo#}reg+X zVK(MrJ{DpTmSP!JVine4E!JZLHX|Bau?;)13wyB-2XGKaa15sOE7jHh^p7kG&`c#F86EXG3uBt#MGOXpR;E|M+WpS%qU&sFdh>y5tA_m)9@2!U?yf^Hs%J144oIy;TGsx zh(%a}rC5#?ScTPCgSGe#>#-4=5REO^if!0|o!E^%*oXZ%fP*-UBRGcRIEhm@jWalh z^SFphxPq&=hU>VATeyR}hzSrGdM}_8zpv{79^x^c;3=NrKfJ&zyvAF+L)=jT;^93c zKq4eYQY1qPq{RD3jkHLI49JK~2*QWRf^5i+oXCaT$b*lO4+ZcEf>8*CQ3Ri%7)s!C zltO8gL0ObX1yl+U8Tw^Fm#T`cuTTv&@HJ|oHtHe-_0a&0&=^h849(F3-=Y=Tpe@>? z13DoT-=Pb-q8q{yfk^a3Z}dSwe2)Pbh(Q>Pp%{h{7>Ov1##oHQkC=c-n2f2IhUu7r zpD_z_Fcz~G8f&l?zhON#ViTgV1zWKVJFpYGu?PFG9|v#{hj9eQ za2zLb3a4=f=WreuaS2y&71wYbH*pJha2GMShx>@dLp;J0{EKIJju&`|*LZ_>h!Yhc z9^xYb5+X5@AQ_S)B~l?Z(jZ-c$k25Y{%`885452hu?f-Gg00ww9oUK8*n@r8j{`V} z!#ILtIF6Gzh0{2Lb2yKSxP&XXifg!zo4AELxQiIv!+pf!As*og{>3vq#|yl~YrMfb z#F-c%9^xYb5+X5@AQ_S)B~l?Z(jXnuBO^XQ5HceRvLZWjAQwJD9^^$nlV-yMsEmhT>DN`+PrylIOZlj;8lwrv;DsY6)H WHW3jm+jMLd)}dY7$)h4$2mcQb*C7S~ diff --git a/docs/.doctrees/index.doctree b/docs/.doctrees/index.doctree index 54f18b60f703b5563a7a5b5fe9b9db8d9d8b4650..25a15472db0a40f7b52c3e8f9b725d0c2a4e0153 100644 GIT binary patch delta 53 zcmbRLjBo8TK9&a7sSX=ik{KDDCucA!@fB2-Hq)$ diff --git a/docs/.doctrees/intermediate/FSDP_adavnced_tutorial.doctree b/docs/.doctrees/intermediate/FSDP_adavnced_tutorial.doctree index 642079b5c8af248915c030e6bad59ddd8d4aa7cf..17e4076031f446de81dc130b0b7197a4ac7353a8 100644 GIT binary patch delta 45 zcmexi|u{51{}6 delta 26 icmcb#k@?6*W|julsXI5a%wS~nnmm_LY4ce|*6RR|b_yQ= diff --git a/docs/.doctrees/intermediate/TP_tutorial.doctree b/docs/.doctrees/intermediate/TP_tutorial.doctree index 0e8fa7bee6339a22772971b4de6be88aa6f47219..a1e4aa40b8be8244a365c8dead5784e2b096d4f5 100644 GIT binary patch delta 45 zcmdlxllAmWR+a|VsfHU_)-W=LP2R|;#8*&Rl3$dZp_`nMnU|>Be3^0kWk$wVUI2HX B5WfHb delta 30 mcmX>-lXdS*R+a|VsmdE!)-W=9Oy0<-)clZf`$I;?S6%?Ehzm;q diff --git a/docs/.doctrees/intermediate/autograd_saved_tensors_hooks_tutorial.doctree b/docs/.doctrees/intermediate/autograd_saved_tensors_hooks_tutorial.doctree index 3016ecccaf72bf8bcac559e993c88ba689c22007..e20b5368471757cab71c2ce48789673086f4a4c4 100644 GIT binary patch delta 41 xcmeBp$~^5UGfM;O)b5QeMvROFlg$~G_zEgZ@{5u)bdxhO^AdG8M>6Vv1OPC44u1du delta 26 icmbRCl)2+6GfM;O)Y^?KMvRO}lg$~GHm5V{e*^%5E(rYq diff --git a/docs/.doctrees/intermediate/ax_multiobjective_nas_tutorial.doctree b/docs/.doctrees/intermediate/ax_multiobjective_nas_tutorial.doctree index 100d791d1066c04b4d030602321a942027570af6..0895115098d8ff2b451e901347708c8232d56344 100644 GIT binary patch delta 72 zcmdnGg5~fEmJMc%jG2?o8I|}7DogT Za4|4su*Xix5bUv^ocP~wj2IasCz~@WO^)PMnC#CivUxV+#zz3nrVEt- diff --git a/docs/.doctrees/intermediate/custom_function_conv_bn_tutorial.doctree b/docs/.doctrees/intermediate/custom_function_conv_bn_tutorial.doctree index ed18fddb8adaaf99375457a96030e4586286cb1e..2853253f7c19de98c7ab01b5a7a4b5678579674b 100644 GIT binary patch delta 41 xcmeBL$vk5vGfM;O)ZUFOMvRQvlg$~G_zEgZ@{5u)bdxhO^AdG8M=}~-1^^zj4eS5_ delta 26 icmbQSlDTUoGfM;O)cTDqMvRQHlg$~GHm5ThUIqYmU1~s;>p#FN_+*CCHY0k8M?_CnR$u2o98m7lmY-jiw^hz delta 27 jcmeBw$JqFek+p$!>bJ6utfh>MsgtW2l{T+tOeqBbo81a^ diff --git a/docs/.doctrees/intermediate/ddp_series_minGPT.doctree b/docs/.doctrees/intermediate/ddp_series_minGPT.doctree index 4ebb458a9da072cd27c8bfcb6a51a4593a010cd0..c55c95f3af0448ac3a8267aec0e899ac581acada 100644 GIT binary patch delta 40 vcmX@u$8^4riKT&cs>?W|julsZTbtbTBf8Pwr(@;wz{u$uCOI&`r+B%uCdr>}V#w`52@02>^_V B5Xt}m delta 30 mcmaDqnfc*lW|julsn<5LbTBe{PVQw?np`9yvH2>a)CmB&6$@Md diff --git a/docs/.doctrees/intermediate/dist_pipeline_parallel_tutorial.doctree b/docs/.doctrees/intermediate/dist_pipeline_parallel_tutorial.doctree index a6ddd95933b913acc0d71de383c4c2ba78a7512e..2893793bfaa3abb2458142185b0cb6b5e8287e71 100644 GIT binary patch delta 45 zcmdn;j_J@lCYA=)spcD58WJ$F} delta 50 zcmZ3rl6B5XR+a|Vsf-(0j2Ib%CYv)VZBA!g@^7+)AwTET_7DaznEsKGQF*HyV@e1B DhujWq diff --git a/docs/.doctrees/intermediate/dynamic_quantization_bert_tutorial.doctree b/docs/.doctrees/intermediate/dynamic_quantization_bert_tutorial.doctree index e053477855b1501d68ae05440bcf753e7b90c721..d1521d917b9966bb6feea6172c2b9324496564a0 100644 GIT binary patch delta 45 zcmX@r$aYR-%MU0HOlgk;E_zEgZ@{5u)bdxhO^AdHNXEJV|$;fDE4*+w5 B4}Smv delta 30 mcmcc7$a<=gm8F4oYTrhdB1Xpe$>oen&C40LFK1*lvxkodxkoo6{L*HUR*A83^70 diff --git a/docs/.doctrees/intermediate/flask_rest_api_tutorial.doctree b/docs/.doctrees/intermediate/flask_rest_api_tutorial.doctree index 3185878e7f6da7e0caa5935523548c09d02be08b..aa456534d5249d5613fdb5346827e44df4752975 100644 GIT binary patch delta 41 xcmX?oj``*}W|julseT(-j2Ib{CYv)V@fB2->Qa4tD?m delta 26 icmcbxg6Yr-CYA=)spcD5j2IbxCz~@WZBA!=ISBxK%Lw%V diff --git a/docs/.doctrees/intermediate/fx_conv_bn_fuser.doctree b/docs/.doctrees/intermediate/fx_conv_bn_fuser.doctree index 1808bedf981e1d24bf4fbc88bee39c876f0d8513..bff62e1d05d98ddfc0d0e6c5b58f431d5f322951 100644 GIT binary patch delta 41 xcmcb*jp^|=CYA=)sSz7lj2IcCCz~@W@fB2-lg$~GHm5U6E&~98v_}15NQAa delta 34 qcmcb=obBRrHkJm~sTmttj2IdHCz~@WP2M0Q-dxAHy^fJFaS{O2{|i_E diff --git a/docs/.doctrees/intermediate/jacobians_hessians.doctree b/docs/.doctrees/intermediate/jacobians_hessians.doctree index 9673bc94bdd1115c2aadd55e8c5c4f1a9d729dde..6435ca19eb2c9d7d90c5672ef35033fac32849f8 100644 GIT binary patch delta 41 xcmcb5nfdW$W|julsW&#V7%?)&PBv#$;wz{u$uCOI&`r+B%uCeW9LZSo0suwj2IbXCYv)V@fB2-1}YWMmYK1psf4 B4!HmT delta 30 mcmeydhxOGSR+a|Vsj3@Uj2IdHCYv)VHK#LfPiJHlj0FIx>j^~w diff --git a/docs/.doctrees/intermediate/memory_format_tutorial.doctree b/docs/.doctrees/intermediate/memory_format_tutorial.doctree index 31005e914a8197fed010ace279ae7c5de7955088..2d4aa2a48cc3f0e25e58d8107d991c3d186a8e0e 100644 GIT binary patch delta 45 zcmbQWon^M2FqscIWpj2IacCz~@W@fB2-1}YWMp)d0sv7; B4e|g0 delta 30 mcmZ3non_W`7M2FqsS+Dmj2Ib%Cz~@WHK#LfPiJIwlmY;jG6;SE diff --git a/docs/.doctrees/intermediate/mnist_train_nas.doctree b/docs/.doctrees/intermediate/mnist_train_nas.doctree index cdc94bb242124477d64c4e93f676192b00e1f1a9..f15491b8c7d9faa0203e71288f335f578f5f32b0 100644 GIT binary patch delta 41 xcmcaUkMZd|MwSNFsZkqQj2IcCCYv)V@fB2-wj2Ib{CYv)V@fB2-p6KezORK^_}Sq&K(6DON9D)ALmmgE;DXXqwpWacI6ZjNMJx(xtMJ`Y&{ delta 27 jcmeDA!1V7u6KezO)X&>DvKlfn22VC;RN9=*xO5u;r3MPt diff --git a/docs/.doctrees/intermediate/nvfuser_intro_tutorial.doctree b/docs/.doctrees/intermediate/nvfuser_intro_tutorial.doctree index 3a11715152eedcdd031dcf7943e72c4cb8ba8d32..b5dec8c485acc17afefef92ec924b936202e1de9 100644 GIT binary patch delta 39 vcmaDT{a%`-fpzMWjVv=5851YZWmMuTs4U4ZO3u(t&dAJ5)ZM(FQHcitDTNLp delta 24 gcmaDa{ZN{vfpzM&jVv=58G|R!WmMXHmQjfZ0C#x^p8x;= diff --git a/docs/.doctrees/intermediate/optimizer_step_in_backward_tutorial.doctree b/docs/.doctrees/intermediate/optimizer_step_in_backward_tutorial.doctree index 6c8fc98304a3e746520c3de567ec3b66e8c8579f..23294a8a1fe828c42c66ef1be590b00bd8764d66 100644 GIT binary patch delta 41 xcmX@JnEBRXW|julspmJc7%?*DO*Us#;wz{u$uCOI&`r+B%uCeW9LZRG0RTD;4(I>? delta 26 icmcb$nEA|NW|julsRuW*7%?&?Og3j!+MLck(JOD_v8|DB2 delta 60 zcmeyppXKd-7M2FqsSF!gj2IbxCz~@WZBA!g|4*cLipJEN@(f^*!J5IAA(nM|vf~Hs O$@{?4S4n_a~ delta 26 icmeyfh3VZECYA=)smU8zj2IbxCz~@WZBAztoe2PliU`C2 diff --git a/docs/.doctrees/intermediate/process_group_cpp_extension_tutorial.doctree b/docs/.doctrees/intermediate/process_group_cpp_extension_tutorial.doctree index e3190577564a00d35ce5e42b82e40f050487a58b..f9137c38d8fe103a6bba693cffb0d568dffc408e 100644 GIT binary patch delta 41 xcmcb2k?GAvCYA=)sSh`@Ok-rspFEpUiLaotB)=#*LpM1iGcQqh^Ik^9l delta 26 icmX@Gka^QWW|julsmnLAOkia6oII6LY4cIW-{$~{1qz)2 diff --git a/docs/.doctrees/intermediate/reinforcement_ppo.doctree b/docs/.doctrees/intermediate/reinforcement_ppo.doctree index 694a5bcfac1f9236ed628b03c91193bb2e7d20e6..71f40a2c8b4cf6fc15de805f3eba8ba0629271dd 100644 GIT binary patch delta 45 zcmdn{mi_cwc9sU#si7NLj2IbXCYv)V@fB2-1}YWMoYF3IKN# B57Gbt delta 30 mcmX^8mVNJAc9sU#sqPzDj2IdHCYv)VHK#LfPiJII`3eB8y$W6c diff --git a/docs/.doctrees/intermediate/reinforcement_q_learning.doctree b/docs/.doctrees/intermediate/reinforcement_q_learning.doctree index 5df4c0ada18ced2aaedf842444c3dd2f44f5d0d7..89ab7e6bbfa6837e1594dd8c79d5134d00ab6035 100644 GIT binary patch delta 40 wcmcclhxz#*W|julsWBT_j2Ib{Cz~@W@fB2-s~8#MCa-5y;wz{u$uCOI&`r+B%uCd5zR0-!A|vA_V*r5| B5U>CM delta 30 mcmbREnx*+Q3rhp*RMU+ts~8yrCa-5yYQE37{XQe(CSw4z1PeR> diff --git a/docs/.doctrees/intermediate/rpc_param_server_tutorial.doctree b/docs/.doctrees/intermediate/rpc_param_server_tutorial.doctree index b8cd4dd67e2e24ae3942fe43b1a57f021685e666..4d0dd523a0b74a1db5208f493640e9ae01d58171 100644 GIT binary patch delta 61 zcmbQYopsH2R+a|VscairRxvWBOkU5Z#8*&Rl3$dZp_`nMnU|=$`68pyKhCL>q8Y$o ODl_BX?VOB^Q=CL|w#s5u}V*D#Gb!rp?7}QSD$YAYx PJ=yWk>+PIOjEf@y*J>9N diff --git a/docs/.doctrees/intermediate/rpc_tutorial.doctree b/docs/.doctrees/intermediate/rpc_tutorial.doctree index 57efe3bb0b3658ebf4db8d052da683fe439f31ba..5299761044fd141989eca3ec9e694339285dbcbc 100644 GIT binary patch delta 45 zcmZ28fpymeR+a|VsfRbRbTBf8Pwr(@;wz{u$uCOI&`r+B%uCd5UeCCFJtJeS8vu9l B5FG#j delta 30 mcmdlrfpyIUR+a|VsarR)bTBe{PVQw?YTnDZeJ>+pts4NWfC{Mq diff --git a/docs/.doctrees/intermediate/scaled_dot_product_attention_tutorial.doctree b/docs/.doctrees/intermediate/scaled_dot_product_attention_tutorial.doctree index fe3992a32f36fe000570fc7f2842251bc2f5ea28..19d66f301eadfb0188cefdf7a34f6d16f3c6a6f9 100644 GIT binary patch delta 41 xcmdmcmHG5lW|julsRuT)7%?&yOg3j!;wz{u$uCOI&`r+B%uCeW9LbpS5&%Nd4=Vrw delta 26 icmX?om3i+~W|julshc*k7%?&?O*Us#+MLdq@)7`y6$z;T diff --git a/docs/.doctrees/intermediate/seq2seq_translation_tutorial.doctree b/docs/.doctrees/intermediate/seq2seq_translation_tutorial.doctree index 8651f93f2614fe29454d8f6193f6bcdf8f30c292..670512a653d901dda20b49c9212a5f1121f3bd9c 100644 GIT binary patch delta 46 zcmZpC!PftRjkSSwDl^kYRzpU{^vULoN_+*CCHY0k8M?_CnR$u2&5?}TBN-W2YytpV Ceh&)( delta 31 ncmeBw!PfYKjkSSw>Q}~%tcHw?k(13Cm73ETx2H2QuGjSM( delta 26 icmcchlkv>jpDM#*E44j7oe3l_mK_$r-xI8JT&Bx|<^zm;U3NT2jCO2GbqQ8P&Jy IG5Qt&05fh93jhEB delta 44 xcmeBt$ol&M>jpDM#;D2Wj7po+8JGT>9KgiKIW?_-0SuTBTF13W9H;!MkT(2%98w|9jLf`5-Oa6x?|1Byq$6Tc1FfOO8|Yd B5e)zU delta 30 mcmX?jmTmJ{HkJm~sp1=1CNMGvOrFZ9)O?h2`%y;5KT80z6$_aF diff --git a/docs/.doctrees/intermediate/torch_compile_tutorial.doctree b/docs/.doctrees/intermediate/torch_compile_tutorial.doctree index 1277396d9c0b17549e91a5511736a7b7e0260e5a..936bb90f53d4e7a858f2eb097dfaecec54840b73 100644 GIT binary patch delta 81 zcmdn`faUN57M2Fqsk|Fmj2IacCz~@W@fB2-3l%0H*OB$$rsBaBs{Gbm2rXLjl diff --git a/docs/.doctrees/intermediate/torch_export_nightly_tutorial.doctree b/docs/.doctrees/intermediate/torch_export_nightly_tutorial.doctree index eadaef28e0bb85dd9d0ebf365a72880dbbc6dbd1..2c06dc813c2ec93d2ce6697b8c5b349b5b9b0a22 100644 GIT binary patch delta 45 zcmZ4RnQh%?HkJm~sd5`x(ij;tCTBA$@fB2-iI0RVP; B54ivU delta 30 mcmZ4YnQg&mHkJm~sRA2W(ij<|CTBA$HP2?;KAVwIcn1KjVhTk7 diff --git a/docs/.doctrees/intermediate/torch_export_tutorial.doctree b/docs/.doctrees/intermediate/torch_export_tutorial.doctree index dda2eb348ab47881ba4f8e0ae755fc87bc315576..fa67059756cdd99fe4f2252293430daa74e15ff4 100644 GIT binary patch delta 45 zcmZp;&fa&Oouz?ws`N${BSyxA$>xkodxko&FPHW(-|4nUjYD@nF%@o diff --git a/docs/.doctrees/intermediate/torchrec_tutorial.doctree b/docs/.doctrees/intermediate/torchrec_tutorial.doctree index 35ee43463f0248c0795eff8a1f1b2ea6f0abe31c..f6e27ffcd5e471bf7ec575f69cf02e3c6b888643 100644 GIT binary patch delta 41 xcmdnf&vdGviKT&c>i&%^F^r5clM@-0_zEgZ@{5u)bdxhO^AdG8H#1tc0RS^(4t4+l delta 26 icmX@r&$OqXiKT&c>c)*MF^r6UlM@-0Hcw=1KlZ7M)-eFV T+}~E delta 49 zcmdmWmu<~mHkJm~sSF!gmM}5~PF~5VwD~5Z*}usFtz4W_XRKoYgULU?NpH1ftX&5H D%w7^G diff --git a/docs/.doctrees/intermediate/torchserve_with_ipex_2.doctree b/docs/.doctrees/intermediate/torchserve_with_ipex_2.doctree index ff0e6a09a14a2a1e7c29bc169e291144d3dcf9ca..bd748d731c367f03112dfa5392aa68cfd47986bb 100644 GIT binary patch delta 45 zcmdn6foBe3xX#j)s B5as{? delta 34 qcmdnDfo;PEHkJm~sXiN7wlOjWPu|U_H2D#`cC#4Mb}=SKjcEYe9}7kR diff --git a/docs/.doctrees/intermediate/torchvision_tutorial.doctree b/docs/.doctrees/intermediate/torchvision_tutorial.doctree index b281e59a01b4fe7613d74921dd40ceb2c602267c..9882c37602719dc9dbe9ac088c41a3ecc8df0c63 100644 GIT binary patch delta 71 zcmeC~Vx8H=%F@6(m2o4B5hG*#WOGI(zJkh<{G#Lx-QkEzm diff --git a/docs/.doctrees/prototype/fx_graph_mode_ptq_static.doctree b/docs/.doctrees/prototype/fx_graph_mode_ptq_static.doctree index 973fc0c1ae58d1dc2c3f17597007a23053a94545..1237ba3cfc50e91f88815d6c43653516777845cf 100644 GIT binary patch delta 45 zcmcb!fcez|W|julsqq_G7BMm=OkU2Y#8*&Rl3$dZp_`nMnU|b%7 diff --git a/docs/.doctrees/prototype/fx_graph_mode_quant_guide.doctree b/docs/.doctrees/prototype/fx_graph_mode_quant_guide.doctree index 3160b5aa0d8a409f93faf3dd34bd497cd894c1d2..6c8d754ac8f11d602285fd3aeceba2b2a33d1a45 100644 GIT binary patch delta 41 xcmezOjj`uDBTED8)W(f0eTAA% delta 26 icmaF0lKIX`W|julsTVi07%?(NPc~;%+MLeVd>H_X!U?bd diff --git a/docs/.doctrees/prototype/graph_mode_dynamic_bert_tutorial.doctree b/docs/.doctrees/prototype/graph_mode_dynamic_bert_tutorial.doctree index d3e9d5bc92aed4752dced05e98cc9f8ddadb2b6e..1b959ca51d6a057357d772b0d320d5533639ecb0 100644 GIT binary patch delta 75 zcmbQYkY&w67M2FqsSF!gCNVN*OrFlD#8*&Rl3$dZp_`nMnU|=$c_*XGKbfgB1Q@^| cLnC%d4_i@cT4_<{l&lI428PnDl8mha0Jj$yBme*a delta 50 zcmZ3pkY(ON7M2FqsjM4WCNVNbO`guEwD~xr%fHDt diff --git a/docs/.doctrees/prototype/ios_coreml_workflow.doctree b/docs/.doctrees/prototype/ios_coreml_workflow.doctree index de9b47ca612b41d035ccd5e21d1ffcad8e555fff..2284ea241cbc09182dfa1ac3784513d56237b9d4 100644 GIT binary patch delta 41 xcmZ3uk8%AzMwSNFsVW;;8Wk$L0x)$Zb`%D10Bnn0V diff --git a/docs/.doctrees/prototype/maskedtensor_overview.doctree b/docs/.doctrees/prototype/maskedtensor_overview.doctree index 7ce453f46d2e76029160de370943a7342b6f146d..a666c9dc44c0e8d6776668fea89a000369293141 100644 GIT binary patch delta 53 zcmX>ziRIQL7M2FqsS+Dmj2IbXCz~@W@fB2-b2H=i JW=6)7>;Ub&67T>3 delta 38 wcmV+>0NMZAk_60>1O$Kul?t&0G64ZklQ#h(lQQZdlaKQWgOLHZkpTh82LYT7Jpcdz diff --git a/docs/.doctrees/prototype/maskedtensor_sparsity.doctree b/docs/.doctrees/prototype/maskedtensor_sparsity.doctree index 98c87651373d4ca513b51139338747e058ef04b8..c5d617d3784424019c0ae71ee74cc801f679700b 100644 GIT binary patch delta 68 zcmaDcmF3%17M2FqsSF!gj2IbXCz~@W@fB2-I6^4*V|o0}P{ W{&7xy#KiyxlmGsg*{Z~Nj0*rzdKmfu delta 77 zcmex1mF2}$7M2FqseBt*j2IdHCz~@WP5zjpIN6VtbMr*Ts(-3I90jQbx~c{yDN}m* fiqewfi&E24i&FEFQ;VleJ;ucV23rjnk8uG283`HC diff --git a/docs/.doctrees/prototype/nestedtensor.doctree b/docs/.doctrees/prototype/nestedtensor.doctree index 8c82f164e6880941f7b9cfcfe8b1aa55de92303a..3850026efb60515c18675193a29b610c703430ac 100644 GIT binary patch delta 41 xcmbPulzIM9W|julsZ%zx7%?)2Og3j!;wz{u$uCOI&`r+B%uCeW9LZ?$5CA9s4mSV* delta 26 icmbP#lzHM&W|julscjosj2Ic+CYv)VZBA#jcnAP|fe5t# diff --git a/docs/.doctrees/prototype/nnapi_mobilenetv2.doctree b/docs/.doctrees/prototype/nnapi_mobilenetv2.doctree index abbdeebe9c4977a4b7dae885db3764c829ead6ce..83e04163599d74f72ecd6b6cca547f38298e8a41 100644 GIT binary patch delta 41 xcmbRBgmJ|aMwSNFsj?eciWnIqCzmrS@fB2-+k9q4nW|julsahLZ;usk{Cnqy1ZJx}y;Vb}q!U;YA diff --git a/docs/.doctrees/prototype/pt2e_quant_ptq.doctree b/docs/.doctrees/prototype/pt2e_quant_ptq.doctree index 6320c1b0f58aea74066f78cb68c1cf5fa0eae918..11313cd6e40dcd9dbb76b67f1c1b2fd5a663926a 100644 GIT binary patch delta 60 zcmZ40#=4`8m8F4oD&t0$S&WQfljk!k@fB2-DF6Tf diff --git a/docs/.doctrees/prototype/pt2e_quantizer.doctree b/docs/.doctrees/prototype/pt2e_quantizer.doctree index a3519271270873f593aa726cf8ac7ae33f92cacb..662072db16d72d9c94095d1966a34bf95009844c 100644 GIT binary patch delta 53 zcmV-50LuT#rUuuh1_XcwmFlqsT>=4ClVSoQ4sdyNZ*pU3En{eDZecBx5f~JcARY>X Lq5`*~0s*Ix1jG_v delta 35 rcmcbBe3fzgRYpcpLjbFh B5h(xw delta 30 mcmezIl;zb^7M2Fqsnr`<)-f^$Oy10>)clxn`(s8%Q9}UDjSIB^ diff --git a/docs/.doctrees/prototype/skip_param_init.doctree b/docs/.doctrees/prototype/skip_param_init.doctree index 54a6396b7952390b598924f478feccccb706bf1a..d927e7c0ca3a584aad3b6a0325f5670f9b29a066 100644 GIT binary patch delta 55 zcmaE{kn!6>MwSNFsjoM()G#uJPi|yXk|?Mw$uCOI&`r+B%uCcQDFyN}6LX67CmXU$ KZa&7S delta 26 icmaF0nDNeHMwSNFsTVi07%?*XO*Us#+MLeV8~^}`NeK`D diff --git a/docs/.doctrees/prototype/tracing_based_selective_build.doctree b/docs/.doctrees/prototype/tracing_based_selective_build.doctree index f129a936cb134275c87ad9858a042acb8e2b6c70..c68a7828cdb9d559aa5fd9c239eda8d09ff9b4e5 100644 GIT binary patch delta 41 xcmX@Pg6aASCYA=)sXiN7PBAj3PCn15#8*&Rl3$dZp_`nMnU|=$`6FY*Bmhaw56u7o delta 26 icmcbj2IbRCz~@WZBA#LlLi2ay$MTM4@W diff --git a/docs/.doctrees/recipes/amx.doctree b/docs/.doctrees/recipes/amx.doctree index 50d96b12f4fbf31043f3efc265ad4d26e26b32b0..d9dd517a96bcc87633a874f0db5c193a5c131e37 100644 GIT binary patch delta 42 ycmeBp#W?L1BWnZeRPNG^tc{F}o|D@dmG}xOOY)17Gjx+PGV>C3H?L%jF9rZXmJap+ delta 27 jcmbRCim~GrBWnZe)W0PgSsNJ{ttYoLDsA4*7+(wkoKXsM diff --git a/docs/.doctrees/recipes/android_native_app_with_custom_op.doctree b/docs/.doctrees/recipes/android_native_app_with_custom_op.doctree index 028e723d7d8faf2f1ece0e13ffd77d570a214b55..de9d62059341f8e153e9ecd48768a77372b3d9d2 100644 GIT binary patch delta 45 zcmeC2$~t{2D@z0G)Vmv5b}%xgPu|O@#8*&Rl3$dZp_`nMnU|>Be4laqeMZJr9sq#v B5c&WB delta 30 mcmbO}m9=v!D@z0G)bkrzb}%wVPTtF?)clrl`&&lFRUQDa>SgV+PsnRXC?rOgbE!1 diff --git a/docs/.doctrees/recipes/compiling_optimizer.doctree b/docs/.doctrees/recipes/compiling_optimizer.doctree index 7c12cb304ec78a1c01e63c5af4da5668e78fb509..2b3c130a28e3f85ddc76ab5039c66727eec27181 100644 GIT binary patch delta 39 vcmdmxurGn7fpx0!MwUKC#>mN&8I|}7DogTZYXATM diff --git a/docs/.doctrees/recipes/compiling_optimizer_lr_scheduler.doctree b/docs/.doctrees/recipes/compiling_optimizer_lr_scheduler.doctree index 98a93d889ee6a80a66b26cd3fc2c9401c6c92aee..d9d64ce5a5f1c42a6c514fe1c17564c3527c1c19 100644 GIT binary patch delta 49 zcmdnClkvz-MwSNFsXI5a7%?)YO*Us#;wz{u$uCOI&`r+B%uCdryxU53@&Z@B%{`1- F(Ez#I5pDng delta 34 qcmX@IlX2TlMwSNFsjD}#7%?(NOg3j!ntakqb@Dn_zRj~3wW0yt3k(PV diff --git a/docs/.doctrees/recipes/cuda_rpc.doctree b/docs/.doctrees/recipes/cuda_rpc.doctree index 3f90821385a2e86e4c29986cf25d4d9cb0a06a9d..926614a8ba7b7983ba8e5a1be7628112e1d2fd59 100644 GIT binary patch delta 41 xcmX@SoblpvMwSNFsmC_5tYBpHo4l4$iLaotB)=#*LpM1iGcQqh^LfTEfdEa45ETFb delta 26 icmcb(obm8-MwSNFsXI2ZtYBnxn7o!zY4csiFM$A$i3*bd diff --git a/docs/.doctrees/recipes/deployment_with_flask.doctree b/docs/.doctrees/recipes/deployment_with_flask.doctree index 7023dc53124c05bf7fe6ff0df733ab9c8dc37fc9..bc7723fda174b1b0ab38c2705cd46946f312b39d 100644 GIT binary patch delta 41 xcmZ2DgK7N?CYA=)sVW;;LKqpNCr2_W@fB2-m4*)pb4%+|# delta 26 icmdn>fN{+OMwSNFsfrs}vKSftC+9ONZJy6KI}ZSc90^$f diff --git a/docs/.doctrees/recipes/distributed_optim_torchscript.doctree b/docs/.doctrees/recipes/distributed_optim_torchscript.doctree index 61e00c5b9284bfd2899640689f7d5ce2853fcb5b..13087e58528ec70ea2e4e40a97b2b57387b9b0bb 100644 GIT binary patch delta 41 xcmccehw;%LMwSNFso@)0Iv5#~C-*Wc@fB2-=shh79Sf)j+B=DRC+z V10w?nOlHhcZS`f`>dU0a1ON;v6O;e| diff --git a/docs/.doctrees/recipes/intel_extension_for_pytorch.doctree b/docs/.doctrees/recipes/intel_extension_for_pytorch.doctree index 946d785b6e97eff395cc81c6610c0d64efc2bcce..2876e013b913697084682699d5085aea72e88598 100644 GIT binary patch delta 45 zcmbRHlx6i(7M2FqspmGbWH2%&PR?ai;wz{u$uCOI&`r+B%uCd5?q}TI&&bGU2mps} B54ZpT delta 30 mcmZ4elx6Ny7M2FqsRuT)WH2%YPtIjjYM#rueJ&#-pCJIYYzjmG diff --git a/docs/.doctrees/recipes/intel_neural_compressor_for_pytorch.doctree b/docs/.doctrees/recipes/intel_neural_compressor_for_pytorch.doctree index 358ec452f7d38d25cb34ac76f7040152ab5be5f5..41c24efa6d0d26fdcfa8118a027635f26cc22ecd 100644 GIT binary patch delta 41 xcmaEVkLm9{CYA=)sYM%EHZd}0PTtO_#8*&Rl3$dZp_`nMnU|=$`6lDEwE$)@5WoNc delta 26 icmex+kLmqACYA=)sVN&-HZd|rPu|X`wD~#Xw6y@9qYFL& diff --git a/docs/.doctrees/recipes/mobile_interpreter.doctree b/docs/.doctrees/recipes/mobile_interpreter.doctree index e6323efd7e4865351dc8f003ced66ccfdac7529e..599ebedcba990ea4798351bf337009948eff31a9 100644 GIT binary patch delta 41 xcmX@RlIiwJCYA=)sTVe~%wS}Um^_zJiLaotB)=#*LpM1iGcQqh^L|FY$pB8f4{rbf delta 26 icmcb;lIiS9CYA=)sfRYQ%wS~nnmm_LY4ce|zR3WO=n3rr diff --git a/docs/.doctrees/recipes/mobile_perf.doctree b/docs/.doctrees/recipes/mobile_perf.doctree index 42478ff2104323a5366eb012f6a33c37f23110db..812236edf59390252a70117daca13f5bd9612847 100644 GIT binary patch delta 41 xcmbREiD~{PCYA=)sUjO$3K$s!CzmoR@fB2-O4&DF& delta 26 icmbRLiD}{|CYA=)scair3K$ukCzmoRZC=V)wH*M0;R##- diff --git a/docs/.doctrees/recipes/model_preparation_android.doctree b/docs/.doctrees/recipes/model_preparation_android.doctree index f8d1e9540017cdd3b9601ea3efa43a74fdc14ebb..b3d3693005d785d13c522d5967b719fab99fbe09 100644 GIT binary patch delta 41 xcmex3f${$YMwSNFsU;g(N*EdACs#5m@fB2-etGRtcHw?zLU)vl{Tj{F0TLpmE;NI diff --git a/docs/.doctrees/recipes/recipes/amp_recipe.doctree b/docs/.doctrees/recipes/recipes/amp_recipe.doctree index f916387b4524c6763727884e2d4ff2a38d45a182..45a7ed9411d401d94587cba412ab696850125d26 100644 GIT binary patch delta 72 zcmezOkfrAl3rhp*RF;h_MvRORlg$~G_zEgZ@{5u)bdxhO^AdG8M>4MXCpz_u0RtG+ ZPSMC<&0xzA%R0|HxlmAZt3Bg>0|0yv7nJ}2 delta 60 zcmeBq#PaVU3rhp*RQ8Q5MvRPJlg$~GHm5VL_&0e&IG4bAUIvEJq{OL@4H&>+^1*PG O$rJu_ZVhAHW&i+x;S{(4 diff --git a/docs/.doctrees/recipes/recipes/benchmark.doctree b/docs/.doctrees/recipes/recipes/benchmark.doctree index 02d39297af5521e9d95c1704dd0fa3f5799e7103..13c9d127ee803f17f0e6168a8eb3f4be8199c522 100644 GIT binary patch delta 64 zcmcb;pY7#-whd;CjNy~b8I|}7DogTdJNfyP70)`hzns(XVp-$!h3lTKoAqqP!l(1PpX^xs3@F$z{l%7@FSfQk z+cn|&td{5NraxUf;o0U)S)ocPda-K~a8MW=?96 zf@6T^%enKO?%45cPAAZw#|=$Nc2hFgW2a>3_iVLE$((GrOdI5mJo>t0^246#)CmS#-O}->0HF*jh!<0F&L@6(^GbxF!KpfV)C zC^NDxW@ delta 35 rcmbQy!qnBm#M;0*^?&0=RzpU{;K}BUN|WW{r6!+Z6W%<9v84e3)CXWN9An`ILrn9LQmN`mRnMg=r50nQ zlWEz;`||>n&1S$DZ*j2fB!J~TGifqOr+YfRC7tf+>3khkNy^fbuX~bjCSOm_{O8_x z?^|knC7C6O{Xv!9t9#Eq=iGD7J@=fu3{Km7)m2wtMgR19iT+SHy3Xql2BWc{nn>$2 zgRwxWPmLzi&!%hFr@xf0(JSKqClj$$JfNoat56~k3P*x*HJW|`KhCA{$#5j$H2};A z#QJRYL(}xx_dcj}KDbI*dhfDT-gIcj6X{TeK6RD4j#_d2x+%?C4NVJ8*QfXU(M~cQ znw{$Q>y`dwG9K?J>iHN_wgUR z@kBDMPmP45YI^xKsqWA$&Uf%_(W?8GJ*<3s*#k?J&n|gbS@OuL2Ujdvwd|fH4?OUg za^KRU($Ks(ueDqG$^a? zU#dL(;3E&+vs796*sA*<>}2G2a3QJE%dBO`x@{s@PqktFu?3}iuYX{HK-OJhJB~{y zg5xwBj<-CptaGW-`N)b-Eqw?=^3YP{zGaUt?NmOs^nnLID@CD1DLYmVPXwzO!0IY} zYAhNVkj8`5Sm=8+mQ*c2=-NGzaA1wn0ln<#3aN2bxeMlKov$|%_XT55Mk6tQ(9n^D z{B|l&|G?c{mC2YQDk#a2s`R8H5k+0+@9U4K3hAb>ITbJ{{@%F1KlFYgQWL7ur*q=d zlJD{j)Gf+5IlEtt2E)-_-#T!}itnc;&oaS~>ES3dJi^$czy65zSCu}My2Qi}{a79P zW2aoy=u;VX`jkX62vdwt4`HiX4Fnm7FQN8;v$nO6J{|Qin56ZOmQcAgMkFfQ=MP8I zq3!w%JS7MEVa=yd)A}rYs_Xh8T;XJTEBpCLe>{pmsb10_?^R)Nn z+5K;1_r5TCY{%Hq*T=VPA33`@b7aHFg}oyeE{&#-3H$^T>N02E&c3x{e9P|avDY%M z>=+$-E^}hf=!;KfpL=`!xi>S<=$Xx%GAEwTzP)v9@VOrkZV&{$>+P8Q`9~1^5AOLR zl;B3eC-CRL3jT=B`!n%EpFTP?IC5@>pi4ZO&HoGF{LFpx)IH;t?)k8-dp@7J@GQC^ zyY=+={=u;$>qlQ3$_%~8c|S6IB8!)U&yBr#X6&t}vS+Cuc!!`j>Wr?-=$kTozA`dA zI5K=3sAqQWMJdsp%954K#$SFVGd!H#zYXnJI_!OD+2rBBgDJmu&qL9LHw#|cco@y> zKPIIdOsmUoeR|~F8<|s^xr{q_qdcT0qH0p%OwPW1ID0-ldg!cGD+K#8TQ_H4*<%zO zJUX`Vf`x(ab+eLtS|#RYp=xa=eKCXV#!Ltv-eU6596V^I)R6WIzg;SUUwH6jXugG- zRzpLQTtty(kM25|Ik<6b=;G*wA)!w8mnKQKaguH=izKL)_It7hn^7n>$+#ODl^NPL z_WCBJtBXy&y1EqDF!8iDoPaIw>Z%(%dD@VbbB9NUcVwQvFmmn?A6m#2t2E)5?vCv( zFj*)u;oX4&VMZjJRO9}LWwg*MBqo9<(->wZVDh814nQk5#G*sAMbsj17-U!J(->_g zAn_s(a#}m;N}D&&z)A2!U^a_k#^0J?8Gb7!fZvUU_$=i>FIXfG4W{@CxwT5GkoQ|r zQwRyTRH4r?I>px=i3QeJyXKbuaK93cCX#+k4jAeD(_nz%^_D0lX<=*%m0%OijP+?f z@DbGXHhpHqAMH)~d*P^FlL)2txuI}xD1!f!KKP^*)1Yqep>F3B=-ceXnQ?&{bMF7? zhaOxZX3oYunx=yfD~-*b=6cc9?km^{{390xlJP*mM0SILd`+s`>_W0YjTQ@JHxxzf z5b1m|JCxZ3<$gAM;_&$KLxSAdwwID5Z6EQrT1(THYtu@0=xJGl*`Yg_sLfNOh?K?s zNj2z;gb~Cs9bMsgROl7-iw}mP&+@bWq0GtinN5eY+XgXmXD)4mdw_90bM{$IfpqY+ zuTaAjFRLn2$0U#yuhveWRtfVWXAgBC@5`mjYexx_YV8nxS?3AbF}#ts=3|+mS4J-G z$mshV<1!zX`C#iL^1l#FPNci~Cc&&~we}}~;Fe$ysQ5qARGCd#@#NFB@x7P0qK#eJ z1Eqr*9l5Z7WcbBO2c3FdIkkD^sxm8?ylN+=R%>mgX_vfeMER!DWUA*l*W+$^lO!y<>m|;l+N=%Kpz@4dX ztrtc`x`}JUef_a`l25=Ytq*)QW(bPnPbgduD|_OxK3?1_I!iI?8P9bx47&tD+_mB4 zK%Igpa4a75^`xRau4{Oi?^pA7hF);NP;D*PwoQ8ypZbiT+T%|}l4)%Kk2$l&yCx+e zZJw6KvLu96uoLv>E(j8{MIp77Gj>&S|4_mPSKCk(uMi8!=#QeJOM9 ztYfNT4w>^C%+7<8>ajLYTUkM>7FNMdkm7DhMWn(-Ownyk-qNuEW9)KORx(Jt6U+fV?etZa z5o(n+m=Su+W`s0nW^sJ*#j#7UFxwGd&+gkYI`rD;p3RvTj%D_oL}H5N9d{kh?0znD z=tX3*GP^fq_nxZDY=V6{L1yXfOUQ-sBo@sZ*w2)*8Qvic)qB~b$-ZTrefLRblw-^u z2jc}B!M+N8RyP)=sL2A+LVG0bpS!yJ+>Z&XG!5}6l%`-QE3hd0=DE!FW0|ebjlFiP zqY^)Mb*(gfSmFJ6?^*c>t7r5T&n?2kUqw0VhXe6&e=@V>0y+XY6P~3+a&qL%Hkv}8 zdwul4`s{%%qbDxbj2&H%ju?OWAbvnQ4xg&4tM<-92t0D{5{~)MMK=Cy2ZVd@5}}{$ zf#Ey3eXG#t!LbQP!<2c?&l<4qdPkX@km`@h;Me=juKex0;TA1Kn2M~EEt-6Xd(s)p zYwQ!sx%TQ})TuPZ&oM2EK^t67E!VK3m|A|Mm;jsbOO%5`afn4HOLzr!ul0%ij+BEhu-A^`sX8o*>hxU=v3yyUhco}=_~w*%!Pxa+ut^P2-7T9P0cHcRXNaw2+lFonz!l@ zy=p*nInrInibC{mhv>P$+mu3=70{KujiOyCO+y#T&vSu(PUn!jPcvCtUiTguHud$X zeX;m}rF*j54`-g<&QrUY^9N{kA@bU62_f|pTTzIYIbGG3zpLiwHYNIMt`X`paBy_i zT`s6K>_ofhtOnUxuBk9PZUU9jDZFiWo#;pT78hi>>%>J}U8#iX3#5X6Yxl7Qp{84o zKFeD2*H{ymlS*rwARyL{4u=H+c@rto(KE#>M;8ZN@WSX~pXlOGnq6FyQnNX|tZL{c z-k!T|?MC^>U64|!TMM_M{Sro2`xO~wn03pb@dTQ*%tfWa)K_J{ek}Xc?hY(fx%MJZRG5Zk#lcbR#Cn? zz@-Li+rdN-ww1mtBTG@wRa(fPoh9X^RN5LnZB0U4-K11_1&KQIZ1$Cq0c)&Lbe`b^ z^xEPvtuiP)x_<}$E3(|xqS`XHGSTXi8tn-0h(i?sH~1)6(s7cBfd8A zj#%Ri`tE)*oD3<3_SBe@=*5rcI=d?$c|s zmVM!954Pz<1L}fWUYIJdpK5rBSw@jRaCq6f;2SQwpp39|WKuHK?pf4UmQ1kCNnE zL=X?~xLJnmOngLMr6#shz3{4egHaII+BA%E~F*utB$ymqY^ z1!#r!hYM3+8F7o10+0TO!?s+unfqvoj&a) zN{Ve+&_|v>;n9Bp7434BuA!B;M>bHgGjC%poCwFAy@U;7P~FAhmiEN>FMsLj(}*76TtL88v2;n5P(P-GH4=$yOV-yaW0lQlFzde^7}KL1+m@99+& zHMQQPzdNGVB(Q4H*FCU!L7+e7ONRSYUowUbWeYHii#>_tbzeBSxS_sQPP#51Ks(Vv z7etpaTUtMvUTkmhw3oGZkXNu1lypH*f!WeltFNZtK^cNAXR$w+FCalI8grML(f#X3 z_a26i#h0648{A+vZ zx7(B$%3&*L0KiGRimPg^eGvA2Hg| z5r{?CHU?SQ#-;{ueSLk(fQ_g2rUn69Y4EnRx5+17p*|066KpJk1HWQXUbLm&0lTff zUP1%xMJ@8FAZ!lWM<`oiH#N07U^lneV7EyQG0;k*4Q~#$Z%rf^jpo2sn(DoanidJ% zz>|iCX7NNkX=#;D1@RWV?)E1GAzw5W@8d-qZ2WF$_O`YQOxv39)FS)BiMPQC6QB=k z+#?9`1=V$|Y*RzKl_!ARyr|K@w5_q(+hF#y6E=J14MhD|Ag}t&W_Vep-P_nGWe~6% zq(rvWw|K#QAwzj#8$kG%!F|=w<)o>p(Tcay=xvoU*wEPGZCupqfL%hq6KVu!wHQq{ zcw1X#UjlYxyWokUEb_K5T4aOW*wXSY>%25V%;GQ$)S-}0H@Ejy-ex$sS8S#*yH{-H z6`Og*W{T0I?~2V-xz}d3nReIp6&J2+8PlJgg}m`QTzKOR4GnO|+eO%-oGNyrhFlO; zU<&lQbqch41Ge6*iYYkePVp;PS*^wuoOu{cMf`E>iX+DtyBDyLETLf6364YwL{dRj ziS^T27O^;9U~7uP(~)&bKh9P~o~bt;OZ8*s3tt4k`q-~5SJ~B7Swm;ab>QU1Z~~A& zp9%xK5>G{=2r;ws7)6+xXEGg2u?#3kUyfaRVSI~jY;Iy{E=px@#YTZ68^#YlmEBJZ z4#qdUo;`57E_3MU_(m3WW=EHeZ@e(J{i~F)LKJ=H>CvMn5i_Yl1bgJ{E*V8$vHStg zy`7y1A!pMkv-gpuBE$+nLPPuh8PH{l`FauJ1@muHo&J+p6R#Ed;;E z&VB{K0KNwuE9vFmBWHFXwh!nT{Vbqj6$+0|XBcHh5F0xn&h6vx>m0B~hIb-)klpbH zMaOYU8#}AbNEHm90JS(c4A6PQbz_5icJQ2RoYy2~3~eNAM=l)T?edKpm>q*Y8O(q) z)#GzSG>B9z<{Erv^xO+5%fcTr_>Ob6#s{}$cYHakZ*!oX-Stf7>~3rJuk-TCq8SX- zFE?bEf%8y8>vY~8z`doYA_x<3Q$b}hac48|cS>lyCG$vlLCLH1`f}CHY;yv2OLC+- zzcve2%(tzsWU6lB!+7v_6X1dWT{jjclKOklSV=C=>gtllOR#o^@y0}z@$;t>;OFhG z45HZ(*0{Q{pp+0Pu1}Djd`4D~I6wDC6A4D`e@uYdKmF~o;U+iq-zKU`%FV4M2QMK) zw-g=ZO#U%xs+#UP$tLabEXy!yg41oUOVUGUdQg6$t4rWLjXj$H8Gav|0Dhk|5?`){ zZ0V3<`73udTvf|MpSvX3A=DIWpR6vd{u(wrj_o>~x%gc6r8h^Ne#0}@e(X5l71a>WRdg~PrtH7uemwcf?l;q z&a!$G5|%dKF{iO-X<6~wN|~#DpIW!GbI=7l%ZO~8oScj-@-#Hd#ntX)gjcZ>wZ{cf z1tJ?~ZNq}cNbc@FiBtJp=XcAjC2`jd0B4(K31f0}#e5d*f;<-Piuug7%>`BYiup9w4%vsS zE9Nt=oA8@vKBZ^NW^Qk|@XD=I4Z5@-|Iw2dY_6_l5wNQ%Lkni2Ee#^@RZbNA4Rpp>*Ho|)PuS;;ol4l}3Sa4=xxrEBj(95ox zhkkb@oxH` zwr;wW=lOWJx9H{_7bPW*+C!YhD<{O_U)We|59t04_O%zBlo$WO9@w=%<(bY~BRYBi zmeE}vO2PO*#Yn#Ss>;&g+x+<2F|$9p#xrj)Lb2^3!AjuPR_wlT4HMLv4zLU-+F{mX zp9CV8E@7JB?9<>$z~mtF1Z*b&GZz*%pRnwhArKRQY19;~Oooh2Gn3*cN7Mp~4g;Wl z{JgaWqgU)tm1|?+AbPZ;gKtym=m_^U24WH48Z{nOBX{-SUhw4IHIZ1fw@zUXxZ)c@ zc!Po_@1kZAqgE8-$z{JMdey!@UsK~c_Mfk_Q^IVlH}?ZIdD)W-m^tu#Yt?{+Sub}5 z5uWVnUD3_FA=O5-*nquRm8O-jZdMUWC?c*`?3>YTCBClMH~Stw#bMiB+2Jep?TUS~ z`yh62!~SGgFxu)%`+JSuc5dyP^bMK+`Z*W=t99;FI3)V7HfOQikZ3!i8SO1)MW&1@ zc6y>N=*d5AS~25ln?v5o!bw7+o@5$!Q>4ym{=z#0~9nGjqv zzNt?T0J`Ukj#)rX$Tbh{qD!iBelt;GlC-G==Pe;u!UMdn(x)=c$R0GF^I+;KIJ#oy z)svIKHcw-{JmS*ToUol&krXgayi$S_g@bS_Wz@Z-Adcbd zedL*G(NVzAHL!bRJ=Dh?_7G*X0pLliSQ{{x>w>^1Ls?g^eG$ zuXBS5hHmrRkPlbWqB<{%C0D>W3~|Lg8a;%C0r>Kk7h~k`VBL}+*v;r6sz}4g_%K?6 z57yB`V9Sq4UU5C_p*>3Xw^(*rFo)ynO18=gWNnb1$oGnyA}KtxhPL%7BA#7igwn(=7);_&^!U>`qmM!~5tEltXD12_9qL1-2VeTif| z98`_C9BQ<*H7W+QoF}|!q!U!~{o^pP|2zBz)h7!yHrHFA*`KITYXNBVn?Y;0!8g2V zUQ`@fb7^QnlhTG(D>VBP8nd4%LfGlQ+*U^{jsFj#pF0wP+K1*BbW-UcA!Lr5i-U2V@YvkuZEldW4p!9R1;XEDuX%mT5s}W5C>8gxEC36fJXt0zgGTz|cv?5_ z0ajC+D;o2Hv90)+2rPqh&eKeZUuEFMq2!)_!f`GSmY~ysDW|3UeV)0eLnbh5p`y;} z6P?xC6(-M9F|D!xmOu9=W*A~taK)f>bd(#&5HcgbdGB8_D2yQv1rbJ5GD|4SB#i)v z$2p(7bgVohU}$fFt-a;J5_CE(0)PKoY*3{8!(!97y71SmUTDG90xLS~{!qEW_Lf#p zW2-z6-c_*OsA4Cm!39BLxqu_s-f2(OP6-EF(q@*{Wlpq2o|b1gizI4qXc388;}Rp5 z1{6t%0>4TYXb*6g_A_O}SC>~y#G+j| zW9am&W5dU@`?lZ~O}?Lp4jB4qiTak5PsyS{cC|z{U+M}cQ5o0>woPNtW+P1W{Q%-J zJw@%Y^weAjeUkCI^OrnWx=UI;M0zB8qx_^*Yd!R+tlbJwJ61)~!npH=65O#)XfEBrLnP@ebkDw_WadEHyk+ zVlpg5GcM!f##P*QhNF1do*rDacVHMN(&EM!)1)pa-I!_cbT_48caDG;)=-FjJ=yj7 zuopJ=S|?#<>&&2>EWu{WYBIutnOjeJtdaeymsv3n_MV`m}H#64mKv)3xi< zUrN`6rs;QLT|ax-(Sd_@7UDmoDsg*7U}3ngmq~$&z(lXNKiW%k)Q&{JAHh-7jV;RU z#;xTy5}=!&NITa$=+ju)^zxhZDXDlkt>07-a$2tpz@~>To;WS^nVD1}AP&c}|>BMRpyNmA@|`D@6t$Eysy#wK#DF{HIb*8}o*WIc=?8 z#n9jbo3jVDa;+DdaYO!JCCS<^Is5;OzFfy4$!YtAtihbNh}|457F)3ucwg3y*viU* zWC*w4z`iJKaoxj#c(^~QWGu+bz1Wk4Vp2J!f(hBx^yQjL5p9ii>^I5DQw&){zUbnX!p9f#bv#A3|2DEl%rgwH zu!Y^gXR^gEfw#Djz%qQW_~i7ey~Wei&?*d_t695I#ZHyS1y#ZabLiDmcBAJy4HTMz z0kz6~nn@z8EhY*LEl@b}05< z=BI{}RUB4x6JQxTILn5@F(aHB>RTEZQn-DOWtB?7N`#ZDrypjSuHxjht_>%^Z6a5V zBo<=5SyW9D?ACV+#VZ})t^-;~-rfxvDX5^6Q>?s8)Nn~(eFJSl=fAS8^On73v^ll~ z_v9I-d-WB|bH(ypu{>-9$vc3&H>Ur0%JN8uip{K+x$pq3er@4I)E2vkRc0cpsbP_) zsj;l1{6rNyL65m0sDMkm-|o^rF87xr&%)fK0Nul!^inm zVwmdlN8|Rb3p+BePX2wW;=;Li3IE^n{H<+XXHrG4(jS^ZJVRV{h>m^NRnj{t$Ec!S9u$+ni`utO-*H;*)OU{{F&@L zS3-7*L~9O01f=Fjd%2^vO1cAk0)de7JNKpH(LK_?Aw);WOwfwx%iTCd;Rcn zDZ)!uF2fOJnL|&F?%7<3&Pro5{@Boo(Q_L!7mttbI!Rk~jqJ*{L7ZO7cL5{PX`Fm^ zacg$d!8*ES=j8dZEpLv${7Pnc7*{TWdDa{?pj0A*4ZOzJU&?ISiK}!*kM7KF+?3h; zRvph;^R2=78}|ifc5le;Jtc#qzvWb#Qt}NhB^PC%^TfM5b8v*rfe;sLXnb_aRaXg1 z2Sr67rbau4V5oSfXK?63Af!?p0Ard*$?97&Loed2I~vcnTtE+CU-V)A*T}iU*}ZS# z74Mpw?1{tU#}DCN%*^i7wMUbw-PaNW4 z=!gA-BNx7&-FGH)emCyZoa$9?KN%w?-12BcF$q9wZDZ?n<+T!@CbeY87vlqw|E49&59z*x9fu? zL?%TaILx4_oNM+Ty4mnN^U1yFup60Mms`T5mW|3knLz*5m#tgUbm7L(vh`B%!1Mr| zsaLDFbDYfEU$~&^C~O>x{uzq$z%dP+NVD3F-_u=Pu_#|{;)|>P;D8$wXtijW^Lr`V zM;?OJ^wCKfCwJqt(CofbauCdH*_=7FC3EVlqvwvp#lWE$5|Vj7h0{>&`JiFQ5Omm- z`MF36L7i*ouR}hoDqY)`Ijkt`%YQ0uUnF0_`^()!CI#<1CXjE=6?eLGf^?_C1;-2N zPT^*>U&77MeuWPj5gx&}k%?vcYPusKa|B+?J;AY)Z)Tt01rGzhDfQOr!%(Kou2)})7G)Ujbkr74Icz2#+2zH0P^Uevm+OGm}`3Oy&UaZgyHhQLl3p0 zhpf4-cWrR^eHWszh?`NuiB0!!v>A8{Tg@?`V39nu6_zNg(LZJPY0Hf=H6hB>T-JgF z%!pYPNfaAQSC`l8YPa>y#(`;pAd0;KWg>eX0J%4Rs1zsHrZ-iq5#&ulkdV8|C`R z_r75}7kgZA(HeX#v9R&2$;n1DlIksGE#Yl4s@SPo>w+p0=}IVpLpCniC-cUtZ!BQU ztlxs8@(Rt<;XaI<+co~u+nMu&nWH=SBn%2^%*oC@g((o9aBm-f`JmKPSUov9(me0X zHVP9ko62Wr*0qlqZ9gdJNOo(R!D?{vDf%jVNx(Pk;-bB7nF{Bf9{2J&D(0f5(!ohY zxNz*`HVY>=X3nN*o_y)T=-$JbZ95z4F@NTLQHhnPw#w*?@pI3Q4IRo1o=1P64{LKK zsPAdJv~6I9L8xU&ldr(;7np$C$D+A*x`fMDX%cG!V;1ya2`wS#!5DFPd%z2~!<5Bq zv&r(SUM@P{ngE?QD0#&~%DrBofW+C|So%#;fW0p8Gn~L@P_)PdsuMFEel-Hb-Kiv8 z{7260$n4owXX*;GS4Iet$JAl#o<4?y1f5!-eVd+eSgR3o20P* z$OV%OVdd=s$0lV0G@D&Kq3V)ecLMMZ3BcdDpv{#4td7EfVya8QLe_;eEDhs&tK;L( zznvX=Ym|*c9hH?HW%SEu$DjKeY$117y1F>4YU^mSeBuxLn047Bigvx*g|#iD<{~%ijO1w6QgxNa3 zU7p6*1GvBIjk?TB2WTiA+BkCVjqyQT{xJ;7WuP6^aQR1e+llN;Un2rWhKUpo5@ZPX ztOOYb3eV_cL#Hwq_9E_@-8sZ{q{cFnT2Pw*!Zf=nD#cNoHj9n4Q}9(H2q?2r-y-Sy ze_Z`ahMpHqR3tb#axSS=6QYKhm|+057zp_axP6Eb6ROZ>!RzjhsC~3Mz`BLtnyxOv zE&5Y(gAHH{9IVi%hJy|DX0|HyQ7m-4^@+4TEw1*2gK0`;wWn!VQwT-bJchM0wZKHA z{Hn5DcNXH?)Q8tQD9sa;(+mqy#fsVkYv(V!%D#sR>ku#fH=h{h;2B+Fk)#>o6*~NW z-ix>5OXh}(>cSs5B!uZgV-Z~-U1_i?18)+;=GVo{wS++|Y1iLNA(58hHxqr?*(?_jlu($eHb)HK`jN`#27Hg){sTu9Y27iCmBhad$Ipx2M?IoHOUiGJK=(hIZ9w;JPS9Y{lPWJ+B`%b z591>=U0X$eKY|a^s)IcC?+90Zlfso{E;4Iv@HDlRb-H(xQAOG~CQScSf(=C?@ZYmV zSy#7!Hca8*FVOUp^xYOCJz-PuvD054yR?OZdMz@j$E)qYA`?tw$1c4z_L|O}DJ*@# ze0CQlsj$`x)}~3;!BSCUU}E#Ry3FRC2I$>KaA~Al;2BoBAXr!%nuMR-Wvt{myII=1 z#f{S9!HNM>s}MO6aa7_Dij@Y~$}61HpuaRhkcd(xCEiqp)QKG17ql zB{Sg0Iuwv4!xsAY$x>KjXXl>HzWgeJO{VqX3q!ajbI--To`Uq5Ez+aKm!~$5Z8<)6 z_A7ij3ioVA&L0>be1<#_*g9U+*q+W-fm+w6U|j_wS+H~z>)O3<>^0-=CS2-5ps}!T z%h{1jFK13XpV@k9^!4?lFFg;#39NXWil0MdH4%;F(`O2eK9Sn!qVhy};`_`8uy0I__#k4Jr~lk3+4l=7+3v9;>oa?vHix?1Pmd3-rzIq8=+2z} z+UU96Jg@*!9=Y@y*0Rz~KwR@Mbh179iKNuR|AK8$(^p;$EKe5V^FfBylRju{VSJ^rH|L&lv%*jU^ zcDS^cx5>)s?tZ!OeU~zK|%b8$# zlL!~fg-(sN9D?0BT5RL4IG=^H7<`QNE4#_Qj_Lq`}+FLYSRcl|TFV~|MZPz;`Yq0Hl|JxRO(idde z5rxL0yS*=r9@~MxN6#G{J$E8=;>gIE19IGTQ`E%wn;hT&EL$&UaH zWIAmHeg_Bs0j(69=jl_U{ysHb0Dz7lcn>=sa8lH>Y|#&SZ+@R46gnf5vcEq`&T_tr zt;PBbqkAmscD?aRvG%8_c9KZ#XM`J+a9FRD9TH40CrRRHn<||rKO`e0|4tSDss!WF zj>z-;1#yNcWZq3Z8@i0$0jty~Jf%;?{P7?yuESA$tJw9na?VzYlkl0;c%K>!<2av% zNd~Q(p!sMnKwgYb$g>byCCl{LDZ3SO4B6HG9=OY{{G;~~Q!%fpamy@=_PDQuj-3nI z-Ds41pxRHtM14hZ`%-4#SygTp!`Py7D=)X8ICStji)?vv^-*xfQi{p5R8tYg&!?jw zC1OZNwO@m4Og9bsu;y2Ys~khjSLiuj&YcebU((?jCA!+Z4sXq;8I)x`x;dlop0 zWen0vS{Yu>ot60yvNCs<=;&frrf@R_SD`TP#B_`;`I{wo+_5T_^hcC6TMlYC%}3Pu<~1gHC|v)C#??+hiX>Lu%b-+12JRm7A_&WhJs6& z;Xpu={%}-{TV!JOtq2=}F8LddInTi*_YJueID@(pLADNoaYxs^21~>V)d_wyX#i(r zc8D9u;|8C=7UeEMllkuMuFA>@prfULkQy(9&u940N;H;KyJN96x!8pJ2cq4%2(j09 z^X1z$+E*a8g01?>%S|}fJ9BpWHBuGox~ug0g2!M~o>{6WY1^KniMPz&lG5-Rfjf-#O0YhHLXS2#4i{Nq(l4I3_KX?gM_9-)AbpkG&#_(rnPSY zhCYi3U)LWA2g1qpR`x4Gw$b#q(0+Y>t{A2DnKYZ?6YHk7=I-|To}j-ypaz01BIFRl zUod(nB7{HBQ?pzl{54<{6~Y^wGQ>;=ZfT&3t=)}*_CP~ReN$6ULtCJ+JJ{3I5LndO z+|wRxY7exv=13r~?GVE2NeF*Zf*Pw3vI^Ne74i$=O}Rp77}gR}Xdi5AETe5t3??_8 z)^C)c`5TYA&fnJ`Q40b-3aqW;x!LjB5&UG{?8S!8az|v-;S9a4Po?l68%+IX3}{7# z7*zF}V0hF((zLxnWXgQZwtOkA-98r!9QOmIgnnb*g4nc!VuUm=mS=F5Mqgjnbsr9; zR^tOouZoeHo$22_pgi0k3P;y@#BVYb2(HrmUS7xB8%~B&-QI9a1Uu~$I;|17vLU5P zzfHg@(vGQt?utV?o6&-s(2T3*`3y-BGo(VqT4z7?tbI$Mgykj+xDE20J~H zHJzWAn;`-WDTrKRq-b_;K zp>9SrvsgzIl=~Zn+(S+)ptq^+L^6!oCQdu|A-^1shUrg>3#mT_hwY09X(qoYZ_1IE zq*sDr! z_%+Ibh(D14%4pH3AYaVJ0$f@j5>eNxk@WIw^vV#_LOf2>tJHO2@CsMYq!Q-aX+gC+ z)eCrY$x{cfPy#2S_2EqgTSh@d!Iz)QZV&XqP{e{XGuJCp$sW%l53F5U|A_rZpBj(H z;$n3R_)MqX$(qQzs2#31B7-OGNRAra7`RU?T^@ha8%Z>B^nZ7R0u4J z;D*7pJ|}|3A1PcE0geape2p4S>(@cFW61IZadu8LNH&pidOD`vJs=Yt2~!FP=5-xS ze&+g-)byFJ^lND6@0?(&uiqyH4~%6mSXv^A1Sr7FV{gFSXo9-meAS;&Q^A;T9UPrb z{aU&jF@bx_C>dqcWKserhYqJkLX}|og5iW88=C3z4vysvp%9@@=(9l#Mh3c19m4^n z#wdnUgmC{y8m3@wzuIp)O@zyAdeiMk(GuSaV-V<tH~bL2DEk|IeuuYBI)mj z5@0+^FQ2L30+H&&T_uKg$r(37Kh(k7^lFAzIGRx7Y*fTF6I=>HlxM~LPeKIwBUJC& z!~jAr>wF;$X%QOMFjhn;D5uX(ATgcveLe*RPN3#>?3q9MBDl-N;NdNSkRO<%pSWV7 z&&UG#D6O692QqU(2eYt-!f%6^#BeiV4?0^|fcaz-U;!QF*hq@T{9Ns(GV=rB=<8O4 z(A5E;5K`478o42WQfqwJ+8&Ph{J|iuJ0VlC6;oM2M*l-9BR$-HZPRCS2n>7zwWp}j zwP_rbsMA7z*b&SJAcJAtX9ulF`jY;5uL`>aiK%jW8+6$n8}Bq4A`|e1tnLW8;Osg) zK0dR832LQB{zBeXI7o$RLhm4!a@Nm0@h8&E7x$<18C29L!N-kvv|VUR+fE-hBRZyi zh(31F#}4{9fuxsqoIZX;dz=1|KAPyTx_bKf>I{4g(Z{_s(l4QppVP-r=;JsR?Q2Kr z<1hg@NFST1p$+u$D|-Al`lzMZ!pG^uPamJ74>r+Y(}+$gyc{1Xy@JrEI0++>5wMlv z-^pTQzEbYbtaT zV`}Kzj8*s|K840PlYWml#hCOo{l%E{C~=B0>BsaJV^S;ej4_F>bLLE28EPIEf7a2ZngH>PU@L8EgCwA~+6p55i(MIoNGJIXPNa(T9`G|#?U zfMEFwpBR`hzuOIf z(ktP{1!5_3wbJ^mKn&3xHe|w;pK*`z{#hF4-T~Fi=Os3!A0pSuABUG@SU769CXc>a zj_ffMxJv)CE?&-8%kpiH413?^+LyC)FBn-<*9q@ys!dR{dVCgodZ{*{# zbt$kzmh=2%m*wx3XxPDH-u^`Sd&m1O%RenauHf_7<>vGMDbcWl&(!|pWH}$NAOe)#faxYsCrUZgCL0kzUA0v0IY1SPp~ zMz4`34mz!V^|kI?)9XrzF6;dCgA|exu{6WQT0S3A!CcY2il2uGe^`VG zBIPXCMF_5lNTj(w!UZ=PN>C}}*;}Gq4mY$O@x}VsHTy8eULUN@ zd)_bNzcRC~tm+n$OwW_5I_|G@DpuDpW&`PaFPQn_|Hoi7$^ z^`h;z{X@lip;fhOUijzFVkBhzrL%@Z!PUF9q`VzEM4s%P#u5p_#=4EJ^qC4 zmh9T*6ZP8W@p~ny+~Wlh@3`0U>dkV#;vR3>g>u6--;HK{qg=6@Iq^ff>3VH{U!`2L z+h?w7t(UG5lm?|1SMNW4-g?972ToaUI(gnY`N-;nXHTx4zUSlv4?JewcWUL-!zWiy z-D}00M+Z_a{N|(oG<9>1K@9E%^Ud{QnC4e>?ua zqx8yF=~aeKrB|2kEG5re9qLPJ^+D_G$up;{d+tBEa^I=*Q#}6G>iwsz^AA4q@I9xj zbC0dw|KJLDcUiE-xIbj8FxCsBV7)Jd^(&7J8okE$F@9Y8U@GwAslag;PlEV zYvqx%cb|F~O!Dw4>%P;Eo?5Z)KJ~zZZ_=zV;HfZH=SRWnAh5c^-&e0ywzaw-!BrAo zt9y3f2j97;QZ8JymLZADYbCpBTd#)#x}4jrG;_uJR;^Oc7p082`a3E-jqSVE5? z4J@x@TN|xP#j-EwtBs0nku)kTGX@os-)!a^rRNioWNF+#AUfaHbk}zvZZ)Rl;f7r+ zmTQ~2%b-vY-@A8CGDVOBW9g}9?J#|`{Z|YSxi;n?dbFA^*V?6L{DZjiwj0pjSJSKg zYw&4bZh*PUUi)eOc`M(n;ZJJk<(r!}6z=ROyw;|!Y)SogtsJRw|5ywTGy@&yX#v{q zsdEXBN&t^il(haW)V~yDDWyasg^|9PVkyiADNnFA@WKMkaRTN_6kPCme;=sZ#FSO? zsuiY4-n2Y(2#`qgkNF2AsSR)W)9JL8(}b7f+()+MJkV?A@%Lju%iz1$>ds1-U_zdB zQ%YaR8>z-NWBdusPe%z;g*jt<(6tL*xn2thn^0d#bZ5U;_9`I-cKx~S)q1l~vd+mF zT}=d?Kj_gf{RZCpYvQddrDR`1)4+TNkAGSr38W{0XjK~smsU$<*Ajh&!fR9@60TLM zZ&^@@E!VabhKdYUzE-rVcHV74-IA*G%2k_gCaQL|-rR<^thudfgQ#HDH~5h%6lmp6 z*Qz({W*$b3tLK!lROn6AvM>74A@e{ z67;+t4Lp*sa78KHVYubo)?!g6uiB=@z_P zxg*3P_pH_-5w4d9SFEi;>lI3CYpgxx)uplv9f^Cy18j8GE0y{d>^11nDh9nMCNDDf zt_c7$7FGB*5IU|A62pQ?=U}A_;mub9Gm<~1@zFG4{0wBW)tqHO>o<*KB%DQhqj)iT zKko169vVREMi=CqCA8Ig^129B6lT{jW`b4*EaP`}1pIF4M{Ug#e&5Hs^u@5VVqdkk zC3aQ(|4Ot}JOgTt`Pa(9$*ouFg^R%|gSj(C}~2@QcOztHYf$K8U38 zGrZy92hXZix?Ho<((}BPSxn8&sUeTwAl$*X#poan2i!4w7$owqZLOOj^!K~0FN`YE zH~Q!xlK#Fr$g>-+>f-+Me5LVszJ~}o;k4;1wq7M2^j*3I>!1|#)pd3aPB)roin&S| z-XUW_D+^`JAERG#&<@qW&;D(vtBrcovq){#?1JsOc^Gw-@_IAhEW;JXoTu$a=cDv` za=?ubY-u{njV7EQN817VMT^dHboECEKkxhq;WOd<5Pby~BhE)~M=P7#Pm^ME$V+rw5IEDZWV#4|B!5z{B z$bbM}8vJ}r0^A}90CTfI9I(-<@fswLIcGcC--B0a_U_xvbdOt1IAdrSm$9?x-u}VQ z$L!w3DY)m#HR>8<8E!!8Xs3d@&Gf8S3)3lnc*3y;BdN!17M*(e;OAp@st>bO5F$u5 zTQ%;nQ(t!zkwNrd+neJ%8jH5$!?iJlS|X}WI17V2t_d}V=d**K?@1^#KSxb0{}4@g z!hv@H?%DM+e1HcKiP{*`GqT7Hm(yJO}&-hckSeI{+inHtCa7*85P zzF83RG5Q*6-hWiL;CX)$*y~x@e>A*24XsYK?LVcKCBmjm^D@<4TT76KXKhW*7+9d- zmsZ7g&2r?HKJbl^?)QBRBe1FaAeJlP6+z5ZN&`R!Xdtypq4$AKtA zXnmrIrR3;nz&e*dnm4fd{jDS5xu3_v0P^LHf!H1nj-SF2!ATJ}Gyoa1?->EJF~by^ znf<`cE*SO};NTi*87&oWW2}Z-M$FEo=4MoP<18aY1Kk5A$HxYcBM`0Bn960uH?-EB zO=uTwXkLQ9jjUPIOlod%7!DB) z!X5gx7#&gzO~uQSL*5u#Xx=79HigAjN-wq$Wl@VQvjU|_MY2J!m03RMa)5^{x-_II zqR#^Ll^INM@s>s7e!Pb@)to;E#emWOqOYN*xj)e@c$#}4G|k=jfbAiyP-xn`j;jfW z37n-Ac*t8J_bW|mFbOCF1THE(*=TtQI6JJer*j2P10Kf-b`H^W{qIEA|3-IY7?0@+ zh^9y|v^JbuOwDJ8;&pDIQD<#<)z$r{*Pu33m`Ywp4nSBN-X%QYC#0@RBUc9g@tMWs zWP-=TwN6OY*Titul5ev$Mazi zT2x1oeD~2&ug#{d-iw@W{tT>ehH0ZI>AVh9#858L*H9X3UbkS4_01uTby>ya%-rr; zb}heNv5SZSH0!O+62}4%MfH%+W+4m!A8eDo>iI&!Zg_4YZ(+H!j+@YOl#WuR@SHnk zxphQhb;uP#Is_Idq6d|yRowH3fFbQ^LE8H?p@z|jYZw$oVvu&szh)h|I=0ut&l&dn zeR*vyFH9u3GO@5pS$ViNK`ELq^bgQM%3rpez%y%W=cM7R?5p%W=N{qaYB+Udd&*iR zH~slSv)u5s&jq1Z1jsFmMg-{;SeVu@-jr8lRr2e0#kG>IZR14|%MS0rul23T*Y(2V zk$X=vBJ~=;UMgeiy9c+di*~aHu&)!kWX!*g-&rPSUw1-*kT*o0>2MAI#qiYIP2!DC zyY5)TAswY{?4#g!&_zBoG#z*tlHuj;kuVgc^%I57sv=^NepWV<+rx{jY+wX%sX1()vVMQp{N?Q!?xW5998%ito9|(idu0sY> z3arC&`I0VLSP|{Ih<-NMF}*%I0=*6?4R2ui=AOo}udHbwYZ1@CF9s4aO7>oUG%R4* zZj2L0RT}rB^Q(YM;vC`0n|p#*^u4i@De-DU8K&}ojnP4wmhkKRDD>dVz?HqGNNt$( zeF~Hn(Bh562A=;fF%S)nL~qdk0b%99hn->{_9H}MpTij#JyidLR~P> zNq4Wsfd0(_`ZvXRRQCBz)FNP7hxzbcErxC>kIfHkvYdR+bI?j;cwcC@oMidBxtC7tYMgjep0K~Sl*mKCqu8|9Ulgkl$#CY52HyGMi< zB0SQ<7{7SDR01!}$LM-IUb=g24c0=g&?@GmT%~bR_V=@Hb9&)rB?cIu~ghT=9BuC%N`hn+BvnI z`NzJ5eS>bIUMRGhO=?R?Ge~|f)m=|#=01mS&_e9^ASb%`41EPA&%Q>wR_&EAafS=7 zEoM@SS;fq8oRgw~MqMl^25>{rovemY+BuETaDJok{gc~-b}JzNx&XI6M9d5*tOS)# zO=A^S4ca4iw{rUL0F>^d^ARyTA0BCV-nygVf$w;z$krk^(5Un9{M6{f<3+vw-?>%x zN@_Hc#;tMU&7D^Mxknz?VNGFcomg$Q>`4lY(!2^k9R4xD$Pz4hjE#d_xwe7bW{CY9 zn-mXI1O6!~VhcKa@PflDJOrPLF$6=zBU-(9YBEMz?&4BvW?IYq5G}%8`ppyCCr7|`x zs?|2chxT3<@Fe7>*kS_-Gj77nxD;Oz@eUR^YYRK58+e%IF0UquW|X_qiPIZa6{#R) z+J{XO0hK*aLd&6iirOHej}#kB@h)OvVnbrmPH$2`GC=_{;8oF1NkrM~e9@hpvg|xM zA%K!e*P$|yPkNC$UfE6%aMNA%rtBf_px#7qvr*?g)&i+?B0x8olX=u|sOG&g(Pmq9 zK-iagce_?V#IIIw;YQxYt15Zq=$7nag2^Hi&eBfVOXrZOa1ok^vKTO*fz~i|n5a~V z0-KYO+<>ALlZp%1C09F8xW3yKkowq zjd|n#@XD)WKIUA%pw#NwCGv|IUY=cU1K^nMM8bjR;|F$ABN%-A-Gw`lYKVmfm60M? z!rU~tF|B4spw$7X#iAJAC_rieD?c*f) z&gd%iekNm*ruph+7r-MMI6$vTF}<9$Gs09B}0TGg66sRe43rn(o-x04)AINwHJ zLyOY~cQy!%shP}>;v|}A^jVy~d-Os0zKA$oNCFm;N(TM2LXX71O58zio8JFc$iU}+ z=j{r7`{y3v3;JfMwfL4ONpfkEe!GKX05EP{z#fElDn6#+C%fVuSxhpfmNl22n_jBA z;%aUISK01Y^7)yru<;{uo@>j?ShZZr6#3aqb|yVNJ&olA|HIW%c1FRrX3}#@3;Iel znC=4GfQ2CO?ofI*GdCT9y)Zqkp#k>doWAM_TY%0H%0bxK?0f|F>|6-;f~F9IwlX2S z1=Q-rO0ib!fNf=`(~H?fg&SxxGc&8Mh$eIM`l=`1iq`9SuTaX>P?1ACIuoMz%xrpo zNnyH>#nqf1izwcb5(Z!n$^8{LF^l$Pel|O^6r>4Y&n{*prVE+b^o$wjC~UqKFQ{SZ zdCAV1*NA7WrF15vc@VH?G)FE>&!s_q#Y0_TOCaJ)Qs0L2o&IIBnIPU)COxlta3(XC z&MeMHU=QGL*RG(Xl6V)!YkppjC17Wk6iqB^F}<|77=oRdn|qFBUMnHiIIMw|Et2Wk zrE201X$bA`BbmpGU+|!wAHbKySPiJ=M%&_VDZ)2FQLoABEe@FIs1}mJbu2K_g zQ6!s$JN55lbgIXq=;Ogf(S_fHm-c>gy(1V#(Q68fO;J>eszZ!HXO)#FFG%#xI5PhV)kB0R+D~%qnaUCl`jw@kObs2AuNJmA|%j_RIsR zdskNAQFdDmN?4jqCuH!;wuHXSnpj)Yjs?On7x6Ao6tMTR9NrlYXgt5yW&9Xpo-QEDlDL9ZC~B#f>pdg!B3*4%4`Wv;r>sq z)-6<%Ms%F^1U4;{7O%A`D7EHolj92UWkkPu`yfchQ=6H>IIl@&z$1?l6Az}6P3$3U zz@H6Y0(_-8PNw2qD$Lu-8mBy#TC531v(h+tUfDUE9ODNK@N?9!{yNkRT zx?P71^4|GcUySm*u1&c+^Dk8?|k(PORivZ6`2QaosyHZ(~r zuA1Oil}fM%qF=1c2Zg{!2cUc8ydAv(S)ZVgP?p{gJkvM?Z&hp^{&*mW4b z>e)#Az^TL1f!z6}BT9i7Qs+~lJEv)8wa)Xlw8Vgyr}~DJ1~l%1dDoayIEoa)wb#X) zAMXMj4-0pGAgDx+_33Htbbs^Q)cow!+&un6#`c@>H~z~`W$6O{r_*WrqZ7D+8;tx| z)JS!t?BLE*j^V#&m9EVE@ zbOtOwGmHO-=5#^-ccJ+J3Er9b_X{tnQqp_sv*!?W(Qtd}vr{+s6y-hjDf27BQ`VmP z>}n>w*wm-CYf_veE#`qN|W z@%y2*$Ada}BR0R%7CZ7xp?Zk!Z2}cxe?24XR(v5eZZeGgV@Ua2Z3&ax$4|d<&5vTKdkWgwV4y`)-8PEBF zGpz#at)ZE47ECx?pmSa{(fwmGetG~I`#3*7A7a7>^sX9;1M)`gb(=Q(qG+Dkz<4K z{y&5r#^EbHYXtp61OC=tW8tE~JVFgv2soE$uv@r0zG2M5SF!Qz>g2FO`TNMioS#SL zdu*8KoiUoVn=%Y@8ae9lh{l9zz=fCBJAf%bc5wuc0J9So68|~SCRt+yn6jlJrB{+0 z7Is8WfoK30?G@)8;rzN8IV$4a>MC)mUPk>2Z+Tg45m;U>S2Nf-l@o=7U%!E))4jWr zbZpR+#TQ5xgmYi^Ae&yCRlaZJ{EMrYWwWDuTw^_<9NS66KYZ=Autn1s<1!Hoh+2<5W$!k&JU!#3b+PrrrtPgxP& z9!n4J>9;-o7Pdjc)<*bBYB1VnNyoj*to^w9P1}ZS<1WXraf2(Y-mcbv3>k|TTrp&vlAitzwl0~y0pDY2Z$KDX^%IRCS|G5M@uDRgy7$n zJ5ty>Ldjl4XOPCtC84NX9@VNtC9eYJeUy;G2A(E1)}o43aWYV`D^Md7J{`&kR?zf@ z88x*61FVJcAd$Q2{n#ckrS^t36Ox@06y(wDvT#Ad*r7!6s zOlB~7Li#bhAZB?h!iA@09N24=?jzzLy(pq)riz{mOh%Wib$IrrG%G9Z3)sV@gJVWc zWoC6D)L6EnY@+dJB7AB95rVU_!d8?&KKlyH6=8qq?;vrO^>eq#TC5ZG61`(-=eitu z_4t(b$8;I*7=bj#R@LJjB8EenjCW89g_Uc$DB;vmp(%lC4?TR_yITjMOVyN+%R+mH zMLC+YHtK~47Z4UueD&PbrRj;ASn%7`26h(lza?bsELmsQyIt|UnT)E4rPAi~XU^4u)0~6@Uo-%zO}9_zFLVYv)h{iBT0LNbO<{qGsx?09qylZ6-)XYTJ8E zHDDBuRsUu(q4pSJGbZ#*Ke|aY?YAmmcsz(3D*Z&DWk9#Ei=)d`*w4}L3edC=2fZM3 z@bb=6++&D1KT6H@Rb_Hsy|Aa^!$tV^R6JO?r#c8IKp`Z1D&8oIJr%#ar{Wyb*74M&Sbk^G0dS@2vo%!Lskg`d*SD%m3E9D!Htana^d}IFTTNvpiLb!NG z2cWy;d>P%rI`T{O72EHpmY{csha|j~I~6Clr622tf79zUqyGYb4Y@w)Vl{2lRiYQn#DkHxB0h*~-9DU{{qVVxa{XY{ui{XK=k1c?ZUQkt4rN?3NN z1Oz-m`OZ|n;go=s-X2@Hhl8d18Py2l{y$@dqRk)nV1G4+MHjSFduDH(y*F$R4eOGh zN7Q>^S_L3tx#VS&aEA^b>K~Wr_YRhe zrc|pj(DW5BX>Wg=PJ%8`X^rnfuuK@FCal~iVt(74ikQ=ZDimf71xOW52R)|g=-de! z0*zPES8ThO;^D`13r75#!Z!a25riNFRUs^jhGXlONPMACHlM+^ww89>dTk9G5YZtU zwX`a>sQ*u8s*-WRm|)WoZP1IX?nSrQ87h@Y>=a@5^R;;!3)braBxZb!-pBE=!=e7_ z@$kdeEX!aJ8P&Guu2hA3+DPm!$Iyw+&ZlZg_lzC(TWr7l_u$4ixTr_Cr|4z?{ znc82*+f`k})I3VWNTVQIv6h^hva(ZFCNs+)lj_;w;%B|KphdQubwtTKcHLR_9a#$U`!$MmL}f42P#^F$#APXwo-0q&BuopCztCeKMn1TQP<>BfID+$8I8E_}Ze&m@{`x3|4Bo8M zo*6LG7-dHu`b}7{w(nXTFN$M4&0dS}`jkQ|%|)$n^+BY4?GdKR_@X6CF{$z#@UB0x98RJjHJ--`dG z+2Zf#XWM6P_OHfik!}Cxo{-yq0#kmmT!h)}0x|!}*R-9V07YD)(1&P%%oHV*{>tz( z)#5@bvozH9y^L%UmfxQqFsglKs#e&RyhYfOQoK@O`^=b*WTFYvQ9c>5;PA2*dE>@K2s~RQVyl&l8$9&S%9q{W^UOWgmVp|dnIi9r_$z}Re8S9EH_Y!BG3&>$d-4p884*o*Ke(dvZsTlAX?^vYDY0`&5%~uMUlkEGh2^E49(% zRJ$1HdMUaC4KzVtu@$xobot>S2?x4r{Q_NKM|T%5dB0mChNIkc>RZIR&evN__yr!I z{C7BCdT#;U83w{P*mW;1HqRdC1?BNt?KoC=t%~g)Cs%2@v7MaFE=?|5?Cn&$cf0pS z^r}Cs*(_kmJ-|al5ttE9Gt+Z3j1-dYISw`mmRt7hR09?Q9j__+da3M!+SFaU;vR<& zr)GNud;YmXac=d z+@aYR9a8Sf$nx+*VWamgdT+9~RS%v^CXPO#orwGcY!Qp>43~C5;{+J;(DyJh5Dap8 zxv#hM`Lm7b|en$h;k~vykCC}p1gEFGhl224o1R`9gK%G#q>D) z=3bY6#B(d{e$zgKKFy;FBRw6SjiT$jj1U!e>DDJBx_z1cdITvq1wi z;S?j|6wg`n;Yk06+gp~+PN%Z7LltdQO*H;I;>`gg-p5(?lkqU1Ro_1BJAj1 zBI&lU8yrz?j6s=1h0gwHxRYsXRmSc~C(7O0W@Ei@h$h?$_KcJJQ^e0nYoZL_wuKX> zHlb2=u-pYW5Sgn&(TO5cqOKojD(Jl(3|&`47}^`B|)3|D-g;EM0nV?2!e_Qy#h zDE7d%%}1}k;tHkoAgf47PC6e!&W5^o;c8rU&5n~dpI<-k#FX!wr4jJxR5`{2{^5qrvn`**%bs9BbXCcZrV8K z4C{1sOFd32QER*2dYzc)^!%_#mH=6jVWZ)2kX@94a7a-!Vhns7T-?u(A20^~9Y2b! znGe4>c+m9pMT0SPgP?MFL~rRMPHKQ}VhgZS;0zVm6nJ)o@t(Iv6Irb?{ZS!kdKeQV z8Zo9-gmN!`oRsU2#pvOWP*&W8^CNgvII(G(Mszr&di{UBwpOo+jG9~%^=Y@`XL_Dq!=MtyWSt1vr*rLr)0EXRMIk#t~H|n{V!x} znM)&j>S!mzikXju=^o+XFUA;QnIZA#{3vwRGjVj**Jk8QZ(dMXK^_FP;>p@ildSz| zjFIRiYrS9N{2h!U=kM`Bv(F>=mXTwYZ(}@_4D&w;8?{`iw6M9K3Zh^qgt4djHvB&TFmJ+qXnlrO3+ z>_novom0jkQd`xZA`Qd6SZ?H)S5M4L%iM~5**h_({%%%VjT1BCDo;5Z_KB>xYT6Au z@14l#{L>c*Heq_7j6v_9=XF4~=qGo^MRN zX1PB4vcQOU{)T@3B=>WNZ2faFh$Y!tybqXWM(DU1-cefX-o|5t-y}BpSd5;T0X!HU0!3M$Lk)V7VPQf*j%&ymhVX!(0IOLd-ou*ZozIh)PdI-#m?O1U?7tBUe~udr3^(}q?grP1&gs>; z^H+ql)J=!f3j#XH+ykcnS75pnFkpPF#+3{x!W|Gd3>2PP|8X!~)YK~8V|36kVrAZ{ zG}utBbuZ)Tpx>ea{L2_UlRD^&f`Y*?lK)S;tp;{o2@t?tR{>f9L|Af<9!ee$2N@&4 z*WvqMz}v1NmrU43K&XkDlM7&NO-be9Xdjcv|qcNejL#1`qYof)}1sBf!`I&i%ksN!az#mm0b7JAXqb-`HK!jJcvE zP2DmOS<)VkK_zL4i+4fNULQx&dfGsSeRl>&_dXs^e2#eH4KaEf;)&j{dqy633Klk0 z@7A<#?^p&%pL%FA{=t(qY_67RK5J{jQwl3oXHo=HJZiAqDPLl}-h%1LnH~rTav}#U z8^m%jow$3OTxaZmNzyu4cwu0c=s9%@0TNioeCDxiM%hE;#^Wp^%)dyRvXDZBlLMmj z3(g07!7>f?Ulp+7#uW=s2u>#J+^l_dJ7&zdp(%*F007?1}iX4K7 z`~0)yJ|8m8a{;lV#i6R9WMvbrc9|tVHh>I$Vn=@z^7>zR41HTIwcx!+S|FKHAs>BI zr;wwQpOOyYIpx%G8#YuHwXb1C&UcjpBO4KlZ7LzAFf8E3qS`#2)ldk09!`xCwBRtX z<&wX$osh5<5D7YMomajD_`p@XDx`;nD;us1bfr+}7skJKdpYvCBp=NI_4r1uZ;`20FD1{BOXb+YD4=07sk@OXeD$c$VE?O<= z@`x!YGp!4tHNuHX&>cD{Qyvz`L|eMpsZmG$8wXpIdO zUL+e+XEGS;1ko3m9mrFliJl}LB2F40O_7)6WI(=gsvIP*(86(cHP0-vIL)5y1!UbI z9Kn0hG=LnIZ7BJtS1R}K7LoxO+&!2Wl`9YTo3yTr&_>N$*XRx>CkX1w!HV5A<9Ns_Of-y6<$~;K9AWb%fq`JLoJrEb)Zp3q6J9 zB(btdwo%4D9V_XITuQOsBe0(cDU=1ffygCi?da5-U4TTY>;rE}U%~&l-k7sMY&hY} z(bv$KF<*>yd&tGv;!+7UbP_$z#X$*3oQt& zSa*^%OybTlS(Gwzz8t@Wmx3eLd{T*vC&KxTdgqZyXrxW<966LZi{d(%#YlIgUo|r+ zQW?WW-U;@CDyqxUQiAf7l2$HWCbf^^pqqAbQ4R?KUkhT`N1-lHA;bcO%oLT{E$wFeRn425NKb8{vxErB9nI zurnzbFnu;OCmyh|$=x~&Q&HIu!CRWZ&bQIbH{pB>eZ`&tX(RGGbPL{yJO)Y!R=uZJ zv0oIcLF^mGx=^fujTr!^S-C;=np)7P<-9mw8S_4Jc#+s*s!X75cjf(e(bi zMepCI`!dXi+iR{0kRir~TmSr;+MazkD&m%^`Q}CI^(D`1xF~Ad*cP)(y@@)fiY_Q$ zB`Br7*Hy!G$*WfGTFVLYXm^A2A?gYz#Eki4db?Pl#HxM*QG@Xge2iJy?ML+Y#{j>d zneFeZVasm2TWcTTjtwrox}#200ea^nV&Hz5u_^tG+SBZR!wv~5$f;_``r~p`Qkw1o zF;zbzolK6VsY9Uq>iis`2<`L1kD4LN$fFEzX zHr~`d@;ii5x_3mS6k@rcE*fXN1G?zGk#$k%9d|`k&>V_-DIrS3|WSx;=vs3k;b<#6&f zuUV~o@TseUOI)fz=IM*#YRj*Ajg_>fEo?q$QCT)?Iz2s&y<*6nuN7V4??{%$`~z?j zAq6R5{Q9qo1zid3?E^6}qRFnfhhk9iK|BM3pW#PggulFRU(9UO|2YXUxP}W4i+`Ql zC|yo%R+=eL6!Qq?)4=fv#A~Y9#f{;GO+fONa6Chf;N$=&SFCT&LBI5GIC`Q3m(DwQJJtD5z`wYxFkW7}SCYg!Cr$xyMGfcz ziV-hsYsHYodcEqCxp&uEA~6CwP74U3Qc@3m-Y9;i9X$3r7UiATlpEW%^-hHN_FW{BEvG;~+^M-`1hD7lIXjG?2R4COxPyO6TuLyk;Du;0Vd z8n)$6k2UNB26mc{OK+&gOBn`u~;v(OW(r__F}yX4sDkX_y^HbZ@Xc)oeuzp ze+_l~a-&i%l)d)T{3}wOYVCKIzTZFE$wqDe5Us+*Y8+d?*O#U@iut92UC3sa=4O`c zIeTMaes*bYer9@l<9HVUr1HO=MgZaj5xbp4>{|!)Ca6ZZ!8^J%Nc!U)0@n6l+Hp^c zSSM+>39AX`Z45iildIi$a#xt&c(96=vq9v)PTAg+gY%xRISHEY8nv zEETg$g@ySJ4iv2;O!z8d!k-z?n;;W%gP-owpgR-Z+{uJeu@2zE@MN0|%(feKsN81T zze$4@cTzGK+7s|4U>%&#&A>Y?{AB#oJarB`BO6~;=|A}U$eYNMY2G-E&b~}ds{YMT zJa)k|y0@5H-_Egad9v;N4X|-8;=}cC>iS^0h*OjpY4KQ>$yqCX|Mc2@RJaNSBURPD zBIPBWZ&iD8UJW`|9ucAoalAvp>hm5Wf$<&( zcV3M*#PN{Edc9auS!zkutFyu7(m!D!Kw#q&y~8Y*dbN)(h3=5#Oli`j*0)pP)&YNv zdOSR09glZ-WL`p~3NLa5_F-xAj{=l1T{+(d6(#N7*6S2;?N>nr;^ck<(Ub3!itjd-O{&f;Tv zt6cO-%ht?%<1$C73TW4 zQLfZC!Ia4}2rC)ArbhJ}b!+%$^tAT&@bf;}FkdM&Pzl+UdAV^XEmn`l4AN9=jn zxQ~l##A|YZeG!)ldD&`KaCNO$FXYy7&7cTywkaAEn8Z7Bzt%&s^zW3ul0b z#E{%&Bu-QjZt;)68GwpYC?mv0g#q#wamTLMd?!cF(_Ep#iM8}b*+AbojHGEg54B=n zvMcQ~SNVw&L_=Nf_s8waWsh0E<(j+ui}reJ6Y!3ZwGLY03DjAv;?5YSdr+rf&mZBM zxj86{I;Huy{jrv}ky=baUg9}2HK%xqciEaDWR*^BXwKa7uYw`rUt7d!);Z01AS~bD zU(H2mgP!?jz*dhRleofZFjI^WjCd6E>!k}a7_VCcY;S4KRRVC9h8 zoL{d{Mp_-#1kIBRz8N(W~imohAKGHup7p3B3usBopn^>$PsV* zFIBTUZoBZ6kXs>5Vc@oZBRxrw=*gUCqlh4)ZCKjje(F`zvmnQj=0+g`p6(d%uU6p6 zmq{FllUCDZ+uPuGKx&VZ@rRd)_RX5x}G{EonCm64C z&9zZ`3o|2@nxIke!v{4XI+G>ZUcpqZF_jhjRib)F=u0eUdf@HIx3YQ2OnsU z6J(+RAI--A-t8Y25E#6R)>qrLOKntw^=b13^a$1j;K4G^8HH4MIiv<}+8%Svc+}#c zLr8hfb7-1$VGjjO5;DX2m{KuE^MfwEWkdf$F|cxx9!i#;g+JwI^K6Yj-e!9|-|`RA zqw)zcZ#?Tfj(0ha(Z?ErXXckK`8Ba4EX&NO|z_aHu= zp^sP4Z2xll_%wYyOCRq-aZl%4=))rbZ>5h_deKAl@hn|_iax$VAAd_9)0o1X6n*ew zgVsOJt@QBA@X_+e2z~OEa2L4)Pc!~2jQa}Xy}~%JFup5{>k8w!!Z@xlek+XI3gflH zIIS=~Pctr0GagSf4o~y@pKg_IW}=op&7{H?(W&$WL8RM=QcR@pqQ96(j}oPrNPj|q zF_GqpW=y2_5zUxLbk?#U5*=eAh(tR~1d+(R5k&fVO{Bl1znDmO5`CCRw1{LPIX5t+ zt_?~wbIrBzC$aV-Eh6ra-c`>Djtt%r&q1?6uB+?yidGW*=navZ`suL{#4+_&ZgeyR zpVQ=N&b~1UOa5|&pTMk8z_w*xSzl8?H9sMNunZ2~Bk#W-?EbFy!=!=pO(#r#ST`Mn{aqcIA0p@oWEb%E?4^d*t6*GJH7IT2g!g?mLD`T znRaK60;cmthUfeRzSQcYClS7>4-u4;RD1FjRg}lbc=TgXjFV%YvQnsr!%CyHd#$mw4!In)0ittoL~ diff --git a/docs/.doctrees/recipes/recipes/reasoning_about_shapes.doctree b/docs/.doctrees/recipes/recipes/reasoning_about_shapes.doctree index a28ed48d3a0a744ca5c5c01a6ad1f11bc0dca272..5710d309db814467cdb2df6eae6c32607d319099 100644 GIT binary patch delta 41 wcmeBaXPni}$kM<%wSOav5hG*DWOGI(zJkh<{G#Lx-QC3H%BtA%LM=~^bSh^ delta 27 jcmbPwkFot8BWnZe)IWI}Sq&K(BPN?ODs4_@T$c*~lS>K6 diff --git a/docs/.doctrees/recipes/recipes/saving_and_loading_a_general_checkpoint.doctree b/docs/.doctrees/recipes/recipes/saving_and_loading_a_general_checkpoint.doctree index bee1257c4a3ee896fdbf6463e539c00886df24dd..122ccb8cd41239bd9d252dd2a553ba1e043bc216 100644 GIT binary patch delta 42 ycmeCY#W?*IBWnZeRG!?8tcHw?rIXDWmG}xOOY)17Gjx+PGV>C3H%BsV$OZr})ecqw delta 27 jcmbP!i?Q<-BWnZe)PFe}Sq&K((i|blZOe@ diff --git a/docs/.doctrees/recipes/recipes/saving_and_loading_models_for_inference.doctree b/docs/.doctrees/recipes/recipes/saving_and_loading_models_for_inference.doctree index 0702c20a68c666cc8bb0efa9636cdc047b25751b..0dc017461d9fbbeedee20841046d3577ae923056 100644 GIT binary patch delta 49 zcmZ4cg>m;6MwSNFsRkQaj2Ib9Cz~@W@fB2-mf{MwSNFsY)AJj2IcyCz~@WO0y^001h<4jTXf delta 26 icmZqL%=~2&GfM;O)Xa@6MvRO;lg$~GHm5U6-v9u8IS82m diff --git a/docs/.doctrees/recipes/recipes/tensorboard_with_pytorch.doctree b/docs/.doctrees/recipes/recipes/tensorboard_with_pytorch.doctree index 1db9414a22e441b50807488ca5f52b60230fcb27..ae19a5dec249ba360d6bccd8c53d8fa8080e84fd 100644 GIT binary patch delta 41 xcmex$jIrZ5BTED8)Y^?KMvRPUlg$~G_zEgZ@{5u)bdxhO^AdG8M=~lV0RS_N4ebB` delta 26 icmeA;&iLyXBTED8)clPsMvRORlg$~GHm5TxCIJ9~9|&sz diff --git a/docs/.doctrees/recipes/recipes/timer_quick_start.doctree b/docs/.doctrees/recipes/recipes/timer_quick_start.doctree index e39b2aa2ba3ee1ed3664114597b4871d89eccc6d..edfb5c0bc44805e2ad37307c6b65b36e06d9547c 100644 GIT binary patch delta 49 zcmaF1nfc3RW|julsV_IO7%?)&Pc~;%;wz{u$uCOI&`r+B%uCdrd_h2J@&-1+%`J>c FHvrE95>NmD delta 34 qcmeyenfcjfW|julskb+>7%?&iPBv#$ntV?{YH|Uy(B{dEi8lb~CJdSY diff --git a/docs/.doctrees/recipes/recipes/tuning_guide.doctree b/docs/.doctrees/recipes/recipes/tuning_guide.doctree index 2e1a736c9e25051d245661c254034d8c75d91ced..a488e3033329979082cbd00338a811458c3c049f 100644 GIT binary patch delta 92 zcmZ3wjAQdM4weSisf-(0j2IcCCYv)V@fB2-sPxfV0;wz{u$uCOI&`r+B%uCeWoX;o|HTep6+hps6 zNt6HcNgD(d<)>xlq!uYWo4fSc*6x?>{m<7;f4X+U^I0v=rf+*Weaq8HJx|+OpRS$p vY+J{RhUt?xTI5ZBkZC-*ppl;{22D?JU}T?spO<1MIX0h7+=S?omoHtz| bnvtJchD~$`~0vCRZ~mZC=e7aRLB_uL;ut diff --git a/docs/.doctrees/recipes/torch_compile_backend_ipex.doctree b/docs/.doctrees/recipes/torch_compile_backend_ipex.doctree index d36b752fc5c75aad0525de76357c7198d5f75ebe..c072160bff26ad2863688ce0852715f0c0e90ba4 100644 GIT binary patch delta 42 xcmZo}V4T>%$lAa;CBA~nlKi6N4Bh06%)CV1&GQ*k>;M=p4W|GA delta 27 jcmbQ(z}Vct$lAa<^@sgN)^bM1pvkq2N}Ja*rq}@hgCq$g diff --git a/docs/.doctrees/recipes/torch_compile_user_defined_triton_kernel_tutorial.doctree b/docs/.doctrees/recipes/torch_compile_user_defined_triton_kernel_tutorial.doctree index 15bf04b4941046b7f6725815c69742feb1346359..6a3188e88e01cc0e6d6c03668b54fd2697d867d2 100644 GIT binary patch delta 41 xcmX@x&vd(=iKT&c>V=IgMvRQ*lg$~G_zEgZ@{5u)bdxhO^AdG8M>3YQ0RS|`4uJpw delta 26 icmccJ&vdq*iKT&c>YziSgDXMwSNFss0;Tj2IaMCYv)V@fB2-<$2Wc?g*R diff --git a/docs/.doctrees/recipes/torchscript_inference.doctree b/docs/.doctrees/recipes/torchscript_inference.doctree index 38ff1b1e9beea605c005cb31575d5aa969f3e2de..94f49bd7b215420f4acc6d5aaf41affa725e00fa 100644 GIT binary patch delta 41 xcmcb9it*_wMwSNFsZkqQ5*QhyC#Nzh@fB2-|w< delta 26 icmaEQit+j>MwSNFsXiN75*QhMC#NzhZJx?_AsGOSP6@aG diff --git a/docs/.doctrees/recipes/torchserve_vertexai_tutorial.doctree b/docs/.doctrees/recipes/torchserve_vertexai_tutorial.doctree index d8e6ca9d7d984d82e08eda8334f266e5c82dedd0..2c37ecc670a2816c99a2fa673d2ed69906f95c04 100644 GIT binary patch delta 41 xcmdn8hVjrEMwSNFspcD5HZU?KP2S3=#8*&Rl3$dZp_`nMnU|=$`8s242mm{p4+;PP delta 26 icmX@KhH=XpMwSNFshS&EHZU@VOy0_)4h#XbfSG~dQrXBEViB4yLzEFlK%u=UYL+qLqj%c; z*$9Lw-7l6Ds$8CFy~6Vq_-#87rM{rpPN%gVnr8Ky65WWBIxUhhi$GBtXHYSeFj^vX zM22f(0=e|2lECr)*H8G<0AY)Y?mRxh*lL2xY_{n?yz5WsuL+30Y!r~PXnX?gYkd6b zbT6sw7xbqA|J!!^dBF-74zqUWxqIG?oV9;~e@zJ0v62k`jx*a6V@)1ZmY!DxI0V;x zRmInVn!=gYwOX}i+Q6F}S@Za9pXzk9)#FRQs~>X9JBw8{H^(Z@9Bo1L-FrCVnM7_5 zLZ_SOy|^*miVmiWB;o2+$QDRTQ+n4ZT~iLSod3Q_g1$GOmX&ILzF;{`8fCkxNM5+@ zkU?~DHKjUFAQ_!)fp;mlq@W+rJS{@Dni3Z3;OIf>^F<_pXd4SkR$J}0*77(3{%wGh z%f!MOgbb{9WMOoBoKNq?9?P~8WIU{hu`mo!#M zN>DwcJ)O3qOM6f{^5YF;p!n&NnhzM*SY{vD`(rqg#pQ~q`YN($jk|4mAj6M&>AYA% z-L7pUhg8}$tDJP{vXHeph!XBpQTh>7UUl-yCoZ&nBD?=S*T=7%&yz*}{w2M^41!-o zO~+NOc6>`SLoL+o)LA`46p}!`7KuU_zkTN;{_X`H$DO5>mgyLuU`O!}h952!Q!7r8 zDps|Nyd-Da+r-dN{+zfDXatV9A9c&)v@nsbn8kcTHq?CeRPWBqXbWT6>LOCHNE6qq zQl{DuOc!_6EG@1B`v72*^9)*=;A*^!FB;BsO43>dsnKp|omvO-$aSRCvH>R3ps=La z6_TCP=-T_;v?Z-FuD_<_5HN~}h{I)!AZq&Ecg+Sec+#>GbQ1KOpHan!s)dzSfdCQ! zh~_-gIV_b3SJ|79l4qpcbo(!d|y;m>rwTfQ{E(?tv65A25f31&2s7+Gu zMn2f3p15c+mae6OpXpGhvVcJrMO0(YL{V=!QYm@L~S{EQkPO&YBKU zMm?yP?qc=ir@MzioSni9%#`LMjmI4_bbV*);)C(es;HCuB+@0K{Bx{qO6nINZYn)f zvaM4A?fA=|`|uh%#ji@M1Ct&HXB(uHj{9b-#(cf*e3tEa#nVd0Tss9*&pJ}gD`Tr8 zh1?z*dbAz@Ho5P45YKQ)Wq0~lb3rdXo5vC^beQEk9hbC|pDfALZ19|-4wSGH^oFvf=d9(9ethGRYoQwK*u_o*JVk>*jy{$~l@B{Nru? zRgdUST8e;)K&Cbm3Ms8im*#UlWJ+?6_r9O?d7Jy+^N$^7;N;^`L^%HuiD!aIdPqfS97u$ zo)lxk(px!wvpu;Hv8jro*AhgtbR?Z2l65m{ilBX)9DES>418Htd~tB*iE7|X0?9oE zQGc(;lc})3IrJLI>!ABr&v*TfJ~@||**W+$k9Tqfg7BB)HF*!WQPE6E-}%Ah++eyu z(%Xr7vc*B?bYB2b0>2Re&Bq2#?)4v_C`)J@BsZ#| zCoS$)Zrs^8(G_D{%!jh5IZ#g_hy9*L`;Q`%4TmmXO%AlFR4wU_E^_kz7n}BpmSZ>A zl;v_+1T>ffM@!2n-v4M8d9yH6RXUX_v<@i3BaSzlR1SKL>VNsZRtp8VTqlk!lLwVS z^1srveXnZ_YrTlyO7<@g+UePpDvfBbhFJ}kS1TJ4d*?n_RKzPgU4EExtjnVW*KdPhBy5l!dL4JYH zQgP#lT*Uk7a9$cMr+Kap7xQ1ks%>$Mi~yHsv`eqp#un&>yB|+C^gcqI0^1V%pv@m$|<54l*l5K8J3wYIbg_T`wM1 zBC?V*dnC1;J(rGw`wA%EqPHFR&Y)6xhb^HIK?$v!vKFwJ{O|N=i|D=2SGKVv;vb#p z&rvljeQA3?u(bbN{;QXzkz&U^KJUtX$%4!ksnQF)nS6qw;UB3OvqZU_1?Oa0Iv(cQRv8RllH)rK^X9P46EDc6h4^(}TITCaEyD92N$fWiQ59JGnN=Q+> z1$s`S;r$!fWQ!NY2z(>-*6==lW|3w$>af796kjMwDYtRa5?ZVJI#f{#XsARCI>Z7) zQv1q6!GHgfJxcV+mU@d=r30&&%&i0MM^Z(M8Y79iZwysqxV_k@nB}^aGq|BIf@YHX zgsv&s{?Sz)?}x74RAT89;$_&u_laUUB|g~9R=2LNY(;_1g z#(Myr+{YP^hxPK^nQaEE5s-=u!RMr4)M|#P(F2ZCYj1%Obtey{{0XcDB1s6dW1_F){g`Ha!?dNqIrE;5>XE7zb&2qa z)7x-&lW1S9+LLLPCX&whfC$KlEbms`F?svm(BdB7=Y z>5pUCEeXL!H=35SRMMhLSny|aIxU5(z#f55%Y??B2tpz ze}m0vzhb+`FU>yQ;BLTjyQ% ztH<5NpOZx8Wywq{%|(sS>AgTb3aM$;Hd8*Jf8{+F8kNHCj`nXJ)*u5)|5*@~w1z06 zUKjLge>4_1{4D+HfNoYIG{u;&TS@goHl6yZlGl>vhn_RZul0@dJ-T4x>@6?Xqgw>G zFLKo`p-#`-y!lR+xaiwcW-^xQtwYXTr_KYo?qd| zy&f>1mdpb17nLW|V<7aX(E$gal|#~NeBVGjJc|gigeD70Y|TO)A&?=s!MB^-(SW$+ z>Oq5>kBOJ=xkc2daJyk2Uoi1^+k?IFsr!&kq?On>;j*&b6n3Yi(0r3@YG&2xgZ8)% z+$nX(lbDV`fw1gd=q%#yFg2dWW9$TD7pKW?2M=iUtb+bkVbPuIKnOJ9Zjzk@oW`I8 zLy{Y2pW%kCTZ=l{(54Gfq{}fv);b`nw^K#EET~%Nq`MH8d2ixp=zXpw2xr|1Q5?Z9 zhjLzQRA(0i`1_ZD3Bq{Vw9-0Ysm5Hjlxifb-c$-qTS8A^_{PB88wjDojixj3;Hn|cuQxjv~vDJRkU!uL8cj8 z@Yxx5c6ErJN=e9phAxf=l{j$LEjY91N2bl)%sI!WS}z}q>8lmv3pt4>(WlCSPA_} zs*$R@x4mc;;oj*CoM90ThuMp)CLi;5v!9YAY+Lnmo`0fmQxo^xe+tAdrg!{!VdCSm zoE_R_kZ~M2d)|n_&%?;nIn)%~$laR-zw^#%<^I;qD*DY*S>WG)!QIr|W=DE6!~c08 z;yPevPkguF3QbQv6ND*}vO>{C!e}vg;u9b1RB0KR%qMF6&(HOF36@3!e7|ics?aa2 nCu`K$?t)aPH~8@=RmRRL7Xgjg*DxAGWAw&+IE^p}T<`q{GQZiD literal 0 HcmV?d00001 diff --git a/docs/_downloads/74b90fda9cec339519e5ef764956100f/profiler_recipe.py b/docs/_downloads/74b90fda9cec339519e5ef764956100f/profiler_recipe.py index 47d9f86..49acc28 100644 --- a/docs/_downloads/74b90fda9cec339519e5ef764956100f/profiler_recipe.py +++ b/docs/_downloads/74b90fda9cec339519e5ef764956100f/profiler_recipe.py @@ -1,20 +1,17 @@ """ PyTorch Profiler ==================================== -This recipe explains how to use PyTorch profiler and measure the time and -memory consumption of the model's operators. +本教程解释了如何使用PyTorch profiler,并测量模型算子的时间和内存消耗。 -Introduction +简介 ------------ -PyTorch includes a simple profiler API that is useful when user needs -to determine the most expensive operators in the model. +当用户需要确定模型中最耗费资源的算子时,PyTorch包含一个简单的profiler API非常有用。 -In this recipe, we will use a simple Resnet model to demonstrate how to -use profiler to analyze model performance. +在本教程中,我们将使用一个简单的 Resnet 模型来演示如何使用profiler分析模型性能。 -Setup +环境设置 ----- -To install ``torch`` and ``torchvision`` use the following command: +要安装 ``torch`` 和 ``torchvision``,请使用以下命令: .. code-block:: sh @@ -23,88 +20,75 @@ """ - ###################################################################### -# Steps +# 具体步骤 # ----- # -# 1. Import all necessary libraries -# 2. Instantiate a simple Resnet model -# 3. Using profiler to analyze execution time -# 4. Using profiler to analyze memory consumption -# 5. Using tracing functionality -# 6. Examining stack traces -# 7. Using profiler to analyze long-running jobs +# 1. 导入所有必需的库 +# 2. 实例化一个简单的Resnet模型 +# 3. 使用profiler分析执行时间 +# 4. 使用profiler分析内存消耗 +# 5. 使用跟踪功能 +# 6. 检查堆栈跟踪 +# 7. 使用profiler分析长时间运行的作业 # -# 1. Import all necessary libraries +# 1. 导入依赖的库 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # -# In this recipe we will use ``torch``, ``torchvision.models`` -# and ``profiler`` modules: +# 在本教程中,我们将使用 ``torch``、``torchvision.models`` 和 ``profiler`` 模块: # import torch import torchvision.models as models -from torch.profiler import profile, record_function, ProfilerActivity +from torch.profiler import profile, ProfilerActivity, record_function ###################################################################### -# 2. Instantiate a simple Resnet model +# 2. 创建一个简单的 Resnet 模型 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # -# Let's create an instance of a Resnet model and prepare an input -# for it: +# 让我们创建一个 Resnet 模型实例,并为它准备一个输入: # model = models.resnet18() inputs = torch.randn(5, 3, 224, 224) ###################################################################### -# 3. Using profiler to analyze execution time +# 3. 使用profiler分析执行时间 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # -# PyTorch profiler is enabled through the context manager and accepts -# a number of parameters, some of the most useful are: +# PyTorch profiler通过上下文管理器启用,并接受多个参数,其中一些最有用的参数如下: # -# - ``activities`` - a list of activities to profile: -# - ``ProfilerActivity.CPU`` - PyTorch operators, TorchScript functions and -# user-defined code labels (see ``record_function`` below); -# - ``ProfilerActivity.CUDA`` - on-device CUDA kernels; -# - ``record_shapes`` - whether to record shapes of the operator inputs; -# - ``profile_memory`` - whether to report amount of memory consumed by -# model's Tensors; -# - ``use_cuda`` - whether to measure execution time of CUDA kernels. +# - ``activities`` - 要分析的活动列表: +# - ``ProfilerActivity.CPU`` - PyTorch算子、TorchScript函数和用户定义的代码标签(见下面的 ``record_function``); +# - ``ProfilerActivity.CUDA`` - 设备上的CUDA内核; +# - ``record_shapes`` - 是否记录算子输入的形状; +# - ``profile_memory`` - 是否报告模型张量所消耗的内存量; +# - ``use_cuda`` - 是否测量CUDA内核的执行时间。 # -# Note: when using CUDA, profiler also shows the runtime CUDA events -# occurring on the host. +# 注意:当使用CUDA时,profiler还会显示主机上发生的运行时CUDA事件。 ###################################################################### -# Let's see how we can use profiler to analyze the execution time: +# 让我们看看如何使用profiler分析执行时间: with profile(activities=[ProfilerActivity.CPU], record_shapes=True) as prof: with record_function("model_inference"): model(inputs) ###################################################################### -# Note that we can use ``record_function`` context manager to label -# arbitrary code ranges with user provided names -# (``model_inference`` is used as a label in the example above). +# 注意,我们可以使用 ``record_function`` 上下文管理器为任意代码范围添加用户提供的名称标签 +# (在上面的示例中使用 ``model_inference`` 作为标签)。 # -# Profiler allows one to check which operators were called during the -# execution of a code range wrapped with a profiler context manager. -# If multiple profiler ranges are active at the same time (e.g. in -# parallel PyTorch threads), each profiling context manager tracks only -# the operators of its corresponding range. -# Profiler also automatically profiles the asynchronous tasks launched -# with ``torch.jit._fork`` and (in case of a backward pass) -# the backward pass operators launched with ``backward()`` call. +# Profiler允许检查在使用profiler上下文管理器包装的代码范围内执行期间调用了哪些算子。 +# 如果同时存在多个活动的profiler范围(例如在并行PyTorch线程中),每个profiling上下文管理器只跟踪其对应范围的算子。 +# Profiler还会自动分析使用 ``torch.jit._fork`` 启动的异步任务,以及在反向传播过程中使用 ``backward()`` 调用启动的反向传播算子。 # -# Let's print out the stats for the execution above: +# 让我们打印出上述执行的统计信息: print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10)) ###################################################################### -# The output will look like (omitting some columns): +# 输出将如下所示(省略了一些列): # --------------------------------- ------------ ------------ ------------ ------------ # Name Self CPU CPU total CPU time avg # of Calls @@ -124,19 +108,24 @@ # ###################################################################### -# Here we see that, as expected, most of the time is spent in convolution (and specifically in ``mkldnn_convolution`` -# for PyTorch compiled with ``MKL-DNN`` support). -# Note the difference between self cpu time and cpu time - operators can call other operators, self cpu time excludes time -# spent in children operator calls, while total cpu time includes it. You can choose to sort by the self cpu time by passing -# ``sort_by="self_cpu_time_total"`` into the ``table`` call. # # To get a finer granularity of results and include operator input shapes, pass ``group_by_input_shape=True`` # (note: this requires running the profiler with ``record_shapes=True``): +# 这里我们可以看到,如预期的那样,大部分时间都花在了卷积上(对于使用 ``MKL-DNN`` 支持编译的PyTorch,特别是在 ``mkldnn_convolution`` 上)。 +# 注意自身cpu时间和cpu时间之间的区别 - 算子可以调用其他算子,自身cpu时间不包括在子算子调用中花费的时间,而总cpu时间包括了它。 +# 你可以通过将 ``sort_by="self_cpu_time_total"`` 传递给 ``table`` 调用来选择按自身cpu时间排序。 +# +# 要获得更细粒度的结果并包含算子输入形状,请传递 ``group_by_input_shape=True`` +# (注意:这需要使用 ``record_shapes=True`` 运行profiler): -print(prof.key_averages(group_by_input_shape=True).table(sort_by="cpu_time_total", row_limit=10)) +print( + prof.key_averages(group_by_input_shape=True).table( + sort_by="cpu_time_total", row_limit=10 + ) +) ######################################################################################## -# The output might look like this (omitting some columns): +# 输出可能如下所示(省略了一些列): # # .. code-block:: sh # @@ -158,26 +147,28 @@ # ###################################################################### -# Note the occurrence of ``aten::convolution`` twice with different input shapes. +# 注意 ``aten::convolution`` 出现了两次,具有不同的输入形状。 ###################################################################### -# Profiler can also be used to analyze performance of models executed on GPUs: +# Profiler也可用于分析在GPU上执行的模型的性能: + model = models.resnet18().cuda() inputs = torch.randn(5, 3, 224, 224).cuda() -with profile(activities=[ - ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof: +with profile( + activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True +) as prof: with record_function("model_inference"): model(inputs) print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) ###################################################################### -# (Note: the first use of CUDA profiling may bring an extra overhead.) +# (注意:第一次使用CUDA分析可能会带来额外的开销。) ###################################################################### -# The resulting table output (omitting some columns): +# 结果输出(省略了一些列): # # .. code-block:: sh # @@ -200,23 +191,22 @@ # ###################################################################### -# Note the occurrence of on-device kernels in the output (e.g. ``sgemm_32x32x32_NN``). +# 注意在输出中出现了设备上的内核(例如 ``sgemm_32x32x32_NN``)。 ###################################################################### -# 4. Using profiler to analyze memory consumption +# 4. 使用 profiler 分析内存消耗 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # -# PyTorch profiler can also show the amount of memory (used by the model's tensors) -# that was allocated (or released) during the execution of the model's operators. -# In the output below, 'self' memory corresponds to the memory allocated (released) -# by the operator, excluding the children calls to the other operators. -# To enable memory profiling functionality pass ``profile_memory=True``. +# PyTorch profiler还可以显示在执行模型算子期间分配(或释放)的内存量(由模型张量使用)。 +# 在下面的输出中,'self'内存对应于算子分配(释放)的内存,不包括对其他算子的子调用。 +# 要启用内存分析功能,请传递 ``profile_memory=True``。 model = models.resnet18() inputs = torch.randn(5, 3, 224, 224) -with profile(activities=[ProfilerActivity.CPU], - profile_memory=True, record_shapes=True) as prof: +with profile( + activities=[ProfilerActivity.CPU], profile_memory=True, record_shapes=True +) as prof: model(inputs) print(prof.key_averages().table(sort_by="self_cpu_memory_usage", row_limit=10)) @@ -241,7 +231,7 @@ print(prof.key_averages().table(sort_by="cpu_memory_usage", row_limit=10)) ############################################################################# -# The output might look like this (omitting some columns): +# 输出如下所示(省略了一些列): # # .. code-block:: sh # @@ -263,10 +253,10 @@ # ###################################################################### -# 5. Using tracing functionality +# 5. 使用跟踪功能 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # -# Profiling results can be outputted as a ``.json`` trace file: +# 可以将分析结果输出为 ``.json`` 跟踪文件: model = models.resnet18().cuda() inputs = torch.randn(5, 3, 224, 224).cuda() @@ -277,17 +267,16 @@ prof.export_chrome_trace("trace.json") ###################################################################### -# You can examine the sequence of profiled operators and CUDA kernels -# in Chrome trace viewer (``chrome://tracing``): +# 你可以在Chrome跟踪查看器(``chrome://tracing``)中检查分析的算子和CUDA内核序列: # # .. image:: ../../_static/img/trace_img.png # :scale: 25 % ###################################################################### -# 6. Examining stack traces +# 6. 检查堆栈跟踪 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # -# Profiler can be used to analyze Python and TorchScript stack traces: +# Profiler 可用于分析 Python 和 TorchScript 堆栈跟踪: with profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], @@ -296,10 +285,14 @@ model(inputs) # Print aggregated stats -print(prof.key_averages(group_by_stack_n=5).table(sort_by="self_cuda_time_total", row_limit=2)) +print( + prof.key_averages(group_by_stack_n=5).table( + sort_by="self_cuda_time_total", row_limit=2 + ) +) ################################################################################# -# The output might look like this (omitting some columns): +# 输出如下所示(省略了一些列): # # .. code-block:: sh # @@ -322,83 +315,73 @@ # ###################################################################### -# Note the two convolutions and the two call sites in ``torchvision/models/resnet.py`` script. +# 注意在 ``torchvision/models/resnet.py`` 脚本中的两个卷积和两个调用位置。 # -# (Warning: stack tracing adds an extra profiling overhead.) +# (警告:堆栈跟踪会增加额外的分析开销。) ###################################################################### -# 7. Using profiler to analyze long-running jobs +# 7. 使用分析器分析长时间运行的作业 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # -# PyTorch profiler offers an additional API to handle long-running jobs -# (such as training loops). Tracing all of the execution can be -# slow and result in very large trace files. To avoid this, use optional -# arguments: +# PyTorch分析器提供了一个额外的API来处理长时间运行的作业 +# (例如训练循环)。跟踪所有执行可能会很慢,并导致非常大的跟踪文件。 +# 为了避免这种情况,可以使用可选参数: # -# - ``schedule`` - specifies a function that takes an integer argument (step number) -# as an input and returns an action for the profiler, the best way to use this parameter -# is to use ``torch.profiler.schedule`` helper function that can generate a schedule for you; -# - ``on_trace_ready`` - specifies a function that takes a reference to the profiler as -# an input and is called by the profiler each time the new trace is ready. +# - ``schedule`` - 指定一个函数,该函数以整数参数(步骤编号)作为输入, +# 并返回分析器的操作,使用此参数的最佳方式是使用 ``torch.profiler.schedule`` +# 帮助函数,它可以为您生成一个计划; +# - ``on_trace_ready`` - 指定一个函数,该函数以分析器的引用作为输入, +# 并在每次新的跟踪准备就绪时由分析器调用。 # -# To illustrate how the API works, let's first consider the following example with -# ``torch.profiler.schedule`` helper function: +# 为了说明该API的工作原理,让我们首先考虑以下使用 ``torch.profiler.schedule`` +# 帮助函数的示例: + from torch.profiler import schedule -my_schedule = schedule( - skip_first=10, - wait=5, - warmup=1, - active=3, - repeat=2) +my_schedule = schedule(skip_first=10, wait=5, warmup=1, active=3, repeat=2) ###################################################################### -# Profiler assumes that the long-running job is composed of steps, numbered -# starting from zero. The example above defines the following sequence of actions -# for the profiler: -# -# 1. Parameter ``skip_first`` tells profiler that it should ignore the first 10 steps -# (default value of ``skip_first`` is zero); -# 2. After the first ``skip_first`` steps, profiler starts executing profiler cycles; -# 3. Each cycle consists of three phases: -# -# - idling (``wait=5`` steps), during this phase profiler is not active; -# - warming up (``warmup=1`` steps), during this phase profiler starts tracing, but -# the results are discarded; this phase is used to discard the samples obtained by -# the profiler at the beginning of the trace since they are usually skewed by an extra -# overhead; -# - active tracing (``active=3`` steps), during this phase profiler traces and records data; -# 4. An optional ``repeat`` parameter specifies an upper bound on the number of cycles. -# By default (zero value), profiler will execute cycles as long as the job runs. +# 分析器假设长时间运行的作业由从零开始编号的步骤组成。 +# 上面的示例为分析器定义了以下操作序列: +# +# 1. 参数 ``skip_first`` 告诉分析器它应该忽略前10个步骤 +# (``skip_first`` 的默认值为零); +# 2. 在第一个 ``skip_first`` 步骤之后,分析器开始执行分析器周期; +# 3. 每个周期由三个阶段组成: +# +# - 空闲(``wait=5``步骤),在此阶段分析器不活动; +# - 预热(``warmup=1``步骤),在此阶段分析器开始跟踪,但结果被丢弃; +# 此阶段用于丢弃分析器在跟踪开始时获得的样本,因为它们通常由额外的开销扭曲; +# - 主动跟踪(``active=3``步骤),在此阶段分析器跟踪和记录数据; +# 4. 可选的 ``repeat`` 参数指定周期的上限。 +# 默认情况下(零值),分析器将尽可能长时间地执行周期。 ###################################################################### -# Thus, in the example above, profiler will skip the first 15 steps, spend the next step on the warm up, -# actively record the next 3 steps, skip another 5 steps, spend the next step on the warm up, actively -# record another 3 steps. Since the ``repeat=2`` parameter value is specified, the profiler will stop -# the recording after the first two cycles. +# 因此,在上面的示例中,分析器将跳过前15个步骤,在下一步进行预热, +# 在接下来的3个步骤中主动记录,再跳过另外5个步骤,在下一步进行预热, +# 在另外3个步骤中主动记录。由于指定了 ``repeat=2`` 参数值, +# 分析器将在前两个周期之后停止记录。 # -# At the end of each cycle profiler calls the specified ``on_trace_ready`` function and passes itself as -# an argument. This function is used to process the new trace - either by obtaining the table output or -# by saving the output on disk as a trace file. +# 在每个周期结束时,分析器调用指定的 ``on_trace_ready`` 函数并将自身作为参数传递。 +# 此函数用于处理新的跟踪 - 通过获取表输出或将输出保存到磁盘上的跟踪文件。 # -# To send the signal to the profiler that the next step has started, call ``prof.step()`` function. -# The current profiler step is stored in ``prof.step_num``. +# 要向分析器发送下一步已经开始的信号,请调用 ``prof.step()`` 函数。 +# 当前分析器步骤存储在 ``prof.step_num`` 中。 # -# The following example shows how to use all of the concepts above: +# 以下示例显示了如何使用上述所有概念: + def trace_handler(p): output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=10) print(output) p.export_chrome_trace("/tmp/trace_" + str(p.step_num) + ".json") + with profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], - schedule=torch.profiler.schedule( - wait=1, - warmup=1, - active=2), - on_trace_ready=trace_handler + schedule=torch.profiler.schedule(wait=1, warmup=1, active=2), + on_trace_ready=trace_handler, ) as p: for idx in range(8): model(inputs) @@ -406,12 +389,12 @@ def trace_handler(p): ###################################################################### -# Learn More +# 了解更多 # ---------- # -# Take a look at the following recipes/tutorials to continue your learning: +# 查看以下教程以继续学习: # -# - `PyTorch Benchmark `_ -# - `PyTorch Profiler with TensorBoard `_ tutorial -# - `Visualizing models, data, and training with TensorBoard `_ tutorial +# - `PyTorch 基准测试 `_ +# - `使用 TensorBoard 的 PyTorch 分析器 `_ 教程 +# - `使用 TensorBoard 可视化模型、数据和训练 `_ 教程 # diff --git a/docs/_downloads/b2c9c15033f17c2bdf31c864f9d39c76/profiler_recipe.ipynb b/docs/_downloads/b2c9c15033f17c2bdf31c864f9d39c76/profiler_recipe.ipynb index 012d4a5..83a447f 100644 --- a/docs/_downloads/b2c9c15033f17c2bdf31c864f9d39c76/profiler_recipe.ipynb +++ b/docs/_downloads/b2c9c15033f17c2bdf31c864f9d39c76/profiler_recipe.ipynb @@ -15,14 +15,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\n# PyTorch Profiler\nThis recipe explains how to use PyTorch profiler and measure the time and\nmemory consumption of the model's operators.\n\n## Introduction\nPyTorch includes a simple profiler API that is useful when user needs\nto determine the most expensive operators in the model.\n\nIn this recipe, we will use a simple Resnet model to demonstrate how to\nuse profiler to analyze model performance.\n\n## Setup\nTo install ``torch`` and ``torchvision`` use the following command:\n\n```sh\npip install torch torchvision\n```\n" + "\n# PyTorch Profiler\n\u672c\u6559\u7a0b\u89e3\u91ca\u4e86\u5982\u4f55\u4f7f\u7528PyTorch profiler,\u5e76\u6d4b\u91cf\u6a21\u578b\u7b97\u5b50\u7684\u65f6\u95f4\u548c\u5185\u5b58\u6d88\u8017\u3002\n\n## \u7b80\u4ecb\n\u5f53\u7528\u6237\u9700\u8981\u786e\u5b9a\u6a21\u578b\u4e2d\u6700\u8017\u8d39\u8d44\u6e90\u7684\u7b97\u5b50\u65f6,PyTorch\u5305\u542b\u4e00\u4e2a\u7b80\u5355\u7684profiler API\u975e\u5e38\u6709\u7528\u3002\n\n\u5728\u672c\u6559\u7a0b\u4e2d,\u6211\u4eec\u5c06\u4f7f\u7528\u4e00\u4e2a\u7b80\u5355\u7684 Resnet \u6a21\u578b\u6765\u6f14\u793a\u5982\u4f55\u4f7f\u7528profiler\u5206\u6790\u6a21\u578b\u6027\u80fd\u3002\n\n## \u73af\u5883\u8bbe\u7f6e\n\u8981\u5b89\u88c5 ``torch`` \u548c ``torchvision``,\u8bf7\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4:\n\n```sh\npip install torch torchvision\n```\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Steps\n\n1. Import all necessary libraries\n2. Instantiate a simple Resnet model\n3. Using profiler to analyze execution time\n4. Using profiler to analyze memory consumption\n5. Using tracing functionality\n6. Examining stack traces\n7. Using profiler to analyze long-running jobs\n\n### 1. Import all necessary libraries\n\nIn this recipe we will use ``torch``, ``torchvision.models``\nand ``profiler`` modules:\n\n\n" + "## \u5177\u4f53\u6b65\u9aa4\n\n1. \u5bfc\u5165\u6240\u6709\u5fc5\u9700\u7684\u5e93\n2. \u5b9e\u4f8b\u5316\u4e00\u4e2a\u7b80\u5355\u7684Resnet\u6a21\u578b\n3. \u4f7f\u7528profiler\u5206\u6790\u6267\u884c\u65f6\u95f4\n4. \u4f7f\u7528profiler\u5206\u6790\u5185\u5b58\u6d88\u8017\n5. \u4f7f\u7528\u8ddf\u8e2a\u529f\u80fd\n6. \u68c0\u67e5\u5806\u6808\u8ddf\u8e2a\n7. \u4f7f\u7528profiler\u5206\u6790\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a\n\n### 1. \u5bfc\u5165\u4f9d\u8d56\u7684\u5e93\n\n\u5728\u672c\u6559\u7a0b\u4e2d,\u6211\u4eec\u5c06\u4f7f\u7528 ``torch``\u3001``torchvision.models`` \u548c ``profiler`` \u6a21\u5757:\n\n\n" ] }, { @@ -33,14 +33,14 @@ }, "outputs": [], "source": [ - "import torch\nimport torchvision.models as models\nfrom torch.profiler import profile, record_function, ProfilerActivity" + "import torch\nimport torchvision.models as models\nfrom torch.profiler import profile, ProfilerActivity, record_function" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 2. Instantiate a simple Resnet model\n\nLet's create an instance of a Resnet model and prepare an input\nfor it:\n\n\n" + "### 2. \u521b\u5efa\u4e00\u4e2a\u7b80\u5355\u7684 Resnet \u6a21\u578b\n\n\u8ba9\u6211\u4eec\u521b\u5efa\u4e00\u4e2a Resnet \u6a21\u578b\u5b9e\u4f8b,\u5e76\u4e3a\u5b83\u51c6\u5907\u4e00\u4e2a\u8f93\u5165:\n\n\n" ] }, { @@ -58,14 +58,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### 3. Using profiler to analyze execution time\n\nPyTorch profiler is enabled through the context manager and accepts\na number of parameters, some of the most useful are:\n\n- ``activities`` - a list of activities to profile:\n - ``ProfilerActivity.CPU`` - PyTorch operators, TorchScript functions and\n user-defined code labels (see ``record_function`` below);\n - ``ProfilerActivity.CUDA`` - on-device CUDA kernels;\n- ``record_shapes`` - whether to record shapes of the operator inputs;\n- ``profile_memory`` - whether to report amount of memory consumed by\n model's Tensors;\n- ``use_cuda`` - whether to measure execution time of CUDA kernels.\n\nNote: when using CUDA, profiler also shows the runtime CUDA events\noccurring on the host.\n\n" + "### 3. \u4f7f\u7528profiler\u5206\u6790\u6267\u884c\u65f6\u95f4\n\nPyTorch profiler\u901a\u8fc7\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u542f\u7528,\u5e76\u63a5\u53d7\u591a\u4e2a\u53c2\u6570,\u5176\u4e2d\u4e00\u4e9b\u6700\u6709\u7528\u7684\u53c2\u6570\u5982\u4e0b:\n\n- ``activities`` - \u8981\u5206\u6790\u7684\u6d3b\u52a8\u5217\u8868:\n - ``ProfilerActivity.CPU`` - PyTorch\u7b97\u5b50\u3001TorchScript\u51fd\u6570\u548c\u7528\u6237\u5b9a\u4e49\u7684\u4ee3\u7801\u6807\u7b7e(\u89c1\u4e0b\u9762\u7684 ``record_function``);\n - ``ProfilerActivity.CUDA`` - \u8bbe\u5907\u4e0a\u7684CUDA\u5185\u6838;\n- ``record_shapes`` - \u662f\u5426\u8bb0\u5f55\u7b97\u5b50\u8f93\u5165\u7684\u5f62\u72b6;\n- ``profile_memory`` - \u662f\u5426\u62a5\u544a\u6a21\u578b\u5f20\u91cf\u6240\u6d88\u8017\u7684\u5185\u5b58\u91cf;\n- ``use_cuda`` - \u662f\u5426\u6d4b\u91cfCUDA\u5185\u6838\u7684\u6267\u884c\u65f6\u95f4\u3002\n\n\u6ce8\u610f:\u5f53\u4f7f\u7528CUDA\u65f6,profiler\u8fd8\u4f1a\u663e\u793a\u4e3b\u673a\u4e0a\u53d1\u751f\u7684\u8fd0\u884c\u65f6CUDA\u4e8b\u4ef6\u3002\n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Let's see how we can use profiler to analyze the execution time:\n\n" + "\u8ba9\u6211\u4eec\u770b\u770b\u5982\u4f55\u4f7f\u7528profiler\u5206\u6790\u6267\u884c\u65f6\u95f4:\n\n" ] }, { @@ -83,7 +83,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Note that we can use ``record_function`` context manager to label\narbitrary code ranges with user provided names\n(``model_inference`` is used as a label in the example above).\n\nProfiler allows one to check which operators were called during the\nexecution of a code range wrapped with a profiler context manager.\nIf multiple profiler ranges are active at the same time (e.g. in\nparallel PyTorch threads), each profiling context manager tracks only\nthe operators of its corresponding range.\nProfiler also automatically profiles the asynchronous tasks launched\nwith ``torch.jit._fork`` and (in case of a backward pass)\nthe backward pass operators launched with ``backward()`` call.\n\nLet's print out the stats for the execution above:\n\n" + "\u6ce8\u610f,\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528 ``record_function`` \u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u4e3a\u4efb\u610f\u4ee3\u7801\u8303\u56f4\u6dfb\u52a0\u7528\u6237\u63d0\u4f9b\u7684\u540d\u79f0\u6807\u7b7e\n(\u5728\u4e0a\u9762\u7684\u793a\u4f8b\u4e2d\u4f7f\u7528 ``model_inference`` \u4f5c\u4e3a\u6807\u7b7e)\u3002\n\nProfiler\u5141\u8bb8\u68c0\u67e5\u5728\u4f7f\u7528profiler\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u5305\u88c5\u7684\u4ee3\u7801\u8303\u56f4\u5185\u6267\u884c\u671f\u95f4\u8c03\u7528\u4e86\u54ea\u4e9b\u7b97\u5b50\u3002\n\u5982\u679c\u540c\u65f6\u5b58\u5728\u591a\u4e2a\u6d3b\u52a8\u7684profiler\u8303\u56f4(\u4f8b\u5982\u5728\u5e76\u884cPyTorch\u7ebf\u7a0b\u4e2d),\u6bcf\u4e2aprofiling\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u53ea\u8ddf\u8e2a\u5176\u5bf9\u5e94\u8303\u56f4\u7684\u7b97\u5b50\u3002\nProfiler\u8fd8\u4f1a\u81ea\u52a8\u5206\u6790\u4f7f\u7528 ``torch.jit._fork`` \u542f\u52a8\u7684\u5f02\u6b65\u4efb\u52a1,\u4ee5\u53ca\u5728\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f7f\u7528 ``backward()`` \u8c03\u7528\u542f\u52a8\u7684\u53cd\u5411\u4f20\u64ad\u7b97\u5b50\u3002\n\n\u8ba9\u6211\u4eec\u6253\u5370\u51fa\u4e0a\u8ff0\u6267\u884c\u7684\u7edf\u8ba1\u4fe1\u606f:\n\n" ] }, { @@ -101,7 +101,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The output will look like (omitting some columns):\n\n" + "\u8f93\u51fa\u5c06\u5982\u4e0b\u6240\u793a(\u7701\u7565\u4e86\u4e00\u4e9b\u5217):\n\n" ] }, { @@ -119,7 +119,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Here we see that, as expected, most of the time is spent in convolution (and specifically in ``mkldnn_convolution``\nfor PyTorch compiled with ``MKL-DNN`` support).\nNote the difference between self cpu time and cpu time - operators can call other operators, self cpu time excludes time\nspent in children operator calls, while total cpu time includes it. You can choose to sort by the self cpu time by passing\n``sort_by=\"self_cpu_time_total\"`` into the ``table`` call.\n\nTo get a finer granularity of results and include operator input shapes, pass ``group_by_input_shape=True``\n(note: this requires running the profiler with ``record_shapes=True``):\n\n" + "To get a finer granularity of results and include operator input shapes, pass ``group_by_input_shape=True``\n(note: this requires running the profiler with ``record_shapes=True``):\n\u8fd9\u91cc\u6211\u4eec\u53ef\u4ee5\u770b\u5230,\u5982\u9884\u671f\u7684\u90a3\u6837,\u5927\u90e8\u5206\u65f6\u95f4\u90fd\u82b1\u5728\u4e86\u5377\u79ef\u4e0a(\u5bf9\u4e8e\u4f7f\u7528 ``MKL-DNN`` \u652f\u6301\u7f16\u8bd1\u7684PyTorch,\u7279\u522b\u662f\u5728 ``mkldnn_convolution`` \u4e0a)\u3002\n\u6ce8\u610f\u81ea\u8eabcpu\u65f6\u95f4\u548ccpu\u65f6\u95f4\u4e4b\u95f4\u7684\u533a\u522b - \u7b97\u5b50\u53ef\u4ee5\u8c03\u7528\u5176\u4ed6\u7b97\u5b50,\u81ea\u8eabcpu\u65f6\u95f4\u4e0d\u5305\u62ec\u5728\u5b50\u7b97\u5b50\u8c03\u7528\u4e2d\u82b1\u8d39\u7684\u65f6\u95f4,\u800c\u603bcpu\u65f6\u95f4\u5305\u62ec\u4e86\u5b83\u3002\n\u4f60\u53ef\u4ee5\u901a\u8fc7\u5c06 ``sort_by=\"self_cpu_time_total\"`` \u4f20\u9012\u7ed9 ``table`` \u8c03\u7528\u6765\u9009\u62e9\u6309\u81ea\u8eabcpu\u65f6\u95f4\u6392\u5e8f\u3002\n\n\u8981\u83b7\u5f97\u66f4\u7ec6\u7c92\u5ea6\u7684\u7ed3\u679c\u5e76\u5305\u542b\u7b97\u5b50\u8f93\u5165\u5f62\u72b6,\u8bf7\u4f20\u9012 ``group_by_input_shape=True``\n(\u6ce8\u610f:\u8fd9\u9700\u8981\u4f7f\u7528 ``record_shapes=True`` \u8fd0\u884cprofiler):\n\n" ] }, { @@ -130,28 +130,28 @@ }, "outputs": [], "source": [ - "print(prof.key_averages(group_by_input_shape=True).table(sort_by=\"cpu_time_total\", row_limit=10))" + "print(\n prof.key_averages(group_by_input_shape=True).table(\n sort_by=\"cpu_time_total\", row_limit=10\n )\n)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The output might look like this (omitting some columns):\n\n```sh\n--------------------------------- ------------ -------------------------------------------\n Name CPU total Input Shapes\n--------------------------------- ------------ -------------------------------------------\n model_inference 57.503ms []\n aten::conv2d 8.008ms [5,64,56,56], [64,64,3,3], [], ..., []]\n aten::convolution 7.956ms [[5,64,56,56], [64,64,3,3], [], ..., []]\n aten::_convolution 7.909ms [[5,64,56,56], [64,64,3,3], [], ..., []]\n aten::mkldnn_convolution 7.834ms [[5,64,56,56], [64,64,3,3], [], ..., []]\n aten::conv2d 6.332ms [[5,512,7,7], [512,512,3,3], [], ..., []]\n aten::convolution 6.303ms [[5,512,7,7], [512,512,3,3], [], ..., []]\n aten::_convolution 6.273ms [[5,512,7,7], [512,512,3,3], [], ..., []]\n aten::mkldnn_convolution 6.233ms [[5,512,7,7], [512,512,3,3], [], ..., []]\n aten::conv2d 4.751ms [[5,256,14,14], [256,256,3,3], [], ..., []]\n--------------------------------- ------------ -------------------------------------------\nSelf CPU time total: 57.549ms\n```\n" + "\u8f93\u51fa\u53ef\u80fd\u5982\u4e0b\u6240\u793a(\u7701\u7565\u4e86\u4e00\u4e9b\u5217):\n\n```sh\n--------------------------------- ------------ -------------------------------------------\n Name CPU total Input Shapes\n--------------------------------- ------------ -------------------------------------------\n model_inference 57.503ms []\n aten::conv2d 8.008ms [5,64,56,56], [64,64,3,3], [], ..., []]\n aten::convolution 7.956ms [[5,64,56,56], [64,64,3,3], [], ..., []]\n aten::_convolution 7.909ms [[5,64,56,56], [64,64,3,3], [], ..., []]\n aten::mkldnn_convolution 7.834ms [[5,64,56,56], [64,64,3,3], [], ..., []]\n aten::conv2d 6.332ms [[5,512,7,7], [512,512,3,3], [], ..., []]\n aten::convolution 6.303ms [[5,512,7,7], [512,512,3,3], [], ..., []]\n aten::_convolution 6.273ms [[5,512,7,7], [512,512,3,3], [], ..., []]\n aten::mkldnn_convolution 6.233ms [[5,512,7,7], [512,512,3,3], [], ..., []]\n aten::conv2d 4.751ms [[5,256,14,14], [256,256,3,3], [], ..., []]\n--------------------------------- ------------ -------------------------------------------\nSelf CPU time total: 57.549ms\n```\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note the occurrence of ``aten::convolution`` twice with different input shapes.\n\n" + "\u6ce8\u610f ``aten::convolution`` \u51fa\u73b0\u4e86\u4e24\u6b21,\u5177\u6709\u4e0d\u540c\u7684\u8f93\u5165\u5f62\u72b6\u3002\n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Profiler can also be used to analyze performance of models executed on GPUs:\n\n" + "Profiler\u4e5f\u53ef\u7528\u4e8e\u5206\u6790\u5728GPU\u4e0a\u6267\u884c\u7684\u6a21\u578b\u7684\u6027\u80fd:\n\n" ] }, { @@ -162,35 +162,35 @@ }, "outputs": [], "source": [ - "model = models.resnet18().cuda()\ninputs = torch.randn(5, 3, 224, 224).cuda()\n\nwith profile(activities=[\n ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof:\n with record_function(\"model_inference\"):\n model(inputs)\n\nprint(prof.key_averages().table(sort_by=\"cuda_time_total\", row_limit=10))" + "model = models.resnet18().cuda()\ninputs = torch.randn(5, 3, 224, 224).cuda()\n\nwith profile(\n activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True\n) as prof:\n with record_function(\"model_inference\"):\n model(inputs)\n\nprint(prof.key_averages().table(sort_by=\"cuda_time_total\", row_limit=10))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "(Note: the first use of CUDA profiling may bring an extra overhead.)\n\n" + "(\u6ce8\u610f:\u7b2c\u4e00\u6b21\u4f7f\u7528CUDA\u5206\u6790\u53ef\u80fd\u4f1a\u5e26\u6765\u989d\u5916\u7684\u5f00\u9500\u3002)\n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The resulting table output (omitting some columns):\n\n```sh\n------------------------------------------------------- ------------ ------------\n Name Self CUDA CUDA total\n------------------------------------------------------- ------------ ------------\n model_inference 0.000us 11.666ms\n aten::conv2d 0.000us 10.484ms\n aten::convolution 0.000us 10.484ms\n aten::_convolution 0.000us 10.484ms\n aten::_convolution_nogroup 0.000us 10.484ms\n aten::thnn_conv2d 0.000us 10.484ms\n aten::thnn_conv2d_forward 10.484ms 10.484ms\nvoid at::native::im2col_kernel(long, float co... 3.844ms 3.844ms\n sgemm_32x32x32_NN 3.206ms 3.206ms\n sgemm_32x32x32_NN_vec 3.093ms 3.093ms\n------------------------------------------------------- ------------ ------------\nSelf CPU time total: 23.015ms\nSelf CUDA time total: 11.666ms\n```\n" + "\u7ed3\u679c\u8f93\u51fa(\u7701\u7565\u4e86\u4e00\u4e9b\u5217):\n\n```sh\n------------------------------------------------------- ------------ ------------\n Name Self CUDA CUDA total\n------------------------------------------------------- ------------ ------------\n model_inference 0.000us 11.666ms\n aten::conv2d 0.000us 10.484ms\n aten::convolution 0.000us 10.484ms\n aten::_convolution 0.000us 10.484ms\n aten::_convolution_nogroup 0.000us 10.484ms\n aten::thnn_conv2d 0.000us 10.484ms\n aten::thnn_conv2d_forward 10.484ms 10.484ms\nvoid at::native::im2col_kernel(long, float co... 3.844ms 3.844ms\n sgemm_32x32x32_NN 3.206ms 3.206ms\n sgemm_32x32x32_NN_vec 3.093ms 3.093ms\n------------------------------------------------------- ------------ ------------\nSelf CPU time total: 23.015ms\nSelf CUDA time total: 11.666ms\n```\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note the occurrence of on-device kernels in the output (e.g. ``sgemm_32x32x32_NN``).\n\n" + "\u6ce8\u610f\u5728\u8f93\u51fa\u4e2d\u51fa\u73b0\u4e86\u8bbe\u5907\u4e0a\u7684\u5185\u6838(\u4f8b\u5982 ``sgemm_32x32x32_NN``)\u3002\n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 4. Using profiler to analyze memory consumption\n\nPyTorch profiler can also show the amount of memory (used by the model's tensors)\nthat was allocated (or released) during the execution of the model's operators.\nIn the output below, 'self' memory corresponds to the memory allocated (released)\nby the operator, excluding the children calls to the other operators.\nTo enable memory profiling functionality pass ``profile_memory=True``.\n\n" + "### 4. \u4f7f\u7528 profiler \u5206\u6790\u5185\u5b58\u6d88\u8017\n\nPyTorch profiler\u8fd8\u53ef\u4ee5\u663e\u793a\u5728\u6267\u884c\u6a21\u578b\u7b97\u5b50\u671f\u95f4\u5206\u914d(\u6216\u91ca\u653e)\u7684\u5185\u5b58\u91cf(\u7531\u6a21\u578b\u5f20\u91cf\u4f7f\u7528)\u3002\n\u5728\u4e0b\u9762\u7684\u8f93\u51fa\u4e2d,'self'\u5185\u5b58\u5bf9\u5e94\u4e8e\u7b97\u5b50\u5206\u914d(\u91ca\u653e)\u7684\u5185\u5b58,\u4e0d\u5305\u62ec\u5bf9\u5176\u4ed6\u7b97\u5b50\u7684\u5b50\u8c03\u7528\u3002\n\u8981\u542f\u7528\u5185\u5b58\u5206\u6790\u529f\u80fd,\u8bf7\u4f20\u9012 ``profile_memory=True``\u3002\n\n" ] }, { @@ -201,21 +201,21 @@ }, "outputs": [], "source": [ - "model = models.resnet18()\ninputs = torch.randn(5, 3, 224, 224)\n\nwith profile(activities=[ProfilerActivity.CPU],\n profile_memory=True, record_shapes=True) as prof:\n model(inputs)\n\nprint(prof.key_averages().table(sort_by=\"self_cpu_memory_usage\", row_limit=10))\n\n# (omitting some columns)\n# --------------------------------- ------------ ------------ ------------\n# Name CPU Mem Self CPU Mem # of Calls\n# --------------------------------- ------------ ------------ ------------\n# aten::empty 94.79 Mb 94.79 Mb 121\n# aten::max_pool2d_with_indices 11.48 Mb 11.48 Mb 1\n# aten::addmm 19.53 Kb 19.53 Kb 1\n# aten::empty_strided 572 b 572 b 25\n# aten::resize_ 240 b 240 b 6\n# aten::abs 480 b 240 b 4\n# aten::add 160 b 160 b 20\n# aten::masked_select 120 b 112 b 1\n# aten::ne 122 b 53 b 6\n# aten::eq 60 b 30 b 2\n# --------------------------------- ------------ ------------ ------------\n# Self CPU time total: 53.064ms\n\nprint(prof.key_averages().table(sort_by=\"cpu_memory_usage\", row_limit=10))" + "model = models.resnet18()\ninputs = torch.randn(5, 3, 224, 224)\n\nwith profile(\n activities=[ProfilerActivity.CPU], profile_memory=True, record_shapes=True\n) as prof:\n model(inputs)\n\nprint(prof.key_averages().table(sort_by=\"self_cpu_memory_usage\", row_limit=10))\n\n# (omitting some columns)\n# --------------------------------- ------------ ------------ ------------\n# Name CPU Mem Self CPU Mem # of Calls\n# --------------------------------- ------------ ------------ ------------\n# aten::empty 94.79 Mb 94.79 Mb 121\n# aten::max_pool2d_with_indices 11.48 Mb 11.48 Mb 1\n# aten::addmm 19.53 Kb 19.53 Kb 1\n# aten::empty_strided 572 b 572 b 25\n# aten::resize_ 240 b 240 b 6\n# aten::abs 480 b 240 b 4\n# aten::add 160 b 160 b 20\n# aten::masked_select 120 b 112 b 1\n# aten::ne 122 b 53 b 6\n# aten::eq 60 b 30 b 2\n# --------------------------------- ------------ ------------ ------------\n# Self CPU time total: 53.064ms\n\nprint(prof.key_averages().table(sort_by=\"cpu_memory_usage\", row_limit=10))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The output might look like this (omitting some columns):\n\n```sh\n--------------------------------- ------------ ------------ ------------\n Name CPU Mem Self CPU Mem # of Calls\n--------------------------------- ------------ ------------ ------------\n aten::empty 94.79 Mb 94.79 Mb 121\n aten::batch_norm 47.41 Mb 0 b 20\n aten::_batch_norm_impl_index 47.41 Mb 0 b 20\n aten::native_batch_norm 47.41 Mb 0 b 20\n aten::conv2d 47.37 Mb 0 b 20\n aten::convolution 47.37 Mb 0 b 20\n aten::_convolution 47.37 Mb 0 b 20\n aten::mkldnn_convolution 47.37 Mb 0 b 20\n aten::max_pool2d 11.48 Mb 0 b 1\n aten::max_pool2d_with_indices 11.48 Mb 11.48 Mb 1\n--------------------------------- ------------ ------------ ------------\nSelf CPU time total: 53.064ms\n```\n" + "\u8f93\u51fa\u5982\u4e0b\u6240\u793a(\u7701\u7565\u4e86\u4e00\u4e9b\u5217):\n\n```sh\n--------------------------------- ------------ ------------ ------------\n Name CPU Mem Self CPU Mem # of Calls\n--------------------------------- ------------ ------------ ------------\n aten::empty 94.79 Mb 94.79 Mb 121\n aten::batch_norm 47.41 Mb 0 b 20\n aten::_batch_norm_impl_index 47.41 Mb 0 b 20\n aten::native_batch_norm 47.41 Mb 0 b 20\n aten::conv2d 47.37 Mb 0 b 20\n aten::convolution 47.37 Mb 0 b 20\n aten::_convolution 47.37 Mb 0 b 20\n aten::mkldnn_convolution 47.37 Mb 0 b 20\n aten::max_pool2d 11.48 Mb 0 b 1\n aten::max_pool2d_with_indices 11.48 Mb 11.48 Mb 1\n--------------------------------- ------------ ------------ ------------\nSelf CPU time total: 53.064ms\n```\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 5. Using tracing functionality\n\nProfiling results can be outputted as a ``.json`` trace file:\n\n" + "### 5. \u4f7f\u7528\u8ddf\u8e2a\u529f\u80fd\n\n\u53ef\u4ee5\u5c06\u5206\u6790\u7ed3\u679c\u8f93\u51fa\u4e3a ``.json`` \u8ddf\u8e2a\u6587\u4ef6:\n\n" ] }, { @@ -233,14 +233,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can examine the sequence of profiled operators and CUDA kernels\nin Chrome trace viewer (``chrome://tracing``):\n\n\n\n" + "\u4f60\u53ef\u4ee5\u5728Chrome\u8ddf\u8e2a\u67e5\u770b\u5668(``chrome://tracing``)\u4e2d\u68c0\u67e5\u5206\u6790\u7684\u7b97\u5b50\u548cCUDA\u5185\u6838\u5e8f\u5217:\n\n\n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 6. Examining stack traces\n\nProfiler can be used to analyze Python and TorchScript stack traces:\n\n" + "### 6. \u68c0\u67e5\u5806\u6808\u8ddf\u8e2a\n\nProfiler \u53ef\u7528\u4e8e\u5206\u6790 Python \u548c TorchScript \u5806\u6808\u8ddf\u8e2a:\n\n" ] }, { @@ -251,28 +251,28 @@ }, "outputs": [], "source": [ - "with profile(\n activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],\n with_stack=True,\n) as prof:\n model(inputs)\n\n# Print aggregated stats\nprint(prof.key_averages(group_by_stack_n=5).table(sort_by=\"self_cuda_time_total\", row_limit=2))" + "with profile(\n activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],\n with_stack=True,\n) as prof:\n model(inputs)\n\n# Print aggregated stats\nprint(\n prof.key_averages(group_by_stack_n=5).table(\n sort_by=\"self_cuda_time_total\", row_limit=2\n )\n)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The output might look like this (omitting some columns):\n\n```sh\n------------------------- -----------------------------------------------------------\n Name Source Location\n------------------------- -----------------------------------------------------------\naten::thnn_conv2d_forward .../torch/nn/modules/conv.py(439): _conv_forward\n .../torch/nn/modules/conv.py(443): forward\n .../torch/nn/modules/module.py(1051): _call_impl\n .../site-packages/torchvision/models/resnet.py(63): forward\n .../torch/nn/modules/module.py(1051): _call_impl\naten::thnn_conv2d_forward .../torch/nn/modules/conv.py(439): _conv_forward\n .../torch/nn/modules/conv.py(443): forward\n .../torch/nn/modules/module.py(1051): _call_impl\n .../site-packages/torchvision/models/resnet.py(59): forward\n .../torch/nn/modules/module.py(1051): _call_impl\n------------------------- -----------------------------------------------------------\nSelf CPU time total: 34.016ms\nSelf CUDA time total: 11.659ms\n```\n" + "\u8f93\u51fa\u5982\u4e0b\u6240\u793a(\u7701\u7565\u4e86\u4e00\u4e9b\u5217):\n\n```sh\n------------------------- -----------------------------------------------------------\n Name Source Location\n------------------------- -----------------------------------------------------------\naten::thnn_conv2d_forward .../torch/nn/modules/conv.py(439): _conv_forward\n .../torch/nn/modules/conv.py(443): forward\n .../torch/nn/modules/module.py(1051): _call_impl\n .../site-packages/torchvision/models/resnet.py(63): forward\n .../torch/nn/modules/module.py(1051): _call_impl\naten::thnn_conv2d_forward .../torch/nn/modules/conv.py(439): _conv_forward\n .../torch/nn/modules/conv.py(443): forward\n .../torch/nn/modules/module.py(1051): _call_impl\n .../site-packages/torchvision/models/resnet.py(59): forward\n .../torch/nn/modules/module.py(1051): _call_impl\n------------------------- -----------------------------------------------------------\nSelf CPU time total: 34.016ms\nSelf CUDA time total: 11.659ms\n```\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Note the two convolutions and the two call sites in ``torchvision/models/resnet.py`` script.\n\n(Warning: stack tracing adds an extra profiling overhead.)\n\n" + "\u6ce8\u610f\u5728 ``torchvision/models/resnet.py`` \u811a\u672c\u4e2d\u7684\u4e24\u4e2a\u5377\u79ef\u548c\u4e24\u4e2a\u8c03\u7528\u4f4d\u7f6e\u3002\n\n(\u8b66\u544a:\u5806\u6808\u8ddf\u8e2a\u4f1a\u589e\u52a0\u989d\u5916\u7684\u5206\u6790\u5f00\u9500\u3002)\n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### 7. Using profiler to analyze long-running jobs\n\nPyTorch profiler offers an additional API to handle long-running jobs\n(such as training loops). Tracing all of the execution can be\nslow and result in very large trace files. To avoid this, use optional\narguments:\n\n- ``schedule`` - specifies a function that takes an integer argument (step number)\n as an input and returns an action for the profiler, the best way to use this parameter\n is to use ``torch.profiler.schedule`` helper function that can generate a schedule for you;\n- ``on_trace_ready`` - specifies a function that takes a reference to the profiler as\n an input and is called by the profiler each time the new trace is ready.\n\nTo illustrate how the API works, let's first consider the following example with\n``torch.profiler.schedule`` helper function:\n\n" + "### 7. \u4f7f\u7528\u5206\u6790\u5668\u5206\u6790\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a\n\nPyTorch\u5206\u6790\u5668\u63d0\u4f9b\u4e86\u4e00\u4e2a\u989d\u5916\u7684API\u6765\u5904\u7406\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a\n(\u4f8b\u5982\u8bad\u7ec3\u5faa\u73af)\u3002\u8ddf\u8e2a\u6240\u6709\u6267\u884c\u53ef\u80fd\u4f1a\u5f88\u6162,\u5e76\u5bfc\u81f4\u975e\u5e38\u5927\u7684\u8ddf\u8e2a\u6587\u4ef6\u3002\n\u4e3a\u4e86\u907f\u514d\u8fd9\u79cd\u60c5\u51b5,\u53ef\u4ee5\u4f7f\u7528\u53ef\u9009\u53c2\u6570:\n\n- ``schedule`` - \u6307\u5b9a\u4e00\u4e2a\u51fd\u6570,\u8be5\u51fd\u6570\u4ee5\u6574\u6570\u53c2\u6570(\u6b65\u9aa4\u7f16\u53f7)\u4f5c\u4e3a\u8f93\u5165,\n \u5e76\u8fd4\u56de\u5206\u6790\u5668\u7684\u64cd\u4f5c,\u4f7f\u7528\u6b64\u53c2\u6570\u7684\u6700\u4f73\u65b9\u5f0f\u662f\u4f7f\u7528 ``torch.profiler.schedule``\n \u5e2e\u52a9\u51fd\u6570,\u5b83\u53ef\u4ee5\u4e3a\u60a8\u751f\u6210\u4e00\u4e2a\u8ba1\u5212;\n- ``on_trace_ready`` - \u6307\u5b9a\u4e00\u4e2a\u51fd\u6570,\u8be5\u51fd\u6570\u4ee5\u5206\u6790\u5668\u7684\u5f15\u7528\u4f5c\u4e3a\u8f93\u5165,\n \u5e76\u5728\u6bcf\u6b21\u65b0\u7684\u8ddf\u8e2a\u51c6\u5907\u5c31\u7eea\u65f6\u7531\u5206\u6790\u5668\u8c03\u7528\u3002\n\n\u4e3a\u4e86\u8bf4\u660e\u8be5API\u7684\u5de5\u4f5c\u539f\u7406,\u8ba9\u6211\u4eec\u9996\u5148\u8003\u8651\u4ee5\u4e0b\u4f7f\u7528 ``torch.profiler.schedule``\n\u5e2e\u52a9\u51fd\u6570\u7684\u793a\u4f8b:\n\n" ] }, { @@ -283,21 +283,21 @@ }, "outputs": [], "source": [ - "from torch.profiler import schedule\n\nmy_schedule = schedule(\n skip_first=10,\n wait=5,\n warmup=1,\n active=3,\n repeat=2)" + "from torch.profiler import schedule\n\nmy_schedule = schedule(skip_first=10, wait=5, warmup=1, active=3, repeat=2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Profiler assumes that the long-running job is composed of steps, numbered\nstarting from zero. The example above defines the following sequence of actions\nfor the profiler:\n\n1. Parameter ``skip_first`` tells profiler that it should ignore the first 10 steps\n (default value of ``skip_first`` is zero);\n2. After the first ``skip_first`` steps, profiler starts executing profiler cycles;\n3. Each cycle consists of three phases:\n\n - idling (``wait=5`` steps), during this phase profiler is not active;\n - warming up (``warmup=1`` steps), during this phase profiler starts tracing, but\n the results are discarded; this phase is used to discard the samples obtained by\n the profiler at the beginning of the trace since they are usually skewed by an extra\n overhead;\n - active tracing (``active=3`` steps), during this phase profiler traces and records data;\n4. An optional ``repeat`` parameter specifies an upper bound on the number of cycles.\n By default (zero value), profiler will execute cycles as long as the job runs.\n\n" + "\u5206\u6790\u5668\u5047\u8bbe\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a\u7531\u4ece\u96f6\u5f00\u59cb\u7f16\u53f7\u7684\u6b65\u9aa4\u7ec4\u6210\u3002\n\u4e0a\u9762\u7684\u793a\u4f8b\u4e3a\u5206\u6790\u5668\u5b9a\u4e49\u4e86\u4ee5\u4e0b\u64cd\u4f5c\u5e8f\u5217:\n\n1. \u53c2\u6570 ``skip_first`` \u544a\u8bc9\u5206\u6790\u5668\u5b83\u5e94\u8be5\u5ffd\u7565\u524d10\u4e2a\u6b65\u9aa4\n (``skip_first`` \u7684\u9ed8\u8ba4\u503c\u4e3a\u96f6);\n2. \u5728\u7b2c\u4e00\u4e2a ``skip_first`` \u6b65\u9aa4\u4e4b\u540e,\u5206\u6790\u5668\u5f00\u59cb\u6267\u884c\u5206\u6790\u5668\u5468\u671f;\n3. \u6bcf\u4e2a\u5468\u671f\u7531\u4e09\u4e2a\u9636\u6bb5\u7ec4\u6210:\n\n - \u7a7a\u95f2(``wait=5``\u6b65\u9aa4),\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u4e0d\u6d3b\u52a8;\n - \u9884\u70ed(``warmup=1``\u6b65\u9aa4),\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u5f00\u59cb\u8ddf\u8e2a,\u4f46\u7ed3\u679c\u88ab\u4e22\u5f03;\n \u6b64\u9636\u6bb5\u7528\u4e8e\u4e22\u5f03\u5206\u6790\u5668\u5728\u8ddf\u8e2a\u5f00\u59cb\u65f6\u83b7\u5f97\u7684\u6837\u672c,\u56e0\u4e3a\u5b83\u4eec\u901a\u5e38\u7531\u989d\u5916\u7684\u5f00\u9500\u626d\u66f2;\n - \u4e3b\u52a8\u8ddf\u8e2a(``active=3``\u6b65\u9aa4),\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u8ddf\u8e2a\u548c\u8bb0\u5f55\u6570\u636e;\n4. \u53ef\u9009\u7684 ``repeat`` \u53c2\u6570\u6307\u5b9a\u5468\u671f\u7684\u4e0a\u9650\u3002\n \u9ed8\u8ba4\u60c5\u51b5\u4e0b(\u96f6\u503c),\u5206\u6790\u5668\u5c06\u5c3d\u53ef\u80fd\u957f\u65f6\u95f4\u5730\u6267\u884c\u5468\u671f\u3002\n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Thus, in the example above, profiler will skip the first 15 steps, spend the next step on the warm up,\nactively record the next 3 steps, skip another 5 steps, spend the next step on the warm up, actively\nrecord another 3 steps. Since the ``repeat=2`` parameter value is specified, the profiler will stop\nthe recording after the first two cycles.\n\nAt the end of each cycle profiler calls the specified ``on_trace_ready`` function and passes itself as\nan argument. This function is used to process the new trace - either by obtaining the table output or\nby saving the output on disk as a trace file.\n\nTo send the signal to the profiler that the next step has started, call ``prof.step()`` function.\nThe current profiler step is stored in ``prof.step_num``.\n\nThe following example shows how to use all of the concepts above:\n\n" + "\u56e0\u6b64,\u5728\u4e0a\u9762\u7684\u793a\u4f8b\u4e2d,\u5206\u6790\u5668\u5c06\u8df3\u8fc7\u524d15\u4e2a\u6b65\u9aa4,\u5728\u4e0b\u4e00\u6b65\u8fdb\u884c\u9884\u70ed,\n\u5728\u63a5\u4e0b\u6765\u76843\u4e2a\u6b65\u9aa4\u4e2d\u4e3b\u52a8\u8bb0\u5f55,\u518d\u8df3\u8fc7\u53e6\u59165\u4e2a\u6b65\u9aa4,\u5728\u4e0b\u4e00\u6b65\u8fdb\u884c\u9884\u70ed,\n\u5728\u53e6\u59163\u4e2a\u6b65\u9aa4\u4e2d\u4e3b\u52a8\u8bb0\u5f55\u3002\u7531\u4e8e\u6307\u5b9a\u4e86 ``repeat=2`` \u53c2\u6570\u503c,\n\u5206\u6790\u5668\u5c06\u5728\u524d\u4e24\u4e2a\u5468\u671f\u4e4b\u540e\u505c\u6b62\u8bb0\u5f55\u3002\n\n\u5728\u6bcf\u4e2a\u5468\u671f\u7ed3\u675f\u65f6,\u5206\u6790\u5668\u8c03\u7528\u6307\u5b9a\u7684 ``on_trace_ready`` \u51fd\u6570\u5e76\u5c06\u81ea\u8eab\u4f5c\u4e3a\u53c2\u6570\u4f20\u9012\u3002\n\u6b64\u51fd\u6570\u7528\u4e8e\u5904\u7406\u65b0\u7684\u8ddf\u8e2a - \u901a\u8fc7\u83b7\u53d6\u8868\u8f93\u51fa\u6216\u5c06\u8f93\u51fa\u4fdd\u5b58\u5230\u78c1\u76d8\u4e0a\u7684\u8ddf\u8e2a\u6587\u4ef6\u3002\n\n\u8981\u5411\u5206\u6790\u5668\u53d1\u9001\u4e0b\u4e00\u6b65\u5df2\u7ecf\u5f00\u59cb\u7684\u4fe1\u53f7,\u8bf7\u8c03\u7528 ``prof.step()`` \u51fd\u6570\u3002\n\u5f53\u524d\u5206\u6790\u5668\u6b65\u9aa4\u5b58\u50a8\u5728 ``prof.step_num`` \u4e2d\u3002\n\n\u4ee5\u4e0b\u793a\u4f8b\u663e\u793a\u4e86\u5982\u4f55\u4f7f\u7528\u4e0a\u8ff0\u6240\u6709\u6982\u5ff5:\n\n" ] }, { @@ -308,14 +308,14 @@ }, "outputs": [], "source": [ - "def trace_handler(p):\n output = p.key_averages().table(sort_by=\"self_cuda_time_total\", row_limit=10)\n print(output)\n p.export_chrome_trace(\"/tmp/trace_\" + str(p.step_num) + \".json\")\n\nwith profile(\n activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],\n schedule=torch.profiler.schedule(\n wait=1,\n warmup=1,\n active=2),\n on_trace_ready=trace_handler\n) as p:\n for idx in range(8):\n model(inputs)\n p.step()" + "def trace_handler(p):\n output = p.key_averages().table(sort_by=\"self_cuda_time_total\", row_limit=10)\n print(output)\n p.export_chrome_trace(\"/tmp/trace_\" + str(p.step_num) + \".json\")\n\n\nwith profile(\n activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],\n schedule=torch.profiler.schedule(wait=1, warmup=1, active=2),\n on_trace_ready=trace_handler,\n) as p:\n for idx in range(8):\n model(inputs)\n p.step()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Learn More\n\nTake a look at the following recipes/tutorials to continue your learning:\n\n- [PyTorch Benchmark](https://pytorch.org/tutorials/recipes/recipes/benchmark.html)\n- [PyTorch Profiler with TensorBoard](https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html) tutorial\n- [Visualizing models, data, and training with TensorBoard](https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html) tutorial\n\n\n" + "## \u4e86\u89e3\u66f4\u591a\n\n\u67e5\u770b\u4ee5\u4e0b\u6559\u7a0b\u4ee5\u7ee7\u7eed\u5b66\u4e60:\n\n- [PyTorch \u57fa\u51c6\u6d4b\u8bd5](https://pytorch.org/tutorials/recipes/recipes/benchmark.html)\n- [\u4f7f\u7528 TensorBoard \u7684 PyTorch \u5206\u6790\u5668](https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html) \u6559\u7a0b\n- [\u4f7f\u7528 TensorBoard \u53ef\u89c6\u5316\u6a21\u578b\u3001\u6570\u636e\u548c\u8bad\u7ec3](https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html) \u6559\u7a0b\n\n\n" ] } ], diff --git a/docs/_images/yi_jing_01_chien1.jpg b/docs/_images/yi_jing_01_chien1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..523dc2b8b868fa53e3b960d7017908dae486eecb GIT binary patch literal 6614 zcmdT|2{hDS`~Qx~k|idoBou?pNM*(nNoAcu8Zv_zWf_B1vK3(p4YFhyHKVLy7-J_} zsI-uM%bKzzlcfkDygKju@BDt}?|=U1_rB-+PVaNi_uPA*&vT#Wp7TBTexB#9_pHAM zgwT2@JpjZ30$y)4V7(vE20;J6aBy&detsYh@J7c027@<7VDQfwnB%9DKe*Vi+OYep zvR(^7cz$jQ41xe05D*vwTCW540w4ekfI%SOmuv*y%FD;IWdqd_0s!z9P982EP7dyW znrxt4JX^PLaznO@?!j5!yWjm*$&^ym_Jvn?|B;hdJwEJ^!nohul_IiJUiCuE(}E2z zJO1eXpJ9G#A%BSZFKr*d4+d>)4h#XbfSG~dQrXBEViB4yLzEFlK%u=UYL+qLqj%c; z*$9Lw-7l6Ds$8CFy~6Vq_-#87rM{rpPN%gVnr8Ky65WWBIxUhhi$GBtXHYSeFj^vX zM22f(0=e|2lECr)*H8G<0AY)Y?mRxh*lL2xY_{n?yz5WsuL+30Y!r~PXnX?gYkd6b zbT6sw7xbqA|J!!^dBF-74zqUWxqIG?oV9;~e@zJ0v62k`jx*a6V@)1ZmY!DxI0V;x zRmInVn!=gYwOX}i+Q6F}S@Za9pXzk9)#FRQs~>X9JBw8{H^(Z@9Bo1L-FrCVnM7_5 zLZ_SOy|^*miVmiWB;o2+$QDRTQ+n4ZT~iLSod3Q_g1$GOmX&ILzF;{`8fCkxNM5+@ zkU?~DHKjUFAQ_!)fp;mlq@W+rJS{@Dni3Z3;OIf>^F<_pXd4SkR$J}0*77(3{%wGh z%f!MOgbb{9WMOoBoKNq?9?P~8WIU{hu`mo!#M zN>DwcJ)O3qOM6f{^5YF;p!n&NnhzM*SY{vD`(rqg#pQ~q`YN($jk|4mAj6M&>AYA% z-L7pUhg8}$tDJP{vXHeph!XBpQTh>7UUl-yCoZ&nBD?=S*T=7%&yz*}{w2M^41!-o zO~+NOc6>`SLoL+o)LA`46p}!`7KuU_zkTN;{_X`H$DO5>mgyLuU`O!}h952!Q!7r8 zDps|Nyd-Da+r-dN{+zfDXatV9A9c&)v@nsbn8kcTHq?CeRPWBqXbWT6>LOCHNE6qq zQl{DuOc!_6EG@1B`v72*^9)*=;A*^!FB;BsO43>dsnKp|omvO-$aSRCvH>R3ps=La z6_TCP=-T_;v?Z-FuD_<_5HN~}h{I)!AZq&Ecg+Sec+#>GbQ1KOpHan!s)dzSfdCQ! zh~_-gIV_b3SJ|79l4qpcbo(!d|y;m>rwTfQ{E(?tv65A25f31&2s7+Gu zMn2f3p15c+mae6OpXpGhvVcJrMO0(YL{V=!QYm@L~S{EQkPO&YBKU zMm?yP?qc=ir@MzioSni9%#`LMjmI4_bbV*);)C(es;HCuB+@0K{Bx{qO6nINZYn)f zvaM4A?fA=|`|uh%#ji@M1Ct&HXB(uHj{9b-#(cf*e3tEa#nVd0Tss9*&pJ}gD`Tr8 zh1?z*dbAz@Ho5P45YKQ)Wq0~lb3rdXo5vC^beQEk9hbC|pDfALZ19|-4wSGH^oFvf=d9(9ethGRYoQwK*u_o*JVk>*jy{$~l@B{Nru? zRgdUST8e;)K&Cbm3Ms8im*#UlWJ+?6_r9O?d7Jy+^N$^7;N;^`L^%HuiD!aIdPqfS97u$ zo)lxk(px!wvpu;Hv8jro*AhgtbR?Z2l65m{ilBX)9DES>418Htd~tB*iE7|X0?9oE zQGc(;lc})3IrJLI>!ABr&v*TfJ~@||**W+$k9Tqfg7BB)HF*!WQPE6E-}%Ah++eyu z(%Xr7vc*B?bYB2b0>2Re&Bq2#?)4v_C`)J@BsZ#| zCoS$)Zrs^8(G_D{%!jh5IZ#g_hy9*L`;Q`%4TmmXO%AlFR4wU_E^_kz7n}BpmSZ>A zl;v_+1T>ffM@!2n-v4M8d9yH6RXUX_v<@i3BaSzlR1SKL>VNsZRtp8VTqlk!lLwVS z^1srveXnZ_YrTlyO7<@g+UePpDvfBbhFJ}kS1TJ4d*?n_RKzPgU4EExtjnVW*KdPhBy5l!dL4JYH zQgP#lT*Uk7a9$cMr+Kap7xQ1ks%>$Mi~yHsv`eqp#un&>yB|+C^gcqI0^1V%pv@m$|<54l*l5K8J3wYIbg_T`wM1 zBC?V*dnC1;J(rGw`wA%EqPHFR&Y)6xhb^HIK?$v!vKFwJ{O|N=i|D=2SGKVv;vb#p z&rvljeQA3?u(bbN{;QXzkz&U^KJUtX$%4!ksnQF)nS6qw;UB3OvqZU_1?Oa0Iv(cQRv8RllH)rK^X9P46EDc6h4^(}TITCaEyD92N$fWiQ59JGnN=Q+> z1$s`S;r$!fWQ!NY2z(>-*6==lW|3w$>af796kjMwDYtRa5?ZVJI#f{#XsARCI>Z7) zQv1q6!GHgfJxcV+mU@d=r30&&%&i0MM^Z(M8Y79iZwysqxV_k@nB}^aGq|BIf@YHX zgsv&s{?Sz)?}x74RAT89;$_&u_laUUB|g~9R=2LNY(;_1g z#(Myr+{YP^hxPK^nQaEE5s-=u!RMr4)M|#P(F2ZCYj1%Obtey{{0XcDB1s6dW1_F){g`Ha!?dNqIrE;5>XE7zb&2qa z)7x-&lW1S9+LLLPCX&whfC$KlEbms`F?svm(BdB7=Y z>5pUCEeXL!H=35SRMMhLSny|aIxU5(z#f55%Y??B2tpz ze}m0vzhb+`FU>yQ;BLTjyQ% ztH<5NpOZx8Wywq{%|(sS>AgTb3aM$;Hd8*Jf8{+F8kNHCj`nXJ)*u5)|5*@~w1z06 zUKjLge>4_1{4D+HfNoYIG{u;&TS@goHl6yZlGl>vhn_RZul0@dJ-T4x>@6?Xqgw>G zFLKo`p-#`-y!lR+xaiwcW-^xQtwYXTr_KYo?qd| zy&f>1mdpb17nLW|V<7aX(E$gal|#~NeBVGjJc|gigeD70Y|TO)A&?=s!MB^-(SW$+ z>Oq5>kBOJ=xkc2daJyk2Uoi1^+k?IFsr!&kq?On>;j*&b6n3Yi(0r3@YG&2xgZ8)% z+$nX(lbDV`fw1gd=q%#yFg2dWW9$TD7pKW?2M=iUtb+bkVbPuIKnOJ9Zjzk@oW`I8 zLy{Y2pW%kCTZ=l{(54Gfq{}fv);b`nw^K#EET~%Nq`MH8d2ixp=zXpw2xr|1Q5?Z9 zhjLzQRA(0i`1_ZD3Bq{Vw9-0Ysm5Hjlxifb-c$-qTS8A^_{PB88wjDojixj3;Hn|cuQxjv~vDJRkU!uL8cj8 z@Yxx5c6ErJN=e9phAxf=l{j$LEjY91N2bl)%sI!WS}z}q>8lmv3pt4>(WlCSPA_} zs*$R@x4mc;;oj*CoM90ThuMp)CLi;5v!9YAY+Lnmo`0fmQxo^xe+tAdrg!{!VdCSm zoE_R_kZ~M2d)|n_&%?;nIn)%~$laR-zw^#%<^I;qD*DY*S>WG)!QIr|W=DE6!~c08 z;yPevPkguF3QbQv6ND*}vO>{C!e}vg;u9b1RB0KR%qMF6&(HOF36@3!e7|ics?aa2 nCu`K$?t)aPH~8@=RmRRL7Xgjg*DxAGWAw&+IE^p}T<`q{GQZiD literal 0 HcmV?d00001 diff --git a/docs/_sources/recipes/recipes/index.rst.txt b/docs/_sources/recipes/recipes/index.rst.txt index ad7adca..3102833 100644 --- a/docs/_sources/recipes/recipes/index.rst.txt +++ b/docs/_sources/recipes/recipes/index.rst.txt @@ -380,7 +380,7 @@ PyTorch Recipes .. raw:: html -

@@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/advanced/coding_ddpg.html b/docs/advanced/coding_ddpg.html index 0c1aa0b..d06b0e3 100644 --- a/docs/advanced/coding_ddpg.html +++ b/docs/advanced/coding_ddpg.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/advanced/cpp_autograd.html b/docs/advanced/cpp_autograd.html index b29a4f3..20ada33 100644 --- a/docs/advanced/cpp_autograd.html +++ b/docs/advanced/cpp_autograd.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/cpp_cuda_graphs.html b/docs/advanced/cpp_cuda_graphs.html index 8b971c4..69fdee9 100644 --- a/docs/advanced/cpp_cuda_graphs.html +++ b/docs/advanced/cpp_cuda_graphs.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/advanced/cpp_export.html b/docs/advanced/cpp_export.html index d67bbbb..e2419e9 100644 --- a/docs/advanced/cpp_export.html +++ b/docs/advanced/cpp_export.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/cpp_extension.html b/docs/advanced/cpp_extension.html index 6742462..6b27970 100644 --- a/docs/advanced/cpp_extension.html +++ b/docs/advanced/cpp_extension.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/cpp_frontend.html b/docs/advanced/cpp_frontend.html index 3a4f398..bcc3461 100644 --- a/docs/advanced/cpp_frontend.html +++ b/docs/advanced/cpp_frontend.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/ddp_pipeline.html b/docs/advanced/ddp_pipeline.html index 15ac085..60e6630 100644 --- a/docs/advanced/ddp_pipeline.html +++ b/docs/advanced/ddp_pipeline.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/dispatcher.html b/docs/advanced/dispatcher.html index faf50b8..025ea6c 100644 --- a/docs/advanced/dispatcher.html +++ b/docs/advanced/dispatcher.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/dynamic_quantization_tutorial.html b/docs/advanced/dynamic_quantization_tutorial.html index a521cca..ea26b42 100644 --- a/docs/advanced/dynamic_quantization_tutorial.html +++ b/docs/advanced/dynamic_quantization_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/extend_dispatcher.html b/docs/advanced/extend_dispatcher.html index 7ae5e73..fddd566 100644 --- a/docs/advanced/extend_dispatcher.html +++ b/docs/advanced/extend_dispatcher.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/generic_join.html b/docs/advanced/generic_join.html index 70bb811..50fc4e0 100644 --- a/docs/advanced/generic_join.html +++ b/docs/advanced/generic_join.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/neural_style_tutorial.html b/docs/advanced/neural_style_tutorial.html index 0cc0e9d..9d96c0c 100644 --- a/docs/advanced/neural_style_tutorial.html +++ b/docs/advanced/neural_style_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/advanced/numpy_extensions_tutorial.html b/docs/advanced/numpy_extensions_tutorial.html index 860ead4..eb726ce 100644 --- a/docs/advanced/numpy_extensions_tutorial.html +++ b/docs/advanced/numpy_extensions_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/advanced/pendulum.html b/docs/advanced/pendulum.html index ecfd1b5..795324c 100644 --- a/docs/advanced/pendulum.html +++ b/docs/advanced/pendulum.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/privateuseone.html b/docs/advanced/privateuseone.html index 41eaf20..e179425 100644 --- a/docs/advanced/privateuseone.html +++ b/docs/advanced/privateuseone.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/rpc_ddp_tutorial.html b/docs/advanced/rpc_ddp_tutorial.html index 82a3301..f17dd0e 100644 --- a/docs/advanced/rpc_ddp_tutorial.html +++ b/docs/advanced/rpc_ddp_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/semi_structured_sparse.html b/docs/advanced/semi_structured_sparse.html index ffebe81..72ffc73 100644 --- a/docs/advanced/semi_structured_sparse.html +++ b/docs/advanced/semi_structured_sparse.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/advanced/sharding.html b/docs/advanced/sharding.html index 601b69e..5f34e43 100644 --- a/docs/advanced/sharding.html +++ b/docs/advanced/sharding.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/static_quantization_tutorial.html b/docs/advanced/static_quantization_tutorial.html index a3f8f7c..3ddea5d 100644 --- a/docs/advanced/static_quantization_tutorial.html +++ b/docs/advanced/static_quantization_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/super_resolution_with_onnxruntime.html b/docs/advanced/super_resolution_with_onnxruntime.html index 29125e5..58ed241 100644 --- a/docs/advanced/super_resolution_with_onnxruntime.html +++ b/docs/advanced/super_resolution_with_onnxruntime.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/torch-script-parallelism.html b/docs/advanced/torch-script-parallelism.html index 3489b95..ac3b7d4 100644 --- a/docs/advanced/torch-script-parallelism.html +++ b/docs/advanced/torch-script-parallelism.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/torch_script_custom_classes.html b/docs/advanced/torch_script_custom_classes.html index 93a687e..2d04197 100644 --- a/docs/advanced/torch_script_custom_classes.html +++ b/docs/advanced/torch_script_custom_classes.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/torch_script_custom_ops.html b/docs/advanced/torch_script_custom_ops.html index 70c48a4..b9180a6 100644 --- a/docs/advanced/torch_script_custom_ops.html +++ b/docs/advanced/torch_script_custom_ops.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/advanced/usb_semisup_learn.html b/docs/advanced/usb_semisup_learn.html index 4c8db1a..06bd0e9 100644 --- a/docs/advanced/usb_semisup_learn.html +++ b/docs/advanced/usb_semisup_learn.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/Intro_to_TorchScript_tutorial.html b/docs/beginner/Intro_to_TorchScript_tutorial.html index 4546914..91a7986 100644 --- a/docs/beginner/Intro_to_TorchScript_tutorial.html +++ b/docs/beginner/Intro_to_TorchScript_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/audio_data_augmentation_tutorial.html b/docs/beginner/audio_data_augmentation_tutorial.html index 78ff5c5..baf9a2f 100644 --- a/docs/beginner/audio_data_augmentation_tutorial.html +++ b/docs/beginner/audio_data_augmentation_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/audio_datasets_tutorial.html b/docs/beginner/audio_datasets_tutorial.html index b3c0cc8..374cd19 100644 --- a/docs/beginner/audio_datasets_tutorial.html +++ b/docs/beginner/audio_datasets_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/audio_feature_augmentation_tutorial.html b/docs/beginner/audio_feature_augmentation_tutorial.html index e74e7b0..14b71b2 100644 --- a/docs/beginner/audio_feature_augmentation_tutorial.html +++ b/docs/beginner/audio_feature_augmentation_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/audio_feature_extractions_tutorial.html b/docs/beginner/audio_feature_extractions_tutorial.html index bb089f4..fae835b 100644 --- a/docs/beginner/audio_feature_extractions_tutorial.html +++ b/docs/beginner/audio_feature_extractions_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/audio_io_tutorial.html b/docs/beginner/audio_io_tutorial.html index eabc5e6..e54ca50 100644 --- a/docs/beginner/audio_io_tutorial.html +++ b/docs/beginner/audio_io_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/audio_resampling_tutorial.html b/docs/beginner/audio_resampling_tutorial.html index 049ca32..3dc3aa3 100644 --- a/docs/beginner/audio_resampling_tutorial.html +++ b/docs/beginner/audio_resampling_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/basics/autogradqs_tutorial.html b/docs/beginner/basics/autogradqs_tutorial.html index 4b64b1e..ba657c9 100644 --- a/docs/beginner/basics/autogradqs_tutorial.html +++ b/docs/beginner/basics/autogradqs_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/basics/buildmodel_tutorial.html b/docs/beginner/basics/buildmodel_tutorial.html index e82a3d8..602c028 100644 --- a/docs/beginner/basics/buildmodel_tutorial.html +++ b/docs/beginner/basics/buildmodel_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/basics/data_tutorial.html b/docs/beginner/basics/data_tutorial.html index 838b631..f827d21 100644 --- a/docs/beginner/basics/data_tutorial.html +++ b/docs/beginner/basics/data_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/basics/index.html b/docs/beginner/basics/index.html index 2df3712..164d54d 100644 --- a/docs/beginner/basics/index.html +++ b/docs/beginner/basics/index.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/basics/intro.html b/docs/beginner/basics/intro.html index 68674b7..bdefd7c 100644 --- a/docs/beginner/basics/intro.html +++ b/docs/beginner/basics/intro.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/basics/optimization_tutorial.html b/docs/beginner/basics/optimization_tutorial.html index 1eaf563..324518f 100644 --- a/docs/beginner/basics/optimization_tutorial.html +++ b/docs/beginner/basics/optimization_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/basics/quickstart_tutorial.html b/docs/beginner/basics/quickstart_tutorial.html index bde130d..9c895f4 100644 --- a/docs/beginner/basics/quickstart_tutorial.html +++ b/docs/beginner/basics/quickstart_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/basics/saveloadrun_tutorial.html b/docs/beginner/basics/saveloadrun_tutorial.html index 8b7a7db..afe36ed 100644 --- a/docs/beginner/basics/saveloadrun_tutorial.html +++ b/docs/beginner/basics/saveloadrun_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/basics/tensorqs_tutorial.html b/docs/beginner/basics/tensorqs_tutorial.html index b21e1f3..814b3a3 100644 --- a/docs/beginner/basics/tensorqs_tutorial.html +++ b/docs/beginner/basics/tensorqs_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/basics/transforms_tutorial.html b/docs/beginner/basics/transforms_tutorial.html index f7e15cd..ff1bc75 100644 --- a/docs/beginner/basics/transforms_tutorial.html +++ b/docs/beginner/basics/transforms_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/bettertransformer_tutorial.html b/docs/beginner/bettertransformer_tutorial.html index c48e0bc..7df6bf0 100644 --- a/docs/beginner/bettertransformer_tutorial.html +++ b/docs/beginner/bettertransformer_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/blitz/autograd_tutorial.html b/docs/beginner/blitz/autograd_tutorial.html index d41d423..6fbc1cb 100644 --- a/docs/beginner/blitz/autograd_tutorial.html +++ b/docs/beginner/blitz/autograd_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/blitz/cifar10_tutorial.html b/docs/beginner/blitz/cifar10_tutorial.html index 3c34798..0bfb5e7 100644 --- a/docs/beginner/blitz/cifar10_tutorial.html +++ b/docs/beginner/blitz/cifar10_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/blitz/data_parallel_tutorial.html b/docs/beginner/blitz/data_parallel_tutorial.html index 755a5f8..8bc0260 100644 --- a/docs/beginner/blitz/data_parallel_tutorial.html +++ b/docs/beginner/blitz/data_parallel_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/blitz/index.html b/docs/beginner/blitz/index.html index 0eaca96..8014f8a 100644 --- a/docs/beginner/blitz/index.html +++ b/docs/beginner/blitz/index.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/blitz/neural_networks_tutorial.html b/docs/beginner/blitz/neural_networks_tutorial.html index dd3a494..82711ba 100644 --- a/docs/beginner/blitz/neural_networks_tutorial.html +++ b/docs/beginner/blitz/neural_networks_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/blitz/tensor_tutorial.html b/docs/beginner/blitz/tensor_tutorial.html index f4c4185..ba3402c 100644 --- a/docs/beginner/blitz/tensor_tutorial.html +++ b/docs/beginner/blitz/tensor_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/chatbot_tutorial.html b/docs/beginner/chatbot_tutorial.html index 6a54040..d99a0dc 100644 --- a/docs/beginner/chatbot_tutorial.html +++ b/docs/beginner/chatbot_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/colab.html b/docs/beginner/colab.html index b2195cc..b247711 100644 --- a/docs/beginner/colab.html +++ b/docs/beginner/colab.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/data_loading_tutorial.html b/docs/beginner/data_loading_tutorial.html index f63257e..863785f 100644 --- a/docs/beginner/data_loading_tutorial.html +++ b/docs/beginner/data_loading_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/dcgan_faces_tutorial.html b/docs/beginner/dcgan_faces_tutorial.html index 20cbc1b..f4ad8cc 100644 --- a/docs/beginner/dcgan_faces_tutorial.html +++ b/docs/beginner/dcgan_faces_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/ddp_series_fault_tolerance.html b/docs/beginner/ddp_series_fault_tolerance.html index 485e771..374c03a 100644 --- a/docs/beginner/ddp_series_fault_tolerance.html +++ b/docs/beginner/ddp_series_fault_tolerance.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/ddp_series_intro.html b/docs/beginner/ddp_series_intro.html index 8e77901..0676bb4 100644 --- a/docs/beginner/ddp_series_intro.html +++ b/docs/beginner/ddp_series_intro.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/ddp_series_multigpu.html b/docs/beginner/ddp_series_multigpu.html index 853eda4..85464d4 100644 --- a/docs/beginner/ddp_series_multigpu.html +++ b/docs/beginner/ddp_series_multigpu.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/ddp_series_theory.html b/docs/beginner/ddp_series_theory.html index 7da8de8..390de1e 100644 --- a/docs/beginner/ddp_series_theory.html +++ b/docs/beginner/ddp_series_theory.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/deep_learning_60min_blitz.html b/docs/beginner/deep_learning_60min_blitz.html index 70af353..f5ade7a 100644 --- a/docs/beginner/deep_learning_60min_blitz.html +++ b/docs/beginner/deep_learning_60min_blitz.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/deeplabv3_on_android.html b/docs/beginner/deeplabv3_on_android.html index d8091e8..8827c22 100644 --- a/docs/beginner/deeplabv3_on_android.html +++ b/docs/beginner/deeplabv3_on_android.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/deeplabv3_on_ios.html b/docs/beginner/deeplabv3_on_ios.html index a4f547a..4153a1d 100644 --- a/docs/beginner/deeplabv3_on_ios.html +++ b/docs/beginner/deeplabv3_on_ios.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/deploy_seq2seq_hybrid_frontend_tutorial.html b/docs/beginner/deploy_seq2seq_hybrid_frontend_tutorial.html index e24938e..1bad759 100644 --- a/docs/beginner/deploy_seq2seq_hybrid_frontend_tutorial.html +++ b/docs/beginner/deploy_seq2seq_hybrid_frontend_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/dist_overview.html b/docs/beginner/dist_overview.html index 16684cc..559248b 100644 --- a/docs/beginner/dist_overview.html +++ b/docs/beginner/dist_overview.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/examples_autograd/index.html b/docs/beginner/examples_autograd/index.html index f925ce2..c57fe56 100644 --- a/docs/beginner/examples_autograd/index.html +++ b/docs/beginner/examples_autograd/index.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/examples_autograd/polynomial_autograd.html b/docs/beginner/examples_autograd/polynomial_autograd.html index 7b7101e..6e28aca 100644 --- a/docs/beginner/examples_autograd/polynomial_autograd.html +++ b/docs/beginner/examples_autograd/polynomial_autograd.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/examples_autograd/polynomial_custom_function.html b/docs/beginner/examples_autograd/polynomial_custom_function.html index cccdda1..9a86336 100644 --- a/docs/beginner/examples_autograd/polynomial_custom_function.html +++ b/docs/beginner/examples_autograd/polynomial_custom_function.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/examples_nn/dynamic_net.html b/docs/beginner/examples_nn/dynamic_net.html index c1ca9ce..ee51057 100644 --- a/docs/beginner/examples_nn/dynamic_net.html +++ b/docs/beginner/examples_nn/dynamic_net.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/examples_nn/index.html b/docs/beginner/examples_nn/index.html index f6b84e0..76c7de2 100644 --- a/docs/beginner/examples_nn/index.html +++ b/docs/beginner/examples_nn/index.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/examples_nn/polynomial_module.html b/docs/beginner/examples_nn/polynomial_module.html index 9226132..686b024 100644 --- a/docs/beginner/examples_nn/polynomial_module.html +++ b/docs/beginner/examples_nn/polynomial_module.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/examples_nn/polynomial_nn.html b/docs/beginner/examples_nn/polynomial_nn.html index e8d3aab..6670996 100644 --- a/docs/beginner/examples_nn/polynomial_nn.html +++ b/docs/beginner/examples_nn/polynomial_nn.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/examples_nn/polynomial_optim.html b/docs/beginner/examples_nn/polynomial_optim.html index 6e39255..abd2187 100644 --- a/docs/beginner/examples_nn/polynomial_optim.html +++ b/docs/beginner/examples_nn/polynomial_optim.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/examples_tensor/index.html b/docs/beginner/examples_tensor/index.html index b219d23..f51e9aa 100644 --- a/docs/beginner/examples_tensor/index.html +++ b/docs/beginner/examples_tensor/index.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/examples_tensor/polynomial_numpy.html b/docs/beginner/examples_tensor/polynomial_numpy.html index d5477ee..1f2c2ad 100644 --- a/docs/beginner/examples_tensor/polynomial_numpy.html +++ b/docs/beginner/examples_tensor/polynomial_numpy.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/examples_tensor/polynomial_tensor.html b/docs/beginner/examples_tensor/polynomial_tensor.html index 7564193..7b4eb4d 100644 --- a/docs/beginner/examples_tensor/polynomial_tensor.html +++ b/docs/beginner/examples_tensor/polynomial_tensor.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/fgsm_tutorial.html b/docs/beginner/fgsm_tutorial.html index 5ed5a83..b98d256 100644 --- a/docs/beginner/fgsm_tutorial.html +++ b/docs/beginner/fgsm_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/finetuning_torchvision_models_tutorial.html b/docs/beginner/finetuning_torchvision_models_tutorial.html index 84580ba..e076bd0 100644 --- a/docs/beginner/finetuning_torchvision_models_tutorial.html +++ b/docs/beginner/finetuning_torchvision_models_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/flava_finetuning_tutorial.html b/docs/beginner/flava_finetuning_tutorial.html index 20ba630..a68a8a9 100644 --- a/docs/beginner/flava_finetuning_tutorial.html +++ b/docs/beginner/flava_finetuning_tutorial.html @@ -88,28 +88,28 @@
  • @@ -152,12 +152,12 @@ @@ -171,11 +171,11 @@ @@ -184,27 +184,27 @@
  • @@ -212,15 +212,15 @@
  • diff --git a/docs/beginner/former_torchies/autograd_tutorial_old.html b/docs/beginner/former_torchies/autograd_tutorial_old.html index 3a4c7fa..a04f703 100644 --- a/docs/beginner/former_torchies/autograd_tutorial_old.html +++ b/docs/beginner/former_torchies/autograd_tutorial_old.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/former_torchies/index.html b/docs/beginner/former_torchies/index.html index a3b81f9..03ec744 100644 --- a/docs/beginner/former_torchies/index.html +++ b/docs/beginner/former_torchies/index.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/former_torchies/nnft_tutorial.html b/docs/beginner/former_torchies/nnft_tutorial.html index a20ac3a..ebac10e 100644 --- a/docs/beginner/former_torchies/nnft_tutorial.html +++ b/docs/beginner/former_torchies/nnft_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/former_torchies/parallelism_tutorial.html b/docs/beginner/former_torchies/parallelism_tutorial.html index a92ef60..8a58c04 100644 --- a/docs/beginner/former_torchies/parallelism_tutorial.html +++ b/docs/beginner/former_torchies/parallelism_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/former_torchies/tensor_tutorial_old.html b/docs/beginner/former_torchies/tensor_tutorial_old.html index afcb08c..2bc24c5 100644 --- a/docs/beginner/former_torchies/tensor_tutorial_old.html +++ b/docs/beginner/former_torchies/tensor_tutorial_old.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/former_torchies_tutorial.html b/docs/beginner/former_torchies_tutorial.html index 81b0a17..331b371 100644 --- a/docs/beginner/former_torchies_tutorial.html +++ b/docs/beginner/former_torchies_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/hta_intro_tutorial.html b/docs/beginner/hta_intro_tutorial.html index e060fec..4b0d652 100644 --- a/docs/beginner/hta_intro_tutorial.html +++ b/docs/beginner/hta_intro_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/hta_trace_diff_tutorial.html b/docs/beginner/hta_trace_diff_tutorial.html index 65a4eac..53f20c5 100644 --- a/docs/beginner/hta_trace_diff_tutorial.html +++ b/docs/beginner/hta_trace_diff_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/hybrid_frontend/index.html b/docs/beginner/hybrid_frontend/index.html index 6809bc8..aaeb76e 100644 --- a/docs/beginner/hybrid_frontend/index.html +++ b/docs/beginner/hybrid_frontend/index.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.html b/docs/beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.html index bd22cf5..678147a 100644 --- a/docs/beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.html +++ b/docs/beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/hybrid_frontend_tutorial.html b/docs/beginner/hybrid_frontend_tutorial.html index ad6e2fc..14464d8 100644 --- a/docs/beginner/hybrid_frontend_tutorial.html +++ b/docs/beginner/hybrid_frontend_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/hyperparameter_tuning_tutorial.html b/docs/beginner/hyperparameter_tuning_tutorial.html index e2d245d..262b18b 100644 --- a/docs/beginner/hyperparameter_tuning_tutorial.html +++ b/docs/beginner/hyperparameter_tuning_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/introyt.html b/docs/beginner/introyt.html index 5607da0..30d6480 100644 --- a/docs/beginner/introyt.html +++ b/docs/beginner/introyt.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/introyt/autogradyt_tutorial.html b/docs/beginner/introyt/autogradyt_tutorial.html index 25c6c9b..7a39152 100644 --- a/docs/beginner/introyt/autogradyt_tutorial.html +++ b/docs/beginner/introyt/autogradyt_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/introyt/captumyt.html b/docs/beginner/introyt/captumyt.html index 3d89b71..2520dc2 100644 --- a/docs/beginner/introyt/captumyt.html +++ b/docs/beginner/introyt/captumyt.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/introyt/index.html b/docs/beginner/introyt/index.html index 419421e..e813599 100644 --- a/docs/beginner/introyt/index.html +++ b/docs/beginner/introyt/index.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/introyt/introyt1_tutorial.html b/docs/beginner/introyt/introyt1_tutorial.html index dbac697..4cb9fe4 100644 --- a/docs/beginner/introyt/introyt1_tutorial.html +++ b/docs/beginner/introyt/introyt1_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/introyt/modelsyt_tutorial.html b/docs/beginner/introyt/modelsyt_tutorial.html index 11df8ff..9ad1d10 100644 --- a/docs/beginner/introyt/modelsyt_tutorial.html +++ b/docs/beginner/introyt/modelsyt_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/introyt/tensorboardyt_tutorial.html b/docs/beginner/introyt/tensorboardyt_tutorial.html index 69b6ff7..da125a6 100644 --- a/docs/beginner/introyt/tensorboardyt_tutorial.html +++ b/docs/beginner/introyt/tensorboardyt_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/introyt/tensors_deeper_tutorial.html b/docs/beginner/introyt/tensors_deeper_tutorial.html index b686e09..5dcf687 100644 --- a/docs/beginner/introyt/tensors_deeper_tutorial.html +++ b/docs/beginner/introyt/tensors_deeper_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/introyt/trainingyt.html b/docs/beginner/introyt/trainingyt.html index c4452f3..e54299b 100644 --- a/docs/beginner/introyt/trainingyt.html +++ b/docs/beginner/introyt/trainingyt.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/knowledge_distillation_tutorial.html b/docs/beginner/knowledge_distillation_tutorial.html index 2df9f77..4a2ad41 100644 --- a/docs/beginner/knowledge_distillation_tutorial.html +++ b/docs/beginner/knowledge_distillation_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/nlp/advanced_tutorial.html b/docs/beginner/nlp/advanced_tutorial.html index e6e2598..df8a3ea 100644 --- a/docs/beginner/nlp/advanced_tutorial.html +++ b/docs/beginner/nlp/advanced_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/nlp/deep_learning_tutorial.html b/docs/beginner/nlp/deep_learning_tutorial.html index 8a986c3..6e54764 100644 --- a/docs/beginner/nlp/deep_learning_tutorial.html +++ b/docs/beginner/nlp/deep_learning_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/nlp/index.html b/docs/beginner/nlp/index.html index 57cd872..2ec7000 100644 --- a/docs/beginner/nlp/index.html +++ b/docs/beginner/nlp/index.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/nlp/pytorch_tutorial.html b/docs/beginner/nlp/pytorch_tutorial.html index 68a3d3c..b071913 100644 --- a/docs/beginner/nlp/pytorch_tutorial.html +++ b/docs/beginner/nlp/pytorch_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/nlp/sequence_models_tutorial.html b/docs/beginner/nlp/sequence_models_tutorial.html index e471354..557ed29 100644 --- a/docs/beginner/nlp/sequence_models_tutorial.html +++ b/docs/beginner/nlp/sequence_models_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/nlp/word_embeddings_tutorial.html b/docs/beginner/nlp/word_embeddings_tutorial.html index 7da2a4b..482306c 100644 --- a/docs/beginner/nlp/word_embeddings_tutorial.html +++ b/docs/beginner/nlp/word_embeddings_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/nn_tutorial.html b/docs/beginner/nn_tutorial.html index 7455bc4..ba27daf 100644 --- a/docs/beginner/nn_tutorial.html +++ b/docs/beginner/nn_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/onnx/export_simple_model_to_onnx_tutorial.html b/docs/beginner/onnx/export_simple_model_to_onnx_tutorial.html index d803aad..e969cd8 100644 --- a/docs/beginner/onnx/export_simple_model_to_onnx_tutorial.html +++ b/docs/beginner/onnx/export_simple_model_to_onnx_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/onnx/index.html b/docs/beginner/onnx/index.html index 1cee23c..7898ee7 100644 --- a/docs/beginner/onnx/index.html +++ b/docs/beginner/onnx/index.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/onnx/intro_onnx.html b/docs/beginner/onnx/intro_onnx.html index 670cc8a..aba0ef8 100644 --- a/docs/beginner/onnx/intro_onnx.html +++ b/docs/beginner/onnx/intro_onnx.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/onnx/onnx_registry_tutorial.html b/docs/beginner/onnx/onnx_registry_tutorial.html index 16cd428..acb2f48 100644 --- a/docs/beginner/onnx/onnx_registry_tutorial.html +++ b/docs/beginner/onnx/onnx_registry_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/profiler.html b/docs/beginner/profiler.html index 7329e01..aeb80ee 100644 --- a/docs/beginner/profiler.html +++ b/docs/beginner/profiler.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/ptcheat.html b/docs/beginner/ptcheat.html index 07041fd..575feab 100644 --- a/docs/beginner/ptcheat.html +++ b/docs/beginner/ptcheat.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/pytorch_with_examples.html b/docs/beginner/pytorch_with_examples.html index 07e3a00..a8f1ec6 100644 --- a/docs/beginner/pytorch_with_examples.html +++ b/docs/beginner/pytorch_with_examples.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/saving_loading_models.html b/docs/beginner/saving_loading_models.html index 4a1e522..3c962c4 100644 --- a/docs/beginner/saving_loading_models.html +++ b/docs/beginner/saving_loading_models.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/t5_tutorial.html b/docs/beginner/t5_tutorial.html index 79b8f22..0ad368c 100644 --- a/docs/beginner/t5_tutorial.html +++ b/docs/beginner/t5_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/template_tutorial.html b/docs/beginner/template_tutorial.html index e7660db..abfe287 100644 --- a/docs/beginner/template_tutorial.html +++ b/docs/beginner/template_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/beginner/text_sentiment_ngrams_tutorial.html b/docs/beginner/text_sentiment_ngrams_tutorial.html index 55701a3..85a648e 100644 --- a/docs/beginner/text_sentiment_ngrams_tutorial.html +++ b/docs/beginner/text_sentiment_ngrams_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/torchtext_custom_dataset_tutorial.html b/docs/beginner/torchtext_custom_dataset_tutorial.html index 918ed96..6640456 100644 --- a/docs/beginner/torchtext_custom_dataset_tutorial.html +++ b/docs/beginner/torchtext_custom_dataset_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/transfer_learning_tutorial.html b/docs/beginner/transfer_learning_tutorial.html index 480594a..4373d73 100644 --- a/docs/beginner/transfer_learning_tutorial.html +++ b/docs/beginner/transfer_learning_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/translation_transformer.html b/docs/beginner/translation_transformer.html index 44f3d4c..8b36e51 100644 --- a/docs/beginner/translation_transformer.html +++ b/docs/beginner/translation_transformer.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/beginner/vt_tutorial.html b/docs/beginner/vt_tutorial.html index 8fa0381..51ecf66 100644 --- a/docs/beginner/vt_tutorial.html +++ b/docs/beginner/vt_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/distributed/home.html b/docs/distributed/home.html index 08dd069..d953bd2 100644 --- a/docs/distributed/home.html +++ b/docs/distributed/home.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/genindex.html b/docs/genindex.html index d81710c..5abea1e 100644 --- a/docs/genindex.html +++ b/docs/genindex.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • @@ -601,15 +601,15 @@

    Index

    D

    @@ -617,7 +617,7 @@

    D

    P

    @@ -634,7 +634,7 @@

    P

    R

    @@ -651,7 +651,7 @@

    R

    W

    diff --git a/docs/index.html b/docs/index.html index 4951fc9..047050e 100644 --- a/docs/index.html +++ b/docs/index.html @@ -88,28 +88,28 @@
  • @@ -152,12 +152,12 @@ @@ -171,11 +171,11 @@ @@ -184,27 +184,27 @@
  • @@ -212,15 +212,15 @@
  • diff --git a/docs/intermediate/FSDP_adavnced_tutorial.html b/docs/intermediate/FSDP_adavnced_tutorial.html index 704a394..4810807 100644 --- a/docs/intermediate/FSDP_adavnced_tutorial.html +++ b/docs/intermediate/FSDP_adavnced_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/FSDP_tutorial.html b/docs/intermediate/FSDP_tutorial.html index 0d426fe..70e4631 100644 --- a/docs/intermediate/FSDP_tutorial.html +++ b/docs/intermediate/FSDP_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/TP_tutorial.html b/docs/intermediate/TP_tutorial.html index b468f83..29b0a3a 100644 --- a/docs/intermediate/TP_tutorial.html +++ b/docs/intermediate/TP_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/autograd_saved_tensors_hooks_tutorial.html b/docs/intermediate/autograd_saved_tensors_hooks_tutorial.html index 9cfce43..2856d80 100644 --- a/docs/intermediate/autograd_saved_tensors_hooks_tutorial.html +++ b/docs/intermediate/autograd_saved_tensors_hooks_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/intermediate/ax_multiobjective_nas_tutorial.html b/docs/intermediate/ax_multiobjective_nas_tutorial.html index 4f27039..7ead583 100644 --- a/docs/intermediate/ax_multiobjective_nas_tutorial.html +++ b/docs/intermediate/ax_multiobjective_nas_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/char_rnn_classification_tutorial.html b/docs/intermediate/char_rnn_classification_tutorial.html index 9d6c0bf..e8dfe65 100644 --- a/docs/intermediate/char_rnn_classification_tutorial.html +++ b/docs/intermediate/char_rnn_classification_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/char_rnn_generation_tutorial.html b/docs/intermediate/char_rnn_generation_tutorial.html index 20a9b0a..eb9d077 100644 --- a/docs/intermediate/char_rnn_generation_tutorial.html +++ b/docs/intermediate/char_rnn_generation_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/custom_function_conv_bn_tutorial.html b/docs/intermediate/custom_function_conv_bn_tutorial.html index e3dc8f3..ce7c3c6 100644 --- a/docs/intermediate/custom_function_conv_bn_tutorial.html +++ b/docs/intermediate/custom_function_conv_bn_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/custom_function_double_backward_tutorial.html b/docs/intermediate/custom_function_double_backward_tutorial.html index 2a418b6..bfbabd0 100644 --- a/docs/intermediate/custom_function_double_backward_tutorial.html +++ b/docs/intermediate/custom_function_double_backward_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/ddp_series_minGPT.html b/docs/intermediate/ddp_series_minGPT.html index 7a20f17..c78b5a6 100644 --- a/docs/intermediate/ddp_series_minGPT.html +++ b/docs/intermediate/ddp_series_minGPT.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/intermediate/ddp_series_multinode.html b/docs/intermediate/ddp_series_multinode.html index b335b78..a100644 100644 --- a/docs/intermediate/ddp_series_multinode.html +++ b/docs/intermediate/ddp_series_multinode.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/intermediate/ddp_tutorial.html b/docs/intermediate/ddp_tutorial.html index f906a73..42d3854 100644 --- a/docs/intermediate/ddp_tutorial.html +++ b/docs/intermediate/ddp_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/dist_pipeline_parallel_tutorial.html b/docs/intermediate/dist_pipeline_parallel_tutorial.html index 07ec4cd..0475c67 100644 --- a/docs/intermediate/dist_pipeline_parallel_tutorial.html +++ b/docs/intermediate/dist_pipeline_parallel_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/dist_tuto.html b/docs/intermediate/dist_tuto.html index 4915011..46df861 100644 --- a/docs/intermediate/dist_tuto.html +++ b/docs/intermediate/dist_tuto.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/dqn_with_rnn_tutorial.html b/docs/intermediate/dqn_with_rnn_tutorial.html index 21adaa5..7859a78 100644 --- a/docs/intermediate/dqn_with_rnn_tutorial.html +++ b/docs/intermediate/dqn_with_rnn_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/intermediate/dynamic_quantization_bert_tutorial.html b/docs/intermediate/dynamic_quantization_bert_tutorial.html index 7bbb9ba..d496acd 100644 --- a/docs/intermediate/dynamic_quantization_bert_tutorial.html +++ b/docs/intermediate/dynamic_quantization_bert_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/ensembling.html b/docs/intermediate/ensembling.html index 37bfc8c..475f412 100644 --- a/docs/intermediate/ensembling.html +++ b/docs/intermediate/ensembling.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/flask_rest_api_tutorial.html b/docs/intermediate/flask_rest_api_tutorial.html index 5b2616e..dea8c4a 100644 --- a/docs/intermediate/flask_rest_api_tutorial.html +++ b/docs/intermediate/flask_rest_api_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/forced_alignment_with_torchaudio_tutorial.html b/docs/intermediate/forced_alignment_with_torchaudio_tutorial.html index f5e1a39..746c06e 100644 --- a/docs/intermediate/forced_alignment_with_torchaudio_tutorial.html +++ b/docs/intermediate/forced_alignment_with_torchaudio_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/forward_ad_usage.html b/docs/intermediate/forward_ad_usage.html index 6f576ea..63609a0 100644 --- a/docs/intermediate/forward_ad_usage.html +++ b/docs/intermediate/forward_ad_usage.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/fx_conv_bn_fuser.html b/docs/intermediate/fx_conv_bn_fuser.html index 5cab743..478b40a 100644 --- a/docs/intermediate/fx_conv_bn_fuser.html +++ b/docs/intermediate/fx_conv_bn_fuser.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/fx_profiling_tutorial.html b/docs/intermediate/fx_profiling_tutorial.html index c6550d2..c987e1c 100644 --- a/docs/intermediate/fx_profiling_tutorial.html +++ b/docs/intermediate/fx_profiling_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/inductor_debug_cpu.html b/docs/intermediate/inductor_debug_cpu.html index 81f074e..31078c3 100644 --- a/docs/intermediate/inductor_debug_cpu.html +++ b/docs/intermediate/inductor_debug_cpu.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/jacobians_hessians.html b/docs/intermediate/jacobians_hessians.html index 9b3d91d..71075fd 100644 --- a/docs/intermediate/jacobians_hessians.html +++ b/docs/intermediate/jacobians_hessians.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/mario_rl_tutorial.html b/docs/intermediate/mario_rl_tutorial.html index 3a09930..298120e 100644 --- a/docs/intermediate/mario_rl_tutorial.html +++ b/docs/intermediate/mario_rl_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/memory_format_tutorial.html b/docs/intermediate/memory_format_tutorial.html index 880a6d3..2ef557b 100644 --- a/docs/intermediate/memory_format_tutorial.html +++ b/docs/intermediate/memory_format_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/mnist_train_nas.html b/docs/intermediate/mnist_train_nas.html index ae9b7a5..594eeed 100644 --- a/docs/intermediate/mnist_train_nas.html +++ b/docs/intermediate/mnist_train_nas.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/intermediate/model_parallel_tutorial.html b/docs/intermediate/model_parallel_tutorial.html index 598938e..c1b3638 100644 --- a/docs/intermediate/model_parallel_tutorial.html +++ b/docs/intermediate/model_parallel_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/neural_tangent_kernels.html b/docs/intermediate/neural_tangent_kernels.html index 4068aa5..08640ed 100644 --- a/docs/intermediate/neural_tangent_kernels.html +++ b/docs/intermediate/neural_tangent_kernels.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/intermediate/nvfuser_intro_tutorial.html b/docs/intermediate/nvfuser_intro_tutorial.html index ff7231b..e376584 100644 --- a/docs/intermediate/nvfuser_intro_tutorial.html +++ b/docs/intermediate/nvfuser_intro_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/optimizer_step_in_backward_tutorial.html b/docs/intermediate/optimizer_step_in_backward_tutorial.html index a9a0529..2fa87ef 100644 --- a/docs/intermediate/optimizer_step_in_backward_tutorial.html +++ b/docs/intermediate/optimizer_step_in_backward_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/intermediate/parametrizations.html b/docs/intermediate/parametrizations.html index 24ee8fc..18268dd 100644 --- a/docs/intermediate/parametrizations.html +++ b/docs/intermediate/parametrizations.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/per_sample_grads.html b/docs/intermediate/per_sample_grads.html index 246d430..7b0177f 100644 --- a/docs/intermediate/per_sample_grads.html +++ b/docs/intermediate/per_sample_grads.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/process_group_cpp_extension_tutorial.html b/docs/intermediate/process_group_cpp_extension_tutorial.html index 71972b2..28e88ed 100644 --- a/docs/intermediate/process_group_cpp_extension_tutorial.html +++ b/docs/intermediate/process_group_cpp_extension_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/pruning_tutorial.html b/docs/intermediate/pruning_tutorial.html index b35b7d7..0aa0d3b 100644 --- a/docs/intermediate/pruning_tutorial.html +++ b/docs/intermediate/pruning_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/quantized_transfer_learning_tutorial.html b/docs/intermediate/quantized_transfer_learning_tutorial.html index a449966..d82ca77 100644 --- a/docs/intermediate/quantized_transfer_learning_tutorial.html +++ b/docs/intermediate/quantized_transfer_learning_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/realtime_rpi.html b/docs/intermediate/realtime_rpi.html index 563b52f..d53b79c 100644 --- a/docs/intermediate/realtime_rpi.html +++ b/docs/intermediate/realtime_rpi.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/reinforcement_ppo.html b/docs/intermediate/reinforcement_ppo.html index 9c61eaf..0a8ce20 100644 --- a/docs/intermediate/reinforcement_ppo.html +++ b/docs/intermediate/reinforcement_ppo.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/reinforcement_q_learning.html b/docs/intermediate/reinforcement_q_learning.html index 23e9054..47e5fde 100644 --- a/docs/intermediate/reinforcement_q_learning.html +++ b/docs/intermediate/reinforcement_q_learning.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/rpc_async_execution.html b/docs/intermediate/rpc_async_execution.html index 46434a4..662b310 100644 --- a/docs/intermediate/rpc_async_execution.html +++ b/docs/intermediate/rpc_async_execution.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/rpc_param_server_tutorial.html b/docs/intermediate/rpc_param_server_tutorial.html index e369b78..488ea27 100644 --- a/docs/intermediate/rpc_param_server_tutorial.html +++ b/docs/intermediate/rpc_param_server_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/rpc_tutorial.html b/docs/intermediate/rpc_tutorial.html index da45fa0..0ade493 100644 --- a/docs/intermediate/rpc_tutorial.html +++ b/docs/intermediate/rpc_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/scaled_dot_product_attention_tutorial.html b/docs/intermediate/scaled_dot_product_attention_tutorial.html index 830aaa0..328e20d 100644 --- a/docs/intermediate/scaled_dot_product_attention_tutorial.html +++ b/docs/intermediate/scaled_dot_product_attention_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/seq2seq_translation_tutorial.html b/docs/intermediate/seq2seq_translation_tutorial.html index a810a67..906a564 100644 --- a/docs/intermediate/seq2seq_translation_tutorial.html +++ b/docs/intermediate/seq2seq_translation_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/spatial_transformer_tutorial.html b/docs/intermediate/spatial_transformer_tutorial.html index 26ae987..ad88bf4 100644 --- a/docs/intermediate/spatial_transformer_tutorial.html +++ b/docs/intermediate/spatial_transformer_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/speech_recognition_pipeline_tutorial.html b/docs/intermediate/speech_recognition_pipeline_tutorial.html index 97ce3e2..bde9707 100644 --- a/docs/intermediate/speech_recognition_pipeline_tutorial.html +++ b/docs/intermediate/speech_recognition_pipeline_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/tensorboard_profiler_tutorial.html b/docs/intermediate/tensorboard_profiler_tutorial.html index ee8275d..c0434b4 100644 --- a/docs/intermediate/tensorboard_profiler_tutorial.html +++ b/docs/intermediate/tensorboard_profiler_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/tensorboard_tutorial.html b/docs/intermediate/tensorboard_tutorial.html index 0bfdadf..0a0485b 100644 --- a/docs/intermediate/tensorboard_tutorial.html +++ b/docs/intermediate/tensorboard_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/text_to_speech_with_torchaudio.html b/docs/intermediate/text_to_speech_with_torchaudio.html index 2a6bdd5..60a2d3c 100644 --- a/docs/intermediate/text_to_speech_with_torchaudio.html +++ b/docs/intermediate/text_to_speech_with_torchaudio.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/tiatoolbox_tutorial.html b/docs/intermediate/tiatoolbox_tutorial.html index 142285d..7a57b6a 100644 --- a/docs/intermediate/tiatoolbox_tutorial.html +++ b/docs/intermediate/tiatoolbox_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/torch_compile_tutorial.html b/docs/intermediate/torch_compile_tutorial.html index 0bce64f..6d68732 100644 --- a/docs/intermediate/torch_compile_tutorial.html +++ b/docs/intermediate/torch_compile_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/torch_export_nightly_tutorial.html b/docs/intermediate/torch_export_nightly_tutorial.html index f47019e..50a0db7 100644 --- a/docs/intermediate/torch_export_nightly_tutorial.html +++ b/docs/intermediate/torch_export_nightly_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/intermediate/torch_export_tutorial.html b/docs/intermediate/torch_export_tutorial.html index ddb3de9..c25f261 100644 --- a/docs/intermediate/torch_export_tutorial.html +++ b/docs/intermediate/torch_export_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/intermediate/torchrec_tutorial.html b/docs/intermediate/torchrec_tutorial.html index 9c6fcb1..538b869 100644 --- a/docs/intermediate/torchrec_tutorial.html +++ b/docs/intermediate/torchrec_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/torchserve_with_ipex.html b/docs/intermediate/torchserve_with_ipex.html index 975aa35..a04eb11 100644 --- a/docs/intermediate/torchserve_with_ipex.html +++ b/docs/intermediate/torchserve_with_ipex.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/torchserve_with_ipex_2.html b/docs/intermediate/torchserve_with_ipex_2.html index 3aa10d4..e63eded 100644 --- a/docs/intermediate/torchserve_with_ipex_2.html +++ b/docs/intermediate/torchserve_with_ipex_2.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/intermediate/torchvision_tutorial.html b/docs/intermediate/torchvision_tutorial.html index 8ca09e6..8579251 100644 --- a/docs/intermediate/torchvision_tutorial.html +++ b/docs/intermediate/torchvision_tutorial.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/objects.inv b/docs/objects.inv index 0f66f32e0601a76e14e7710ebf118218d5c60583..d7a2820b8138f3088c283320b257d008dc44a088 100644 GIT binary patch delta 411 zcmV;M0c8HcZj*1Y12%tHo*Wk`2qB9|FBk+zyK#pu%>$$XBSen?pCt4jlpqqZMrIcjkJVxR8n*{kPS35;2I;{11K0Y87UQXe<@qy-CA7vpVq zG&`?5bN-5rzAR6NoqU)E4V4yrM01<|>Gz$J#2ds^TD&J}ue97kb^axaojlC@!M_?+ zpoyU0Z`4Uj9-{0F`McIdJi_WV=>9quP4}0v8N0up$sV~N zzefb!@>z9%i4Z^3S`12%t(JUK`~2>D2Q!5}!=jXQK{9v}@EA$kP(ELkvUvKEIwO`76p zDO?_=0N!3#$wal$2Xy(VW$p%p_^6+R_Uaf1(UpT^auuogBhdo;p<&YX>vGCNf$Tz<5OW2sO2V9pInUULF`j|x a+8!qORKJZ_Fyb?a0hO2Sa{YfiTGtL@@1=bJ diff --git a/docs/prototype/backend_config_tutorial.html b/docs/prototype/backend_config_tutorial.html index a2c1cc8..3ffc8da 100644 --- a/docs/prototype/backend_config_tutorial.html +++ b/docs/prototype/backend_config_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/distributed_rpc_profiling.html b/docs/prototype/distributed_rpc_profiling.html index fdda41b..0813d0d 100644 --- a/docs/prototype/distributed_rpc_profiling.html +++ b/docs/prototype/distributed_rpc_profiling.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/fx_graph_mode_ptq_dynamic.html b/docs/prototype/fx_graph_mode_ptq_dynamic.html index 2bc5a84..59a5d5c 100644 --- a/docs/prototype/fx_graph_mode_ptq_dynamic.html +++ b/docs/prototype/fx_graph_mode_ptq_dynamic.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/fx_graph_mode_ptq_static.html b/docs/prototype/fx_graph_mode_ptq_static.html index 9187118..a61cb72 100644 --- a/docs/prototype/fx_graph_mode_ptq_static.html +++ b/docs/prototype/fx_graph_mode_ptq_static.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/fx_graph_mode_quant_guide.html b/docs/prototype/fx_graph_mode_quant_guide.html index e6edbba..c0dd8bb 100644 --- a/docs/prototype/fx_graph_mode_quant_guide.html +++ b/docs/prototype/fx_graph_mode_quant_guide.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/gpu_quantization_torchao_tutorial.html b/docs/prototype/gpu_quantization_torchao_tutorial.html index ae47d24..4a58f32 100644 --- a/docs/prototype/gpu_quantization_torchao_tutorial.html +++ b/docs/prototype/gpu_quantization_torchao_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/graph_mode_dynamic_bert_tutorial.html b/docs/prototype/graph_mode_dynamic_bert_tutorial.html index 4794a39..728ffa8 100644 --- a/docs/prototype/graph_mode_dynamic_bert_tutorial.html +++ b/docs/prototype/graph_mode_dynamic_bert_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/inductor_cpp_wrapper_tutorial.html b/docs/prototype/inductor_cpp_wrapper_tutorial.html index fcb5e1e..9ccb7cf 100644 --- a/docs/prototype/inductor_cpp_wrapper_tutorial.html +++ b/docs/prototype/inductor_cpp_wrapper_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/ios_coreml_workflow.html b/docs/prototype/ios_coreml_workflow.html index 1728bac..7421604 100644 --- a/docs/prototype/ios_coreml_workflow.html +++ b/docs/prototype/ios_coreml_workflow.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/ios_gpu_workflow.html b/docs/prototype/ios_gpu_workflow.html index 85bb5f1..509c1f0 100644 --- a/docs/prototype/ios_gpu_workflow.html +++ b/docs/prototype/ios_gpu_workflow.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/maskedtensor_adagrad.html b/docs/prototype/maskedtensor_adagrad.html index b30871c..0d966ee 100644 --- a/docs/prototype/maskedtensor_adagrad.html +++ b/docs/prototype/maskedtensor_adagrad.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/maskedtensor_advanced_semantics.html b/docs/prototype/maskedtensor_advanced_semantics.html index 549e275..5cf6008 100644 --- a/docs/prototype/maskedtensor_advanced_semantics.html +++ b/docs/prototype/maskedtensor_advanced_semantics.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/maskedtensor_overview.html b/docs/prototype/maskedtensor_overview.html index 9afbbff..69f395c 100644 --- a/docs/prototype/maskedtensor_overview.html +++ b/docs/prototype/maskedtensor_overview.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/maskedtensor_sparsity.html b/docs/prototype/maskedtensor_sparsity.html index 0744033..3a42388 100644 --- a/docs/prototype/maskedtensor_sparsity.html +++ b/docs/prototype/maskedtensor_sparsity.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/nestedtensor.html b/docs/prototype/nestedtensor.html index 629aaa4..9524046 100644 --- a/docs/prototype/nestedtensor.html +++ b/docs/prototype/nestedtensor.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/nnapi_mobilenetv2.html b/docs/prototype/nnapi_mobilenetv2.html index 7ee1e89..06d5e42 100644 --- a/docs/prototype/nnapi_mobilenetv2.html +++ b/docs/prototype/nnapi_mobilenetv2.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/numeric_suite_tutorial.html b/docs/prototype/numeric_suite_tutorial.html index 07e896a..9369593 100644 --- a/docs/prototype/numeric_suite_tutorial.html +++ b/docs/prototype/numeric_suite_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/prototype_index.html b/docs/prototype/prototype_index.html index 6e055b3..5b3dbab 100644 --- a/docs/prototype/prototype_index.html +++ b/docs/prototype/prototype_index.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/prototype/pt2e_quant_ptq.html b/docs/prototype/pt2e_quant_ptq.html index a59f505..7c8950f 100644 --- a/docs/prototype/pt2e_quant_ptq.html +++ b/docs/prototype/pt2e_quant_ptq.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/pt2e_quant_qat.html b/docs/prototype/pt2e_quant_qat.html index a58232d..3d36071 100644 --- a/docs/prototype/pt2e_quant_qat.html +++ b/docs/prototype/pt2e_quant_qat.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/pt2e_quant_x86_inductor.html b/docs/prototype/pt2e_quant_x86_inductor.html index 1a3be02..108de4e 100644 --- a/docs/prototype/pt2e_quant_x86_inductor.html +++ b/docs/prototype/pt2e_quant_x86_inductor.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/pt2e_quantizer.html b/docs/prototype/pt2e_quantizer.html index b9f87d1..0033dd9 100644 --- a/docs/prototype/pt2e_quantizer.html +++ b/docs/prototype/pt2e_quantizer.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/semi_structured_sparse.html b/docs/prototype/semi_structured_sparse.html index fc9b9e9..37c3ced 100644 --- a/docs/prototype/semi_structured_sparse.html +++ b/docs/prototype/semi_structured_sparse.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/skip_param_init.html b/docs/prototype/skip_param_init.html index 39669df..8fc07a8 100644 --- a/docs/prototype/skip_param_init.html +++ b/docs/prototype/skip_param_init.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/torchscript_freezing.html b/docs/prototype/torchscript_freezing.html index 3f4e122..ce197d1 100644 --- a/docs/prototype/torchscript_freezing.html +++ b/docs/prototype/torchscript_freezing.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/tracing_based_selective_build.html b/docs/prototype/tracing_based_selective_build.html index fc1ecfb..40f2f7d 100644 --- a/docs/prototype/tracing_based_selective_build.html +++ b/docs/prototype/tracing_based_selective_build.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/vmap_recipe.html b/docs/prototype/vmap_recipe.html index acdf18a..972a386 100644 --- a/docs/prototype/vmap_recipe.html +++ b/docs/prototype/vmap_recipe.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/prototype/vulkan_workflow.html b/docs/prototype/vulkan_workflow.html index c703f60..8f4e302 100644 --- a/docs/prototype/vulkan_workflow.html +++ b/docs/prototype/vulkan_workflow.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/amx.html b/docs/recipes/amx.html index 489c420..faece65 100644 --- a/docs/recipes/amx.html +++ b/docs/recipes/amx.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/android_native_app_with_custom_op.html b/docs/recipes/android_native_app_with_custom_op.html index 355d470..b4fd476 100644 --- a/docs/recipes/android_native_app_with_custom_op.html +++ b/docs/recipes/android_native_app_with_custom_op.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/bundled_inputs.html b/docs/recipes/bundled_inputs.html index ae2b19b..f58c297 100644 --- a/docs/recipes/bundled_inputs.html +++ b/docs/recipes/bundled_inputs.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/compiling_optimizer.html b/docs/recipes/compiling_optimizer.html index fea54a5..7829c9a 100644 --- a/docs/recipes/compiling_optimizer.html +++ b/docs/recipes/compiling_optimizer.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/compiling_optimizer_lr_scheduler.html b/docs/recipes/compiling_optimizer_lr_scheduler.html index d3faed8..65ea214 100644 --- a/docs/recipes/compiling_optimizer_lr_scheduler.html +++ b/docs/recipes/compiling_optimizer_lr_scheduler.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/cuda_rpc.html b/docs/recipes/cuda_rpc.html index 1704095..1c37dac 100644 --- a/docs/recipes/cuda_rpc.html +++ b/docs/recipes/cuda_rpc.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/deployment_with_flask.html b/docs/recipes/deployment_with_flask.html index c544c81..2249fe5 100644 --- a/docs/recipes/deployment_with_flask.html +++ b/docs/recipes/deployment_with_flask.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/distributed_checkpoint_recipe.html b/docs/recipes/distributed_checkpoint_recipe.html index d15c824..fbc9254 100644 --- a/docs/recipes/distributed_checkpoint_recipe.html +++ b/docs/recipes/distributed_checkpoint_recipe.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/distributed_device_mesh.html b/docs/recipes/distributed_device_mesh.html index 3dd344e..d4ee34e 100644 --- a/docs/recipes/distributed_device_mesh.html +++ b/docs/recipes/distributed_device_mesh.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/distributed_optim_torchscript.html b/docs/recipes/distributed_optim_torchscript.html index de56ee6..605aa18 100644 --- a/docs/recipes/distributed_optim_torchscript.html +++ b/docs/recipes/distributed_optim_torchscript.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/distributed_rpc_profiling.html b/docs/recipes/distributed_rpc_profiling.html index 8eb2131..0a5a1f4 100644 --- a/docs/recipes/distributed_rpc_profiling.html +++ b/docs/recipes/distributed_rpc_profiling.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/fuse.html b/docs/recipes/fuse.html index dc9825b..b51c77e 100644 --- a/docs/recipes/fuse.html +++ b/docs/recipes/fuse.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/inference_tuning_on_aws_graviton.html b/docs/recipes/inference_tuning_on_aws_graviton.html index a84a147..0e92a08 100644 --- a/docs/recipes/inference_tuning_on_aws_graviton.html +++ b/docs/recipes/inference_tuning_on_aws_graviton.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/intel_extension_for_pytorch.html b/docs/recipes/intel_extension_for_pytorch.html index 30dd74f..66932b2 100644 --- a/docs/recipes/intel_extension_for_pytorch.html +++ b/docs/recipes/intel_extension_for_pytorch.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/intel_neural_compressor_for_pytorch.html b/docs/recipes/intel_neural_compressor_for_pytorch.html index 68d7ccb..b0a0e88 100644 --- a/docs/recipes/intel_neural_compressor_for_pytorch.html +++ b/docs/recipes/intel_neural_compressor_for_pytorch.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/mobile_interpreter.html b/docs/recipes/mobile_interpreter.html index 31a1638..bb5d935 100644 --- a/docs/recipes/mobile_interpreter.html +++ b/docs/recipes/mobile_interpreter.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/mobile_perf.html b/docs/recipes/mobile_perf.html index 83e0f80..c89418b 100644 --- a/docs/recipes/mobile_perf.html +++ b/docs/recipes/mobile_perf.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/model_preparation_android.html b/docs/recipes/model_preparation_android.html index 4c943c7..946549e 100644 --- a/docs/recipes/model_preparation_android.html +++ b/docs/recipes/model_preparation_android.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/model_preparation_ios.html b/docs/recipes/model_preparation_ios.html index b6bea6e..8841239 100644 --- a/docs/recipes/model_preparation_ios.html +++ b/docs/recipes/model_preparation_ios.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/profile_with_itt.html b/docs/recipes/profile_with_itt.html index 47e08b9..287ace8 100644 --- a/docs/recipes/profile_with_itt.html +++ b/docs/recipes/profile_with_itt.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/ptmobile_recipes_summary.html b/docs/recipes/ptmobile_recipes_summary.html index 97f8caa..8df0707 100644 --- a/docs/recipes/ptmobile_recipes_summary.html +++ b/docs/recipes/ptmobile_recipes_summary.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/quantization.html b/docs/recipes/quantization.html index 466c5b9..a84b721 100644 --- a/docs/recipes/quantization.html +++ b/docs/recipes/quantization.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/recipes/Captum_Recipe.html b/docs/recipes/recipes/Captum_Recipe.html index 48d6562..b2a11a8 100644 --- a/docs/recipes/recipes/Captum_Recipe.html +++ b/docs/recipes/recipes/Captum_Recipe.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/amp_recipe.html b/docs/recipes/recipes/amp_recipe.html index 9305e2a..6cfdb39 100644 --- a/docs/recipes/recipes/amp_recipe.html +++ b/docs/recipes/recipes/amp_recipe.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/benchmark.html b/docs/recipes/recipes/benchmark.html index 54517a6..c80d64f 100644 --- a/docs/recipes/recipes/benchmark.html +++ b/docs/recipes/recipes/benchmark.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/recipes/changing_default_device.html b/docs/recipes/recipes/changing_default_device.html index 6090301..541481a 100644 --- a/docs/recipes/recipes/changing_default_device.html +++ b/docs/recipes/recipes/changing_default_device.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/recipes/defining_a_neural_network.html b/docs/recipes/recipes/defining_a_neural_network.html index 53bb929..cb295e2 100644 --- a/docs/recipes/recipes/defining_a_neural_network.html +++ b/docs/recipes/recipes/defining_a_neural_network.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/dynamic_quantization.html b/docs/recipes/recipes/dynamic_quantization.html index 8a1566f..e28cec5 100644 --- a/docs/recipes/recipes/dynamic_quantization.html +++ b/docs/recipes/recipes/dynamic_quantization.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/index.html b/docs/recipes/recipes/index.html index e50991d..15babf3 100644 --- a/docs/recipes/recipes/index.html +++ b/docs/recipes/recipes/index.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • @@ -738,7 +738,7 @@
    Extension points in ``nn.Module`` for ``load_state_dict`` and tensor subclasses

    Extension points in nn.Module for load_state_dict and tensor subclasses

    Extension points in ``nn.Module`` for ``load_state_dict`` and tensor subclasses
    -
    PyTorch Profiler +
    PyTorch Profiler

    PyTorch Profiler

    PyTorch Profiler
    Automatic Mixed Precision diff --git a/docs/recipes/recipes/loading_data_recipe.html b/docs/recipes/recipes/loading_data_recipe.html index fc0ee0a..02194fb 100644 --- a/docs/recipes/recipes/loading_data_recipe.html +++ b/docs/recipes/recipes/loading_data_recipe.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@
  • @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/module_load_state_dict_tips.html b/docs/recipes/recipes/module_load_state_dict_tips.html index b9ec0c7..49b15ac 100644 --- a/docs/recipes/recipes/module_load_state_dict_tips.html +++ b/docs/recipes/recipes/module_load_state_dict_tips.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/recipes/profiler_recipe.html b/docs/recipes/recipes/profiler_recipe.html index 649f99f..3a942d5 100644 --- a/docs/recipes/recipes/profiler_recipe.html +++ b/docs/recipes/recipes/profiler_recipe.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • @@ -601,95 +601,80 @@

    PyTorch Profiler

    -

    This recipe explains how to use PyTorch profiler and measure the time and -memory consumption of the model’s operators.

    -
    -

    Introduction

    -

    PyTorch includes a simple profiler API that is useful when user needs -to determine the most expensive operators in the model.

    -

    In this recipe, we will use a simple Resnet model to demonstrate how to -use profiler to analyze model performance.

    +

    本教程解释了如何使用PyTorch profiler,并测量模型算子的时间和内存消耗。

    +
    +

    简介

    +

    当用户需要确定模型中最耗费资源的算子时,PyTorch包含一个简单的profiler API非常有用。

    +

    在本教程中,我们将使用一个简单的 Resnet 模型来演示如何使用profiler分析模型性能。

    -
    -

    Setup

    -

    To install torch and torchvision use the following command:

    +
    +

    环境设置

    +

    要安装 torchtorchvision,请使用以下命令:

    pip install torch torchvision
     
    -
    -

    Steps

    +
    +

    具体步骤

      -
    1. Import all necessary libraries

    2. -
    3. Instantiate a simple Resnet model

    4. -
    5. Using profiler to analyze execution time

    6. -
    7. Using profiler to analyze memory consumption

    8. -
    9. Using tracing functionality

    10. -
    11. Examining stack traces

    12. -
    13. Using profiler to analyze long-running jobs

    14. +
    15. 导入所有必需的库

    16. +
    17. 实例化一个简单的Resnet模型

    18. +
    19. 使用profiler分析执行时间

    20. +
    21. 使用profiler分析内存消耗

    22. +
    23. 使用跟踪功能

    24. +
    25. 检查堆栈跟踪

    26. +
    27. 使用profiler分析长时间运行的作业

    -
    -

    1. Import all necessary libraries

    -

    In this recipe we will use torch, torchvision.models -and profiler modules:

    +
    +

    1. 导入依赖的库

    +

    在本教程中,我们将使用 torchtorchvision.modelsprofiler 模块:

    import torch
     import torchvision.models as models
    -from torch.profiler import profile, record_function, ProfilerActivity
    +from torch.profiler import profile, ProfilerActivity, record_function
     
    -
    -

    2. Instantiate a simple Resnet model

    -

    Let’s create an instance of a Resnet model and prepare an input -for it:

    +
    +

    2. 创建一个简单的 Resnet 模型

    +

    让我们创建一个 Resnet 模型实例,并为它准备一个输入:

    model = models.resnet18()
     inputs = torch.randn(5, 3, 224, 224)
     
    -
    -

    3. Using profiler to analyze execution time

    -

    PyTorch profiler is enabled through the context manager and accepts -a number of parameters, some of the most useful are:

    +
    +

    3. 使用profiler分析执行时间

    +

    PyTorch profiler通过上下文管理器启用,并接受多个参数,其中一些最有用的参数如下:

    • -
      activities - a list of activities to profile:
        -
      • ProfilerActivity.CPU - PyTorch operators, TorchScript functions and -user-defined code labels (see record_function below);

      • -
      • ProfilerActivity.CUDA - on-device CUDA kernels;

      • +
        activities - 要分析的活动列表:
          +
        • ProfilerActivity.CPU - PyTorch算子、TorchScript函数和用户定义的代码标签(见下面的 record_function);

        • +
        • ProfilerActivity.CUDA - 设备上的CUDA内核;

    • -
    • record_shapes - whether to record shapes of the operator inputs;

    • -
    • profile_memory - whether to report amount of memory consumed by -model’s Tensors;

    • -
    • use_cuda - whether to measure execution time of CUDA kernels.

    • +
    • record_shapes - 是否记录算子输入的形状;

    • +
    • profile_memory - 是否报告模型张量所消耗的内存量;

    • +
    • use_cuda - 是否测量CUDA内核的执行时间。

    -

    Note: when using CUDA, profiler also shows the runtime CUDA events -occurring on the host.

    -

    Let’s see how we can use profiler to analyze the execution time:

    +

    注意:当使用CUDA时,profiler还会显示主机上发生的运行时CUDA事件。

    +

    让我们看看如何使用profiler分析执行时间:

    with profile(activities=[ProfilerActivity.CPU], record_shapes=True) as prof:
         with record_function("model_inference"):
             model(inputs)
     
    -

    Note that we can use record_function context manager to label -arbitrary code ranges with user provided names -(model_inference is used as a label in the example above).

    -

    Profiler allows one to check which operators were called during the -execution of a code range wrapped with a profiler context manager. -If multiple profiler ranges are active at the same time (e.g. in -parallel PyTorch threads), each profiling context manager tracks only -the operators of its corresponding range. -Profiler also automatically profiles the asynchronous tasks launched -with torch.jit._fork and (in case of a backward pass) -the backward pass operators launched with backward() call.

    -

    Let’s print out the stats for the execution above:

    +

    注意,我们可以使用 record_function 上下文管理器为任意代码范围添加用户提供的名称标签 +(在上面的示例中使用 model_inference 作为标签)。

    +

    Profiler允许检查在使用profiler上下文管理器包装的代码范围内执行期间调用了哪些算子。 +如果同时存在多个活动的profiler范围(例如在并行PyTorch线程中),每个profiling上下文管理器只跟踪其对应范围的算子。 +Profiler还会自动分析使用 torch.jit._fork 启动的异步任务,以及在反向传播过程中使用 backward() 调用启动的反向传播算子。

    +

    让我们打印出上述执行的统计信息:

    print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))
     
    -

    The output will look like (omitting some columns):

    +

    输出将如下所示(省略了一些列):

    # ---------------------------------  ------------  ------------  ------------  ------------
     #                              Name      Self CPU     CPU total  CPU time avg    # of Calls
     # ---------------------------------  ------------  ------------  ------------  ------------
    @@ -708,17 +693,21 @@ 

    3. Using profiler to analyze execution time#

    -

    Here we see that, as expected, most of the time is spent in convolution (and specifically in mkldnn_convolution -for PyTorch compiled with MKL-DNN support). -Note the difference between self cpu time and cpu time - operators can call other operators, self cpu time excludes time -spent in children operator calls, while total cpu time includes it. You can choose to sort by the self cpu time by passing -sort_by="self_cpu_time_total" into the table call.

    To get a finer granularity of results and include operator input shapes, pass group_by_input_shape=True -(note: this requires running the profiler with record_shapes=True):

    -
    print(prof.key_averages(group_by_input_shape=True).table(sort_by="cpu_time_total", row_limit=10))
    +(note: this requires running the profiler with record_shapes=True):
    +这里我们可以看到,如预期的那样,大部分时间都花在了卷积上(对于使用 MKL-DNN 支持编译的PyTorch,特别是在 mkldnn_convolution 上)。
    +注意自身cpu时间和cpu时间之间的区别 - 算子可以调用其他算子,自身cpu时间不包括在子算子调用中花费的时间,而总cpu时间包括了它。
    +你可以通过将 sort_by="self_cpu_time_total" 传递给 table 调用来选择按自身cpu时间排序。

    +

    要获得更细粒度的结果并包含算子输入形状,请传递 group_by_input_shape=True +(注意:这需要使用 record_shapes=True 运行profiler):

    +
    print(
    +    prof.key_averages(group_by_input_shape=True).table(
    +        sort_by="cpu_time_total", row_limit=10
    +    )
    +)
     
    -

    The output might look like this (omitting some columns):

    +

    输出可能如下所示(省略了一些列):

    -

    Note the occurrence of aten::convolution twice with different input shapes.

    -

    Profiler can also be used to analyze performance of models executed on GPUs:

    +

    注意 aten::convolution 出现了两次,具有不同的输入形状。

    +

    Profiler也可用于分析在GPU上执行的模型的性能:

    model = models.resnet18().cuda()
     inputs = torch.randn(5, 3, 224, 224).cuda()
     
    -with profile(activities=[
    -        ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof:
    +with profile(
    +    activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True
    +) as prof:
         with record_function("model_inference"):
             model(inputs)
     
     print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
     
    -

    (Note: the first use of CUDA profiling may bring an extra overhead.)

    -

    The resulting table output (omitting some columns):

    +

    (注意:第一次使用CUDA分析可能会带来额外的开销。)

    +

    结果输出(省略了一些列):

    -------------------------------------------------------  ------------  ------------
                                                        Name     Self CUDA    CUDA total
     -------------------------------------------------------  ------------  ------------
    @@ -769,20 +759,19 @@ 

    3. Using profiler to analyze execution time CUDA time total: 11.666ms

    -

    Note the occurrence of on-device kernels in the output (e.g. sgemm_32x32x32_NN).

    +

    注意在输出中出现了设备上的内核(例如 sgemm_32x32x32_NN)。

    -
    -

    4. Using profiler to analyze memory consumption

    -

    PyTorch profiler can also show the amount of memory (used by the model’s tensors) -that was allocated (or released) during the execution of the model’s operators. -In the output below, ‘self’ memory corresponds to the memory allocated (released) -by the operator, excluding the children calls to the other operators. -To enable memory profiling functionality pass profile_memory=True.

    +
    +

    4. 使用 profiler 分析内存消耗

    +

    PyTorch profiler还可以显示在执行模型算子期间分配(或释放)的内存量(由模型张量使用)。 +在下面的输出中,’self’内存对应于算子分配(释放)的内存,不包括对其他算子的子调用。 +要启用内存分析功能,请传递 profile_memory=True

    model = models.resnet18()
     inputs = torch.randn(5, 3, 224, 224)
     
    -with profile(activities=[ProfilerActivity.CPU],
    -        profile_memory=True, record_shapes=True) as prof:
    +with profile(
    +    activities=[ProfilerActivity.CPU], profile_memory=True, record_shapes=True
    +) as prof:
         model(inputs)
     
     print(prof.key_averages().table(sort_by="self_cpu_memory_usage", row_limit=10))
    @@ -807,7 +796,7 @@ 

    4. Using profiler to analyze memory consumptionprint(prof.key_averages().table(sort_by="cpu_memory_usage", row_limit=10))

    -

    The output might look like this (omitting some columns):

    +

    输出如下所示(省略了一些列):

    ---------------------------------  ------------  ------------  ------------
                                  Name       CPU Mem  Self CPU Mem    # of Calls
     ---------------------------------  ------------  ------------  ------------
    @@ -826,9 +815,9 @@ 

    4. Using profiler to analyze memory consumption -

    5. Using tracing functionality

    -

    Profiling results can be outputted as a .json trace file:

    + -
    -

    6. Examining stack traces

    -

    Profiler can be used to analyze Python and TorchScript stack traces:

    + -
    -

    7. Using profiler to analyze long-running jobs

    -

    PyTorch profiler offers an additional API to handle long-running jobs -(such as training loops). Tracing all of the execution can be -slow and result in very large trace files. To avoid this, use optional -arguments:

    +
    +

    7. 使用分析器分析长时间运行的作业

    +

    PyTorch分析器提供了一个额外的API来处理长时间运行的作业 +(例如训练循环)。跟踪所有执行可能会很慢,并导致非常大的跟踪文件。 +为了避免这种情况,可以使用可选参数:

      -
    • schedule - specifies a function that takes an integer argument (step number) -as an input and returns an action for the profiler, the best way to use this parameter -is to use torch.profiler.schedule helper function that can generate a schedule for you;

    • -
    • on_trace_ready - specifies a function that takes a reference to the profiler as -an input and is called by the profiler each time the new trace is ready.

    • +
    • schedule - 指定一个函数,该函数以整数参数(步骤编号)作为输入, +并返回分析器的操作,使用此参数的最佳方式是使用 torch.profiler.schedule +帮助函数,它可以为您生成一个计划;

    • +
    • on_trace_ready - 指定一个函数,该函数以分析器的引用作为输入, +并在每次新的跟踪准备就绪时由分析器调用。

    -

    To illustrate how the API works, let’s first consider the following example with -torch.profiler.schedule helper function:

    +

    为了说明该API的工作原理,让我们首先考虑以下使用 torch.profiler.schedule +帮助函数的示例:

    from torch.profiler import schedule
     
    -my_schedule = schedule(
    -    skip_first=10,
    -    wait=5,
    -    warmup=1,
    -    active=3,
    -    repeat=2)
    +my_schedule = schedule(skip_first=10, wait=5, warmup=1, active=3, repeat=2)
     
    -

    Profiler assumes that the long-running job is composed of steps, numbered -starting from zero. The example above defines the following sequence of actions -for the profiler:

    +

    分析器假设长时间运行的作业由从零开始编号的步骤组成。 +上面的示例为分析器定义了以下操作序列:

      -
    1. Parameter skip_first tells profiler that it should ignore the first 10 steps -(default value of skip_first is zero);

    2. -
    3. After the first skip_first steps, profiler starts executing profiler cycles;

    4. -
    5. Each cycle consists of three phases:

      +
    6. 参数 skip_first 告诉分析器它应该忽略前10个步骤 +(skip_first 的默认值为零);

    7. +
    8. 在第一个 skip_first 步骤之后,分析器开始执行分析器周期;

    9. +
    10. 每个周期由三个阶段组成:

        -
      • idling (wait=5 steps), during this phase profiler is not active;

      • -
      • warming up (warmup=1 steps), during this phase profiler starts tracing, but -the results are discarded; this phase is used to discard the samples obtained by -the profiler at the beginning of the trace since they are usually skewed by an extra -overhead;

      • -
      • active tracing (active=3 steps), during this phase profiler traces and records data;

      • +
      • 空闲(``wait=5``步骤),在此阶段分析器不活动;

      • +
      • 预热(``warmup=1``步骤),在此阶段分析器开始跟踪,但结果被丢弃; +此阶段用于丢弃分析器在跟踪开始时获得的样本,因为它们通常由额外的开销扭曲;

      • +
      • 主动跟踪(``active=3``步骤),在此阶段分析器跟踪和记录数据;

    11. -
    12. An optional repeat parameter specifies an upper bound on the number of cycles. -By default (zero value), profiler will execute cycles as long as the job runs.

    13. +
    14. 可选的 repeat 参数指定周期的上限。 +默认情况下(零值),分析器将尽可能长时间地执行周期。

    -

    Thus, in the example above, profiler will skip the first 15 steps, spend the next step on the warm up, -actively record the next 3 steps, skip another 5 steps, spend the next step on the warm up, actively -record another 3 steps. Since the repeat=2 parameter value is specified, the profiler will stop -the recording after the first two cycles.

    -

    At the end of each cycle profiler calls the specified on_trace_ready function and passes itself as -an argument. This function is used to process the new trace - either by obtaining the table output or -by saving the output on disk as a trace file.

    -

    To send the signal to the profiler that the next step has started, call prof.step() function. -The current profiler step is stored in prof.step_num.

    -

    The following example shows how to use all of the concepts above:

    +

    因此,在上面的示例中,分析器将跳过前15个步骤,在下一步进行预热, +在接下来的3个步骤中主动记录,再跳过另外5个步骤,在下一步进行预热, +在另外3个步骤中主动记录。由于指定了 repeat=2 参数值, +分析器将在前两个周期之后停止记录。

    +

    在每个周期结束时,分析器调用指定的 on_trace_ready 函数并将自身作为参数传递。 +此函数用于处理新的跟踪 - 通过获取表输出或将输出保存到磁盘上的跟踪文件。

    +

    要向分析器发送下一步已经开始的信号,请调用 prof.step() 函数。 +当前分析器步骤存储在 prof.step_num 中。

    +

    以下示例显示了如何使用上述所有概念:

    def trace_handler(p):
         output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=10)
         print(output)
         p.export_chrome_trace("/tmp/trace_" + str(p.step_num) + ".json")
     
    +
     with profile(
         activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
    -    schedule=torch.profiler.schedule(
    -        wait=1,
    -        warmup=1,
    -        active=2),
    -    on_trace_ready=trace_handler
    +    schedule=torch.profiler.schedule(wait=1, warmup=1, active=2),
    +    on_trace_ready=trace_handler,
     ) as p:
         for idx in range(8):
             model(inputs)
    @@ -952,13 +932,13 @@ 

    7. Using profiler to analyze long-running jobs -

    Learn More

    -

    Take a look at the following recipes/tutorials to continue your learning:

    +
    +

    了解更多

    +

    查看以下教程以继续学习:

    Total running time of the script: ( 0 minutes 0.000 seconds)

    @@ -170,11 +170,11 @@
    @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/recipes/save_load_across_devices.html b/docs/recipes/recipes/save_load_across_devices.html index f11f78c..6f998c1 100644 --- a/docs/recipes/recipes/save_load_across_devices.html +++ b/docs/recipes/recipes/save_load_across_devices.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@
  • @@ -172,11 +172,11 @@
    @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/saving_and_loading_a_general_checkpoint.html b/docs/recipes/recipes/saving_and_loading_a_general_checkpoint.html index fc25b1e..23cc94c 100644 --- a/docs/recipes/recipes/saving_and_loading_a_general_checkpoint.html +++ b/docs/recipes/recipes/saving_and_loading_a_general_checkpoint.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@
  • @@ -172,11 +172,11 @@
    @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/saving_and_loading_models_for_inference.html b/docs/recipes/recipes/saving_and_loading_models_for_inference.html index dc28346..8919892 100644 --- a/docs/recipes/recipes/saving_and_loading_models_for_inference.html +++ b/docs/recipes/recipes/saving_and_loading_models_for_inference.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@
  • @@ -172,11 +172,11 @@

    @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/saving_multiple_models_in_one_file.html b/docs/recipes/recipes/saving_multiple_models_in_one_file.html index 9658365..9956bac 100644 --- a/docs/recipes/recipes/saving_multiple_models_in_one_file.html +++ b/docs/recipes/recipes/saving_multiple_models_in_one_file.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@
  • @@ -172,11 +172,11 @@
    @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/swap_tensors.html b/docs/recipes/recipes/swap_tensors.html index d8544d8..88157c1 100644 --- a/docs/recipes/recipes/swap_tensors.html +++ b/docs/recipes/recipes/swap_tensors.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@
  • @@ -170,11 +170,11 @@
    @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/recipes/tensorboard_with_pytorch.html b/docs/recipes/recipes/tensorboard_with_pytorch.html index 4488100..957c227 100644 --- a/docs/recipes/recipes/tensorboard_with_pytorch.html +++ b/docs/recipes/recipes/tensorboard_with_pytorch.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@
  • @@ -172,11 +172,11 @@
    @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/timer_quick_start.html b/docs/recipes/recipes/timer_quick_start.html index 7386737..ac96638 100644 --- a/docs/recipes/recipes/timer_quick_start.html +++ b/docs/recipes/recipes/timer_quick_start.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@
  • @@ -170,11 +170,11 @@
    @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/recipes/tuning_guide.html b/docs/recipes/recipes/tuning_guide.html index 2befede..af857fe 100644 --- a/docs/recipes/recipes/tuning_guide.html +++ b/docs/recipes/recipes/tuning_guide.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@
  • @@ -172,11 +172,11 @@
    @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.html b/docs/recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.html index cf61c57..c8413ab 100644 --- a/docs/recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.html +++ b/docs/recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@
  • @@ -172,11 +172,11 @@
    @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/what_is_state_dict.html b/docs/recipes/recipes/what_is_state_dict.html index e5502bd..99ad80f 100644 --- a/docs/recipes/recipes/what_is_state_dict.html +++ b/docs/recipes/recipes/what_is_state_dict.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@
  • @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes/zeroing_out_gradients.html b/docs/recipes/recipes/zeroing_out_gradients.html index 8134f89..a910386 100644 --- a/docs/recipes/recipes/zeroing_out_gradients.html +++ b/docs/recipes/recipes/zeroing_out_gradients.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/recipes_index.html b/docs/recipes/recipes_index.html index 918c95c..b11579d 100644 --- a/docs/recipes/recipes_index.html +++ b/docs/recipes/recipes_index.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • @@ -903,7 +903,7 @@

    PyTorch Benchmark Timer 快速入门

    PyTorch Profiler

    -

    Learn how to use PyTorch's profiler to measure operators time and memory consumption

    +

    学习如何使用 PyTorch Profiler 来测量算子的时间和内存消耗。

    Basics

    diff --git a/docs/recipes/script_optimized.html b/docs/recipes/script_optimized.html index 4fe80f8..bedf700 100644 --- a/docs/recipes/script_optimized.html +++ b/docs/recipes/script_optimized.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/torch_compile_backend_ipex.html b/docs/recipes/torch_compile_backend_ipex.html index b25a392..3c3844f 100644 --- a/docs/recipes/torch_compile_backend_ipex.html +++ b/docs/recipes/torch_compile_backend_ipex.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/torch_compile_user_defined_triton_kernel_tutorial.html b/docs/recipes/torch_compile_user_defined_triton_kernel_tutorial.html index 7cdb358..ddd067d 100644 --- a/docs/recipes/torch_compile_user_defined_triton_kernel_tutorial.html +++ b/docs/recipes/torch_compile_user_defined_triton_kernel_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/torch_logs.html b/docs/recipes/torch_logs.html index ede8d34..838bfcd 100644 --- a/docs/recipes/torch_logs.html +++ b/docs/recipes/torch_logs.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/torchscript_inference.html b/docs/recipes/torchscript_inference.html index 67e33e7..5402a5d 100644 --- a/docs/recipes/torchscript_inference.html +++ b/docs/recipes/torchscript_inference.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/recipes/torchserve_vertexai_tutorial.html b/docs/recipes/torchserve_vertexai_tutorial.html index 6762814..97ddb33 100644 --- a/docs/recipes/torchserve_vertexai_tutorial.html +++ b/docs/recipes/torchserve_vertexai_tutorial.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/recipes/zero_redundancy_optimizer.html b/docs/recipes/zero_redundancy_optimizer.html index bd8efd6..2403b1f 100644 --- a/docs/recipes/zero_redundancy_optimizer.html +++ b/docs/recipes/zero_redundancy_optimizer.html @@ -89,28 +89,28 @@
  • @@ -153,12 +153,12 @@ @@ -172,11 +172,11 @@ @@ -185,27 +185,27 @@
  • @@ -213,15 +213,15 @@
  • diff --git a/docs/search.html b/docs/search.html index f5c5d51..d9878d0 100644 --- a/docs/search.html +++ b/docs/search.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@ @@ -170,11 +170,11 @@ @@ -183,27 +183,27 @@
  • @@ -211,15 +211,15 @@
  • diff --git a/docs/searchindex.js b/docs/searchindex.js index 8125160..356cf07 100644 --- a/docs/searchindex.js +++ b/docs/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["advanced/ONNXLive", "advanced/coding_ddpg", "advanced/cpp_autograd", "advanced/cpp_cuda_graphs", "advanced/cpp_export", "advanced/cpp_extension", "advanced/cpp_frontend", "advanced/ddp_pipeline", "advanced/dispatcher", "advanced/dynamic_quantization_tutorial", "advanced/extend_dispatcher", "advanced/generic_join", "advanced/neural_style_tutorial", "advanced/numpy_extensions_tutorial", "advanced/pendulum", "advanced/privateuseone", "advanced/rpc_ddp_tutorial", "advanced/semi_structured_sparse", "advanced/sharding", "advanced/static_quantization_tutorial", "advanced/super_resolution_with_onnxruntime", "advanced/torch-script-parallelism", "advanced/torch_script_custom_classes", "advanced/torch_script_custom_ops", "advanced/usb_semisup_learn", "beginner/Intro_to_TorchScript_tutorial", "beginner/audio_data_augmentation_tutorial", "beginner/audio_datasets_tutorial", "beginner/audio_feature_augmentation_tutorial", "beginner/audio_feature_extractions_tutorial", "beginner/audio_io_tutorial", "beginner/audio_resampling_tutorial", "beginner/basics/autogradqs_tutorial", "beginner/basics/buildmodel_tutorial", "beginner/basics/data_tutorial", "beginner/basics/index", "beginner/basics/intro", "beginner/basics/optimization_tutorial", "beginner/basics/quickstart_tutorial", "beginner/basics/saveloadrun_tutorial", "beginner/basics/tensorqs_tutorial", "beginner/basics/transforms_tutorial", "beginner/bettertransformer_tutorial", "beginner/blitz/autograd_tutorial", "beginner/blitz/cifar10_tutorial", "beginner/blitz/data_parallel_tutorial", "beginner/blitz/index", "beginner/blitz/neural_networks_tutorial", "beginner/blitz/tensor_tutorial", "beginner/chatbot_tutorial", "beginner/colab", "beginner/data_loading_tutorial", "beginner/dcgan_faces_tutorial", "beginner/ddp_series_fault_tolerance", "beginner/ddp_series_intro", "beginner/ddp_series_multigpu", "beginner/ddp_series_theory", "beginner/deep_learning_60min_blitz", "beginner/deeplabv3_on_android", "beginner/deeplabv3_on_ios", "beginner/deploy_seq2seq_hybrid_frontend_tutorial", "beginner/dist_overview", "beginner/examples_autograd/index", "beginner/examples_autograd/polynomial_autograd", "beginner/examples_autograd/polynomial_custom_function", "beginner/examples_nn/dynamic_net", "beginner/examples_nn/index", "beginner/examples_nn/polynomial_module", "beginner/examples_nn/polynomial_nn", "beginner/examples_nn/polynomial_optim", "beginner/examples_tensor/index", "beginner/examples_tensor/polynomial_numpy", "beginner/examples_tensor/polynomial_tensor", "beginner/fgsm_tutorial", "beginner/finetuning_torchvision_models_tutorial", "beginner/flava_finetuning_tutorial", "beginner/former_torchies/autograd_tutorial_old", "beginner/former_torchies/index", "beginner/former_torchies/nnft_tutorial", "beginner/former_torchies/parallelism_tutorial", "beginner/former_torchies/tensor_tutorial_old", "beginner/former_torchies_tutorial", "beginner/hta_intro_tutorial", "beginner/hta_trace_diff_tutorial", "beginner/hybrid_frontend/index", "beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial", "beginner/hybrid_frontend_tutorial", "beginner/hyperparameter_tuning_tutorial", "beginner/introyt", "beginner/introyt/autogradyt_tutorial", "beginner/introyt/captumyt", "beginner/introyt/index", "beginner/introyt/introyt1_tutorial", "beginner/introyt/modelsyt_tutorial", "beginner/introyt/tensorboardyt_tutorial", "beginner/introyt/tensors_deeper_tutorial", "beginner/introyt/trainingyt", "beginner/knowledge_distillation_tutorial", "beginner/nlp/advanced_tutorial", "beginner/nlp/deep_learning_tutorial", "beginner/nlp/index", "beginner/nlp/pytorch_tutorial", "beginner/nlp/sequence_models_tutorial", "beginner/nlp/word_embeddings_tutorial", "beginner/nn_tutorial", "beginner/onnx/export_simple_model_to_onnx_tutorial", "beginner/onnx/index", "beginner/onnx/intro_onnx", "beginner/onnx/onnx_registry_tutorial", "beginner/profiler", "beginner/ptcheat", "beginner/pytorch_with_examples", "beginner/saving_loading_models", "beginner/t5_tutorial", "beginner/template_tutorial", "beginner/text_sentiment_ngrams_tutorial", "beginner/torchtext_custom_dataset_tutorial", "beginner/transfer_learning_tutorial", "beginner/translation_transformer", "beginner/vt_tutorial", "distributed/home", "index", "intermediate/FSDP_adavnced_tutorial", "intermediate/FSDP_tutorial", "intermediate/TP_tutorial", "intermediate/autograd_saved_tensors_hooks_tutorial", "intermediate/ax_multiobjective_nas_tutorial", "intermediate/char_rnn_classification_tutorial", "intermediate/char_rnn_generation_tutorial", "intermediate/custom_function_conv_bn_tutorial", "intermediate/custom_function_double_backward_tutorial", "intermediate/ddp_series_minGPT", "intermediate/ddp_series_multinode", "intermediate/ddp_tutorial", "intermediate/dist_pipeline_parallel_tutorial", "intermediate/dist_tuto", "intermediate/dqn_with_rnn_tutorial", "intermediate/dynamic_quantization_bert_tutorial", "intermediate/ensembling", "intermediate/flask_rest_api_tutorial", "intermediate/forced_alignment_with_torchaudio_tutorial", "intermediate/forward_ad_usage", "intermediate/fx_conv_bn_fuser", "intermediate/fx_profiling_tutorial", "intermediate/inductor_debug_cpu", "intermediate/jacobians_hessians", "intermediate/mario_rl_tutorial", "intermediate/memory_format_tutorial", "intermediate/mnist_train_nas", "intermediate/model_parallel_tutorial", "intermediate/neural_tangent_kernels", "intermediate/nvfuser_intro_tutorial", "intermediate/optimizer_step_in_backward_tutorial", "intermediate/parametrizations", "intermediate/per_sample_grads", "intermediate/process_group_cpp_extension_tutorial", "intermediate/pruning_tutorial", "intermediate/quantized_transfer_learning_tutorial", "intermediate/realtime_rpi", "intermediate/reinforcement_ppo", "intermediate/reinforcement_q_learning", "intermediate/rpc_async_execution", "intermediate/rpc_param_server_tutorial", "intermediate/rpc_tutorial", "intermediate/scaled_dot_product_attention_tutorial", "intermediate/seq2seq_translation_tutorial", "intermediate/spatial_transformer_tutorial", "intermediate/speech_recognition_pipeline_tutorial", "intermediate/tensorboard_profiler_tutorial", "intermediate/tensorboard_tutorial", "intermediate/text_to_speech_with_torchaudio", "intermediate/tiatoolbox_tutorial", "intermediate/torch_compile_tutorial", "intermediate/torch_export_nightly_tutorial", "intermediate/torch_export_tutorial", "intermediate/torchrec_tutorial", "intermediate/torchserve_with_ipex", "intermediate/torchserve_with_ipex_2", "intermediate/torchvision_tutorial", "prototype/backend_config_tutorial", "prototype/distributed_rpc_profiling", "prototype/fx_graph_mode_ptq_dynamic", "prototype/fx_graph_mode_ptq_static", "prototype/fx_graph_mode_quant_guide", "prototype/gpu_quantization_torchao_tutorial", "prototype/graph_mode_dynamic_bert_tutorial", "prototype/inductor_cpp_wrapper_tutorial", "prototype/ios_coreml_workflow", "prototype/ios_gpu_workflow", "prototype/maskedtensor_adagrad", "prototype/maskedtensor_advanced_semantics", "prototype/maskedtensor_overview", "prototype/maskedtensor_sparsity", "prototype/nestedtensor", "prototype/nnapi_mobilenetv2", "prototype/numeric_suite_tutorial", "prototype/prototype_index", "prototype/pt2e_quant_ptq", "prototype/pt2e_quant_qat", "prototype/pt2e_quant_x86_inductor", "prototype/pt2e_quantizer", "prototype/semi_structured_sparse", "prototype/skip_param_init", "prototype/torchscript_freezing", "prototype/tracing_based_selective_build", "prototype/vmap_recipe", "prototype/vulkan_workflow", "recipes/amx", "recipes/android_native_app_with_custom_op", "recipes/bundled_inputs", "recipes/compiling_optimizer", "recipes/compiling_optimizer_lr_scheduler", "recipes/cuda_rpc", "recipes/deployment_with_flask", "recipes/distributed_checkpoint_recipe", "recipes/distributed_device_mesh", "recipes/distributed_optim_torchscript", "recipes/distributed_rpc_profiling", "recipes/fuse", "recipes/inference_tuning_on_aws_graviton", "recipes/intel_extension_for_pytorch", "recipes/intel_neural_compressor_for_pytorch", "recipes/mobile_interpreter", "recipes/mobile_perf", "recipes/model_preparation_android", "recipes/model_preparation_ios", "recipes/profile_with_itt", "recipes/ptmobile_recipes_summary", "recipes/quantization", "recipes/recipes/Captum_Recipe", "recipes/recipes/amp_recipe", "recipes/recipes/benchmark", "recipes/recipes/changing_default_device", "recipes/recipes/defining_a_neural_network", "recipes/recipes/dynamic_quantization", "recipes/recipes/index", "recipes/recipes/loading_data_recipe", "recipes/recipes/module_load_state_dict_tips", "recipes/recipes/profiler_recipe", "recipes/recipes/reasoning_about_shapes", "recipes/recipes/save_load_across_devices", "recipes/recipes/saving_and_loading_a_general_checkpoint", "recipes/recipes/saving_and_loading_models_for_inference", "recipes/recipes/saving_multiple_models_in_one_file", "recipes/recipes/swap_tensors", "recipes/recipes/tensorboard_with_pytorch", "recipes/recipes/timer_quick_start", "recipes/recipes/tuning_guide", "recipes/recipes/warmstarting_model_using_parameters_from_a_different_model", "recipes/recipes/what_is_state_dict", "recipes/recipes/zeroing_out_gradients", "recipes/recipes_index", "recipes/script_optimized", "recipes/torch_compile_backend_ipex", "recipes/torch_compile_user_defined_triton_kernel_tutorial", "recipes/torch_logs", "recipes/torchscript_inference", "recipes/torchserve_vertexai_tutorial", "recipes/zero_redundancy_optimizer", "src/pytorch_sphinx_theme/docs/changelog", "src/pytorch_sphinx_theme/docs/configuring", "src/pytorch_sphinx_theme/docs/demo/api", "src/pytorch_sphinx_theme/docs/demo/demo", "src/pytorch_sphinx_theme/docs/demo/lists_tables", "src/pytorch_sphinx_theme/docs/demo/long", "src/pytorch_sphinx_theme/docs/demo/structure", "src/pytorch_sphinx_theme/docs/index", "src/pytorch_sphinx_theme/docs/installing"], "filenames": ["advanced/ONNXLive.rst", "advanced/coding_ddpg.rst", "advanced/cpp_autograd.rst", "advanced/cpp_cuda_graphs.rst", "advanced/cpp_export.rst", "advanced/cpp_extension.rst", "advanced/cpp_frontend.rst", "advanced/ddp_pipeline.rst", "advanced/dispatcher.rst", "advanced/dynamic_quantization_tutorial.rst", "advanced/extend_dispatcher.rst", "advanced/generic_join.rst", "advanced/neural_style_tutorial.rst", "advanced/numpy_extensions_tutorial.rst", "advanced/pendulum.rst", "advanced/privateuseone.rst", "advanced/rpc_ddp_tutorial.rst", "advanced/semi_structured_sparse.rst", "advanced/sharding.rst", "advanced/static_quantization_tutorial.rst", "advanced/super_resolution_with_onnxruntime.rst", "advanced/torch-script-parallelism.rst", "advanced/torch_script_custom_classes.rst", "advanced/torch_script_custom_ops.rst", "advanced/usb_semisup_learn.rst", "beginner/Intro_to_TorchScript_tutorial.rst", "beginner/audio_data_augmentation_tutorial.rst", "beginner/audio_datasets_tutorial.rst", "beginner/audio_feature_augmentation_tutorial.rst", "beginner/audio_feature_extractions_tutorial.rst", "beginner/audio_io_tutorial.rst", "beginner/audio_resampling_tutorial.rst", "beginner/basics/autogradqs_tutorial.rst", "beginner/basics/buildmodel_tutorial.rst", "beginner/basics/data_tutorial.rst", "beginner/basics/index.rst", "beginner/basics/intro.rst", "beginner/basics/optimization_tutorial.rst", "beginner/basics/quickstart_tutorial.rst", "beginner/basics/saveloadrun_tutorial.rst", "beginner/basics/tensorqs_tutorial.rst", "beginner/basics/transforms_tutorial.rst", "beginner/bettertransformer_tutorial.rst", "beginner/blitz/autograd_tutorial.rst", "beginner/blitz/cifar10_tutorial.rst", "beginner/blitz/data_parallel_tutorial.rst", "beginner/blitz/index.rst", "beginner/blitz/neural_networks_tutorial.rst", "beginner/blitz/tensor_tutorial.rst", "beginner/chatbot_tutorial.rst", "beginner/colab.rst", "beginner/data_loading_tutorial.rst", "beginner/dcgan_faces_tutorial.rst", "beginner/ddp_series_fault_tolerance.rst", "beginner/ddp_series_intro.rst", "beginner/ddp_series_multigpu.rst", "beginner/ddp_series_theory.rst", "beginner/deep_learning_60min_blitz.rst", "beginner/deeplabv3_on_android.rst", "beginner/deeplabv3_on_ios.rst", "beginner/deploy_seq2seq_hybrid_frontend_tutorial.rst", "beginner/dist_overview.rst", "beginner/examples_autograd/index.rst", "beginner/examples_autograd/polynomial_autograd.rst", "beginner/examples_autograd/polynomial_custom_function.rst", "beginner/examples_nn/dynamic_net.rst", "beginner/examples_nn/index.rst", "beginner/examples_nn/polynomial_module.rst", "beginner/examples_nn/polynomial_nn.rst", "beginner/examples_nn/polynomial_optim.rst", "beginner/examples_tensor/index.rst", "beginner/examples_tensor/polynomial_numpy.rst", "beginner/examples_tensor/polynomial_tensor.rst", "beginner/fgsm_tutorial.rst", "beginner/finetuning_torchvision_models_tutorial.rst", "beginner/flava_finetuning_tutorial.rst", "beginner/former_torchies/autograd_tutorial_old.rst", "beginner/former_torchies/index.rst", "beginner/former_torchies/nnft_tutorial.rst", "beginner/former_torchies/parallelism_tutorial.rst", "beginner/former_torchies/tensor_tutorial_old.rst", "beginner/former_torchies_tutorial.rst", "beginner/hta_intro_tutorial.rst", "beginner/hta_trace_diff_tutorial.rst", "beginner/hybrid_frontend/index.rst", "beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.rst", "beginner/hybrid_frontend_tutorial.rst", "beginner/hyperparameter_tuning_tutorial.rst", "beginner/introyt.rst", "beginner/introyt/autogradyt_tutorial.rst", "beginner/introyt/captumyt.rst", "beginner/introyt/index.rst", "beginner/introyt/introyt1_tutorial.rst", "beginner/introyt/modelsyt_tutorial.rst", "beginner/introyt/tensorboardyt_tutorial.rst", "beginner/introyt/tensors_deeper_tutorial.rst", "beginner/introyt/trainingyt.rst", "beginner/knowledge_distillation_tutorial.rst", "beginner/nlp/advanced_tutorial.rst", "beginner/nlp/deep_learning_tutorial.rst", "beginner/nlp/index.rst", "beginner/nlp/pytorch_tutorial.rst", "beginner/nlp/sequence_models_tutorial.rst", "beginner/nlp/word_embeddings_tutorial.rst", "beginner/nn_tutorial.rst", "beginner/onnx/export_simple_model_to_onnx_tutorial.rst", "beginner/onnx/index.rst", "beginner/onnx/intro_onnx.rst", "beginner/onnx/onnx_registry_tutorial.rst", "beginner/profiler.rst", "beginner/ptcheat.rst", "beginner/pytorch_with_examples.rst", "beginner/saving_loading_models.rst", "beginner/t5_tutorial.rst", "beginner/template_tutorial.rst", "beginner/text_sentiment_ngrams_tutorial.rst", "beginner/torchtext_custom_dataset_tutorial.rst", "beginner/transfer_learning_tutorial.rst", "beginner/translation_transformer.rst", "beginner/vt_tutorial.rst", "distributed/home.rst", "index.rst", "intermediate/FSDP_adavnced_tutorial.rst", "intermediate/FSDP_tutorial.rst", "intermediate/TP_tutorial.rst", "intermediate/autograd_saved_tensors_hooks_tutorial.rst", "intermediate/ax_multiobjective_nas_tutorial.rst", "intermediate/char_rnn_classification_tutorial.rst", "intermediate/char_rnn_generation_tutorial.rst", "intermediate/custom_function_conv_bn_tutorial.rst", "intermediate/custom_function_double_backward_tutorial.rst", "intermediate/ddp_series_minGPT.rst", "intermediate/ddp_series_multinode.rst", "intermediate/ddp_tutorial.rst", "intermediate/dist_pipeline_parallel_tutorial.rst", "intermediate/dist_tuto.rst", "intermediate/dqn_with_rnn_tutorial.rst", "intermediate/dynamic_quantization_bert_tutorial.rst", "intermediate/ensembling.rst", "intermediate/flask_rest_api_tutorial.rst", "intermediate/forced_alignment_with_torchaudio_tutorial.rst", "intermediate/forward_ad_usage.rst", "intermediate/fx_conv_bn_fuser.rst", "intermediate/fx_profiling_tutorial.rst", "intermediate/inductor_debug_cpu.rst", "intermediate/jacobians_hessians.rst", "intermediate/mario_rl_tutorial.rst", "intermediate/memory_format_tutorial.rst", "intermediate/mnist_train_nas.rst", "intermediate/model_parallel_tutorial.rst", "intermediate/neural_tangent_kernels.rst", "intermediate/nvfuser_intro_tutorial.rst", "intermediate/optimizer_step_in_backward_tutorial.rst", "intermediate/parametrizations.rst", "intermediate/per_sample_grads.rst", "intermediate/process_group_cpp_extension_tutorial.rst", "intermediate/pruning_tutorial.rst", "intermediate/quantized_transfer_learning_tutorial.rst", "intermediate/realtime_rpi.rst", "intermediate/reinforcement_ppo.rst", "intermediate/reinforcement_q_learning.rst", "intermediate/rpc_async_execution.rst", "intermediate/rpc_param_server_tutorial.rst", "intermediate/rpc_tutorial.rst", "intermediate/scaled_dot_product_attention_tutorial.rst", "intermediate/seq2seq_translation_tutorial.rst", "intermediate/spatial_transformer_tutorial.rst", "intermediate/speech_recognition_pipeline_tutorial.rst", "intermediate/tensorboard_profiler_tutorial.rst", "intermediate/tensorboard_tutorial.rst", "intermediate/text_to_speech_with_torchaudio.rst", "intermediate/tiatoolbox_tutorial.rst", "intermediate/torch_compile_tutorial.rst", "intermediate/torch_export_nightly_tutorial.rst", "intermediate/torch_export_tutorial.rst", "intermediate/torchrec_tutorial.rst", "intermediate/torchserve_with_ipex.rst", "intermediate/torchserve_with_ipex_2.rst", "intermediate/torchvision_tutorial.rst", "prototype/backend_config_tutorial.rst", "prototype/distributed_rpc_profiling.rst", "prototype/fx_graph_mode_ptq_dynamic.rst", "prototype/fx_graph_mode_ptq_static.rst", "prototype/fx_graph_mode_quant_guide.rst", "prototype/gpu_quantization_torchao_tutorial.rst", "prototype/graph_mode_dynamic_bert_tutorial.rst", "prototype/inductor_cpp_wrapper_tutorial.rst", "prototype/ios_coreml_workflow.rst", "prototype/ios_gpu_workflow.rst", "prototype/maskedtensor_adagrad.rst", "prototype/maskedtensor_advanced_semantics.rst", "prototype/maskedtensor_overview.rst", "prototype/maskedtensor_sparsity.rst", "prototype/nestedtensor.rst", "prototype/nnapi_mobilenetv2.rst", "prototype/numeric_suite_tutorial.rst", "prototype/prototype_index.rst", "prototype/pt2e_quant_ptq.rst", "prototype/pt2e_quant_qat.rst", "prototype/pt2e_quant_x86_inductor.rst", "prototype/pt2e_quantizer.rst", "prototype/semi_structured_sparse.rst", "prototype/skip_param_init.rst", "prototype/torchscript_freezing.rst", "prototype/tracing_based_selective_build.rst", "prototype/vmap_recipe.rst", "prototype/vulkan_workflow.rst", "recipes/amx.rst", "recipes/android_native_app_with_custom_op.rst", "recipes/bundled_inputs.rst", "recipes/compiling_optimizer.rst", "recipes/compiling_optimizer_lr_scheduler.rst", "recipes/cuda_rpc.rst", "recipes/deployment_with_flask.rst", "recipes/distributed_checkpoint_recipe.rst", "recipes/distributed_device_mesh.rst", "recipes/distributed_optim_torchscript.rst", "recipes/distributed_rpc_profiling.rst", "recipes/fuse.rst", "recipes/inference_tuning_on_aws_graviton.rst", "recipes/intel_extension_for_pytorch.rst", "recipes/intel_neural_compressor_for_pytorch.rst", "recipes/mobile_interpreter.rst", "recipes/mobile_perf.rst", "recipes/model_preparation_android.rst", "recipes/model_preparation_ios.rst", "recipes/profile_with_itt.rst", "recipes/ptmobile_recipes_summary.rst", "recipes/quantization.rst", "recipes/recipes/Captum_Recipe.rst", "recipes/recipes/amp_recipe.rst", "recipes/recipes/benchmark.rst", "recipes/recipes/changing_default_device.rst", "recipes/recipes/defining_a_neural_network.rst", "recipes/recipes/dynamic_quantization.rst", "recipes/recipes/index.rst", "recipes/recipes/loading_data_recipe.rst", "recipes/recipes/module_load_state_dict_tips.rst", "recipes/recipes/profiler_recipe.rst", "recipes/recipes/reasoning_about_shapes.rst", "recipes/recipes/save_load_across_devices.rst", "recipes/recipes/saving_and_loading_a_general_checkpoint.rst", "recipes/recipes/saving_and_loading_models_for_inference.rst", "recipes/recipes/saving_multiple_models_in_one_file.rst", "recipes/recipes/swap_tensors.rst", "recipes/recipes/tensorboard_with_pytorch.rst", "recipes/recipes/timer_quick_start.rst", "recipes/recipes/tuning_guide.rst", "recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.rst", "recipes/recipes/what_is_state_dict.rst", "recipes/recipes/zeroing_out_gradients.rst", "recipes/recipes_index.rst", "recipes/script_optimized.rst", "recipes/torch_compile_backend_ipex.rst", "recipes/torch_compile_user_defined_triton_kernel_tutorial.rst", "recipes/torch_logs.rst", "recipes/torchscript_inference.rst", "recipes/torchserve_vertexai_tutorial.rst", "recipes/zero_redundancy_optimizer.rst", "src/pytorch_sphinx_theme/docs/changelog.rst", "src/pytorch_sphinx_theme/docs/configuring.rst", "src/pytorch_sphinx_theme/docs/demo/api.rst", "src/pytorch_sphinx_theme/docs/demo/demo.rst", "src/pytorch_sphinx_theme/docs/demo/lists_tables.rst", "src/pytorch_sphinx_theme/docs/demo/long.rst", "src/pytorch_sphinx_theme/docs/demo/structure.rst", "src/pytorch_sphinx_theme/docs/index.rst", "src/pytorch_sphinx_theme/docs/installing.rst"], "titles": ["ONNX Live Tutorial", "TorchRL objectives: Coding a DDPG loss", "Autograd in C++ Frontend", "Using CUDA Graphs in PyTorch C++ API", "\u5728 C++ \u4e2d\u52a0\u8f7d TorchScript \u6a21\u578b", "Custom C++ and CUDA Extensions", "Using the PyTorch C++ Frontend", "Training Transformer models using Distributed Data Parallel and Pipeline Parallelism", "Registering a Dispatched Operator in C++", "(beta) Dynamic Quantization on an LSTM Word Language Model", "Extending dispatcher for a new backend in C++", "Distributed Training with Uneven Inputs Using the Join Context Manager", "Neural Transfer Using PyTorch", "Creating Extensions Using NumPy and SciPy", "Pendulum\uff1a\u4f7f\u7528 TorchRL \u7f16\u5199\u73af\u5883\u548ctransforms", "Facilitating New Backend Integration by PrivateUse1", "Combining Distributed DataParallel with Distributed RPC Framework", "(beta) Accelerating BERT with semi-structured (2:4) sparsity", "Exploring TorchRec sharding", "(beta) Static Quantization with Eager Mode in PyTorch", "(optional) PyTorch \u6a21\u578b\u5bfc\u51fa\u5230 ONNX \u5e76\u4f7f\u7528 ONNX Runtime \u8fd0\u884c", "Dynamic Parallelism in TorchScript", "Extending TorchScript with Custom C++ Classes", "Extending TorchScript with Custom C++ Operators", "Semi-Supervised Learning using USB built upon PyTorch", "TorchScript \u4ecb\u7ecd", "\u97f3\u9891\u6570\u636e\u589e\u5f3a", "\u97f3\u9891\u6570\u636e\u96c6", "\u97f3\u9891\u7279\u5f81\u589e\u5f3a", "\u97f3\u9891\u7279\u5f81\u63d0\u53d6", "\u97f3\u9891 I/O", "Audio \u91cd\u91c7\u6837", "\u81ea\u52a8\u5fae\u5206", "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc", "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668", "Learn the Basics", "\u57fa\u7840\u77e5\u8bc6", "\u4f18\u5316\u6a21\u578b\u53c2\u6570", "\u5feb\u901f\u5165\u95e8", "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "\u5f20\u91cf", "Transforms", "\u4f7f\u7528 Better Transformer \u8fdb\u884c\u5feb\u901f Transformer \u63a8\u65ad", "A Gentle Introduction to torch.autograd", "Training a Classifier", "Optional: Data Parallelism", "Deep Learning with PyTorch: A 60 Minute Blitz", "Neural Networks", "Tensors", "Chatbot Tutorial", "Running Tutorials in Google Colab", "Writing Custom Datasets, DataLoaders and Transforms", "DCGAN \u6559\u7a0b", "Fault-tolerant Distributed Training with torchrun", "PyTorch \u5206\u5e03\u5f0f\u5e76\u884c - Video Tutorials", "\u4f7f\u7528 DDP \u8fdb\u884c\u591a GPU \u8bad\u7ec3", "What is Distributed Data Parallel (DDP)", "PyTorch \u6df1\u5ea6\u5b66\u4e60\uff1a60\u5206\u949f\u5165\u95e8", "Image Segmentation DeepLabV3 on Android", "Image Segmentation DeepLabV3 on iOS", "Deploying a Seq2Seq Model with TorchScript", "PyTorch \u5206\u5e03\u5f0f\u6982\u8ff0", "<no title>", "PyTorch: Tensors and autograd", "PyTorch: Defining New autograd Functions", "PyTorch: Control Flow + Weight Sharing", "<no title>", "PyTorch: Custom nn Modules", "PyTorch: nn", "PyTorch: optim", "<no title>", "Warm-up: numpy", "PyTorch\uff1a\u5f20\u91cf(Tensors)", "\u5bf9\u6297\u6837\u672c\u751f\u6210", "Finetuning Torchvision Models", "TorchMultimodal \u6559\u7a0b\uff1a\u5fae\u8c03 FLAVA", "Autograd", "<no title>", "nn package", "Multi-GPU Examples", "Tensors", "PyTorch for Former Torch Users", "Holistic Trace Analysis \u4ecb\u7ecd", "Holistic Trace Analysis \u5dee\u5f02\u5206\u6790", "<no title>", "Learning Hybrid Frontend Syntax Through Example", "Hybrid Frontend \u6559\u7a0b", "Ray Tune \u8d85\u53c2\u6570\u8c03\u4f18", "PyTorch \u4ecb\u7ecd - YouTube", "\u81ea\u52a8\u5fae\u5206\u57fa\u7840", "\u4f7f\u7528 Captum \u8fdb\u884c\u6a21\u578b\u7406\u89e3", "Introduction to PyTorch on YouTube", "PyTorch \u7b80\u4ecb", "\u4f7f\u7528 PyTorch \u6784\u5efa\u6a21\u578b", "PyTorch TensorBoard \u652f\u6301", "PyTorch Tensors \u4ecb\u7ecd", "\u4f7f\u7528 PyTorch \u8bad\u7ec3\u6a21\u578b", "Knowledge Distillation \u6559\u7a0b", "Advanced: Making Dynamic Decisions and the Bi-LSTM CRF", "Deep Learning with PyTorch", "Deep Learning for NLP with Pytorch", "Introduction to PyTorch", "Sequence Models and Long Short-Term Memory Networks", "Word Embeddings: Encoding Lexical Semantics", "torch.nn \u5177\u4f53\u662f\u4ec0\u4e48?", "Export a PyTorch model to ONNX", "ONNX", "ONNX \u4ecb\u7ecd", "Extending the ONNX Registry", "PyTorch \u6a21\u578b\u5206\u6790", "PyTorch Cheat Sheet", "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60 PyTorch", "Saving and Loading Models", "T5-Base Model for Summarization, Sentiment Classification, and Translation", "Template Tutorial", "torchtext \u6587\u672c\u5206\u7c7b", "Torchtext \u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6", "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b", "\u6570\u636e\u83b7\u53d6\u548c\u5904\u7406", "\u4f18\u5316\u89c6\u89c9 Transformer \u6a21\u578b", "Distributed and Parallel Training Tutorials", "\u6b22\u8fce\u6765\u5230 PyTorch \u6559\u7a0b", "Advanced Model Training with Fully Sharded Data Parallel (FSDP)", "Getting Started with Fully Sharded Data Parallel(FSDP)", "Large Scale Transformer model training with Tensor Parallel (TP)", "Hooks for autograd saved tensors", "Multi-Objective NAS with Ax", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5b57\u7b26\u7ea7 RNN \u8fdb\u884c\u59d3\u540d\u5206\u7c7b", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5b57\u7b26\u7ea7 RNN \u751f\u6210\u59d3\u540d", "Fusing Convolution and Batch Norm using Custom Function", "Double Backward with Custom Functions", "Training \u201creal-world\u201d models with DDP", "Multinode Training", "Getting Started with Distributed Data Parallel", "Distributed Pipeline Parallelism Using RPC", "Writing Distributed Applications with PyTorch", "Recurrent DQN: Training recurrent policies", "(beta) Dynamic Quantization on BERT", "Model ensembling", "API \u5b9a\u4e49", "Wav2Vec2 \u5f3a\u5236\u5bf9\u9f50", "Forward-mode Automatic Differentiation (Beta)", "(beta) Building a Convolution/Batch Norm fuser in FX", "(beta) Building a Simple CPU Performance Profiler with FX", "Inductor CPU backend debugging and profiling", "Jacobians, Hessians, hvp, vhp, and more: composing function transforms", "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684 RL Agent", "(beta) Channels Last Memory Format in PyTorch", "<no title>", "Single-Machine Model Parallel Best Practices", "Neural Tangent Kernels", "Getting Started - Accelerate Your Scripts with nvFuser", "How to save memory by fusing the optimizer step into the backward pass", "Parametrizations Tutorial", "Per-sample-gradients", "Customize Process Group Backends Using Cpp Extensions", "Pruning Tutorial", "(beta) Quantized Transfer Learning for Computer Vision Tutorial", "\u5728 Raspberry Pi 4 \u4e0a\u8fdb\u884c\u5b9e\u65f6\u63a8\u7406 (30 fps!)", "\u4f7f\u7528 TorchRL \u5f3a\u5316\u5b66\u4e60 (PPO) \u6559\u7a0b", "\u5f3a\u5316\u5b66\u4e60 (DQN) \u6559\u7a0b", "Implementing Batch RPC Processing Using Asynchronous Executions", "Implementing a Parameter Server Using Distributed RPC Framework", "Getting Started with Distributed RPC Framework", "(Beta) Implementing High-Performance Transformers with Scaled Dot Product Attention (SDPA)", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1", "Spatial Transformer Networks \u6559\u7a0b", "Wav2Vec2 \u8fdb\u884c\u8bed\u97f3\u8bc6\u522b", "PyTorch Profiler With TensorBoard", "TensorBoard \u53ef\u89c6\u5316\u6a21\u578b\u3001\u6570\u636e\u548c\u8bad\u7ec3", "Tacotron2 \u6587\u672c\u8f6c\u8bed\u97f3", "PyTorch \u548c TIAToolbox \u8fdb\u884c\u5168\u5207\u7247\u56fe\u50cf\u5206\u7c7b", "Introduction to torch.compile", "torch.export Nightly Tutorial", "torch.export Tutorial", "Introduction to TorchRec", "Grokking PyTorch Intel CPU performance from first principles", "Grokking PyTorch Intel CPU performance from first principles (Part 2)", "TorchVision \u5bf9\u8c61\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b", "(prototype) PyTorch BackendConfig Tutorial", "Profiling PyTorch RPC-Based Workloads", "(prototype) FX Graph Mode Post Training Dynamic Quantization", "(prototype) FX Graph Mode Post Training Static Quantization", "(prototype) FX Graph Mode Quantization User Guide", "(prototype) GPU Quantization with TorchAO", "(prototype) Graph Mode Dynamic Quantization on BERT", "Inductor C++ Wrapper Tutorial", "(Prototype) Convert Mobilenetv2 to Core ML", "(Prototype) Use iOS GPU in PyTorch", "(Prototype) Efficiently writing \u201csparse\u201d semantics for Adagrad with MaskedTensor", "(Prototype) MaskedTensor Advanced Semantics", "(Prototype) MaskedTensor Overview", "(Prototype) MaskedTensor Sparsity", "Getting Started with Nested Tensors", "(Beta) Convert MobileNetV2 to NNAPI", "PyTorch Numeric Suite Tutorial", "PyTorch Prototype Recipes", "(prototype) PyTorch 2 Export Post Training Quantization", "(prototype) PyTorch 2 Export Quantization-Aware Training (QAT)", "PyTorch 2 Export Quantization with X86 Backend through Inductor", "How to Write a Quantizer for PyTorch 2 Export Quantization", "(prototype) Accelerating BERT with semi-structured (2:4) sparsity", "Skipping Module Parameter Initialization", "Model Freezing in TorchScript", "(prototype) Tracing-based Selective Build Mobile Interpreter in Android and iOS", "torch.vmap", "PyTorch Vulkan Backend User Workflow", "Leverage Intel\u00ae Advanced Matrix Extensions", "Making Native Android Application that uses PyTorch prebuilt libraries", "(beta) Bundling inputs to PyTorch Models", "(beta) Compiling the optimizer with torch.compile", "(beta) Running the compiled optimizer with an LR Scheduler", "Direct Device-to-Device Communication with TensorPipe CUDA RPC", "Deploying with Flask", "Getting Started with Distributed Checkpoint (DCP)", "Getting Started with DeviceMesh", "Distributed Optimizer with TorchScript support", "Profiling PyTorch RPC-Based Workloads", "Fuse Modules Recipe", "(Beta) PyTorch Inference Performance Tuning on AWS Graviton Processors", "Intel\u00ae Extension for PyTorch*", "Ease-of-use quantization for PyTorch with Intel\u00ae Neural Compressor", "(beta) Efficient mobile interpreter in Android and iOS", "Pytorch Mobile Performance Recipes", "Model Preparation for Android Recipe", "Model Preparation for iOS Recipe", "Profiling PyTorch workloads with The Instrumentation and Tracing Technology (ITT) API", "Summary of PyTorch Mobile Recipes", "Quantization Recipe", "Model Interpretability using Captum", "Automatic Mixed Precision", "PyTorch Benchmark", "Changing default device", "PyTorch \u521b\u5efa\u795e\u7ecf\u7f51\u7edc", "Dynamic Quantization", "PyTorch Recipes", "PyTorch \u52a0\u8f7d\u6570\u636e", "Tips for Loading an nn.Module from a Checkpoint", "PyTorch Profiler", "Reasoning about Shapes in PyTorch", "PyTorch \u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "PyTorch \u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9", "PyTorch \u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "PyTorch \u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b", "Extension points in nn.Module for load_state_dict and tensor subclasses", "How to use TensorBoard with PyTorch", "Timer\u5feb\u901f\u5165\u95e8", "Performance Tuning Guide", "PyTorch \u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8", "PyTorch \u4e2d state_dict \u662f\u4ec0\u4e48", "\u4ecb\u7ecd", "PyTorch \u793a\u4f8b", "Script and Optimize for Mobile Recipe", "Intel\u00ae Extension for PyTorch* Backend", "Using User-Defined Triton Kernels with torch.compile", "(beta) Using TORCH_LOGS python API with torch.compile", "TorchScript for Deployment", "Deploying a PyTorch Stable Diffusion model as a Vertex AI Endpoint", "Shard Optimizer States with ZeroRedundancyOptimizer", "Changelog", "Configuration", "5. test_py_module", "3. Paragraph Level Markup", "4. Lists & Tables", "1. Long Sticky Nav", "1. Structural Elements", "<no title>", "Installation"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 234, 237, 238, 239, 240, 241, 244, 245, 247, 252, 254, 255, 256, 257, 258, 260, 261, 262, 264, 265], "show": [0, 1, 5, 10, 11, 12, 14, 17, 18, 19, 22, 24, 34, 42, 44, 51, 52, 58, 59, 61, 73, 75, 82, 83, 85, 87, 90, 104, 108, 109, 113, 115, 116, 117, 118, 119, 121, 123, 126, 127, 128, 129, 130, 133, 134, 136, 138, 139, 144, 145, 147, 149, 155, 157, 158, 159, 160, 161, 163, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 179, 182, 185, 187, 188, 189, 194, 195, 197, 198, 201, 204, 208, 211, 212, 214, 215, 216, 220, 222, 223, 225, 226, 228, 229, 230, 231, 234, 238, 245, 247, 257, 258, 260, 262], "you": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 31, 32, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 64, 65, 67, 68, 73, 75, 76, 78, 81, 82, 85, 86, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 112, 113, 114, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 178, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 216, 219, 220, 222, 223, 224, 225, 226, 228, 230, 231, 232, 234, 237, 238, 240, 241, 245, 247, 252, 254, 255, 256, 257, 258, 260, 262, 263, 264], "neural": [0, 2, 5, 13, 14, 17, 20, 32, 35, 43, 46, 49, 51, 57, 60, 68, 73, 78, 79, 81, 97, 98, 99, 100, 101, 102, 103, 105, 107, 111, 116, 117, 119, 121, 126, 127, 128, 129, 136, 149, 156, 159, 160, 162, 165, 166, 169, 171, 177, 187, 194, 196, 199, 201, 207, 219, 220, 226, 234, 235, 247, 251], "ha": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 47, 49, 50, 58, 59, 60, 61, 63, 68, 73, 74, 75, 76, 78, 80, 83, 85, 87, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 111, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 129, 130, 131, 132, 135, 136, 137, 138, 140, 142, 144, 145, 147, 150, 151, 152, 153, 156, 157, 158, 159, 160, 163, 164, 165, 167, 168, 169, 170, 171, 173, 174, 175, 176, 177, 178, 180, 182, 183, 184, 185, 187, 189, 190, 191, 192, 193, 195, 197, 198, 200, 201, 202, 203, 208, 211, 212, 213, 216, 217, 220, 221, 223, 228, 229, 231, 232, 234, 238, 244, 247, 252, 256, 257, 258, 262, 263], "been": [0, 1, 3, 4, 6, 7, 9, 14, 15, 17, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 42, 50, 58, 59, 69, 73, 74, 80, 83, 85, 87, 101, 102, 105, 113, 119, 123, 128, 129, 130, 131, 135, 136, 140, 142, 143, 144, 145, 150, 151, 152, 153, 156, 158, 159, 160, 164, 167, 168, 169, 170, 171, 173, 174, 176, 177, 180, 182, 187, 189, 192, 193, 198, 199, 200, 201, 211, 216, 217, 220, 221, 226, 231, 244, 245, 257, 263], "export": [0, 4, 8, 20, 21, 23, 47, 60, 85, 106, 107, 108, 110, 121, 132, 133, 137, 144, 164, 172, 196, 203, 204, 207, 208, 209, 219, 222, 230, 247, 251, 257], "from": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 33, 34, 37, 38, 41, 42, 44, 45, 47, 48, 49, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 67, 68, 69, 73, 75, 76, 78, 80, 82, 83, 85, 87, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 172, 173, 174, 179, 181, 182, 183, 184, 185, 187, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 208, 209, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 234, 235, 238, 244, 245, 246, 247, 251, 252, 254, 256, 257, 258, 260, 261, 262, 263], "appl": [0, 98, 102, 176, 184, 187, 188], "format": [0, 1, 5, 7, 9, 12, 16, 17, 19, 20, 23, 25, 51, 52, 58, 59, 60, 87, 94, 95, 96, 97, 107, 108, 110, 115, 119, 121, 122, 123, 129, 135, 137, 143, 144, 156, 157, 158, 161, 163, 166, 168, 169, 171, 173, 174, 176, 178, 181, 182, 185, 187, 188, 189, 191, 192, 194, 197, 198, 200, 201, 203, 207, 216, 220, 221, 224, 225, 228, 229, 230, 231, 234, 236, 251, 256, 262, 263], "us": [0, 1, 4, 8, 9, 10, 14, 15, 16, 17, 18, 19, 21, 32, 33, 38, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 107, 108, 110, 111, 114, 115, 117, 118, 120, 121, 122, 124, 125, 126, 127, 128, 130, 132, 135, 137, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 156, 157, 158, 159, 160, 165, 166, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 189, 190, 192, 193, 194, 195, 196, 197, 198, 199, 201, 202, 203, 204, 205, 207, 209, 210, 211, 213, 216, 218, 219, 220, 224, 225, 227, 230, 231, 232, 234, 235, 239, 244, 246, 251, 257, 260, 261, 262, 263], "allow": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 19, 22, 23, 24, 25, 32, 43, 49, 50, 51, 52, 53, 60, 61, 79, 82, 83, 85, 87, 97, 99, 101, 102, 103, 105, 108, 113, 119, 122, 123, 124, 126, 128, 130, 135, 136, 137, 139, 142, 146, 147, 150, 152, 153, 155, 156, 157, 159, 160, 161, 163, 164, 165, 166, 171, 172, 173, 174, 175, 176, 177, 178, 185, 186, 189, 190, 193, 195, 197, 198, 199, 200, 206, 208, 212, 215, 216, 228, 230, 231, 234, 238, 244, 245, 260], "easili": [0, 1, 5, 12, 19, 24, 45, 60, 61, 73, 95, 97, 109, 112, 118, 119, 122, 124, 126, 133, 135, 142, 143, 144, 150, 156, 159, 160, 163, 171, 172, 173, 174, 176, 177, 178, 182, 184, 202, 214, 215, 221, 231], "deep": [0, 1, 6, 12, 13, 25, 47, 49, 52, 60, 69, 97, 101, 103, 117, 119, 120, 121, 127, 128, 129, 137, 144, 145, 146, 153, 156, 157, 160, 165, 171, 175, 177, 207, 210, 211, 218, 221, 226, 247, 260], "learn": [0, 1, 4, 6, 7, 9, 13, 14, 17, 20, 21, 25, 43, 45, 47, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 69, 73, 79, 81, 82, 84, 86, 87, 97, 101, 103, 104, 105, 107, 108, 112, 113, 114, 115, 116, 121, 122, 123, 126, 127, 128, 131, 132, 133, 135, 136, 144, 145, 148, 152, 153, 154, 156, 158, 159, 160, 162, 165, 166, 169, 171, 173, 174, 175, 177, 178, 184, 189, 190, 191, 192, 193, 196, 197, 199, 200, 201, 203, 204, 207, 208, 210, 211, 212, 213, 214, 215, 216, 219, 221, 223, 226, 229, 237, 244, 247, 251, 253, 256, 257, 258], "devic": [0, 1, 3, 6, 7, 8, 9, 10, 11, 14, 16, 18, 19, 20, 23, 24, 25, 33, 38, 40, 42, 43, 44, 45, 48, 49, 50, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 72, 73, 79, 80, 87, 89, 95, 97, 99, 104, 105, 110, 111, 115, 117, 118, 120, 121, 123, 124, 125, 126, 129, 132, 133, 134, 135, 136, 137, 138, 144, 146, 147, 149, 150, 152, 154, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 168, 174, 175, 178, 179, 181, 182, 184, 185, 186, 187, 188, 193, 194, 197, 198, 199, 201, 202, 208, 210, 211, 214, 215, 218, 219, 220, 223, 228, 230, 231, 235, 238, 239, 240, 244, 251, 252, 254, 255, 258], "case": [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 16, 17, 20, 22, 23, 25, 32, 43, 49, 51, 60, 61, 68, 73, 75, 82, 85, 97, 98, 99, 101, 102, 103, 108, 111, 112, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 134, 135, 136, 138, 139, 141, 144, 145, 147, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 176, 177, 178, 179, 184, 185, 189, 191, 192, 193, 194, 197, 200, 201, 202, 205, 206, 208, 216, 220, 223, 229, 230, 231, 234, 238, 239, 244, 252, 254], "stream": [0, 3, 15, 82, 98, 119, 134, 149, 158, 186, 208, 220], "camera": [0, 121, 158], "open": [0, 5, 9, 12, 20, 38, 49, 50, 58, 59, 60, 75, 87, 90, 103, 104, 105, 107, 115, 116, 117, 119, 122, 127, 128, 135, 137, 138, 139, 143, 146, 152, 154, 165, 166, 168, 171, 181, 185, 188, 204, 206, 208, 213, 220, 221, 222, 223, 224, 225, 226, 229, 257], "network": [0, 2, 3, 5, 7, 8, 12, 13, 14, 17, 19, 20, 21, 25, 32, 35, 43, 46, 49, 51, 57, 60, 68, 69, 73, 78, 79, 81, 92, 97, 98, 100, 101, 103, 105, 107, 111, 116, 117, 119, 121, 125, 126, 129, 132, 133, 143, 149, 150, 153, 156, 157, 162, 165, 168, 169, 171, 177, 194, 196, 199, 201, 207, 219, 220, 221, 226, 234, 235, 239, 247, 252], "exchang": [0, 49, 105, 107, 122, 135, 165, 168], "an": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 32, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61, 65, 67, 69, 73, 75, 76, 78, 80, 82, 83, 85, 86, 87, 92, 97, 98, 99, 100, 101, 105, 107, 108, 109, 110, 111, 112, 113, 116, 117, 121, 122, 123, 124, 126, 127, 128, 129, 130, 132, 133, 134, 135, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 154, 155, 156, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 238, 239, 244, 247, 251, 252, 254, 255, 256, 260, 262, 263], "repres": [0, 1, 5, 7, 10, 12, 13, 18, 20, 21, 25, 43, 49, 51, 52, 60, 63, 73, 75, 82, 85, 97, 103, 105, 107, 109, 110, 115, 116, 122, 123, 124, 126, 127, 136, 139, 141, 142, 143, 146, 147, 159, 160, 163, 165, 171, 173, 174, 176, 178, 182, 189, 193, 197, 198, 204, 213, 231, 244, 262], "With": [0, 4, 8, 10, 15, 16, 17, 18, 19, 21, 42, 48, 52, 58, 59, 61, 73, 85, 101, 115, 124, 130, 135, 137, 144, 149, 150, 152, 161, 162, 163, 164, 165, 176, 177, 184, 186, 194, 197, 199, 200, 201, 204, 207, 211, 212, 215, 216, 224, 225, 226, 228, 229, 234, 237, 244, 247, 256, 258, 260, 262], "ai": [0, 75, 90, 99, 100, 104, 123, 126, 137, 146, 165, 175, 207, 214, 220, 229, 251], "develop": [0, 1, 3, 5, 8, 10, 12, 15, 23, 24, 58, 59, 60, 82, 85, 101, 105, 107, 113, 115, 135, 139, 147, 155, 163, 168, 179, 184, 186, 187, 188, 189, 192, 197, 198, 200, 204, 208, 214, 220, 221, 222, 227, 234, 235, 262, 263], "can": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 34, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 64, 65, 67, 68, 73, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 234, 237, 238, 239, 244, 245, 247, 249, 252, 254, 255, 256, 257, 258, 260, 262], "more": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 19, 20, 21, 22, 25, 38, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 55, 56, 61, 67, 69, 73, 75, 76, 78, 79, 85, 97, 98, 99, 101, 102, 103, 105, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 121, 122, 124, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 139, 141, 142, 143, 146, 149, 150, 152, 153, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 176, 177, 178, 179, 182, 183, 184, 185, 189, 190, 191, 192, 193, 195, 196, 197, 198, 199, 201, 203, 204, 205, 206, 207, 208, 212, 213, 214, 215, 216, 219, 220, 221, 223, 226, 229, 237, 244, 247, 255, 256, 258, 260, 263], "move": [0, 1, 4, 5, 7, 12, 23, 26, 27, 28, 29, 30, 31, 40, 43, 47, 48, 73, 74, 99, 110, 122, 123, 124, 132, 133, 134, 136, 140, 146, 149, 152, 153, 154, 155, 157, 160, 162, 163, 164, 166, 167, 168, 170, 177, 178, 183, 188, 190, 198, 199, 206, 209, 212, 214, 219, 223, 231, 234, 247, 252], "between": [0, 1, 5, 6, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 40, 47, 48, 49, 58, 59, 60, 65, 73, 82, 83, 85, 87, 95, 97, 98, 99, 102, 103, 108, 121, 123, 124, 126, 135, 136, 137, 143, 146, 147, 149, 150, 156, 160, 162, 163, 164, 165, 169, 171, 172, 173, 174, 176, 177, 178, 181, 184, 185, 186, 189, 190, 192, 195, 196, 198, 199, 200, 201, 218, 229, 230, 231, 232, 234, 238, 247, 255, 258, 262, 263], "state": [0, 1, 5, 8, 9, 10, 11, 12, 14, 17, 22, 38, 44, 49, 52, 53, 55, 60, 61, 78, 79, 87, 97, 98, 102, 112, 119, 122, 123, 127, 128, 129, 131, 133, 136, 137, 138, 141, 146, 152, 154, 156, 159, 160, 161, 162, 163, 165, 168, 181, 185, 189, 192, 195, 201, 214, 216, 229, 230, 234, 237, 251], "art": [0, 5, 44, 52, 79, 103, 119, 137, 156, 185, 229], "tool": [0, 3, 6, 8, 14, 21, 25, 51, 60, 82, 87, 98, 123, 133, 135, 136, 144, 161, 164, 168, 169, 171, 177, 182, 195, 208, 209, 213, 223, 226, 237, 254, 257], "choos": [0, 1, 8, 10, 12, 15, 44, 49, 52, 55, 59, 65, 87, 99, 111, 112, 124, 128, 133, 135, 143, 146, 153, 158, 159, 160, 165, 168, 171, 177, 178, 184, 185, 197, 199, 212, 226, 227, 229, 230, 238], "combin": [0, 5, 10, 21, 61, 75, 87, 97, 98, 101, 103, 115, 120, 121, 123, 125, 127, 128, 129, 138, 150, 156, 157, 160, 163, 165, 183, 186, 193, 197, 199, 215, 221, 231, 234], "best": [0, 5, 6, 7, 8, 17, 23, 37, 43, 52, 58, 61, 73, 87, 98, 105, 108, 109, 112, 115, 117, 119, 121, 131, 134, 135, 137, 138, 144, 154, 157, 158, 160, 161, 163, 166, 184, 194, 199, 201, 219, 220, 221, 223, 238, 247, 251, 254, 262], "them": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 23, 25, 43, 44, 47, 48, 49, 51, 53, 55, 59, 60, 61, 65, 67, 68, 73, 75, 78, 87, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 111, 112, 115, 116, 118, 121, 122, 124, 126, 127, 128, 129, 130, 134, 135, 136, 138, 139, 143, 144, 145, 149, 150, 152, 153, 154, 156, 158, 160, 161, 162, 163, 171, 176, 177, 178, 181, 184, 191, 193, 194, 195, 200, 201, 202, 208, 209, 211, 213, 218, 219, 220, 221, 225, 230, 231, 234, 237, 244, 247, 252, 260], "support": [0, 4, 6, 7, 11, 14, 15, 16, 17, 18, 19, 22, 23, 24, 42, 47, 51, 56, 60, 61, 73, 78, 80, 83, 85, 91, 97, 105, 107, 109, 113, 121, 122, 123, 126, 130, 132, 133, 135, 136, 137, 141, 144, 147, 153, 155, 156, 158, 159, 161, 162, 163, 168, 171, 172, 173, 174, 176, 177, 178, 179, 181, 182, 183, 185, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 198, 199, 200, 201, 204, 206, 207, 208, 210, 211, 212, 214, 219, 220, 221, 223, 228, 229, 231, 238, 247, 251, 252, 254, 255, 260, 261], "commun": [0, 11, 15, 18, 55, 61, 110, 113, 121, 122, 123, 124, 126, 131, 132, 133, 155, 159, 161, 162, 163, 168, 171, 176, 196, 215, 247, 251], "partner": [0, 113], "about": [0, 1, 4, 5, 6, 7, 8, 9, 10, 14, 15, 17, 19, 20, 21, 22, 23, 38, 42, 43, 49, 52, 53, 54, 55, 57, 73, 78, 87, 97, 99, 100, 101, 102, 103, 105, 107, 108, 109, 112, 113, 117, 119, 120, 121, 122, 126, 127, 128, 130, 132, 133, 135, 138, 139, 142, 143, 144, 145, 152, 154, 157, 158, 159, 160, 161, 163, 164, 165, 166, 168, 171, 172, 173, 174, 176, 178, 183, 184, 185, 187, 188, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 203, 204, 208, 209, 215, 216, 222, 223, 228, 234, 235, 237, 244, 251, 260], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 37, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 67, 68, 69, 73, 75, 76, 78, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 226, 228, 229, 230, 231, 234, 237, 238, 241, 244, 245, 247, 251, 252, 254, 255, 256, 257, 258, 260, 262, 263, 264], "go": [0, 4, 11, 12, 13, 14, 16, 18, 19, 21, 22, 23, 25, 48, 49, 51, 58, 59, 60, 78, 95, 98, 101, 102, 105, 107, 108, 117, 119, 121, 122, 125, 127, 132, 135, 138, 141, 142, 143, 145, 157, 158, 160, 162, 165, 169, 177, 178, 179, 184, 187, 188, 189, 200, 204, 213, 214, 223, 228, 231, 234, 245, 256], "walk": [0, 5, 6, 10, 15, 16, 22, 23, 24, 25, 43, 54, 58, 59, 60, 61, 100, 114, 120, 121, 125, 144, 146, 162, 176, 179, 184, 186, 187, 188, 199, 204, 222, 230, 245], "through": [0, 1, 3, 4, 5, 6, 7, 8, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 34, 43, 44, 47, 49, 52, 54, 55, 58, 59, 60, 61, 73, 75, 78, 84, 87, 97, 98, 99, 100, 101, 102, 105, 107, 108, 110, 114, 115, 118, 119, 120, 121, 122, 124, 125, 127, 129, 130, 135, 138, 142, 143, 144, 145, 146, 147, 149, 150, 152, 154, 155, 159, 160, 161, 162, 163, 164, 165, 168, 169, 171, 172, 174, 175, 176, 177, 182, 183, 184, 186, 187, 188, 189, 191, 195, 196, 197, 200, 201, 204, 205, 208, 209, 212, 214, 219, 220, 221, 222, 228, 230, 231, 238, 245, 262], "4": [0, 1, 2, 3, 5, 6, 7, 12, 13, 14, 16, 21, 23, 24, 25, 32, 34, 36, 40, 43, 45, 48, 51, 52, 53, 54, 55, 63, 64, 65, 73, 75, 80, 87, 90, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 108, 111, 113, 115, 116, 117, 119, 121, 122, 123, 125, 126, 129, 131, 132, 135, 136, 144, 146, 147, 149, 152, 153, 156, 157, 159, 160, 161, 162, 163, 166, 171, 173, 174, 176, 178, 181, 184, 189, 190, 191, 192, 193, 196, 197, 198, 204, 207, 208, 215, 219, 222, 245, 252, 254, 260, 262, 263, 266], "main": [0, 1, 3, 4, 5, 6, 7, 11, 16, 19, 22, 23, 52, 53, 55, 58, 59, 61, 87, 97, 104, 107, 108, 113, 119, 122, 123, 127, 131, 134, 135, 137, 144, 157, 160, 161, 162, 163, 166, 173, 174, 176, 177, 178, 184, 186, 187, 197, 200, 205, 206, 208, 218, 220, 221, 222, 223, 226, 247, 256, 258, 260, 262, 264], "step": [0, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 37, 38, 43, 44, 47, 49, 52, 60, 61, 65, 67, 69, 73, 82, 85, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 110, 111, 115, 117, 118, 119, 120, 121, 122, 123, 127, 128, 129, 131, 133, 135, 136, 137, 139, 142, 144, 146, 149, 150, 153, 157, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 176, 177, 178, 179, 181, 182, 184, 185, 188, 193, 194, 195, 197, 198, 199, 200, 201, 202, 204, 206, 208, 209, 210, 211, 214, 216, 220, 221, 222, 223, 226, 228, 230, 244, 245, 247, 250, 252, 253, 257, 258], "we": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 34, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 73, 75, 76, 78, 79, 82, 83, 85, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 219, 222, 223, 224, 225, 226, 228, 229, 231, 234, 237, 238, 239, 244, 245, 249, 252, 254, 255, 256, 257, 258, 260, 262], "work": [0, 1, 2, 4, 5, 6, 7, 9, 12, 14, 17, 18, 20, 21, 22, 23, 25, 42, 43, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 73, 78, 85, 87, 97, 98, 100, 103, 113, 115, 116, 119, 121, 125, 127, 128, 129, 130, 131, 133, 134, 135, 136, 138, 139, 141, 142, 143, 145, 149, 152, 153, 154, 155, 156, 158, 159, 161, 163, 164, 165, 168, 171, 173, 174, 176, 178, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 201, 202, 203, 205, 206, 207, 208, 213, 215, 219, 220, 223, 224, 225, 230, 231, 234, 238, 244, 247, 252, 253, 262, 263], "virtualenv": 0, "order": [0, 4, 6, 11, 12, 15, 17, 20, 22, 34, 44, 45, 49, 50, 55, 60, 63, 64, 65, 67, 68, 69, 73, 82, 87, 105, 107, 108, 109, 111, 113, 118, 121, 123, 125, 126, 128, 130, 133, 134, 135, 142, 143, 144, 145, 147, 155, 156, 162, 165, 166, 171, 172, 173, 174, 175, 178, 179, 182, 188, 191, 193, 194, 200, 201, 205, 213, 216, 222, 237, 252], "avoid": [0, 5, 16, 44, 58, 59, 87, 97, 122, 123, 124, 129, 133, 134, 135, 147, 150, 152, 159, 161, 177, 184, 189, 190, 193, 196, 201, 202, 223, 230, 231, 234, 237, 238, 244], "conflict": [0, 16, 144], "your": [0, 2, 6, 8, 9, 11, 12, 14, 15, 17, 18, 19, 22, 23, 25, 38, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 58, 59, 61, 67, 73, 75, 78, 82, 87, 99, 101, 102, 103, 105, 107, 108, 109, 110, 112, 113, 114, 121, 122, 123, 125, 129, 130, 131, 132, 133, 135, 136, 137, 139, 141, 143, 145, 146, 147, 149, 152, 153, 155, 156, 157, 158, 159, 162, 163, 164, 166, 168, 169, 171, 172, 173, 174, 176, 177, 185, 186, 187, 188, 194, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 209, 210, 215, 216, 218, 222, 224, 225, 229, 230, 231, 234, 238, 245, 246, 251, 254, 257, 260, 262, 263, 267], "local": [0, 5, 6, 7, 8, 9, 16, 18, 19, 22, 23, 49, 50, 98, 112, 114, 122, 124, 126, 133, 134, 135, 137, 152, 156, 157, 161, 162, 163, 165, 166, 177, 185, 208, 212, 216, 218, 222, 223, 230, 247, 252, 258, 260], "packag": [0, 2, 5, 6, 17, 18, 22, 23, 24, 44, 47, 51, 57, 61, 68, 69, 75, 76, 77, 79, 81, 87, 97, 99, 107, 110, 111, 115, 116, 117, 119, 120, 121, 122, 123, 133, 135, 137, 143, 155, 157, 158, 160, 163, 168, 171, 177, 185, 187, 201, 208, 213, 215, 220, 223, 229, 238, 246, 251, 256, 257], "also": [0, 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 37, 42, 43, 47, 48, 49, 51, 52, 53, 54, 58, 59, 60, 61, 65, 67, 68, 73, 75, 76, 78, 79, 80, 82, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 108, 109, 111, 112, 113, 115, 116, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 139, 141, 142, 143, 144, 145, 149, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 176, 177, 178, 179, 181, 182, 183, 188, 189, 190, 191, 192, 195, 197, 199, 200, 201, 202, 203, 205, 206, 207, 208, 211, 213, 214, 215, 216, 219, 220, 221, 222, 223, 228, 230, 231, 232, 234, 237, 238, 244, 245, 247, 252, 255, 256, 257, 258, 260, 262, 263], "python": [0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 158, 159, 160, 162, 164, 165, 166, 168, 172, 173, 174, 175, 177, 178, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 199, 203, 204, 205, 208, 211, 213, 215, 216, 220, 221, 222, 223, 226, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 254, 256, 262, 263], "3": [0, 1, 2, 3, 5, 6, 7, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 43, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 87, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 121, 122, 123, 124, 127, 129, 130, 135, 136, 138, 139, 140, 142, 143, 144, 146, 147, 149, 150, 151, 152, 153, 154, 156, 157, 158, 159, 161, 162, 163, 164, 166, 167, 170, 171, 172, 173, 174, 175, 177, 178, 183, 184, 187, 188, 189, 190, 191, 192, 193, 194, 197, 198, 201, 202, 203, 204, 205, 206, 207, 208, 211, 213, 215, 219, 220, 221, 222, 226, 227, 229, 230, 237, 239, 244, 247, 253, 254, 256, 262, 263, 266], "6": [0, 3, 6, 7, 11, 13, 19, 23, 34, 36, 43, 44, 47, 49, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 72, 85, 87, 90, 92, 93, 94, 95, 96, 101, 102, 103, 109, 111, 112, 116, 117, 129, 130, 134, 135, 137, 144, 147, 149, 155, 156, 158, 161, 163, 171, 173, 174, 176, 177, 184, 185, 193, 197, 198, 201, 208, 213, 215, 218, 219, 221, 224, 225, 227, 228, 230, 239, 241, 242, 243, 247, 248, 249, 250, 252, 256, 266], "other": [0, 1, 5, 6, 7, 8, 10, 11, 14, 17, 19, 21, 22, 23, 25, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 68, 69, 73, 75, 79, 80, 82, 83, 87, 95, 97, 99, 101, 102, 103, 111, 112, 113, 114, 116, 123, 124, 126, 127, 128, 129, 131, 132, 133, 135, 136, 137, 139, 141, 142, 143, 144, 145, 146, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 169, 172, 173, 174, 176, 177, 178, 179, 182, 183, 184, 185, 189, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 202, 204, 209, 214, 215, 218, 223, 228, 230, 231, 234, 237, 238, 244, 245, 247, 252, 254, 256, 257, 258, 261, 262], "version": [0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 20, 22, 23, 25, 42, 80, 105, 107, 108, 115, 116, 119, 122, 123, 125, 126, 127, 129, 135, 136, 137, 138, 141, 145, 147, 153, 155, 156, 157, 158, 159, 166, 168, 169, 171, 175, 178, 183, 184, 185, 187, 188, 189, 197, 198, 200, 203, 204, 206, 208, 218, 219, 220, 221, 222, 223, 228, 230, 231, 234, 237, 256, 257, 260, 263], "should": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 14, 15, 16, 18, 19, 20, 21, 22, 23, 32, 42, 43, 44, 49, 50, 51, 52, 53, 55, 58, 59, 60, 69, 73, 78, 82, 85, 87, 97, 98, 99, 100, 102, 103, 111, 117, 119, 121, 122, 125, 126, 127, 130, 133, 135, 136, 138, 139, 143, 146, 147, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 169, 171, 172, 173, 174, 175, 176, 177, 178, 182, 184, 187, 188, 189, 190, 191, 197, 200, 205, 206, 208, 213, 214, 218, 219, 222, 223, 226, 230, 231, 238, 245, 247, 252, 256, 260, 262, 265], "well": [0, 1, 3, 4, 5, 6, 8, 10, 11, 19, 20, 22, 23, 42, 44, 48, 49, 53, 60, 67, 82, 85, 87, 97, 99, 101, 105, 110, 111, 112, 113, 117, 122, 123, 125, 126, 127, 129, 130, 135, 136, 137, 141, 142, 143, 152, 153, 157, 158, 161, 162, 163, 164, 165, 168, 169, 171, 172, 177, 178, 182, 185, 187, 188, 189, 190, 191, 193, 195, 197, 200, 202, 214, 215, 220, 222, 223, 226, 231, 234, 237, 244, 247, 255, 262], "python3": [0, 5, 18, 22, 23, 168, 187, 219, 246], "m": [0, 4, 5, 6, 7, 8, 10, 14, 15, 19, 22, 23, 32, 43, 49, 52, 89, 93, 96, 101, 104, 110, 113, 116, 117, 118, 122, 123, 127, 128, 134, 137, 142, 144, 145, 146, 147, 149, 155, 156, 157, 161, 163, 165, 173, 174, 183, 185, 192, 197, 198, 199, 202, 208, 219, 226, 231, 237, 244, 246, 247, 263], "venv": 0, "sourc": [0, 1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 124, 125, 126, 127, 128, 129, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 159, 160, 161, 163, 164, 165, 166, 168, 171, 172, 174, 177, 178, 181, 184, 186, 187, 189, 190, 191, 192, 193, 194, 195, 196, 199, 203, 204, 205, 206, 211, 218, 220, 221, 222, 223, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255, 257], "bin": [0, 4, 6, 22, 23, 92, 135, 186, 194, 195, 204, 208, 218, 220, 223, 226], "activ": [0, 5, 6, 9, 10, 12, 14, 15, 17, 19, 47, 52, 82, 93, 97, 99, 104, 122, 124, 131, 135, 137, 144, 145, 152, 156, 158, 164, 168, 177, 179, 182, 185, 186, 187, 195, 199, 200, 201, 205, 207, 208, 219, 220, 221, 226, 228, 229, 234, 238, 247, 256, 262], "need": [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 34, 43, 44, 45, 47, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 64, 67, 75, 76, 79, 82, 83, 87, 97, 98, 99, 101, 102, 103, 105, 108, 111, 112, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 171, 172, 173, 174, 175, 177, 178, 179, 182, 184, 185, 187, 188, 189, 193, 194, 195, 197, 198, 199, 200, 201, 202, 204, 206, 208, 209, 212, 213, 214, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 238, 244, 245, 247, 252, 256, 262], "instal": [0, 1, 5, 6, 7, 8, 17, 20, 23, 24, 50, 51, 53, 55, 57, 58, 87, 90, 94, 107, 115, 116, 118, 119, 122, 123, 124, 127, 128, 131, 132, 135, 136, 139, 141, 143, 146, 155, 158, 159, 160, 161, 165, 168, 171, 172, 178, 184, 185, 187, 188, 194, 204, 206, 208, 213, 219, 222, 223, 224, 225, 226, 227, 229, 231, 233, 236, 238, 240, 241, 242, 243, 246, 248, 249, 250, 256, 266], "pip": [0, 17, 20, 24, 50, 75, 82, 90, 94, 105, 107, 115, 118, 119, 137, 139, 146, 157, 158, 160, 168, 171, 172, 178, 184, 194, 206, 219, 221, 223, 229, 231, 233, 236, 238, 240, 241, 242, 243, 245, 248, 249, 250], "torchvis": [0, 4, 10, 12, 19, 20, 33, 34, 37, 38, 39, 41, 43, 44, 50, 52, 57, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 110, 117, 119, 121, 122, 123, 129, 134, 137, 139, 142, 143, 146, 148, 149, 152, 157, 158, 161, 162, 166, 168, 169, 171, 172, 176, 177, 182, 184, 187, 188, 194, 195, 197, 198, 199, 200, 204, 206, 213, 220, 221, 223, 224, 225, 227, 228, 229, 233, 236, 238, 245, 247, 250, 253, 256], "xcode": [0, 59, 188, 204, 222, 223, 225, 227], "want": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 19, 21, 22, 23, 24, 32, 43, 44, 47, 49, 51, 52, 58, 59, 60, 63, 64, 67, 73, 76, 78, 79, 85, 87, 97, 98, 99, 100, 101, 102, 103, 108, 111, 112, 116, 124, 125, 126, 127, 135, 136, 137, 138, 141, 143, 145, 147, 148, 150, 153, 156, 157, 158, 159, 162, 164, 165, 166, 171, 173, 174, 175, 178, 181, 182, 183, 189, 191, 195, 196, 197, 198, 200, 205, 208, 221, 222, 223, 226, 228, 230, 231, 234, 237, 240, 244], "iphon": [0, 187, 223], "linux": [0, 5, 6, 18, 20, 22, 23, 105, 124, 133, 135, 158, 168, 176, 177, 178, 194, 206, 208, 220], "howev": [0, 1, 5, 6, 8, 10, 12, 14, 15, 17, 20, 22, 23, 25, 45, 47, 49, 51, 52, 60, 61, 73, 76, 85, 87, 97, 98, 113, 117, 124, 125, 129, 130, 134, 135, 136, 138, 139, 143, 147, 149, 152, 155, 156, 157, 160, 161, 162, 163, 164, 165, 169, 171, 172, 173, 174, 176, 179, 183, 186, 190, 191, 193, 198, 200, 201, 204, 205, 207, 214, 219, 222, 223, 231, 234, 237, 244, 254, 260, 261], "itself": [0, 5, 7, 11, 23, 32, 43, 60, 61, 82, 85, 97, 101, 102, 108, 112, 113, 124, 125, 127, 130, 135, 141, 142, 146, 159, 162, 163, 165, 195, 213, 216, 230, 238], "mac": [0, 20, 137, 206, 225], "For": [0, 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 65, 68, 73, 75, 78, 79, 80, 82, 83, 87, 97, 98, 99, 100, 102, 103, 105, 108, 111, 112, 113, 114, 115, 116, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 142, 143, 144, 146, 147, 149, 153, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 186, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 206, 207, 208, 209, 210, 211, 213, 214, 215, 216, 218, 219, 220, 221, 223, 226, 227, 228, 229, 230, 231, 234, 237, 239, 244, 245, 247, 252, 254, 255, 256, 257, 258, 260, 262, 263], "publish": [0, 208], "http": [0, 4, 6, 7, 18, 19, 20, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 40, 45, 46, 49, 58, 59, 60, 74, 75, 77, 78, 84, 90, 91, 94, 100, 104, 105, 106, 108, 113, 115, 118, 119, 120, 122, 123, 127, 128, 129, 137, 139, 140, 141, 142, 143, 147, 152, 153, 154, 155, 157, 158, 160, 165, 167, 168, 169, 170, 171, 172, 174, 178, 179, 181, 182, 184, 187, 188, 190, 192, 194, 203, 204, 205, 206, 208, 213, 218, 221, 222, 229, 230, 231, 234, 235, 236, 237, 245, 260, 262], "github": [0, 2, 3, 4, 6, 7, 10, 11, 16, 19, 22, 23, 24, 33, 49, 53, 54, 55, 60, 61, 78, 104, 108, 115, 118, 121, 122, 123, 124, 129, 131, 132, 133, 134, 135, 137, 138, 139, 141, 142, 143, 146, 147, 154, 155, 161, 162, 163, 168, 171, 178, 179, 182, 184, 186, 188, 204, 205, 206, 207, 208, 213, 214, 215, 218, 220, 221, 222, 229, 260], "com": [0, 7, 10, 18, 19, 20, 24, 25, 33, 37, 49, 60, 75, 78, 104, 108, 115, 118, 119, 123, 127, 128, 129, 141, 142, 143, 147, 154, 155, 160, 165, 171, 178, 179, 181, 182, 184, 194, 204, 205, 206, 208, 213, 218, 222, 229, 231], "exampl": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 80, 82, 83, 84, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 100, 101, 104, 105, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 213, 214, 215, 216, 219, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 260, 261, 263, 266], "tree": [0, 6, 10, 12, 15, 22, 49, 60, 78, 98, 103, 113, 129, 204, 222, 260], "master": [0, 4, 16, 19, 49, 60, 78, 118, 119, 123, 129, 134, 135, 142, 143, 147, 162, 163, 178, 179, 182, 188, 194, 196, 199, 204, 206, 212, 220, 222], "fast_neural_styl": 0, "If": [0, 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 21, 22, 23, 24, 32, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 60, 61, 63, 73, 75, 76, 78, 82, 87, 95, 97, 98, 99, 100, 101, 102, 103, 112, 113, 114, 117, 118, 122, 123, 124, 125, 127, 128, 129, 133, 135, 136, 138, 139, 141, 142, 143, 144, 145, 147, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 197, 198, 201, 202, 205, 206, 207, 208, 209, 213, 214, 216, 218, 220, 221, 222, 223, 225, 226, 229, 230, 232, 234, 237, 238, 241, 244, 245, 247, 252, 257, 260, 262], "would": [0, 3, 4, 5, 6, 7, 8, 14, 16, 18, 19, 20, 21, 22, 23, 25, 43, 49, 53, 55, 60, 61, 73, 76, 87, 97, 98, 101, 102, 103, 108, 112, 113, 116, 117, 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 136, 137, 139, 142, 143, 144, 145, 147, 149, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 165, 171, 172, 173, 174, 176, 177, 178, 182, 185, 191, 192, 196, 198, 205, 207, 209, 214, 215, 216, 223, 225, 226, 230, 244, 247], "like": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 43, 44, 45, 47, 48, 49, 51, 52, 53, 58, 59, 60, 61, 65, 67, 68, 75, 78, 79, 80, 82, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 109, 110, 111, 112, 113, 114, 116, 117, 120, 121, 123, 124, 125, 126, 127, 128, 130, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 147, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 168, 169, 171, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 185, 186, 187, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 205, 206, 207, 208, 209, 213, 214, 215, 216, 218, 219, 220, 221, 222, 225, 226, 229, 230, 231, 232, 234, 238, 247, 256, 257, 261, 262], "differ": [0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 32, 47, 48, 49, 51, 52, 58, 59, 60, 61, 73, 80, 81, 82, 83, 85, 87, 92, 97, 98, 99, 103, 105, 115, 116, 119, 121, 122, 123, 124, 126, 127, 128, 129, 132, 133, 134, 135, 137, 138, 139, 141, 143, 144, 145, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 176, 177, 179, 182, 184, 186, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 204, 206, 208, 214, 215, 216, 218, 219, 223, 228, 231, 234, 235, 238, 245, 247, 251, 252, 258, 260], "feel": [0, 6, 10, 19, 43, 49, 78, 97, 103, 105, 107, 108, 112, 122, 142, 143, 144, 146, 147, 152, 168, 173, 174, 187], "free": [0, 6, 10, 19, 22, 23, 25, 43, 49, 60, 73, 78, 85, 97, 105, 107, 108, 112, 122, 126, 129, 135, 141, 142, 143, 146, 147, 152, 159, 161, 165, 168, 173, 174, 175, 187, 216, 229, 234, 246], "skip": [0, 1, 4, 5, 10, 14, 17, 19, 23, 42, 43, 98, 112, 116, 130, 141, 146, 161, 163, 168, 174, 182, 196, 201, 212, 230, 231, 238, 254, 255], "These": [0, 1, 5, 7, 8, 11, 12, 14, 17, 19, 20, 21, 25, 43, 49, 52, 55, 82, 87, 98, 100, 102, 103, 108, 109, 113, 117, 118, 135, 146, 157, 159, 160, 162, 164, 165, 171, 176, 177, 182, 184, 197, 198, 200, 201, 219, 231, 254, 260, 262], "meant": [0, 6, 11, 85, 122, 191, 247, 256], "appli": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 19, 23, 25, 51, 52, 58, 59, 60, 61, 64, 68, 73, 79, 82, 85, 97, 99, 108, 111, 113, 116, 119, 121, 123, 129, 130, 133, 134, 135, 138, 139, 141, 142, 145, 146, 147, 150, 152, 153, 154, 156, 159, 161, 162, 163, 165, 166, 171, 176, 177, 178, 181, 184, 185, 189, 190, 193, 198, 201, 202, 205, 207, 208, 210, 213, 214, 215, 216, 218, 220, 223, 228, 229, 244, 247, 251, 252, 253, 255], "still": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 23, 42, 47, 52, 61, 73, 79, 80, 87, 97, 101, 105, 109, 112, 113, 119, 122, 126, 127, 128, 133, 135, 136, 141, 142, 143, 147, 149, 152, 163, 172, 174, 176, 179, 181, 182, 184, 186, 187, 188, 189, 191, 195, 197, 200, 201, 204, 208, 209, 214, 215, 219, 222, 223, 228, 247, 258], "imag": [0, 1, 19, 23, 34, 43, 47, 49, 51, 52, 57, 60, 73, 75, 82, 87, 90, 92, 94, 96, 97, 121, 124, 126, 138, 146, 147, 149, 152, 154, 156, 158, 160, 166, 168, 169, 178, 182, 184, 193, 197, 198, 199, 204, 206, 207, 208, 215, 222, 223, 224, 225, 229, 245, 251, 256], "realli": [0, 5, 8, 23, 25, 42, 44, 98, 99, 103, 108, 113, 125, 157, 169, 189, 191, 205, 231], "optim": [0, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 35, 37, 38, 43, 47, 49, 53, 55, 58, 59, 60, 61, 65, 66, 67, 73, 75, 79, 82, 85, 87, 89, 92, 94, 96, 97, 98, 102, 103, 112, 115, 117, 118, 121, 122, 123, 124, 127, 129, 131, 133, 134, 135, 136, 138, 142, 143, 144, 146, 147, 148, 149, 153, 154, 156, 157, 158, 159, 160, 161, 162, 165, 166, 168, 169, 171, 172, 174, 175, 176, 178, 182, 184, 185, 188, 189, 193, 194, 195, 196, 198, 199, 201, 203, 204, 206, 207, 214, 218, 220, 221, 222, 227, 228, 230, 231, 237, 240, 241, 242, 243, 244, 245, 248, 249, 250, 251, 253, 254, 256], "fast": [0, 1, 5, 6, 17, 18, 21, 42, 49, 104, 123, 124, 133, 150, 159, 164, 171, 184, 196, 201, 223, 234], "enough": [0, 5, 6, 17, 21, 23, 49, 82, 101, 125, 129, 158, 201, 219, 229, 230], "video": [0, 20, 43, 44, 53, 55, 56, 75, 79, 114, 120, 121, 131, 132, 158, 168, 175, 247], "reduc": [0, 3, 6, 9, 11, 17, 19, 37, 43, 56, 58, 59, 61, 97, 109, 119, 122, 123, 124, 126, 129, 131, 133, 135, 137, 145, 146, 147, 152, 156, 158, 161, 163, 168, 171, 172, 173, 174, 176, 177, 185, 186, 194, 199, 201, 203, 204, 218, 222, 223, 227, 228, 230, 231, 234, 237, 251, 258], "resolut": [0, 20, 171], "low": [0, 1, 4, 5, 6, 7, 14, 24, 25, 49, 52, 68, 82, 99, 113, 121, 127, 146, 159, 168, 177, 220, 221], "thei": [0, 1, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 20, 21, 23, 25, 44, 48, 49, 52, 55, 58, 59, 60, 73, 80, 82, 85, 97, 99, 100, 101, 102, 103, 105, 107, 108, 109, 112, 113, 115, 122, 125, 126, 127, 128, 130, 133, 134, 135, 136, 144, 145, 147, 152, 153, 159, 160, 161, 163, 165, 171, 173, 174, 176, 177, 178, 179, 182, 185, 189, 190, 191, 192, 193, 195, 197, 198, 200, 202, 203, 207, 208, 214, 215, 220, 224, 225, 231, 234, 237, 238, 245, 247, 252, 260, 262], "let": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 43, 44, 45, 47, 49, 51, 52, 58, 59, 60, 68, 73, 75, 76, 78, 79, 80, 85, 87, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 111, 112, 116, 117, 118, 119, 124, 126, 130, 133, 134, 135, 136, 137, 138, 142, 143, 144, 145, 147, 149, 150, 152, 153, 154, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 184, 187, 188, 189, 190, 193, 200, 201, 208, 210, 214, 215, 219, 222, 223, 229, 231, 237, 238, 244, 245, 247, 256, 257, 260, 262], "s": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 57, 58, 59, 61, 68, 73, 76, 78, 79, 80, 85, 87, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 147, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 178, 179, 181, 182, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 207, 208, 209, 210, 212, 213, 214, 215, 216, 219, 222, 223, 224, 225, 228, 229, 230, 231, 234, 237, 238, 244, 245, 247, 249, 251, 252, 254, 256, 257, 258, 260, 262, 263], "git": [0, 178, 184, 213, 218, 266], "clone": [0, 1, 11, 12, 14, 22, 23, 54, 95, 110, 127, 130, 131, 135, 144, 145, 147, 156, 208, 209, 213, 218], "cd": [0, 4, 6, 22, 23, 168, 178, 181, 188, 194, 206, 208, 218, 225, 226], "yourself": [0, 4, 5, 6, 8, 23, 42, 60, 101, 146, 183], "repositori": [0, 6, 10, 54, 58, 59, 83, 114, 119, 122, 124, 135, 155, 163, 164, 165, 178, 204, 206, 208, 213, 222, 260, 267], "just": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 42, 44, 45, 47, 49, 50, 51, 52, 53, 56, 60, 65, 67, 73, 76, 78, 85, 87, 95, 97, 98, 99, 101, 102, 103, 111, 112, 113, 116, 117, 122, 123, 124, 126, 127, 128, 133, 136, 137, 144, 145, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 169, 171, 176, 178, 182, 184, 186, 188, 191, 194, 197, 198, 200, 201, 204, 208, 213, 215, 216, 220, 228, 231, 232, 247, 262, 264], "inform": [0, 1, 2, 4, 5, 7, 8, 10, 14, 20, 22, 23, 25, 45, 49, 53, 64, 73, 78, 82, 87, 97, 101, 102, 103, 108, 111, 112, 113, 118, 119, 123, 125, 126, 127, 128, 133, 135, 136, 137, 141, 142, 143, 146, 157, 158, 159, 160, 162, 164, 165, 168, 169, 171, 173, 175, 176, 177, 178, 179, 182, 183, 184, 187, 192, 193, 194, 197, 202, 205, 206, 207, 213, 214, 215, 223, 226, 228, 230, 231, 247, 252, 255, 256, 262], "how": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 42, 43, 44, 45, 47, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 73, 75, 78, 80, 82, 85, 86, 87, 97, 99, 100, 101, 102, 103, 104, 105, 108, 109, 112, 113, 115, 116, 117, 118, 119, 120, 121, 125, 126, 127, 128, 130, 131, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 146, 147, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 203, 204, 207, 208, 209, 211, 213, 218, 219, 221, 223, 224, 225, 228, 229, 230, 231, 234, 235, 237, 238, 244, 247, 251, 252, 253, 254, 255, 257, 262, 264, 266], "do": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 39, 42, 47, 49, 50, 51, 52, 54, 58, 59, 60, 61, 63, 64, 68, 69, 76, 78, 80, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 111, 112, 114, 116, 118, 121, 123, 124, 125, 126, 127, 129, 132, 133, 134, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 163, 165, 169, 171, 173, 174, 176, 177, 178, 181, 182, 184, 185, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 205, 208, 213, 214, 216, 218, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 237, 241, 244, 245, 247, 251, 256, 261, 263], "now": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 42, 43, 44, 45, 47, 49, 50, 51, 52, 55, 58, 59, 60, 63, 73, 76, 78, 80, 85, 87, 96, 97, 98, 99, 101, 103, 105, 107, 108, 111, 116, 117, 118, 119, 122, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 139, 142, 143, 144, 145, 146, 150, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 171, 172, 174, 175, 176, 178, 179, 181, 182, 184, 185, 187, 188, 189, 190, 193, 194, 197, 199, 200, 201, 202, 205, 208, 211, 213, 214, 216, 223, 224, 230, 232, 234, 244, 245, 249, 256, 262], "ll": [0, 1, 4, 5, 6, 8, 9, 10, 17, 19, 20, 22, 23, 48, 49, 50, 60, 87, 98, 105, 127, 128, 135, 136, 138, 139, 141, 145, 150, 152, 154, 158, 159, 160, 162, 165, 169, 176, 181, 182, 183, 184, 185, 187, 188, 189, 191, 195, 197, 198, 200, 201, 210, 211, 213, 223, 231, 255], "pre": [0, 19, 98, 122, 124, 135, 137, 157, 158, 171, 178, 184, 185, 187, 188, 200, 214, 216, 222, 223, 257], "script": [0, 1, 5, 6, 7, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 24, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 122, 123, 125, 126, 127, 128, 129, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 158, 159, 160, 162, 164, 165, 166, 168, 171, 172, 173, 174, 176, 177, 178, 181, 182, 184, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 203, 204, 205, 206, 208, 209, 211, 213, 216, 218, 219, 220, 222, 223, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 254, 255, 256], "provid": [0, 1, 4, 5, 6, 8, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 44, 49, 51, 52, 56, 58, 59, 60, 61, 73, 82, 83, 85, 87, 97, 98, 99, 105, 107, 108, 112, 113, 115, 116, 118, 120, 121, 122, 124, 125, 126, 131, 132, 133, 134, 135, 136, 137, 142, 143, 144, 145, 146, 147, 156, 158, 159, 161, 162, 164, 168, 171, 172, 173, 174, 178, 185, 187, 191, 192, 194, 195, 196, 197, 198, 200, 201, 202, 205, 207, 208, 209, 213, 214, 216, 218, 219, 220, 221, 223, 226, 227, 229, 230, 231, 234, 237, 238, 245, 247, 262], "download_saved_model": 0, "py": [0, 1, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 22, 23, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 131, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 159, 160, 162, 164, 165, 166, 168, 172, 173, 174, 178, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 195, 199, 203, 204, 205, 206, 211, 213, 215, 221, 223, 226, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255, 257, 260, 262, 267], "put": [0, 2, 5, 6, 8, 12, 14, 16, 42, 45, 49, 51, 59, 75, 85, 113, 115, 121, 122, 123, 134, 135, 136, 149, 153, 158, 159, 160, 162, 163, 165, 171, 187, 199, 200, 208, 262], "saved_model": [0, 96], "folder": [0, 4, 6, 19, 23, 50, 52, 82, 83, 122, 137, 169, 178, 181, 182, 185, 188, 197, 198, 204, 206, 208, 213, 218, 224, 225], "There": [0, 4, 6, 8, 10, 14, 15, 17, 22, 23, 25, 47, 73, 76, 79, 85, 97, 98, 99, 102, 103, 113, 117, 120, 128, 132, 136, 138, 143, 145, 147, 149, 150, 152, 154, 157, 158, 159, 162, 163, 165, 173, 174, 178, 179, 181, 191, 194, 197, 200, 201, 213, 228, 231, 234, 247, 252, 255, 263], "file": [0, 2, 5, 6, 7, 8, 9, 10, 15, 19, 20, 21, 22, 23, 50, 51, 52, 55, 58, 59, 60, 75, 82, 83, 87, 101, 109, 110, 114, 116, 118, 119, 122, 125, 126, 127, 128, 133, 135, 137, 139, 144, 152, 155, 158, 168, 171, 173, 174, 178, 181, 182, 185, 186, 188, 192, 193, 197, 198, 204, 206, 207, 209, 214, 215, 218, 220, 221, 222, 223, 224, 225, 230, 231, 235, 237, 238, 245, 256, 257, 260, 261, 263, 267], "candi": 0, "pth": [0, 5, 9, 19, 20, 23, 24, 38, 39, 44, 60, 73, 112, 171, 181, 182, 184, 197, 198, 220, 221, 237, 242, 252], "mosaic": 0, "rain_princess": 0, "udni": 0, "directori": [0, 1, 4, 5, 6, 12, 22, 23, 49, 51, 52, 75, 87, 97, 112, 114, 117, 126, 127, 128, 137, 144, 157, 165, 168, 171, 184, 185, 188, 194, 204, 208, 214, 221, 223, 226, 245, 257], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 34, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 63, 68, 69, 73, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 147, 149, 152, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 203, 205, 206, 207, 208, 209, 211, 213, 214, 215, 216, 219, 220, 222, 223, 224, 225, 226, 228, 230, 231, 232, 234, 240, 241, 244, 245, 247, 249, 252, 254, 256, 257, 258, 262], "The": [0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 67, 68, 69, 73, 75, 76, 78, 79, 80, 82, 83, 85, 91, 93, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 126, 127, 128, 129, 130, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 166, 168, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 228, 230, 231, 234, 237, 238, 244, 245, 247, 252, 253, 255, 256, 257, 258, 260, 263], "definit": [0, 5, 6, 8, 10, 20, 22, 25, 47, 58, 59, 60, 68, 73, 78, 85, 99, 111, 121, 143, 153, 160, 164, 181, 190, 208, 209, 218, 221, 228, 247, 252, 262], "previous": [0, 4, 5, 8, 20, 32, 60, 85, 101, 115, 118, 141, 142, 156, 159, 160, 161, 168, 189, 197, 205, 223, 244], "few": [0, 5, 6, 8, 9, 10, 15, 19, 21, 22, 23, 47, 51, 56, 60, 79, 85, 97, 99, 100, 101, 102, 103, 112, 113, 115, 116, 120, 122, 125, 127, 128, 129, 133, 135, 136, 149, 153, 158, 159, 162, 165, 172, 177, 179, 184, 190, 191, 192, 197, 198, 208, 209, 211, 214, 216, 220, 221, 230, 247], "line": [0, 4, 5, 6, 8, 9, 12, 13, 17, 21, 22, 23, 49, 50, 51, 56, 58, 59, 60, 61, 82, 97, 99, 109, 115, 116, 126, 127, 128, 135, 143, 144, 149, 158, 162, 163, 165, 168, 169, 172, 173, 177, 181, 186, 188, 189, 191, 208, 214, 215, 220, 221, 222, 224, 225, 237, 245, 247, 252, 255, 256, 263], "In": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 42, 43, 45, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 64, 65, 67, 68, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 203, 204, 206, 207, 208, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 226, 229, 230, 231, 234, 237, 238, 244, 245, 247, 254, 255, 256, 257, 258, 262, 263, 265], "instead": [0, 4, 5, 6, 8, 10, 14, 17, 19, 20, 22, 23, 25, 32, 44, 45, 49, 51, 52, 53, 58, 59, 60, 61, 64, 98, 99, 103, 107, 108, 109, 113, 116, 117, 122, 123, 125, 126, 127, 128, 129, 130, 131, 134, 135, 142, 143, 145, 146, 147, 149, 150, 152, 155, 156, 157, 158, 161, 162, 163, 165, 166, 169, 171, 172, 176, 177, 178, 179, 184, 189, 191, 192, 193, 198, 199, 200, 201, 205, 209, 214, 216, 219, 223, 239, 252, 258], "actual": [0, 1, 3, 5, 6, 8, 11, 13, 14, 15, 19, 21, 22, 23, 25, 38, 49, 51, 52, 58, 59, 60, 73, 85, 97, 98, 101, 103, 108, 112, 116, 118, 121, 125, 126, 127, 129, 133, 135, 139, 142, 143, 150, 152, 159, 165, 168, 169, 172, 173, 174, 175, 177, 182, 184, 189, 191, 197, 198, 200, 204, 205, 223, 224, 225, 231, 234, 252], "net": [0, 3, 6, 14, 19, 24, 44, 45, 47, 49, 52, 73, 79, 81, 85, 87, 92, 94, 97, 110, 123, 125, 129, 135, 146, 150, 158, 162, 166, 168, 169, 203, 209, 221, 230, 233, 239, 240, 241, 242, 243, 249, 250, 262, 263], "call": [0, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 32, 42, 43, 44, 45, 47, 49, 51, 52, 53, 55, 58, 59, 60, 61, 63, 67, 68, 69, 73, 75, 76, 78, 80, 85, 95, 97, 98, 99, 101, 102, 103, 109, 111, 112, 113, 116, 118, 120, 121, 123, 124, 125, 126, 128, 133, 134, 135, 136, 137, 141, 142, 143, 144, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 171, 172, 173, 174, 175, 176, 177, 182, 183, 185, 186, 187, 188, 194, 195, 198, 201, 204, 205, 206, 207, 208, 211, 213, 214, 216, 218, 219, 223, 224, 225, 228, 230, 231, 232, 234, 237, 238, 241, 245, 247, 252, 262], "torch": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 78, 79, 85, 87, 89, 90, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 127, 128, 129, 130, 134, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 171, 175, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 196, 199, 200, 201, 202, 203, 204, 206, 207, 208, 209, 211, 212, 214, 215, 216, 218, 219, 220, 221, 222, 224, 225, 226, 228, 232, 233, 234, 236, 238, 239, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 256, 257, 258], "_export": [0, 174, 197, 198, 199], "which": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 42, 43, 44, 47, 48, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 73, 75, 76, 78, 79, 82, 83, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 187, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 204, 207, 208, 211, 212, 215, 216, 221, 222, 223, 226, 227, 228, 229, 230, 231, 232, 234, 237, 238, 244, 247, 252, 254, 255, 256, 258, 260, 262, 263], "api": [0, 2, 5, 8, 10, 11, 14, 15, 18, 20, 21, 22, 23, 24, 25, 33, 34, 41, 48, 56, 60, 61, 82, 90, 107, 108, 109, 113, 121, 123, 124, 125, 126, 127, 133, 134, 135, 137, 143, 144, 145, 154, 157, 161, 162, 163, 168, 173, 174, 175, 177, 178, 179, 181, 182, 183, 184, 187, 188, 194, 195, 196, 197, 198, 199, 203, 204, 205, 208, 212, 213, 214, 215, 216, 220, 221, 222, 223, 228, 229, 231, 232, 234, 236, 238, 246, 251, 252, 253, 254, 256, 261], "directli": [0, 4, 5, 6, 8, 11, 12, 14, 20, 22, 23, 25, 42, 48, 52, 61, 85, 87, 105, 107, 108, 113, 118, 124, 130, 131, 137, 145, 158, 159, 163, 165, 182, 184, 185, 191, 192, 193, 202, 206, 209, 212, 216, 221, 222, 228], "don": [0, 5, 6, 8, 10, 21, 42, 43, 44, 52, 53, 63, 73, 76, 87, 98, 99, 102, 108, 111, 112, 113, 117, 125, 126, 127, 129, 130, 137, 143, 145, 146, 148, 152, 157, 159, 160, 163, 164, 182, 183, 185, 187, 188, 189, 190, 191, 200, 211, 216, 222, 226, 230, 260, 262, 263], "t": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 32, 34, 37, 38, 40, 42, 43, 44, 47, 48, 49, 50, 52, 53, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 78, 87, 89, 94, 96, 97, 98, 99, 101, 102, 103, 105, 108, 110, 111, 112, 113, 115, 116, 117, 122, 123, 125, 126, 127, 129, 130, 136, 137, 138, 141, 142, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 163, 164, 165, 168, 169, 171, 172, 173, 174, 176, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 193, 195, 197, 198, 200, 201, 205, 206, 208, 209, 210, 211, 216, 219, 222, 226, 228, 230, 231, 234, 236, 237, 239, 247, 249, 252, 254, 255, 260, 262, 263], "even": [0, 1, 4, 5, 6, 8, 10, 14, 16, 21, 23, 25, 43, 44, 51, 73, 76, 78, 95, 103, 108, 112, 113, 115, 122, 123, 124, 130, 133, 139, 142, 143, 145, 153, 159, 161, 164, 171, 173, 174, 176, 184, 189, 191, 192, 195, 200, 203, 213, 219, 228, 231, 247], "becaus": [0, 1, 2, 4, 5, 6, 8, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 32, 34, 42, 43, 44, 47, 48, 49, 51, 52, 55, 56, 58, 59, 60, 61, 63, 69, 73, 78, 79, 85, 87, 97, 98, 99, 101, 105, 108, 111, 112, 116, 117, 119, 125, 127, 129, 130, 133, 134, 136, 137, 141, 143, 145, 146, 147, 149, 150, 154, 156, 157, 161, 163, 165, 166, 168, 172, 173, 174, 176, 178, 181, 183, 184, 185, 188, 189, 191, 194, 195, 198, 200, 201, 203, 205, 208, 210, 211, 213, 219, 228, 230, 231, 234, 244, 247, 252, 254, 255], "alreadi": [0, 1, 2, 4, 5, 6, 10, 11, 15, 22, 23, 79, 97, 98, 108, 113, 124, 126, 129, 133, 139, 147, 149, 152, 157, 158, 159, 164, 169, 173, 174, 176, 177, 191, 194, 200, 212, 216, 219, 220, 223, 228, 231, 247, 258], "exist": [0, 2, 4, 6, 8, 9, 10, 11, 17, 22, 23, 25, 47, 49, 52, 53, 67, 73, 76, 80, 83, 85, 95, 101, 104, 121, 135, 137, 142, 156, 158, 163, 164, 165, 166, 168, 171, 172, 173, 174, 181, 185, 188, 189, 190, 192, 197, 200, 201, 203, 208, 209, 212, 216, 225, 230, 231, 244, 247], "neural_styl": 0, "take": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 25, 34, 43, 44, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 68, 73, 75, 78, 82, 85, 95, 97, 99, 101, 102, 103, 108, 110, 112, 113, 116, 117, 118, 124, 125, 126, 127, 128, 130, 133, 134, 135, 137, 139, 143, 145, 146, 149, 152, 153, 154, 157, 158, 159, 160, 161, 162, 163, 165, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 182, 184, 189, 192, 193, 195, 197, 198, 199, 200, 201, 205, 208, 209, 213, 216, 219, 220, 221, 222, 223, 228, 231, 232, 234, 238, 244, 247, 252, 256, 257, 260, 262], "look": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 23, 25, 34, 43, 44, 47, 48, 49, 50, 51, 52, 73, 78, 79, 85, 87, 98, 99, 101, 102, 103, 105, 108, 112, 113, 116, 117, 118, 123, 124, 125, 126, 130, 135, 136, 138, 147, 149, 150, 152, 156, 158, 159, 162, 163, 164, 165, 168, 169, 171, 173, 174, 175, 177, 178, 181, 182, 186, 187, 189, 192, 193, 197, 198, 199, 213, 219, 220, 223, 231, 238, 245, 257], "essenti": [0, 6, 10, 14, 32, 49, 98, 99, 101, 135, 160, 173, 174, 202, 209, 221, 234, 252], "trace": [0, 5, 8, 10, 20, 21, 43, 49, 60, 78, 107, 109, 110, 112, 121, 137, 142, 144, 150, 164, 168, 173, 174, 187, 194, 196, 203, 209, 220, 223, 224, 225, 247, 251, 255], "so": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 42, 44, 47, 49, 51, 52, 53, 58, 59, 60, 65, 68, 73, 75, 76, 78, 80, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 113, 115, 116, 117, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 176, 177, 178, 179, 182, 183, 184, 185, 187, 188, 189, 191, 192, 193, 194, 195, 197, 198, 200, 201, 202, 204, 206, 208, 209, 216, 219, 220, 222, 223, 224, 225, 226, 227, 228, 230, 231, 234, 237, 246, 247, 252, 257, 258, 261, 262, 263], "intern": [0, 5, 8, 10, 11, 15, 22, 49, 56, 60, 68, 76, 97, 111, 113, 121, 123, 126, 135, 168, 176, 188, 189, 196, 203, 207, 208, 262], "dummi": [0, 1, 8, 20, 47, 78, 85, 110, 133, 138, 145, 154, 155, 176, 185, 199, 214, 221, 252, 256], "data": [0, 2, 3, 5, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 33, 34, 37, 38, 40, 41, 43, 46, 47, 48, 51, 58, 59, 67, 68, 71, 72, 73, 75, 76, 78, 79, 82, 85, 89, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 111, 112, 113, 116, 118, 119, 120, 121, 125, 126, 129, 131, 134, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 154, 158, 160, 161, 162, 163, 169, 172, 173, 174, 176, 177, 178, 182, 183, 184, 185, 188, 190, 192, 193, 196, 197, 198, 199, 200, 201, 205, 206, 207, 208, 213, 214, 215, 216, 218, 219, 220, 221, 223, 226, 229, 230, 231, 234, 235, 236, 237, 238, 239, 244, 245, 249, 250, 251, 252, 253, 258, 262, 266], "gener": [0, 1, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 53, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 114, 116, 117, 118, 119, 121, 124, 125, 127, 128, 129, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 159, 160, 161, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 181, 184, 186, 188, 189, 190, 191, 192, 193, 195, 198, 199, 200, 201, 203, 204, 205, 207, 208, 209, 211, 213, 214, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 252, 254, 255, 260, 262, 263, 266], "graph": [0, 1, 5, 10, 14, 20, 22, 23, 25, 32, 47, 49, 63, 65, 68, 76, 78, 82, 85, 86, 98, 100, 107, 110, 111, 125, 127, 130, 142, 143, 144, 145, 147, 162, 163, 168, 169, 171, 176, 179, 186, 196, 197, 198, 200, 206, 207, 216, 218, 220, 221, 245, 252, 255, 256], "input": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 56, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 83, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 122, 123, 124, 126, 128, 129, 131, 133, 134, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 150, 152, 154, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 178, 179, 181, 182, 183, 184, 185, 187, 188, 192, 193, 194, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 214, 219, 220, 221, 223, 229, 230, 233, 234, 238, 239, 250, 255, 256, 263], "simpli": [0, 1, 3, 4, 5, 6, 7, 8, 9, 13, 19, 21, 23, 43, 44, 49, 53, 58, 59, 60, 78, 85, 101, 103, 112, 113, 124, 126, 128, 130, 134, 135, 144, 145, 149, 152, 155, 156, 159, 160, 161, 162, 165, 166, 169, 172, 176, 177, 179, 187, 188, 190, 202, 205, 214, 218, 220, 223, 224, 225, 228, 231, 234, 252], "blank": [0, 262], "pixel": [0, 1, 20, 44, 73, 97, 136, 147, 166, 171, 204, 229], "size": [0, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 23, 25, 32, 33, 34, 37, 38, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 75, 78, 80, 82, 87, 92, 93, 97, 98, 101, 102, 103, 104, 110, 112, 113, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 135, 136, 138, 139, 141, 144, 145, 146, 147, 148, 149, 150, 152, 154, 155, 157, 158, 159, 160, 161, 162, 164, 165, 166, 168, 171, 172, 173, 174, 175, 177, 178, 181, 182, 183, 184, 188, 189, 192, 193, 194, 196, 198, 201, 203, 204, 208, 209, 213, 214, 216, 218, 220, 222, 223, 227, 228, 229, 230, 231, 237, 239, 245, 247, 249, 251, 252, 258, 260], "import": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 85, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 236, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 252, 253, 254, 255, 257, 258, 260, 262], "To": [0, 1, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 19, 20, 23, 42, 47, 49, 50, 51, 57, 58, 59, 60, 61, 64, 65, 79, 82, 83, 85, 87, 97, 98, 99, 101, 102, 103, 107, 108, 111, 112, 114, 115, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 135, 136, 137, 139, 141, 144, 149, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 168, 169, 171, 174, 175, 176, 177, 182, 184, 185, 186, 187, 188, 189, 191, 192, 196, 197, 198, 199, 200, 201, 202, 204, 206, 208, 209, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 237, 238, 240, 244, 245, 247, 252, 253, 255, 257, 260], "get": [0, 1, 2, 5, 6, 7, 8, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 38, 43, 44, 45, 49, 50, 51, 52, 55, 56, 60, 61, 63, 73, 75, 78, 83, 87, 92, 97, 98, 99, 100, 101, 102, 104, 105, 109, 111, 112, 116, 117, 119, 120, 121, 122, 124, 126, 127, 128, 129, 134, 135, 136, 137, 138, 139, 142, 143, 145, 146, 148, 149, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 165, 166, 168, 169, 171, 173, 174, 175, 176, 177, 178, 181, 182, 184, 185, 189, 191, 194, 195, 197, 198, 199, 200, 201, 204, 206, 207, 208, 209, 212, 216, 218, 219, 222, 223, 226, 228, 229, 231, 234, 238, 247, 251, 256, 257, 258], "good": [0, 1, 2, 4, 5, 6, 20, 21, 44, 50, 52, 59, 97, 99, 103, 105, 113, 116, 123, 126, 135, 136, 144, 150, 158, 159, 160, 164, 169, 171, 176, 177, 178, 195, 200, 226, 228, 231, 247, 262], "perform": [0, 1, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 25, 42, 43, 44, 45, 49, 52, 56, 60, 61, 64, 65, 67, 73, 82, 85, 87, 97, 98, 99, 103, 108, 111, 112, 113, 115, 116, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 135, 136, 137, 139, 141, 142, 145, 146, 149, 150, 155, 157, 158, 159, 160, 161, 163, 166, 169, 171, 172, 178, 182, 184, 185, 186, 189, 190, 193, 194, 195, 198, 199, 201, 202, 207, 210, 212, 213, 215, 216, 218, 220, 226, 227, 228, 230, 231, 232, 234, 235, 237, 238, 251, 252, 253, 254, 255, 256], "250x540": 0, "larger": [0, 3, 8, 12, 73, 82, 97, 112, 119, 122, 123, 124, 126, 131, 142, 149, 157, 160, 163, 165, 168, 171, 184, 193, 203, 213, 214, 219, 231, 260], "care": [0, 1, 5, 14, 21, 61, 73, 87, 97, 113, 118, 130, 135, 149, 159, 163, 189, 197, 231, 232, 234], "less": [0, 3, 5, 6, 8, 19, 56, 60, 82, 97, 98, 113, 116, 117, 119, 122, 126, 136, 141, 152, 159, 160, 161, 168, 169, 172, 173, 174, 176, 184, 197, 215, 231, 234, 237], "fp": [0, 49, 87, 121, 150], "qualiti": [0, 24, 113, 146, 165], "imagemagick": 0, "creat": [0, 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 38, 39, 42, 43, 44, 47, 48, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 82, 85, 95, 97, 98, 100, 102, 103, 105, 108, 110, 111, 114, 116, 117, 118, 119, 121, 122, 124, 130, 133, 134, 135, 136, 137, 139, 141, 142, 146, 147, 148, 149, 152, 153, 154, 155, 157, 158, 159, 160, 162, 163, 165, 168, 169, 171, 172, 175, 178, 181, 182, 184, 185, 187, 188, 189, 192, 193, 194, 195, 197, 199, 200, 202, 204, 206, 208, 209, 210, 211, 213, 214, 215, 219, 222, 223, 225, 226, 230, 231, 234, 238, 239, 244, 245, 252, 256, 258, 262], "xc": 0, "white": [0, 12, 17, 73, 113, 169, 171, 201, 262], "png24": 0, "jpg": [0, 12, 20, 34, 51, 52, 58, 59, 90, 117, 139, 146, 204, 213, 229, 257], "eval": [0, 1, 7, 9, 12, 17, 19, 20, 24, 37, 38, 39, 42, 49, 58, 59, 60, 73, 90, 96, 97, 104, 112, 113, 115, 117, 118, 119, 122, 123, 125, 129, 137, 139, 142, 143, 157, 159, 162, 164, 165, 166, 171, 172, 173, 176, 177, 178, 181, 183, 184, 185, 187, 194, 195, 198, 199, 201, 204, 206, 208, 213, 220, 221, 222, 223, 228, 229, 241, 242, 243, 247, 253, 256], "content": [0, 2, 5, 9, 14, 23, 25, 50, 56, 61, 104, 112, 125, 133, 135, 158, 159, 163, 165, 172, 173, 174, 176, 177, 181, 188, 208, 213, 222, 229, 231, 266], "output": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 79, 82, 83, 85, 87, 90, 92, 94, 96, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 127, 128, 129, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 184, 185, 187, 193, 194, 195, 197, 198, 199, 200, 201, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 218, 219, 220, 222, 223, 228, 229, 230, 231, 233, 234, 238, 239, 245, 247, 250, 252, 253, 254, 255, 256, 257, 258, 260, 262, 263], "out": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 20, 21, 22, 23, 24, 25, 32, 40, 43, 44, 45, 47, 48, 49, 51, 52, 58, 59, 60, 61, 73, 75, 76, 78, 83, 85, 87, 89, 95, 97, 98, 99, 100, 102, 103, 104, 107, 109, 113, 117, 118, 119, 121, 124, 125, 126, 127, 130, 131, 134, 135, 136, 138, 139, 141, 143, 144, 145, 147, 149, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 165, 168, 169, 171, 173, 174, 176, 177, 181, 182, 183, 188, 189, 190, 191, 192, 193, 194, 197, 198, 199, 201, 205, 206, 207, 208, 213, 220, 221, 222, 229, 234, 235, 238, 239, 244, 247, 252, 254, 262], "cuda": [0, 1, 4, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 24, 33, 38, 40, 42, 43, 44, 45, 48, 49, 52, 53, 54, 55, 63, 64, 72, 73, 79, 83, 87, 89, 95, 97, 99, 104, 109, 110, 111, 112, 115, 117, 118, 121, 122, 123, 124, 129, 131, 132, 133, 134, 135, 136, 138, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 171, 172, 174, 175, 178, 184, 186, 193, 198, 201, 210, 211, 214, 215, 230, 231, 232, 237, 238, 240, 247, 251, 254, 255, 258], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 197, 198, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 252, 253, 254, 255, 256, 257, 258, 259, 261, 262], "export_onnx": 0, "end": [0, 4, 5, 6, 7, 8, 14, 17, 19, 22, 23, 25, 32, 43, 49, 52, 54, 58, 59, 60, 75, 82, 85, 89, 97, 102, 113, 115, 116, 121, 122, 124, 126, 127, 128, 129, 134, 135, 136, 137, 144, 146, 148, 152, 157, 158, 160, 161, 163, 165, 166, 168, 169, 172, 173, 174, 175, 176, 183, 184, 185, 189, 193, 198, 200, 201, 203, 208, 213, 220, 221, 222, 228, 230, 231, 234, 238, 239, 244, 247, 258, 262], "up": [0, 1, 3, 4, 5, 6, 7, 8, 10, 14, 17, 18, 19, 21, 22, 42, 49, 52, 55, 60, 61, 70, 76, 78, 82, 85, 97, 98, 99, 101, 102, 103, 105, 109, 113, 119, 121, 122, 123, 124, 127, 128, 129, 131, 132, 133, 135, 136, 138, 143, 144, 150, 152, 154, 157, 158, 159, 160, 161, 162, 165, 166, 168, 169, 172, 175, 176, 177, 182, 185, 186, 187, 193, 196, 197, 198, 200, 201, 203, 204, 207, 212, 213, 215, 216, 220, 223, 224, 225, 231, 238, 247, 251, 255, 258, 262], "correspond": [0, 1, 2, 3, 5, 6, 8, 10, 12, 14, 15, 43, 49, 55, 60, 75, 82, 99, 102, 109, 112, 116, 118, 123, 125, 126, 133, 144, 152, 156, 159, 162, 165, 166, 168, 169, 171, 172, 175, 178, 185, 187, 192, 200, 209, 221, 229, 230, 237, 238, 247, 251], "come": [0, 1, 5, 6, 10, 17, 19, 20, 22, 23, 51, 52, 60, 73, 85, 87, 97, 98, 112, 123, 124, 126, 135, 136, 144, 152, 153, 155, 159, 164, 172, 175, 182, 184, 185, 198, 199, 201, 221, 231, 258, 261], "abov": [0, 1, 3, 4, 5, 6, 8, 10, 11, 14, 15, 16, 19, 20, 22, 23, 43, 44, 49, 51, 52, 58, 59, 61, 65, 67, 68, 73, 82, 95, 97, 98, 99, 101, 102, 103, 108, 110, 111, 113, 116, 122, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 139, 141, 144, 145, 146, 147, 149, 150, 152, 153, 154, 156, 157, 159, 161, 162, 163, 164, 168, 171, 172, 173, 174, 175, 176, 177, 178, 179, 184, 187, 188, 189, 190, 191, 192, 195, 197, 198, 200, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 234, 237, 238, 244, 245, 252, 261, 262], "ad": [0, 2, 5, 6, 10, 15, 18, 22, 23, 24, 25, 32, 37, 49, 50, 53, 58, 59, 60, 61, 73, 83, 85, 95, 99, 101, 110, 112, 113, 115, 122, 123, 128, 133, 136, 139, 141, 145, 146, 150, 152, 155, 156, 160, 164, 165, 173, 174, 177, 178, 187, 188, 198, 209, 213, 220, 221, 223, 224, 225, 234, 244, 252], "our": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 40, 43, 44, 45, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 64, 65, 67, 68, 69, 75, 78, 79, 87, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 116, 117, 118, 122, 123, 126, 127, 128, 130, 131, 132, 136, 137, 139, 141, 143, 144, 145, 146, 147, 149, 150, 153, 154, 156, 157, 159, 160, 161, 162, 164, 165, 166, 169, 171, 172, 173, 174, 176, 178, 179, 182, 184, 187, 188, 189, 190, 191, 192, 194, 195, 197, 198, 201, 203, 205, 208, 209, 211, 213, 214, 216, 219, 222, 223, 229, 231, 234, 249, 251, 258], "path": [0, 4, 5, 6, 9, 18, 19, 22, 23, 34, 42, 44, 49, 50, 51, 52, 53, 59, 60, 73, 82, 87, 96, 97, 98, 104, 108, 112, 116, 117, 122, 123, 125, 126, 127, 128, 137, 139, 142, 144, 146, 148, 155, 157, 171, 172, 176, 178, 181, 182, 184, 185, 188, 189, 194, 195, 197, 198, 199, 200, 204, 206, 207, 208, 213, 214, 222, 223, 224, 225, 226, 228, 231, 234, 240, 241, 242, 243, 244, 246, 247, 248, 256, 257], "unfortun": [0, 8, 23, 25, 135], "won": [0, 3, 5, 10, 43, 115, 123, 129, 130, 141, 150, 154, 159, 228, 230, 252], "mark": [0, 49, 58, 59, 75, 124, 146, 147, 160, 161, 176, 177, 182, 183, 191, 226, 260], "while": [0, 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 16, 17, 19, 21, 23, 49, 52, 55, 60, 78, 82, 89, 105, 108, 109, 113, 116, 119, 120, 122, 125, 126, 131, 133, 135, 136, 137, 139, 144, 145, 146, 147, 149, 152, 156, 157, 158, 159, 162, 163, 164, 165, 166, 172, 173, 174, 176, 177, 179, 182, 184, 185, 189, 190, 191, 192, 193, 197, 200, 201, 208, 223, 228, 230, 231, 237, 238, 244, 247, 254], "onli": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 42, 43, 44, 45, 47, 49, 53, 55, 56, 60, 61, 73, 78, 80, 82, 87, 95, 97, 98, 99, 103, 107, 108, 109, 112, 113, 114, 116, 117, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 182, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 202, 203, 204, 205, 206, 208, 209, 210, 211, 212, 215, 216, 218, 222, 223, 224, 225, 226, 228, 230, 231, 238, 244, 247, 252, 254, 258, 262], "when": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 55, 58, 59, 60, 61, 65, 68, 73, 75, 78, 79, 82, 85, 87, 97, 98, 101, 103, 108, 109, 110, 111, 112, 115, 118, 119, 121, 122, 123, 125, 126, 128, 129, 132, 133, 134, 135, 136, 137, 139, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 157, 159, 160, 161, 163, 164, 165, 168, 171, 172, 173, 174, 175, 176, 177, 178, 182, 183, 184, 188, 189, 192, 193, 195, 197, 198, 199, 200, 201, 202, 203, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 226, 227, 230, 231, 234, 237, 238, 239, 244, 247, 254, 258, 260, 262, 264], "applic": [0, 2, 3, 11, 12, 14, 15, 23, 49, 58, 59, 60, 61, 75, 97, 105, 117, 120, 121, 123, 125, 126, 129, 133, 137, 139, 143, 149, 152, 156, 157, 161, 163, 171, 176, 184, 191, 194, 206, 212, 219, 221, 222, 223, 226, 247, 251], "netron": [0, 108], "see": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 21, 23, 24, 25, 42, 44, 45, 47, 48, 49, 50, 51, 52, 55, 58, 59, 60, 65, 73, 75, 78, 80, 82, 83, 85, 87, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 112, 113, 116, 119, 122, 123, 124, 126, 127, 128, 129, 130, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 146, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 187, 188, 189, 191, 192, 194, 196, 197, 200, 201, 202, 203, 205, 206, 207, 208, 211, 213, 214, 215, 216, 218, 219, 222, 224, 225, 226, 228, 229, 230, 231, 234, 238, 244, 245, 247, 252, 255, 256, 257, 262], "name": [0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 33, 49, 50, 51, 52, 59, 60, 78, 79, 82, 98, 103, 105, 108, 109, 110, 112, 122, 124, 125, 126, 128, 133, 134, 136, 137, 139, 141, 142, 143, 144, 147, 153, 155, 156, 159, 160, 161, 162, 164, 165, 168, 171, 172, 173, 174, 175, 178, 182, 185, 187, 195, 197, 198, 200, 201, 203, 204, 206, 208, 209, 213, 214, 215, 219, 220, 221, 222, 228, 231, 237, 238, 239, 246, 255, 256, 257, 262, 263], "186": [0, 184, 219], "numer": [0, 17, 19, 20, 49, 97, 98, 105, 113, 126, 129, 159, 182, 185, 196, 197, 198, 199, 201, 230, 247, 252, 263], "id": [0, 9, 17, 49, 82, 95, 113, 126, 133, 137, 139, 153, 161, 162, 163, 171, 173, 174, 175, 178, 181, 201, 214, 244, 260, 261, 265], "assign": [0, 6, 22, 45, 47, 53, 65, 67, 97, 98, 99, 102, 103, 111, 135, 153, 159, 176, 215, 226, 230, 244, 247, 261], "small": [0, 1, 3, 5, 6, 9, 12, 17, 18, 20, 21, 23, 24, 25, 42, 43, 44, 47, 57, 73, 78, 79, 80, 97, 99, 100, 102, 103, 105, 116, 117, 122, 123, 126, 128, 129, 143, 149, 152, 153, 157, 158, 159, 160, 163, 165, 166, 171, 178, 184, 189, 201, 209, 219, 230, 231, 247, 255], "onnx_to_coreml": 0, "touch": [0, 2, 4, 6, 14, 22, 23, 207], "command": [0, 4, 5, 6, 14, 23, 50, 75, 107, 114, 119, 126, 127, 132, 133, 134, 137, 139, 155, 159, 161, 162, 163, 165, 168, 169, 171, 176, 178, 188, 208, 213, 215, 218, 219, 220, 222, 223, 238, 245, 247, 255, 256, 262, 263], "edit": [0, 3, 6, 9, 11, 12, 16, 19, 20, 48, 50, 61, 113, 123, 124, 133, 134, 135, 137, 143, 144, 155, 157, 158, 161, 162, 163, 182, 184, 214, 215, 225, 260], "favorit": [0, 42, 59, 135, 143], "editor": [0, 225], "add": [0, 2, 4, 6, 7, 8, 9, 10, 12, 14, 15, 17, 19, 21, 22, 23, 40, 44, 47, 48, 49, 50, 58, 59, 60, 61, 73, 78, 80, 85, 87, 98, 99, 102, 108, 113, 114, 116, 118, 121, 122, 123, 124, 126, 127, 128, 129, 135, 136, 139, 142, 143, 144, 145, 146, 152, 154, 155, 158, 159, 161, 162, 163, 165, 168, 173, 174, 176, 177, 181, 182, 184, 186, 187, 188, 189, 191, 199, 200, 201, 204, 206, 208, 216, 218, 222, 227, 231, 238, 251, 252, 255, 260, 262, 267], "follow": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 42, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 73, 75, 81, 82, 83, 85, 86, 87, 97, 98, 99, 101, 102, 103, 105, 107, 108, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 129, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 147, 149, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 185, 186, 187, 188, 190, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 204, 205, 206, 208, 209, 213, 214, 215, 216, 218, 219, 220, 222, 223, 224, 225, 226, 227, 228, 229, 230, 237, 238, 239, 244, 245, 252, 253, 254, 256, 257, 260, 262, 263, 267], "code": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 181, 182, 184, 185, 187, 188, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 203, 205, 207, 211, 212, 214, 215, 216, 218, 220, 221, 222, 223, 224, 225, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 261, 263], "sy": [0, 3, 7, 18, 19, 53, 55, 90, 133, 137, 148, 155, 182, 185, 194, 197, 198, 210, 211], "onnx_pb": 0, "onnx_coreml": 0, "model_in": 0, "argv": [0, 4, 22, 23, 53, 55, 220, 256], "1": [0, 1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 47, 48, 49, 51, 52, 53, 55, 60, 61, 63, 64, 68, 69, 73, 75, 76, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 171, 172, 173, 174, 175, 177, 183, 184, 186, 187, 188, 189, 190, 191, 192, 193, 194, 196, 197, 198, 201, 202, 203, 204, 205, 206, 207, 208, 209, 212, 214, 215, 216, 219, 220, 221, 222, 226, 227, 229, 230, 237, 239, 244, 245, 247, 249, 253, 256, 257, 258, 259, 260, 262, 263, 266], "model_out": 0, "2": [0, 1, 2, 3, 5, 6, 7, 11, 12, 14, 15, 16, 18, 20, 21, 23, 24, 32, 33, 34, 36, 40, 42, 43, 47, 48, 49, 51, 52, 53, 55, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 138, 139, 141, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 171, 172, 173, 174, 175, 183, 184, 186, 189, 190, 191, 192, 193, 196, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 215, 216, 219, 220, 221, 222, 229, 230, 232, 237, 239, 244, 247, 254, 255, 256, 258, 260, 262, 263, 266], "model_fil": [0, 19, 182, 197, 198, 204], "rb": [0, 49, 87, 104, 116, 136, 139, 223], "model_proto": [0, 108], "modelproto": [0, 20], "parsefromstr": 0, "read": [0, 1, 2, 5, 6, 9, 14, 19, 22, 23, 38, 47, 49, 51, 73, 101, 102, 112, 113, 116, 117, 120, 122, 125, 126, 127, 128, 135, 137, 139, 142, 144, 149, 152, 158, 159, 162, 165, 166, 169, 172, 185, 187, 188, 195, 204, 208, 222, 223, 227, 230, 231, 260, 262], "coreml_model": 0, "image_input_nam": 0, "image_output_nam": 0, "save": [0, 2, 4, 6, 7, 9, 11, 12, 19, 20, 23, 35, 38, 39, 44, 48, 49, 50, 52, 58, 59, 73, 87, 96, 97, 108, 115, 117, 119, 121, 123, 124, 126, 127, 129, 137, 139, 144, 145, 148, 156, 157, 160, 161, 162, 163, 165, 168, 171, 181, 182, 185, 187, 188, 194, 195, 204, 206, 208, 218, 220, 221, 222, 223, 224, 225, 228, 234, 235, 237, 238, 241, 242, 243, 245, 247, 248, 251, 252, 256], "mlmodel": [0, 187], "i": [0, 1, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19, 22, 23, 25, 32, 34, 39, 42, 43, 49, 51, 52, 58, 59, 60, 61, 69, 73, 75, 76, 85, 87, 89, 90, 92, 94, 96, 98, 99, 101, 102, 103, 104, 111, 112, 113, 116, 117, 118, 122, 124, 127, 128, 132, 134, 135, 136, 138, 142, 146, 147, 152, 153, 154, 156, 159, 161, 162, 163, 165, 169, 171, 172, 173, 174, 175, 176, 177, 181, 189, 191, 192, 193, 201, 202, 203, 208, 209, 212, 215, 216, 221, 226, 231, 234, 237, 250, 262, 263], "e": [0, 4, 5, 6, 7, 8, 10, 11, 18, 22, 23, 25, 32, 39, 42, 43, 44, 49, 51, 52, 58, 60, 61, 65, 69, 73, 75, 76, 79, 85, 87, 89, 95, 97, 100, 103, 108, 110, 111, 112, 117, 121, 123, 124, 126, 127, 128, 130, 132, 133, 134, 135, 138, 142, 146, 147, 153, 154, 155, 156, 159, 161, 163, 165, 168, 172, 173, 174, 175, 176, 179, 182, 184, 185, 190, 191, 192, 193, 196, 200, 202, 205, 206, 208, 212, 215, 216, 220, 231, 238, 247, 256], "one": [0, 1, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 21, 22, 23, 25, 45, 47, 48, 49, 51, 52, 55, 56, 60, 61, 73, 76, 80, 85, 87, 93, 95, 97, 98, 100, 101, 102, 103, 108, 112, 113, 114, 116, 117, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 149, 152, 153, 154, 156, 158, 159, 160, 161, 162, 163, 164, 165, 168, 169, 171, 173, 174, 175, 177, 178, 179, 183, 184, 189, 190, 191, 193, 194, 195, 198, 200, 201, 205, 208, 213, 214, 215, 216, 224, 228, 231, 234, 235, 237, 238, 247, 252, 254, 258, 262], "re": [0, 1, 4, 5, 6, 7, 9, 10, 14, 16, 19, 21, 22, 23, 24, 44, 48, 49, 50, 60, 73, 78, 97, 98, 117, 125, 127, 128, 136, 138, 139, 141, 143, 145, 150, 152, 154, 158, 159, 160, 161, 162, 165, 173, 174, 175, 176, 178, 182, 184, 187, 189, 194, 197, 198, 202, 205, 208, 213, 214, 223, 230, 231, 234, 237, 246, 247, 262], "current": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 19, 22, 23, 37, 38, 49, 52, 60, 82, 107, 113, 117, 122, 123, 125, 126, 127, 128, 135, 136, 141, 142, 146, 147, 149, 154, 156, 157, 159, 160, 161, 162, 163, 164, 165, 168, 173, 174, 179, 182, 185, 187, 188, 189, 191, 192, 193, 194, 195, 197, 198, 214, 216, 218, 219, 224, 228, 238, 247, 254, 260], "readm": [0, 119, 179], "md": [0, 119, 179], "contain": [0, 1, 2, 4, 6, 8, 9, 10, 12, 14, 15, 17, 20, 21, 22, 23, 25, 34, 42, 47, 49, 50, 55, 58, 60, 64, 67, 68, 69, 75, 76, 78, 82, 85, 95, 101, 102, 111, 112, 116, 117, 122, 123, 125, 126, 127, 131, 133, 134, 136, 139, 142, 149, 153, 156, 157, 159, 160, 161, 163, 164, 165, 166, 168, 169, 171, 173, 174, 175, 178, 179, 181, 182, 187, 192, 195, 198, 200, 201, 202, 206, 208, 212, 213, 221, 222, 223, 226, 230, 237, 244, 247, 262, 263], "abl": [0, 1, 3, 4, 5, 6, 14, 15, 17, 23, 49, 60, 85, 97, 98, 100, 103, 112, 117, 126, 129, 130, 131, 132, 135, 136, 138, 139, 144, 146, 147, 152, 154, 157, 159, 162, 169, 172, 173, 174, 178, 182, 185, 188, 191, 197, 200, 201, 207, 208, 223, 234, 244], "phone": [0, 97, 105, 188, 223], "onnxliv": 0, "xcodeproj": [0, 223], "project": [0, 4, 5, 6, 23, 52, 58, 59, 60, 112, 116, 124, 139, 155, 160, 164, 165, 169, 187, 188, 193, 204, 208, 220, 221, 222, 223, 224, 225, 226, 227, 251, 256, 257, 258, 261, 266], "recommend": [0, 4, 6, 8, 10, 15, 18, 19, 20, 23, 61, 82, 108, 115, 116, 119, 121, 128, 133, 137, 157, 158, 165, 168, 172, 175, 176, 177, 178, 181, 182, 185, 191, 196, 199, 207, 219, 220, 226, 227, 228, 230, 237, 245, 247, 256, 262], "9": [0, 1, 3, 5, 6, 17, 18, 19, 23, 34, 43, 44, 49, 65, 87, 92, 94, 95, 96, 103, 104, 109, 111, 112, 115, 116, 117, 118, 144, 146, 153, 157, 158, 160, 161, 168, 169, 171, 172, 173, 176, 177, 178, 201, 204, 206, 208, 219, 220, 221, 222, 229, 231, 238, 241, 242, 243, 249, 250, 253, 266], "x": [0, 1, 2, 5, 6, 7, 12, 14, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 37, 38, 40, 43, 44, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 85, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 101, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 123, 124, 125, 127, 128, 129, 130, 133, 134, 135, 138, 139, 141, 142, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 166, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 183, 184, 186, 193, 195, 197, 198, 199, 201, 203, 205, 208, 209, 212, 213, 214, 215, 218, 219, 220, 221, 223, 226, 228, 231, 233, 237, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 252, 254, 255, 263], "might": [0, 1, 5, 8, 10, 15, 16, 25, 44, 50, 51, 52, 53, 60, 79, 97, 98, 102, 103, 105, 108, 109, 113, 127, 130, 131, 132, 133, 135, 142, 143, 145, 149, 153, 157, 163, 164, 165, 168, 172, 178, 182, 184, 185, 188, 189, 197, 200, 204, 206, 223, 231, 232, 238, 244, 252, 260], "issu": [0, 2, 4, 5, 6, 8, 9, 19, 20, 22, 23, 51, 58, 113, 118, 122, 132, 137, 138, 142, 143, 144, 147, 154, 158, 168, 174, 184, 185, 186, 187, 188, 189, 191, 193, 195, 199, 204, 205, 207, 213, 222, 226, 230, 232, 244], "older": [0, 56, 109, 138, 154, 160, 175, 184], "some": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 19, 20, 22, 23, 25, 42, 43, 44, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 63, 68, 73, 76, 78, 80, 82, 87, 92, 97, 98, 99, 100, 101, 102, 103, 108, 109, 110, 112, 113, 116, 121, 122, 123, 126, 128, 129, 130, 131, 133, 134, 135, 136, 138, 139, 141, 142, 143, 144, 145, 148, 149, 150, 152, 154, 156, 157, 159, 160, 162, 163, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 182, 183, 184, 187, 188, 189, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 202, 203, 205, 209, 213, 214, 216, 220, 221, 223, 230, 231, 234, 237, 238, 239, 247, 252, 254, 261, 262], "replac": [0, 3, 6, 12, 19, 24, 43, 55, 57, 58, 59, 78, 99, 108, 109, 117, 118, 119, 123, 135, 137, 139, 141, 142, 147, 156, 157, 163, 165, 168, 173, 174, 177, 178, 184, 191, 194, 218, 220, 222, 231, 234, 252], "all": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 34, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 68, 69, 73, 76, 78, 80, 82, 85, 87, 90, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 147, 148, 149, 150, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 181, 184, 185, 187, 188, 189, 190, 192, 193, 196, 197, 199, 200, 201, 202, 204, 205, 206, 208, 212, 213, 220, 221, 223, 226, 228, 229, 231, 234, 237, 239, 244, 245, 246, 251, 255, 256, 258, 262, 263], "set": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 37, 42, 43, 44, 47, 48, 49, 50, 52, 53, 55, 58, 59, 60, 61, 63, 64, 68, 73, 76, 79, 82, 83, 86, 97, 98, 99, 102, 103, 104, 105, 110, 111, 112, 113, 115, 116, 117, 118, 121, 122, 123, 124, 127, 128, 129, 131, 132, 133, 135, 136, 139, 144, 146, 148, 149, 152, 153, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 172, 173, 174, 177, 178, 181, 187, 188, 189, 191, 193, 194, 198, 199, 201, 204, 206, 207, 208, 213, 214, 215, 219, 220, 221, 223, 224, 225, 226, 228, 231, 232, 237, 241, 244, 255, 260, 264, 267], "tap": 0, "screen": [0, 58, 59, 146, 160, 226, 260], "switch": [0, 5, 8, 15, 19, 95, 112, 139, 152, 194, 206, 219, 230, 232], "hope": [0, 5, 25, 49, 146, 152, 165, 172, 219, 263], "gave": [0, 103, 213], "framework": [0, 6, 7, 10, 24, 25, 52, 60, 61, 99, 100, 120, 121, 134, 149, 161, 164, 171, 176, 177, 183, 188, 207, 212, 216, 221, 222, 257], "experi": [0, 6, 10, 97, 98, 122, 135, 137, 146, 149, 155, 157, 159, 160, 164, 165, 166, 171, 172, 175, 176, 177, 184, 185, 189, 196, 205, 212, 228, 230, 255], "test": [0, 3, 8, 13, 19, 20, 22, 23, 24, 37, 38, 42, 49, 58, 59, 60, 83, 85, 92, 97, 99, 100, 105, 108, 113, 114, 119, 122, 123, 135, 136, 138, 139, 141, 144, 147, 158, 159, 162, 165, 166, 169, 172, 173, 174, 181, 182, 183, 184, 196, 197, 199, 204, 205, 213, 219, 220, 221, 222, 223, 231, 234, 256, 262, 263], "own": [0, 5, 6, 7, 8, 10, 11, 14, 16, 17, 18, 23, 25, 49, 52, 58, 59, 64, 73, 87, 103, 108, 109, 111, 113, 121, 122, 123, 128, 129, 133, 139, 144, 149, 152, 153, 156, 158, 159, 162, 163, 165, 171, 172, 176, 178, 179, 184, 194, 195, 197, 198, 200, 201, 209, 216, 231, 244, 262], "pleas": [0, 2, 4, 5, 6, 7, 9, 10, 19, 20, 22, 23, 44, 45, 47, 51, 61, 75, 87, 108, 113, 115, 118, 122, 123, 124, 133, 137, 138, 141, 142, 143, 144, 147, 149, 152, 154, 155, 157, 161, 162, 163, 168, 171, 172, 173, 174, 175, 176, 178, 179, 183, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 204, 205, 209, 214, 215, 219, 220, 221, 222, 226, 230, 232, 234, 247, 252, 257, 262], "know": [0, 1, 5, 6, 8, 11, 18, 19, 22, 23, 43, 49, 73, 95, 99, 101, 103, 108, 113, 125, 127, 128, 130, 135, 136, 138, 144, 146, 147, 149, 150, 154, 159, 160, 161, 165, 169, 173, 174, 176, 177, 178, 179, 182, 190, 195, 221, 231, 260, 262], "hit": [0, 5, 9, 19, 61, 73, 113, 124, 168], "ani": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23, 43, 45, 47, 49, 51, 52, 53, 55, 60, 65, 67, 76, 97, 98, 100, 101, 103, 105, 107, 108, 110, 111, 112, 113, 115, 120, 123, 124, 125, 127, 130, 131, 135, 137, 138, 141, 142, 143, 146, 147, 149, 152, 153, 154, 158, 159, 160, 162, 163, 166, 168, 171, 173, 174, 176, 177, 181, 183, 185, 186, 187, 188, 189, 190, 191, 192, 194, 195, 198, 201, 202, 204, 207, 208, 209, 210, 211, 214, 215, 216, 218, 222, 225, 226, 228, 230, 237, 239, 240, 244, 252, 255, 260, 262], "give": [0, 1, 2, 5, 6, 11, 14, 17, 23, 25, 45, 47, 49, 50, 52, 58, 59, 60, 61, 73, 75, 79, 97, 98, 99, 101, 102, 103, 112, 118, 128, 131, 138, 142, 143, 144, 145, 146, 154, 158, 162, 165, 168, 171, 172, 173, 174, 176, 177, 182, 190, 193, 201, 216, 219, 223, 231, 234, 256, 260, 262], "feedback": [0, 6, 9, 19, 122, 137, 142, 143, 146, 147, 176, 177, 185, 187, 188, 195, 196, 197, 204, 222], "d": [0, 2, 5, 6, 7, 8, 12, 19, 22, 52, 61, 63, 64, 65, 67, 71, 72, 76, 87, 89, 92, 95, 99, 103, 111, 113, 115, 122, 124, 126, 127, 128, 129, 133, 135, 137, 145, 146, 149, 152, 165, 168, 171, 175, 185, 192, 193, 198, 205, 208, 215, 220, 250, 262, 263], "hear": [0, 142, 143], "think": [0, 6, 22, 23, 44, 52, 68, 78, 98, 99, 101, 102, 103, 113, 143, 145, 159, 162, 164, 192, 205, 234, 262], "click": [1, 7, 9, 12, 13, 14, 17, 20, 21, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 169, 172, 174, 178, 181, 184, 188, 189, 190, 191, 192, 193, 195, 203, 204, 205, 208, 211, 225, 226, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "here": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 159, 160, 162, 163, 164, 165, 166, 168, 169, 172, 173, 174, 175, 176, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 203, 204, 205, 208, 209, 211, 214, 216, 218, 219, 220, 221, 222, 223, 225, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 252, 254, 255, 260, 262, 263], "download": [1, 4, 6, 7, 9, 12, 13, 14, 17, 19, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 162, 164, 165, 166, 168, 169, 172, 174, 178, 182, 184, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 203, 204, 205, 206, 208, 211, 220, 221, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 253, 254, 255, 266], "full": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 19, 20, 22, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 131, 134, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 159, 160, 161, 164, 165, 166, 168, 172, 174, 178, 181, 182, 184, 189, 190, 191, 192, 193, 194, 195, 198, 203, 204, 205, 208, 209, 211, 222, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 254, 255, 256], "author": [1, 5, 7, 9, 11, 12, 13, 14, 16, 17, 19, 24, 36, 42, 45, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 73, 81, 82, 83, 85, 86, 97, 98, 99, 101, 102, 103, 104, 107, 108, 109, 111, 112, 113, 114, 116, 117, 122, 123, 124, 126, 127, 128, 131, 132, 133, 134, 135, 136, 137, 139, 142, 143, 144, 146, 147, 149, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 172, 173, 174, 176, 177, 179, 181, 182, 183, 184, 185, 186, 187, 188, 197, 198, 199, 200, 201, 204, 205, 206, 208, 209, 210, 211, 214, 215, 219, 222, 230, 237, 244, 247, 254, 255, 263], "vincent": [1, 14, 136, 159], "moen": [1, 14, 136, 159], "separ": [1, 5, 6, 7, 8, 20, 22, 23, 25, 49, 52, 85, 97, 109, 124, 126, 138, 144, 146, 153, 157, 162, 165, 171, 178, 179, 181, 182, 189, 193, 197, 200, 216, 231, 247, 255], "rl": [1, 61, 121, 159, 160, 161], "algorithm": [1, 5, 6, 10, 11, 12, 49, 52, 56, 69, 82, 87, 98, 99, 100, 101, 111, 118, 122, 124, 126, 129, 135, 136, 146, 155, 159, 162, 166, 210, 211, 216, 229, 247], "variou": [1, 8, 15, 47, 48, 49, 50, 60, 83, 85, 102, 109, 112, 116, 126, 143, 145, 156, 159, 162, 163, 171, 184, 191, 193, 207, 234], "piec": [1, 5, 8, 14, 59, 85, 158, 159, 163, 171, 175, 177, 178, 179, 188, 213], "assembl": [1, 8, 49, 134], "collect": [1, 4, 6, 11, 14, 15, 17, 18, 19, 21, 42, 43, 44, 45, 49, 55, 60, 61, 73, 75, 79, 97, 99, 103, 121, 122, 123, 124, 133, 134, 136, 143, 146, 149, 155, 160, 163, 175, 177, 201, 214, 215, 226, 230, 247], "final": [1, 6, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 42, 43, 47, 49, 52, 58, 60, 73, 75, 85, 87, 97, 102, 105, 107, 108, 109, 112, 113, 117, 118, 119, 122, 123, 124, 126, 127, 128, 129, 130, 134, 135, 139, 143, 144, 145, 146, 150, 152, 154, 156, 157, 159, 160, 161, 162, 163, 165, 168, 169, 175, 176, 177, 179, 184, 185, 187, 188, 189, 192, 197, 198, 199, 200, 201, 203, 204, 208, 213, 216, 221], "function": [1, 3, 4, 5, 6, 8, 9, 10, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 32, 38, 42, 43, 48, 49, 51, 53, 55, 59, 60, 61, 62, 65, 67, 68, 69, 75, 76, 79, 80, 82, 83, 89, 90, 92, 93, 94, 95, 96, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 134, 135, 136, 138, 142, 143, 144, 146, 147, 148, 149, 152, 153, 155, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 181, 185, 186, 187, 189, 190, 191, 192, 193, 194, 195, 200, 201, 202, 203, 205, 206, 208, 209, 210, 211, 213, 216, 219, 220, 221, 223, 226, 230, 232, 233, 234, 239, 244, 246, 249, 250, 252, 254, 255, 256, 258], "trainabl": [1, 6, 68, 97, 99, 157], "paramet": [1, 4, 5, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 22, 24, 25, 32, 33, 35, 37, 38, 43, 44, 47, 48, 49, 51, 52, 61, 65, 67, 68, 69, 73, 75, 85, 87, 89, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 109, 110, 111, 115, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 157, 160, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 182, 184, 189, 195, 196, 197, 201, 203, 210, 211, 212, 214, 216, 219, 220, 221, 226, 228, 230, 234, 235, 237, 238, 239, 241, 242, 243, 244, 245, 249, 250, 252, 253, 254, 258, 266], "tutori": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 73, 74, 75, 77, 79, 81, 82, 84, 86, 87, 91, 97, 98, 100, 101, 104, 105, 106, 107, 108, 112, 113, 115, 116, 117, 118, 119, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 149, 150, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 175, 177, 178, 180, 181, 182, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 213, 214, 215, 217, 219, 222, 223, 228, 229, 230, 234, 235, 237, 238, 244, 245, 247, 251, 252, 255, 256, 257, 258], "guid": [1, 17, 58, 59, 61, 82, 85, 123, 135, 147, 158, 168, 173, 174, 176, 184, 196, 201, 213, 226, 229, 231, 235, 251, 261], "ground": [1, 14, 44, 73, 178], "aim": [1, 6, 61, 75, 97, 100, 152, 160, 163, 192, 221], "focus": [1, 3, 20, 97, 100, 149, 155, 165, 221], "rel": [1, 5, 6, 7, 117, 119, 125, 126, 137, 145, 149, 150, 163, 165, 176, 186, 197, 221, 234], "straightforward": [1, 5, 6, 16, 17, 49, 60, 97, 98, 144, 200, 234], "determinist": [1, 11, 14, 136, 148, 160, 247], "gradient": [1, 6, 7, 10, 11, 13, 14, 16, 25, 37, 42, 43, 44, 47, 49, 52, 56, 61, 63, 64, 65, 67, 68, 69, 71, 72, 78, 87, 97, 98, 99, 101, 102, 103, 104, 110, 111, 115, 117, 121, 122, 123, 124, 125, 127, 129, 130, 131, 133, 135, 141, 145, 146, 149, 152, 156, 157, 159, 160, 161, 162, 163, 169, 171, 189, 205, 214, 216, 229, 235, 258], "simpl": [1, 3, 4, 5, 6, 8, 12, 15, 16, 17, 19, 21, 22, 23, 24, 25, 47, 49, 51, 54, 56, 61, 67, 73, 79, 85, 87, 97, 107, 112, 116, 120, 121, 123, 125, 126, 130, 135, 138, 139, 144, 145, 150, 154, 156, 159, 161, 162, 163, 164, 166, 168, 172, 182, 185, 199, 201, 205, 207, 210, 211, 213, 214, 215, 220, 221, 228, 231, 234, 237, 245, 251, 252, 254, 255, 258, 262, 263], "continu": [1, 5, 17, 20, 21, 49, 53, 60, 73, 85, 87, 97, 102, 113, 116, 121, 124, 128, 131, 135, 142, 143, 146, 157, 159, 163, 165, 168, 176, 187, 188, 189, 191, 192, 198, 199, 200, 201, 204, 222, 231, 234, 238, 247, 252, 262], "control": [1, 4, 8, 10, 14, 21, 23, 25, 34, 43, 60, 61, 66, 83, 85, 97, 110, 111, 113, 114, 122, 125, 126, 134, 135, 141, 153, 159, 160, 161, 172, 183, 197, 208, 226, 231, 252], "It": [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 42, 43, 44, 45, 47, 49, 51, 52, 60, 61, 73, 74, 75, 76, 82, 87, 95, 97, 98, 99, 100, 101, 103, 108, 112, 113, 115, 117, 122, 123, 124, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 138, 140, 141, 143, 144, 145, 146, 149, 150, 152, 153, 154, 156, 157, 160, 161, 163, 165, 166, 167, 168, 170, 171, 173, 174, 177, 178, 179, 193, 200, 201, 202, 203, 204, 205, 208, 212, 213, 214, 215, 216, 222, 223, 224, 225, 228, 231, 232, 245, 247, 253, 254, 256, 260, 262], "consist": [1, 3, 6, 7, 14, 15, 16, 22, 24, 25, 43, 75, 97, 99, 118, 124, 131, 142, 143, 146, 150, 152, 159, 164, 165, 168, 173, 174, 177, 179, 191, 192, 199, 200, 208, 211, 231, 238, 247, 262], "parametr": [1, 2, 17, 121, 159, 201], "action": [1, 19, 58, 59, 101, 113, 122, 123, 146, 156, 159, 160, 161, 162, 163, 168, 182, 189, 190, 191, 192, 197, 198, 204, 208, 238, 251, 262], "pair": [1, 6, 14, 47, 49, 52, 116, 118, 128, 129, 137, 150, 154, 159, 160, 165, 168, 178, 179, 194, 199, 211, 226, 262], "maxim": [1, 14, 52, 73, 82, 97, 99, 126, 146, 160, 172, 176, 194, 247], "given": [1, 6, 8, 10, 12, 14, 17, 20, 21, 22, 23, 25, 32, 43, 48, 49, 51, 52, 60, 61, 73, 76, 78, 82, 85, 97, 98, 100, 101, 103, 112, 116, 122, 127, 128, 133, 135, 138, 141, 142, 145, 146, 147, 154, 156, 159, 160, 162, 163, 165, 172, 173, 174, 177, 178, 192, 195, 200, 201, 216, 219, 231, 239, 247, 258], "certain": [1, 4, 5, 6, 10, 11, 15, 49, 55, 60, 101, 113, 120, 122, 124, 125, 129, 141, 145, 147, 159, 164, 188, 189, 192, 193, 194, 198, 229, 244, 254], "what": [1, 2, 3, 5, 8, 14, 18, 19, 20, 21, 22, 23, 25, 43, 45, 46, 53, 54, 55, 58, 59, 61, 73, 78, 86, 87, 98, 99, 101, 102, 103, 114, 121, 124, 125, 126, 128, 131, 132, 135, 136, 142, 146, 150, 152, 156, 159, 160, 161, 164, 169, 171, 173, 178, 187, 191, 195, 197, 200, 210, 222, 230, 231, 232, 235, 237, 249, 252, 262], "write": [1, 4, 8, 9, 10, 21, 22, 23, 44, 49, 58, 59, 60, 61, 64, 75, 98, 99, 100, 101, 104, 116, 117, 121, 125, 126, 130, 131, 133, 136, 137, 139, 141, 142, 144, 146, 147, 149, 150, 153, 155, 159, 162, 163, 165, 168, 171, 172, 185, 188, 192, 196, 197, 198, 205, 206, 208, 223, 224, 225, 230, 231, 232, 239, 257, 262], "custom": [1, 4, 6, 8, 11, 17, 49, 52, 64, 65, 66, 79, 90, 109, 111, 121, 126, 136, 146, 159, 162, 171, 172, 177, 179, 183, 188, 195, 197, 199, 200, 201, 202, 204, 220, 221, 226, 230, 235, 244, 247, 251, 253], "its": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 25, 43, 47, 49, 51, 52, 53, 55, 60, 61, 68, 69, 73, 75, 80, 82, 95, 97, 99, 101, 102, 103, 105, 107, 109, 111, 112, 113, 115, 122, 123, 124, 125, 126, 127, 128, 135, 136, 137, 138, 139, 141, 143, 144, 146, 147, 149, 152, 153, 156, 159, 160, 161, 162, 163, 165, 168, 169, 172, 173, 174, 175, 176, 184, 188, 191, 192, 193, 197, 200, 201, 202, 204, 206, 207, 208, 209, 214, 215, 218, 220, 222, 226, 228, 230, 231, 237, 238, 244, 247, 258, 262], "includ": [1, 2, 3, 4, 5, 6, 8, 14, 15, 16, 22, 23, 24, 25, 42, 48, 49, 53, 55, 58, 59, 60, 61, 69, 73, 75, 82, 85, 87, 97, 98, 105, 107, 109, 113, 115, 124, 126, 127, 128, 130, 131, 133, 135, 136, 144, 146, 147, 155, 156, 159, 162, 165, 168, 169, 172, 173, 174, 175, 176, 177, 178, 182, 184, 188, 189, 191, 194, 199, 200, 204, 206, 208, 212, 214, 216, 219, 220, 221, 222, 224, 225, 226, 228, 229, 230, 231, 234, 238, 244, 247, 254, 256, 257, 260, 262], "design": [1, 5, 6, 14, 17, 24, 25, 52, 56, 61, 73, 85, 103, 128, 133, 136, 159, 160, 161, 163, 164, 168, 169, 177, 179, 189, 190, 191, 195, 197, 200, 201, 205, 207, 219, 231, 234, 247, 253, 254, 257], "effici": [1, 5, 7, 10, 12, 15, 17, 20, 23, 25, 42, 49, 51, 73, 82, 95, 97, 101, 103, 115, 119, 122, 123, 124, 126, 127, 135, 136, 145, 150, 156, 159, 163, 164, 168, 171, 175, 177, 186, 187, 192, 193, 194, 201, 204, 231, 237, 253, 254], "store": [1, 4, 5, 6, 16, 17, 19, 20, 22, 23, 40, 43, 48, 51, 53, 60, 68, 87, 95, 98, 99, 101, 103, 105, 111, 125, 126, 128, 135, 136, 141, 143, 144, 146, 147, 153, 155, 156, 159, 160, 161, 162, 163, 165, 182, 184, 192, 197, 198, 201, 204, 216, 234, 238, 247, 252, 254, 257], "trajectori": [1, 14, 61, 136, 159], "transit": [1, 14, 60, 85, 86, 98, 136, 160, 200], "assum": [1, 2, 4, 6, 8, 10, 12, 14, 15, 19, 21, 22, 43, 44, 51, 54, 60, 73, 97, 98, 100, 102, 116, 124, 125, 127, 128, 135, 136, 139, 153, 156, 159, 162, 164, 165, 173, 174, 175, 178, 191, 192, 193, 199, 200, 223, 237, 238, 244], "complet": [1, 4, 5, 6, 15, 21, 25, 49, 76, 78, 85, 87, 98, 99, 101, 113, 117, 119, 122, 124, 126, 130, 135, 156, 157, 158, 159, 160, 162, 165, 171, 172, 177, 178, 184, 191, 192, 225, 228, 229, 234, 247, 252, 256], "ppo": [1, 121], "compon": [1, 5, 6, 8, 10, 14, 20, 25, 52, 61, 85, 97, 101, 112, 113, 115, 119, 121, 126, 136, 142, 146, 159, 163, 166, 168, 172, 173, 174, 177, 193, 207, 256], "depend": [1, 5, 6, 7, 8, 11, 14, 21, 22, 23, 42, 47, 50, 52, 60, 73, 82, 85, 97, 98, 102, 110, 118, 119, 121, 124, 126, 129, 130, 135, 136, 137, 139, 141, 142, 143, 145, 146, 149, 155, 158, 159, 162, 168, 172, 173, 174, 181, 182, 183, 184, 188, 191, 196, 197, 198, 204, 206, 207, 208, 210, 213, 219, 222, 224, 225, 231, 232, 234, 239, 244, 247, 252, 256], "tensordict": [1, 14, 136, 146, 159], "nn": [1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 32, 37, 38, 39, 42, 43, 44, 45, 47, 49, 52, 55, 60, 65, 66, 69, 73, 75, 77, 79, 87, 89, 90, 92, 94, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 115, 117, 118, 119, 121, 122, 123, 124, 125, 127, 128, 129, 133, 134, 136, 137, 138, 141, 142, 143, 145, 146, 147, 148, 149, 150, 153, 154, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 177, 179, 181, 182, 183, 185, 190, 193, 194, 195, 197, 198, 199, 200, 201, 202, 203, 209, 210, 211, 212, 214, 215, 218, 219, 220, 221, 223, 226, 228, 230, 232, 233, 234, 235, 238, 239, 241, 242, 243, 245, 247, 248, 249, 250, 251, 252, 253, 256, 258], "tensordictmodul": [1, 14, 136, 159], "although": [1, 12, 16, 43, 49, 60, 61, 98, 99, 103, 105, 108, 115, 119, 125, 146, 149, 153, 157, 162, 172, 173, 174, 176, 182, 203, 219, 247, 262], "suffici": [1, 6, 49, 52, 97, 98, 117, 131, 133, 152], "transpar": [1, 12, 42, 99, 136, 162, 206, 220], "understood": [1, 4, 113], "without": [1, 4, 5, 6, 8, 9, 10, 14, 17, 20, 23, 32, 42, 49, 53, 55, 60, 73, 78, 97, 98, 107, 112, 113, 116, 123, 124, 125, 128, 129, 135, 137, 138, 141, 143, 145, 146, 147, 152, 154, 155, 156, 157, 158, 159, 160, 161, 164, 165, 168, 171, 176, 177, 189, 191, 192, 193, 194, 199, 200, 201, 203, 208, 209, 211, 215, 220, 227, 228, 230, 234, 237, 239, 244, 247, 251, 252, 258, 260, 262], "understand": [1, 2, 4, 6, 15, 23, 43, 44, 52, 57, 58, 59, 82, 85, 91, 98, 99, 101, 108, 117, 121, 125, 126, 127, 128, 130, 135, 137, 141, 143, 144, 149, 157, 165, 171, 173, 174, 176, 190, 195, 199, 200, 208, 215, 226, 229, 245, 249, 254], "class": [1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 19, 20, 21, 23, 24, 25, 33, 34, 37, 38, 42, 44, 45, 47, 49, 52, 53, 58, 59, 60, 64, 65, 67, 73, 75, 76, 78, 79, 83, 85, 87, 89, 90, 92, 93, 94, 96, 98, 99, 100, 102, 103, 104, 105, 108, 109, 110, 111, 112, 115, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 146, 147, 148, 149, 150, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 183, 189, 190, 191, 193, 194, 195, 197, 198, 199, 200, 202, 203, 208, 209, 212, 213, 214, 215, 216, 218, 219, 221, 223, 226, 229, 231, 233, 234, 237, 239, 240, 241, 242, 243, 244, 248, 249, 250, 252, 261, 262, 263], "sota": [1, 75, 113, 119], "implement": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 20, 24, 42, 43, 45, 47, 49, 51, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 76, 79, 85, 103, 108, 111, 115, 120, 121, 124, 125, 126, 127, 130, 133, 134, 135, 136, 138, 139, 141, 144, 145, 146, 147, 149, 150, 154, 156, 159, 160, 163, 168, 173, 174, 178, 179, 186, 190, 192, 193, 194, 196, 197, 200, 201, 204, 206, 207, 208, 216, 219, 220, 221, 222, 224, 231, 237, 244, 247, 253, 254, 257, 261], "rather": [1, 13, 23, 25, 49, 52, 69, 73, 85, 97, 103, 112, 121, 128, 129, 143, 144, 149, 153, 154, 159, 171, 184, 188, 189, 207, 223, 231, 234, 247], "high": [1, 2, 5, 6, 14, 15, 19, 23, 25, 42, 44, 49, 52, 53, 55, 57, 60, 82, 85, 99, 103, 105, 109, 112, 121, 122, 123, 124, 126, 127, 129, 135, 139, 146, 149, 159, 168, 169, 171, 176, 177, 186, 192, 195, 196, 197, 199, 212, 216, 234, 247, 252, 254, 256, 258, 260], "level": [1, 2, 5, 6, 17, 19, 20, 23, 25, 44, 49, 53, 55, 57, 68, 79, 100, 105, 115, 122, 123, 124, 126, 127, 128, 131, 133, 135, 137, 141, 142, 143, 144, 147, 149, 164, 165, 168, 171, 173, 174, 176, 177, 182, 185, 195, 196, 197, 199, 201, 209, 212, 215, 216, 221, 223, 227, 234, 258, 266], "illustr": [1, 19, 44, 47, 56, 116, 117, 124, 125, 126, 138, 160, 169, 171, 178, 191, 192, 195, 215, 226, 229, 230, 238, 244, 247], "librari": [1, 3, 4, 5, 6, 8, 12, 14, 18, 20, 22, 23, 25, 42, 44, 50, 51, 57, 61, 75, 87, 107, 108, 113, 115, 118, 121, 126, 129, 130, 137, 139, 143, 155, 158, 159, 163, 168, 173, 174, 177, 194, 204, 206, 207, 215, 219, 220, 222, 223, 226, 227, 228, 249, 251], "featur": [1, 4, 6, 10, 11, 12, 14, 17, 19, 22, 23, 34, 49, 50, 51, 52, 58, 59, 60, 61, 82, 83, 85, 90, 94, 95, 97, 98, 103, 108, 113, 121, 123, 125, 136, 137, 144, 145, 146, 149, 152, 155, 158, 159, 163, 164, 169, 172, 173, 174, 175, 176, 177, 178, 185, 186, 187, 188, 192, 193, 196, 199, 201, 204, 205, 206, 207, 208, 212, 216, 219, 226, 229, 234, 237, 244, 247, 251, 252, 254], "context": [1, 2, 5, 8, 14, 16, 17, 43, 49, 60, 61, 64, 73, 103, 109, 111, 120, 124, 134, 141, 153, 159, 162, 163, 164, 165, 168, 177, 186, 199, 201, 206, 208, 212, 230, 232, 237, 238, 239, 247], "bash": [1, 18, 20, 146, 160, 226], "pip3": [1, 18, 50, 122, 136, 159, 160, 168, 175, 184, 187, 188], "mujoco": [1, 136, 159], "glfw": 1, "tqdm": [1, 14, 17, 122, 136, 137, 159, 185, 201], "avail": [1, 2, 3, 5, 6, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40, 42, 43, 44, 48, 50, 51, 52, 53, 58, 59, 73, 80, 87, 97, 101, 105, 113, 115, 119, 122, 125, 135, 136, 139, 141, 146, 147, 156, 157, 158, 159, 160, 163, 164, 165, 168, 171, 175, 176, 177, 178, 181, 182, 187, 188, 196, 197, 198, 199, 201, 205, 212, 213, 214, 220, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 247, 255, 256, 260], "is_fork": [1, 136, 159], "multiprocess": [1, 6, 7, 11, 14, 34, 51, 53, 55, 56, 110, 122, 123, 133, 134, 135, 136, 159, 162, 163, 212, 214, 216, 258], "get_start_method": [1, 136, 159], "fork": [1, 21, 136, 159, 160], "is_avail": [1, 5, 6, 12, 20, 33, 38, 40, 42, 44, 45, 48, 49, 52, 63, 73, 80, 87, 89, 95, 97, 104, 110, 111, 115, 117, 118, 129, 136, 146, 147, 155, 156, 157, 159, 160, 162, 164, 165, 166, 172, 178, 193, 230], "els": [1, 4, 5, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 23, 25, 33, 38, 42, 44, 45, 47, 49, 51, 52, 58, 59, 60, 63, 73, 87, 94, 95, 96, 97, 103, 104, 105, 108, 110, 111, 115, 116, 117, 118, 122, 127, 128, 129, 134, 135, 136, 137, 142, 146, 147, 150, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 178, 181, 182, 185, 186, 193, 195, 197, 198, 201, 208, 209, 212, 215, 216, 218, 222, 230, 231, 244, 246, 252, 254, 255, 256, 258, 262, 263], "cpu": [1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 15, 18, 19, 20, 23, 33, 38, 42, 43, 44, 45, 48, 49, 52, 60, 63, 64, 72, 73, 80, 82, 83, 87, 89, 90, 95, 97, 99, 104, 105, 108, 109, 110, 111, 115, 117, 118, 121, 123, 124, 129, 133, 134, 135, 136, 137, 146, 147, 150, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 171, 175, 178, 181, 182, 185, 186, 187, 188, 193, 194, 195, 197, 198, 199, 202, 206, 212, 216, 219, 223, 226, 229, 230, 231, 232, 234, 237, 238, 240, 244, 251, 252, 253], "collector_devic": 1, "chang": [1, 2, 5, 6, 10, 11, 12, 14, 19, 21, 22, 23, 24, 40, 43, 48, 50, 51, 52, 53, 55, 58, 59, 61, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 100, 101, 102, 105, 108, 112, 116, 121, 123, 124, 126, 131, 132, 135, 136, 137, 139, 141, 144, 145, 146, 149, 152, 153, 155, 156, 157, 161, 168, 171, 172, 173, 174, 177, 181, 182, 184, 186, 187, 188, 191, 193, 197, 198, 200, 204, 206, 207, 208, 211, 212, 214, 216, 220, 221, 222, 229, 230, 231, 234, 235, 244, 245, 247, 252, 253, 255, 260], "seri": [1, 6, 15, 23, 52, 53, 54, 55, 56, 82, 91, 120, 121, 127, 128, 131, 132, 139, 143, 156, 159, 191, 219], "reusabl": [1, 6, 25], "swappabl": 1, "signatur": [1, 5, 8, 10, 14, 15, 23, 108, 135, 153, 162, 173, 174, 252], "characterist": [1, 14, 43, 143, 145, 146, 158, 164], "copi": [1, 5, 6, 12, 18, 22, 23, 44, 45, 50, 55, 58, 61, 73, 82, 97, 109, 110, 112, 114, 117, 123, 125, 129, 133, 135, 136, 137, 138, 141, 142, 143, 146, 149, 153, 157, 162, 168, 171, 181, 182, 183, 188, 194, 198, 199, 204, 206, 208, 212, 213, 218, 219, 234, 237, 247, 257, 263], "loss_modul": [1, 159], "whatev": [1, 8, 22, 23, 99, 101, 112, 195, 226], "convent": [1, 14, 52, 60, 112, 126, 136, 171, 216, 231], "receiv": [1, 4, 6, 14, 16, 55, 64, 87, 101, 111, 135, 159, 161, 162, 163, 172, 230, 247], "necessari": [1, 4, 5, 6, 7, 8, 10, 12, 15, 16, 18, 19, 23, 24, 44, 52, 53, 55, 60, 85, 87, 98, 112, 113, 122, 123, 124, 129, 133, 146, 149, 159, 161, 162, 163, 168, 173, 174, 177, 179, 182, 185, 191, 193, 195, 197, 198, 199, 230, 247, 249], "return": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 33, 34, 37, 38, 40, 44, 45, 47, 49, 51, 52, 59, 60, 64, 65, 67, 68, 73, 75, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 122, 123, 124, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 189, 191, 193, 194, 195, 197, 198, 199, 200, 201, 203, 205, 206, 208, 209, 210, 212, 213, 214, 215, 218, 219, 220, 221, 222, 223, 226, 229, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 250, 252, 254, 255, 256, 257], "replay_buff": [1, 159], "sampl": [1, 6, 8, 44, 47, 48, 49, 51, 52, 55, 60, 61, 75, 78, 79, 87, 92, 97, 99, 105, 110, 115, 116, 117, 118, 121, 123, 127, 129, 135, 136, 137, 139, 145, 146, 152, 153, 157, 159, 160, 161, 163, 171, 173, 174, 178, 182, 185, 193, 194, 197, 199, 205, 209, 210, 225, 229, 238, 247, 262], "loss_dict": 1, "instanc": [1, 4, 5, 6, 7, 11, 12, 14, 21, 22, 23, 25, 45, 53, 54, 55, 58, 59, 60, 78, 82, 87, 97, 98, 99, 102, 103, 122, 123, 125, 126, 131, 132, 133, 134, 136, 144, 146, 157, 159, 161, 162, 163, 165, 172, 182, 183, 197, 199, 200, 202, 219, 220, 226, 230, 234, 238, 245, 247, 252, 256, 257, 258], "written": [1, 4, 5, 6, 8, 10, 14, 22, 23, 25, 85, 100, 130, 136, 143, 150, 153, 154, 157, 164, 168, 171, 184, 189, 213, 220, 245, 254], "under": [1, 4, 5, 8, 14, 18, 19, 23, 47, 49, 50, 52, 54, 56, 97, 99, 109, 113, 115, 124, 125, 135, 137, 139, 145, 146, 153, 156, 163, 168, 169, 177, 178, 179, 187, 188, 190, 192, 204, 212, 214, 216, 221, 222, 225, 226, 230, 262], "loss_": 1, "smth": 1, "where": [1, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 32, 47, 49, 51, 60, 61, 64, 68, 75, 78, 79, 83, 85, 87, 97, 98, 99, 101, 102, 103, 110, 113, 122, 124, 126, 127, 128, 130, 132, 133, 134, 135, 137, 138, 139, 141, 144, 147, 149, 150, 152, 153, 154, 158, 159, 160, 161, 162, 163, 164, 165, 169, 172, 174, 175, 177, 178, 179, 182, 184, 187, 189, 192, 193, 194, 195, 200, 201, 204, 208, 213, 215, 216, 226, 228, 230, 231, 244, 245, 263], "string": [1, 8, 15, 22, 23, 49, 51, 58, 59, 60, 65, 67, 105, 111, 115, 116, 118, 126, 127, 128, 136, 139, 156, 159, 165, 171, 182, 208, 209, 226, 231, 257, 260], "describ": [1, 4, 5, 6, 8, 10, 14, 15, 16, 19, 20, 21, 22, 23, 48, 49, 52, 58, 59, 61, 73, 97, 105, 114, 120, 135, 150, 159, 160, 163, 168, 171, 173, 174, 176, 196, 197, 198, 202, 215, 231, 234, 252], "addit": [1, 2, 5, 7, 8, 11, 15, 17, 19, 50, 60, 73, 75, 97, 102, 105, 108, 109, 113, 122, 124, 125, 133, 135, 137, 138, 139, 142, 144, 147, 149, 156, 161, 162, 165, 169, 172, 173, 174, 176, 185, 189, 190, 191, 192, 197, 200, 201, 206, 208, 216, 218, 219, 220, 231, 238, 247, 254], "kei": [1, 6, 8, 11, 14, 15, 17, 49, 58, 75, 82, 90, 100, 103, 105, 109, 112, 114, 115, 116, 119, 122, 126, 136, 137, 139, 143, 146, 156, 158, 159, 160, 161, 164, 165, 168, 169, 171, 173, 174, 175, 177, 185, 193, 194, 195, 201, 209, 210, 211, 220, 234, 237, 245, 254, 262], "mai": [1, 4, 5, 6, 8, 10, 11, 12, 14, 15, 17, 19, 21, 22, 23, 25, 42, 49, 50, 52, 58, 59, 60, 68, 73, 85, 95, 99, 112, 113, 116, 123, 124, 125, 126, 129, 130, 136, 137, 138, 139, 141, 143, 144, 145, 150, 152, 153, 158, 159, 162, 165, 168, 171, 172, 173, 174, 176, 177, 179, 181, 182, 185, 188, 191, 193, 197, 198, 199, 200, 201, 202, 207, 208, 210, 218, 228, 231, 234, 238, 247, 252, 262, 263], "metric": [1, 17, 87, 97, 109, 122, 137, 146, 168, 171, 177, 178, 201, 221, 226, 231, 245], "log": [1, 7, 14, 18, 49, 50, 52, 53, 58, 73, 97, 98, 99, 102, 103, 104, 118, 123, 126, 129, 132, 137, 148, 158, 159, 161, 163, 166, 168, 169, 171, 173, 174, 177, 185, 195, 208, 211, 221, 251, 255], "dure": [1, 3, 7, 8, 12, 14, 16, 18, 19, 25, 32, 37, 49, 52, 60, 61, 63, 64, 76, 78, 85, 97, 99, 103, 108, 111, 112, 113, 118, 121, 122, 123, 124, 125, 128, 129, 130, 131, 133, 136, 142, 143, 144, 149, 150, 153, 157, 158, 159, 160, 161, 163, 168, 172, 176, 177, 178, 185, 196, 198, 202, 206, 214, 216, 220, 223, 224, 225, 226, 228, 234, 238, 244, 245, 252], "reason": [1, 5, 6, 8, 14, 15, 17, 23, 25, 52, 78, 82, 97, 99, 102, 112, 117, 125, 129, 135, 144, 149, 157, 159, 164, 165, 184, 191, 201, 214, 223, 231, 235, 237, 251, 252], "independ": [1, 7, 23, 49, 60, 79, 103, 108, 110, 145, 146, 150, 162, 189], "user": [1, 3, 5, 14, 17, 18, 19, 22, 24, 25, 44, 49, 50, 60, 76, 79, 82, 83, 85, 97, 101, 108, 110, 113, 114, 115, 122, 124, 128, 133, 137, 139, 142, 143, 144, 147, 161, 163, 164, 165, 166, 168, 171, 173, 174, 175, 176, 177, 178, 179, 182, 185, 187, 189, 190, 191, 192, 195, 196, 197, 198, 199, 200, 201, 204, 207, 212, 215, 216, 220, 221, 226, 228, 238, 251, 262, 263], "sum": [1, 2, 4, 5, 7, 11, 13, 14, 16, 18, 19, 21, 25, 37, 38, 40, 43, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 82, 87, 89, 92, 97, 98, 99, 101, 103, 104, 109, 111, 115, 117, 122, 123, 125, 127, 128, 129, 130, 135, 136, 145, 146, 150, 152, 153, 156, 157, 159, 160, 161, 162, 163, 166, 168, 172, 173, 174, 175, 182, 189, 190, 191, 192, 197, 198, 210, 211, 212, 214, 221, 231, 252, 258], "done": [1, 4, 5, 6, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 37, 38, 49, 54, 58, 59, 82, 85, 97, 98, 99, 108, 113, 115, 122, 123, 124, 125, 128, 129, 135, 136, 138, 143, 144, 146, 147, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 169, 171, 173, 174, 184, 185, 194, 201, 202, 208, 216, 220, 223, 234, 237, 247, 256, 257], "via": [1, 3, 5, 6, 7, 16, 17, 18, 20, 22, 23, 54, 55, 58, 59, 73, 85, 97, 121, 122, 123, 124, 126, 135, 136, 139, 145, 153, 158, 159, 164, 169, 171, 172, 176, 177, 178, 188, 191, 201, 212, 213, 215, 216, 219, 220, 221, 226, 237, 244, 245, 260, 266], "loss_val": [1, 136, 159], "item": [1, 2, 6, 7, 9, 10, 11, 12, 14, 15, 34, 37, 38, 40, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 72, 73, 87, 90, 92, 94, 95, 96, 97, 98, 101, 103, 104, 109, 111, 112, 114, 115, 117, 118, 119, 122, 123, 127, 128, 129, 135, 136, 137, 139, 141, 143, 146, 147, 157, 158, 159, 160, 161, 162, 163, 165, 166, 169, 171, 178, 179, 181, 193, 209, 213, 218, 221, 230, 234, 247, 250, 261, 263], "startswith": [1, 83, 147, 165, 246], "parent": [1, 14, 104, 115, 142, 146, 183, 185], "As": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 19, 20, 21, 22, 23, 25, 43, 49, 50, 52, 58, 59, 60, 61, 73, 85, 87, 97, 103, 105, 108, 112, 116, 118, 122, 123, 124, 125, 126, 127, 133, 135, 136, 137, 141, 142, 143, 144, 145, 146, 149, 152, 153, 156, 157, 159, 160, 161, 162, 163, 164, 168, 171, 174, 175, 176, 177, 178, 179, 182, 184, 185, 187, 188, 192, 193, 195, 197, 200, 204, 207, 208, 212, 219, 221, 222, 226, 231, 234, 237, 247, 254, 256, 258], "mani": [1, 2, 4, 5, 6, 10, 14, 15, 17, 18, 23, 25, 49, 51, 52, 60, 61, 65, 69, 73, 82, 97, 99, 100, 101, 104, 105, 107, 111, 113, 122, 124, 126, 127, 129, 135, 137, 138, 145, 147, 149, 150, 154, 157, 159, 161, 162, 165, 173, 174, 176, 177, 191, 194, 201, 204, 205, 220, 221, 229, 230, 231, 247, 252, 260, 262, 263], "expect": [1, 4, 5, 6, 10, 11, 14, 20, 22, 23, 32, 45, 47, 49, 51, 58, 59, 60, 61, 73, 85, 87, 97, 101, 102, 103, 112, 113, 117, 119, 126, 129, 133, 134, 136, 145, 146, 152, 153, 156, 158, 159, 160, 161, 162, 164, 171, 172, 173, 174, 176, 178, 179, 182, 187, 188, 194, 195, 197, 199, 200, 204, 205, 213, 220, 223, 226, 229, 230, 231, 234, 238, 244, 247, 258], "similar": [1, 3, 5, 8, 10, 11, 14, 15, 19, 22, 23, 48, 49, 58, 59, 61, 82, 83, 97, 98, 103, 108, 116, 124, 130, 134, 135, 136, 139, 143, 149, 153, 159, 161, 162, 163, 164, 165, 168, 169, 171, 176, 178, 179, 182, 185, 189, 190, 191, 192, 193, 198, 199, 213, 218, 219, 230, 231, 234, 247, 258], "structur": [1, 4, 5, 6, 8, 9, 14, 18, 19, 20, 21, 22, 23, 33, 48, 49, 52, 53, 60, 61, 78, 85, 97, 98, 102, 105, 110, 112, 121, 131, 136, 138, 143, 146, 147, 149, 153, 154, 156, 159, 163, 169, 171, 172, 178, 192, 194, 196, 197, 205, 208, 234, 245, 260, 262, 266], "make": [1, 4, 5, 6, 8, 10, 12, 14, 18, 19, 22, 23, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 68, 69, 73, 87, 97, 99, 100, 101, 102, 103, 108, 111, 112, 113, 114, 115, 117, 118, 121, 122, 123, 124, 126, 127, 128, 129, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 149, 152, 153, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 169, 171, 172, 173, 174, 176, 178, 182, 184, 185, 188, 189, 190, 191, 192, 193, 194, 195, 197, 200, 205, 212, 213, 214, 215, 216, 218, 219, 220, 223, 227, 228, 229, 230, 231, 234, 237, 239, 245, 247, 251, 252, 254, 256, 262, 264], "possibl": [1, 2, 4, 5, 6, 8, 10, 14, 15, 17, 22, 23, 52, 60, 61, 75, 98, 101, 108, 119, 125, 129, 130, 136, 138, 141, 143, 145, 146, 149, 157, 158, 159, 161, 162, 165, 178, 182, 185, 187, 193, 197, 198, 199, 200, 201, 202, 204, 207, 216, 220, 221, 223, 230, 234, 237, 247, 252, 254, 262], "across": [1, 5, 7, 8, 9, 11, 14, 16, 18, 20, 24, 49, 52, 54, 55, 56, 61, 82, 97, 105, 115, 120, 122, 123, 124, 131, 132, 133, 134, 135, 138, 146, 149, 156, 162, 163, 175, 176, 181, 211, 214, 215, 229, 235, 245, 247, 258, 260], "modal": [1, 60, 229], "complex": [1, 6, 23, 25, 50, 61, 67, 68, 97, 105, 112, 120, 123, 133, 150, 153, 161, 163, 169, 193, 203, 209, 234, 239, 254], "multipl": [1, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 23, 40, 45, 48, 49, 53, 54, 55, 56, 61, 65, 78, 79, 81, 82, 87, 97, 101, 110, 120, 123, 124, 125, 126, 127, 128, 133, 134, 135, 138, 139, 143, 144, 146, 149, 158, 159, 161, 162, 163, 165, 168, 169, 171, 173, 174, 175, 176, 177, 182, 184, 193, 199, 200, 201, 207, 213, 214, 219, 230, 231, 235, 238, 247, 250, 262, 263], "entri": [1, 4, 11, 14, 23, 53, 75, 98, 101, 103, 109, 110, 112, 115, 131, 136, 143, 144, 156, 159, 161, 164, 168, 173, 174, 191, 192, 193, 195, 212], "word": [1, 6, 7, 10, 11, 14, 42, 44, 49, 60, 73, 79, 82, 97, 98, 100, 102, 112, 115, 116, 118, 121, 127, 128, 135, 137, 143, 152, 153, 156, 163, 165, 176, 181, 190, 192, 193, 195, 199, 234, 262], "oblivi": [1, 159], "type": [1, 4, 5, 6, 8, 9, 10, 14, 18, 19, 20, 21, 22, 23, 37, 38, 40, 42, 48, 49, 50, 51, 52, 60, 61, 73, 78, 80, 82, 85, 95, 101, 105, 108, 113, 118, 120, 122, 123, 124, 126, 134, 137, 138, 139, 142, 143, 144, 147, 148, 154, 155, 156, 159, 161, 162, 163, 164, 168, 171, 172, 173, 174, 175, 177, 179, 181, 185, 187, 189, 194, 197, 199, 200, 202, 204, 207, 208, 209, 212, 213, 214, 216, 220, 221, 222, 223, 226, 228, 229, 244, 245, 247, 253, 257, 262], "being": [1, 3, 4, 5, 6, 10, 12, 14, 17, 20, 21, 23, 42, 47, 49, 52, 58, 59, 60, 76, 80, 82, 97, 98, 99, 101, 103, 105, 110, 113, 117, 122, 124, 126, 129, 135, 136, 142, 153, 156, 159, 160, 162, 177, 185, 188, 190, 191, 193, 195, 199, 201, 202, 220, 231, 237, 247], "run": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 51, 52, 56, 57, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 82, 87, 89, 90, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 175, 176, 177, 178, 181, 182, 183, 184, 186, 187, 188, 189, 190, 191, 192, 193, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 214, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 237, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 250, 251, 252, 254, 255, 262], "elementari": [1, 2, 234], "those": [1, 4, 5, 6, 10, 11, 14, 17, 42, 43, 61, 79, 87, 98, 103, 113, 115, 116, 124, 125, 127, 135, 138, 143, 152, 153, 155, 156, 163, 165, 169, 171, 173, 174, 177, 182, 184, 188, 190, 201, 202, 204, 205, 206, 207, 221, 223, 226, 230, 231, 262], "keep": [1, 6, 7, 10, 11, 14, 23, 43, 49, 51, 52, 60, 61, 73, 82, 85, 95, 97, 99, 101, 102, 108, 112, 116, 119, 121, 122, 123, 124, 125, 127, 128, 132, 133, 136, 142, 144, 150, 157, 159, 163, 165, 177, 181, 182, 197, 208, 218, 231, 247, 257, 258], "didact": [1, 135], "displai": [1, 2, 5, 6, 12, 14, 34, 44, 52, 58, 75, 108, 109, 117, 129, 139, 157, 160, 165, 168, 212, 230, 231, 245, 257, 260], "each": [1, 2, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 18, 19, 21, 23, 24, 25, 34, 43, 44, 45, 48, 49, 51, 52, 53, 55, 56, 58, 59, 60, 61, 65, 68, 73, 75, 76, 79, 82, 83, 85, 87, 97, 98, 99, 102, 103, 107, 108, 109, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 138, 141, 142, 143, 145, 146, 147, 149, 150, 152, 153, 154, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 173, 174, 175, 176, 177, 178, 185, 186, 189, 192, 193, 195, 197, 198, 200, 201, 208, 209, 211, 212, 215, 216, 220, 221, 226, 229, 230, 231, 234, 237, 238, 239, 244, 245, 247, 252, 255, 257, 258, 260, 262], "popul": [1, 14, 22, 43, 49, 58, 59, 87, 122, 136, 146, 159, 161, 211, 216], "later": [1, 3, 4, 5, 6, 11, 23, 47, 49, 52, 60, 73, 78, 87, 97, 101, 102, 112, 113, 123, 124, 127, 128, 129, 130, 134, 135, 138, 141, 142, 143, 144, 145, 146, 150, 154, 159, 160, 163, 164, 165, 169, 171, 173, 174, 182, 189, 197, 198, 210, 211, 223, 226, 228, 230, 231, 232, 237, 244, 247, 254, 255], "stage": [1, 7, 14, 16, 148, 186, 188, 206, 212], "start": [1, 4, 5, 6, 9, 11, 14, 16, 17, 18, 19, 23, 24, 25, 43, 44, 49, 50, 52, 53, 54, 55, 59, 60, 61, 73, 87, 97, 98, 100, 101, 105, 113, 116, 120, 121, 122, 124, 125, 126, 127, 128, 129, 134, 135, 137, 139, 143, 144, 145, 146, 148, 149, 152, 153, 157, 158, 160, 161, 162, 165, 168, 169, 171, 172, 173, 176, 177, 178, 182, 184, 185, 187, 191, 195, 197, 198, 199, 200, 201, 203, 208, 212, 213, 216, 219, 223, 226, 231, 234, 238, 239, 245, 247, 251, 254, 258, 263], "solv": [1, 6, 14, 49, 51, 97, 103, 117, 118, 149, 153, 157, 159, 161, 163, 176, 191, 231, 237, 247], "task": [1, 6, 7, 13, 14, 17, 21, 24, 49, 58, 59, 60, 75, 97, 98, 103, 109, 113, 116, 117, 118, 119, 120, 121, 123, 136, 137, 153, 157, 159, 160, 165, 166, 171, 178, 185, 201, 204, 208, 231, 238, 247], "strategi": [1, 5, 17, 18, 24, 52, 82, 113, 121, 128, 135, 144, 145, 149, 154, 161, 162, 201, 207, 215, 216, 221], "predict": [1, 9, 17, 19, 20, 33, 37, 38, 43, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 87, 89, 90, 92, 97, 98, 102, 103, 104, 111, 113, 115, 116, 118, 121, 124, 126, 127, 128, 137, 138, 145, 146, 149, 154, 160, 165, 169, 178, 181, 182, 197, 198, 201, 213, 219, 229, 251, 256, 257], "henc": [1, 14, 17, 43, 48, 61, 78, 80, 82, 113, 123, 125, 133, 134, 147, 149, 150, 155, 159, 161, 163, 176, 201, 219, 220, 231], "two": [1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 40, 42, 43, 48, 49, 50, 52, 57, 58, 59, 60, 73, 75, 83, 85, 87, 92, 95, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 116, 117, 119, 122, 123, 126, 127, 129, 130, 132, 133, 134, 135, 136, 139, 141, 143, 144, 145, 146, 147, 149, 150, 153, 154, 155, 156, 157, 159, 160, 161, 163, 164, 165, 171, 175, 176, 177, 178, 179, 183, 184, 186, 190, 192, 193, 195, 197, 198, 199, 200, 201, 202, 203, 207, 212, 215, 216, 219, 221, 224, 225, 226, 229, 231, 234, 237, 238, 244, 247, 252, 256, 258, 262, 263, 267], "constructor": [1, 6, 10, 11, 12, 21, 22, 23, 25, 60, 65, 67, 69, 78, 85, 111, 116, 122, 123, 133, 134, 143, 155, 156, 159, 161, 163, 192, 202, 230, 231, 252], "both": [1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 19, 20, 21, 22, 23, 24, 25, 42, 49, 51, 52, 58, 59, 60, 61, 73, 82, 85, 97, 103, 109, 113, 116, 118, 122, 124, 126, 127, 129, 132, 133, 134, 135, 141, 142, 144, 145, 147, 149, 150, 156, 157, 159, 161, 162, 163, 164, 165, 173, 174, 175, 176, 177, 178, 179, 182, 184, 185, 186, 189, 192, 194, 195, 197, 199, 200, 209, 212, 215, 219, 220, 221, 223, 226, 228, 229, 230, 231, 244, 256, 260, 262], "compat": [1, 4, 5, 6, 8, 11, 17, 50, 60, 94, 95, 101, 136, 147, 164, 173, 174, 182, 187, 202, 204, 216, 222, 256], "comput": [1, 3, 5, 6, 8, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 32, 37, 38, 40, 44, 47, 48, 49, 52, 53, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 83, 85, 95, 97, 98, 99, 100, 102, 105, 107, 110, 111, 115, 117, 119, 120, 121, 122, 123, 124, 125, 126, 129, 130, 131, 132, 133, 135, 136, 137, 139, 141, 142, 143, 144, 146, 148, 149, 152, 153, 154, 156, 158, 159, 160, 162, 164, 165, 168, 171, 172, 173, 174, 176, 177, 178, 182, 184, 187, 188, 193, 194, 195, 196, 197, 198, 199, 201, 202, 205, 206, 207, 208, 210, 211, 216, 219, 223, 228, 230, 231, 234, 237, 239, 254, 256, 262], "fit": [1, 6, 7, 9, 10, 11, 12, 20, 24, 61, 87, 103, 122, 123, 124, 133, 148, 149, 163, 181, 230, 262], "crucial": [1, 2, 12, 14, 23, 82, 101, 136, 159, 223], "convert_to_funct": 1, "extract": [1, 5, 20, 49, 52, 58, 59, 73, 97, 116, 117, 127, 128, 137, 141, 144, 154, 157, 159, 165, 172, 173, 174, 178, 208, 212, 213, 216], "convert": [1, 5, 9, 10, 12, 14, 19, 20, 22, 23, 44, 49, 51, 52, 55, 73, 75, 95, 97, 105, 107, 110, 112, 113, 115, 116, 118, 119, 121, 127, 128, 137, 139, 157, 158, 159, 160, 161, 162, 166, 169, 177, 178, 181, 183, 184, 185, 188, 189, 190, 192, 193, 196, 199, 200, 209, 213, 216, 218, 220, 223, 224, 225, 227, 228, 229, 234, 244, 247, 251, 252], "strictli": [1, 159], "speak": [1, 8, 43, 125, 135, 149, 247], "perfectli": [1, 14, 65, 78, 111], "encourag": [1, 6, 19, 139, 160, 165, 171], "usag": [1, 3, 4, 11, 13, 15, 21, 23, 37, 60, 82, 109, 116, 121, 123, 125, 135, 136, 144, 145, 159, 161, 163, 164, 168, 177, 184, 185, 188, 193, 194, 195, 199, 207, 220, 226, 230, 245, 247, 251, 256, 262], "doe": [1, 2, 5, 6, 8, 13, 14, 15, 19, 22, 23, 25, 43, 47, 60, 61, 73, 79, 80, 85, 97, 98, 99, 101, 103, 105, 108, 112, 113, 117, 122, 123, 130, 133, 134, 135, 136, 139, 142, 145, 146, 147, 149, 152, 153, 158, 159, 160, 162, 163, 164, 165, 168, 169, 172, 173, 174, 176, 178, 182, 183, 184, 190, 191, 192, 197, 199, 202, 203, 205, 208, 216, 223, 225, 226, 228, 230, 231, 234, 237, 244, 247, 262], "often": [1, 4, 5, 6, 10, 14, 17, 49, 73, 87, 97, 99, 101, 103, 112, 113, 124, 125, 126, 128, 146, 153, 177, 193, 201, 203, 210, 216, 230, 247, 262], "same": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 19, 20, 21, 22, 23, 25, 32, 40, 43, 44, 47, 49, 51, 52, 53, 55, 58, 59, 60, 65, 73, 78, 80, 85, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 118, 119, 122, 123, 124, 125, 127, 129, 132, 133, 135, 137, 138, 139, 141, 144, 145, 146, 147, 149, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 179, 181, 182, 185, 186, 189, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 208, 213, 214, 218, 222, 223, 228, 230, 231, 234, 238, 244, 247, 252, 256, 258, 260, 262], "usual": [1, 5, 6, 8, 19, 23, 43, 58, 59, 60, 61, 99, 100, 102, 103, 113, 117, 124, 125, 128, 129, 130, 133, 135, 136, 144, 147, 152, 156, 157, 159, 166, 195, 205, 230, 237, 238, 247, 260], "former": [1, 5, 61, 79, 127, 128, 165], "lag": [1, 159], "absolut": [1, 6, 7, 10, 82, 99, 126, 156, 160, 208, 234], "dilut": 1, "averag": [1, 3, 19, 49, 52, 61, 82, 87, 97, 113, 115, 123, 127, 128, 129, 135, 137, 143, 146, 154, 159, 160, 163, 165, 166, 168, 176, 177, 182, 197, 198, 231, 247], "associ": [1, 5, 6, 8, 10, 17, 50, 82, 130, 141, 142, 156, 164, 171, 190, 201, 202, 244, 247], "One": [1, 2, 4, 5, 6, 7, 10, 11, 15, 21, 23, 49, 51, 60, 61, 73, 79, 82, 97, 98, 99, 101, 122, 123, 124, 125, 128, 133, 135, 137, 138, 142, 143, 149, 152, 153, 166, 169, 172, 177, 178, 191, 195, 200, 205, 209, 221, 223, 231, 239, 244, 247, 262, 263], "advantag": [1, 3, 6, 14, 17, 23, 49, 60, 85, 95, 98, 107, 120, 122, 125, 135, 136, 153, 159, 172, 177, 182, 185, 192, 201, 209, 220, 222, 226, 234, 247, 257], "match": [1, 4, 5, 10, 14, 17, 19, 20, 22, 49, 51, 58, 59, 60, 61, 68, 75, 76, 92, 97, 105, 108, 111, 112, 113, 134, 137, 138, 142, 144, 147, 149, 152, 154, 159, 162, 172, 173, 174, 182, 185, 190, 192, 195, 197, 201, 219, 220, 230, 239], "exactli": [1, 5, 7, 8, 10, 12, 17, 25, 43, 51, 52, 60, 78, 80, 101, 103, 105, 136, 144, 153, 174, 185, 201], "configur": [1, 4, 5, 6, 14, 18, 19, 20, 22, 23, 24, 42, 49, 50, 60, 61, 82, 113, 122, 124, 131, 133, 142, 144, 149, 152, 157, 159, 162, 168, 171, 176, 183, 184, 199, 200, 208, 212, 219, 220, 221, 225, 254, 266], "pessimist": [1, 159], "bound": [1, 23, 49, 112, 126, 144, 159, 160, 168, 173, 174, 176, 178, 184, 230, 231, 238, 247], "pai": [1, 10, 45, 49, 60, 115], "attent": [1, 7, 10, 42, 45, 49, 115, 118, 119, 121, 124, 136, 166, 184, 185, 193, 252, 254], "create_target_param": 1, "keyword": [1, 5, 156, 159, 171, 237, 244], "argument": [1, 2, 4, 5, 6, 8, 14, 21, 22, 23, 32, 43, 44, 48, 51, 55, 60, 69, 76, 78, 82, 89, 97, 99, 102, 103, 109, 111, 112, 115, 122, 123, 126, 127, 128, 132, 133, 135, 136, 138, 144, 145, 154, 155, 156, 159, 161, 162, 163, 164, 168, 171, 172, 173, 174, 179, 188, 191, 194, 199, 205, 206, 208, 209, 212, 222, 223, 230, 231, 237, 238, 244, 245, 247, 254, 262, 263], "below": [1, 2, 4, 6, 10, 11, 12, 14, 16, 17, 18, 19, 20, 23, 24, 34, 43, 45, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 79, 82, 85, 97, 98, 99, 101, 102, 103, 105, 107, 108, 113, 114, 116, 118, 119, 124, 126, 129, 131, 132, 133, 134, 135, 136, 137, 141, 144, 147, 149, 152, 155, 157, 159, 160, 161, 162, 163, 164, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 184, 185, 186, 188, 190, 191, 192, 193, 195, 202, 203, 204, 211, 212, 213, 214, 216, 218, 219, 221, 222, 223, 225, 226, 228, 230, 231, 234, 237, 238, 247, 252, 253, 258, 262], "tell": [1, 18, 23, 42, 69, 87, 103, 111, 126, 127, 136, 138, 141, 152, 160, 161, 163, 165, 175, 187, 188, 209, 231, 238, 262], "fals": [1, 2, 6, 7, 10, 11, 12, 14, 19, 20, 23, 24, 34, 37, 38, 42, 43, 44, 49, 52, 55, 59, 60, 63, 64, 73, 82, 83, 87, 89, 92, 94, 96, 97, 101, 110, 111, 112, 115, 116, 117, 119, 122, 123, 124, 125, 126, 129, 134, 137, 141, 143, 144, 146, 147, 148, 150, 152, 153, 157, 158, 159, 160, 161, 162, 164, 165, 166, 169, 171, 172, 173, 174, 176, 177, 178, 179, 182, 184, 185, 186, 190, 191, 192, 194, 195, 197, 198, 200, 201, 206, 208, 210, 211, 218, 219, 220, 221, 223, 228, 230, 232, 244, 246, 247, 248, 250, 252, 253, 258, 260, 261, 262, 263], "target_actor_network_param": 1, "attribut": [1, 6, 11, 14, 22, 25, 43, 47, 53, 60, 73, 76, 79, 82, 85, 90, 103, 108, 116, 125, 134, 136, 141, 147, 148, 153, 156, 173, 174, 176, 182, 185, 193, 194, 196, 199, 203, 207, 230, 251, 262], "access": [1, 5, 6, 7, 10, 12, 14, 17, 19, 23, 50, 60, 68, 73, 78, 79, 87, 97, 102, 111, 112, 118, 119, 122, 125, 131, 135, 142, 153, 158, 160, 162, 171, 173, 174, 177, 185, 187, 189, 190, 192, 194, 201, 208, 209, 215, 218, 252, 260], "detach": [1, 2, 6, 9, 11, 12, 13, 20, 32, 52, 73, 89, 90, 95, 101, 105, 108, 137, 150, 154, 165, 181, 185, 229, 244], "def": [1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 33, 34, 37, 38, 44, 45, 47, 49, 51, 52, 53, 55, 60, 64, 65, 67, 73, 75, 78, 79, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 112, 113, 115, 116, 117, 118, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 189, 193, 194, 195, 197, 198, 199, 200, 201, 202, 203, 205, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 221, 223, 226, 228, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 252, 254, 255, 258, 262], "_init": 1, "self": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 24, 25, 33, 34, 37, 38, 44, 45, 47, 49, 51, 52, 53, 55, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 112, 115, 118, 123, 124, 125, 127, 128, 129, 133, 134, 135, 138, 142, 143, 144, 146, 148, 149, 150, 153, 154, 156, 160, 161, 162, 163, 165, 166, 168, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 183, 185, 193, 194, 195, 197, 198, 199, 202, 203, 209, 212, 214, 215, 216, 218, 219, 221, 222, 223, 226, 228, 233, 234, 237, 238, 239, 240, 241, 242, 243, 244, 248, 249, 250, 252], "actor_network": [1, 159], "value_network": [1, 159], "none": [1, 7, 11, 12, 14, 15, 17, 18, 19, 20, 24, 34, 49, 51, 60, 63, 64, 76, 79, 87, 89, 90, 97, 104, 105, 108, 111, 113, 115, 117, 118, 119, 122, 123, 129, 134, 135, 137, 138, 141, 142, 144, 145, 146, 147, 148, 150, 152, 154, 157, 160, 162, 164, 165, 171, 173, 174, 175, 178, 179, 182, 185, 194, 201, 202, 207, 209, 213, 215, 216, 230, 244, 245, 252, 260, 262], "super": [1, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 33, 37, 38, 44, 45, 47, 49, 52, 59, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 109, 111, 112, 115, 118, 123, 125, 127, 128, 129, 133, 134, 138, 142, 143, 146, 148, 149, 150, 153, 154, 156, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 177, 179, 181, 193, 194, 195, 197, 198, 199, 202, 203, 208, 209, 212, 214, 215, 218, 219, 221, 222, 223, 226, 233, 234, 237, 239, 240, 241, 242, 243, 248, 249, 250], "true": [1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 32, 34, 37, 38, 41, 42, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 63, 64, 68, 73, 76, 82, 87, 89, 90, 92, 94, 95, 96, 97, 98, 101, 104, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 129, 130, 133, 134, 135, 136, 137, 139, 141, 143, 144, 146, 147, 148, 149, 153, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 203, 204, 205, 206, 208, 211, 212, 213, 214, 218, 220, 221, 222, 223, 224, 225, 228, 229, 230, 231, 234, 236, 238, 244, 250, 252, 253, 254, 255, 256, 257, 258, 260, 263], "compare_against": 1, "list": [1, 5, 6, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 44, 47, 48, 49, 50, 52, 60, 61, 68, 73, 87, 90, 101, 102, 103, 105, 107, 108, 110, 111, 113, 115, 116, 118, 119, 125, 127, 128, 134, 135, 137, 142, 143, 147, 153, 154, 156, 157, 158, 159, 161, 162, 163, 165, 168, 169, 171, 172, 173, 174, 178, 183, 185, 186, 191, 193, 198, 200, 201, 204, 206, 208, 209, 212, 215, 216, 218, 222, 223, 227, 228, 229, 231, 234, 237, 238, 251, 252, 266], "actor_in_kei": 1, "in_kei": [1, 14, 136, 159], "sinc": [1, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 19, 20, 21, 23, 44, 49, 51, 52, 53, 60, 65, 73, 78, 85, 97, 98, 99, 101, 102, 103, 105, 111, 113, 115, 116, 117, 118, 119, 124, 126, 127, 128, 130, 131, 135, 136, 139, 142, 143, 148, 150, 152, 153, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 169, 171, 172, 175, 176, 178, 179, 182, 183, 184, 185, 187, 188, 189, 190, 191, 197, 198, 199, 200, 204, 207, 210, 212, 214, 223, 226, 230, 231, 237, 238, 239, 258, 262], "base": [1, 5, 6, 7, 9, 10, 11, 14, 16, 17, 18, 20, 23, 24, 25, 42, 44, 49, 52, 57, 58, 59, 60, 73, 75, 76, 78, 85, 87, 97, 99, 105, 109, 112, 115, 116, 119, 120, 121, 122, 123, 126, 127, 136, 137, 146, 155, 156, 160, 162, 165, 168, 169, 171, 174, 177, 178, 181, 182, 184, 185, 186, 191, 195, 196, 197, 198, 199, 200, 201, 212, 219, 223, 225, 230, 234, 244, 247, 251, 262], "singl": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 18, 20, 21, 22, 23, 43, 47, 51, 53, 54, 55, 56, 58, 59, 60, 61, 78, 85, 87, 97, 99, 113, 115, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 143, 145, 146, 150, 154, 159, 160, 161, 162, 163, 165, 168, 171, 172, 173, 174, 175, 179, 182, 184, 193, 197, 200, 201, 205, 213, 214, 218, 219, 223, 227, 231, 234, 247, 251, 252, 262], "critic": [1, 52, 73, 85, 132, 216, 223, 228], "actor_crit": 1, "actorcriticwrapp": 1, "loss_funct": [1, 99, 102, 103], "l2": [1, 87, 93, 156], "q": [1, 7, 17, 43, 49, 60, 121, 124, 146, 164, 171, 195, 197, 201, 234], "empir": [1, 150, 159], "bootstrap": [1, 136], "td": [1, 14, 52, 136], "varianc": [1, 6, 19, 159], "bia": [1, 2, 5, 6, 7, 9, 13, 19, 43, 47, 52, 68, 69, 93, 99, 104, 109, 111, 112, 115, 123, 129, 134, 136, 142, 145, 156, 159, 163, 164, 166, 173, 179, 181, 185, 193, 195, 198, 200, 201, 203, 218, 223, 244], "mean": [1, 2, 5, 6, 7, 10, 12, 14, 19, 23, 25, 42, 47, 49, 51, 52, 58, 59, 60, 68, 73, 76, 80, 82, 85, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 109, 111, 112, 115, 116, 117, 122, 124, 126, 127, 129, 135, 137, 139, 143, 146, 147, 149, 153, 157, 158, 159, 160, 162, 163, 164, 165, 166, 168, 169, 171, 173, 174, 182, 185, 187, 189, 190, 191, 193, 197, 198, 200, 204, 205, 206, 207, 210, 214, 228, 229, 231, 234, 237, 238, 247, 252], "obtain": [1, 9, 24, 49, 60, 68, 87, 111, 126, 129, 135, 137, 142, 145, 154, 159, 160, 162, 168, 171, 178, 238], "reward": [1, 4, 14, 136, 146, 159, 160, 161, 163], "noth": [1, 16, 23, 42, 73, 113, 130, 149, 159, 163, 168, 179, 256], "mont": 1, "carlo": 1, "whole": [1, 3, 25, 44, 47, 60, 112, 113, 121, 135, 143, 156, 157, 159, 165, 182, 183, 185, 190, 200, 205, 208, 234], "sequenc": [1, 5, 6, 12, 21, 23, 48, 49, 60, 67, 68, 98, 100, 103, 111, 112, 113, 115, 116, 118, 136, 137, 153, 159, 164, 165, 173, 174, 175, 182, 184, 185, 193, 195, 205, 210, 211, 218, 223, 230, 234, 238, 247, 252, 262], "upcom": 1, "intermedi": [1, 17, 25, 74, 108, 112, 120, 121, 131, 134, 141, 144, 145, 146, 149, 152, 200, 201, 231, 239, 256], "lambda": [1, 5, 7, 17, 20, 22, 49, 90, 104, 115, 116, 125, 143, 158, 160, 161, 172, 173, 174, 201, 205, 230, 231, 246, 254, 262], "compromis": 1, "easi": [1, 2, 5, 6, 9, 23, 24, 44, 45, 51, 58, 59, 60, 61, 68, 80, 95, 97, 99, 122, 124, 126, 135, 142, 143, 145, 150, 153, 159, 168, 176, 183, 186, 195, 201, 205, 209, 220, 231, 257], "valueestim": 1, "enum": 1, "pointer": [1, 5, 6, 22, 23, 98, 162], "defin": [1, 2, 5, 12, 14, 15, 16, 17, 18, 20, 21, 23, 25, 38, 43, 45, 52, 58, 59, 62, 65, 67, 68, 69, 73, 78, 79, 85, 87, 98, 99, 103, 105, 111, 112, 113, 116, 118, 121, 122, 123, 125, 127, 131, 135, 136, 138, 139, 142, 143, 146, 150, 152, 154, 160, 161, 162, 164, 166, 168, 169, 172, 173, 174, 183, 187, 189, 195, 199, 200, 201, 208, 209, 210, 216, 219, 220, 221, 228, 234, 235, 237, 238, 244, 251, 258, 260], "default": [1, 3, 5, 6, 8, 9, 10, 11, 12, 15, 19, 20, 21, 24, 43, 45, 49, 51, 52, 55, 60, 63, 64, 69, 75, 76, 78, 82, 95, 99, 101, 108, 111, 115, 116, 117, 118, 119, 121, 122, 123, 124, 129, 134, 135, 136, 138, 141, 142, 144, 147, 149, 152, 155, 157, 158, 159, 161, 162, 163, 164, 168, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 186, 188, 192, 193, 194, 195, 197, 198, 199, 200, 202, 206, 207, 208, 213, 214, 216, 219, 220, 223, 226, 228, 231, 234, 235, 237, 238, 244, 245, 247, 252, 253, 258, 260, 261, 262], "simplest": [1, 6, 23, 47, 99, 136, 159, 165, 213, 247], "util": [1, 3, 5, 7, 10, 14, 15, 17, 19, 20, 22, 23, 24, 25, 33, 34, 37, 38, 44, 45, 49, 51, 52, 53, 55, 60, 73, 75, 82, 87, 92, 94, 96, 104, 109, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 126, 129, 134, 135, 137, 138, 141, 142, 144, 145, 147, 148, 153, 154, 155, 157, 158, 159, 162, 164, 165, 166, 168, 169, 171, 172, 176, 177, 178, 182, 184, 185, 188, 193, 194, 197, 198, 199, 200, 201, 202, 204, 206, 208, 209, 210, 216, 218, 220, 221, 222, 224, 225, 226, 229, 230, 236, 240, 245, 246, 250, 252, 253, 254], "default_value_estim": 1, "td0": 1, "instruct": [1, 6, 7, 19, 23, 24, 42, 108, 113, 115, 116, 118, 127, 128, 136, 137, 141, 156, 157, 159, 161, 163, 165, 176, 177, 182, 194, 197, 198, 199, 206, 207, 208, 213, 219, 220, 226, 229, 234, 246, 247, 256], "queri": [1, 14, 22, 49, 60, 112, 118, 162, 164, 165, 178, 185, 193, 197, 200], "default_value_kwarg": 1, "td0estim": 1, "td1estim": 1, "tdlambdaestim": 1, "make_value_estim": 1, "value_typ": 1, "hyperparam": [1, 201], "hp": 1, "dict": [1, 18, 49, 51, 142, 143, 146, 147, 152, 153, 156, 159, 173, 174, 178, 195, 200, 209, 214, 216, 230, 237, 244], "hasattr": 1, "gamma": [1, 7, 115, 117, 122, 123, 129, 146, 157, 159, 160, 161, 163, 178], "value_kei": 1, "state_action_valu": [1, 160], "td1": 1, "_value_estim": 1, "elif": [1, 12, 16, 19, 49, 52, 60, 134, 137, 146, 147, 150, 156, 185, 216], "gae": [1, 159], "rais": [1, 8, 11, 12, 19, 49, 60, 73, 124, 125, 128, 144, 146, 147, 158, 159, 172, 173, 174, 204, 216, 244, 247], "notimplementederror": [1, 244], "f": [1, 5, 7, 8, 9, 11, 12, 14, 17, 18, 19, 22, 32, 33, 34, 37, 38, 40, 42, 43, 44, 47, 48, 49, 53, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 87, 89, 90, 92, 93, 94, 96, 97, 99, 102, 103, 104, 105, 108, 110, 111, 112, 113, 116, 117, 118, 122, 123, 124, 125, 127, 129, 133, 134, 135, 136, 137, 138, 139, 144, 145, 146, 148, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 178, 181, 182, 184, 185, 186, 187, 188, 193, 195, 197, 198, 201, 204, 205, 210, 212, 213, 214, 215, 216, 219, 221, 226, 231, 233, 234, 237, 239, 240, 241, 242, 243, 244, 246, 248, 249, 250, 254, 255, 256, 257, 258, 262], "tdlambda": 1, "unknown": [1, 49, 60, 75, 116, 213], "set_kei": 1, "central": [1, 8, 73, 102, 103, 131, 257], "quit": [1, 6, 17, 23, 49, 60, 73, 125, 135, 139, 149, 152, 159, 163, 189, 201, 208, 215, 231], "weight": [1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 17, 19, 20, 24, 33, 39, 43, 44, 49, 60, 63, 64, 66, 67, 68, 69, 71, 72, 73, 78, 89, 90, 93, 97, 99, 100, 102, 103, 104, 110, 111, 112, 115, 117, 121, 123, 129, 131, 134, 136, 137, 138, 139, 142, 144, 145, 147, 152, 153, 154, 156, 157, 159, 160, 163, 165, 166, 168, 171, 173, 177, 178, 179, 181, 182, 183, 184, 185, 188, 197, 198, 199, 200, 201, 202, 203, 205, 216, 219, 221, 223, 228, 229, 232, 234, 244, 253, 256, 262], "must": [1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 22, 23, 42, 49, 52, 60, 61, 67, 73, 85, 98, 99, 103, 107, 108, 111, 112, 113, 122, 133, 135, 136, 138, 141, 157, 159, 162, 168, 171, 172, 173, 174, 179, 189, 190, 192, 193, 194, 198, 200, 202, 205, 212, 227, 237, 239, 241, 244, 254, 257, 262, 263], "sure": [1, 4, 5, 6, 8, 10, 11, 14, 19, 22, 51, 57, 58, 59, 60, 87, 97, 98, 99, 103, 108, 112, 113, 115, 118, 123, 124, 128, 133, 135, 136, 137, 139, 143, 149, 157, 159, 161, 171, 185, 188, 190, 192, 194, 200, 205, 212, 213, 220, 229, 230, 237, 245, 247, 254], "otherwis": [1, 8, 10, 12, 14, 17, 19, 23, 55, 82, 85, 112, 113, 123, 125, 130, 133, 136, 141, 144, 145, 147, 152, 159, 160, 162, 198, 201, 205, 206, 212, 230], "mix": [1, 8, 15, 60, 61, 109, 113, 147, 182, 199, 220, 221, 235, 251, 252], "hold_out_param": 1, "_loss_actor": 1, "tensor": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 19, 20, 21, 22, 23, 35, 37, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 57, 58, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 73, 75, 77, 78, 81, 85, 88, 89, 91, 92, 93, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 112, 115, 116, 117, 118, 121, 122, 123, 128, 129, 130, 133, 134, 135, 136, 137, 138, 139, 141, 144, 145, 146, 147, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 178, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 194, 195, 196, 197, 199, 201, 202, 203, 205, 206, 208, 209, 212, 213, 215, 216, 219, 220, 228, 229, 230, 231, 234, 235, 237, 238, 239, 246, 250, 251, 254, 256], "td_copi": 1, "select": [1, 5, 10, 17, 23, 42, 50, 60, 80, 82, 87, 97, 105, 147, 156, 160, 161, 163, 168, 169, 182, 185, 191, 196, 197, 201, 206, 219, 238, 247, 254, 261, 264], "made": [1, 6, 10, 15, 19, 25, 51, 52, 87, 97, 98, 103, 113, 119, 122, 125, 135, 136, 165, 169, 171, 173, 174, 175, 177, 192, 196, 200, 224, 225, 228, 229, 234, 247, 262], "pass": [1, 2, 3, 4, 6, 8, 10, 12, 13, 14, 15, 16, 19, 22, 23, 25, 43, 44, 49, 51, 52, 53, 56, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 82, 85, 87, 97, 98, 99, 101, 102, 103, 111, 112, 113, 115, 116, 118, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 133, 134, 135, 136, 138, 141, 143, 146, 147, 149, 150, 153, 154, 156, 159, 160, 161, 162, 163, 165, 166, 168, 171, 172, 173, 174, 179, 183, 184, 185, 187, 189, 192, 193, 194, 195, 198, 200, 202, 211, 212, 213, 214, 216, 219, 222, 230, 231, 237, 238, 239, 244, 247, 252, 258], "param": [1, 7, 14, 16, 19, 33, 43, 47, 51, 68, 85, 93, 99, 111, 112, 117, 122, 123, 130, 133, 135, 138, 141, 150, 154, 157, 162, 163, 178, 179, 189, 216, 231, 244, 247, 252, 257, 258], "actor_network_param": 1, "value_network_param": 1, "reli": [1, 3, 6, 8, 14, 23, 49, 103, 125, 146, 152, 156, 159, 191, 204, 207, 212, 247], "distance_loss": 1, "_loss_valu": 1, "v": [1, 2, 7, 9, 19, 24, 32, 37, 43, 49, 52, 53, 55, 60, 89, 101, 102, 103, 105, 108, 124, 137, 141, 147, 150, 154, 160, 162, 168, 178, 181, 183, 189, 192, 200, 205, 208, 209, 263], "pred_val": 1, "squeez": [1, 9, 10, 12, 14, 34, 49, 60, 73, 90, 95, 110, 137, 146, 149, 150, 165, 169, 178, 184, 185, 229], "manual": [1, 5, 8, 12, 22, 23, 47, 49, 53, 63, 64, 69, 97, 111, 112, 130, 136, 138, 141, 153, 154, 157, 182, 183, 185, 193, 198, 207, 212, 215, 226, 230, 261, 262], "reconstruct": 1, "first": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 40, 42, 44, 45, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 68, 69, 73, 76, 78, 79, 80, 82, 83, 85, 87, 97, 99, 101, 102, 103, 109, 111, 112, 113, 115, 116, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 149, 150, 152, 154, 155, 156, 157, 159, 160, 161, 162, 163, 165, 168, 171, 172, 173, 174, 175, 178, 179, 182, 184, 185, 187, 188, 189, 191, 192, 193, 194, 195, 197, 198, 200, 201, 203, 205, 208, 212, 213, 214, 215, 216, 218, 219, 221, 222, 223, 225, 230, 231, 234, 237, 238, 244, 247, 254, 262, 263], "belong": [1, 7, 127, 137, 213, 262], "second": [1, 4, 5, 6, 7, 8, 9, 12, 13, 14, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 156, 159, 160, 164, 165, 166, 167, 168, 169, 170, 172, 173, 174, 175, 176, 178, 181, 184, 185, 189, 190, 191, 192, 193, 195, 200, 203, 205, 211, 212, 218, 221, 223, 224, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255, 262], "target_param": 1, "target_value_network_param": 1, "batch_siz": [1, 5, 6, 7, 14, 16, 17, 19, 20, 24, 34, 37, 38, 44, 45, 49, 51, 52, 55, 60, 73, 75, 78, 87, 89, 92, 94, 96, 97, 104, 110, 113, 115, 116, 117, 118, 122, 123, 124, 126, 129, 134, 135, 136, 137, 145, 146, 148, 149, 152, 154, 157, 159, 160, 161, 162, 164, 165, 166, 168, 169, 171, 175, 176, 177, 178, 182, 185, 193, 197, 198, 201, 205, 220, 221, 230, 234, 236, 250, 253], "target_valu": 1, "value_estim": 1, "l1": [1, 17, 87, 156, 177, 201], "smooth": [1, 6, 97, 171], "loss_valu": [1, 159], "td_error": 1, "pow": [1, 2, 5, 32, 63, 64, 68, 69, 72, 89, 111, 125, 189], "miss": [1, 51, 112, 113, 133, 136, 168, 172, 177, 190, 204, 222, 230, 262], "glue": [1, 137, 163], "cost": [1, 5, 14, 49, 52, 97, 99, 109, 122, 123, 124, 125, 150, 168, 194, 223, 232, 247], "deliv": [1, 42, 177, 207, 220, 254], "tensordictbas": [1, 14], "_forward": 1, "input_tensordict": 1, "unsqueez": [1, 2, 7, 12, 14, 47, 49, 58, 59, 60, 68, 69, 78, 90, 94, 95, 104, 110, 111, 117, 118, 129, 136, 139, 146, 150, 154, 158, 160, 161, 163, 165, 169, 204, 206, 229], "ndimens": 1, "inplac": [1, 12, 19, 20, 52, 110, 123, 134, 157, 173, 174, 181, 195, 201, 218, 223, 228], "loss_actor": 1, "pred_valu": 1, "pred_value_max": 1, "max": [1, 10, 11, 17, 19, 44, 49, 52, 58, 59, 60, 73, 75, 82, 87, 92, 95, 97, 98, 104, 117, 118, 123, 126, 129, 135, 136, 137, 139, 146, 157, 159, 160, 164, 166, 169, 171, 173, 174, 178, 182, 184, 185, 193, 197, 198, 200, 201, 213, 230, 247, 258, 260], "target_value_max": 1, "ddpgloss": 1, "most": [1, 2, 4, 5, 11, 14, 17, 22, 23, 25, 42, 43, 49, 51, 52, 58, 59, 60, 73, 75, 87, 99, 101, 102, 109, 112, 117, 120, 123, 124, 125, 126, 128, 129, 130, 135, 137, 142, 143, 144, 146, 147, 152, 157, 158, 159, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 175, 176, 177, 182, 191, 192, 194, 195, 197, 198, 200, 201, 208, 213, 220, 221, 223, 229, 238, 244, 247], "taken": [1, 6, 8, 14, 19, 22, 25, 60, 82, 83, 113, 119, 136, 139, 143, 152, 159, 160, 171, 184, 185, 234, 239, 262], "condit": [1, 14, 49, 55, 65, 102, 111, 113, 115, 123, 135, 137, 153, 172, 173, 174, 202, 216, 262], "remaind": [1, 7, 9, 134, 141, 181], "cheetah": 1, "goal": [1, 6, 14, 15, 44, 49, 52, 58, 61, 73, 85, 97, 125, 126, 135, 136, 143, 159, 161, 163, 176, 189, 221], "half": [1, 7, 8, 17, 95, 117, 147, 176, 177, 201, 230, 258, 262], "dm_control": 1, "gym": [1, 14, 121, 136, 146, 159, 160, 161, 163], "env": [1, 18, 132, 135, 136, 146, 159, 160, 161, 163, 187, 194, 206, 208, 231, 246], "gymenv": [1, 136, 159], "halfcheetah": 1, "v4": [1, 159], "dmcontrolenv": 1, "By": [1, 8, 17, 19, 25, 43, 60, 63, 64, 76, 82, 87, 101, 103, 111, 113, 122, 124, 126, 135, 138, 141, 143, 144, 152, 156, 160, 168, 173, 174, 176, 177, 186, 190, 192, 193, 194, 201, 206, 213, 214, 226, 238, 247, 252, 254, 260], "disabl": [1, 9, 11, 15, 42, 122, 123, 146, 148, 150, 158, 162, 164, 168, 181, 184, 189, 190, 191, 192, 198, 204, 206, 214, 230, 252, 260, 261], "render": [1, 6, 58, 82, 90, 126, 146, 159, 260], "easier": [1, 17, 18, 23, 24, 50, 51, 58, 98, 123, 126, 143, 144, 152, 161, 165, 169, 176, 184, 189, 192, 194, 200, 201, 205, 214, 216, 231, 254], "than": [1, 3, 5, 6, 8, 10, 11, 12, 13, 14, 17, 19, 23, 25, 44, 48, 49, 50, 52, 53, 60, 67, 69, 73, 82, 85, 95, 97, 98, 99, 101, 103, 105, 112, 113, 116, 117, 121, 122, 123, 126, 128, 129, 132, 133, 135, 138, 143, 144, 145, 146, 149, 150, 152, 153, 154, 158, 159, 160, 161, 168, 169, 171, 172, 177, 178, 182, 184, 188, 189, 193, 194, 195, 197, 201, 203, 204, 206, 207, 209, 223, 228, 231, 234, 237, 247, 261, 262], "focu": [1, 6, 7, 10, 18, 58, 59, 97, 99, 107, 122, 124, 125, 137, 139, 159, 161, 163, 165, 177, 184, 190, 221, 234], "from_pixel": [1, 136], "pixels_onli": 1, "make_env": 1, "helper": [1, 5, 8, 9, 14, 16, 17, 23, 47, 51, 55, 59, 97, 98, 110, 118, 122, 123, 126, 127, 128, 129, 134, 135, 136, 160, 161, 162, 163, 165, 166, 169, 171, 178, 201, 208, 210, 211, 238], "either": [1, 2, 4, 5, 6, 8, 17, 19, 23, 42, 44, 49, 60, 65, 87, 97, 105, 111, 112, 113, 117, 122, 124, 133, 136, 137, 147, 156, 160, 161, 162, 168, 172, 182, 185, 192, 193, 198, 199, 201, 203, 209, 213, 216, 220, 221, 224, 225, 226, 230, 238, 244, 247, 254, 256, 260, 262], "backend": [1, 5, 6, 7, 11, 14, 16, 18, 20, 24, 25, 33, 38, 53, 55, 61, 105, 117, 119, 120, 121, 126, 129, 132, 133, 136, 137, 147, 150, 158, 159, 168, 172, 174, 175, 177, 187, 188, 194, 196, 200, 207, 212, 219, 223, 228, 230, 251, 252, 261], "consid": [1, 6, 10, 11, 14, 23, 49, 60, 61, 68, 73, 82, 111, 115, 116, 123, 130, 133, 135, 141, 147, 150, 152, 153, 155, 157, 161, 165, 168, 172, 178, 189, 190, 191, 205, 223, 237, 238, 239, 252], "dm": [1, 127, 128, 165], "lib": [1, 4, 5, 6, 10, 18, 22, 23, 108, 136, 144, 159, 187, 204, 208, 220, 246], "env_librari": 1, "env_nam": [1, 82, 159], "global": [1, 5, 6, 17, 25, 49, 56, 60, 87, 124, 138, 144, 145, 149, 152, 154, 160, 162, 164, 166, 173, 174, 182, 184, 201, 210, 212, 216, 230, 231, 232, 244, 246, 247, 252], "env_task": 1, "env_arg": 1, "env_kwarg": 1, "frame_skip": [1, 159], "modifi": [1, 3, 6, 10, 11, 14, 19, 43, 44, 49, 52, 58, 59, 73, 78, 97, 98, 118, 119, 124, 135, 139, 142, 143, 144, 155, 156, 157, 159, 161, 165, 173, 174, 179, 188, 195, 203, 213, 223, 244, 247, 263], "represent": [1, 4, 10, 14, 23, 25, 43, 52, 60, 85, 97, 99, 102, 103, 105, 108, 110, 112, 121, 126, 137, 142, 143, 146, 165, 168, 169, 173, 174, 175, 193, 196, 197, 200, 203, 209, 216, 231, 234, 244, 256], "friendli": [1, 4, 15, 23, 177, 216, 230], "append": [1, 7, 8, 9, 12, 14, 16, 17, 18, 19, 21, 49, 52, 60, 73, 98, 103, 109, 112, 115, 118, 122, 125, 127, 128, 129, 134, 135, 136, 137, 143, 146, 148, 149, 156, 159, 160, 161, 162, 163, 164, 165, 169, 172, 178, 181, 182, 185, 197, 198, 201, 216, 230, 231], "special": [1, 7, 10, 18, 22, 23, 48, 60, 73, 99, 101, 103, 113, 115, 116, 118, 125, 136, 147, 155, 156, 168, 171, 173, 174, 182, 193, 197, 202, 244, 252], "torchr": 1, "transformedenv": [1, 14, 136, 159], "common": [1, 4, 6, 8, 10, 14, 17, 19, 44, 49, 51, 60, 61, 82, 95, 97, 99, 101, 103, 112, 117, 121, 124, 133, 134, 137, 143, 146, 153, 156, 157, 158, 159, 164, 171, 175, 178, 183, 187, 191, 193, 201, 216, 221, 231, 232, 246, 247, 262], "rescal": [1, 51, 178, 184], "heurist": [1, 82, 200, 219, 254], "multipli": [1, 5, 12, 19, 48, 49, 60, 95, 104, 127, 142, 165, 176, 177, 231, 234], "5": [1, 2, 3, 5, 6, 7, 9, 11, 14, 17, 20, 23, 24, 32, 34, 36, 37, 38, 40, 43, 45, 47, 48, 49, 52, 60, 64, 65, 73, 75, 78, 80, 82, 85, 87, 89, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 109, 110, 111, 112, 113, 114, 115, 116, 118, 122, 123, 125, 126, 127, 129, 133, 135, 137, 138, 141, 142, 143, 144, 146, 147, 149, 150, 153, 154, 156, 157, 158, 161, 162, 163, 164, 165, 166, 171, 172, 173, 174, 176, 177, 178, 181, 187, 189, 190, 191, 192, 193, 194, 195, 197, 198, 201, 202, 203, 205, 207, 208, 210, 211, 213, 215, 218, 219, 220, 221, 224, 226, 227, 233, 239, 243, 244, 245, 247, 248, 249, 253, 256, 257, 262, 263, 266], "interfac": [1, 4, 5, 6, 14, 15, 20, 22, 23, 25, 49, 60, 126, 132, 135, 159, 171, 186, 194, 209, 220, 226], "simul": [1, 17, 18, 19, 59, 119, 159, 160, 201, 204, 215, 222], "doubl": [1, 2, 5, 6, 13, 23, 58, 80, 95, 104, 109, 117, 121, 125, 129, 136, 137, 141, 146, 154, 157, 159, 169, 185, 192, 219, 230, 262], "precis": [1, 4, 8, 10, 15, 20, 61, 125, 129, 130, 137, 147, 159, 169, 177, 182, 185, 188, 199, 219, 220, 221, 234, 235, 251], "number": [1, 5, 6, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 42, 44, 49, 51, 52, 53, 55, 58, 60, 65, 82, 85, 87, 97, 99, 101, 103, 109, 112, 115, 116, 122, 123, 124, 125, 126, 127, 132, 133, 134, 135, 136, 137, 138, 139, 141, 144, 145, 148, 149, 150, 153, 156, 157, 158, 159, 160, 161, 162, 163, 168, 171, 172, 175, 178, 184, 185, 187, 188, 192, 193, 198, 199, 205, 206, 210, 213, 214, 219, 223, 228, 231, 234, 238, 247, 255, 260], "presum": 1, "ones": [1, 2, 4, 6, 11, 12, 14, 19, 21, 32, 40, 48, 49, 60, 76, 80, 85, 89, 92, 95, 97, 110, 113, 118, 125, 135, 138, 143, 153, 154, 155, 157, 159, 160, 168, 173, 174, 177, 178, 179, 190, 191, 198, 202, 209, 216, 220, 231, 246, 255, 262], "goe": [1, 4, 5, 23, 51, 95, 98, 99, 130, 145, 155, 159, 162, 213, 228, 262], "wai": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 20, 21, 22, 25, 32, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 67, 73, 78, 80, 82, 87, 95, 98, 99, 101, 103, 105, 108, 110, 112, 113, 115, 120, 123, 124, 125, 126, 127, 130, 132, 133, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 156, 157, 159, 161, 162, 164, 166, 169, 173, 174, 175, 178, 179, 184, 185, 190, 191, 192, 193, 195, 196, 197, 198, 200, 202, 204, 209, 213, 214, 216, 222, 223, 229, 232, 234, 238, 239, 240, 244, 247, 252], "doubletofloat": [1, 159], "refer": [1, 4, 5, 6, 8, 13, 15, 16, 17, 21, 22, 23, 24, 25, 49, 59, 60, 61, 73, 76, 82, 85, 97, 99, 101, 102, 103, 105, 107, 108, 109, 112, 113, 118, 122, 123, 124, 125, 127, 128, 132, 133, 144, 149, 152, 156, 157, 159, 161, 162, 163, 168, 171, 173, 174, 177, 178, 185, 188, 189, 192, 194, 197, 198, 199, 201, 204, 208, 209, 219, 221, 222, 224, 225, 229, 230, 231, 237, 238, 244, 247, 252, 254, 256, 257, 261, 266], "float": [1, 5, 6, 7, 8, 9, 11, 12, 13, 19, 23, 37, 38, 40, 41, 44, 48, 51, 52, 58, 59, 63, 64, 72, 73, 80, 89, 95, 101, 103, 104, 108, 109, 111, 118, 122, 123, 124, 126, 135, 137, 143, 144, 146, 147, 148, 155, 156, 157, 160, 161, 163, 164, 166, 178, 179, 181, 184, 185, 186, 189, 190, 191, 192, 193, 194, 197, 198, 200, 206, 208, 216, 218, 219, 221, 223, 228, 230, 234, 238, 244], "in_keys_inv": [1, 14], "befor": [1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 16, 19, 20, 22, 23, 25, 32, 33, 42, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 68, 69, 73, 85, 95, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 115, 117, 119, 122, 124, 126, 127, 129, 133, 135, 136, 137, 139, 141, 144, 146, 149, 152, 153, 156, 157, 158, 159, 161, 162, 163, 165, 168, 169, 172, 173, 174, 176, 177, 178, 179, 182, 183, 185, 187, 189, 190, 192, 195, 197, 198, 200, 215, 218, 224, 225, 227, 228, 230, 231, 237, 241, 244, 245, 247, 251, 252, 254, 258], "concaten": [1, 14, 48, 49, 60, 79, 101, 102, 110, 115, 124, 128, 134, 160, 197], "cattensor": [1, 14], "leav": [1, 8, 17, 43, 49, 51, 53, 60, 61, 85, 113, 126, 152, 153, 158, 201, 204, 219, 222, 244], "constant": [1, 2, 6, 17, 20, 23, 25, 48, 58, 60, 82, 87, 99, 108, 113, 119, 136, 153, 159, 160, 169, 172, 174, 177, 185, 197, 201, 247, 252], "envcreat": 1, "inittrack": [1, 136], "observationnorm": [1, 136, 159], "parallelenv": [1, 159], "rewardsc": [1, 136], "stepcount": [1, 136, 159], "make_transformed_env": 1, "scale": [1, 6, 12, 19, 51, 56, 61, 73, 97, 105, 112, 120, 121, 122, 123, 126, 135, 136, 146, 159, 160, 166, 177, 178, 179, 184, 185, 200, 221, 230, 234, 244, 247, 254, 256, 257], "base_env": [1, 159], "syntax": [1, 3, 23, 25, 48, 60, 84, 86, 99, 112, 121], "append_transform": [1, 14, 136], "loc": [1, 20, 83, 133, 136, 159, 165, 230], "reward_sc": 1, "observation_vector": 1, "renam": [1, 179, 182, 187, 197, 198], "facilit": [1, 11, 14, 49, 60, 97, 112, 121, 124, 136, 193], "downstream": [1, 6, 113, 171], "oper": [1, 4, 6, 13, 14, 15, 17, 18, 19, 20, 21, 25, 42, 43, 45, 47, 49, 51, 60, 61, 63, 64, 65, 67, 68, 76, 80, 82, 83, 85, 92, 97, 98, 99, 103, 105, 107, 109, 110, 111, 116, 118, 121, 123, 124, 125, 127, 130, 135, 136, 137, 138, 141, 142, 144, 145, 147, 149, 150, 154, 155, 158, 159, 161, 165, 168, 169, 171, 172, 173, 174, 176, 182, 183, 184, 185, 187, 188, 189, 190, 194, 196, 197, 198, 199, 201, 203, 204, 205, 206, 214, 216, 219, 220, 222, 226, 228, 229, 230, 231, 234, 237, 238, 239, 246, 251, 252, 258], "vector": [1, 2, 4, 5, 6, 12, 14, 22, 23, 32, 49, 52, 60, 82, 97, 99, 101, 102, 103, 110, 115, 127, 128, 136, 137, 141, 144, 154, 155, 165, 177, 186, 199, 205, 207, 208, 219, 220, 234, 247, 254, 256], "snippet": [1, 10, 21, 58, 59, 122, 123, 135, 144, 155, 164, 176, 185, 189, 197, 198, 208, 215, 222, 228, 230, 237, 246, 247, 252, 257], "selected_kei": 1, "observation_spec": [1, 14, 159], "out_kei": [1, 14, 136, 159], "instanti": [1, 5, 6, 10, 14, 21, 22, 25, 51, 52, 65, 67, 78, 85, 97, 105, 111, 113, 118, 126, 155, 156, 160, 171, 175, 202, 234, 237], "stateless": [1, 14, 22, 138, 141], "standard_norm": [1, 136], "max_frames_per_traj": [1, 159], "marker": [1, 51, 128], "ornstein": 1, "uhlenbeck": 1, "ou": 1, "significantli": [1, 19, 102, 119, 120, 124, 129, 149, 172, 176, 184, 197, 199, 203, 228, 234, 239, 247, 260], "speed": [1, 5, 6, 10, 14, 19, 48, 49, 61, 85, 97, 120, 121, 122, 124, 131, 136, 138, 144, 147, 158, 159, 161, 164, 172, 176, 184, 185, 186, 196, 203, 207, 212, 216, 223, 228, 231, 234, 245, 247, 251], "throughput": [1, 122, 177, 234, 247], "whether": [1, 6, 8, 10, 11, 14, 20, 22, 49, 52, 95, 97, 105, 108, 112, 126, 130, 135, 137, 143, 146, 152, 159, 161, 168, 169, 171, 179, 192, 231, 238, 247, 261], "individu": [1, 5, 6, 12, 21, 25, 49, 78, 85, 110, 115, 124, 126, 129, 143, 149, 154, 156, 162, 165, 169, 179, 213, 226, 230, 231, 247], "approach": [1, 4, 5, 6, 22, 23, 25, 56, 107, 112, 131, 139, 149, 153, 154, 159, 162, 165, 178, 183, 189, 192, 199, 204, 205, 208, 221, 223, 228, 231, 234, 244], "num_work": [1, 24, 44, 51, 52, 87, 92, 94, 97, 117, 122, 123, 129, 157, 166, 168, 169, 176, 178, 247, 250], "leverag": [1, 6, 49, 73, 97, 107, 108, 112, 121, 122, 124, 133, 135, 145, 178, 186, 188, 196, 199, 215, 216, 222, 247, 251, 257], "capabl": [1, 3, 11, 15, 17, 49, 60, 73, 124, 164, 168, 197, 199, 201, 207, 210, 211, 222, 230], "pytorch": [1, 2, 7, 8, 9, 11, 14, 17, 18, 21, 23, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 51, 52, 53, 55, 56, 58, 59, 60, 62, 66, 70, 73, 74, 75, 77, 78, 79, 80, 83, 84, 85, 87, 89, 90, 97, 98, 104, 106, 107, 112, 113, 114, 115, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 150, 152, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 178, 181, 182, 183, 184, 186, 187, 189, 190, 191, 192, 193, 194, 201, 203, 204, 205, 210, 211, 212, 213, 214, 215, 216, 218, 222, 228, 229, 230, 232, 234, 237, 244, 246, 250, 252, 254, 255, 256, 258], "adopt": [1, 20, 24, 61, 152, 155, 162, 221], "parallel_env_constructor": 1, "env_per_collector": 1, "transform_state_dict": 1, "make_t_env": 1, "init_stat": [1, 136, 159], "copy_": [1, 3, 40, 48, 109, 144, 161, 166, 237, 244], "env_creat": 1, "parallel_env": 1, "create_env_fn": 1, "create_env_kwarg": 1, "pin_memori": [1, 122, 123, 125, 129, 247], "limit": [1, 4, 6, 9, 10, 11, 14, 15, 17, 19, 49, 73, 119, 123, 124, 136, 137, 138, 146, 147, 149, 154, 165, 172, 173, 174, 177, 182, 184, 185, 187, 188, 194, 197, 201, 223, 228, 231, 234, 244, 261], "lazi": [1, 59], "cat_dim": [1, 136, 159], "reduce_dim": [1, 136, 159], "load_state_dict": [1, 9, 19, 20, 38, 39, 44, 49, 53, 60, 73, 87, 96, 97, 112, 117, 121, 133, 146, 157, 160, 171, 181, 182, 197, 198, 214, 221, 230, 235, 240, 241, 242, 243, 248], "frame": [1, 6, 107, 136, 146, 158, 159, 168], "count": [1, 6, 11, 19, 22, 42, 44, 49, 60, 61, 82, 99, 103, 135, 136, 148, 159, 160, 163, 165, 168, 171, 177, 182, 197, 198, 246], "frames_per_batch": [1, 136, 159], "total_fram": [1, 136, 159], "adjust": [1, 7, 14, 19, 43, 49, 52, 73, 115, 124, 126, 150, 161, 194, 262], "total": [1, 5, 7, 9, 11, 12, 13, 14, 16, 17, 20, 21, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 125, 126, 127, 128, 129, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 158, 159, 160, 162, 164, 165, 166, 168, 171, 172, 174, 176, 178, 181, 182, 184, 185, 189, 190, 191, 192, 193, 195, 203, 205, 211, 212, 219, 221, 224, 225, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "unchang": [1, 8, 83, 209], "seem": [1, 44, 52, 113, 125, 127, 136, 231], "cheat": [1, 121, 165], "compar": [1, 5, 10, 15, 17, 19, 20, 23, 44, 58, 59, 61, 83, 97, 102, 108, 116, 117, 123, 124, 126, 127, 135, 137, 143, 144, 145, 147, 150, 152, 154, 156, 159, 161, 163, 165, 168, 171, 172, 173, 174, 176, 177, 181, 182, 184, 186, 189, 196, 197, 199, 200, 201, 207, 212, 219, 220, 223, 228, 234, 237, 245, 247, 251], "dataset": [1, 6, 9, 17, 24, 33, 34, 35, 37, 38, 41, 42, 43, 44, 47, 49, 52, 53, 55, 57, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 99, 116, 117, 118, 119, 120, 122, 123, 126, 127, 128, 129, 131, 135, 138, 148, 154, 157, 158, 162, 164, 165, 166, 168, 169, 171, 175, 181, 195, 199, 201, 213, 220, 221, 233, 234, 236, 247, 250, 253], "10m": 1, "element": [1, 5, 6, 7, 9, 12, 17, 19, 40, 48, 49, 58, 59, 73, 76, 95, 99, 101, 102, 103, 116, 125, 135, 144, 150, 153, 159, 160, 171, 173, 174, 178, 181, 190, 191, 192, 193, 201, 223, 231, 262, 263, 266], "anoth": [1, 4, 5, 7, 8, 11, 14, 20, 21, 23, 25, 43, 48, 49, 52, 59, 60, 63, 73, 80, 85, 98, 102, 108, 109, 112, 113, 115, 121, 128, 129, 130, 132, 135, 136, 141, 142, 153, 156, 159, 161, 162, 163, 164, 165, 172, 174, 176, 178, 179, 182, 184, 188, 195, 197, 200, 206, 213, 228, 229, 231, 238, 247, 252, 262, 263], "ratio": [1, 51, 82, 97, 115, 144, 159, 168, 178, 195], "interact": [1, 5, 6, 14, 49, 51, 60, 117, 126, 130, 146, 159, 162, 166, 169, 172, 173, 174, 197, 262], "nutshel": [1, 191], "cautiou": 1, "deal": [1, 5, 44, 49, 51, 52, 60, 97, 110, 112, 122, 145, 159, 221], "lead": [1, 5, 6, 14, 49, 52, 61, 73, 79, 82, 87, 97, 115, 119, 130, 136, 138, 149, 157, 191, 205, 244, 247, 262], "bias": [1, 33, 43, 97, 112, 164, 244], "comparison": [1, 9, 17, 21, 83, 95, 97, 98, 123, 137, 144, 145, 176, 181, 184, 189, 191, 193, 195, 201, 204, 222], "help": [1, 5, 8, 10, 15, 17, 18, 19, 22, 23, 32, 43, 49, 52, 58, 59, 60, 61, 68, 82, 87, 97, 98, 101, 102, 103, 112, 113, 120, 121, 122, 123, 126, 132, 133, 134, 136, 137, 138, 144, 145, 148, 150, 152, 155, 159, 161, 162, 163, 164, 165, 171, 176, 177, 184, 185, 190, 191, 192, 193, 197, 201, 205, 210, 212, 214, 215, 216, 221, 222, 223, 226, 227, 229, 230, 231, 245, 247, 254, 255, 257], "signal": [1, 13, 43, 133, 159, 161, 195, 234, 238], "magnitud": [1, 17, 42, 156, 201, 230], "truncat": [1, 17, 109, 113, 144, 159, 160, 201], "A": [1, 5, 6, 7, 8, 11, 12, 14, 16, 17, 21, 22, 25, 42, 47, 48, 49, 51, 52, 53, 55, 57, 60, 63, 64, 67, 68, 69, 73, 78, 82, 83, 92, 97, 99, 101, 102, 103, 110, 112, 113, 115, 120, 121, 125, 126, 127, 128, 130, 131, 135, 138, 142, 143, 146, 149, 152, 153, 154, 159, 160, 161, 162, 164, 165, 166, 169, 171, 173, 174, 175, 176, 177, 193, 197, 201, 219, 220, 222, 228, 231, 237, 244, 247, 252, 254, 256, 263], "thousand": [1, 103, 120, 124, 127, 136, 165, 171], "500": [1, 6, 17, 24, 49, 52, 60, 75, 109, 115, 128, 145, 147, 160, 163, 166, 178, 231], "statist": [1, 44, 52, 87, 117, 121, 129, 142, 143, 156, 157, 159, 165, 168, 169, 171, 177, 182, 195, 197, 198, 221, 231], "arbitrari": [1, 5, 8, 14, 64, 67, 78, 97, 102, 111, 122, 138, 146, 154, 169, 172, 175, 195, 238, 239], "random": [1, 6, 14, 16, 19, 20, 21, 25, 40, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 71, 72, 73, 76, 78, 80, 92, 95, 101, 102, 105, 109, 110, 111, 116, 117, 122, 123, 126, 127, 128, 133, 134, 135, 137, 138, 146, 149, 150, 152, 153, 156, 157, 159, 160, 161, 163, 164, 165, 169, 172, 182, 185, 193, 197, 198, 209, 212, 231, 234, 239, 247], "standard": [1, 5, 8, 20, 23, 25, 44, 48, 52, 60, 61, 73, 82, 87, 92, 97, 98, 99, 105, 107, 108, 113, 135, 139, 149, 158, 166, 172, 173, 174, 178, 184, 193, 209, 213, 223, 234, 247, 257, 262], "deviat": [1, 73, 82, 92, 97, 139, 149], "purpos": [1, 5, 20, 21, 22, 57, 73, 78, 85, 115, 118, 123, 125, 126, 128, 135, 136, 142, 143, 144, 152, 158, 159, 162, 163, 168, 172, 182, 184, 190, 197, 214, 221, 234, 244, 247], "summari": [1, 82, 103, 126, 136, 143, 159, 168, 173, 176, 197, 245, 246], "over": [1, 4, 5, 6, 7, 10, 11, 14, 17, 18, 19, 20, 22, 23, 34, 44, 47, 48, 49, 50, 51, 52, 53, 60, 61, 73, 75, 78, 79, 87, 97, 98, 99, 101, 102, 103, 109, 113, 117, 121, 122, 123, 124, 127, 129, 132, 133, 135, 138, 142, 143, 144, 145, 146, 147, 150, 154, 156, 157, 159, 160, 161, 162, 163, 164, 165, 168, 169, 171, 172, 174, 176, 178, 182, 184, 185, 187, 194, 197, 198, 201, 205, 219, 230, 234, 247, 250, 252, 262], "get_env_stat": 1, "proof_env": 1, "init_env_step": 1, "state_dict": [1, 9, 19, 38, 39, 44, 49, 53, 55, 87, 96, 97, 117, 122, 123, 133, 137, 146, 156, 157, 160, 181, 182, 195, 197, 198, 214, 220, 228, 230, 233, 234, 235, 237, 240, 241, 243, 244, 248, 251], "close": [1, 4, 6, 9, 14, 17, 19, 23, 52, 61, 94, 97, 98, 115, 122, 126, 137, 149, 152, 169, 181, 185, 201, 245, 247, 252], "5000": [1, 2, 7, 118, 127, 128, 139, 213, 231], "earlier": [1, 4, 5, 6, 22, 23, 73, 98, 99, 102, 116, 123, 124, 136, 152, 159, 165, 173, 174, 177, 223, 230, 231], "compositespec": [1, 14], "turn": [1, 4, 5, 6, 7, 8, 9, 14, 15, 19, 20, 23, 25, 49, 98, 102, 103, 109, 113, 126, 128, 136, 145, 152, 153, 156, 161, 165, 181, 186, 190, 191, 199, 213, 216, 256], "seen": [1, 7, 10, 11, 18, 19, 44, 47, 49, 51, 97, 102, 103, 109, 113, 116, 118, 136, 143, 154, 162, 172, 173, 174, 231, 262, 263], "requir": [1, 2, 4, 5, 6, 8, 10, 12, 14, 15, 18, 19, 20, 22, 23, 24, 25, 43, 49, 50, 51, 52, 55, 60, 61, 75, 83, 85, 87, 103, 107, 108, 113, 115, 116, 119, 123, 124, 126, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 145, 148, 149, 150, 152, 153, 154, 157, 158, 159, 161, 162, 163, 164, 165, 171, 172, 173, 174, 175, 176, 177, 178, 181, 182, 183, 184, 185, 186, 190, 191, 192, 194, 200, 202, 205, 207, 208, 209, 210, 211, 214, 215, 219, 220, 221, 222, 224, 230, 232, 237, 238, 244, 247, 255, 257, 260], "recal": [1, 6, 23, 52, 60, 98, 103, 133, 137, 159, 169, 173, 174, 190, 191, 192, 244], "wrap": [1, 5, 6, 7, 9, 10, 16, 22, 25, 45, 60, 63, 76, 79, 87, 98, 99, 101, 102, 103, 105, 109, 110, 111, 123, 125, 129, 133, 136, 142, 146, 157, 159, 162, 163, 171, 173, 174, 175, 181, 183, 194, 199, 210, 211, 213, 214, 226, 230, 234, 238, 258, 262, 265], "flow": [1, 4, 5, 14, 21, 23, 25, 43, 52, 60, 66, 85, 97, 110, 111, 113, 159, 160, 168, 172, 182, 183, 185, 197, 198, 199, 208, 247, 252, 262], "handl": [1, 5, 8, 10, 23, 49, 52, 53, 61, 78, 85, 108, 113, 123, 126, 127, 137, 138, 139, 154, 156, 158, 159, 162, 163, 164, 165, 171, 172, 173, 174, 177, 182, 185, 189, 191, 193, 203, 205, 207, 214, 220, 229, 237, 238, 257], "specifi": [1, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 22, 23, 24, 34, 39, 51, 52, 59, 76, 82, 87, 101, 110, 113, 116, 122, 123, 124, 126, 130, 134, 136, 137, 138, 141, 155, 156, 159, 162, 163, 168, 171, 173, 174, 179, 189, 190, 191, 192, 193, 196, 197, 198, 200, 201, 204, 205, 206, 208, 209, 212, 221, 222, 228, 237, 238, 242, 245, 247, 252, 256, 257, 260, 262], "scenario": [1, 4, 6, 14, 61, 105, 107, 108, 112, 117, 125, 160, 163, 199, 219, 244], "tensordictsequenti": [1, 136], "valueoper": [1, 159], "automat": [1, 2, 5, 6, 8, 10, 14, 15, 22, 25, 35, 40, 43, 45, 46, 47, 48, 53, 57, 61, 76, 80, 98, 114, 121, 122, 123, 124, 125, 126, 130, 137, 139, 142, 144, 147, 149, 159, 160, 163, 166, 168, 171, 176, 177, 182, 185, 207, 209, 212, 214, 216, 219, 220, 221, 226, 232, 235, 237, 238, 247, 251, 252, 254, 262], "state_valu": 1, "built": [1, 4, 5, 6, 7, 8, 22, 23, 47, 49, 59, 60, 61, 99, 108, 113, 115, 116, 121, 135, 136, 137, 159, 164, 169, 173, 174, 177, 178, 195, 204, 216, 221, 222, 229, 231, 257], "present": [1, 6, 8, 18, 22, 61, 82, 83, 97, 108, 134, 137, 143, 153, 155, 156, 157, 160, 161, 163, 171, 172, 175, 178, 193, 247, 258], "origin": [1, 5, 6, 7, 8, 12, 14, 17, 19, 23, 32, 49, 52, 58, 59, 60, 73, 87, 90, 97, 102, 105, 113, 115, 118, 119, 124, 125, 127, 128, 137, 142, 150, 153, 154, 156, 157, 160, 171, 172, 173, 174, 176, 177, 179, 181, 182, 183, 184, 186, 192, 197, 200, 201, 218, 220, 221, 226, 228, 234, 252, 257], "paper": [1, 5, 12, 16, 17, 52, 58, 59, 61, 73, 97, 113, 114, 118, 119, 124, 137, 159, 162, 164, 165, 166, 193, 201], "found": [1, 4, 5, 6, 10, 16, 22, 23, 25, 42, 49, 50, 60, 79, 97, 113, 115, 116, 118, 126, 128, 133, 134, 135, 136, 137, 142, 143, 147, 160, 162, 163, 164, 171, 173, 174, 181, 182, 183, 185, 193, 206, 220, 222, 226, 247, 262], "ddpgmlpactor": 1, "ddpgmlpqnet": 1, "materi": [1, 61, 123, 124, 145, 189, 202, 208, 234, 239, 244], "achiev": [1, 3, 6, 14, 17, 19, 24, 32, 44, 49, 56, 82, 87, 97, 108, 119, 121, 125, 129, 135, 136, 137, 144, 149, 152, 153, 156, 157, 159, 160, 168, 176, 179, 182, 184, 185, 198, 199, 201, 203, 212, 219, 222, 247, 251, 254], "practic": [1, 5, 6, 11, 20, 23, 37, 47, 49, 51, 52, 58, 59, 60, 61, 97, 99, 114, 117, 121, 124, 125, 126, 127, 131, 134, 136, 137, 144, 153, 156, 159, 173, 174, 175, 177, 189, 190, 193, 195, 231, 232, 237, 247], "fake": [1, 6, 12, 17, 19, 25, 47, 52, 78, 152, 157, 193, 197, 198, 200, 201, 228], "spec": [1, 108, 126, 136, 159, 163, 179, 200, 231], "ornsteinuhlenbeckprocesswrapp": 1, "probabilisticactor": [1, 159], "tanhdelta": 1, "make_ddpg_actor": 1, "proof_environ": 1, "out_featur": [1, 33, 109, 123, 136, 179, 201], "action_spec": [1, 14, 136, 159], "shape": [1, 4, 12, 17, 23, 34, 38, 40, 42, 43, 47, 48, 49, 51, 52, 58, 59, 60, 63, 68, 76, 85, 90, 92, 95, 97, 98, 101, 103, 104, 109, 111, 118, 122, 124, 127, 128, 136, 137, 138, 141, 142, 145, 146, 147, 150, 152, 154, 156, 159, 168, 171, 178, 184, 185, 187, 192, 193, 195, 197, 201, 202, 209, 213, 219, 226, 231, 234, 235, 238, 244, 247, 251, 254], "actor_net": [1, 159], "action_dim": [1, 146], "distribution_class": [1, 159], "q_net": 1, "qnet": 1, "initi": [1, 6, 8, 11, 14, 16, 18, 19, 20, 21, 22, 23, 25, 37, 43, 49, 55, 60, 64, 71, 72, 73, 80, 97, 98, 99, 102, 103, 109, 111, 112, 117, 122, 123, 124, 127, 128, 129, 136, 138, 142, 144, 147, 148, 152, 156, 157, 158, 160, 161, 162, 163, 165, 166, 168, 173, 174, 175, 189, 192, 196, 198, 203, 206, 213, 214, 219, 223, 226, 229, 231, 234, 237, 244, 256, 262], "reset": [1, 19, 117, 128, 136, 146, 159, 160, 161, 163, 165, 168, 172, 173, 174, 182, 186, 195, 197, 198, 221, 255], "suggest": [1, 4, 12, 52, 86, 97, 128, 137, 144, 145, 146, 147, 150, 157, 168, 171, 173, 174, 175, 234], "nois": [1, 6, 12, 52, 73, 148, 195], "reach": [1, 10, 17, 52, 60, 61, 97, 133, 135, 137, 146, 147, 149, 159, 163, 173, 174, 201, 221, 231], "minimum": [1, 49, 82, 159, 163, 173, 174, 177, 191], "annealing_fram": 1, "1_000_000": [1, 96, 136], "actor_model_explor": 1, "annealing_num_step": [1, 136], "share_memori": 1, "iter": [1, 3, 4, 6, 11, 12, 14, 16, 24, 34, 42, 43, 44, 47, 52, 53, 55, 60, 75, 85, 87, 92, 94, 96, 98, 103, 105, 112, 113, 116, 117, 118, 126, 127, 128, 131, 133, 134, 136, 142, 144, 149, 157, 159, 160, 161, 162, 163, 166, 168, 169, 172, 178, 181, 182, 194, 197, 198, 203, 211, 218, 223, 226, 230, 234, 245, 247, 258], "tight": [1, 105, 107, 108], "per": [1, 5, 6, 8, 11, 19, 61, 87, 97, 103, 121, 122, 126, 127, 128, 129, 133, 135, 136, 137, 145, 147, 152, 156, 159, 163, 164, 165, 168, 169, 171, 175, 176, 177, 178, 185, 189, 194, 205, 207, 212, 214, 216, 218, 221, 223, 231, 237, 246, 258], "sync": [1, 7, 10, 11, 16, 55, 121, 122, 123, 142, 146, 188, 194, 257], "natur": [1, 5, 6, 17, 18, 23, 24, 25, 45, 61, 73, 75, 97, 107, 116, 119, 126, 127, 135, 136, 137, 162, 171, 191, 193, 197, 200, 201, 207, 262], "resourc": [1, 53, 58, 59, 61, 73, 87, 105, 119, 123, 133, 135, 152, 159, 168, 171, 176, 216, 223, 231, 236, 247, 253], "alloc": [1, 6, 18, 21, 22, 23, 48, 55, 59, 129, 135, 152, 168, 175, 176, 193, 202, 214, 223, 237, 238, 258], "gpu": [1, 3, 4, 7, 12, 17, 18, 19, 20, 24, 33, 38, 40, 42, 43, 47, 48, 49, 50, 52, 53, 54, 56, 57, 60, 61, 64, 72, 73, 77, 80, 81, 82, 83, 88, 92, 96, 97, 99, 105, 111, 114, 117, 120, 121, 122, 123, 124, 125, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 150, 152, 154, 157, 159, 160, 162, 163, 164, 171, 172, 175, 177, 178, 185, 186, 196, 201, 206, 207, 210, 214, 216, 223, 230, 231, 234, 238, 240, 251, 252, 254, 257], "worker": [1, 6, 7, 11, 16, 51, 52, 61, 115, 120, 122, 123, 134, 135, 147, 159, 162, 163, 168, 212, 216, 247], "syncdatacollector": [1, 136, 159], "process": [1, 4, 5, 6, 11, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 42, 47, 49, 50, 51, 52, 56, 60, 61, 73, 82, 85, 97, 103, 105, 110, 112, 113, 114, 116, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 131, 132, 135, 136, 137, 143, 144, 146, 147, 149, 154, 158, 160, 162, 163, 164, 165, 168, 171, 173, 174, 175, 176, 177, 182, 184, 185, 187, 188, 193, 195, 196, 201, 203, 204, 207, 208, 212, 214, 215, 221, 228, 231, 237, 238, 247, 251, 255, 258, 261, 262], "offer": [1, 11, 14, 18, 42, 43, 53, 61, 99, 122, 124, 138, 141, 144, 145, 197, 214, 216, 229, 231, 238, 247], "multiasyncdatacollector": [1, 159], "rollout": [1, 136, 159], "asynchron": [1, 21, 61, 120, 121, 126, 134, 149, 155, 159, 163, 238], "manner": [1, 5, 8, 14, 19, 61, 159, 171, 216], "therebi": [1, 186, 189, 193], "decoupl": [1, 61, 153, 197], "factori": [1, 6, 101, 115, 190, 191, 232, 237], "empti": [1, 5, 6, 8, 14, 19, 21, 23, 49, 80, 95, 108, 128, 129, 143, 144, 147, 153, 158, 165, 168, 171, 173, 174, 176, 185, 191, 193, 202, 206, 238, 246, 263], "maximum": [1, 11, 49, 60, 82, 102, 113, 126, 128, 136, 137, 144, 159, 164, 165, 173, 174, 185, 194, 195, 213, 247], "non": [1, 2, 3, 5, 8, 11, 14, 19, 22, 49, 51, 53, 54, 56, 60, 82, 85, 97, 98, 100, 103, 112, 113, 119, 122, 126, 129, 130, 134, 135, 136, 137, 139, 141, 145, 147, 150, 156, 157, 160, 161, 164, 165, 168, 172, 173, 176, 182, 184, 185, 189, 199, 202, 214, 228, 231, 244, 252, 263, 265], "termin": [1, 14, 23, 53, 60, 87, 159, 160, 162, 163, 171, 188, 206, 213, 225], "effect": [1, 5, 6, 8, 9, 11, 23, 55, 73, 82, 97, 103, 108, 124, 127, 128, 138, 152, 154, 156, 160, 164, 165, 171, 176, 177, 191, 199, 200, 205, 230, 234, 247, 260], "regist": [1, 22, 43, 47, 78, 108, 109, 112, 121, 122, 124, 133, 141, 152, 153, 159, 173, 174, 177, 207, 208, 216, 220, 226, 230, 239], "new": [1, 2, 4, 5, 6, 8, 9, 12, 13, 14, 22, 23, 24, 25, 31, 42, 43, 45, 48, 49, 50, 52, 55, 60, 62, 73, 75, 79, 80, 82, 85, 97, 99, 102, 103, 108, 109, 110, 112, 113, 117, 121, 122, 123, 125, 126, 127, 136, 137, 141, 142, 144, 146, 149, 152, 153, 154, 155, 156, 157, 159, 160, 161, 164, 165, 168, 171, 173, 174, 178, 179, 181, 186, 187, 188, 189, 193, 195, 196, 197, 198, 199, 200, 204, 205, 206, 207, 208, 213, 216, 222, 223, 224, 225, 226, 234, 238, 244, 247, 251, 257, 262], "infer": [1, 3, 6, 8, 9, 10, 19, 20, 21, 22, 23, 42, 48, 49, 60, 61, 97, 101, 103, 105, 113, 121, 125, 126, 129, 139, 142, 144, 158, 159, 161, 171, 172, 177, 178, 185, 187, 188, 193, 194, 196, 197, 198, 199, 201, 203, 206, 207, 209, 214, 221, 223, 224, 225, 226, 228, 234, 235, 241, 251], "around": [1, 5, 6, 11, 23, 24, 49, 55, 58, 59, 75, 97, 117, 128, 138, 144, 145, 150, 154, 157, 165, 168, 169, 173, 174, 182, 189, 190, 194, 197, 219, 234, 239, 262, 265], "1m": [1, 136, 159], "10_000": [1, 97], "outer": [1, 6, 122, 145], "loop": [1, 3, 4, 5, 7, 8, 11, 16, 17, 19, 21, 25, 44, 47, 49, 51, 52, 59, 60, 65, 73, 75, 78, 85, 87, 97, 111, 118, 123, 126, 127, 137, 138, 144, 145, 146, 152, 154, 162, 163, 165, 169, 177, 183, 185, 201, 219, 231, 238, 247, 250], "equal": [1, 4, 10, 95, 97, 115, 116, 125, 137, 147, 156, 159, 160, 171, 173, 174, 176, 192, 216, 247, 254], "length": [1, 7, 12, 14, 17, 20, 42, 45, 49, 52, 60, 102, 103, 105, 113, 115, 116, 124, 128, 136, 137, 146, 159, 164, 165, 175, 185, 191, 193, 196, 201, 205, 208, 216, 251, 263], "sub": [1, 6, 20, 25, 49, 60, 109, 124, 143, 149, 159, 163, 165, 168, 176, 177, 185, 215, 246, 262], "traj_len": [1, 136], "200": [1, 6, 9, 90, 93, 136, 147, 163, 184, 194, 219], "init_random_fram": 1, "num_collector": 1, "explorationtyp": [1, 136, 159], "reset_at_each_it": 1, "split_traj": [1, 159], "exploration_typ": 1, "assess": 1, "mode": [1, 4, 7, 9, 12, 13, 16, 20, 37, 42, 43, 49, 51, 52, 55, 60, 73, 79, 82, 85, 86, 87, 97, 112, 115, 116, 117, 121, 122, 129, 130, 134, 136, 139, 142, 144, 146, 147, 150, 157, 161, 164, 165, 166, 169, 171, 172, 174, 177, 179, 184, 187, 188, 194, 195, 196, 198, 199, 200, 216, 219, 221, 231, 241, 247], "dedic": [1, 10, 55, 60, 112, 134, 162, 163, 177, 199, 208, 223, 228, 229, 230, 258, 263], "frequenc": [1, 7, 83, 126, 223], "trainer": [1, 16, 17, 24, 55, 126, 131, 148, 161, 162, 163, 201, 214], "make_record": 1, "record_interv": 1, "load": [1, 5, 17, 18, 19, 20, 21, 23, 24, 34, 35, 38, 39, 42, 43, 47, 51, 52, 55, 73, 75, 87, 90, 96, 98, 104, 105, 110, 113, 116, 119, 121, 123, 125, 127, 139, 144, 147, 152, 159, 168, 169, 171, 174, 178, 181, 182, 184, 185, 186, 187, 194, 195, 201, 204, 206, 208, 213, 220, 221, 222, 224, 225, 230, 235, 240, 241, 242, 243, 244, 246, 248, 249, 251, 254], "recorder_obj": 1, "record_fram": 1, "1000": [1, 2, 7, 9, 17, 19, 43, 52, 79, 89, 94, 96, 117, 119, 122, 123, 125, 127, 134, 136, 144, 149, 159, 160, 169, 172, 176, 177, 187, 199, 201, 203, 212, 213, 226, 231, 237, 246], "policy_explor": 1, "everi": [1, 2, 6, 8, 10, 12, 14, 15, 17, 18, 19, 24, 43, 44, 47, 49, 51, 52, 60, 61, 87, 103, 117, 124, 125, 127, 128, 129, 135, 136, 141, 146, 147, 150, 152, 153, 154, 156, 157, 159, 160, 161, 163, 165, 168, 169, 178, 193, 197, 198, 201, 208, 210, 223, 232, 245, 247, 258], "10": [1, 3, 4, 6, 7, 8, 11, 13, 14, 16, 17, 19, 20, 23, 25, 33, 34, 37, 38, 41, 42, 43, 44, 45, 47, 49, 51, 52, 53, 60, 73, 78, 79, 80, 83, 87, 89, 92, 93, 94, 95, 96, 103, 104, 105, 109, 112, 115, 117, 122, 123, 125, 126, 127, 129, 133, 135, 136, 138, 139, 141, 142, 144, 146, 147, 148, 149, 150, 154, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 178, 179, 184, 187, 189, 190, 191, 194, 195, 196, 197, 198, 201, 202, 203, 204, 206, 208, 209, 210, 211, 212, 215, 219, 221, 223, 226, 231, 233, 237, 238, 239, 240, 241, 242, 243, 245, 246, 248, 249, 250, 266], "lazymemmapstorag": [1, 136, 146], "prioritizedsampl": 1, "randomsampl": [1, 19, 137, 165, 182, 185, 197, 198], "tensordictreplaybuff": [1, 136, 146], "flavor": [1, 5, 23, 107], "priorit": [1, 193], "error": [1, 4, 5, 6, 8, 10, 11, 12, 22, 37, 38, 43, 47, 49, 50, 52, 53, 58, 60, 61, 68, 78, 97, 101, 107, 108, 111, 122, 125, 130, 134, 139, 148, 152, 155, 159, 160, 172, 173, 174, 184, 189, 190, 195, 197, 204, 208, 215, 220, 222, 231, 244, 247, 256, 262], "higher": [1, 19, 44, 48, 53, 82, 97, 99, 122, 123, 127, 128, 130, 141, 145, 157, 158, 159, 160, 168, 169, 171, 182, 185, 195, 197, 199, 203, 205, 207, 211, 215, 223, 228, 234, 260, 262], "likelihood": [1, 49, 99, 104, 127, 213], "regular": [1, 4, 5, 6, 8, 10, 19, 23, 24, 97, 114, 127, 128, 134, 145, 153, 154, 164, 165, 166, 189, 191, 193, 199, 220, 247], "circular": 1, "compos": [1, 5, 6, 10, 12, 17, 19, 21, 25, 44, 52, 58, 59, 73, 75, 79, 87, 90, 92, 94, 96, 97, 99, 108, 110, 113, 115, 117, 119, 121, 123, 129, 135, 136, 139, 141, 142, 146, 148, 150, 154, 157, 158, 159, 162, 164, 166, 168, 169, 171, 178, 182, 197, 198, 200, 204, 209, 213, 215, 220, 221, 229, 238, 250, 253], "pick": [1, 6, 19, 44, 98, 127, 160, 165, 216], "physic": [1, 14, 103, 177, 237, 247], "memori": [1, 4, 5, 6, 8, 10, 16, 17, 18, 19, 21, 22, 23, 37, 48, 49, 51, 55, 61, 80, 87, 95, 97, 100, 105, 110, 112, 115, 118, 121, 122, 123, 124, 131, 135, 136, 144, 145, 146, 150, 156, 162, 164, 168, 171, 175, 178, 184, 188, 189, 192, 193, 194, 199, 201, 207, 212, 218, 220, 228, 230, 231, 234, 237, 239, 251, 258], "map": [1, 6, 7, 12, 13, 17, 49, 52, 58, 60, 75, 90, 97, 98, 102, 103, 104, 108, 110, 112, 113, 115, 116, 119, 127, 136, 138, 139, 143, 145, 152, 153, 154, 159, 160, 163, 171, 173, 174, 176, 178, 182, 197, 200, 201, 205, 209, 212, 213, 214, 237, 247], "arrai": [1, 6, 32, 43, 44, 47, 51, 58, 59, 85, 89, 95, 103, 109, 117, 127, 128, 139, 146, 157, 158, 160, 165, 166, 171, 192, 229], "desir": [1, 5, 8, 12, 14, 16, 49, 51, 52, 73, 82, 97, 110, 112, 116, 135, 142, 156, 168, 171, 184, 190, 202, 226, 230, 263], "hyperparamet": [1, 6, 14, 17, 52, 87, 112, 115, 121, 126, 189, 193], "randomcroptensordict": 1, "make_replay_buff": 1, "buffer_s": 1, "random_crop_len": 1, "prefetch": [1, 136, 177], "prb": 1, "sampler": [1, 6, 19, 34, 55, 110, 122, 123, 137, 159, 165, 166, 182, 185, 197, 198], "max_capac": 1, "alpha": [1, 5, 6, 15, 98, 108, 127, 128, 146, 149, 171, 178, 189, 193, 263], "7": [1, 3, 5, 6, 17, 18, 19, 22, 23, 34, 36, 51, 58, 59, 80, 85, 95, 96, 101, 109, 116, 117, 122, 123, 129, 134, 135, 146, 147, 149, 157, 158, 166, 171, 172, 173, 174, 175, 177, 178, 184, 188, 199, 202, 203, 204, 206, 207, 208, 210, 211, 215, 218, 219, 221, 222, 224, 225, 227, 228, 230, 247, 252, 255, 266], "beta": [1, 6, 20, 52, 105, 118, 121, 192, 216, 234, 247, 251], "scratch_dir": 1, "buffer_scratch_dir": 1, "sample_dim": 1, "temporari": [1, 5, 117, 126, 177, 181], "disk": [1, 4, 23, 25, 105, 112, 136, 187, 188, 194, 208, 223, 231, 237, 238, 245], "tempfil": [1, 7, 87, 117, 125, 126, 133], "tmpdir": 1, "temporarydirectori": [1, 87, 117, 125], "along": [1, 4, 5, 6, 7, 8, 14, 17, 21, 23, 43, 48, 49, 53, 54, 55, 56, 60, 83, 97, 101, 102, 110, 116, 117, 119, 122, 123, 127, 128, 131, 132, 136, 152, 156, 160, 162, 169, 171, 175, 191, 201, 202], "dimens": [1, 5, 6, 7, 12, 14, 18, 20, 21, 44, 47, 48, 49, 60, 78, 79, 87, 92, 99, 101, 102, 103, 110, 115, 121, 124, 127, 129, 136, 138, 146, 147, 154, 156, 158, 159, 161, 173, 174, 175, 190, 193, 197, 198, 205, 213, 223, 230, 234, 239, 247], "feed": [1, 6, 12, 19, 44, 47, 49, 60, 97, 100, 102, 105, 112, 124, 127, 128, 133, 134, 146, 160, 165, 169, 176, 195, 214], "adapt": [1, 2, 14, 17, 24, 87, 105, 126, 201, 231], "divid": [1, 7, 8, 9, 10, 11, 12, 14, 15, 19, 85, 97, 99, 127, 134, 135, 149, 153, 163, 176, 177, 181], "yield": [1, 6, 11, 12, 16, 17, 19, 21, 104, 112, 115, 116, 118, 124, 125, 161, 163, 184, 192, 201, 219, 221, 241, 247], "regard": [1, 6, 11, 14, 23, 60, 112, 144, 145, 159, 168, 262], "25": [1, 7, 9, 22, 23, 73, 89, 90, 97, 109, 117, 123, 157, 162, 164, 171, 181, 184, 203, 219, 231, 233, 238], "balanc": [1, 6, 18, 133, 168, 226], "choic": [1, 4, 6, 8, 49, 87, 126, 128, 165, 210, 247], "heterogen": [1, 196], "figur": [1, 8, 12, 14, 22, 34, 49, 51, 52, 73, 82, 97, 117, 121, 124, 126, 127, 128, 136, 144, 149, 159, 160, 161, 165, 168, 169, 171, 176, 178, 182, 195, 197, 236, 263, 265], "dataflow": 1, "8": [1, 3, 5, 6, 7, 9, 13, 14, 16, 17, 19, 23, 34, 49, 52, 58, 59, 65, 73, 87, 90, 93, 101, 102, 109, 111, 115, 116, 118, 119, 122, 124, 127, 128, 129, 133, 134, 137, 142, 144, 146, 147, 149, 153, 157, 158, 164, 165, 166, 168, 171, 172, 173, 174, 176, 178, 184, 185, 187, 188, 189, 193, 199, 201, 206, 207, 208, 212, 214, 215, 216, 219, 221, 223, 224, 225, 228, 230, 234, 238, 247, 254, 257, 258, 262, 263, 266], "ceil_div": 1, "y": [1, 2, 5, 7, 17, 18, 20, 22, 23, 25, 32, 37, 38, 40, 41, 43, 47, 48, 51, 52, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 82, 85, 89, 92, 93, 95, 96, 97, 98, 101, 102, 104, 110, 111, 113, 116, 122, 125, 137, 141, 144, 146, 147, 148, 155, 164, 168, 171, 172, 173, 174, 175, 185, 186, 191, 195, 205, 208, 212, 245, 246, 254, 255, 263], "known": [1, 4, 5, 12, 17, 42, 113, 124, 135, 137, 141, 143, 156, 160, 165, 185, 188, 200, 201, 207, 231, 234], "utd": [1, 136], "update_to_data": 1, "64": [1, 5, 6, 14, 15, 17, 18, 19, 20, 23, 34, 37, 38, 43, 49, 52, 60, 73, 87, 95, 97, 102, 104, 115, 119, 122, 123, 124, 126, 129, 134, 136, 138, 145, 146, 154, 158, 159, 161, 162, 164, 166, 173, 174, 175, 178, 184, 201, 203, 205, 207, 208, 219, 221, 231, 233, 238], "reproduc": [1, 12, 25, 52, 73, 97, 137, 144, 159, 163, 172, 185, 219, 231, 234, 247], "realiz": [1, 17, 201], "sever": [1, 2, 3, 10, 11, 15, 16, 19, 22, 25, 45, 47, 52, 53, 54, 61, 73, 78, 97, 99, 113, 122, 127, 132, 135, 142, 146, 149, 152, 153, 155, 157, 159, 161, 162, 168, 169, 172, 173, 174, 176, 177, 191, 200, 208, 219, 220, 223, 231, 252], "ve": [1, 5, 6, 7, 8, 17, 21, 22, 25, 45, 47, 50, 76, 78, 113, 121, 125, 129, 136, 142, 143, 145, 152, 154, 160, 162, 169, 176, 184, 189, 191, 192, 201, 213, 214, 231, 234, 257], "_must_": 1, "99": [1, 63, 64, 67, 68, 69, 71, 72, 111, 159, 160, 163], "lmbda": [1, 159], "tau": [1, 160], "001": [1, 12, 14, 24, 44, 51, 89, 92, 94, 96, 97, 103, 112, 117, 133, 149, 160, 161, 165, 168, 169, 220, 230, 241, 242, 243, 249, 250, 253], "decai": [1, 117, 136, 157, 160, 216], "factor": [1, 18, 20, 117, 129, 157, 160, 161, 172, 183, 184, 234], "off": [1, 7, 8, 9, 12, 16, 19, 21, 24, 34, 43, 49, 51, 52, 98, 112, 113, 117, 119, 123, 126, 127, 144, 152, 157, 159, 161, 162, 163, 171, 181, 187, 189, 213, 234, 256], "dictat": [1, 14], "introduc": [1, 11, 15, 16, 17, 21, 22, 23, 24, 42, 54, 60, 75, 78, 79, 87, 97, 99, 109, 118, 119, 121, 122, 133, 144, 147, 149, 152, 161, 163, 164, 165, 171, 172, 173, 174, 175, 177, 181, 182, 185, 186, 188, 189, 191, 192, 195, 197, 199, 200, 201, 203, 204, 205, 207, 209, 212, 216, 220, 222, 223, 244, 247, 255], "outdat": 1, "trick": [1, 6, 10, 49, 130, 135, 145], "multi": [1, 5, 6, 14, 18, 47, 49, 52, 53, 54, 55, 56, 61, 77, 99, 113, 121, 122, 124, 131, 132, 133, 134, 136, 137, 149, 159, 161, 164, 168, 177, 178, 185, 193, 214, 215, 247], "altern": [1, 6, 10, 23, 48, 49, 102, 113, 117, 123, 138, 143, 147, 155, 157, 159, 165, 168, 171, 172, 182, 184, 192, 199, 209, 244, 247, 255], "hack": [1, 137, 185, 189, 244], "find": [1, 2, 4, 5, 6, 8, 10, 17, 22, 23, 48, 52, 73, 82, 83, 85, 87, 98, 101, 121, 123, 127, 128, 135, 137, 141, 142, 144, 149, 153, 157, 160, 163, 165, 168, 173, 174, 183, 189, 190, 191, 192, 195, 197, 200, 201, 204, 208, 213, 221, 222, 223, 226, 229, 231, 245, 252], "despit": [1, 73, 133], "fact": [1, 3, 5, 6, 8, 12, 14, 19, 22, 23, 60, 73, 80, 97, 99, 103, 113, 125, 153, 159, 160, 169], "part": [1, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 20, 23, 42, 43, 45, 49, 52, 58, 59, 60, 73, 76, 87, 98, 100, 103, 113, 116, 118, 121, 122, 124, 125, 128, 130, 131, 134, 135, 136, 137, 139, 143, 144, 149, 152, 153, 159, 165, 173, 174, 181, 182, 183, 184, 186, 188, 189, 191, 196, 198, 204, 208, 209, 213, 216, 221, 222, 223, 226, 229, 230, 234, 244, 252, 254, 260, 261, 262], "thank": [1, 9, 19, 49, 104, 115, 119, 126, 127, 128, 135, 137, 165, 176, 177, 185, 187, 188, 195, 204, 222], "hardupd": 1, "softupd": [1, 136], "appropri": [1, 6, 7, 8, 42, 49, 60, 126, 127, 133, 153, 157, 162, 169, 175, 182, 197, 198, 199, 213, 219, 220, 230], "locat": [1, 6, 31, 48, 78, 80, 82, 103, 109, 113, 135, 157, 159, 165, 168, 173, 174, 176, 178, 188, 204, 222, 223, 226, 238, 247, 257], "target_net_updat": 1, "ep": [1, 13, 73, 118, 129, 136, 142, 163, 173, 174, 179, 189, 198, 200, 201, 218], "adam": [1, 6, 11, 13, 14, 47, 49, 52, 69, 96, 97, 99, 110, 111, 118, 135, 136, 146, 148, 152, 159, 160, 161, 163, 165, 172, 210, 211, 214, 258], "optimizer_actor": 1, "lr": [1, 7, 11, 14, 16, 19, 24, 37, 38, 43, 44, 47, 49, 52, 65, 67, 69, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 110, 111, 112, 115, 117, 118, 122, 123, 129, 133, 134, 135, 136, 144, 146, 148, 149, 157, 159, 160, 161, 162, 163, 165, 166, 168, 169, 178, 210, 214, 216, 220, 221, 230, 237, 241, 242, 243, 245, 249, 250, 251, 253, 258], "1e": [1, 13, 17, 20, 37, 38, 43, 63, 65, 67, 68, 69, 71, 72, 87, 93, 98, 111, 118, 125, 126, 129, 138, 150, 154, 157, 159, 160, 161, 163, 179, 189, 201, 218, 237], "weight_decai": [1, 98, 112, 157, 178, 216], "optimizer_valu": 1, "total_collection_step": 1, "pretti": [1, 16, 21, 44, 109, 113, 126, 145, 163, 182, 205], "rewards_ev": 1, "collected_fram": 1, "pbar": [1, 14, 136, 159], "r0": [1, 122], "enumer": [1, 7, 17, 19, 37, 38, 44, 49, 51, 52, 75, 87, 92, 94, 96, 98, 103, 115, 117, 123, 124, 127, 129, 136, 157, 158, 159, 162, 165, 166, 168, 169, 193, 201, 220, 221, 250, 253], "update_policy_weights_": 1, "numel": [1, 7, 8, 78, 97, 125, 129, 136, 147, 150, 159, 161, 189, 246, 254], "extend": [1, 4, 5, 6, 8, 19, 24, 52, 58, 59, 61, 87, 105, 106, 107, 113, 121, 123, 128, 134, 136, 158, 159, 162, 163, 171, 175, 177, 179, 186, 199, 208, 220, 221, 247], "current_fram": 1, "_": [1, 5, 11, 12, 14, 15, 16, 19, 21, 33, 34, 35, 36, 37, 40, 44, 48, 49, 52, 60, 75, 80, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 106, 111, 115, 117, 118, 134, 135, 136, 137, 138, 139, 142, 144, 145, 147, 149, 150, 152, 157, 159, 160, 161, 163, 164, 165, 169, 172, 176, 177, 181, 182, 184, 185, 195, 197, 198, 199, 204, 210, 211, 212, 213, 219, 229, 230, 234, 237, 256, 258, 262], "rang": [1, 5, 6, 7, 9, 11, 12, 14, 16, 17, 18, 19, 21, 25, 34, 37, 38, 42, 44, 49, 51, 52, 53, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 82, 85, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 111, 113, 115, 116, 117, 118, 122, 123, 126, 127, 128, 129, 134, 135, 136, 137, 138, 142, 144, 146, 149, 152, 154, 157, 158, 159, 160, 161, 163, 164, 165, 166, 168, 169, 172, 173, 174, 176, 177, 178, 179, 181, 184, 185, 186, 193, 194, 195, 198, 201, 203, 209, 210, 211, 212, 215, 219, 221, 226, 229, 230, 234, 237, 238, 245, 247, 250, 254, 258], "sampled_tensordict": 1, "backward": [1, 2, 3, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 25, 32, 37, 38, 43, 44, 45, 47, 49, 52, 61, 63, 64, 65, 67, 68, 69, 73, 75, 76, 87, 89, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 111, 115, 117, 118, 121, 123, 124, 125, 127, 128, 131, 133, 134, 135, 136, 141, 145, 146, 149, 150, 154, 157, 159, 160, 161, 162, 163, 165, 166, 168, 169, 172, 173, 174, 191, 198, 210, 211, 212, 214, 216, 220, 221, 230, 238, 245, 247, 250, 253, 258], "gn1": 1, "clip_grad_norm_": [1, 7, 14, 49, 115, 159, 230], "zero_grad": [1, 3, 6, 7, 12, 14, 19, 37, 38, 44, 47, 49, 52, 65, 67, 68, 69, 73, 75, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 111, 115, 117, 118, 122, 123, 127, 128, 129, 133, 135, 136, 146, 149, 152, 157, 159, 160, 161, 163, 165, 166, 168, 169, 172, 198, 214, 220, 221, 230, 245, 250, 253], "gn2": 1, "gn": [1, 14], "prioriti": [1, 8, 182], "update_tensordict_prior": 1, "td_record": 1, "r_evalu": 1, "len": [1, 7, 9, 12, 14, 17, 19, 34, 37, 38, 45, 47, 49, 51, 52, 55, 60, 73, 75, 79, 87, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 115, 116, 117, 118, 122, 123, 125, 127, 128, 129, 135, 137, 142, 149, 157, 160, 161, 162, 165, 166, 169, 171, 175, 178, 181, 185, 200, 201, 209, 215, 216, 221], "rn": 1, "rs": [1, 165], "std": [1, 2, 4, 5, 6, 12, 15, 19, 22, 23, 51, 58, 59, 73, 90, 92, 95, 97, 117, 149, 155, 157, 158, 163, 166, 171, 182, 186, 187, 189, 197, 198, 204, 208, 220, 222, 229, 231, 256], "set_descript": [1, 14, 136, 159], "2f": [1, 7, 19, 97, 115, 119, 123, 127, 129, 156, 158, 161, 163, 176, 177, 182, 184, 197, 198, 203, 228, 231, 234], "grad": [1, 2, 6, 12, 13, 16, 32, 43, 47, 63, 64, 68, 73, 76, 78, 89, 101, 104, 111, 123, 125, 127, 128, 129, 130, 133, 135, 141, 145, 150, 152, 159, 161, 162, 163, 189, 205, 211, 216, 230, 250], "norm": [1, 2, 14, 17, 19, 52, 78, 89, 97, 110, 121, 124, 153, 156, 159, 171, 182, 195, 201], "shutdown": [1, 16, 134, 161, 162, 163, 212], "del": [1, 44, 129, 141, 152, 159, 184, 186, 237], "plot": [1, 6, 12, 14, 17, 51, 52, 73, 82, 89, 113, 117, 126, 136, 146, 149, 159, 160, 161, 166, 169, 171, 195, 236], "mention": [1, 5, 6, 10, 11, 15, 16, 52, 60, 73, 85, 95, 97, 98, 112, 123, 124, 135, 136, 160, 162, 168, 171, 185, 197, 226, 237, 244], "greater": [1, 11, 49, 52, 125, 176, 188, 206], "matplotlib": [1, 6, 12, 14, 34, 44, 51, 52, 57, 73, 75, 89, 90, 92, 94, 96, 104, 117, 127, 128, 136, 146, 149, 157, 159, 160, 165, 166, 169, 171, 178, 195, 236], "pyplot": [1, 6, 12, 14, 34, 44, 51, 52, 73, 75, 89, 90, 92, 94, 96, 104, 117, 127, 128, 136, 146, 149, 157, 159, 160, 165, 166, 169, 171, 178, 195, 236], "plt": [1, 6, 12, 14, 34, 44, 51, 52, 73, 75, 89, 90, 92, 94, 96, 117, 127, 128, 136, 146, 149, 157, 159, 160, 165, 166, 169, 171, 178, 195, 236], "zip": [1, 6, 17, 18, 44, 49, 50, 52, 104, 105, 108, 112, 116, 128, 137, 138, 150, 154, 160, 161, 163, 169, 171, 178, 181, 185, 201, 208, 216, 223, 230], "label": [1, 6, 17, 34, 40, 43, 44, 51, 52, 58, 59, 73, 75, 78, 87, 90, 92, 94, 96, 97, 99, 103, 109, 110, 113, 115, 117, 119, 122, 124, 127, 133, 134, 137, 146, 149, 157, 158, 161, 165, 168, 169, 178, 185, 201, 208, 213, 221, 226, 231, 234, 236, 238, 250, 251, 258, 262], "legend": [1, 52, 146, 262], "xlabel": [1, 14, 52, 73, 136, 160, 171], "ylabel": [1, 17, 52, 73, 160, 171], "tight_layout": [1, 51, 73, 149, 157], "concret": [1, 5, 6, 8, 11, 149, 159, 189, 200], "takeawai": [1, 114], "further": [1, 4, 5, 6, 8, 19, 21, 23, 47, 61, 73, 87, 97, 113, 116, 118, 124, 127, 142, 144, 149, 156, 159, 171, 172, 177, 184, 193, 195, 196, 197, 198, 199, 204, 216, 220, 222, 228, 237, 247, 252, 253], "dispatch": [1, 5, 15, 121, 155, 177, 207, 208, 219, 230], "distpatch": 1, "iql": 1, "flexibl": [1, 2, 5, 6, 23, 24, 25, 49, 60, 85, 105, 112, 115, 121, 122, 131, 199, 231, 240, 257], "minut": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 158, 159, 160, 164, 165, 166, 168, 169, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "000": [1, 7, 9, 12, 13, 14, 17, 19, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 169, 171, 172, 174, 176, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "coding_ddpg": 1, "jupyt": [1, 7, 9, 12, 13, 14, 17, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 169, 171, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "notebook": [1, 7, 9, 12, 13, 14, 17, 18, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 169, 171, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255, 257], "ipynb": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "galleri": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "sphinx": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255, 260, 261, 262, 263, 267], "build": [2, 6, 7, 12, 14, 19, 20, 25, 35, 47, 49, 60, 61, 65, 68, 69, 75, 76, 78, 81, 87, 91, 95, 98, 103, 109, 111, 113, 114, 115, 118, 120, 121, 127, 128, 134, 135, 136, 137, 139, 141, 152, 154, 159, 160, 161, 162, 163, 174, 175, 181, 182, 185, 187, 188, 193, 194, 196, 197, 199, 205, 220, 223, 224, 225, 231, 246, 247, 254, 261, 266], "highli": [2, 5, 6, 10, 18, 49, 60, 87, 165, 175, 177, 205, 247], "dynam": [2, 4, 5, 6, 8, 12, 14, 15, 19, 20, 22, 23, 25, 43, 53, 61, 65, 97, 100, 107, 111, 112, 119, 121, 147, 156, 159, 179, 182, 183, 184, 196, 197, 198, 199, 208, 220, 221, 222, 230, 235, 247, 251, 254], "explor": [2, 6, 8, 14, 21, 23, 45, 49, 73, 108, 121, 126, 130, 136, 144, 146, 152, 159, 164, 165, 229, 254], "note": [2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 43, 44, 45, 47, 49, 50, 52, 61, 73, 85, 99, 100, 101, 102, 103, 108, 109, 112, 113, 116, 117, 122, 123, 124, 125, 126, 129, 130, 132, 133, 134, 135, 137, 138, 141, 142, 144, 145, 147, 149, 152, 154, 155, 156, 157, 161, 162, 163, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 185, 187, 188, 189, 190, 191, 192, 193, 197, 198, 199, 201, 202, 203, 204, 205, 207, 212, 214, 215, 216, 222, 238, 247, 252, 257, 258, 260, 262], "differenti": [2, 5, 6, 14, 18, 25, 35, 40, 46, 47, 57, 76, 121, 136, 154, 160, 166, 191], "requires_grad": [2, 6, 7, 8, 12, 13, 20, 32, 37, 43, 47, 63, 64, 68, 73, 76, 89, 95, 101, 104, 105, 108, 110, 111, 117, 125, 129, 130, 141, 146, 147, 157, 178, 191, 201, 205, 237, 244, 250], "track": [2, 5, 7, 8, 9, 14, 43, 52, 63, 82, 99, 101, 110, 111, 117, 122, 127, 128, 132, 136, 142, 157, 163, 165, 168, 208, 238, 245, 257], "auto": [2, 3, 5, 6, 8, 10, 12, 22, 55, 59, 122, 123, 144, 155, 186, 187, 188, 206, 208, 220, 221, 231, 246, 262, 263], "cout": [2, 4, 6, 22, 23, 187, 256], "endl": [2, 6, 22, 23, 187, 208], "cpufloattyp": [2, 4, 6, 23, 208], "wa": [2, 3, 4, 5, 11, 17, 20, 22, 23, 25, 42, 44, 49, 51, 52, 58, 59, 60, 61, 73, 76, 79, 95, 97, 98, 99, 101, 108, 112, 113, 115, 116, 123, 124, 126, 133, 135, 146, 150, 152, 153, 154, 156, 158, 159, 160, 163, 164, 165, 169, 176, 177, 184, 188, 191, 192, 198, 201, 208, 223, 226, 230, 231, 234, 238, 257, 262], "result": [2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 23, 24, 25, 43, 44, 51, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 82, 83, 87, 97, 101, 107, 108, 111, 112, 114, 116, 119, 122, 124, 125, 128, 133, 135, 136, 137, 141, 142, 143, 144, 145, 146, 147, 149, 150, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 182, 184, 188, 190, 191, 192, 193, 195, 197, 198, 199, 200, 202, 203, 204, 205, 206, 208, 209, 210, 212, 218, 219, 221, 222, 223, 228, 233, 234, 237, 238, 241, 244, 246, 247, 251, 252, 256, 258, 260], "grad_fn": [2, 4, 25, 32, 43, 47, 76, 89, 101, 125, 130, 173, 185], "addbackward1": 2, "z": [2, 5, 7, 23, 32, 43, 49, 52, 60, 76, 80, 85, 89, 92, 95, 101, 147, 165, 174, 191, 203, 208, 255, 263], "27": [2, 7, 51, 144, 163, 176, 184, 219, 228, 231], "mulbackward1": 2, "meanbackward0": 2, "requires_grad_": [2, 12, 32, 76, 101, 104, 145], "flag": [2, 5, 14, 23, 43, 73, 76, 101, 137, 150, 153, 165, 174, 176, 185, 196, 198, 204, 237], "place": [2, 5, 6, 11, 12, 14, 18, 22, 23, 43, 45, 48, 49, 52, 76, 78, 85, 99, 101, 108, 113, 116, 118, 122, 126, 129, 133, 135, 138, 148, 149, 152, 154, 156, 157, 159, 160, 165, 171, 172, 175, 182, 189, 197, 198, 199, 205, 208, 212, 213, 214, 230, 237, 244, 247, 252, 262, 263, 264], "randn": [2, 5, 6, 12, 13, 20, 23, 32, 45, 47, 52, 63, 65, 67, 71, 72, 76, 78, 80, 89, 97, 98, 99, 101, 102, 104, 105, 108, 110, 111, 125, 133, 134, 138, 141, 142, 143, 144, 145, 149, 150, 154, 161, 163, 164, 172, 173, 174, 184, 186, 191, 193, 197, 198, 199, 205, 208, 212, 230, 231, 232, 234, 238, 239, 245, 254, 258], "b": [2, 5, 6, 7, 12, 18, 21, 23, 32, 43, 47, 63, 64, 65, 67, 71, 72, 76, 80, 83, 89, 92, 93, 95, 98, 99, 102, 103, 104, 109, 110, 111, 125, 127, 128, 129, 142, 144, 145, 147, 149, 158, 160, 172, 174, 191, 193, 194, 203, 209, 231, 238, 246, 263], "sumbackward0": 2, "backprop": [2, 43, 71, 72, 76, 98, 101, 111, 127, 146], "scalar": [2, 5, 14, 15, 23, 32, 43, 49, 52, 60, 63, 76, 101, 111, 169, 197, 206], "equival": [2, 4, 5, 11, 13, 17, 22, 23, 32, 43, 99, 137, 141, 154, 160, 162, 171, 173, 174, 185, 186, 189, 191, 193, 198, 199, 200, 201, 247, 255, 256], "print": [2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 34, 37, 38, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 58, 59, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 201, 203, 206, 208, 209, 210, 211, 212, 214, 215, 218, 219, 220, 221, 223, 228, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 244, 246, 247, 249, 250, 252, 254, 255, 256, 258, 262], "dx": [2, 64, 76, 99, 111, 130, 174], "got": [2, 15, 19, 55, 98, 99, 101, 113, 133, 146, 147, 155, 162, 188, 197, 200, 213, 262], "matrix": [2, 5, 6, 12, 17, 23, 32, 40, 43, 48, 82, 92, 98, 99, 101, 103, 109, 110, 124, 127, 128, 145, 150, 153, 164, 165, 166, 171, 173, 174, 176, 177, 192, 193, 199, 201, 205, 219, 220, 221, 226, 247, 251], "explan": [2, 52, 61, 160, 169, 237], "arriv": [2, 6, 15, 23, 42, 113, 122, 133, 161, 208, 247], "valu": [2, 4, 5, 6, 7, 9, 12, 14, 18, 19, 20, 21, 22, 23, 25, 32, 33, 40, 41, 43, 47, 48, 49, 50, 55, 58, 59, 60, 61, 63, 68, 73, 80, 82, 85, 87, 92, 97, 98, 99, 101, 102, 103, 105, 108, 111, 113, 115, 124, 125, 126, 127, 129, 132, 133, 135, 137, 138, 139, 141, 143, 146, 149, 150, 154, 155, 156, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 175, 182, 183, 185, 187, 189, 190, 191, 192, 193, 195, 196, 197, 198, 200, 203, 204, 208, 209, 211, 213, 216, 222, 229, 230, 231, 234, 238, 244, 245, 258, 260], "section": [2, 4, 5, 6, 7, 8, 11, 15, 18, 19, 21, 23, 43, 44, 47, 50, 51, 52, 73, 95, 97, 98, 99, 102, 103, 108, 113, 116, 118, 125, 129, 135, 139, 141, 144, 146, 150, 157, 160, 161, 163, 168, 171, 173, 176, 177, 178, 179, 182, 188, 190, 191, 200, 202, 207, 211, 213, 220, 226, 230, 231, 237, 247, 260, 262, 263, 264, 266], "jacobian": [2, 43, 89, 121, 141, 205], "product": [2, 3, 4, 6, 12, 40, 42, 43, 48, 60, 61, 85, 99, 105, 113, 121, 122, 135, 139, 141, 165, 175, 176, 177, 185, 199, 200, 205, 209, 231, 234, 251, 254, 257], "1021": 2, "4020": 2, "314": 2, "6695": 2, "613": [2, 219], "4944": [2, 208], "0001": [2, 19, 49, 87, 89, 118, 144, 221], "kfloat": [2, 3, 59, 186, 188, 206], "102": 2, "4000": [2, 49, 60, 92, 246], "1024": [2, 5, 18, 21, 42, 82, 97, 129, 147, 164, 184, 199, 208, 210, 211, 231, 239], "0000": [2, 23, 173, 201, 208, 263], "stop": [2, 4, 5, 23, 51, 58, 59, 76, 78, 87, 98, 101, 110, 126, 128, 135, 147, 152, 159, 161, 165, 168, 238], "histori": [2, 9, 47, 48, 101, 110, 113, 117, 128, 146, 156, 157, 165, 181], "nogradguard": [2, 256], "block": [2, 5, 6, 7, 8, 10, 12, 16, 17, 19, 22, 23, 47, 49, 75, 76, 82, 90, 101, 115, 116, 123, 124, 134, 135, 136, 144, 157, 161, 162, 163, 164, 168, 171, 184, 201, 207, 208, 212, 247, 266], "no_grad": [2, 7, 9, 12, 17, 19, 32, 37, 38, 42, 43, 44, 52, 58, 59, 63, 64, 68, 76, 87, 89, 92, 96, 97, 98, 99, 101, 102, 104, 110, 111, 115, 117, 122, 123, 127, 128, 129, 136, 137, 144, 146, 157, 158, 159, 160, 162, 165, 166, 169, 172, 174, 177, 178, 181, 182, 184, 185, 194, 197, 198, 199, 202, 216, 220, 247, 253, 256], "Or": [2, 21, 23, 152, 163, 179, 198, 206, 208, 262], "eq": [2, 19, 23, 49, 60, 95, 123, 129, 162, 166, 173, 182, 197, 198, 221, 238, 262], "bool": [2, 11, 14, 15, 17, 23, 95, 109, 118, 137, 143, 146, 155, 159, 160, 164, 171, 179, 185, 190, 192, 201, 208, 252, 260], "is_leaf": 2, "detach_": [2, 163], "register_hook": 2, "retain_grad": 2, "doc": [2, 4, 6, 32, 33, 34, 37, 38, 40, 60, 69, 94, 104, 109, 111, 132, 135, 142, 143, 161, 163, 171, 174, 181, 193, 205, 226, 230, 245, 260, 261, 262, 267], "calcul": [2, 12, 17, 43, 44, 49, 52, 56, 60, 73, 82, 85, 87, 97, 110, 127, 128, 137, 143, 146, 160, 161, 163, 164, 165, 171, 177, 182, 191, 193, 197, 200, 201, 215, 221], "penalti": [2, 153, 158, 230], "h": [2, 4, 5, 6, 7, 8, 9, 10, 12, 22, 23, 25, 38, 49, 51, 96, 124, 129, 137, 144, 146, 147, 155, 178, 181, 185, 188, 208, 213, 220, 222, 225, 246, 256], "model": [2, 3, 5, 8, 11, 14, 16, 22, 23, 24, 33, 35, 37, 38, 39, 42, 43, 44, 47, 48, 52, 53, 54, 56, 61, 65, 67, 68, 69, 75, 78, 86, 87, 89, 90, 91, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108, 109, 110, 111, 116, 118, 119, 120, 121, 123, 126, 127, 128, 129, 132, 135, 139, 141, 142, 144, 145, 148, 152, 153, 154, 158, 159, 160, 161, 162, 163, 164, 172, 173, 174, 176, 177, 183, 184, 186, 193, 196, 199, 200, 201, 204, 205, 207, 212, 213, 214, 215, 216, 219, 222, 227, 228, 230, 235, 237, 239, 241, 242, 243, 244, 245, 248, 249, 250, 251, 253, 254, 258], "linear": [2, 5, 6, 7, 9, 11, 16, 17, 19, 25, 37, 38, 43, 44, 45, 47, 48, 49, 60, 68, 69, 73, 78, 79, 87, 89, 92, 93, 94, 96, 97, 98, 100, 102, 103, 105, 109, 110, 111, 112, 115, 117, 118, 119, 123, 124, 125, 127, 128, 129, 133, 134, 137, 138, 141, 144, 145, 146, 148, 149, 150, 153, 154, 156, 157, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 177, 179, 181, 182, 184, 185, 189, 193, 195, 197, 198, 199, 200, 201, 202, 203, 205, 207, 209, 210, 211, 212, 214, 215, 218, 219, 220, 221, 223, 226, 228, 230, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 248, 249, 250, 252, 258], "loss": [2, 3, 5, 6, 7, 9, 11, 14, 16, 17, 19, 32, 38, 43, 48, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 87, 89, 92, 94, 96, 99, 102, 103, 104, 111, 112, 115, 117, 118, 121, 122, 123, 125, 127, 129, 134, 135, 146, 147, 148, 149, 152, 154, 157, 160, 162, 163, 165, 166, 168, 169, 172, 178, 181, 182, 188, 191, 197, 198, 201, 216, 220, 221, 234, 241, 245, 250, 253, 258], "target": [2, 3, 4, 6, 9, 12, 14, 16, 18, 19, 22, 23, 44, 47, 49, 55, 60, 73, 78, 90, 94, 97, 98, 99, 102, 103, 104, 113, 116, 118, 123, 127, 128, 129, 134, 135, 136, 138, 142, 144, 152, 154, 155, 158, 160, 161, 162, 163, 165, 166, 169, 171, 172, 173, 174, 178, 179, 181, 182, 188, 197, 198, 199, 200, 204, 206, 208, 220, 221, 222, 225, 226, 229, 230, 231, 234, 253, 256], "mseloss": [2, 12, 37, 47, 65, 67, 68, 69, 78, 97, 110, 111, 133, 134, 149, 161, 214, 230, 245, 258], "grad_output": [2, 8, 10, 13, 64, 76, 78, 111], "ones_lik": [2, 32, 40, 48, 95, 142, 191], "create_graph": [2, 130], "gradient_penalti": 2, "dim": [2, 4, 5, 11, 14, 21, 33, 40, 41, 45, 48, 49, 60, 73, 90, 92, 93, 94, 96, 97, 99, 102, 103, 104, 110, 115, 118, 123, 127, 128, 129, 134, 144, 147, 148, 149, 154, 156, 158, 159, 161, 162, 163, 164, 165, 166, 169, 171, 173, 174, 190, 191, 192, 193, 203, 206, 219, 221, 233, 256], "combined_loss": 2, "1042": 2, "0638": 2, "0103": 2, "0723": 2, "2543": 2, "1222": 2, "0071": 2, "0814": 2, "1683": 2, "1052": 2, "0355": 2, "document": [2, 4, 5, 6, 20, 47, 52, 60, 61, 79, 82, 85, 87, 101, 112, 113, 117, 121, 133, 135, 136, 139, 141, 143, 144, 157, 162, 163, 164, 168, 171, 172, 173, 174, 176, 177, 178, 179, 191, 197, 199, 205, 206, 209, 213, 214, 218, 220, 221, 228, 247, 252, 254, 255, 256, 257, 260, 262, 263, 267], "link": [2, 4, 5, 6, 10, 12, 22, 23, 52, 58, 59, 82, 105, 108, 114, 116, 118, 135, 139, 141, 191, 204, 206, 208, 220, 260, 261, 266], "subclass": [2, 5, 6, 14, 17, 25, 64, 67, 79, 111, 121, 126, 136, 146, 156, 162, 169, 178, 191, 193, 201, 219, 229, 230, 235, 251, 254, 256], "encod": [2, 7, 9, 14, 17, 42, 47, 48, 75, 76, 100, 104, 113, 118, 122, 126, 127, 128, 136, 153, 159, 163, 171, 178, 181, 184, 185, 195, 200, 201, 208, 230, 252], "method": [2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 19, 21, 23, 25, 44, 47, 49, 51, 55, 58, 59, 60, 64, 65, 67, 73, 79, 83, 85, 90, 95, 97, 99, 101, 111, 112, 113, 115, 120, 121, 126, 130, 133, 136, 137, 139, 141, 142, 143, 144, 145, 146, 149, 153, 154, 155, 156, 157, 159, 160, 161, 162, 169, 171, 172, 173, 174, 176, 182, 183, 189, 197, 198, 200, 201, 203, 208, 209, 213, 221, 223, 224, 225, 228, 229, 230, 245, 247, 262], "forward": [2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 25, 33, 37, 38, 43, 44, 45, 47, 49, 52, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79, 85, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 108, 111, 112, 115, 117, 118, 121, 122, 123, 124, 125, 127, 128, 129, 130, 131, 133, 134, 135, 138, 139, 142, 146, 148, 149, 150, 152, 153, 154, 156, 157, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 177, 179, 181, 182, 183, 185, 187, 188, 193, 194, 195, 197, 198, 199, 203, 204, 206, 208, 209, 211, 212, 213, 214, 215, 218, 219, 220, 221, 226, 228, 230, 233, 234, 237, 238, 239, 240, 241, 242, 243, 247, 248, 249, 250, 252, 256, 258], "detail": [2, 5, 6, 8, 10, 12, 15, 16, 20, 22, 23, 25, 43, 44, 45, 52, 53, 58, 59, 60, 61, 69, 73, 82, 83, 85, 111, 113, 116, 119, 123, 124, 126, 128, 129, 131, 133, 142, 144, 149, 150, 152, 157, 160, 163, 164, 168, 169, 172, 173, 174, 177, 179, 185, 188, 189, 190, 191, 192, 194, 198, 199, 205, 207, 208, 211, 213, 218, 219, 220, 224, 225, 226, 228, 229, 230, 231, 234, 237, 246, 247, 252, 257], "namespac": [2, 6, 8, 10, 22, 23, 108, 137, 155, 179, 185, 193, 208, 256], "inherit": [2, 11, 15, 22, 51, 60, 85, 99, 143, 146, 149, 159, 171, 178, 191, 193, 195, 199, 216], "linearfunct": 2, "public": [2, 8, 10, 15, 155, 208, 263], "static": [2, 8, 10, 14, 21, 58, 59, 60, 107, 121, 137, 141, 142, 155, 173, 174, 181, 183, 184, 185, 196, 197, 198, 199, 200, 208, 221, 247, 260], "option": [2, 5, 6, 8, 10, 11, 14, 23, 44, 46, 49, 51, 53, 60, 61, 82, 87, 97, 109, 120, 121, 126, 131, 134, 136, 138, 144, 147, 149, 156, 158, 171, 173, 174, 182, 183, 184, 185, 193, 194, 197, 198, 199, 200, 204, 209, 212, 216, 218, 227, 230, 231, 238, 251, 252, 253, 255, 262, 266], "autogradcontext": [2, 8, 10], "ctx": [2, 5, 8, 10, 13, 18, 64, 111, 129, 130, 141, 212], "save_for_backward": [2, 5, 13, 64, 111, 129, 130], "mm": [2, 5, 12, 59, 110, 137, 185, 186, 188, 194, 197, 206, 207, 222, 225], "expand_a": [2, 19, 182, 197, 198], "tensor_list": [2, 8, 10, 135], "get_saved_vari": 2, "grad_input": [2, 13, 78, 129, 130], "grad_weight": 2, "grad_bia": [2, 13], "Then": [2, 12, 15, 17, 20, 22, 24, 25, 44, 45, 52, 58, 59, 61, 73, 85, 98, 99, 102, 103, 114, 121, 123, 133, 134, 149, 152, 155, 156, 159, 160, 161, 163, 165, 168, 173, 174, 188, 195, 200, 201, 212, 215, 222, 224, 225, 228, 244], "5314": 2, "2807": 2, "4864": 2, "7608": 2, "9101": [2, 173], "0073": 2, "mulconst": [2, 78], "object": [2, 4, 5, 6, 7, 9, 10, 11, 14, 19, 20, 22, 23, 43, 49, 51, 52, 60, 61, 64, 68, 69, 75, 95, 97, 101, 110, 111, 112, 116, 117, 118, 121, 125, 129, 135, 136, 141, 142, 143, 145, 154, 155, 159, 160, 161, 162, 163, 164, 168, 169, 171, 173, 174, 177, 181, 182, 193, 197, 198, 200, 216, 220, 221, 223, 225, 229, 231, 244, 246, 247], "stash": [2, 64, 111], "saved_data": 2, "were": [2, 3, 5, 6, 9, 12, 17, 18, 23, 32, 52, 60, 83, 85, 97, 99, 101, 103, 113, 114, 126, 132, 133, 138, 147, 153, 159, 160, 162, 164, 165, 173, 174, 176, 189, 201, 204, 205, 226, 231, 234, 237, 238, 244], "todoubl": 2, "On": [2, 4, 5, 6, 8, 17, 19, 21, 22, 23, 115, 117, 122, 133, 135, 137, 147, 153, 156, 161, 162, 172, 177, 178, 201, 203, 208, 219, 226, 230, 247], "easiest": [2, 5, 9, 23, 121, 139, 145, 157, 159, 228, 247], "tabl": [2, 16, 21, 89, 103, 109, 115, 121, 122, 135, 137, 143, 144, 162, 163, 164, 168, 173, 174, 175, 219, 231, 238, 266], "set_data": 2, "output_nr": 2, "after": [2, 3, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 43, 45, 47, 49, 52, 53, 58, 59, 60, 61, 63, 64, 76, 79, 87, 97, 98, 99, 102, 103, 105, 110, 111, 112, 113, 115, 116, 122, 124, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 142, 144, 146, 147, 149, 152, 153, 155, 156, 157, 158, 159, 160, 162, 163, 165, 166, 168, 169, 173, 174, 176, 178, 179, 181, 182, 183, 185, 187, 188, 195, 197, 198, 199, 200, 201, 202, 203, 204, 206, 208, 213, 214, 223, 224, 225, 228, 230, 231, 234, 237, 238, 244, 245, 247, 252, 254, 257, 258], "bug": [2, 5, 10, 23, 108, 144, 186], "report": [2, 10, 17, 23, 52, 73, 87, 98, 121, 137, 144, 161, 163, 164, 186, 201, 238], "fix": [2, 14, 17, 20, 23, 24, 49, 50, 51, 52, 97, 108, 113, 125, 157, 161, 173, 174, 184, 201, 226, 247, 262], "soon": [2, 5, 52, 58, 59, 122, 147, 152, 198, 220], "overview": [2, 5, 6, 11, 53, 55, 61, 113, 119, 120, 121, 127, 128, 133, 134, 135, 142, 155, 159, 161, 162, 163, 165, 168, 189, 190, 192, 196, 207, 210, 227, 257], "alwai": [2, 3, 4, 6, 9, 14, 16, 18, 19, 22, 23, 49, 52, 99, 102, 103, 108, 113, 124, 125, 129, 135, 136, 137, 139, 158, 159, 160, 161, 163, 173, 178, 185, 187, 188, 189, 195, 204, 207, 222, 252, 262], "problem": [2, 4, 6, 11, 14, 15, 18, 22, 23, 49, 51, 52, 61, 98, 100, 103, 115, 117, 126, 136, 142, 144, 145, 149, 153, 157, 159, 161, 163, 168, 172, 176, 189, 191, 207, 231, 232, 237, 247, 262], "question": [2, 4, 5, 6, 8, 10, 17, 22, 23, 49, 75, 122, 135, 137, 143, 165, 183, 190, 200, 201, 207, 231], "forum": [2, 4, 5, 6, 22, 23, 44, 79, 110, 142, 143, 183, 207], "view": [3, 7, 9, 10, 11, 12, 14, 15, 16, 19, 25, 47, 49, 50, 52, 53, 55, 56, 61, 73, 78, 82, 92, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 110, 112, 118, 123, 124, 126, 127, 131, 132, 133, 134, 135, 141, 142, 143, 144, 149, 150, 155, 156, 160, 161, 162, 163, 164, 165, 166, 169, 173, 174, 181, 182, 183, 193, 197, 198, 206, 211, 214, 215, 226, 229, 239, 240, 241, 242, 243, 245, 248, 249, 250, 255, 260], "prerequisit": [3, 7, 53, 55, 56, 100, 108, 114, 124, 131, 132, 133, 134, 135, 136, 155, 161, 162, 163, 171, 197, 214, 215], "frontend": [3, 10, 84, 110, 121, 177, 186, 187, 193, 199, 220, 221, 253], "semant": [3, 6, 22, 49, 58, 59, 68, 95, 100, 102, 111, 135, 137, 191, 192, 193, 196, 205, 262], "11": [3, 5, 6, 7, 11, 17, 18, 23, 59, 61, 95, 104, 109, 122, 123, 141, 158, 163, 171, 172, 173, 174, 175, 194, 204, 208, 215, 219, 225, 227, 231, 238, 256, 262, 266], "nvidia": [3, 5, 17, 50, 95, 129, 135, 137, 147, 172, 201, 215, 230, 247, 251, 257], "toolkit": [3, 23, 100, 142, 146, 245], "releas": [3, 4, 6, 10, 17, 20, 23, 24, 42, 50, 105, 108, 109, 112, 122, 123, 125, 139, 142, 152, 162, 164, 168, 199, 201, 204, 208, 212, 219, 220, 221, 238, 247, 262], "greatli": [3, 6, 49, 160], "overhead": [3, 5, 6, 10, 17, 56, 82, 109, 122, 123, 124, 133, 145, 147, 149, 158, 161, 163, 164, 168, 172, 176, 177, 184, 186, 193, 199, 201, 231, 238, 247], "increas": [3, 5, 6, 18, 19, 20, 24, 44, 73, 82, 83, 87, 97, 122, 123, 124, 126, 128, 131, 134, 142, 152, 158, 168, 182, 184, 193, 194, 197, 209, 219, 229, 230, 231, 234, 247], "mostli": [3, 10, 19, 85, 97, 116, 127, 163, 165, 179, 197, 198, 199], "deploy": [3, 4, 25, 42, 60, 97, 112, 126, 177, 186, 199, 204, 220, 227, 228, 234, 251, 252, 257], "appear": [3, 11, 14, 22, 25, 103, 226, 229, 234, 262], "heart": [3, 49, 113, 219, 263], "veri": [3, 4, 5, 6, 8, 12, 14, 15, 18, 19, 21, 22, 23, 24, 25, 45, 47, 48, 49, 58, 59, 60, 61, 65, 73, 75, 76, 85, 99, 101, 113, 115, 117, 123, 124, 125, 127, 134, 135, 149, 152, 153, 157, 160, 161, 163, 164, 165, 166, 168, 169, 176, 178, 182, 189, 191, 195, 198, 205, 226, 234, 238, 247, 263, 264], "time": [3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 181, 182, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 201, 203, 204, 205, 206, 211, 212, 214, 219, 226, 228, 229, 230, 231, 232, 233, 234, 236, 237, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 254, 255, 256, 257, 260, 262], "compil": [3, 4, 6, 8, 10, 17, 21, 22, 25, 60, 85, 98, 108, 121, 135, 143, 173, 174, 175, 184, 186, 193, 199, 204, 207, 216, 220, 223, 231, 238, 247, 251, 253, 256, 260], "boost": [3, 97, 99, 144, 145, 176, 184, 199, 207, 216, 220, 221, 247], "demonstr": [3, 7, 9, 14, 16, 17, 20, 21, 22, 25, 42, 43, 50, 57, 61, 75, 82, 85, 108, 113, 120, 121, 122, 123, 124, 125, 127, 129, 130, 133, 134, 137, 138, 141, 142, 143, 144, 150, 155, 159, 161, 162, 163, 164, 168, 171, 173, 174, 177, 179, 184, 185, 186, 187, 188, 191, 193, 195, 198, 201, 202, 203, 204, 211, 214, 215, 218, 219, 221, 222, 224, 225, 228, 230, 231, 234, 237, 238, 252, 254, 255, 258, 262, 263, 264], "mnist": [3, 6, 34, 44, 47, 73, 78, 92, 94, 96, 119, 120, 121, 123, 126, 129, 135, 138, 148, 154, 162, 166, 169, 221, 233], "libtorch": [3, 6, 22, 23, 187, 204, 206, 208, 220, 222, 225, 251, 256], "counterpart": [3, 17, 108, 134, 144, 195, 201, 215, 220, 247, 252], "depict": 3, "chunk": [3, 5, 7, 55, 135, 152, 164], "batch": [3, 5, 6, 9, 12, 16, 17, 19, 21, 34, 37, 38, 39, 42, 44, 45, 47, 49, 51, 52, 53, 55, 56, 60, 61, 73, 75, 78, 79, 82, 87, 90, 92, 94, 97, 102, 104, 110, 112, 113, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 131, 134, 135, 136, 137, 138, 139, 146, 147, 148, 149, 150, 152, 154, 157, 158, 159, 160, 162, 163, 164, 166, 168, 169, 171, 172, 173, 174, 175, 177, 178, 181, 182, 184, 185, 191, 193, 196, 198, 201, 204, 205, 213, 221, 223, 230, 231, 239, 241, 242, 243], "data_load": [3, 6, 19, 178, 182, 197, 198, 199, 236], "nll_loss": [3, 73, 123, 129, 135, 148, 154, 162, 166, 221], "updat": [3, 6, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 42, 43, 44, 49, 51, 52, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 82, 97, 98, 99, 102, 103, 110, 111, 112, 117, 122, 123, 126, 129, 136, 137, 139, 147, 152, 159, 160, 162, 163, 168, 178, 182, 185, 189, 197, 198, 199, 200, 201, 204, 207, 210, 214, 216, 218, 221, 222, 228, 230, 244, 258], "captur": [3, 4, 6, 22, 23, 25, 52, 60, 107, 123, 141, 148, 158, 171, 172, 173, 174, 186, 194, 197, 198, 200, 231], "But": [3, 6, 8, 10, 20, 42, 44, 45, 52, 73, 78, 101, 103, 116, 125, 147, 152, 153, 154, 160, 173, 174, 176, 178, 182, 185, 189, 192, 200, 205, 218, 221, 223, 228, 231, 252, 262], "slightli": [3, 5, 14, 23, 122, 135, 136, 158, 165, 173, 174, 192, 231, 247], "prealloc": [3, 14], "reus": [3, 10, 65, 78, 111, 130, 137, 141, 153, 160, 176, 177, 185, 187, 247], "tensoropt": [3, 186], "floatcuda": 3, "dtype": [3, 7, 8, 9, 10, 13, 14, 15, 38, 40, 41, 48, 49, 51, 52, 60, 63, 64, 72, 78, 80, 85, 89, 92, 95, 98, 101, 102, 103, 109, 111, 115, 119, 127, 129, 130, 137, 141, 144, 146, 147, 150, 160, 164, 165, 166, 173, 174, 175, 178, 179, 185, 186, 189, 190, 191, 192, 193, 195, 197, 199, 200, 206, 209, 218, 220, 223, 228, 230, 234, 237, 244, 247, 252, 253], "longcuda": 3, "klong": 3, "zero": [3, 6, 7, 11, 16, 17, 19, 25, 32, 40, 41, 44, 47, 48, 49, 60, 63, 64, 65, 67, 68, 69, 73, 78, 87, 92, 95, 98, 99, 103, 104, 110, 111, 117, 118, 122, 123, 127, 128, 134, 135, 136, 141, 144, 149, 150, 153, 155, 156, 157, 160, 161, 163, 165, 169, 178, 181, 185, 189, 191, 192, 194, 200, 201, 209, 221, 223, 230, 235, 238, 246, 247, 252, 255, 258], "ktrainbatchs": 3, "28": [3, 6, 7, 17, 33, 34, 37, 38, 47, 78, 93, 94, 104, 138, 148, 154, 169, 176, 201, 203, 204, 208, 219, 221, 223, 231, 233, 246], "training_step": [3, 148], "void": [3, 5, 6, 15, 22, 23, 59, 144, 155, 186, 188, 208, 231, 238, 246], "cudagraph": 3, "cudastream": 3, "capturestream": 3, "getstreamfrompool": 3, "setcurrentcudastream": 3, "capture_begin": 3, "capture_end": 3, "warm": [3, 21, 70, 103, 109, 168, 172, 176, 177, 193, 203, 219, 231, 238, 247], "side": [3, 20, 51, 52, 82, 103, 138, 147, 152, 154, 155, 160, 161, 166, 168, 188, 226, 260], "prepar": [3, 11, 17, 19, 25, 44, 51, 52, 58, 59, 68, 69, 102, 103, 111, 112, 116, 134, 137, 138, 152, 155, 159, 161, 181, 185, 193, 195, 196, 199, 200, 201, 204, 209, 212, 218, 222, 227, 228, 238, 251], "cach": [3, 64, 111, 137, 144, 168, 176, 177, 184, 185, 247], "cubla": [3, 231], "cudnn": [3, 5, 78, 117, 129, 136, 147, 150, 230], "warmupstream": 3, "int": [3, 4, 5, 6, 9, 11, 14, 18, 19, 22, 23, 24, 51, 53, 55, 58, 59, 60, 75, 85, 87, 98, 109, 115, 118, 122, 123, 126, 135, 137, 144, 146, 148, 155, 156, 161, 162, 163, 164, 168, 172, 173, 174, 178, 181, 185, 188, 193, 206, 208, 209, 213, 215, 220, 223, 252, 256, 260], "num_warmup_it": 3, "success": [3, 6, 14, 23, 73, 101, 103, 126, 144, 165, 188, 204, 206, 226], "replai": [3, 14, 25, 76, 146], "spin": [3, 60, 176], "ordinari": [3, 194], "epoch": [3, 6, 7, 9, 16, 19, 24, 37, 38, 44, 52, 53, 55, 75, 87, 92, 94, 96, 97, 98, 99, 102, 103, 104, 112, 115, 117, 118, 122, 123, 126, 129, 135, 147, 148, 152, 157, 159, 163, 165, 166, 169, 178, 198, 221, 230, 241, 245, 250], "59584": 3, "60000": [3, 135], "3921": 3, "2051": 3, "accuraci": [3, 9, 17, 19, 20, 24, 37, 38, 44, 92, 97, 104, 115, 119, 120, 121, 122, 123, 126, 129, 148, 150, 156, 157, 158, 162, 166, 169, 171, 177, 182, 185, 194, 195, 198, 199, 201, 218, 219, 227, 228, 230, 245, 251], "938": [3, 6, 147], "1826": 3, "1273": 3, "960": 3, "1796": 3, "1012": [3, 147], "968": 3, "1603": 3, "0869": 3, "973": 3, "2315": 3, "0736": 3, "978": 3, "0511": [3, 185], "0704": 3, "977": [3, 147, 219], "0802": 3, "0654": 3, "979": 3, "0774": 3, "0604": 3, "980": [3, 176], "0669": 3, "0544": 3, "984": [3, 219], "0219": 3, "0517": 3, "983": 3, "real": [3, 6, 14, 20, 32, 52, 54, 58, 97, 98, 99, 100, 103, 121, 123, 126, 127, 128, 135, 136, 149, 152, 155, 158, 160, 165, 172, 176, 191, 193, 197, 200, 218, 219, 231, 234], "0m44": 3, "287": [3, 177, 262], "018": 3, "0m1": 3, "116": [3, 185], "produc": [3, 4, 5, 6, 11, 22, 23, 25, 60, 68, 97, 111, 113, 115, 126, 136, 138, 141, 143, 145, 147, 149, 159, 160, 165, 171, 173, 174, 179, 182, 183, 185, 197, 198, 199, 206, 214, 230, 234, 247, 262], "4092": 3, "2037": 3, "2039": 3, "1274": 3, "961": 3, "1779": 3, "1017": 3, "1559": 3, "0871": 3, "972": 3, "2240": 3, "0735": [3, 201], "0520": 3, "0710": 3, "0935": 3, "0666": [3, 23], "0744": 3, "0603": 3, "981": 3, "0762": 3, "0547": 3, "0207": 3, "0525": [3, 208], "0m6": 3, "952": [3, 144], "0m7": 3, "048": [3, 207], "0m0": 3, "619": 3, "gain": [3, 5, 17, 82, 145, 154, 168, 176, 201], "six": [3, 159, 166, 262], "kind": [3, 5, 6, 19, 23, 44, 47, 49, 58, 59, 73, 98, 102, 112, 119, 121, 137, 173, 177, 197, 252], "larg": [3, 5, 6, 7, 12, 16, 17, 18, 23, 42, 49, 87, 97, 102, 103, 105, 117, 120, 121, 122, 123, 126, 129, 133, 135, 138, 139, 149, 150, 159, 160, 162, 163, 164, 171, 172, 176, 177, 178, 191, 199, 201, 202, 210, 219, 223, 230, 238, 239, 247, 257, 260, 262], "improv": [3, 5, 6, 8, 10, 17, 19, 21, 24, 42, 49, 56, 97, 108, 120, 121, 122, 123, 124, 129, 142, 145, 147, 149, 153, 154, 157, 160, 164, 165, 171, 172, 176, 177, 184, 185, 194, 197, 200, 201, 204, 207, 210, 212, 216, 218, 220, 222, 230, 231, 245, 247, 253, 254, 263], "due": [3, 5, 6, 17, 18, 22, 52, 58, 60, 82, 85, 108, 122, 123, 124, 133, 152, 153, 157, 162, 172, 176, 182, 184, 191, 200, 201, 202, 211, 216, 221, 234, 261, 262], "heavi": [3, 6, 49, 97, 101, 223], "impact": [3, 12, 17, 87, 97, 136, 161, 164, 184, 201, 209, 229, 252, 258], "smaller": [3, 9, 51, 79, 97, 103, 123, 124, 157, 159, 161, 171, 203, 208, 223, 229, 231, 234, 237], "nevertheless": [3, 5, 19, 23, 147, 159], "primari": [4, 5, 6, 15, 142, 175, 176, 177, 186, 193, 206, 247], "program": [4, 5, 18, 21, 22, 23, 25, 60, 61, 98, 100, 101, 103, 121, 124, 127, 143, 162, 172, 173, 177, 197, 198, 199, 200, 214, 231, 247, 256], "languag": [4, 5, 6, 7, 21, 23, 24, 25, 44, 49, 58, 59, 60, 78, 79, 98, 100, 102, 116, 118, 119, 121, 124, 126, 127, 128, 137, 163, 165, 173, 174, 181, 186, 195, 207, 219, 234, 246, 247, 252, 254, 256, 261, 262, 263], "suitabl": [4, 8, 131, 135, 139, 171, 199, 223], "prefer": [4, 6, 8, 53, 58, 145, 150, 155, 159, 176, 194, 230, 252], "eas": [4, 5, 85, 122, 177, 220, 237, 251], "situat": [4, 15, 23, 25, 37, 129, 130, 133, 135, 178, 184, 195], "properti": [4, 5, 6, 11, 14, 21, 23, 25, 32, 40, 48, 101, 103, 126, 147, 153, 165, 173, 174, 176, 177, 190, 208, 220, 230, 231, 244, 249, 256, 260], "unfavor": 4, "environ": [4, 5, 6, 7, 11, 17, 18, 22, 25, 42, 55, 61, 82, 85, 105, 112, 114, 115, 121, 122, 123, 124, 132, 133, 134, 135, 144, 148, 149, 155, 160, 161, 162, 163, 172, 173, 174, 175, 176, 204, 206, 207, 208, 212, 213, 214, 215, 216, 219, 222, 223, 226, 229, 231, 247, 252, 255, 256, 258], "latter": [4, 5, 6, 60, 61, 126, 161, 198], "land": [4, 23, 113, 146, 191, 220, 258], "latenc": [4, 6, 17, 121, 124, 126, 132, 144, 158, 172, 176, 177, 187, 194, 201, 219, 223], "strict": [4, 112, 171, 190, 220, 248], "bind": [4, 6, 10, 23, 121, 176, 177, 247, 262], "java": [4, 58, 177, 204, 222, 223], "rust": 4, "paragraph": [4, 6, 23, 263, 266], "outlin": [4, 5, 6, 23, 227], "pure": [4, 5, 6, 10, 23, 47, 121, 127, 130, 138, 154, 178, 186, 199], "journei": [4, 6, 52, 137], "enabl": [4, 5, 6, 8, 11, 14, 15, 16, 18, 19, 23, 24, 42, 47, 55, 56, 58, 59, 60, 61, 75, 82, 97, 107, 112, 122, 123, 124, 126, 129, 130, 133, 135, 137, 144, 147, 152, 156, 158, 159, 168, 169, 171, 175, 176, 177, 179, 183, 184, 189, 191, 193, 195, 196, 199, 204, 207, 214, 216, 219, 220, 224, 225, 226, 228, 230, 238, 240, 244, 251, 258, 260], "vanilla": [4, 5, 6, 23, 49, 65, 99, 111, 127, 171, 189, 258], "eager": [4, 10, 23, 60, 85, 86, 121, 144, 147, 164, 172, 174, 181, 195, 197, 198, 199, 200, 210, 221, 247], "discuss": [4, 5, 6, 8, 10, 15, 16, 23, 44, 73, 79, 101, 102, 116, 122, 123, 134, 142, 143, 144, 149, 150, 172, 176, 177, 183, 189, 190, 191, 192, 228, 237, 254], "littl": [4, 17, 25, 52, 61, 97, 99, 113, 136, 159, 161, 163, 164, 166, 168, 201], "effort": [4, 14, 49, 51, 52, 108, 182, 195, 196], "next": [4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 22, 23, 34, 42, 43, 49, 51, 53, 55, 56, 58, 59, 60, 75, 78, 80, 82, 85, 92, 94, 96, 97, 98, 99, 102, 103, 105, 112, 113, 115, 117, 121, 122, 123, 124, 125, 127, 128, 129, 130, 132, 136, 137, 138, 139, 143, 144, 146, 149, 150, 152, 154, 157, 160, 161, 162, 163, 165, 166, 168, 169, 177, 178, 181, 182, 184, 187, 188, 191, 192, 195, 197, 198, 199, 201, 203, 208, 216, 219, 220, 222, 223, 226, 230, 234, 237, 238, 260, 262, 263], "mechan": [4, 5, 6, 11, 14, 15, 24, 32, 49, 56, 60, 130, 143, 153, 165, 166, 168, 174, 177, 199, 216, 220, 221, 226], "evalu": [4, 6, 9, 12, 17, 19, 20, 24, 37, 73, 97, 105, 107, 112, 118, 145, 150, 159, 160, 162, 169, 172, 173, 174, 178, 181, 198, 201, 221, 241], "onc": [4, 5, 6, 8, 10, 11, 14, 16, 17, 20, 21, 22, 23, 25, 51, 52, 56, 60, 82, 97, 98, 102, 105, 113, 131, 136, 139, 147, 148, 152, 153, 156, 158, 159, 160, 162, 165, 168, 169, 177, 184, 185, 188, 193, 195, 201, 213, 220, 223, 226, 230, 231, 247, 257], "record": [4, 6, 8, 19, 20, 23, 25, 43, 49, 60, 112, 121, 122, 123, 127, 129, 130, 143, 146, 152, 159, 160, 162, 163, 172, 174, 204, 221, 234, 238, 252], "explicit": [4, 6, 21, 23, 60, 139, 147, 163, 190, 200, 209, 226, 230, 262], "pars": [4, 5, 23, 49, 51, 103, 116, 122, 123, 126, 209, 231, 262], "subject": [4, 11, 14, 23, 42, 108, 113, 123, 141, 165, 173, 174, 187, 188, 193, 198, 204, 205, 206, 207, 212, 216, 222, 231], "constraint": [4, 6, 12, 17, 18, 60, 85, 98, 99, 121, 124, 126, 153, 159, 171, 197, 198, 200, 201, 230, 231, 244, 252], "impos": [4, 223, 232, 244], "guidanc": [4, 8, 176, 177, 195, 230], "offici": [4, 82, 108, 113, 115, 135, 160, 172, 174, 181, 199, 218, 220, 252], "jit": [4, 6, 8, 15, 19, 21, 22, 25, 49, 58, 59, 60, 85, 112, 119, 137, 142, 147, 172, 177, 182, 185, 187, 188, 194, 197, 198, 203, 204, 206, 207, 208, 209, 216, 218, 220, 222, 223, 224, 225, 231, 238, 247, 252, 254, 256], "scriptmodul": [4, 22, 23, 25, 85, 203, 222, 252, 256], "embed": [4, 7, 9, 16, 21, 23, 49, 60, 75, 79, 93, 98, 100, 102, 110, 112, 115, 118, 121, 122, 124, 137, 162, 163, 165, 169, 175, 181, 188, 193, 195, 241, 262], "resnet18": [4, 43, 90, 117, 147, 157, 158, 168, 171, 182, 195, 197, 198, 199, 229, 238, 256], "normal": [4, 6, 8, 11, 12, 19, 20, 21, 37, 39, 49, 51, 52, 58, 59, 60, 65, 73, 80, 85, 87, 90, 92, 94, 96, 97, 98, 99, 102, 103, 111, 112, 117, 119, 123, 127, 128, 129, 135, 136, 139, 146, 148, 153, 157, 158, 161, 162, 164, 165, 166, 168, 169, 171, 172, 177, 182, 184, 190, 197, 198, 204, 209, 213, 216, 220, 221, 223, 224, 225, 228, 229, 241, 242, 243, 247, 250, 252, 253, 262], "rand": [4, 5, 6, 14, 15, 17, 21, 23, 25, 33, 40, 43, 48, 85, 89, 92, 93, 95, 96, 109, 114, 129, 130, 144, 146, 152, 153, 164, 176, 177, 178, 179, 187, 195, 197, 198, 201, 203, 206, 210, 211, 214, 219, 220, 223, 224, 225, 226, 233, 239, 247, 252, 253, 256], "224": [4, 12, 19, 20, 51, 58, 59, 75, 90, 97, 117, 119, 139, 142, 143, 152, 157, 158, 166, 168, 171, 176, 177, 182, 187, 188, 194, 197, 198, 199, 204, 206, 213, 218, 220, 223, 224, 225, 229, 238, 247, 252, 253, 256], "traced_script_modul": [4, 223], "ident": [4, 6, 17, 55, 85, 124, 132, 142, 150, 157, 166, 169, 185, 192, 194, 201, 218, 231], "2698": 4, "0381": 4, "4023": 4, "3010": 4, "0448": 4, "slicebackward": 4, "circumst": [4, 5, 230], "emploi": [4, 97, 165, 168], "particular": [4, 5, 6, 8, 11, 23, 42, 44, 51, 60, 82, 83, 87, 103, 124, 126, 127, 135, 136, 138, 139, 150, 154, 162, 171, 173, 174, 178, 179, 189, 190, 192, 193, 213, 223, 237, 247], "form": [4, 6, 9, 12, 15, 17, 23, 47, 49, 52, 60, 98, 105, 110, 113, 116, 121, 125, 128, 139, 144, 165, 171, 174, 184, 193, 201, 202, 213, 214, 226, 234, 247, 262], "accordingli": [4, 10, 12, 18, 22, 136, 149, 152, 161, 171, 188, 207, 260], "sai": [4, 5, 6, 24, 43, 51, 99, 101, 103, 113, 115, 125, 138, 145, 149, 152, 156, 168, 184, 200, 222, 234, 263], "mymodul": [4, 6, 109, 172, 173, 174, 202, 212], "__init__": [4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 19, 20, 21, 22, 25, 33, 37, 38, 44, 45, 47, 49, 51, 52, 53, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 109, 111, 112, 115, 118, 123, 125, 127, 128, 129, 133, 134, 135, 138, 142, 143, 146, 148, 149, 150, 153, 154, 156, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 183, 193, 194, 195, 197, 198, 199, 202, 203, 209, 212, 214, 215, 216, 218, 219, 221, 223, 226, 228, 233, 234, 237, 239, 240, 241, 242, 243, 244, 248, 249, 250, 252, 262], "n": [4, 5, 6, 7, 9, 12, 17, 19, 22, 23, 32, 33, 37, 38, 40, 43, 47, 48, 49, 51, 59, 60, 75, 82, 85, 89, 90, 93, 94, 95, 97, 104, 110, 113, 115, 118, 122, 123, 127, 129, 133, 135, 136, 137, 143, 145, 146, 147, 150, 153, 156, 160, 161, 162, 163, 165, 166, 169, 178, 182, 184, 185, 189, 190, 191, 192, 193, 197, 198, 200, 201, 205, 208, 213, 220, 230, 231, 236, 244, 247, 254, 256], "mv": [4, 110], "my_modul": 4, "20": [4, 6, 7, 9, 13, 16, 17, 19, 23, 33, 58, 59, 61, 78, 79, 82, 85, 87, 93, 95, 109, 123, 126, 128, 133, 135, 136, 142, 144, 146, 147, 149, 150, 152, 156, 161, 163, 166, 168, 173, 174, 177, 184, 187, 192, 195, 198, 201, 209, 221, 223, 231, 232, 234, 238, 246, 258, 266], "sm": [4, 168], "exclud": [4, 8, 43, 238], "doesn": [4, 7, 8, 10, 12, 13, 17, 25, 58, 99, 101, 103, 113, 125, 143, 145, 147, 156, 171, 172, 176, 179, 183, 184, 189, 195, 198, 200, 201, 205, 208, 210, 211, 228, 247, 255, 262], "yet": [4, 6, 10, 11, 18, 23, 50, 73, 102, 107, 108, 113, 135, 162, 165, 175, 179, 185, 193, 198, 199, 216, 220, 224, 225, 247], "could": [4, 5, 6, 8, 10, 11, 23, 52, 60, 87, 97, 98, 99, 101, 102, 103, 105, 109, 122, 123, 124, 125, 127, 128, 129, 135, 139, 147, 149, 152, 159, 160, 161, 162, 163, 165, 168, 169, 171, 176, 177, 178, 179, 189, 191, 197, 199, 200, 205, 214, 215, 216, 220, 221, 237, 247], "ignor": [4, 19, 49, 51, 97, 102, 103, 112, 142, 148, 155, 159, 171, 178, 179, 182, 187, 189, 190, 191, 192, 193, 197, 198, 218, 230, 238], "readi": [4, 6, 9, 10, 16, 22, 23, 42, 49, 58, 59, 60, 98, 99, 102, 103, 122, 134, 135, 150, 155, 159, 161, 162, 163, 175, 178, 187, 194, 197, 198, 199, 208, 213, 223, 224, 225, 228, 238, 252], "hand": [4, 5, 6, 8, 14, 17, 18, 23, 61, 73, 98, 103, 128, 135, 139, 154, 172, 177, 190, 201, 234], "shown": [4, 6, 8, 17, 19, 20, 21, 52, 58, 59, 113, 116, 124, 126, 137, 144, 146, 157, 160, 161, 163, 164, 168, 171, 172, 176, 177, 183, 188, 190, 191, 192, 195, 198, 200, 201, 213, 214, 219, 220, 226, 228, 234, 252, 255, 257, 258, 260, 262], "filenam": [4, 6, 49, 104, 109, 116, 127, 128, 171, 230], "traced_resnet_model": 4, "pt": [4, 6, 22, 23, 25, 53, 58, 59, 75, 112, 117, 119, 122, 123, 137, 188, 194, 204, 206, 208, 218, 220, 221, 222, 223, 224, 225, 228, 240, 241, 242, 243, 248, 256], "my_module_model": 4, "left": [4, 17, 32, 43, 47, 49, 51, 52, 64, 85, 89, 99, 103, 111, 112, 113, 135, 137, 146, 150, 159, 160, 162, 164, 168, 169, 200, 201, 226, 234, 260, 262], "realm": [4, 6], "cross": [4, 7, 8, 13, 20, 44, 52, 95, 118, 124, 126, 176, 247, 262], "sphere": 4, "distribut": [4, 5, 6, 14, 15, 19, 24, 52, 54, 73, 75, 79, 80, 87, 97, 99, 103, 108, 113, 121, 122, 123, 124, 126, 131, 132, 137, 147, 149, 152, 155, 159, 161, 168, 176, 185, 193, 196, 202, 208, 212, 215, 223, 229, 231, 251, 258], "encompass": 4, "share": [4, 5, 6, 10, 11, 18, 22, 23, 48, 55, 66, 78, 80, 87, 97, 101, 108, 110, 113, 121, 122, 125, 133, 135, 136, 146, 159, 161, 162, 163, 173, 174, 176, 195, 208, 220, 231, 237], "header": [4, 5, 6, 8, 22, 23, 143, 155, 188, 204, 208, 222, 225, 231, 260, 262, 263], "cmake": [4, 6, 188, 206, 220, 256], "futur": [4, 7, 18, 21, 22, 42, 49, 58, 59, 109, 110, 118, 123, 134, 137, 141, 146, 152, 155, 157, 160, 161, 162, 163, 173, 174, 179, 181, 187, 188, 192, 197, 198, 199, 200, 204, 208, 219, 222, 252], "begin": [4, 5, 6, 7, 11, 12, 17, 19, 22, 23, 25, 32, 43, 49, 50, 52, 55, 58, 59, 73, 85, 89, 102, 103, 108, 113, 115, 116, 122, 124, 137, 142, 152, 157, 160, 162, 168, 169, 191, 193, 201, 223, 228, 230, 231, 238, 262], "iostream": [4, 5, 6, 22, 23, 220], "argc": [4, 22, 23, 220, 256], "const": [4, 5, 6, 8, 10, 15, 22, 23, 59, 144, 155, 186, 208, 220, 222, 231, 246, 256], "char": [4, 22, 23, 59, 144, 208, 220, 256], "cerr": [4, 22, 23, 220, 256], "app": [4, 23, 105, 119, 121, 139, 194, 204, 220, 222, 227, 228, 251, 252], "try": [4, 6, 12, 14, 15, 17, 19, 21, 22, 23, 25, 42, 44, 47, 48, 49, 52, 53, 58, 59, 60, 61, 73, 79, 97, 98, 99, 100, 101, 104, 105, 109, 116, 125, 126, 127, 128, 129, 136, 142, 144, 146, 147, 149, 150, 152, 155, 156, 159, 160, 164, 165, 168, 172, 173, 174, 176, 182, 184, 187, 190, 197, 201, 203, 208, 213, 216, 219, 220, 222, 230, 231, 234, 244, 245, 256, 262, 263], "deseri": [4, 6, 23, 112, 182, 197, 198, 256], "catch": [4, 8, 11, 22, 58, 208, 220, 222, 256], "c10": [4, 8, 10, 15, 22, 144, 155, 186, 188, 208, 219, 220, 231, 246, 256], "ok": [4, 103, 161, 262], "relev": [4, 6, 14, 53, 98, 100, 103, 113, 114, 122, 124, 156, 171, 247], "accept": [4, 5, 20, 67, 78, 87, 97, 102, 111, 115, 116, 124, 126, 141, 145, 150, 154, 159, 162, 168, 171, 179, 200, 202, 205, 212, 219, 238, 247, 252], "proce": [4, 11, 25, 97, 99, 144, 157, 165, 234, 247], "examin": [4, 11, 22, 25, 58, 59, 82, 97, 143], "moment": [4, 6, 11, 173, 179, 192, 206, 223], "cpp": [4, 5, 6, 8, 22, 23, 120, 121, 144, 187, 196, 199, 208, 220, 246, 256], "cmakelist": [4, 6, 22, 23, 208, 220, 256], "txt": [4, 5, 6, 9, 22, 23, 49, 75, 116, 127, 128, 137, 144, 158, 165, 185, 208, 220, 256], "cmake_minimum_requir": [4, 6, 22, 23, 208, 220, 256], "fatal_error": [4, 6, 22, 23, 208, 220, 256], "custom_op": [4, 108, 173, 174, 256], "find_packag": [4, 6, 22, 23, 220, 256], "add_execut": [4, 6, 22, 23, 220, 256], "target_link_librari": [4, 6, 22, 23, 208, 220, 256], "torch_librari": [4, 6, 8, 22, 23, 220, 256], "set_properti": [4, 6, 220, 256], "cxx_standard": [4, 6, 220, 256], "14": [4, 6, 22, 23, 24, 47, 73, 92, 123, 144, 171, 176, 208, 219, 220, 221, 228, 231, 238, 266], "last": [4, 6, 11, 12, 14, 19, 23, 40, 43, 49, 52, 53, 59, 60, 73, 83, 85, 87, 99, 102, 105, 113, 117, 121, 124, 125, 127, 128, 135, 136, 142, 144, 148, 149, 152, 157, 159, 160, 161, 163, 164, 165, 169, 176, 178, 188, 189, 192, 193, 218, 220, 222, 228, 230, 247, 252], "thing": [4, 5, 6, 8, 15, 21, 22, 23, 25, 43, 44, 47, 49, 58, 59, 85, 87, 97, 98, 99, 101, 102, 103, 113, 116, 124, 125, 126, 129, 130, 131, 132, 135, 136, 139, 143, 144, 147, 148, 153, 158, 159, 166, 177, 182, 184, 195, 197, 208, 213, 231, 262], "grab": [4, 6, 52, 158, 163], "latest": [4, 6, 10, 14, 20, 87, 107, 108, 112, 121, 137, 157, 158, 159, 162, 165, 166, 171, 172, 208, 257, 260], "stabl": [4, 20, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 94, 98, 113, 140, 158, 167, 168, 170, 181, 221, 223, 230, 233, 251, 260], "page": [4, 6, 10, 22, 23, 50, 54, 61, 109, 127, 139, 163, 168, 175, 199, 204, 207, 208, 209, 217, 220, 222, 247, 264, 266], "websit": [4, 6, 160, 226, 229], "unzip": [4, 6, 19, 50, 171, 178, 181, 182, 197, 198, 208], "archiv": [4, 5, 6, 25, 147, 257], "against": [4, 22, 23, 44, 60, 81, 105, 135, 147, 159, 212, 220, 231, 234], "window": [4, 5, 6, 7, 20, 44, 51, 103, 105, 133, 162, 168, 178, 206, 213, 226, 262], "debug": [4, 6, 8, 19, 25, 58, 59, 60, 78, 98, 121, 125, 173, 174, 186, 195, 196, 231, 255], "abi": [4, 5, 6, 22, 23, 204, 206, 208, 220], "plan": [4, 6, 10, 18, 60, 112, 122, 124, 171, 175, 182, 187, 192, 198, 206, 208, 224], "correct": [4, 5, 6, 8, 10, 11, 12, 13, 19, 37, 38, 43, 44, 47, 49, 60, 64, 73, 85, 87, 92, 97, 98, 99, 102, 111, 122, 123, 125, 127, 129, 133, 136, 144, 147, 153, 156, 159, 161, 162, 165, 166, 168, 169, 182, 193, 197, 198, 215, 221, 230, 244, 260], "laid": 4, "within": [4, 5, 7, 14, 18, 21, 23, 61, 85, 103, 105, 109, 110, 124, 130, 137, 142, 144, 153, 156, 160, 162, 171, 176, 177, 185, 186, 192, 193, 195, 199, 206, 208, 213, 215, 219, 231, 239, 247, 260, 262], "mkdir": [4, 6, 23, 104, 146, 168, 171, 181, 194, 208], "dcmake_prefix_path": [4, 6, 22, 23, 220, 256], "config": [4, 6, 10, 17, 20, 24, 87, 123, 126, 137, 144, 158, 176, 177, 179, 184, 185, 186, 197, 199, 201, 220, 221, 244, 254], "someth": [4, 5, 6, 11, 14, 19, 23, 25, 44, 87, 99, 101, 113, 116, 135, 144, 157, 158, 159, 165, 205, 231, 234, 262], "root": [4, 5, 6, 14, 22, 23, 34, 37, 38, 41, 43, 44, 51, 52, 87, 92, 97, 98, 110, 129, 136, 144, 162, 163, 166, 168, 178, 188, 204, 213, 220, 223, 226, 236, 245, 250, 252, 253, 260], "4b5a67132e81": 4, "identif": [4, 6, 22, 23, 220], "gnu": [4, 5, 6, 22, 23, 220, 247], "cxx": [4, 6, 22, 23, 204, 206, 208, 220], "check": [4, 5, 6, 7, 8, 13, 14, 15, 19, 20, 22, 23, 25, 42, 43, 44, 45, 49, 50, 52, 55, 58, 59, 60, 73, 75, 85, 97, 98, 101, 104, 105, 108, 109, 110, 115, 116, 122, 126, 133, 135, 136, 139, 141, 142, 144, 146, 147, 153, 154, 156, 158, 159, 162, 171, 172, 173, 174, 176, 178, 188, 192, 193, 198, 200, 206, 208, 213, 214, 219, 220, 222, 223, 226, 230, 238, 252, 253, 256], "usr": [4, 6, 18, 22, 23, 135, 194, 220], "cc": [4, 6, 22, 23, 43, 108, 118, 204, 206, 220], "detect": [4, 6, 11, 12, 18, 22, 23, 52, 75, 121, 139, 158, 168, 172, 220, 247], "info": [4, 5, 6, 22, 23, 82, 118, 132, 135, 137, 146, 160, 171, 173, 174, 175, 185, 207, 220, 221, 228], "pthread": [4, 5, 6, 22, 23, 208, 220], "pthread_creat": [4, 6, 22, 23, 220], "thread": [4, 5, 6, 8, 9, 21, 22, 23, 52, 61, 109, 133, 134, 137, 149, 158, 161, 162, 163, 176, 177, 181, 182, 194, 216, 220, 226, 231, 238, 246, 247], "scan": [4, 6, 22, 23, 171], "50": [4, 6, 7, 12, 16, 17, 19, 21, 22, 23, 24, 49, 52, 53, 58, 78, 92, 136, 144, 147, 156, 160, 163, 166, 177, 178, 182, 185, 191, 197, 199, 201, 203, 219, 221, 223, 228, 230, 247], "cmakefil": [4, 6, 22, 23], "dir": [4, 6, 22, 23, 82, 126, 147, 148, 204, 208, 223, 246], "o": [4, 5, 6, 7, 17, 22, 23, 90, 97, 98, 108, 128, 137, 150, 152, 171, 201, 231, 262], "100": [4, 6, 9, 14, 16, 17, 19, 21, 22, 23, 37, 38, 44, 45, 48, 49, 52, 63, 64, 67, 68, 69, 71, 72, 80, 89, 92, 93, 94, 97, 99, 111, 119, 123, 125, 127, 128, 129, 133, 138, 143, 144, 145, 146, 147, 149, 154, 156, 158, 159, 160, 163, 165, 166, 169, 171, 172, 173, 174, 176, 177, 182, 187, 191, 195, 197, 198, 201, 215, 219, 221, 231, 234, 246, 257], "suppli": [4, 6, 101, 147, 158, 262], "binari": [4, 6, 20, 22, 23, 49, 52, 105, 135, 147, 156, 172, 178, 188, 190, 196, 199, 204, 208, 212, 218, 220, 222, 223, 231], "incompat": [4, 173, 174, 197], "1d": [4, 68, 93, 111, 205, 247], "4d": [4, 47, 78, 147, 200], "path_to_model": 4, "successfulli": [4, 6, 22, 50, 58, 59, 60, 105, 119, 126, 135, 144, 162, 191, 194, 206, 219, 225, 227, 241, 256], "coupl": [4, 14, 49, 103, 122, 124, 130, 136, 138, 152, 169, 183, 203, 247], "awai": [4, 5, 6, 23, 47, 60, 98, 99, 101, 113, 143, 149, 159, 160, 161, 192, 234, 262], "ivalu": [4, 23, 58, 144, 155, 206, 208, 220, 223, 256], "push_back": [4, 22, 23, 220, 256], "totensor": [4, 12, 19, 20, 23, 34, 37, 38, 44, 51, 52, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 116, 117, 119, 123, 129, 135, 139, 148, 157, 158, 162, 166, 168, 169, 171, 182, 187, 188, 197, 198, 204, 206, 213, 220, 221, 223, 229, 250, 253, 256], "slice": [4, 5, 48, 80, 102, 127, 150, 156, 193, 206], "eras": [4, 25], "org": [4, 6, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 40, 42, 45, 46, 49, 58, 59, 74, 77, 84, 91, 93, 94, 96, 100, 104, 106, 113, 120, 122, 127, 128, 137, 140, 141, 142, 143, 152, 153, 157, 158, 165, 167, 168, 170, 172, 174, 181, 184, 187, 188, 190, 192, 194, 196, 203, 204, 205, 206, 208, 213, 221, 222, 223, 224, 226, 230, 233, 234, 235, 236, 237, 256, 260, 262], "cppdoc": [4, 6], "pariti": 4, "manipul": [4, 60, 103, 143, 152, 182, 185, 213], "five": [4, 9, 65, 95, 111, 113], "ideal": [4, 6, 14, 58, 59, 97, 149, 165, 177, 197, 207], "variabl": [4, 5, 6, 7, 8, 12, 20, 22, 23, 42, 49, 60, 69, 76, 82, 87, 98, 99, 101, 111, 114, 127, 132, 135, 144, 161, 164, 173, 174, 176, 184, 191, 193, 205, 206, 207, 208, 219, 222, 226, 252, 255], "kcuda": [4, 6, 186], "live": [4, 6, 10, 15, 121, 125, 134, 162, 163, 192, 216, 262], "hopefulli": [4, 6, 50, 51, 73, 85, 99, 112], "equip": [4, 5, 130, 136, 189], "concept": [4, 6, 11, 22, 55, 100, 101, 114, 121, 126, 146, 161, 164, 165, 186, 197, 199, 200, 238], "Of": [4, 14, 23, 97, 101, 125, 133, 135, 169, 190, 192, 226], "cours": [4, 6, 14, 17, 19, 23, 53, 97, 100, 101, 103, 104, 125, 133, 135, 169, 201, 213, 226], "did": [4, 6, 8, 19, 23, 25, 44, 52, 60, 68, 105, 111, 113, 135, 141, 153, 159, 162, 165, 176, 182, 231, 262], "cover": [4, 5, 14, 15, 16, 18, 22, 25, 47, 58, 59, 100, 108, 113, 114, 119, 121, 122, 126, 135, 155, 159, 162, 163, 169, 172, 173, 174, 175, 191, 193, 197, 200, 212, 219, 220, 230, 245, 252], "insid": [4, 5, 6, 10, 16, 17, 18, 20, 22, 23, 45, 78, 108, 124, 168, 178, 195, 201, 205, 207, 223, 262], "shortli": [4, 161], "html": [4, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 45, 46, 52, 57, 74, 77, 84, 90, 91, 94, 100, 104, 106, 113, 114, 118, 120, 122, 137, 140, 142, 143, 157, 167, 170, 171, 174, 181, 187, 188, 190, 192, 203, 204, 230, 233, 234, 235, 237, 262], "peter": 5, "goldsborough": 5, "plethora": 5, "relat": [5, 11, 14, 52, 60, 101, 103, 113, 124, 144, 153, 173, 174, 182, 231, 247, 262], "algebra": [5, 14, 48, 99, 219], "wrangl": 5, "novel": 5, "research": [5, 6, 17, 19, 23, 25, 49, 52, 60, 73, 75, 85, 99, 114, 115, 135, 137, 150, 154, 156, 171, 181, 201, 216], "modul": [5, 7, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 33, 37, 38, 39, 42, 44, 45, 47, 49, 52, 53, 55, 58, 59, 65, 66, 68, 73, 78, 79, 87, 89, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 121, 122, 123, 124, 125, 127, 128, 129, 133, 135, 138, 142, 143, 144, 146, 147, 150, 152, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 175, 176, 177, 179, 181, 182, 183, 184, 185, 186, 187, 188, 193, 194, 196, 197, 198, 199, 200, 201, 203, 206, 208, 209, 212, 214, 215, 219, 220, 221, 222, 223, 226, 227, 228, 231, 233, 234, 235, 238, 239, 240, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 261, 262, 263], "power": [5, 6, 23, 43, 49, 57, 65, 73, 75, 87, 97, 99, 121, 123, 126, 135, 144, 146, 150, 155, 156, 158, 165, 171, 184, 187, 192, 194, 227, 231, 254, 262], "spare": [5, 6], "deriv": [5, 6, 10, 17, 23, 25, 43, 48, 76, 78, 99, 101, 102, 103, 110, 125, 129, 130, 141, 145, 195, 201, 247], "express": [5, 13, 23, 95, 98, 107, 114, 124, 137, 173, 174, 191, 197, 198, 200, 209, 262], "better": [5, 6, 14, 17, 19, 21, 44, 52, 56, 61, 79, 97, 103, 109, 113, 115, 121, 126, 127, 128, 139, 144, 145, 146, 152, 154, 157, 159, 160, 165, 168, 169, 171, 173, 174, 176, 177, 182, 184, 189, 190, 195, 197, 198, 199, 200, 201, 207, 223, 231, 247, 253, 257], "frequent": [5, 22, 23, 75, 82, 103, 123, 175, 176, 177, 191, 220], "expens": [5, 17, 97, 109, 163, 177, 184, 201, 238], "plausibl": 5, "address": [5, 12, 18, 22, 24, 82, 135, 161, 162, 174, 176, 197, 221, 244, 263], "nativ": [5, 6, 8, 15, 23, 42, 55, 87, 107, 108, 119, 121, 122, 124, 136, 137, 163, 176, 177, 179, 184, 189, 192, 197, 216, 219, 220, 223, 238, 246, 247, 251], "intend": [5, 6, 8, 12, 23, 97, 123, 124, 129, 144, 147, 164, 172, 173, 174, 189, 197, 212, 247], "much": [5, 6, 8, 10, 12, 14, 17, 19, 23, 25, 52, 56, 73, 97, 98, 99, 103, 112, 119, 122, 125, 126, 142, 145, 146, 152, 158, 159, 162, 163, 165, 168, 169, 172, 176, 184, 189, 192, 200, 201, 218, 226, 227, 228, 230, 231, 234, 237, 245, 247, 251, 260, 262], "boilerpl": [5, 6, 19, 44, 99, 169, 189], "degre": [5, 64, 126, 165, 168, 192], "matter": [5, 134, 171, 189, 191, 210, 230], "organ": [5, 8, 14, 23, 51, 112, 127, 143, 149, 231, 257, 263], "tackl": [5, 109], "decid": [5, 6, 8, 10, 17, 18, 52, 87, 160, 175, 192, 196, 201], "contribut": [5, 52, 61, 65, 82, 111, 137, 147, 168, 176], "upstream": [5, 220, 247], "rest": [5, 6, 14, 44, 117, 121, 136, 139, 143, 157, 159, 161, 162, 191, 198, 218, 234, 244, 262, 263], "chase": [5, 113], "someon": [5, 165], "fire": [5, 133], "dai": [5, 42, 103, 115, 116, 124, 244], "head": [5, 7, 17, 21, 42, 75, 83, 109, 113, 124, 126, 133, 157, 164, 178, 193, 201], "straight": [5, 6, 23, 139, 165], "recurr": [5, 9, 44, 49, 60, 79, 81, 98, 102, 110, 121, 127, 128, 153, 165, 181, 195, 234], "unit": [5, 6, 25, 49, 110, 122, 123, 145, 150, 156, 159, 160, 165, 171, 176, 177, 187, 247], "superior": 5, "lstm": [5, 44, 49, 78, 79, 93, 100, 110, 119, 121, 127, 128, 163, 181, 183, 195, 228, 234, 251], "lack": [5, 15, 82, 189], "forget": [5, 6, 112, 157, 172, 188], "gate": [5, 49, 244], "exponenti": [5, 49, 99, 101, 153, 160, 184], "elu": [5, 110], "never": [5, 7, 98, 99, 100, 103, 115, 125, 156, 166], "lltm": 5, "long": [5, 6, 7, 9, 10, 20, 23, 49, 50, 60, 78, 80, 82, 87, 98, 99, 100, 101, 103, 113, 118, 122, 125, 127, 128, 136, 137, 143, 144, 149, 153, 160, 163, 165, 168, 178, 185, 186, 195, 197, 208, 223, 231, 234, 246, 247, 262, 263], "term": [5, 6, 15, 52, 73, 99, 100, 101, 109, 122, 124, 150, 156, 159, 174, 184, 192, 197, 198, 199, 200, 202, 234, 239, 262, 263], "signific": [5, 6, 9, 19, 42, 52, 58, 59, 82, 122, 129, 137, 143, 144, 145, 147, 152, 159, 164, 168, 172, 177, 203, 214, 215, 219, 221, 223, 230, 231, 234, 254, 262], "lstmcell": 5, "cell": [5, 21, 23, 25, 50, 60, 75, 80, 109, 159, 160, 164, 171, 184, 234, 247, 263], "plain": [5, 6, 23, 49, 127, 128, 165, 178, 244], "input_featur": 5, "state_s": 5, "candid": [5, 144, 247], "reset_paramet": [5, 129], "stdv": 5, "math": [5, 7, 10, 49, 63, 64, 65, 67, 68, 69, 71, 72, 85, 89, 95, 101, 104, 110, 111, 118, 127, 128, 129, 150, 158, 160, 164, 165, 234, 247, 266], "sqrt": [5, 7, 85, 104, 118, 129, 189, 202], "uniform_": [5, 6, 7, 9, 115, 163, 181, 195, 202], "old_h": 5, "old_cel": 5, "cat": [5, 7, 9, 20, 21, 40, 44, 48, 49, 60, 78, 90, 92, 98, 101, 102, 110, 115, 118, 128, 134, 139, 144, 149, 160, 163, 165, 169, 178, 181, 200, 229, 250], "gate_weight": 5, "split": [5, 7, 8, 9, 18, 19, 20, 21, 45, 49, 52, 60, 79, 85, 87, 98, 99, 102, 103, 113, 118, 121, 127, 128, 133, 134, 137, 142, 149, 159, 162, 163, 165, 178, 181, 182, 185, 193, 197, 198, 212, 226, 246], "input_g": 5, "sigmoid": [5, 6, 52, 93, 110, 179, 200, 247], "output_g": 5, "tanh": [5, 6, 14, 25, 49, 52, 60, 93, 99, 110, 127, 145, 159, 165, 247], "candidate_cel": 5, "new_cel": 5, "hidden": [5, 7, 9, 21, 49, 60, 78, 97, 98, 102, 124, 126, 127, 128, 136, 142, 148, 163, 164, 165, 181, 195, 197, 229, 234, 260], "new_h": [5, 25, 51], "rnn": [5, 9, 21, 25, 45, 49, 60, 61, 78, 79, 93, 110, 118, 121, 134, 136, 153, 162, 165, 181, 195, 199, 247], "new_c": 5, "intel": [5, 121, 135, 144, 147, 199, 206, 251], "mkl": [5, 144, 238], "nnpack": 5, "why": [5, 6, 8, 11, 14, 25, 44, 52, 85, 97, 99, 103, 112, 114, 130, 133, 144, 152, 165, 172, 173, 174, 190, 192, 231, 262], "room": [5, 97, 149, 219, 262], "obviou": [5, 113, 231], "knowledg": [5, 49, 52, 73, 99, 100, 114, 121, 144, 146, 262], "execut": [5, 6, 7, 8, 11, 15, 16, 20, 21, 22, 23, 25, 42, 43, 45, 50, 60, 61, 76, 78, 82, 98, 108, 120, 121, 125, 126, 134, 135, 136, 143, 144, 147, 149, 155, 159, 160, 162, 163, 164, 172, 173, 174, 176, 177, 182, 183, 185, 186, 187, 194, 203, 204, 206, 207, 208, 212, 219, 223, 224, 225, 226, 230, 234, 252, 256], "kernel": [5, 6, 8, 13, 17, 18, 23, 47, 83, 108, 110, 121, 138, 144, 147, 149, 153, 154, 156, 164, 165, 168, 172, 176, 177, 184, 186, 199, 201, 207, 216, 231, 237, 238, 247, 251], "involv": [5, 8, 9, 15, 16, 17, 19, 23, 25, 50, 60, 85, 98, 101, 105, 112, 120, 125, 127, 132, 139, 146, 152, 163, 165, 173, 174, 182, 184, 193, 201, 239, 247, 254], "launch": [5, 6, 21, 53, 61, 115, 126, 132, 133, 149, 161, 162, 163, 164, 168, 176, 206, 219, 221, 231, 238, 247], "amount": [5, 19, 25, 73, 82, 112, 124, 133, 156, 172, 184, 223, 238, 247], "becom": [5, 6, 11, 21, 24, 52, 61, 73, 75, 78, 85, 97, 124, 130, 145, 147, 168, 169, 176, 186, 193, 197, 210, 216, 219, 230, 252], "furthermor": [5, 19, 97, 138, 145, 169, 176, 186, 200, 224, 225, 231], "interpret": [5, 6, 23, 25, 40, 56, 82, 85, 103, 121, 127, 128, 137, 165, 172, 173, 174, 186, 196, 216, 231, 235, 251, 262], "slow": [5, 6, 8, 42, 123, 148, 176, 228, 238, 247], "down": [5, 8, 10, 11, 16, 19, 42, 50, 82, 87, 99, 104, 123, 136, 144, 145, 146, 162, 166, 169, 176, 189, 247, 260], "therefor": [5, 6, 9, 15, 19, 49, 51, 60, 97, 108, 112, 113, 115, 120, 133, 134, 147, 150, 155, 156, 162, 163, 173, 174, 176, 191, 192, 200, 206, 223, 230, 262], "rewrit": [5, 21, 45, 60, 107, 129, 153, 173, 174, 200, 205, 206, 252], "fuse": [5, 17, 19, 121, 144, 157, 158, 176, 177, 179, 181, 182, 184, 194, 198, 201, 206, 227, 251, 252], "group": [5, 7, 11, 16, 18, 19, 24, 49, 61, 83, 109, 113, 120, 121, 122, 123, 128, 129, 131, 133, 134, 135, 144, 168, 175, 178, 214, 215, 216, 231, 258, 262, 263], "profit": 5, "fewer": [5, 11, 129, 145], "visibl": [5, 22, 23, 44, 87, 171, 182], "aten": [5, 8, 10, 15, 23, 42, 109, 144, 168, 173, 174, 177, 182, 185, 186, 188, 197, 198, 199, 219, 220, 226, 238, 244, 246], "translat": [5, 23, 25, 49, 60, 105, 107, 116, 118, 150, 165, 187, 191, 213, 247, 252], "benefit": [5, 6, 9, 17, 18, 42, 43, 85, 87, 119, 122, 141, 147, 152, 157, 164, 176, 184, 197, 201, 216, 219, 220, 230, 234, 247, 257], "massiv": [5, 25, 44, 101, 103, 220], "parallel": [5, 6, 11, 16, 18, 44, 46, 49, 51, 52, 55, 73, 79, 87, 112, 121, 126, 131, 135, 137, 144, 150, 159, 161, 162, 163, 175, 176, 214, 215, 216, 230, 238, 240, 258], "ahead": [5, 22, 152, 169, 173, 174, 179, 188, 214, 234, 247, 256], "cpp_extens": [5, 10, 23, 155, 208, 231], "setup": [5, 6, 7, 10, 16, 19, 22, 42, 52, 53, 55, 122, 123, 126, 133, 148, 149, 152, 155, 158, 163, 184, 188, 191, 192, 204, 205, 206, 214, 215, 246, 251], "lltm_cpp": 5, "ext_modul": [5, 10, 23, 155], "cppextens": [5, 10, 23, 155], "cmdclass": [5, 10, 23, 155], "build_ext": [5, 10, 23, 155], "buildextens": [5, 10, 23, 155], "conveni": [5, 8, 14, 22, 23, 44, 47, 49, 101, 125, 127, 128, 138, 145, 155, 159, 190, 192, 213, 220, 230, 231, 252], "wrapper": [5, 6, 8, 16, 55, 112, 122, 123, 130, 136, 146, 159, 171, 196, 199, 240], "include_dir": [5, 10, 155], "include_path": 5, "manag": [5, 22, 43, 49, 61, 108, 109, 113, 120, 124, 131, 132, 133, 149, 153, 164, 168, 177, 214, 215, 216, 230, 231, 232, 237, 238, 239, 247, 257], "And": [5, 6, 10, 22, 23, 24, 25, 52, 101, 103, 105, 113, 130, 144, 145, 147, 150, 158, 168, 169, 172, 173, 174, 176, 177, 195, 199, 200, 213, 231], "overal": [5, 19, 42, 49, 122, 123, 135, 149, 160, 171, 197, 200, 219, 228, 231, 247], "d_sigmoid": 5, "bit": [5, 12, 15, 23, 25, 51, 68, 95, 109, 113, 117, 136, 148, 158, 159, 160, 165, 184, 189, 197, 199, 207, 221, 228, 231, 234], "pybind11": [5, 8, 22, 23, 155, 231], "datatyp": [5, 23, 40, 48, 109, 220, 230, 234, 247], "Its": [5, 97, 99, 193, 262], "inspect": [5, 23, 78, 97, 108, 122, 126, 143, 164, 166, 172, 173, 174, 182, 185, 216, 231], "notic": [5, 8, 14, 21, 22, 23, 25, 32, 42, 43, 44, 52, 60, 73, 85, 97, 99, 112, 130, 135, 144, 146, 149, 153, 154, 157, 159, 168, 172, 173, 174, 176, 177, 188, 189, 191, 195, 256], "dispos": 5, "nvcc": 5, "workaround": [5, 7, 23, 79, 85, 130, 141], "logic": [5, 6, 11, 17, 23, 85, 98, 123, 126, 132, 134, 156, 162, 163, 171, 177, 183, 201, 202, 214, 216], "sigmoidalphablendforwardcuda": 5, "port": [5, 16, 135, 162, 213], "entir": [5, 6, 14, 16, 18, 19, 25, 47, 49, 53, 60, 78, 97, 99, 102, 117, 121, 122, 123, 127, 129, 134, 142, 149, 152, 154, 156, 157, 159, 163, 165, 176, 182, 189, 190, 191, 194, 197, 198, 208, 214, 230, 237, 239, 247, 262], "lltm_forward": 5, "addmm": [5, 6, 109, 144, 173, 188, 197, 206, 207, 219, 238], "transpos": [5, 6, 7, 12, 40, 44, 48, 49, 51, 52, 60, 90, 92, 94, 96, 110, 117, 118, 129, 144, 146, 153, 157, 160, 164, 166, 169, 173, 174, 193, 206, 229], "respect": [5, 16, 32, 34, 43, 49, 51, 52, 63, 64, 68, 69, 71, 72, 99, 101, 111, 114, 115, 124, 125, 134, 136, 141, 143, 144, 145, 154, 159, 163, 165, 168, 173, 174, 176, 177, 198, 212, 244, 247, 249], "ultim": [5, 19, 49, 52, 60, 85, 189, 207], "plop": [5, 23], "autograd": [5, 12, 13, 15, 16, 21, 25, 32, 40, 42, 46, 47, 57, 59, 61, 62, 68, 69, 77, 78, 81, 91, 93, 98, 100, 101, 104, 109, 110, 119, 121, 127, 128, 129, 130, 133, 134, 144, 145, 150, 154, 160, 161, 162, 165, 177, 191, 200, 205, 208, 212, 213, 216, 226, 230, 247, 254, 256], "nice": [5, 12, 49, 80, 143, 152, 154, 159], "dig": [5, 99, 103, 164], "deeper": [5, 11, 12, 95, 97, 99, 143, 144, 164, 177, 211, 256], "interest": [5, 6, 10, 14, 17, 20, 23, 25, 44, 49, 51, 58, 59, 78, 87, 97, 99, 105, 107, 108, 113, 117, 122, 126, 145, 152, 153, 157, 159, 166, 173, 174, 176, 178, 201, 205, 231, 234, 262], "alex": 5, "grave": 5, "thesi": 5, "d_tanh": 5, "relu": [5, 6, 12, 19, 20, 23, 25, 37, 38, 44, 47, 52, 73, 78, 87, 89, 92, 93, 94, 96, 97, 99, 103, 104, 105, 110, 112, 123, 133, 134, 138, 144, 146, 148, 149, 150, 154, 156, 157, 158, 160, 161, 162, 163, 165, 166, 169, 172, 173, 174, 177, 181, 182, 200, 203, 205, 214, 215, 218, 219, 220, 221, 223, 230, 233, 239, 240, 241, 242, 243, 247, 248, 249, 250, 252], "exp": [5, 7, 9, 65, 89, 98, 99, 104, 111, 118, 125, 130, 141, 160, 191], "d_elu": 5, "mask": [5, 17, 58, 75, 90, 109, 118, 121, 136, 153, 156, 160, 164, 171, 178, 184, 189, 190, 192, 193, 196, 201, 220, 254], "type_a": [5, 118], "lltm_backward": 5, "grad_h": 5, "grad_cel": 5, "d_output_g": 5, "d_tanh_new_cel": 5, "d_new_cel": 5, "d_old_cel": 5, "d_candidate_cel": 5, "d_input_g": 5, "d_gate": 5, "d_weight": 5, "d_bia": 5, "keepdim": [5, 13, 19, 73, 123, 129, 162, 166, 182, 197, 198, 221], "d_x": [5, 52], "d_old_h": 5, "d_input": 5, "span": [5, 17, 75, 98, 133, 149, 168, 201, 226, 263], "four": [5, 7, 14, 18, 22, 61, 67, 85, 94, 95, 108, 111, 115, 119, 122, 134, 135, 149, 169, 223, 228, 257, 262, 263], "pybind11_modul": [5, 155], "torch_extension_nam": [5, 155], "macro": [5, 6, 8, 15, 23], "maintain": [5, 10, 14, 22, 43, 49, 61, 73, 97, 102, 108, 121, 131, 135, 146, 160, 163, 176, 177, 194, 230, 258], "mismatch": [5, 61, 97], "nasti": [5, 244], "hard": [5, 6, 8, 15, 21, 99, 126, 156, 231], "At": [5, 6, 8, 14, 15, 17, 20, 23, 43, 47, 49, 50, 85, 87, 102, 116, 122, 123, 124, 136, 141, 146, 157, 159, 160, 161, 164, 165, 168, 189, 192, 197, 201, 206, 223, 238, 244, 261], "point": [5, 6, 8, 10, 11, 14, 17, 18, 19, 20, 22, 23, 43, 47, 49, 50, 51, 52, 53, 58, 60, 82, 85, 97, 98, 100, 101, 102, 103, 110, 123, 124, 125, 126, 130, 131, 133, 143, 146, 149, 150, 157, 159, 161, 165, 169, 171, 173, 174, 181, 182, 184, 185, 189, 191, 192, 194, 197, 200, 201, 208, 221, 223, 228, 234, 235, 245, 247, 251, 260, 261, 262], "bdist_egg": 5, "egg_info": [5, 23], "egg": [5, 23], "pkg": [5, 23, 257], "dependency_link": [5, 23], "top": [5, 6, 8, 17, 19, 20, 22, 23, 38, 50, 51, 52, 82, 83, 94, 96, 97, 115, 124, 127, 135, 139, 143, 157, 158, 163, 164, 168, 169, 176, 178, 182, 197, 198, 199, 201, 209, 219, 226, 227, 229, 256, 260, 264], "top_level": [5, 23], "manifest": [5, 23, 191, 194], "bdist": 5, "x86_64": [5, 18, 23, 204, 208], "install_lib": 5, "temp": [5, 9, 19, 23, 125, 137, 181, 182, 185, 197, 198, 234], "gcc": [5, 23, 108, 144], "miniconda": [5, 18, 23], "compiler_compat": [5, 23], "wl": [5, 22, 23], "sysroot": [5, 23], "wsign": [5, 23], "dndebug": [5, 23], "g": [5, 6, 7, 8, 10, 11, 12, 14, 18, 23, 25, 42, 43, 49, 51, 52, 60, 61, 79, 87, 89, 97, 99, 100, 103, 108, 110, 117, 121, 123, 126, 127, 128, 133, 135, 137, 138, 144, 152, 154, 155, 159, 161, 163, 165, 168, 173, 174, 176, 179, 182, 185, 186, 192, 196, 200, 205, 206, 215, 231, 238, 247, 257, 262], "fwrapv": [5, 23], "o3": [5, 23, 231], "wall": [5, 23, 98, 143, 231, 246], "wstrict": [5, 23], "prototyp": [5, 10, 11, 15, 23, 61, 113, 173, 174, 186, 193, 194, 200, 205, 206, 212], "fpic": [5, 23, 108], "site": [5, 18, 22, 23, 50, 52, 58, 59, 142, 143, 165, 187, 213, 224, 225, 227, 238, 246, 257, 262], "csrc": [5, 22, 23, 155, 188, 222], "th": [5, 14, 23, 51, 99, 103, 135, 146], "thc": [5, 23], "7m": [5, 23], "dtorch_api_include_extension_h": [5, 23], "dtorch_extension_nam": [5, 23], "d_glibcxx_use_cxx11_abi": [5, 23], "cc1plu": [5, 23], "warn": [5, 19, 23, 42, 51, 137, 144, 148, 159, 164, 171, 172, 173, 174, 182, 185, 187, 189, 190, 191, 192, 197, 198, 216, 231, 238, 252], "valid": [5, 7, 9, 13, 17, 20, 23, 24, 49, 87, 94, 97, 104, 107, 109, 112, 113, 115, 117, 118, 122, 123, 126, 129, 130, 148, 155, 157, 171, 178, 181, 182, 190, 191, 200, 201, 204, 222, 231], "objc": [5, 23], "l": [5, 7, 12, 14, 20, 23, 43, 49, 51, 52, 89, 99, 108, 110, 127, 128, 159, 160, 165, 173, 193, 194, 231], "rpath": [5, 23], "cpython": [5, 23], "37m": [5, 23], "stub": [5, 157, 209, 223, 263], "loader": [5, 6, 12, 24, 38, 44, 79, 159, 162, 178, 222, 231], "byte": [5, 137, 139, 174, 181, 208, 230], "37": [5, 7, 17, 109, 158, 163, 177, 201, 219, 238], "pyc": 5, "native_lib": 5, "zip_saf": 5, "analyz": [5, 19, 23, 60, 82, 121, 152, 159, 172, 174, 185], "__pycache__": 5, "__file__": [5, 155, 231], "dist": [5, 7, 11, 16, 18, 110, 122, 123, 133, 135, 153, 155, 162, 175, 214, 215, 258], "py3": 5, "remov": [5, 9, 12, 17, 19, 49, 52, 53, 59, 60, 83, 109, 110, 114, 116, 125, 133, 137, 142, 144, 152, 158, 164, 165, 171, 172, 173, 174, 178, 181, 182, 183, 184, 185, 189, 190, 193, 194, 197, 198, 201, 204, 216, 228, 231, 234, 246, 252, 260], "everyth": [5, 43, 87, 97, 99, 108, 126, 127, 130, 136, 139, 157, 158, 159, 160, 161, 165, 169, 187, 188, 212, 213, 223, 246], "finish": [5, 6, 16, 23, 44, 45, 58, 87, 92, 94, 115, 133, 134, 135, 143, 149, 161, 163, 169, 188, 199, 204, 212, 218, 223, 226, 247, 250], "ubuntu": [5, 6, 168, 208], "16": [5, 7, 16, 17, 19, 23, 24, 44, 47, 52, 87, 89, 92, 93, 94, 96, 97, 104, 105, 112, 126, 133, 136, 141, 145, 147, 156, 157, 158, 163, 164, 169, 171, 172, 173, 174, 177, 178, 184, 187, 191, 194, 201, 204, 208, 214, 219, 231, 239, 240, 241, 242, 243, 248, 249, 250, 266], "04": [5, 7, 118, 168, 219, 231], "recent": [5, 49, 75, 102, 109, 113, 115, 124, 135, 137, 144, 150, 153, 157, 160, 168, 208], "maco": [5, 6, 105, 135, 171], "clang": [5, 204, 206], "worst": [5, 115, 137], "resolv": [5, 23, 97, 142, 147, 177, 191], "symbol": [5, 25, 115, 118, 142, 173, 174, 182, 200, 231, 246, 262], "linker": [5, 23, 204], "pycapsul": [5, 23], "builtin": [5, 155, 231], "arg0": 5, "arg1": [5, 162], "arg2": [5, 162], "arg3": 5, "arg4": 5, "citizen": [5, 23, 189, 191], "lltmfunction": 5, "staticmethod": [5, 13, 14, 64, 111, 129, 130, 141, 161, 171, 244], "contigu": [5, 7, 8, 9, 14, 147, 181, 194, 199, 209, 218, 223, 247], "saved_tensor": [5, 13, 64, 111, 129, 130], "benchmark": [5, 15, 17, 24, 42, 109, 117, 121, 126, 137, 138, 144, 145, 154, 158, 164, 172, 176, 177, 184, 187, 193, 199, 201, 220, 221, 235, 238, 246, 247, 251], "measur": [5, 12, 21, 82, 97, 103, 123, 137, 143, 145, 149, 159, 160, 164, 166, 172, 176, 177, 184, 195, 199, 203, 212, 219, 223, 230, 231, 238, 246, 251], "durat": [5, 83, 155, 160, 168, 177, 262], "32": [5, 14, 17, 18, 19, 20, 21, 23, 24, 47, 52, 55, 73, 87, 92, 93, 97, 102, 105, 109, 123, 126, 129, 136, 137, 144, 145, 146, 147, 150, 154, 158, 162, 163, 164, 165, 166, 168, 171, 173, 174, 176, 177, 178, 198, 203, 219, 221, 228, 231, 233, 239, 247], "128": [5, 6, 12, 22, 51, 52, 55, 73, 87, 97, 103, 109, 118, 123, 124, 126, 127, 128, 129, 134, 135, 136, 137, 138, 144, 149, 154, 158, 160, 161, 162, 163, 165, 172, 178, 185, 200, 203, 207, 212, 220, 230, 231, 232, 233, 246, 253], "100000": [5, 58, 59, 127, 128, 137, 146, 231], "3f": [5, 9, 17, 19, 44, 87, 92, 115, 118, 146, 164, 178, 181, 193, 198, 201, 230, 250], "wrote": [5, 23, 139, 172, 178, 262], "post": [5, 6, 11, 20, 49, 58, 59, 97, 121, 122, 123, 126, 137, 139, 147, 149, 166, 176, 177, 183, 185, 193, 196, 198, 200, 221, 229], "my": [5, 21, 42, 50, 98, 103, 191, 198, 203, 262], "machin": [5, 6, 18, 20, 21, 25, 44, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 73, 87, 105, 107, 116, 118, 121, 122, 123, 126, 131, 132, 133, 134, 135, 143, 154, 158, 162, 163, 164, 165, 176, 178, 185, 194, 198, 203, 210, 219, 226, 245, 247, 257], "506": 5, "480": [5, 238], "444": 5, "694": 5, "349": [5, 92], "335": [5, 147, 163, 258], "443": [5, 163, 238], "523": 5, "speedup": [5, 17, 21, 42, 44, 121, 138, 144, 149, 154, 177, 181, 182, 184, 193, 201, 219, 223, 247], "30": [5, 6, 7, 14, 17, 19, 45, 82, 99, 115, 121, 122, 147, 156, 161, 163, 182, 192, 197, 201, 231, 232, 238], "albeit": [5, 14, 228], "major": [5, 10, 11, 19, 103, 117, 144, 152, 164, 172, 176, 177, 192, 216, 219, 258], "particularli": [5, 13, 17, 53, 153, 165, 201], "engin": [5, 6, 14, 20, 43, 61, 87, 107, 119, 123, 158, 163, 171, 174, 178, 187, 205, 207, 220, 228, 260], "wonder": [5, 99, 152], "abstract": [5, 11, 14, 51, 87, 95, 100, 103, 110, 113, 124, 126, 135, 142, 155, 159, 215, 263], "correspondingli": 5, "big": [5, 42, 52, 98, 103, 128, 129, 138, 152, 159, 165, 171, 194], "win": [5, 115, 152, 185], "No": [5, 6, 49, 53, 60, 99, 144, 148, 179, 204, 211], "cuda_devic": 5, "creation": [5, 6, 10, 192, 202, 208, 237], "assert": [5, 9, 11, 12, 17, 18, 19, 22, 51, 94, 95, 98, 105, 108, 125, 129, 133, 138, 141, 142, 144, 145, 150, 153, 154, 162, 164, 169, 172, 181, 193, 194, 200, 201, 205, 208, 209, 210, 230, 231, 244], "synchron": [5, 11, 16, 55, 56, 61, 82, 133, 135, 149, 159, 161, 162, 168, 172, 176, 177, 184, 193, 212, 226, 230, 231, 258], "1e6": [5, 9, 19, 137, 164, 181, 182, 185, 197, 198, 210, 228, 231, 258], "1e5": 5, "again": [5, 6, 9, 21, 25, 44, 50, 60, 78, 97, 98, 102, 103, 108, 113, 116, 119, 125, 129, 135, 136, 152, 161, 163, 165, 168, 171, 172, 176, 184, 197, 200, 223, 231, 262], "187": [5, 231], "719": 5, "410": [5, 147], "815": 5, "149": 5, "802": [5, 144], "393": [5, 177], "458": [5, 144], "That": [5, 6, 17, 23, 43, 44, 45, 49, 99, 101, 102, 103, 105, 108, 116, 124, 127, 134, 141, 143, 145, 147, 149, 150, 152, 159, 164, 168, 178, 189, 190, 192, 201, 223, 224, 234, 251, 262], "great": [5, 49, 60, 105, 112, 113, 191, 197, 231, 262], "pull": [5, 7, 21, 143, 173, 174, 213], "dive": [5, 6, 11, 23, 133, 144, 157], "elabor": [5, 6, 124, 144, 161], "fly": [5, 14, 23, 51, 98, 115, 159, 228], "background": [5, 6, 23, 58, 59, 73, 113, 158, 169, 171, 178, 262], "tmp": [5, 23, 126, 129, 144, 171, 186, 218, 223, 228, 238], "torch_extens": 5, "emit": [5, 6, 98], "ninja": 5, "verbos": [5, 23, 132, 171, 177, 207, 208, 263], "complic": [5, 14, 98, 99, 103, 126, 177, 197, 205, 209, 215, 230, 231, 252], "techniqu": [5, 9, 16, 17, 19, 21, 49, 60, 97, 98, 103, 107, 121, 124, 129, 130, 131, 143, 149, 153, 156, 157, 163, 171, 177, 184, 189, 193, 201, 203, 204, 228, 234, 247], "fine": [5, 6, 17, 19, 49, 51, 98, 113, 120, 125, 134, 135, 144, 157, 158, 168, 185, 188, 189, 201, 229, 230, 231, 247], "system": [5, 6, 8, 10, 12, 14, 15, 22, 23, 25, 55, 76, 97, 121, 126, 135, 153, 158, 159, 161, 175, 176, 177, 178, 206, 207, 208, 213, 247], "increment": [5, 11, 12, 60, 85, 101, 135, 146, 160], "thu": [5, 6, 8, 10, 19, 20, 21, 23, 49, 85, 87, 97, 108, 122, 138, 142, 152, 165, 177, 197, 202, 208, 216, 226, 231, 238, 247, 252, 262], "didn": [5, 8, 22, 76, 105, 143, 161, 181, 205, 262], "prospect": 5, "pointwis": [5, 8, 142, 147, 199], "declar": [5, 6, 13, 23, 60, 73, 78, 115, 208, 223, 252], "cu": 5, "ensur": [5, 8, 9, 10, 11, 12, 14, 15, 16, 19, 22, 37, 49, 53, 56, 60, 64, 97, 109, 111, 112, 115, 116, 123, 132, 135, 141, 159, 160, 162, 164, 171, 176, 178, 186, 194, 198, 202, 231, 234, 241, 244, 254, 256], "lltm_cuda": 5, "lltm_cuda_forward": 5, "lltm_cuda_backward": 5, "check_cuda": 5, "torch_check": [5, 8], "is_cuda": [5, 147], "check_contigu": 5, "is_contigu": [5, 147, 231, 246], "check_input": 5, "lltm_cuda_kernel": 5, "cannot": [5, 6, 11, 14, 16, 18, 22, 23, 49, 60, 61, 82, 108, 112, 113, 130, 133, 135, 136, 147, 149, 157, 159, 173, 174, 184, 195, 203, 205, 254, 261], "peek": [5, 211], "cuda_runtim": 5, "templat": [5, 8, 22, 23, 59, 135, 144, 208, 209, 221, 260], "typenam": [5, 208], "scalar_t": [5, 144], "__device__": 5, "__forceinline__": 5, "specif": [5, 6, 8, 9, 10, 11, 12, 17, 18, 19, 22, 23, 25, 44, 55, 58, 59, 73, 82, 87, 99, 100, 101, 105, 107, 108, 110, 112, 114, 122, 123, 124, 127, 128, 129, 133, 135, 136, 137, 143, 144, 148, 149, 156, 157, 159, 161, 162, 163, 164, 165, 168, 169, 173, 174, 176, 177, 178, 179, 185, 187, 190, 193, 199, 200, 201, 204, 206, 207, 212, 214, 219, 220, 226, 229, 234, 238, 244, 251, 252, 254, 258, 262], "fmax": 5, "fmin": 5, "d_relu": 5, "wish": [5, 6, 23, 52, 60, 73, 95, 112, 113, 150, 154, 162, 171, 179, 185, 190, 198, 230, 241, 263], "explicitli": [5, 6, 18, 25, 43, 48, 52, 53, 60, 87, 101, 124, 132, 136, 147, 163, 164, 166, 173, 176, 177, 182, 192, 193, 200, 226, 247], "zeros_lik": [5, 14, 95, 142, 161, 216, 254], "dim3": 5, "at_dispatch_floating_typ": 5, "lltm_forward_cuda": 5, "lltm_cuda_forward_kernel": 5, "indic": [5, 6, 10, 11, 14, 16, 23, 49, 60, 63, 64, 82, 98, 99, 102, 103, 108, 109, 110, 111, 115, 116, 118, 126, 127, 136, 137, 144, 156, 159, 160, 162, 168, 169, 171, 176, 177, 178, 185, 189, 191, 192, 195, 200, 207, 229, 231, 256, 260, 262], "runtim": [5, 8, 14, 18, 21, 23, 25, 40, 50, 60, 82, 85, 107, 109, 121, 124, 129, 143, 152, 168, 172, 176, 177, 181, 184, 185, 197, 206, 207, 210, 219, 230, 231, 234, 238, 251], "back": [5, 6, 8, 10, 14, 15, 19, 20, 22, 23, 44, 47, 51, 58, 59, 60, 73, 80, 87, 97, 98, 101, 105, 109, 113, 125, 127, 139, 143, 147, 149, 152, 154, 159, 161, 162, 163, 165, 171, 176, 188, 189, 193, 194, 213, 234, 244, 247, 262], "determin": [5, 6, 8, 11, 17, 19, 48, 49, 97, 98, 101, 102, 103, 105, 124, 126, 138, 142, 152, 153, 154, 156, 160, 172, 182, 193, 201, 231, 234, 238, 239, 247], "conceptu": [5, 6, 43, 49, 60, 177], "scalartyp": 5, "messag": [5, 49, 108, 135, 137, 171, 173, 174, 185, 207, 208, 222, 225, 252], "alia": [5, 10, 64, 111, 173, 174], "retriev": [5, 6, 7, 14, 16, 21, 49, 125, 126, 146, 159, 161, 162, 177, 209, 226], "at_dispatch_all_typ": 5, "sens": [5, 8, 12, 14, 97, 103, 113, 126, 138, 169, 262], "routin": [5, 6, 23], "convolut": [5, 6, 8, 12, 13, 20, 47, 52, 60, 97, 112, 117, 119, 121, 147, 150, 156, 157, 166, 176, 177, 182, 199, 200, 206, 207, 219, 220, 223, 226, 230, 238, 239, 252], "harder": [5, 97, 184, 185], "ourselv": [5, 6, 49, 76, 129, 159], "grid": [5, 47, 51, 117, 149, 157, 166, 169, 186, 254], "fill": [5, 6, 14, 80, 103, 127, 136, 141, 176, 190, 191, 208, 223], "matric": [5, 12, 17, 23, 25, 48, 101, 145, 153, 201, 207], "2048": [5, 18, 97, 129, 145], "heard": 5, "introductori": [5, 79], "fairli": [5, 97, 113, 135, 152, 160], "ever": [5, 6, 23, 125, 173, 174, 237], "__global__": 5, "__restrict__": 5, "size_t": 5, "column": [5, 7, 18, 23, 40, 80, 99, 101, 109, 119, 124, 127, 144, 145, 150, 160, 168, 171, 190, 191, 192, 193, 231, 238, 263], "blockidx": 5, "blockdim": 5, "threadidx": 5, "index": [5, 6, 15, 34, 38, 41, 44, 45, 48, 49, 51, 58, 59, 60, 73, 83, 98, 99, 101, 102, 103, 109, 115, 116, 118, 119, 123, 125, 126, 127, 128, 129, 135, 139, 153, 160, 161, 165, 166, 168, 171, 172, 176, 184, 193, 205, 213, 229, 260, 266], "gates_row": 5, "primarili": [5, 82, 162, 172, 230], "imagin": [5, 98, 103, 130, 135, 152, 153, 165, 231, 244], "giant": [5, 165], "million": [5, 115, 117, 119, 122, 136, 176], "serial": [5, 6, 10, 23, 25, 60, 112, 121, 173, 174, 176, 182, 197, 198, 226, 231], "faster": [5, 6, 8, 9, 12, 19, 49, 56, 58, 59, 73, 97, 112, 122, 132, 136, 138, 145, 147, 154, 161, 165, 172, 177, 178, 182, 203, 218, 223, 227, 228, 230, 231, 234, 247, 251], "right": [5, 6, 8, 10, 12, 14, 20, 23, 32, 43, 48, 49, 52, 64, 82, 89, 97, 99, 101, 103, 111, 113, 135, 137, 146, 150, 152, 157, 159, 160, 161, 164, 165, 168, 171, 178, 185, 195, 197, 205, 219, 226, 234, 252, 262], "inde": [5, 14, 58, 59, 97, 129, 145, 159, 164, 172, 191, 192, 231, 247], "agnost": [5, 60, 110, 232], "ineffici": [5, 82, 176, 193], "readabl": [5, 25, 51, 98, 110, 128, 139, 168, 213, 231], "especi": [5, 17, 19, 49, 52, 60, 73, 113, 122, 133, 143, 150, 152, 173, 174, 177, 184, 190, 199, 201, 221, 223, 228], "dimension": [5, 47, 48, 49, 52, 60, 97, 100, 101, 102, 103, 113, 124, 147, 156, 164, 165, 169, 171, 192, 207, 215, 223], "stride": [5, 6, 19, 52, 90, 97, 104, 113, 123, 129, 134, 144, 146, 147, 166, 171, 177, 179, 192, 218, 229, 237, 244], "row": [5, 18, 23, 34, 40, 51, 73, 80, 99, 101, 102, 103, 116, 124, 126, 127, 145, 157, 160, 161, 176, 177, 190, 192, 205, 208, 226, 231, 263], "arithmet": [5, 19, 143, 185, 234], "fortun": [5, 6, 10, 15, 23, 87, 135, 136, 231], "expos": [5, 6, 8, 22, 23, 108, 113, 121, 139, 163, 181, 197, 198, 206, 208, 213, 247], "foo": [5, 21, 22, 141, 142, 153, 162, 172, 174, 182, 197, 202, 209, 246, 262, 263], "12": [5, 7, 23, 42, 58, 59, 92, 101, 109, 122, 123, 144, 149, 161, 169, 173, 178, 179, 184, 190, 193, 200, 201, 204, 208, 219, 221, 222, 225, 227, 231, 257, 262, 266], "hold": [5, 14, 16, 18, 47, 60, 63, 64, 65, 67, 68, 69, 76, 78, 87, 98, 111, 122, 123, 132, 134, 139, 152, 160, 161, 163, 237, 244, 247], "foo_a": 5, "packed_accessor64": 5, "packed_accessor32": 5, "pack": [5, 49, 60, 78, 115, 144, 159, 161, 163, 193, 208, 212, 223, 252], "integ": [5, 6, 8, 60, 97, 99, 101, 103, 113, 115, 126, 146, 156, 173, 174, 178, 184, 192, 197, 198, 199, 207, 228, 234, 238, 265], "fundament": [5, 49, 91, 101, 103, 146, 190, 198, 214], "packedtensoraccessor32": 5, "restrictptrtrait": 5, "decompos": [5, 10, 17, 123, 149, 173, 174, 197, 201], "packedaccessor32": 5, "variant": [5, 49, 60, 124, 129, 158, 164], "int32_t": 5, "packedaccessor64": 5, "slower": [5, 17, 56, 133, 145, 149, 158, 160, 172, 176, 178, 184, 186, 193, 201, 229], "host": [5, 7, 16, 18, 54, 82, 98, 122, 123, 124, 133, 134, 135, 149, 162, 163, 168, 215, 216, 238, 247], "reshap": [5, 6, 9, 12, 19, 51, 95, 103, 104, 110, 118, 142, 159, 181, 182, 188, 189, 190, 191, 193, 197, 198, 206, 221, 231], "pattern": [5, 17, 21, 103, 124, 135, 142, 144, 153, 162, 177, 182, 183, 185, 189, 191, 197, 201, 202, 215, 220], "lltm_cuda_backward_kernel": 5, "lltm_backward_cuda": 5, "d_gate_weight": 5, "cudaextens": [5, 155], "hassl": [5, 6], "entail": 5, "simpler": [5, 78, 124, 129, 141, 153, 197, 205, 231], "fastest": [5, 149, 164], "129": [5, 109, 187], "431": 5, "304": [5, 49, 177], "641": [5, 147], "faq": [5, 22, 23], "sit": [6, 42, 105, 107, 108, 149, 153, 261, 263, 265], "atop": 6, "substanti": [6, 126], "codebas": [6, 10, 14], "foundat": [6, 159, 171], "underli": [6, 8, 14, 23, 48, 73, 80, 95, 97, 112, 126, 138, 144, 149, 154, 162, 182, 191, 192, 193, 215, 216], "popular": [6, 68, 73, 75, 97, 111, 126, 136, 137, 177, 184, 220, 221, 261], "stochast": [6, 7, 47, 52, 65, 104, 111, 115, 135, 159, 160], "descent": [6, 7, 43, 47, 63, 64, 65, 68, 72, 104, 110, 111, 115, 135, 184], "digit": [6, 47, 121, 122, 123, 171], "whirlwind": 6, "wet": 6, "appetit": 6, "watch": [6, 37, 113, 131, 135], "lightn": [6, 126], "talk": [6, 8, 49, 52, 55, 101, 115, 135, 159, 162], "cppcon": 6, "2018": [6, 118, 137], "quick": [6, 17, 48, 58, 59, 97, 99, 102, 103, 119, 122, 127, 133, 138, 145, 153, 154, 184, 201, 213, 231, 234, 256], "humor": 6, "sweep": [6, 164], "philosophi": [6, 113], "ecosystem": [6, 108], "descript": [6, 50, 61, 122, 123, 144, 148, 159, 161, 162, 163, 164, 171, 181, 231, 247, 255, 257, 263], "embark": 6, "excit": [6, 22, 23, 143, 152], "team": [6, 108, 115, 126, 137, 160, 171], "job": [6, 45, 52, 53, 54, 82, 97, 126, 131, 132, 133, 135, 223], "reinforc": [6, 14, 61, 121, 146, 159, 160, 161, 162], "game": [6, 44, 52, 79, 146], "tractabl": [6, 98], "multithread": [6, 43, 56, 109, 216, 226, 231], "lock": [6, 14, 25, 56, 134, 135, 161, 162, 177, 216, 261], "gil": [6, 56, 61, 133, 216], "scalabl": [6, 126, 189, 207, 219, 220, 247], "shortcom": [6, 191], "neuroevolut": 6, "owner": [6, 161, 162, 163], "anyth": [6, 13, 44, 98, 101, 102, 103, 139, 148, 158, 181, 182, 184, 226, 234, 244, 245, 262, 263], "serv": [6, 37, 57, 61, 85, 97, 102, 121, 127, 133, 139, 143, 146, 149, 155, 162, 163, 176, 177, 191, 212, 213, 230, 231, 247, 257], "web": [6, 105, 213, 251, 262], "server": [6, 16, 25, 61, 119, 120, 121, 127, 133, 149, 155, 163, 177, 179, 185, 194, 213, 214, 216, 220, 228, 251], "3d": [6, 7, 75, 93, 101, 102, 115, 171, 197, 200, 247], "graphic": [6, 164, 206], "photo": [6, 229], "softwar": [6, 137, 149, 155, 168, 176, 206, 213, 262], "integr": [6, 10, 14, 23, 78, 87, 109, 121, 126, 139, 169, 176, 177, 179, 199, 200, 206, 219, 226, 229, 244, 254], "remain": [6, 7, 87, 97, 119, 135, 142, 152, 156, 165, 179, 184, 191, 193, 195, 199, 209, 247], "forth": [6, 149, 176, 263], "retain": [6, 40, 48, 76, 80, 112], "intuit": [6, 52, 73, 78, 99, 108, 112, 144, 149, 165, 171, 190, 226, 244], "tradit": [6, 42, 52, 97, 99, 107, 145, 162], "compet": [6, 113, 115, 119, 126, 176, 177], "complement": 6, "alik": 6, "love": [6, 113], "simplic": [6, 73, 122, 129, 159, 160, 215, 222, 231], "core": [6, 8, 10, 11, 42, 45, 60, 76, 98, 99, 100, 104, 108, 112, 115, 121, 124, 126, 135, 136, 144, 147, 158, 168, 173, 174, 177, 194, 196, 197, 204, 222, 226, 230, 246, 247], "principl": [6, 8, 102, 103, 121, 126], "curiou": [6, 138, 152, 154, 211], "tri": [6, 18, 52, 98, 103, 113, 160, 206, 230], "experienc": [6, 85], "ask": [6, 17, 22, 23, 60, 103, 128, 136, 159, 201, 209, 231], "rememb": [6, 44, 52, 59, 73, 76, 98, 99, 102, 109, 112, 139, 145, 146, 152, 165, 231], "dot": [6, 14, 32, 49, 52, 60, 102, 103, 121, 145, 165, 176, 177, 205, 231, 254], "colon": [6, 171, 262], "minim": [6, 10, 12, 17, 23, 52, 61, 63, 64, 67, 68, 69, 73, 82, 99, 103, 121, 122, 126, 132, 137, 144, 160, 172, 182, 185, 189, 199, 201, 204, 209, 234], "verifi": [6, 20, 58, 59, 85, 108, 114, 116, 119, 130, 138, 141, 142, 145, 147, 156, 158, 176, 177, 178, 206, 219, 220, 226, 256], "too": [6, 10, 14, 19, 44, 64, 68, 82, 87, 97, 98, 103, 109, 111, 124, 127, 133, 139, 149, 152, 156, 160, 161, 163, 165, 189, 228, 260, 262, 263], "cu90": 6, "url": [6, 19, 104, 118, 168, 172, 184, 208, 222, 236, 245, 260], "wget": [6, 18, 75, 178, 181, 184, 208], "nightli": [6, 18, 75, 122, 137, 141, 172, 175, 178, 184, 187, 188, 196, 197, 199, 204, 205, 208, 221], "dep": 6, "tini": [6, 123, 149, 152], "three": [6, 10, 12, 14, 15, 51, 52, 61, 64, 73, 82, 85, 92, 95, 98, 108, 112, 113, 115, 118, 121, 124, 128, 135, 147, 153, 155, 159, 163, 164, 165, 166, 168, 169, 175, 176, 177, 184, 192, 199, 226, 228, 238, 256, 262, 263], "ey": [6, 20, 23, 32, 103, 145, 150, 153, 205, 208, 262], "fledg": 6, "visual": [6, 14, 25, 43, 52, 73, 75, 82, 83, 90, 116, 121, 122, 125, 126, 130, 143, 153, 159, 168, 169, 171, 176, 177, 186, 191, 238, 245, 251], "studio": [6, 58, 204, 222, 224, 227], "qmake": 6, "makefil": 6, "comfort": 6, "box": [6, 8, 10, 11, 17, 73, 113, 126, 130, 135, 146, 158, 161, 168, 176, 177, 178, 199, 201, 205, 207, 220, 225, 226, 229, 262], "cmake_prefix_path": [6, 22, 23], "invok": [6, 8, 22, 23, 25, 97, 133, 134, 141, 143, 144, 155, 162, 163, 177, 186, 188, 191, 199, 203, 207, 226, 244, 247, 253], "agre": [6, 23, 137, 258], "break": [6, 8, 10, 11, 12, 19, 38, 49, 51, 60, 75, 82, 112, 113, 116, 118, 128, 139, 146, 152, 156, 160, 161, 163, 165, 168, 172, 189, 236, 262], "unexpect": [6, 51, 191, 195, 200, 247], "pwd": [6, 208, 226], "fa350df05ecf": 6, "home": [6, 48, 113, 189, 194, 204, 206, 209, 217, 222], "enter": [6, 49, 60, 122, 133, 135], "ran": [6, 103, 159, 162, 164, 173, 174, 204, 231], "me": [6, 17, 42, 49, 99, 152, 165, 201, 262, 263], "extens": [6, 7, 15, 22, 23, 52, 112, 121, 127, 130, 135, 171, 176, 186, 189, 191, 197, 199, 219, 221, 231, 235, 251], "besid": [6, 23, 103, 153, 161, 221, 229, 247, 262], "encapsul": [6, 47, 152, 161], "buffer": [6, 14, 44, 47, 59, 69, 76, 110, 111, 112, 122, 129, 133, 138, 141, 146, 150, 152, 153, 154, 156, 160, 173, 174, 177, 188, 202, 206, 208, 223, 237], "nest": [6, 14, 43, 110, 142, 159, 161, 163, 164, 196, 262, 263], "similarli": [6, 9, 12, 22, 51, 60, 80, 83, 113, 116, 125, 126, 134, 143, 144, 145, 152, 179, 192, 214], "w": [6, 7, 9, 12, 32, 38, 43, 47, 49, 51, 73, 76, 98, 102, 103, 122, 125, 129, 137, 146, 147, 163, 168, 178, 184, 185, 187, 222], "struct": [6, 15, 22, 208, 252], "int64_t": [6, 8, 23], "register_paramet": [6, 202], "reflect": [6, 8, 23, 48, 95, 136, 159, 195], "magic": [6, 99, 128, 135, 145], "behind": [6, 8, 17, 23, 45, 82, 97, 99, 129, 160, 179, 190, 192, 196, 201, 202, 262], "scene": [6, 23, 58, 59, 113, 202], "another_bia": 6, "recurs": [6, 16, 44, 60, 110, 202, 218, 245], "0808": 6, "8613": 6, "2017": [6, 73, 104, 118], "5206": 6, "5353": 6, "3740": 6, "0976": 6, "4786": 6, "4928": 6, "1434": 6, "4713": 6, "1735": 6, "3293": 6, "3467": 6, "3858": 6, "1980": 6, "1986": 6, "1975": 6, "4278": 6, "1831": 6, "2709": 6, "3730": 6, "4307": 6, "3236": 6, "0629": 6, "2038": 6, "4638": 6, "2023": [6, 171, 173], "1230": 6, "0516": 6, "aptli": [6, 13], "register_modul": 6, "dropout": [6, 7, 9, 12, 19, 20, 37, 39, 49, 60, 73, 93, 96, 97, 104, 110, 112, 118, 123, 124, 126, 128, 129, 136, 148, 157, 161, 163, 164, 165, 166, 181, 193, 194, 195, 198, 201, 221, 241, 242, 243, 252, 256], "conv2d": [6, 12, 19, 20, 44, 47, 52, 73, 78, 87, 92, 93, 94, 96, 97, 104, 105, 112, 123, 129, 134, 142, 146, 147, 150, 153, 154, 156, 158, 162, 166, 169, 177, 179, 182, 197, 198, 199, 200, 203, 207, 218, 220, 221, 223, 226, 228, 233, 238, 239, 240, 241, 242, 243, 247, 248, 249, 250, 252], "subtleti": [6, 192], "bodi": [6, 113, 144, 262, 263], "upon": [6, 14, 49, 56, 79, 117, 135, 141, 165, 169, 172, 229, 247, 260], "p": [6, 7, 9, 18, 19, 49, 68, 69, 93, 97, 98, 103, 104, 110, 111, 118, 122, 123, 127, 128, 129, 134, 135, 137, 138, 141, 142, 144, 146, 147, 150, 152, 157, 161, 162, 163, 165, 178, 181, 182, 185, 197, 198, 201, 206, 207, 208, 212, 216, 234, 238], "0345": [6, 185], "4456": 6, "6313": 6, "3585": 6, "4008": [6, 23], "1647": 6, "2891": 6, "0527": 6, "0354": 6, "3084": 6, "2025": 6, "0343": [6, 208], "1824": 6, "4630": 6, "2862": 6, "2500": 6, "0420": 6, "3679": 6, "1482": 6, "0460": 6, "1967": 6, "2132": 6, "1992": 6, "4257": 6, "0739": 6, "01": [6, 7, 11, 19, 43, 47, 98, 109, 135, 157, 163, 164, 166, 173, 210, 211, 219, 221, 258, 263], "6861": 6, "1166": 6, "45": [6, 7, 126, 144, 163, 176, 204, 219, 229], "0333": 6, "9983": 6, "0705": 6, "named_paramet": [6, 33, 141, 150, 153, 154, 156], "ordereddict": [6, 178], "13": [6, 23, 92, 95, 104, 109, 115, 163, 171, 176, 219, 223, 226, 262, 266], "48": [6, 7, 17, 126, 127, 144, 147, 169, 201, 204, 219, 238], "1863": 6, "8611": 6, "1228": 6, "3269": 6, "9858": 6, "0339": 6, "2484": 6, "2035": 6, "2103": 6, "0715": 6, "2975": 6, "4350": 6, "1878": 6, "3616": 6, "1050": 6, "4982": 6, "0335": [6, 185], "1605": 6, "4963": 6, "4099": 6, "2883": 6, "1818": 6, "3447": 6, "1501": 6, "0215": 6, "0250": 6, "0408": 6, "3756": 6, "2149": 6, "3636": 6, "8559": 6, "1572": 6, "1069": 6, "1247": 6, "8060": 6, "topic": [6, 49, 58, 59, 61, 73, 105, 107, 108, 114, 120, 176, 216], "devour": 6, "menu": [6, 50, 260, 262], "pipelin": [6, 16, 61, 113, 121, 139, 159, 161, 171, 176, 177, 178, 234], "briefli": [6, 61, 121, 124, 159, 172, 207], "who": [6, 42, 49, 60, 73, 79, 97, 100, 113, 135, 152, 226, 231, 262], "heap": 6, "referenc": [6, 134, 163, 234], "lower": [6, 14, 17, 49, 50, 60, 73, 82, 108, 121, 122, 126, 133, 137, 141, 144, 152, 153, 157, 159, 160, 164, 165, 169, 171, 172, 179, 185, 192, 195, 198, 201, 223, 263], "heavili": [6, 113, 165, 176, 184], "influenc": [6, 52], "ergonom": 6, "far": [6, 7, 14, 20, 22, 47, 49, 58, 59, 64, 95, 97, 98, 99, 111, 115, 125, 135, 139, 149, 152, 156, 160, 165, 176, 189, 198, 231, 262], "stack": [6, 8, 14, 15, 21, 22, 40, 48, 78, 92, 109, 121, 124, 138, 145, 146, 150, 154, 155, 161, 165, 168, 169, 171, 205], "shared_ptr": [6, 22], "cognit": 6, "everywher": [6, 103], "make_shar": 6, "though": [6, 10, 23, 47, 73, 97, 98, 113, 117, 129, 130, 138, 139, 143, 154, 159, 169, 173, 174, 184, 189, 220, 231], "stai": [6, 82, 122, 124, 159, 160, 161, 176, 197, 198, 199, 228], "shorten": [6, 23], "wait": [6, 14, 16, 21, 82, 128, 133, 134, 135, 136, 144, 155, 160, 161, 162, 163, 168, 171, 176, 237, 238, 247], "hell": 6, "lot": [6, 8, 10, 15, 19, 21, 51, 79, 98, 113, 119, 123, 135, 150, 162, 165, 168, 172, 176, 184, 189, 230, 231, 234], "came": [6, 52, 190], "scheme": [6, 18, 97, 121, 189, 202, 237, 244], "hide": [6, 118, 129, 159, 205], "reserv": [6, 10, 15, 137, 168], "simplifi": [6, 10, 14, 24, 78, 129, 133, 134, 165, 171, 177, 178, 189, 192, 196, 197, 199, 215], "linearimpl": 6, "torch_modul": 6, "brief": [6, 24, 61, 82, 98, 159, 208], "typedef": 6, "among": [6, 8, 22, 53, 58, 59, 82, 87, 124, 156, 168, 176, 200, 228, 229], "holder": [6, 118, 264], "arrow": [6, 43, 124, 195], "resembl": [6, 12, 23, 58, 59, 98, 131, 160], "extra": [6, 7, 8, 9, 56, 97, 101, 102, 107, 127, 128, 129, 134, 136, 141, 153, 159, 165, 171, 172, 177, 178, 181, 194, 220, 223, 238, 247], "netimpl": 6, "subtl": [6, 230], "deserv": [6, 103, 113], "construct": [6, 14, 20, 21, 22, 25, 47, 52, 60, 61, 65, 67, 85, 97, 111, 117, 121, 128, 130, 134, 136, 138, 145, 149, 154, 159, 160, 162, 165, 178, 183, 193, 196, 197, 200, 202, 205, 219, 221, 230, 249, 258, 262, 263], "null": [6, 58, 208, 223, 226], "tricki": [6, 17, 130, 142, 173, 174, 176, 201], "had": [6, 23, 42, 47, 51, 102, 105, 113, 152, 153, 160, 169, 197, 220, 226, 244], "nullptr": [6, 186, 208], "familiar": [6, 8, 10, 22, 44, 48, 53, 54, 56, 60, 85, 98, 100, 112, 122, 125, 131, 132, 135, 139, 146, 162, 226, 231], "pythonista": 6, "disadvantag": [6, 112], "said": [6, 23, 25, 42, 146, 152, 159, 189, 190, 262], "introduct": [6, 11, 17, 25, 46, 53, 54, 55, 56, 57, 79, 84, 85, 99, 100, 105, 106, 107, 108, 121, 131, 132, 144, 191, 201, 220, 247, 251, 254, 256], "sooner": [6, 122], "technic": [6, 23, 135, 136, 152, 189, 210, 211], "henceforth": 6, "recap": [6, 47, 160, 192, 237], "adversari": [6, 44, 79, 121], "architectur": [6, 9, 17, 25, 52, 56, 60, 73, 85, 95, 97, 98, 110, 121, 122, 124, 126, 131, 138, 150, 156, 164, 169, 171, 172, 175, 176, 177, 197, 199, 201, 220, 226, 228, 230, 247], "distinct": [6, 17, 21, 52, 82, 103, 122, 163, 169, 201], "transform": [6, 12, 17, 19, 20, 23, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 40, 44, 49, 52, 58, 59, 60, 73, 75, 87, 90, 92, 93, 94, 96, 97, 109, 110, 113, 116, 117, 120, 121, 123, 129, 135, 136, 138, 139, 141, 142, 144, 146, 148, 150, 152, 153, 157, 158, 162, 165, 168, 169, 171, 178, 182, 184, 185, 193, 195, 197, 198, 199, 201, 204, 213, 216, 219, 220, 221, 229, 231, 244, 246, 247, 250, 253, 254], "probabl": [6, 8, 22, 49, 52, 58, 59, 60, 73, 75, 97, 98, 101, 103, 118, 123, 125, 126, 127, 128, 129, 148, 153, 158, 160, 166, 169, 171, 193, 219], "judg": 6, "closer": [6, 97, 160, 177], "authent": 6, "theori": [6, 49, 52, 60, 97, 125, 262], "delic": 6, "tandem": 6, "indistinguish": 6, "fool": [6, 49, 73], "excel": [6, 51, 169], "realist": [6, 21, 60, 193], "2d": [6, 52, 93, 127, 129, 142, 156, 161, 171, 175, 200, 215, 252], "dcgangeneratorimpl": 6, "knoises": 6, "conv1": [6, 20, 44, 47, 73, 78, 87, 92, 93, 94, 96, 104, 105, 112, 123, 129, 142, 149, 150, 154, 156, 157, 162, 166, 169, 182, 195, 200, 203, 221, 233, 239, 240, 241, 242, 243, 248, 249, 250], "convtranspose2dopt": 6, "256": [6, 9, 17, 19, 51, 87, 90, 97, 117, 119, 124, 125, 126, 134, 144, 146, 159, 164, 165, 176, 178, 181, 182, 195, 197, 198, 200, 201, 207, 219, 229, 230, 238], "batch_norm1": 6, "conv2": [6, 20, 44, 47, 73, 78, 87, 90, 92, 93, 94, 96, 104, 105, 112, 123, 129, 142, 150, 154, 156, 162, 166, 169, 200, 203, 221, 233, 239, 240, 241, 242, 243, 248, 249, 250], "pad": [6, 17, 19, 42, 49, 52, 60, 75, 97, 104, 113, 115, 118, 129, 134, 137, 164, 191, 193, 201, 247], "batch_norm2": 6, "conv3": [6, 20, 104, 150], "batch_norm3": 6, "conv4": [6, 20], "convtranspose2d": [6, 52], "batchnorm2d": [6, 12, 19, 52, 104, 129, 134, 142, 143, 179, 198, 218, 223, 247, 252], "dcgangener": 6, "chosen": [6, 20, 22, 160, 172, 230, 231], "student": [6, 97, 113], "harm": [6, 97], "discoveri": 6, "fed": [6, 12, 49, 52, 61, 113, 118, 134, 139, 149, 171, 177, 200], "soylent": 6, "regularli": [6, 53], "channel": [6, 10, 12, 19, 21, 43, 44, 47, 52, 97, 110, 121, 122, 124, 139, 148, 152, 156, 169, 178, 185, 208, 212, 213, 220, 247, 261], "moduleopt": 6, "linearopt": 6, "leaki": [6, 52], "squash": [6, 136, 146], "sequenti": [6, 7, 12, 14, 19, 37, 38, 49, 52, 68, 69, 97, 103, 110, 111, 116, 118, 125, 134, 136, 142, 146, 148, 149, 153, 157, 159, 166, 185, 193, 194, 202, 205, 210, 211, 219, 230, 247, 258], "orient": [6, 166], "layer": [6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 33, 37, 42, 43, 47, 49, 52, 55, 60, 68, 73, 78, 87, 93, 97, 99, 102, 110, 111, 112, 115, 117, 118, 121, 122, 123, 126, 127, 128, 134, 136, 147, 148, 149, 153, 156, 157, 158, 159, 162, 163, 165, 166, 176, 177, 178, 181, 184, 185, 200, 201, 210, 211, 212, 219, 229, 230, 233, 234, 237, 239, 241, 242, 244, 252, 256], "conv2dopt": 6, "leakyrelu": [6, 52, 110], "leakyreluopt": 6, "negative_slop": 6, "composit": [6, 11, 14, 25, 99, 100, 145, 159], "third": [6, 8, 12, 22, 23, 52, 63, 64, 65, 67, 68, 69, 102, 111, 130, 155, 165, 175, 189, 195, 205, 263], "fourth": [6, 65, 130, 194, 199], "knob": [6, 176, 177], "truli": [6, 49, 146], "collat": [6, 51, 118, 263], "wherev": 6, "make_data_load": 6, "unique_ptr": 6, "spawn": [6, 7, 11, 16, 18, 49, 52, 53, 55, 123, 133, 134, 135, 149, 161, 162, 163, 212, 214, 258], "concurr": [6, 109, 124, 126, 134, 149, 176, 177, 247], "kbatchsiz": 6, "dataloaderopt": 6, "consol": [6, 169, 171, 188, 257], "field": [6, 10, 11, 12, 14, 15, 49, 102, 103, 113, 135, 152, 161, 168, 174, 178, 191, 200, 203, 216, 223], "rebuild": [6, 231], "danc": [6, 12], "generator_optim": 6, "adamopt": 6, "2e": [6, 14, 89, 137], "make_tupl": 6, "discriminator_optim": 6, "5e": [6, 24, 64, 111], "adagrad": [6, 96, 110, 111, 192, 196], "lbfg": [6, 12, 110], "rmsprop": [6, 47, 69, 99, 110, 111], "sgd": [6, 7, 16, 19, 37, 38, 43, 44, 47, 65, 67, 69, 87, 89, 92, 94, 96, 98, 99, 102, 103, 104, 110, 111, 112, 115, 117, 133, 134, 135, 149, 157, 161, 162, 163, 166, 168, 169, 178, 220, 221, 230, 237, 241, 242, 243, 244, 245, 249, 250, 253], "date": [6, 10, 73, 115, 122, 162, 197, 204, 220, 244, 263], "exhaust": [6, 11, 173, 174, 200], "knumberofepoch": 6, "batch_index": 6, "real_imag": 6, "real_label": [6, 52], "real_output": 6, "d_loss_real": 6, "binary_cross_entropi": [6, 230], "fake_imag": [6, 152], "fake_label": [6, 52], "fake_output": 6, "d_loss_fak": 6, "d_loss": [6, 52], "fill_": [6, 9, 52, 80, 118, 136, 165, 168, 191], "g_loss": [6, 52], "printf": 6, "r": [6, 7, 9, 11, 14, 16, 19, 42, 43, 47, 49, 51, 60, 73, 76, 85, 92, 98, 99, 121, 144, 145, 146, 147, 150, 160, 161, 163, 165, 171, 176, 178, 181, 182, 195, 197, 198, 204, 205, 208, 220, 231, 246, 247, 257, 262], "2ld": 6, "3ld": 6, "4f": [6, 12, 14, 49, 52, 60, 117, 122, 123, 127, 128, 129, 136, 145, 154, 157, 159, 165, 166, 203], "batches_per_epoch": 6, "uniformli": [6, 87, 160, 247], "robust": [6, 49, 53, 54, 73, 160, 219], "propag": [6, 10, 16, 32, 43, 45, 47, 52, 78, 97, 101, 102, 127, 130, 141, 147, 154, 159, 177, 197, 199, 247], "repeat": [6, 14, 18, 19, 23, 128, 144, 146, 149, 159, 168, 176, 182, 189, 197, 198, 212, 223, 238], "spiel": 6, "progress": [6, 8, 15, 24, 49, 52, 53, 110, 136, 157, 165, 169, 214, 263], "observ": [6, 14, 19, 47, 51, 61, 82, 116, 117, 122, 123, 126, 136, 137, 146, 147, 152, 159, 160, 161, 163, 164, 165, 172, 176, 179, 181, 182, 185, 192, 197, 198, 199, 200, 203, 210, 219, 230, 231, 234, 239, 244, 247, 251, 255, 258], "meaning": [6, 49, 60, 97, 147], "3c0711f20896": 6, "dcga": 6, "6876": 6, "1304": 6, "3776": 6, "3101": 6, "300": [6, 12, 98, 102, 122, 163, 178, 219, 231, 246], "3652": 6, "6626": 6, "400": [6, 47, 58, 59, 112, 137, 178, 185, 231, 246], "8057": 6, "2795": [6, 231], "3531": 6, "4452": 6, "600": [6, 119, 147, 160, 256], "3501": 6, "0811": 6, "700": 6, "3581": 6, "5623": 6, "800": 6, "6423": 6, "7385": 6, "900": 6, "3592": 6, "7333": 6, "4660": [6, 173], "5242": 6, "6364": 6, "0886": 6, "3717": 6, "8103": 6, "0201": 6, "3544": 6, "4522": 6, "6545": 6, "quickli": [6, 44, 82, 97, 98, 99, 103, 124, 152, 160, 165, 216, 221, 234, 251], "onto": [6, 8, 14, 16, 18, 44, 121, 136, 149, 152, 162, 163, 202, 247], "somewher": [6, 23, 98, 99, 112], "kcpu": [6, 186, 206], "whose": [6, 42, 60, 82, 85, 97, 103, 122, 125, 147, 171, 187, 200, 229, 231], "insert": [6, 12, 17, 19, 49, 118, 137, 157, 163, 179, 181, 182, 197, 198, 199, 200, 201, 228, 252], "op": [6, 10, 11, 15, 21, 22, 23, 48, 82, 121, 122, 123, 124, 129, 133, 135, 137, 142, 143, 144, 147, 158, 168, 176, 177, 178, 179, 181, 182, 184, 185, 186, 187, 188, 190, 191, 193, 197, 198, 199, 200, 202, 207, 208, 212, 221, 222, 223, 230, 237, 244, 247, 252], "previou": [6, 11, 13, 14, 15, 16, 17, 22, 23, 49, 52, 53, 55, 58, 59, 97, 98, 116, 117, 119, 122, 127, 128, 130, 131, 132, 134, 136, 146, 149, 152, 156, 157, 159, 160, 161, 163, 164, 165, 168, 169, 171, 172, 173, 174, 176, 177, 182, 197, 198, 199, 201, 207, 208, 223, 231, 239, 247, 260], "resid": [6, 7, 97, 134], "portabl": 6, "augment": [6, 24, 51, 117, 118, 119, 157, 166, 178], "period": [6, 49, 52, 126, 146, 168, 176], "crash": [6, 61], "middl": [6, 262], "procedur": [6, 23, 47, 120, 157, 160, 166], "restor": [6, 73, 112, 147], "session": [6, 20, 97, 105, 234, 262], "interv": [6, 14, 52, 126, 163, 165, 173, 174], "kcheckpointeveri": 6, "str": [6, 9, 18, 19, 22, 49, 83, 90, 108, 113, 118, 122, 126, 137, 139, 142, 143, 148, 159, 162, 171, 173, 174, 185, 194, 203, 208, 209, 213, 216, 231, 238, 246], "checkpoint_count": 6, "counter": [6, 11, 49, 52, 73, 135], "bump": 6, "beta1": [6, 52], "krestorefromcheckpoint": 6, "intermediari": [6, 125], "xxx": [6, 15, 45, 51], "argpars": [6, 52, 122, 123, 137, 148, 161, 162, 163, 185], "parser": [6, 98, 122, 123, 148, 161, 162, 163, 262], "argumentpars": [6, 122, 123, 148, 161, 162, 163], "add_argu": [6, 122, 123, 148, 161, 162, 163], "png": [6, 51, 119, 121, 149, 178], "parse_arg": [6, 122, 123, 148, 161, 162, 163], "sample_fil": [6, 139], "mul": [6, 40, 48, 108, 144, 192, 197, 206, 231, 246], "255": [6, 12, 20, 59, 97, 139, 146, 171, 178, 179, 200, 213, 238], "uint8": [6, 20, 95, 144, 146, 178, 200], "numpi": [6, 12, 14, 17, 19, 20, 41, 44, 51, 52, 57, 60, 70, 72, 73, 75, 87, 89, 90, 92, 94, 96, 104, 105, 108, 109, 110, 117, 118, 119, 121, 127, 130, 137, 146, 149, 157, 158, 160, 163, 165, 166, 169, 171, 172, 182, 185, 189, 193, 195, 196, 197, 198, 201, 204, 229, 236, 246], "axi": [6, 13, 21, 34, 51, 52, 82, 101, 102, 109, 110, 117, 119, 127, 137, 146, 156, 157, 171, 185, 254], "subplot": [6, 14, 51, 52, 73, 117, 149, 157, 159, 165, 166, 178], "imshow": [6, 12, 34, 44, 51, 52, 73, 75, 90, 92, 94, 96, 104, 117, 157, 166, 169, 171, 178], "cmap": [6, 34, 73, 90, 94, 96, 104, 165, 169], "grai": [6, 34, 73, 104, 119, 146, 188, 229], "get_xaxi": 6, "set_vis": 6, "get_yaxi": 6, "savefig": [6, 146, 149], "out_fil": 6, "17": [6, 21, 23, 58, 59, 92, 95, 109, 113, 144, 173, 174, 187, 203, 219, 231, 266], "57": [6, 7, 17, 109, 127, 144, 238], "4953": 6, "0195": [6, 185], "3610": 6, "8148": 6, "4072": 6, "36760": 6, "4444": 6, "3761": 6, "8790": 6, "3977": 6, "3315": 6, "120": [6, 44, 47, 87, 92, 93, 94, 96, 105, 112, 117, 134, 149, 156, 157, 163, 169, 238, 239, 240, 241, 242, 243, 248, 249, 250], "8084": 6, "hoorai": [6, 25], "ball": 6, "court": 6, "digest": 6, "necess": [6, 49], "broad": [6, 57], "space": [6, 14, 22, 49, 52, 60, 73, 97, 98, 102, 103, 113, 115, 126, 136, 146, 152, 159, 160, 163, 165, 168, 169, 171, 194, 262, 263], "consult": [6, 152, 197, 229, 261], "stuck": 6, "whenev": [6, 22, 53, 67, 69, 98, 99, 111, 207], "rate": [6, 7, 43, 52, 87, 97, 99, 104, 115, 117, 122, 123, 126, 127, 146, 148, 157, 159, 160, 162, 178, 216, 236, 245, 247], "pritam": [7, 16], "damania": [7, 16], "torchtext": [7, 38, 42, 50, 92, 96, 113, 118, 121, 127, 165, 236], "positionalencod": [7, 118], "inject": 7, "posit": [7, 14, 17, 90, 99, 113, 118, 121, 137, 153, 159, 160, 164, 165, 171, 201, 229, 260], "token": [7, 9, 17, 42, 49, 60, 75, 103, 113, 115, 116, 118, 122, 124, 128, 164, 165, 181, 185, 201, 247], "sine": [7, 14, 92, 95], "cosin": [7, 14, 219], "os": [7, 9, 11, 17, 18, 19, 33, 34, 49, 50, 51, 52, 53, 55, 60, 87, 90, 117, 122, 123, 125, 127, 128, 133, 134, 135, 137, 146, 148, 155, 157, 158, 161, 162, 163, 175, 178, 181, 182, 185, 194, 195, 197, 198, 208, 212, 213, 214, 215, 228, 231, 234, 237, 246, 258], "transformerencod": [7, 42, 93], "transformerencoderlay": [7, 42, 93, 164], "d_model": [7, 118], "max_len": [7, 118], "pe": 7, "arang": [7, 73, 118, 146, 149, 169, 189, 190, 191, 193, 244, 245, 254], "div_term": 7, "10000": [7, 44, 52, 92, 98, 118, 127, 136, 160, 163, 231, 246], "sin": [7, 14, 63, 64, 65, 67, 68, 69, 71, 72, 89, 95, 111, 118, 145, 172, 173, 174, 192, 247, 262], "co": [7, 14, 89, 103, 118, 172, 173, 174, 238, 247, 263], "replica": [7, 55, 56, 61, 79, 123, 133, 135, 149, 258], "drive": [7, 16, 25, 52, 58, 59, 60, 121, 146, 189, 212], "largest": [7, 60, 83, 160, 171, 185], "nlayer": [7, 9, 93, 163, 181, 195], "decod": [7, 9, 98, 113, 118, 122, 163, 164, 177, 181, 184, 195, 230, 252], "platform": [7, 20, 23, 105, 133, 135, 168, 194, 207, 219, 222, 226, 247, 253, 256, 257], "win32": 7, "exit": [7, 16, 141, 161, 162, 163, 210, 211, 230, 255], "device_count": [7, 11, 45, 53, 55, 87, 95, 123, 133, 150, 214, 215], "least": [7, 47, 58, 59, 73, 112, 113, 126, 128, 133, 146, 158, 165, 194, 214, 216, 223, 231, 234, 258, 262, 263], "ntoken": [7, 9, 163, 181, 195], "ninp": [7, 9, 163, 181, 195], "pos_encod": 7, "init_weight": [7, 9, 115, 181, 195], "initrang": [7, 9, 115, 181, 195], "src": [7, 10, 11, 108, 118, 135, 155, 206, 208, 222, 244, 246], "zero_": [7, 9, 32, 104, 115, 155, 163, 166, 181, 195], "inp": [7, 19, 32, 49, 117, 142, 157, 162, 165, 166, 172, 174, 232, 239], "permut": [7, 90, 97, 110, 146, 147, 158, 165, 171, 173, 174, 178, 183], "run_work": [7, 16, 134, 161, 162, 163, 212], "rank": [7, 11, 16, 18, 42, 45, 53, 55, 82, 121, 122, 123, 133, 134, 135, 155, 161, 162, 163, 175, 193, 212, 214, 215, 258, 260], "world_siz": [7, 11, 16, 18, 24, 53, 55, 122, 123, 133, 134, 135, 155, 161, 162, 163, 175, 212, 214, 215, 258], "wikitext": [7, 9, 181, 193], "torchdata": [7, 50, 113, 115, 116, 118], "vocab": [7, 75, 99, 102, 103, 115, 116, 118, 124, 137, 185], "numeric": [7, 118], "batchifi": [7, 9, 181], "arrang": [7, 17, 201], "trim": [7, 9, 12, 60, 165, 181, 246], "alphabet": 7, "26": [7, 23, 144, 146, 147, 158, 163, 219], "bmatrix": [7, 17, 102, 201], "text": [7, 17, 34, 38, 40, 44, 52, 73, 75, 85, 98, 99, 101, 102, 103, 113, 115, 116, 118, 120, 121, 122, 127, 128, 135, 137, 159, 160, 165, 168, 171, 181, 196, 201, 226, 229, 251, 263, 265], "c": [7, 12, 15, 18, 19, 21, 25, 38, 43, 49, 51, 63, 64, 65, 67, 71, 72, 85, 89, 90, 94, 95, 97, 103, 104, 108, 110, 111, 112, 115, 121, 127, 128, 129, 130, 135, 137, 139, 142, 144, 146, 147, 158, 163, 164, 165, 171, 173, 174, 175, 188, 191, 199, 209, 221, 223, 225, 226, 230, 231, 244, 245, 251, 252, 263], "ldot": 7, "rightarrow": [7, 98, 135, 160], "j": [7, 22, 23, 32, 43, 44, 58, 59, 73, 89, 92, 94, 96, 97, 98, 102, 103, 117, 127, 137, 150, 165, 194], "k": [7, 12, 17, 19, 49, 58, 59, 60, 82, 90, 98, 105, 108, 124, 137, 147, 150, 154, 161, 162, 164, 178, 182, 197, 198, 201, 209], "u": [7, 14, 115, 118, 194], "treat": [7, 60, 75, 103, 113, 154, 161, 172, 203, 252], "print_with_rank": 7, "msg": [7, 187, 213], "wikitext2": 7, "get_token": [7, 115, 118], "build_vocab_from_iter": [7, 115, 116, 118], "train_it": [7, 115, 118], "basic_english": [7, 115], "unk": [7, 115, 116, 118], "set_default_index": [7, 115, 116, 118], "data_process": 7, "raw_text_it": 7, "tupl": [7, 9, 20, 48, 51, 58, 59, 60, 78, 80, 82, 97, 102, 103, 110, 115, 116, 137, 141, 142, 146, 147, 160, 173, 174, 178, 181, 182, 185, 192, 200, 209, 230, 234, 256], "filter": [7, 13, 24, 49, 83, 97, 125, 137, 157, 165, 185, 208, 246], "val_it": [7, 118], "test_it": [7, 115], "train_data": [7, 55, 165], "val_data": 7, "test_data": [7, 9, 20, 34, 37, 38, 99, 181], "bsz": [7, 9, 135, 181, 195], "is_train": 7, "nbatch": [7, 9, 181], "wouldn": [7, 9, 17, 103, 123, 136, 181, 201], "cleanli": [7, 9, 181, 210, 211, 255], "narrow": [7, 9, 80, 144, 181, 193], "evenli": [7, 9, 18, 181], "data_per_rank": 7, "eval_batch_s": [7, 9, 19, 24, 137, 181, 182, 185, 197, 198], "get_batch": [7, 9, 181], "subdivid": [7, 8], "bptt": [7, 9, 181], "35": [7, 17, 73, 124, 147, 203, 219, 221], "seq_len": [7, 9, 164, 181], "min": [7, 9, 19, 52, 82, 87, 97, 104, 117, 135, 146, 155, 157, 159, 161, 163, 171, 173, 174, 176, 177, 178, 181, 197, 200], "4096": [7, 18, 175, 219, 230], "billion": [7, 122, 124], "rpc": [7, 109, 121, 133, 149, 216, 251], "rref": [7, 16, 61, 134, 161, 162, 212, 216], "expans": [7, 134], "replic": [7, 16, 18, 56, 60, 61, 79, 121, 123, 124, 131, 133, 135, 149, 162, 163, 215], "distributeddataparallel": [7, 16, 55, 56, 120, 122, 123, 135, 155, 163, 175, 230, 258], "vocabulari": [7, 49, 60, 103, 115, 118, 124, 137, 193, 247], "emsiz": [7, 115], "nhid": [7, 9, 163, 181, 195], "feedforward": [7, 124], "nhead": [7, 118, 193], "multihead": [7, 42], "tmpfile": 7, "namedtemporaryfil": 7, "init_rpc": [7, 16, 134, 161, 162, 163, 212], "rpc_backend_opt": [7, 16, 134, 212], "tensorpiperpcbackendopt": [7, 16, 134, 212], "init_method": [7, 16, 133, 135], "_transport": 7, "_channel": 7, "longer": [7, 12, 42, 52, 78, 99, 113, 125, 129, 144, 149, 152, 156, 160, 161, 172, 176, 177, 193, 197, 198, 211, 231, 247, 260], "ibv": 7, "uv": 7, "cuda_ipc": 7, "cuda_bas": 7, "num_gpu": [7, 162], "partition_len": 7, "tmp_list": 7, "module_list": 7, "transformer_block": [7, 124], "checkpoint": [7, 39, 49, 60, 61, 75, 87, 117, 131, 152, 184, 220, 230, 235, 241, 243, 251], "ddp": [7, 11, 16, 53, 54, 61, 121, 122, 123, 124, 132, 168, 215, 258], "master_addr": [7, 11, 18, 53, 55, 123, 133, 134, 135, 155, 161, 162, 163, 175, 212, 214, 258], "localhost": [7, 11, 16, 18, 53, 55, 94, 123, 127, 133, 134, 139, 155, 161, 162, 163, 168, 169, 175, 212, 213, 214, 215, 245, 258], "master_port": [7, 11, 18, 53, 55, 123, 133, 134, 135, 155, 161, 162, 163, 175, 212, 214, 258], "29500": [7, 11, 16, 18, 134, 135, 155, 161, 162, 163, 175, 212, 258], "init_process_group": [7, 11, 16, 18, 53, 55, 61, 122, 123, 133, 135, 155, 175, 214, 215, 258], "nccl": [7, 11, 18, 53, 55, 82, 122, 123, 124, 133, 135, 168, 175, 214, 215], "get_total_param": 7, "total_param": 7, "crossentropyloss": [7, 9, 16, 19, 37, 38, 44, 78, 87, 92, 94, 96, 97, 99, 110, 115, 117, 118, 124, 157, 163, 168, 169, 172, 181, 182, 197, 198, 220, 250, 253], "steplr": [7, 110, 115, 117, 122, 123, 129, 157, 178], "togeth": [7, 11, 17, 21, 25, 49, 51, 59, 60, 75, 85, 97, 101, 113, 118, 123, 129, 136, 138, 158, 161, 163, 165, 171, 188, 197, 199, 200, 201, 216, 252, 254], "prevent": [7, 49, 55, 76, 109, 118, 125, 128, 133, 144, 146, 230, 231], "explod": [7, 49, 127], "criterion": [7, 9, 12, 16, 19, 44, 47, 52, 65, 67, 87, 92, 94, 97, 111, 115, 117, 127, 128, 157, 160, 163, 165, 168, 169, 181, 182, 197, 198, 220, 245, 250, 253], "schedul": [7, 11, 14, 82, 87, 115, 117, 122, 123, 129, 133, 144, 157, 159, 160, 168, 176, 178, 238, 247, 251], "lr_schedul": [7, 14, 110, 115, 117, 122, 123, 129, 157, 159, 178, 211], "95": [7, 115, 126, 136, 159, 163, 177, 179, 219], "total_loss": [7, 9, 103, 128, 165, 181], "start_tim": [7, 19, 115, 118, 198, 230, 237], "node": [7, 8, 18, 20, 23, 32, 43, 47, 53, 54, 55, 56, 63, 98, 108, 110, 120, 122, 131, 132, 133, 142, 143, 144, 162, 165, 176, 186, 198, 199, 200, 215, 247, 252], "local_valu": [7, 161, 162], "log_interv": [7, 115, 163], "cur_loss": 7, "elaps": [7, 9, 19, 115, 123, 143, 165, 181, 185], "5d": [7, 37, 38, 44, 87, 92, 115, 250], "02": [7, 52, 144, 149, 163, 219], "ms": [7, 17, 19, 119, 144, 158, 176, 177, 184, 201], "ppl": 7, "get_last_lr": 7, "eval_model": 7, "data_sourc": [7, 9, 181], "output_flat": [7, 9, 181], "best_val_loss": [7, 122], "inf": [7, 118, 122, 191, 193, 195], "best_model": 7, "epoch_start_tim": [7, 115], "val_loss": [7, 87, 104, 118, 122], "89": [7, 144, 163, 176], "test_loss": [7, 37, 38, 123, 129, 166], "mp": [7, 11, 15, 16, 33, 38, 53, 55, 121, 122, 123, 133, 134, 135, 161, 162, 163, 212, 214, 258], "__name__": [7, 11, 12, 16, 51, 52, 53, 55, 78, 87, 122, 123, 133, 134, 135, 137, 139, 147, 148, 161, 162, 163, 185, 187, 194, 212, 213, 214, 226, 258], "__main__": [7, 11, 16, 51, 53, 55, 87, 122, 123, 133, 134, 135, 139, 148, 161, 162, 163, 187, 194, 212, 213, 214, 226, 231, 258], "arg": [7, 16, 18, 19, 21, 51, 53, 55, 73, 101, 110, 112, 122, 123, 125, 133, 134, 135, 137, 142, 143, 147, 148, 149, 156, 157, 160, 161, 162, 163, 164, 171, 172, 173, 174, 184, 185, 186, 193, 194, 198, 200, 210, 212, 214, 216, 220, 244, 258, 266], "nproc": [7, 11, 16, 53, 55, 123, 133, 134, 161, 163, 212, 214, 258], "join": [7, 9, 10, 16, 18, 34, 44, 48, 49, 50, 51, 53, 60, 61, 92, 96, 117, 118, 120, 123, 125, 127, 128, 133, 134, 135, 137, 157, 159, 161, 162, 163, 165, 178, 181, 185, 212, 214, 231, 246, 258], "00": [7, 92, 109, 144, 163, 171, 184, 187, 219], "778": 7, "97": [7, 144, 163, 219], "43": [7, 119, 149, 219, 231], "31": [7, 122, 144, 145, 200, 219, 231, 238, 246], "6432469059895903232": 7, "90": [7, 127, 137, 163, 165, 191, 219], "44": [7, 17, 144, 163, 201], "21245447128217366528": 7, "699": 7, "21176949187407757312": 7, "87": [7, 24, 109, 163, 219, 231], "62": [7, 115, 163, 201], "23975861229620961280": 7, "698": 7, "86": [7, 17, 144, 158, 163, 201, 219, 231], "41": [7, 17, 123, 158, 176, 231, 238], "1193312915629888256": 7, "40": [7, 113, 123, 146, 147, 149, 156, 163, 165, 176, 186, 192, 195, 201, 219, 231], "69": [7, 90, 173, 185, 231], "471605759847546240": 7, "34": [7, 109, 158, 219, 223, 231, 238, 246], "42812308420836458496": 7, "33": [7, 145, 158, 163, 176, 177, 187, 219, 231], "68": [7, 17, 51, 127, 137, 144, 177, 231], "68839569686012223488": 7, "08": [7, 122, 144, 163, 219, 221, 231], "80": [7, 87, 115, 126, 147, 163, 165, 191, 234], "22": [7, 17, 144, 147, 163, 204, 219, 231], "09": [7, 17, 49, 144, 163, 176, 201, 219], "75": [7, 22, 23, 97, 115, 117, 123, 149, 157, 234], "768": [7, 137, 147, 185, 201], "51": [7, 119, 127, 147, 149, 163, 176, 219], "36": [7, 17, 115, 158, 219], "6063529544668166": 7, "769": 7, "23": [7, 17, 95, 144, 163, 176, 184, 219, 231, 238, 246, 263], "17651211266236086": 7, "3798441739584": 7, "56": [7, 19, 147, 158, 176, 201, 231, 238], "29": [7, 137, 158, 163, 208, 231], "5203636967575": 7, "47": [7, 17, 87, 127, 147, 219, 231, 238], "2212498693571": 7, "05": [7, 14, 16, 20, 21, 73, 115, 122, 134, 160, 163, 179, 218, 219], "2015144761281": 7, "13121380184": 7, "92": [7, 17, 201, 219, 231], "14653799192": 7, "39": [7, 123, 127, 163, 219, 231], "24": [7, 17, 19, 113, 144, 158, 173, 184, 191, 201, 219, 231], "98": [7, 51, 118, 144, 163, 187, 219], "361681": 7, "287876": 7, "61": [7, 19, 109, 147, 201, 219], "164364": 7, "60": [7, 34, 105, 110, 117, 122, 127, 128, 147, 149, 157, 158, 163, 165, 169, 191, 219, 238], "159095": 7, "697": [7, 219], "54261": 7, "91": [7, 17, 163, 201, 219, 231], "72": [7, 17, 158, 231], "53372": 7, "49": [7, 17, 147, 149, 163, 185, 201, 231], "78": [7, 17, 201, 231], "47948": 7, "79": [7, 17, 144, 197, 201, 231, 238], "48664": 7, "42": [7, 23, 73, 97, 127, 137, 163, 176, 185, 208, 231], "96": [7, 19, 144, 147, 163, 219], "38": [7, 109, 163, 177, 219, 246], "46": [7, 17, 137, 144, 147, 158, 176], "ddp_pipelin": 7, "respons": [8, 11, 16, 18, 49, 60, 108, 121, 124, 129, 133, 135, 139, 161, 162, 165, 172, 177, 208, 210, 212, 213, 229, 257, 262], "nontrivi": [8, 209], "cut": [8, 113, 119, 262], "concern": [8, 21, 61, 99, 189, 197, 216, 221], "rule": [8, 22, 43, 47, 60, 102, 103, 125, 129, 138, 145, 153, 154, 159, 160, 182, 230], "vmap": [8, 121, 141, 145, 150, 154, 196], "statement": [8, 21, 25, 43, 45, 60, 65, 98, 111, 165, 173, 174, 183, 230, 232, 262], "convers": [8, 49, 95, 112, 147, 165, 177, 189, 194, 216, 223, 228, 234, 244], "basic": [8, 11, 15, 16, 23, 24, 49, 54, 56, 57, 61, 75, 86, 97, 100, 103, 105, 107, 108, 113, 115, 121, 124, 127, 129, 144, 159, 164, 190, 193, 214, 231, 245, 251, 252, 263], "registr": [8, 10, 15, 22, 23, 208, 220, 221, 226], "highest": [8, 19, 44, 49, 58, 59, 60, 128, 160, 171], "transfer": [8, 22, 44, 58, 59, 79, 80, 97, 98, 112, 117, 121, 135, 158, 162, 168, 178, 206, 228, 232, 252, 261], "redispatch": 8, "happen": [8, 21, 23, 25, 32, 43, 52, 97, 99, 105, 122, 124, 130, 135, 141, 156, 161, 168, 169, 184, 185, 197, 199, 208, 209, 231, 237, 247], "unlik": [8, 12, 17, 60, 97, 125, 141, 142, 147, 157, 165, 201], "style": [8, 60, 113, 115, 124, 178, 208, 214, 234, 260, 262, 263], "abid": [8, 52], "myop": 8, "myadd": [8, 10], "myadd_cpu": 8, "self_": 8, "other_": 8, "torch_internal_assert": 8, "devicetyp": [8, 15], "self_ptr": 8, "data_ptr": [8, 23, 59, 186, 208], "other_ptr": 8, "result_ptr": 8, "torch_library_impl": [8, 10, 15], "impl": [8, 10, 15, 108, 173, 174, 246], "myadd_cuda": 8, "boundari": [8, 61, 134, 159, 168], "myops_cpu": 8, "myops_cuda": 8, "xla": [8, 10, 15, 244], "torch_xla": [8, 10], "useabl": 8, "behav": [8, 12, 20, 60, 80, 147, 153, 161, 198, 226, 264], "autogradnotimplementedfallback": 8, "notimpl": 8, "preserv": [8, 17, 22, 25, 49, 107, 121, 134, 147, 156, 177, 183, 190, 201, 203, 223, 234, 244, 249, 262], "require_grad": 8, "ness": 8, "pin": [8, 125, 247, 261], "lost": [8, 17, 99, 147, 201], "mutat": [8, 10, 138, 154, 173, 174, 205, 211], "alias": [8, 10], "adinplaceorview": 8, "bookkeep": [8, 231], "autogradnotimplementedinplaceorviewfallback": 8, "logi": 8, "properli": [8, 9, 10, 14, 23, 50, 55, 97, 118, 130, 133, 135, 147, 149, 152, 153, 159, 161, 162, 163, 165, 176, 188, 189, 191, 194, 202, 209, 224, 225, 234, 244], "annot": [8, 10, 18, 21, 22, 23, 51, 60, 99, 108, 118, 137, 171, 172, 177, 216, 231], "guess": [8, 43, 49, 52, 113, 127, 165], "twist": [8, 113], "constitut": [8, 14], "hood": [8, 14, 19, 49, 52, 54, 56, 124, 125, 145, 146, 163, 192, 212, 216], "singleton": [8, 162], "findschemaorthrow": 8, "decltyp": [8, 144], "qualifi": [8, 22, 108, 214], "overload": [8, 22, 108], "typic": [8, 11, 14, 19, 21, 43, 47, 48, 54, 55, 58, 59, 82, 98, 99, 103, 115, 119, 124, 126, 129, 131, 144, 152, 159, 162, 171, 172, 173, 174, 176, 177, 200, 213, 219, 220, 221, 228, 230, 232, 234, 247], "cast": [8, 13, 17, 18, 108, 109, 122, 201, 230], "lookup": [8, 16, 103, 115, 163, 175], "typo": 8, "myaddfunct": [8, 10], "autononvariabletypemod": [8, 10, 59, 208], "myadd_autograd": [8, 10], "except": [8, 11, 17, 23, 43, 44, 48, 49, 52, 58, 59, 60, 61, 76, 79, 80, 87, 95, 99, 102, 104, 117, 125, 127, 134, 137, 138, 139, 141, 142, 145, 147, 149, 154, 155, 157, 164, 165, 172, 173, 174, 184, 190, 193, 196, 200, 201, 202, 203, 205, 206, 220, 222, 239, 246], "raii": 8, "guard": [8, 59, 133, 173, 199, 208, 211], "infinit": 8, "overflow": [8, 49, 184, 230, 234], "send": [8, 10, 11, 12, 44, 45, 61, 73, 78, 87, 115, 135, 139, 146, 155, 157, 161, 162, 163, 173, 174, 212, 238], "consider": [8, 10, 20, 123, 173, 174], "handler": [8, 171, 177, 244], "autogradcpu": 8, "autogradcuda": 8, "pythondispatch": 8, "_python_dispatch": 8, "isn": [8, 98, 141, 142, 158, 169, 191, 231, 260, 262], "glorifi": 8, "add_cpu": 8, "add_cuda": 8, "unsupport": [8, 172, 173, 174, 177, 244], "decentr": 8, "importantli": [8, 19, 23, 42, 130, 152, 189, 231], "parti": [8, 22, 23, 155], "aspect": [8, 15, 51, 73, 135, 178, 231], "patch": [8, 10, 160], "dispatchkei": [8, 10], "varieti": [8, 24, 49, 112, 128, 192], "fallback": [8, 10, 15, 185], "behavior": [8, 10, 11, 12, 14, 22, 25, 49, 51, 102, 108, 136, 143, 144, 147, 149, 152, 173, 174, 190, 191, 197, 198, 202, 223, 237, 247], "opt": [8, 16, 22, 104, 110, 126, 134, 147, 152, 155, 162, 163, 168, 172, 184, 202, 210, 211, 230, 237], "amp": [8, 15, 61, 147, 207, 220, 251, 253], "incom": [8, 168, 213], "float16": [8, 15, 122, 137, 147, 164, 207, 230], "float32": [8, 14, 23, 85, 122, 144, 147, 158, 160, 163, 172, 186, 189, 199, 200, 230, 244, 247], "matmul": [8, 17, 23, 32, 40, 48, 95, 124, 144, 184, 193, 201, 205, 207, 208, 219, 230, 247], "impair": 8, "converg": [8, 49, 52, 64, 97, 111, 112, 124, 135, 153, 160, 165, 211, 230, 234], "hypothet": 8, "autocast_mod": 8, "mymatmul_autocast": 8, "excludedispatchkeyguard": 8, "no_autocast": 8, "mymatmul": 8, "cached_cast": 8, "khalf": 8, "elig": 8, "polici": [8, 15, 121, 123, 146, 160, 161, 163], "mixtur": 8, "meanwhil": [8, 125, 144, 190, 220], "float64": [8, 95], "unaffect": [8, 97], "forc": [8, 14, 17, 23, 49, 60, 127, 165, 172, 189, 191, 201, 230, 247, 260], "fallthrough": 8, "occur": [8, 11, 19, 23, 25, 53, 75, 78, 82, 97, 116, 144, 147, 161, 162, 168, 171, 173, 174, 177, 184, 185, 238], "fall": [8, 15, 153, 160], "aren": [8, 130, 136, 191, 247], "dri": [8, 168], "reduct": [8, 9, 58, 59, 65, 67, 68, 69, 111, 119, 122, 123, 125, 129, 137, 152, 155, 168, 171, 181, 189, 191, 196, 223, 230, 234], "gemm": [8, 144, 176, 177, 199, 219], "unless": [8, 20, 48, 99, 129, 137, 159, 182, 184, 185, 205, 237], "categori": [8, 10, 19, 49, 73, 82, 117, 127, 128, 165, 168, 173, 174, 182, 189, 190, 191, 192, 197, 198, 208], "promote_typ": 8, "widest": 8, "safest": 8, "my_multiple_input_op_autocast": 8, "t0": [8, 122, 164, 184, 190, 210, 231], "t1": [8, 40, 48, 190, 231, 244], "optimist": 8, "exec_typ": 8, "my_multiple_input_op": 8, "myadd_autocast": 8, "gymnast": 8, "invoc": [8, 25, 143, 161, 177, 226], "stabil": [8, 97, 160, 257], "41478": 8, "jame": [9, 25, 113, 143], "reed": [9, 25, 143], "seth": [9, 19, 36], "weidman": [9, 19], "io": [9, 34, 49, 51, 58, 60, 94, 119, 121, 127, 128, 139, 148, 161, 164, 165, 171, 178, 181, 196, 208, 213, 227, 228, 229, 251, 252], "lstmmodel": [9, 181, 195], "drop": [9, 23, 50, 105, 131, 152, 163, 176, 181, 184, 219, 224, 225, 260], "emb": [9, 23, 93, 98, 102, 103, 136, 163, 181, 195, 263], "init_hidden": [9, 98, 181, 195], "new_zero": [9, 195], "corpu": [9, 49, 50, 60, 137, 181, 193], "preprocess": [9, 20, 42, 51, 58, 59, 60, 97, 104, 113, 116, 127, 158, 165, 171, 187, 204, 234], "dictionari": [9, 14, 49, 58, 59, 60, 82, 103, 105, 112, 127, 128, 139, 152, 154, 159, 161, 162, 165, 171, 181, 185, 195, 237], "word2idx": [9, 181], "idx2word": [9, 181], "add_word": [9, 181], "__len__": [9, 45, 51, 104, 135, 160, 178, 181], "train": [9, 10, 12, 16, 17, 18, 20, 23, 32, 34, 37, 38, 41, 42, 43, 46, 47, 51, 54, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 69, 73, 75, 79, 82, 85, 91, 92, 94, 96, 97, 98, 100, 102, 103, 104, 105, 111, 113, 116, 118, 119, 121, 123, 126, 129, 133, 137, 142, 146, 147, 148, 149, 150, 153, 154, 155, 158, 161, 162, 163, 164, 168, 171, 172, 175, 176, 178, 183, 185, 187, 191, 194, 196, 200, 201, 207, 210, 211, 213, 214, 215, 216, 224, 225, 227, 230, 234, 238, 241, 243, 245, 250, 251, 252, 256, 257, 258], "utf8": [9, 181], "eo": [9, 49, 60, 113, 116, 118, 128, 165, 181], "idss": [9, 181], "int64": [9, 14, 60, 85, 95, 115, 144, 175, 178, 181, 192], "model_data_filepath": [9, 181], "512": [9, 12, 18, 33, 37, 38, 43, 75, 97, 113, 118, 122, 134, 144, 145, 146, 164, 178, 181, 193, 195, 201, 207, 220, 230, 231, 238], "word_language_model_quant": [9, 181], "map_loc": [9, 20, 49, 60, 73, 112, 133, 171, 181, 230, 237, 240], "input_": [9, 195], "randint": [9, 16, 34, 51, 52, 65, 111, 127, 128, 137, 138, 144, 146, 147, 154, 164, 172, 185, 190, 195, 220], "temperatur": [9, 97, 115], "num_word": [9, 49, 60], "outf": 9, "word_weight": 9, "div": [9, 12, 144, 189, 191, 192, 197], "word_idx": 9, "multinomi": 9, "utf": [9, 49, 111, 127, 128, 137, 165, 208, 262, 263], "19": [9, 12, 17, 23, 60, 95, 127, 144, 160, 174, 184, 186, 201, 219, 238, 263, 266], "all_output": 9, "gpt": [9, 54, 123, 131, 132], "almost": [9, 12, 19, 80, 102, 103, 123, 124, 136, 158, 176, 184], "repackage_hidden": [9, 181], "isinst": [9, 12, 14, 17, 19, 49, 51, 73, 125, 134, 142, 146, 147, 156, 181, 182, 185, 186, 197, 198, 200, 201, 244], "model_": [9, 96, 181], "quantize_dynam": [9, 119, 137, 195, 228, 234], "int8": [9, 19, 95, 137, 158, 177, 184, 185, 197, 199, 200, 207, 221, 223, 228, 234], "quantized_model": [9, 19, 119, 137, 181, 182, 185, 197, 198], "qint8": [9, 119, 137, 179, 195, 228, 234], "print_size_of_model": [9, 19, 137, 181, 182, 185, 197, 198, 234], "mb": [9, 19, 109, 123, 137, 175, 181, 182, 185, 197, 198, 228, 238, 258], "getsiz": [9, 19, 137, 181, 182, 185, 197, 198, 228, 234], "set_num_thread": [9, 137, 158, 181, 185], "time_model_evalu": [9, 137, 181, 185], "nelaps": [9, 181], "1f": [9, 37, 38, 44, 49, 137, 169, 181, 185, 231], "macbook": [9, 19, 137, 165], "pro": [9, 19, 137], "welcom": [9, 19, 137, 185, 187, 188, 195, 204, 222], "dynamic_quantization_tutori": [9, 234], "outsid": [10, 14, 15, 23, 45, 60, 121, 124, 129, 168, 171, 173, 189, 244, 262], "repo": [10, 15, 18, 19, 54, 58, 59, 82, 119, 121, 127, 131, 135, 137, 161, 162, 184, 194, 221], "solut": [10, 17, 52, 60, 112, 121, 134, 144, 149, 154, 171, 172, 176, 191, 193, 201, 215, 231, 247], "pr": [10, 169, 220], "propos": [10, 24, 124, 136, 153, 189, 191], "request": [10, 25, 43, 87, 104, 119, 122, 139, 153, 158, 161, 162, 166, 173, 174, 176, 177, 186, 191, 192, 212, 213, 216, 229, 257], "hardwar": [10, 15, 17, 20, 48, 50, 60, 97, 105, 135, 138, 145, 147, 149, 154, 155, 156, 177, 184, 201, 207, 219, 220, 221, 223, 232, 234, 247, 253, 254], "googl": [10, 17, 21, 24, 25, 42, 49, 52, 75, 104, 119, 121, 136, 137, 159, 160, 168, 204, 208, 260], "tpu": [10, 148, 155], "chip": [10, 177, 188], "layout": [10, 17, 124, 141, 177, 189, 192, 193, 196, 201, 215, 244, 247], "spars": [10, 16, 99, 103, 115, 121, 136, 156, 191, 196, 244], "quantiz": [10, 58, 59, 97, 117, 121, 152, 158, 177, 194, 196, 207, 218, 227, 235, 244, 251, 252], "enforc": [10, 14, 22, 60, 98, 126, 149, 153, 173, 174, 189, 190], "mainli": [10, 14, 15, 18, 137, 144, 168, 172, 199, 200, 221], "haven": [10, 23, 87, 98, 102, 103, 138, 143, 154, 216], "addtion": 10, "identifi": [10, 17, 53, 55, 73, 82, 83, 109, 113, 132, 146, 147, 156, 162, 177, 178, 182, 185, 192, 200, 201, 247], "carri": [10, 14, 49, 52, 97, 101, 131, 136, 147, 165, 237], "privateuse1": [10, 121], "autogradprivateuse1": [10, 15], "privateuse2": [10, 15], "autogradprivateuse2": [10, 15], "privateuse3": [10, 15], "autogradprivateuse3": [10, 15], "tensorimpl": [10, 15, 231, 246], "storag": [10, 15, 20, 101, 112, 125, 136, 138, 146, 147, 159, 168, 189, 191, 192, 202, 209, 214, 223, 230, 237, 244], "dispatchkeyset": [10, 15], "ks": 10, "caffe2": [10, 85, 187], "typemeta": 10, "data_typ": [10, 101], "opaquetensorimpl": 10, "tweak": [10, 49], "overrid": [10, 15, 40, 48, 51, 59, 68, 99, 108, 111, 143, 147, 149, 155, 171, 185, 188, 208], "vulkan": [10, 196, 252], "submit": [10, 220], "dispath": 10, "registrationdeclar": 10, "ab": [10, 13, 85, 92, 95, 172, 182, 193, 207, 234, 238], "schema": [10, 20, 23, 208], "abs_": 10, "abs_out": 10, "absolute_": 10, "absolute_out": 10, "angl": [10, 14, 95, 103], "angle_out": 10, "sgn": 10, "uniqu": [10, 17, 49, 53, 55, 95, 98, 99, 100, 102, 103, 116, 122, 132, 162, 165, 178, 189, 201, 234, 257], "boolean": [10, 73, 136, 173, 174, 252], "impli": [10, 97, 102, 137, 237, 254], "schema_my_op1": 10, "my_op1": 10, "schema_my_op2": 10, "my_op2": 10, "schema_my_op2_backward": 10, "my_op2_backward": 10, "zoom": [10, 82, 126, 168, 171], "1600": [10, 231, 246], "grow": [10, 49, 61, 99, 125, 131, 175], "unrealist": 10, "classifi": [10, 12, 19, 24, 43, 46, 47, 52, 57, 73, 82, 87, 97, 112, 117, 127, 128, 137, 146, 178, 194, 229, 251, 263], "metadata": [10, 17, 22, 94, 141, 159, 169, 173, 174, 201, 237, 260], "accompani": 10, "comment": [10, 135, 152, 165, 188, 189, 205, 220, 221, 222, 232, 262], "sacrif": [10, 156], "max_pool2d": [10, 47, 73, 92, 93, 105, 123, 129, 154, 156, 162, 166, 203, 206, 221, 233, 238], "formula": [10, 97, 141, 159], "mathemat": [10, 13, 43, 48, 64, 101, 135, 159], "worri": [10, 52, 99, 129, 130, 133, 143, 152, 163, 215], "my_op": [10, 23, 208], "op_backward": 10, "proper": [10, 32, 122, 124, 133, 147, 149, 159, 163, 171, 176, 189, 247], "rare": [10, 15, 49, 117, 165, 247], "assumpt": [10, 14, 60, 73, 97, 103, 150], "myadd_schema": 10, "my_add": 10, "setuptool": [10, 155, 168], "_xlac": 10, "torch_xla_sourc": 10, "extra_compile_arg": 10, "library_dir": 10, "extra_link_arg": 10, "make_relative_rpath": 10, "seamlessli": [10, 14, 53, 78, 124, 199, 231], "nm": [10, 150, 220], "torchvsion": 10, "adhoc": 10, "unbox": 10, "potenti": [10, 14, 25, 73, 98, 122, 162, 178, 196, 197, 199, 216, 254, 265], "wiki": [10, 33, 141, 147, 153, 181], "suit": [10, 109, 159, 182, 196, 197, 199, 219, 234], "ship": [10, 44, 61, 92, 113, 250], "guarante": [10, 97, 132, 135, 147, 156, 162, 163, 174, 176, 190], "delet": [10, 17, 83, 125, 129, 133, 152, 163, 171, 184, 188, 203, 252], "old": [10, 19, 103, 112, 113, 119, 156, 168, 181, 182, 193, 223, 228], "until": [10, 16, 49, 60, 82, 113, 122, 128, 134, 135, 136, 144, 152, 159, 161, 162, 163, 168, 189, 212, 231], "interrupt": [10, 53, 87, 165], "quarterli": 10, "cadenc": 10, "announc": [10, 115], "slack": [10, 44, 79], "Not": [10, 16, 58, 59, 113, 133, 158, 173, 234, 258], "search": [10, 18, 49, 75, 113, 121, 126, 144, 156, 173, 174, 184, 204, 260], "instantiate_device_type_test": 10, "testtorchdevicetyp": 10, "testviewop": 10, "testtensordeviceop": 10, "testtypepromot": 10, "etc": [10, 44, 45, 47, 49, 51, 61, 69, 79, 98, 99, 100, 101, 102, 110, 112, 124, 156, 159, 160, 165, 173, 174, 176, 177, 181, 182, 191, 200, 212, 216, 219, 220, 231, 247, 260, 262], "__reduce_ex__": 10, "monkei": 10, "direct": [10, 23, 25, 43, 47, 52, 73, 103, 113, 126, 135, 137, 141, 146, 150, 153, 165, 184, 192, 213, 216, 251, 266], "suppos": [10, 12, 22, 97, 98, 99, 103, 123, 139, 178, 179, 216, 220], "vice": [10, 23, 48, 80, 228], "versa": [10, 23, 48, 80, 228], "Such": [10, 11, 234], "seamless": [10, 78, 199], "coverag": [10, 141, 145, 147, 193, 197, 199, 230], "comprehens": [10, 21, 24, 48, 79, 108, 144, 199], "bahavior": 10, "refactor": [10, 112, 131], "codegen": [10, 144], "dev": [10, 99, 104, 137, 158, 168, 171, 185, 196, 208, 226, 230, 257], "andrew": [11, 179, 198], "gu": 11, "shard": [11, 61, 120, 121, 131, 154, 175, 212, 214, 215, 251], "saw": [11, 14, 21, 23, 49, 59, 60, 99, 101, 141, 142, 145, 146], "skeleton": [11, 14, 244], "implicitli": [11, 43, 49, 123, 130, 164, 200, 226], "particip": [11, 61, 113, 132, 134, 162, 230, 247], "hang": [11, 55, 61, 113, 128], "persist": [11, 22, 230, 262], "earli": [11, 23, 52, 87, 113, 126, 133, 135, 179, 191], "shadow": [11, 195], "hook": [11, 107, 124, 133, 156, 239], "num_input": 11, "device_id": [11, 16, 55, 79, 112, 122, 133, 240, 258], "arbitrarili": [11, 49, 97, 239], "prior": [11, 15, 19, 42, 50, 52, 97, 115, 133, 146, 156, 169, 176, 177, 197, 212, 214], "notabl": [11, 19, 87, 194, 244], "addition": [11, 12, 82, 115, 125, 126, 133, 176, 177, 178, 199, 214], "divide_by_initial_world_s": 11, "world": [11, 14, 18, 23, 42, 54, 58, 59, 99, 103, 115, 124, 126, 135, 139, 143, 146, 149, 155, 160, 161, 162, 193, 214, 215, 219, 262], "nonetheless": [11, 97, 262], "mind": [11, 49, 52, 85, 97, 108, 132, 150, 176, 218, 257, 262], "preliminari": [11, 137], "delv": [11, 144, 254], "insight": [11, 73, 82, 90, 135, 164, 231], "join_hook": 11, "kwarg": [11, 16, 21, 112, 125, 134, 143, 147, 149, 159, 162, 164, 173, 174, 184, 193, 202, 210, 216, 244], "join_devic": 11, "join_process_group": 11, "processgroup": [11, 16, 18, 61, 120, 121, 124, 163, 215, 247], "throw_on_early_termin": 11, "explain": [11, 12, 17, 20, 23, 43, 47, 52, 61, 73, 99, 124, 144, 149, 172, 176, 186, 199, 201, 234, 238, 257], "joinconfig": 11, "_join_config": 11, "main_hook": 11, "repeatedli": [11, 159, 163], "post_hook": 11, "is_last_join": 11, "broadcast": [11, 61, 68, 95, 98, 111, 133, 135, 155, 258], "vacuou": 11, "contextlib": [11, 171], "nullcontext": 11, "conform": [11, 171], "interleav": 11, "syncbatchnorm": [11, 55], "__exit__": 11, "heartbeat": 11, "notify_join_context": 11, "serializ": 11, "fulli": [11, 12, 14, 15, 17, 20, 21, 22, 47, 78, 82, 87, 108, 110, 117, 120, 121, 126, 131, 147, 150, 157, 160, 162, 164, 168, 176, 182, 191, 194, 197, 201, 207, 214, 220, 257], "proceed": [11, 47, 97, 108], "overlap": [11, 21, 56, 61, 122, 123, 127, 131, 133, 149, 168, 171, 176, 247], "moreov": [11, 61, 189, 220, 231], "permit": [11, 230, 262], "customiz": [11, 136, 195], "idea": [11, 23, 24, 60, 73, 85, 97, 99, 100, 101, 103, 124, 129, 136, 144, 149, 153, 160, 161, 163, 165, 176, 189, 205, 212, 216, 226, 231, 234, 247, 258, 262], "counterjoinhook": 11, "sync_max_count": 11, "all_reduc": [11, 61, 122, 123, 135, 155], "get_rank": [11, 133, 135], "process_group": [11, 215], "common_rank": 11, "find_common_rank": 11, "max_count": 11, "__call__": [11, 51, 68, 111, 147, 156], "meth": [11, 14, 262], "to_consid": 11, "reduceop": [11, 122, 123, 135], "highlight": [11, 49, 60, 85, 90, 94, 114, 120, 122, 164, 168, 172, 212, 220, 221, 254, 262], "alexi": 12, "jacq": 12, "winston": 12, "her": [12, 42, 113, 155], "leon": [12, 113], "gati": 12, "alexand": 12, "ecker": 12, "matthia": 12, "bethg": 12, "artist": 12, "distanc": [12, 63, 64, 67, 68, 69, 97, 111], "d_c": 12, "d_": [12, 96], "indispens": [12, 159], "pil": [12, 20, 41, 51, 58, 59, 90, 117, 119, 139, 146, 158, 171, 178, 204, 213, 229], "pretrain": [12, 20, 24, 42, 43, 58, 59, 73, 75, 103, 113, 117, 119, 121, 137, 139, 157, 158, 165, 171, 176, 177, 181, 182, 185, 187, 188, 194, 195, 197, 198, 199, 204, 206, 213, 220, 221, 222, 223, 256], "vgg19": [12, 147], "vgg19_weight": 12, "throughout": [12, 25, 52, 102, 135, 149, 152, 159, 169, 176, 177, 191, 244], "set_default_devic": [12, 63, 111, 230, 232], "resiz": [12, 19, 20, 47, 51, 52, 75, 90, 117, 119, 136, 139, 146, 157, 168, 182, 197, 198, 213, 220, 229, 253], "unabl": [12, 23, 138, 154, 184, 191], "caff": 12, "picasso": 12, "imsiz": 12, "image_load": 12, "image_nam": [12, 51], "style_img": 12, "content_img": 12, "reconvert": 12, "correctli": [12, 49, 52, 58, 59, 60, 73, 78, 114, 127, 141, 147, 152, 156, 158, 171, 172, 174, 191, 198, 213, 215, 224, 225, 252], "unload": [12, 237], "topilimag": 12, "ion": [12, 14, 51, 117, 157, 160, 166], "titl": [12, 14, 17, 34, 51, 52, 73, 90, 117, 127, 136, 157, 159, 160, 165, 171, 178, 195, 225], "paus": [12, 51, 117, 160, 161, 198], "f_": [12, 159], "xl": [12, 219], "w_": [12, 103], "cl": [12, 75, 126, 137, 183, 244], "squar": [12, 47, 51, 63, 64, 67, 68, 69, 71, 97, 111, 129, 130, 146, 153, 156, 160, 164, 179], "contentloss": 12, "throw": [12, 23, 61, 118, 139, 161, 173, 174], "mse_loss": [12, 97, 230], "recomput": [12, 97, 129, 131, 153, 247], "act": [12, 22, 43, 49, 113, 126, 136, 156, 160, 162], "gram": 12, "g_": [12, 262], "hat": [12, 102, 113], "counteract": 12, "caus": [12, 15, 21, 22, 61, 73, 82, 119, 125, 144, 158, 161, 165, 168, 171, 174, 176, 177, 189, 195, 226, 228, 232, 247, 252, 260], "pool": [12, 18, 44, 52, 61, 87, 92, 94, 96, 97, 110, 112, 116, 169, 175, 177, 194, 239, 240, 241, 242, 243, 248, 249, 250], "tend": [12, 17, 97, 184, 201], "gram_matrix": 12, "f_xl": 12, "sl": 12, "styleloss": 12, "target_featur": 12, "vgg": 12, "child": [12, 60, 103, 109, 168, 185, 263], "connect": [12, 47, 59, 87, 103, 110, 117, 124, 135, 141, 143, 150, 156, 157, 158, 160, 176, 200, 208, 215, 218, 223, 262], "cnn": [12, 45, 97, 119, 121, 146, 150, 153, 154, 166, 171, 177, 178, 199, 220, 228, 247], "485": [12, 19, 51, 58, 59, 90, 97, 117, 139, 157, 158, 166, 182, 197, 198, 204, 213, 229], "456": [12, 19, 51, 58, 59, 90, 97, 117, 139, 157, 158, 166, 182, 197, 198, 204, 213, 229], "406": [12, 19, 51, 58, 59, 90, 97, 117, 139, 157, 158, 166, 182, 197, 198, 204, 213, 229], "229": [12, 19, 51, 58, 59, 90, 97, 117, 139, 157, 158, 166, 182, 197, 198, 204, 213, 229], "225": [12, 19, 51, 58, 59, 90, 97, 109, 117, 139, 157, 158, 166, 182, 197, 198, 204, 213, 229], "cnn_normalization_mean": 12, "cnn_normalization_std": 12, "height": [12, 43, 47, 58, 59, 78, 95, 146, 148, 152, 171, 177, 178, 226, 262], "width": [12, 19, 43, 44, 47, 58, 59, 78, 95, 126, 146, 148, 149, 150, 152, 171, 177, 178, 262], "img": [12, 20, 34, 44, 51, 90, 92, 94, 96, 117, 119, 121, 139, 157, 169, 171, 178, 229, 257], "maxpool2d": [12, 44, 47, 78, 87, 92, 93, 94, 96, 97, 112, 134, 143, 166, 169, 239, 240, 241, 242, 243, 248, 249, 250], "align": [12, 149, 164, 165, 178, 190, 195, 226, 262], "depth": [12, 43, 52, 56, 61, 101, 125, 144, 199, 210, 234, 247, 260], "immedi": [12, 18, 21, 48, 52, 102, 134, 135, 152, 161, 162, 165, 168, 184], "content_layers_default": 12, "conv_4": 12, "style_layers_default": 12, "conv_1": 12, "conv_2": 12, "conv_3": 12, "conv_5": 12, "get_style_model_and_loss": 12, "normalization_mean": 12, "normalization_std": 12, "content_lay": 12, "style_lay": 12, "content_loss": 12, "style_loss": 12, "conv": [12, 19, 52, 90, 110, 129, 142, 143, 147, 156, 157, 162, 177, 181, 182, 200, 218, 223, 226, 238, 239, 247, 252], "children": [12, 168, 238], "conv_": 12, "relu_": [12, 129, 200, 206], "plai": [12, 44, 49, 52, 79, 97, 99, 115, 121, 159, 177, 199], "pool_": 12, "bn_": 12, "runtimeerror": [12, 22, 118, 128, 155, 158, 164, 173, 174, 203], "unrecogn": 12, "__class__": [12, 52, 78, 147, 244], "add_modul": 12, "content_loss_": 12, "style_loss_": 12, "input_img": [12, 90, 229], "bfg": 12, "get_input_optim": 12, "closur": [12, 173, 174, 216], "reevalu": 12, "exce": [12, 73, 129, 175, 228], "run_style_transf": 12, "num_step": [12, 161], "style_weight": 12, "1000000": 12, "content_weight": 12, "clamp_": 12, "style_scor": 12, "content_scor": 12, "sphinx_gallery_thumbnail_numb": [12, 127], "ioff": [12, 51, 117, 157, 160, 166], "neural_style_tutori": 12, "paszk": [13, 135, 160], "dziedzic": 13, "shall": [13, 47, 52, 103], "learnabl": [13, 47, 67, 68, 69, 111, 112, 121, 202], "badfftfunct": 13, "fft": [13, 172], "rfft2": 13, "irfft2": 13, "numpy_input": 13, "numpy_go": 13, "incorrect_fft": 13, "literatur": [13, 160], "confusingli": 13, "correl": [13, 82, 144], "flip": [13, 21, 145], "wrt": [13, 129, 130], "np": [13, 14, 17, 19, 20, 40, 44, 48, 51, 52, 60, 71, 73, 75, 80, 90, 92, 94, 95, 96, 98, 104, 109, 111, 117, 119, 137, 146, 149, 157, 158, 163, 165, 166, 169, 171, 172, 182, 185, 190, 193, 195, 197, 198, 201, 204, 229, 246], "convolve2d": 13, "correlate2d": 13, "scipyconv2dfunct": 13, "as_tensor": [13, 75, 191], "grad_filt": 13, "from_numpi": [13, 40, 48, 51, 80, 95, 109, 161, 163, 172], "scipyconv2d": 13, "filter_width": 13, "filter_height": 13, "gradcheck": [13, 129, 130, 141, 247], "moduleconv": 13, "atol": [13, 17, 20, 138, 150, 154, 201], "numpy_extensions_tutori": 13, "freeli": 14, "inspir": [14, 60, 116, 135, 145, 150, 164, 205, 234], "v1": [14, 17, 61, 95, 134, 136, 160, 161, 163, 181, 192, 201, 212, 231, 257], "openai": [14, 121, 146, 159, 160, 161, 163], "farama": [14, 159], "gymnasium": [14, 159, 160], "encount": [14, 49, 60, 110, 122, 144, 172, 247, 252], "undertaken": 14, "broader": [14, 25], "challeng": [14, 101, 102, 123, 124, 135, 142, 153, 160, 171, 214, 215, 231, 257], "wider": [14, 145], "acquaint": 14, "set_se": [14, 137, 185], "avenu": [14, 85], "backpropag": [14, 37, 38, 43, 47, 49, 73, 98, 99, 100, 102, 103, 125, 146], "defaultdict": [14, 17, 75, 159, 201], "boundedtensorspec": 14, "unboundedcontinuoustensorspec": 14, "unsqueezetransform": 14, "_apply_to_composit": 14, "check_env_spec": [14, 159], "step_mdp": [14, 136], "default_x": 14, "pi": [14, 63, 64, 65, 67, 68, 69, 71, 72, 89, 95, 111, 121, 160, 262], "default_i": 14, "_set_se": 14, "torqu": 14, "upward": 14, "angular": 14, "stand": [14, 85, 113, 146, 192, 262], "equat": [14, 52, 137, 159, 160, 239, 262], "motion": [14, 262], "veloc": [14, 160], "theta": [14, 73, 99, 159, 166, 262], "_t": [14, 146], "theta_t": 14, "dt": [14, 146, 262], "rad": 14, "sec": [14, 123, 137, 230], "gravit": 14, "mass": 14, "accord": [14, 15, 24, 112, 115, 119, 144, 146, 156, 160, 164, 171, 192, 202, 207], "theta_": [14, 146], "deleg": [14, 21, 121, 143, 187, 197], "privat": [14, 15, 23, 58, 59, 115, 155, 156, 189, 208], "merg": [14, 20, 22, 45, 158, 160, 171, 220], "is_shar": 14, "modif": [14, 15, 19, 20, 21, 87, 98, 129, 135, 156, 159, 162, 166, 169, 173, 174, 182, 194], "new_th": 14, "plu": [14, 98, 99, 115, 128], "new_thdot": 14, "neg": [14, 21, 49, 90, 98, 99, 104, 113, 137, 144, 156, 159, 229, 252], "discourag": [14, 48, 159], "thdot": 14, "g_forc": 14, "clamp": [14, 73, 95, 197, 206], "max_torqu": 14, "angle_norm": 14, "max_spe": 14, "omit": [14, 23, 109, 144, 159, 177, 181, 194, 197, 198, 199, 238, 244], "agent": [14, 61, 121, 160, 161, 163, 166], "mandatori": [14, 141, 159], "is_empti": 14, "gen_param": 14, "high_th": 14, "high_thdot": 14, "low_th": 14, "low_thdot": 14, "simultan": [14, 15, 22, 25, 43, 56, 121, 126, 135, 158, 247], "rng": [14, 135], "domain": [14, 24, 49, 50, 73, 108, 121, 159, 193, 247, 263], "accur": [14, 19, 73, 87, 109, 126, 143, 163, 172, 191], "lazili": [14, 152], "costli": [14, 125, 247], "reward_spec": [14, 159], "done_spec": 14, "input_spec": [14, 159, 173], "state_spec": 14, "output_spec": [14, 173], "trivial": [14, 51, 56, 125, 139, 202, 209, 252], "neither": [14, 149, 179], "shortcut": 14, "tensorspec": [14, 187], "irrelev": [14, 155], "_make_spec": 14, "td_param": 14, "make_composite_from_td": 14, "unbound": 14, "incorpor": [14, 97, 136, 164, 263], "pseudo": [14, 24], "manual_se": [14, 17, 19, 25, 52, 73, 92, 95, 97, 98, 99, 101, 102, 103, 118, 122, 123, 129, 135, 137, 138, 145, 154, 161, 182, 185, 193, 197, 198, 201, 234, 258], "pendulumenv": 14, "expand": [14, 15, 49, 60, 98, 101, 105, 113, 144, 169, 177, 187, 193, 194, 209], "batch_lock": 14, "homonym": 14, "render_mod": [14, 146], "human": [14, 20, 49, 73, 110, 115, 128, 137, 139, 146, 165, 171, 213, 262], "rgb_arrai": 14, "render_fp": 14, "random_": [14, 16, 60, 134, 149, 161], "_make_step": 14, "rand_step": 14, "randomli": [14, 44, 51, 52, 65, 71, 72, 87, 111, 128, 137, 146, 160, 165, 185, 234], "invers": [14, 95, 190, 212], "showcas": [14, 23, 65, 122, 150, 152, 176, 177, 186, 196], "unsqueeze_dim": 14, "summar": [14, 49, 51, 114, 119, 120, 122, 126, 137, 143, 168, 177], "_apply_transform": 14, "_call": 14, "inv": 14, "_inv_apply_transform": 14, "eventu": [14, 129, 136], "out_keys_inv": 14, "subset": [14, 21, 23, 58, 59, 60, 85, 87, 97, 107, 117, 135, 155, 157, 171, 173, 174, 178, 191, 192, 219, 231, 252, 256], "unitari": 14, "raw": [14, 23, 44, 49, 61, 68, 82, 104, 113, 118, 119, 173, 174, 178, 260], "sintransform": 14, "ob": [14, 146, 163, 200], "tensordict_reset": 14, "transform_observation_spec": 14, "costransform": 14, "t_sin": 14, "t_co": 14, "del_kei": 14, "cat_transform": 14, "met": [14, 123], "mdp": 14, "gather": [14, 49, 55, 79, 123, 124, 133, 135, 136, 143, 159, 160, 196, 205, 230], "simple_rollout": 14, "_data": [14, 73], "keep_oth": 14, "unexplor": 14, "abil": [14, 23, 60, 61, 112, 124, 125, 135, 166, 169, 172, 191, 206], "recreat": [14, 43, 175, 208], "auto_reset": 14, "lazylinear": [14, 159], "clip": [14, 20, 49, 73, 117, 157, 159, 160, 166], "20_000": [14, 136], "cosineannealinglr": [14, 110, 159], "init_td": 14, "traj_return": 14, "last_reward": [14, 161, 163], "is_ipython": [14, 160], "inlin": [14, 25, 52, 60, 89, 92, 142, 144, 160, 189, 196, 203, 263, 266], "get_backend": [14, 160], "ipython": [14, 18, 52, 104, 109, 148, 160], "figsiz": [14, 34, 52, 73, 157, 159, 169, 178], "gcf": [14, 160], "clear_output": [14, 160], "scratch": [14, 43, 49, 53, 97, 98, 112, 114, 117, 118, 127, 128, 165, 251, 252], "advanc": [15, 17, 19, 23, 43, 58, 59, 87, 100, 105, 107, 108, 120, 121, 133, 171, 176, 189, 192, 196, 199, 201, 205, 216, 220, 221, 234, 247, 251, 263], "verif": [15, 162], "rapid": [15, 192], "manufactur": [15, 60], "imposs": [15, 98, 152, 205], "began": 15, "enhanc": [15, 115, 139, 166, 199, 207, 216, 228, 262], "rapidli": 15, "wrapper_custom_tensor_add": 15, "torch_fn": 15, "custom_cpu_fallback": 15, "operatorhandl": 15, "hint": [15, 18, 97, 98, 102, 108, 125, 135, 161, 168], "cpu_fallback": 15, "cppfunction": 15, "makefromboxedfunct": 15, "cumtomselufunct": 15, "selu": [15, 110], "wrapper_autogradcumstom__selu": 15, "wrapper_autogradcustom__selu": 15, "autocastprivateuse1": 15, "autocast": [15, 17, 199, 201, 207, 220, 247, 253], "kernel_privateuseon": 15, "makefallthrough": 15, "backendmodul": 15, "_register_device_modul": 15, "backend_nam": 15, "get_amp_supported_dtyp": 15, "is_autocast_en": 15, "get_autocast_dtyp": 15, "set_autocast_dtyp": 15, "set_autocast_en": 15, "generatorimpl": 15, "builder": 15, "register_generator_privateuse1": 15, "customgeneratorimpl": 15, "make_custom_gener": 15, "deviceindex": 15, "device_index": 15, "make_gener": 15, "make_cumstom_gener": 15, "event": [15, 22, 82, 109, 113, 122, 123, 161, 172, 177, 238, 245], "deviceguard": 15, "deviceguardimplinterfac": 15, "c10_register_guard_impl": 15, "customguardimpl": 15, "backend_meta_": 15, "extrameta": 15, "backendmeta": 15, "custombackendmetadata": 15, "unordered_map": 15, "tensorbackendmetaregistri": 15, "for_seri": 15, "for_deseri": 15, "timer": [15, 17, 52, 118, 138, 145, 154, 164, 165, 184, 187, 201, 210, 251], "ascend": [15, 52, 83], "npu": [15, 187, 223], "meet": [15, 50, 52, 202, 221, 231], "usabl": [15, 112, 136, 142], "compli": [15, 60], "habit": [15, 265], "torch_npu": 15, "exclus": [15, 23, 156], "strongli": [15, 136, 153, 262], "rename_privateuse1_backend": 15, "register_privateuse1_backend": 15, "unsupported_dtyp": 15, "quint8": [15, 179], "generate_methods_for_privateuse1_backend": 15, "for_tensor": 15, "for_modul": 15, "for_storag": 15, "is_npu": 15, "yi": [16, 173, 174], "wang": [16, 24, 108, 144, 146], "paradigm": [16, 17, 61, 97, 120, 133, 134, 162, 163, 201], "dens": [16, 17, 146, 189, 193, 201], "fc": [16, 43, 45, 115, 117, 134, 146, 149, 150, 157, 202], "hybrid": [16, 84, 110, 215], "pipedream": 16, "embeddingbag": [16, 18, 115], "respond": [16, 146, 162], "amongst": [16, 190], "themselv": [16, 191, 197], "remotemodul": 16, "kick": [16, 43, 113, 152, 161, 162, 163], "remot": [16, 61, 120, 126, 134, 161, 162, 163, 168, 212, 216], "hybridmodel": 16, "allreduc": [16, 61, 82, 123, 124, 133, 155, 247], "firstli": [16, 108, 144, 160], "tcp": [16, 55, 131, 132, 135, 212], "_run_train": [16, 163], "rpc_async": [16, 134, 161, 163], "shut": [16, 162], "29501": 16, "ps": [16, 61, 161, 162, 163, 195], "remote_emb_modul": 16, "num_embed": [16, 18, 110, 175], "embedding_dim": [16, 18, 93, 98, 102, 103, 110, 175], "fut": [16, 21, 161, 163], "trainer_rank": 16, "trainer_nam": 16, "gloo": [16, 133, 135, 155, 168, 175, 258], "offset": [16, 17, 115, 201, 254], "emb_lookup": 16, "distributedoptim": [16, 134, 162, 163, 212, 216], "remote_paramet": 16, "cannnot": 16, "aggreg": [16, 43, 109, 146, 171, 190, 238], "model_parameter_rref": 16, "get_next_batch": [16, 161, 163], "num_indic": 16, "longtensor": [16, 49, 60, 80, 99, 103, 128, 134, 149, 161, 163, 165], "offsets_tensor": 16, "dist_autograd": [16, 134, 162, 163], "context_id": [16, 134, 162, 163], "tun": 16, "jess": [17, 201], "cai": [17, 201], "seek": [17, 85, 201], "grain": [17, 34, 61, 122, 135, 168, 201, 229, 230, 231], "2n": [17, 201], "degrad": [17, 73, 201, 228], "sparsifi": [17, 121, 156, 201], "answer": [17, 49, 75, 99, 103, 135, 137, 143, 152, 165, 201, 252], "tune": [17, 19, 82, 97, 113, 120, 121, 123, 126, 157, 158, 176, 184, 185, 201, 221, 234, 235, 251], "recov": [17, 61, 122, 123, 133, 147, 198, 201], "nearli": [17, 169, 201, 231], "f1": [17, 137, 172, 185, 201], "vs": [17, 18, 52, 78, 94, 122, 154, 168, 169, 176, 177, 184, 191, 194, 196, 197, 200, 201, 219], "3x": [17, 64, 111, 177, 201, 207, 223, 230, 247], "beginn": [17, 35, 45, 46, 77, 84, 91, 100, 106, 120, 201, 203, 204, 234], "to_sparse_semi_structur": [17, 201], "sparsesemistructuredtensor": [17, 201], "_force_cutlass": [17, 201], "tile": [17, 171, 201, 207], "3072": [17, 97, 147, 201], "2560": [17, 201], "10240": [17, 201], "inference_mod": [17, 129, 171, 201], "dense_output": [17, 201], "dense_t": [17, 201], "stmt": [17, 138, 145, 149, 154, 164, 184, 201, 210, 231, 246], "blocked_autorang": [17, 164, 201, 210, 231], "median": [17, 172, 184, 201, 231, 246], "1e3": [17, 184, 201, 234], "sparse_output": [17, 201], "sparse_t": [17, 201], "a100": [17, 122, 125, 154, 172, 175, 184, 201], "80gb": [17, 201], "870m": [17, 201], "630m": [17, 201], "382x": [17, 201], "allclos": [17, 125, 138, 141, 144, 145, 150, 153, 154, 164, 172, 201, 205, 231], "motiv": [17, 73, 144, 162, 179, 186, 190, 191, 193, 201], "affect": [17, 97, 113, 130, 149, 176, 201, 247], "swap": [17, 51, 99, 110, 124, 137, 159, 182, 184, 185, 193, 195, 198, 201, 244], "compress": [17, 90, 156, 189, 192, 201, 209, 221], "drawback": [17, 103, 201], "2020": [17, 201], "amper": [17, 122, 150, 154, 201, 230], "cutlass": [17, 201], "cusparselt": [17, 201], "milder": [17, 201], "account": [17, 50, 136, 152, 165, 169, 185, 201], "retrain": [17, 201, 227], "sweet": [17, 201], "spot": [17, 127, 201], "2x": [17, 85, 121, 130, 152, 176, 177, 181, 201, 219], "theoret": [17, 52, 189, 201], "granular": [17, 122, 144, 177, 185, 201, 238, 247], "fp16": [17, 122, 147, 184, 188, 201], "resnet": [17, 43, 44, 79, 125, 134, 149, 157, 168, 182, 195, 197, 198, 199, 201, 223, 228, 247], "imagenet": [17, 44, 51, 79, 117, 119, 139, 157, 158, 182, 197, 198, 201, 213, 229], "76": [17, 147, 163, 201, 231], "resnext": [17, 201], "101_32x8d": [17, 201], "xception": [17, 201], "ssd": [17, 201, 247], "rn50": [17, 201], "coco2017": [17, 201], "bbap": [17, 201], "maskrcnn": [17, 201], "fairseq": [17, 201], "en": [17, 21, 33, 49, 60, 99, 113, 118, 141, 153, 165, 171, 201, 260], "de": [17, 18, 22, 49, 60, 113, 116, 118, 165, 201], "wmt14": [17, 201], "bleu": [17, 201], "squad": [17, 144, 201], "workflow": [17, 19, 58, 59, 82, 86, 87, 123, 173, 192, 196, 200, 201, 234, 251], "perspect": [17, 23, 101, 159, 177, 201], "subproblem": [17, 201], "handoff": [17, 201], "anticip": [17, 201], "area": [17, 113, 169, 178, 184, 192, 201, 229, 264], "colab": [17, 18, 24, 25, 42, 48, 75, 94, 104, 115, 119, 121, 136, 137, 145, 157, 159, 160, 171, 175], "panda": [17, 34, 51, 73, 119, 171], "wandb_dis": 17, "ao": [17, 19, 179, 181, 182, 184, 197, 198, 199, 201], "weightnormsparsifi": [17, 201], "hug": [17, 75, 144], "face": [17, 44, 51, 52, 60, 73, 75, 79, 113, 144, 197], "preprocess_validation_funct": [17, 201], "strip": [17, 49, 75, 127, 128, 165, 201], "max_length": [17, 49, 60, 75, 128, 137, 165, 185, 201, 252], "384": [17, 187, 201], "only_second": [17, 201], "return_overflowing_token": [17, 201], "return_offsets_map": [17, 201], "sample_map": [17, 201], "pop": [17, 22, 98, 137, 185, 201], "overflow_to_sample_map": [17, 201], "example_id": [17, 201], "input_id": [17, 75, 122, 124, 137, 144, 165, 185, 201], "sample_idx": [17, 34, 201], "sequence_id": [17, 201], "offset_map": [17, 201], "preprocess_train_funct": [17, 201], "start_posit": [17, 201], "end_posit": [17, 201], "start_char": [17, 201], "answer_start": [17, 201], "end_char": [17, 201], "idx": [17, 19, 34, 51, 75, 98, 102, 103, 109, 115, 157, 158, 165, 169, 178, 201, 238], "context_start": [17, 201], "context_end": [17, 201], "compute_metr": [17, 137, 185, 201], "start_logit": [17, 201], "end_logit": [17, 201], "n_best": [17, 201], "max_answer_length": [17, 201], "example_to_featur": [17, 201], "predicted_answ": [17, 201], "feature_index": [17, 201], "start_index": [17, 201], "argsort": [17, 201], "tolist": [17, 51, 113, 178, 201], "end_index": [17, 201], "logit_scor": [17, 201], "score": [17, 49, 60, 98, 102, 103, 109, 137, 148, 164, 165, 178, 185, 201, 229], "best_answ": [17, 201], "prediction_text": [17, 201], "theoretical_answ": [17, 201], "ex": [17, 73, 201, 263, 265], "measure_execution_tim": [17, 201], "dataset_for_model": [17, 201], "remove_column": [17, 201], "set_format": [17, 201], "batch_size_to_time_sec": [17, 201], "column_nam": [17, 201], "baseline_predict": 17, "p50": [17, 201], "model_c": [17, 184], "fullgraph": [17, 164, 172, 210, 211, 254], "_compil": 17, "new_predict": 17, "model_nam": [17, 49, 60, 122, 184, 199, 201, 220], "autotoken": [17, 122, 201], "from_pretrain": [17, 75, 122, 137, 144, 185, 201, 220], "automodelforquestionansw": [17, 201], "val": [17, 19, 22, 117, 118, 122, 148, 157, 158, 182, 197, 198, 201], "squad_dataset": [17, 201], "load_dataset": [17, 75, 122, 201], "tokenized_squad_dataset": [17, 201], "data_col": [17, 201], "datacollatorwithpad": [17, 201], "segment": [17, 121, 184, 201, 204, 222], "wikipedia": [17, 33, 141, 153, 201], "articl": [17, 113, 116, 201], "training_arg": [17, 201], "trainingargu": [17, 201], "num_train_epoch": [17, 137, 201], "lr_scheduler_typ": [17, 201], "per_device_train_batch_s": [17, 201], "per_device_eval_batch_s": [17, 201], "logging_step": 17, "runner": 17, "max_step": [17, 75], "report_to": 17, "train_dataset": [17, 55, 97, 115, 122, 201, 220, 253], "eval_dataset": [17, 137, 185, 201], "fair": [17, 97, 103, 113, 193, 194, 201], "fp16_baselin": [17, 201], "fp16_time": [17, 201], "cuda_fp16": [17, 201], "pd": [17, 34, 51, 119, 171], "df": [17, 83, 119, 126], "datafram": [17, 82, 119, 126, 171], "log_histori": 17, "lowest": [17, 61, 123, 156, 201], "satisfi": [17, 126, 173, 174, 195, 201, 202, 247], "sparsity_level": [17, 201], "sparse_block_shap": [17, 201], "zeros_per_block": [17, 201], "sparse_config": [17, 201], "tensor_fqn": [17, 201], "fqn": [17, 201, 214], "named_modul": [17, 142, 156, 201, 239], "anytim": [17, 201], "pruner": [17, 201], "update_mask": [17, 201], "shot": [17, 113, 161, 201], "squash_mask": [17, 201], "set_printopt": [17, 201, 231], "edgeitem": [17, 201], "sparse_loss": 17, "quickstart": [17, 35, 201, 224], "metrics_spars": [17, 201], "sparse_perf": [17, 201], "perf": [17, 177, 188, 201], "28x": [17, 201], "bs": [17, 104, 144, 201], "amen": [17, 201], "spent": [17, 82, 113, 164, 168, 176, 177, 201, 231, 234, 238], "delta": [17, 125, 144, 145, 146, 154, 160, 201, 231, 246], "exact": [17, 97, 112, 129, 139, 164, 173, 174, 185, 197, 198, 201, 210], "53": [17, 147, 201, 219, 238, 263], "93": [17, 109, 163, 201, 219, 231], "15": [17, 23, 24, 45, 52, 58, 59, 73, 90, 92, 93, 116, 117, 146, 157, 169, 171, 178, 187, 201, 203, 219, 231, 238, 246, 262, 266], "54": [17, 147, 149, 177, 231], "71x": [17, 177], "74": [17, 119, 163, 185, 219, 231], "23x": 17, "71": [17, 19, 21, 51, 144, 163], "59": [17, 115, 158, 171, 231, 238], "22x": 17, "286": [17, 147, 171, 201], "65": [17, 51, 163, 178, 218, 231], "247": [17, 163], "63": [17, 228, 238], "14x": 17, "02x": 17, "ye": [17, 50, 78, 99, 137, 152, 187], "18x": [17, 201], "13x": 17, "159": 17, "142": [17, 219], "12x": 17, "semi_structured_spars": 17, "embeddingplann": [18, 121], "conda": [18, 23, 82, 90, 94, 135, 144, 175, 184, 187, 188, 196, 221, 223, 229, 245, 246], "cudatoolkit": [18, 175], "sudo": [18, 168, 206], "rm": [18, 212, 223], "miniconda3": [18, 22, 246], "py37_4": 18, "sh": [18, 133, 188, 194, 204, 206, 218, 222, 223, 226], "anaconda": [18, 82, 135, 245], "chmod": 18, "fbgemm": [18, 19, 119, 175, 179, 181, 182, 228], "cp": [18, 206, 208, 213, 257], "restart": [18, 23, 58, 59, 132, 160], "newli": [18, 49, 117, 135, 216], "python37": 18, "dynload": 18, "enviro": 18, "spmd": [18, 124, 214], "mimic": [18, 19, 97, 149, 157, 184, 185, 189], "launcher": [18, 208], "embeddingbagcollect": 18, "bag": [18, 34, 38, 94, 96, 115, 169, 175], "ebc": [18, 175], "parameterconstraint": 18, "placement": [18, 176], "intra": [18, 21, 122, 124, 137, 215], "interconnect": [18, 76, 176], "nvlink": [18, 124, 212], "data_parallel": [18, 79], "meta": [18, 49, 124, 126, 138, 154, 159, 173, 174, 175, 176, 177, 200, 202, 239, 244, 251, 254, 266], "planner": 18, "embedding_typ": 18, "embeddingcomputekernel": 18, "shardingtyp": 18, "large_table_cnt": 18, "small_table_cnt": 18, "large_t": 18, "embeddingbagconfig": [18, 175], "large_table_": 18, "feature_nam": [18, 175], "large_table_feature_": 18, "poolingtyp": [18, 175], "small_tabl": 18, "small_table_": 18, "small_table_feature_": 18, "gen_constraint": 18, "sharding_typ": 18, "table_wis": 18, "large_table_constraint": 18, "small_table_constraint": 18, "mimick": 18, "single_rank_execut": 18, "embeddingbagcollectionshard": 18, "model_parallel": 18, "embeddingshardingplann": 18, "topolog": [18, 137, 185, 214, 215, 220, 226], "moduleshard": 18, "shardingenv": 18, "init_distributed_single_host": 18, "pyre": 18, "fixm": 18, "set_devic": [18, 53, 55, 122, 123, 186, 214, 215], "compute_devic": 18, "pg": 18, "sharder": [18, 175], "shardingplan": 18, "collective_plan": 18, "sharded_model": 18, "from_process_group": 18, "spmd_sharing_simul": 18, "get_context": 18, "exitcod": 18, "medium": [18, 122, 178, 262], "large_table_0": 18, "parametershard": 18, "compute_kernel": 18, "batched_fus": 18, "sharding_spec": 18, "enumerableshardingspec": 18, "shardmetadata": 18, "shard_offset": 18, "shard_siz": 18, "large_table_1": 18, "small_table_0": 18, "small_table_1": 18, "finer": [18, 34, 61, 177, 238], "halv": [18, 109], "row_wis": 18, "imbal": [18, 176, 247], "vertic": [18, 21, 260, 262], "column_wis": 18, "unfortu": 18, "batched_dens": 18, "raghuraman": [19, 137, 157], "krishnamoorthi": [19, 137, 157], "jerri": [19, 181, 182, 183, 197, 199, 200], "zhang": [19, 181, 182, 183, 197, 199, 200, 214, 215], "decreas": [19, 49, 73, 83, 97, 103, 124, 146, 176, 177, 192, 223, 252], "mobilenetv2": [19, 188, 196, 198, 223], "dataload": [19, 33, 35, 37, 38, 44, 45, 52, 55, 73, 75, 87, 92, 94, 96, 97, 113, 115, 117, 118, 122, 123, 129, 135, 137, 148, 157, 162, 165, 166, 168, 169, 171, 178, 182, 185, 197, 198, 220, 221, 235, 236, 247, 250, 253], "filterwarn": [19, 51, 148, 159, 171, 182, 189, 190, 191, 192, 197, 198], "deprecationwarn": [19, 182, 197, 198], "seed": [19, 25, 52, 73, 97, 122, 123, 135, 137, 161, 163, 182, 185, 193, 197, 198, 231, 234], "191009": [19, 25, 182, 197, 198], "floatfunct": 19, "quantstub": [19, 182, 218, 223, 228], "dequantstub": [19, 182, 218, 223, 228], "relu6": [19, 110], "_make_divis": 19, "divisor": 19, "min_valu": 19, "tf": [19, 94], "divis": [19, 165, 193], "tensorflow": [19, 94, 98, 100, 111], "blob": [19, 23, 33, 108, 123, 142, 168, 179, 182, 206, 260], "slim": [19, 111], "mobilenet": [19, 58, 59, 121, 158, 194], "new_v": 19, "round": [19, 108, 115, 122, 146, 161, 231, 234], "convbnrelu": 19, "in_plan": [19, 134], "out_plan": [19, 134], "kernel_s": [19, 97, 104, 123, 129, 134, 146, 153, 166, 179, 218, 221], "momentum": [19, 43, 44, 65, 69, 87, 92, 94, 96, 104, 111, 112, 117, 129, 135, 157, 161, 168, 169, 178, 179, 198, 216, 218, 220, 221, 241, 242, 243, 249, 250, 253], "invertedresidu": 19, "oup": 19, "expand_ratio": 19, "hidden_dim": [19, 93, 98, 102], "use_res_connect": 19, "pw": 19, "dw": 19, "skip_add": 19, "num_class": [19, 24, 42, 75, 97, 115, 134, 148, 149, 161, 169, 171, 178], "width_mult": 19, "inverted_residual_set": 19, "round_nearest": 19, "v2": [19, 58, 59, 95, 97, 114, 136, 144, 158, 178, 192, 207], "input_channel": 19, "last_channel": 19, "1280": [19, 178, 184], "160": [19, 137, 163, 171, 218, 231, 238], "320": [19, 78, 166, 221], "valueerror": [19, 49, 60, 146, 190, 216], "invert": [19, 121, 159, 190], "residu": [19, 124], "output_channel": 19, "quant": [19, 157, 179, 185, 194, 197, 200, 218, 223, 228], "dequant": [19, 157, 179, 182, 184, 185, 194, 195, 197, 199, 200, 218, 221, 223, 228], "init": [19, 20, 22, 23, 52, 59, 99, 118, 129, 134, 153, 159, 194, 202, 218, 222, 225, 257], "kaiming_normal_": [19, 134], "fan_out": [19, 134], "zeros_": 19, "ones_": 19, "normal_": [19, 52], "bn": [19, 129, 142, 143, 157, 179, 181, 198, 218, 223], "fuse_model": [19, 157, 194, 195], "is_qat": [19, 179, 198, 199], "fuse_modul": [19, 157], "fuse_modules_qat": 19, "averagemet": [19, 182, 197, 198], "fmt": [19, 149, 182, 197, 198, 209], "avg": [19, 37, 38, 127, 182, 197, 198, 219, 238], "__str__": [19, 182, 197, 198], "fmtstr": [19, 182, 197, 198], "__dict__": [19, 49, 60, 182, 197, 198, 199, 244], "topk": [19, 49, 90, 127, 128, 165, 182, 197, 198, 221, 256], "maxk": [19, 58, 59, 182, 197, 198], "pred": [19, 37, 38, 104, 117, 123, 124, 129, 137, 148, 157, 162, 166, 169, 172, 173, 174, 178, 182, 185, 197, 198, 221], "correct_k": [19, 182, 197, 198], "mul_": [19, 95, 182, 197, 198, 216], "neval_batch": [19, 198], "top1": [19, 182, 197, 198, 221], "acc": [19, 73, 117, 148, 157, 171, 182, 197, 198], "top5": [19, 182, 197, 198, 256], "cnt": [19, 73, 182, 197, 198], "acc1": [19, 182, 197, 198], "acc5": [19, 182, 197, 198], "load_model": [19, 182, 197, 198], "data_path": [19, 87, 104, 182, 197, 198], "prepare_data_load": [19, 182, 197, 198], "randomresizedcrop": [19, 117, 182, 197, 198], "randomhorizontalflip": [19, 51, 117, 157, 178, 182, 197, 198], "dataset_test": [19, 178, 182, 197, 198], "centercrop": [19, 52, 90, 117, 119, 139, 157, 182, 197, 198, 213, 229], "train_sampl": [19, 165, 182, 197, 198], "test_sampl": [19, 182, 197, 198], "sequentialsampl": [19, 137, 182, 185, 197, 198], "train_batch_s": [19, 182, 197, 198], "data_loader_test": [19, 178, 182, 197, 198, 199], "saved_model_dir": [19, 182, 197, 198], "float_model_fil": [19, 182, 197, 198], "mobilenet_pretrained_float": 19, "scripted_float_model_fil": [19, 182, 197], "mobilenet_quantization_script": 19, "scripted_quantized_model_fil": 19, "mobilenet_quantization_scripted_quant": 19, "float_model": [19, 181, 182, 185, 195, 197, 198, 199], "fusion": [19, 82, 143, 144, 177, 182, 184, 198, 216, 218, 220, 247, 252, 255], "baselin": [19, 21, 24, 90, 97, 171, 184, 197, 201, 229, 231, 246], "un": [19, 165], "num_eval_batch": [19, 198], "sophist": [19, 159], "num_calibration_batch": 19, "mymodel": [19, 105, 179], "estim": [19, 47, 51, 52, 126, 159, 160, 165, 184, 213, 231], "qconfig": [19, 119, 157, 179, 181, 182, 183, 185, 195, 197, 200, 218, 223, 228], "default_qconfig": [19, 182, 195], "calibr": [19, 179, 181, 183, 198, 199, 221, 223], "safe": [19, 23, 65, 97, 111, 142, 187, 209], "4x": [19, 122, 177, 181, 182, 234], "exercis": [19, 44, 135, 157, 176, 230], "x86": [19, 119, 179, 181, 182, 194, 196, 204, 207, 222, 228], "basi": [19, 122, 137, 150, 262], "histogram": [19, 195, 197, 245], "per_channel_quantized_model": 19, "get_default_qconfig": [19, 119, 181, 182, 218, 223, 228], "67": [19, 109, 144, 177, 179, 185, 219], "wors": [19, 119, 209], "qat": [19, 157, 179, 199], "train_one_epoch": [19, 96, 178, 198], "ntrain_batch": [19, 198], "avgloss": [19, 198], "5f": [19, 198, 234], "global_avg": [19, 198], "qat_model": 19, "get_default_qat_qconfig": [19, 228], "prepare_qat": [19, 157, 228], "toward": [19, 49, 60, 97, 128, 160, 182, 234], "freez": [19, 43, 117, 157, 177, 196, 198, 199, 220, 247], "num_train_batch": [19, 198], "nepoch": [19, 198], "disable_observ": [19, 198], "intrins": [19, 179], "freeze_bn_stat": 19, "confirm": [19, 20, 58, 59, 87, 122, 145, 161, 256], "allud": [19, 73], "run_benchmark": 19, "img_load": 19, "num_batch": [19, 37, 38, 134, 135, 149, 230], "num_imag": [19, 117], "0f": [19, 117, 129, 157, 166, 221], "dynamo_export": [20, 105, 107, 108], "newest": [20, 105], "torchdynamo": [20, 105, 107, 121, 173, 174, 199, 200], "technolog": [20, 61, 97, 105, 121, 135, 216, 251], "torchscript": [20, 58, 59, 105, 119, 121, 139, 142, 147, 177, 185, 187, 188, 194, 196, 209, 223, 224, 225, 228, 238, 251], "prove": [20, 103, 176], "onnxruntim": [20, 105, 107, 108], "model_zoo": 20, "wide": [20, 61, 124, 127, 128, 135, 137, 149, 155, 165, 184, 208, 216, 229, 247, 266], "superresolut": 20, "shi": 20, "et": [20, 24, 49, 52, 60, 73, 135, 156, 165, 265], "al": [20, 24, 49, 52, 60, 73, 156, 165], "upscal": 20, "ycbcr": 20, "superresolutionnet": 20, "upscale_factor": 20, "pixel_shuffl": 20, "pixelshuffl": 20, "_initialize_weight": 20, "orthogonal_": [20, 153, 202], "calculate_gain": 20, "torch_model": [20, 105], "ordinarili": [20, 230], "batchnorm": [20, 52, 55, 112, 142, 147, 182, 194, 197, 198, 199, 247, 249, 252], "model_url": 20, "s3": [20, 173, 181], "amazonaw": [20, 181], "superres_epoch100": 20, "44c6958e": 20, "load_url": 20, "ax": [20, 51, 99, 102, 117, 121, 127, 149, 157, 165, 169], "dynamic_ax": 20, "torch_out": 20, "super_resolut": 20, "export_param": 20, "opset_vers": 20, "do_constant_fold": 20, "fold": [20, 142, 177, 182, 197, 199, 247, 252, 263], "input_nam": [20, 173], "output_nam": [20, 128], "bundl": [20, 59, 194, 204, 208, 222], "ml": [20, 73, 95, 97, 120, 121, 126, 196, 219, 223, 257], "proto": [20, 110], "checker": [20, 105, 110], "check_model": [20, 105, 110], "onnx_model": [20, 105], "ort_sess": [20, 105, 108], "inferencesess": [20, 105, 108], "cpuexecutionprovid": [20, 105, 108], "to_numpi": [20, 105, 108], "ort_input": 20, "get_input": [20, 105, 108], "ort_out": 20, "assert_allclos": [20, 142], "rtol": [20, 138, 154], "03": [20, 92, 118, 119, 162, 163, 171, 184, 219, 246, 263], "contact": [20, 122, 205, 263], "famou": [20, 24, 73], "224x224": [20, 158, 213], "cb": 20, "cr": 20, "grayscal": [20, 136, 146], "blue": [20, 43, 58, 59, 90, 122, 124, 178, 226, 262], "red": [20, 58, 59, 60, 124, 149, 169, 178, 195, 226], "chroma": 20, "sensit": [20, 97, 131, 141, 182], "_static": [20, 104, 121, 139], "img_ycbcr": 20, "img_i": 20, "img_cb": 20, "img_cr": 20, "to_tensor": [20, 42, 190, 191], "unsqueeze_": [20, 95, 128, 213], "img_out_i": 20, "fromarrai": [20, 171], "final_img": 20, "bicub": 20, "rgb": [20, 52, 58, 59, 75, 92, 97, 139, 146, 158, 171, 178, 213, 229], "mobil": [20, 58, 59, 97, 119, 179, 187, 188, 194, 196, 206, 208, 209, 218, 228, 235, 251], "cat_superres_with_ort": 20, "deploi": [20, 54, 58, 59, 105, 121, 126, 132, 139, 156, 158, 209, 251, 252], "cloud": [20, 54, 105], "inferenc": 20, "azur": [20, 168], "servic": [20, 49, 126, 139, 158, 208, 220, 262], "super_resolution_with_onnxruntim": 20, "inter": [21, 121, 124, 132, 150, 215], "workload": [21, 23, 61, 97, 109, 120, 121, 132, 133, 168, 176, 177, 182, 197, 215, 216, 219, 220, 251], "fragment": [21, 177, 247], "fn": [21, 85, 135, 141, 144, 147, 172, 186, 210, 211, 244, 246, 255], "callabl": [21, 51, 168, 172, 173, 174, 182, 209, 229], "x_normal": 21, "x_parallel": 21, "async": [21, 161, 163], "sort": [21, 25, 49, 98, 102, 109, 116, 137, 143, 158, 178, 185, 209, 238, 247], "parlanc": 21, "revers": [21, 43, 49, 60, 98, 141, 143, 150, 153, 158, 165], "bidirectionalrecurrentlstm": 21, "cell_f": 21, "input_s": [21, 45, 49, 60, 78, 127, 128, 136, 165], "hidden_s": [21, 49, 60, 78, 89, 127, 128, 136, 148, 165, 181, 252], "cell_b": 21, "output_f": 21, "x_rev": 21, "output_b": 21, "output_b_rev": 21, "lstmensembl": 21, "n_model": 21, "modulelist": [21, 153, 237], "demo": [21, 25, 45, 58, 59, 113, 119, 121, 139, 155, 168, 204, 208, 219, 222, 228, 262], "took": [21, 119, 135, 143, 152, 164, 172, 176, 177, 187], "future_f": 21, "stuff": [21, 262], "worth": [21, 23, 52, 103, 113, 152, 162, 234], "profil": [21, 42, 82, 89, 119, 121, 123, 164, 176, 195, 219, 231, 235, 247, 251], "chrome": [21, 89, 164, 168, 238], "prof": [21, 42, 109, 164, 168, 219, 238], "export_chrome_trac": [21, 144, 164, 238], "json": [21, 49, 90, 109, 127, 139, 144, 164, 168, 213, 238], "navig": [21, 61, 168, 169, 204, 226, 260], "button": [21, 50, 52, 58, 59, 105, 168, 188, 225, 226, 260, 262], "timelin": [21, 152, 168, 177, 226], "horizont": 21, "opportun": [21, 85, 105, 136, 149, 216, 247], "breviti": [21, 23, 189, 234, 244], "intro": [21, 35, 36, 55, 99, 100, 120, 136, 139, 159, 169, 211], "tracer": [21, 204], "member": [22, 65, 67, 79, 111, 157, 196, 223], "portion": [22, 82, 152, 156, 219, 226, 262], "custom_class": 22, "mystackclass": 22, "customclasshold": 22, "stack_": 22, "push": [22, 52, 73, 97, 145, 160, 184, 205, 218, 223], "pop_back": 22, "intrusive_ptr": [22, 155, 231, 246], "make_intrus": [22, 155], "elem": [22, 244], "smart": 22, "oppos": [22, 49, 52, 117, 135, 145, 150, 162, 231], "class_": 22, "my_class": 22, "contructor": 22, "yourclass": 22, "ref": [22, 40, 197, 262], "unari": 22, "add_librari": [22, 23, 208], "cmake_cxx_standard": [22, 208], "custom_class_project": 22, "rh": 22, "devtoolset": 22, "torchbind_tutori": 22, "libcustom_class": 22, "load_librari": [22, 23], "loaded_librari": 22, "bar": [22, 49, 82, 142, 149, 153, 162, 171, 172, 182, 197, 202, 226, 260, 262], "manipulate_inst": 22, "s2": [22, 47, 92, 173, 192], "do_stack": 22, "hi": [22, 103, 113, 115, 146, 193, 262, 263], "mom": 22, "wow": 22, "scripted_foo": 22, "filesystem": [22, 135], "treatment": [22, 113, 171, 191, 192, 234], "cpp_inference_exampl": 22, "foobarbaz": 22, "tostr": 22, "add_subdirectori": [22, 23], "drill": 22, "momfoobarbaz": 22, "incred": 22, "make_custom_class": 22, "tocustomclass": 22, "iscustomclass": 22, "export_attr": 22, "__torch__": [22, 203], "def_pickl": 22, "pushivalueimpl": 22, "pickler": 22, "__getstate__": 22, "__setstate__": 22, "pickl": [22, 87, 104, 112, 152, 223, 231, 242, 246], "salient": 22, "wherea": [22, 149, 169, 171, 184, 190, 191], "confus": [22, 23, 98, 99, 127, 141, 171, 184, 190, 191, 192, 197, 223], "trycustomop": 22, "relax": [22, 153, 173, 174], "standalon": [22, 53, 124, 230, 254, 262], "blend": [22, 23], "smoothli": [22, 23], "subsequ": [23, 73, 97, 112, 118, 123, 136, 141, 161, 163, 165, 172, 177, 184, 199, 247], "resort": 23, "opencv": [23, 44, 208], "vision": [23, 24, 34, 38, 44, 58, 59, 117, 119, 121, 152, 178, 187, 194, 196, 204, 222, 223, 229, 233, 256], "mat": [23, 208], "warpperspect": [23, 208], "warp_perspect": [23, 208], "warp": [23, 208], "image_mat": [23, 208], "cv": [23, 24, 126, 193, 208], "col": [23, 34, 157, 208], "cv_32fc1": [23, 208], "warp_mat": [23, 208], "output_mat": [23, 208], "dsize": [23, 208], "output_tensor": 23, "from_blob": [23, 59, 188, 208], "ptr": [23, 208], "short": [23, 25, 49, 60, 82, 98, 100, 115, 120, 128, 135, 153, 159, 165, 166, 197, 198, 199, 234, 247, 262, 263], "opencv2": [23, 208], "hpp": [23, 155, 208], "alongsid": [23, 141, 169, 171, 230], "goodi": 23, "hardcod": [23, 129, 148, 200], "strikingli": 23, "opaqu": 23, "flat": 23, "scope": [23, 60, 101, 109, 125, 173, 174, 177, 226], "dealloc": [23, 168, 177, 247], "invalid": [23, 134, 190, 191, 192, 216, 247], "quot": [23, 117, 263], "metaprogram": 23, "experiment": [23, 60, 123, 126, 142, 163, 173, 174, 179, 186, 221, 245, 247], "target_compile_featur": 23, "cxx_std_14": 23, "opencv_cor": 23, "opencv_imgproc": 23, "libwarp_perspect": 23, "sensat": 23, "0x7f618fc6fa50": 23, "3218": 23, "4611": 23, "4636": 23, "3746": 23, "0978": 23, "5005": 23, "3245": 23, "0169": 23, "4458": 23, "1862": 23, "1692": 23, "noteworthi": [23, 219], "frozen": [23, 43, 146, 157, 185, 203], "prim": [23, 185], "revel": 23, "restrict": [23, 25, 49, 85, 135, 168, 172, 174, 179, 204, 205], "script_method": [23, 85], "tensortobool": 23, "block0": 23, "block1": [23, 79], "21": [23, 58, 59, 109, 115, 158, 208, 219, 231, 238, 246], "sent": [23, 99, 102, 135, 161, 212], "wire": 23, "dlopen": 23, "example_app": 23, "cxx_range_for": 23, "errorreport": 23, "mayb": [23, 101, 103, 138, 196, 262], "subdirectori": [23, 52, 178], "prefix": [23, 113, 122, 125, 136, 137, 168, 184, 185, 231, 246, 258, 262], "inconveni": [23, 189], "altogeth": [23, 150, 191, 260], "nb": [23, 89, 95, 205, 213], "impress": [23, 115, 144], "opencv_photo": 23, "happi": [23, 142, 143], "4125": 23, "8262": 23, "5345": 23, "6111": [23, 231], "3997": [23, 75], "4683": 23, "5969": 23, "0850": 23, "0698": 23, "4597": 23, "0926": 23, "5727": 23, "9319": 23, "4834": 23, "1747": 23, "0162": 23, "9521": 23, "6269": 23, "lastli": [23, 87, 121, 152, 222], "driver": [23, 168], "infrastructur": [23, 257], "vener": 23, "beforehand": [23, 150, 200, 228], "is_python_modul": [23, 208], "extra_ldflag": [23, 208], "lopencv_cor": [23, 208], "lopencv_imgproc": [23, 208], "approxim": [23, 49, 108, 122, 129, 143, 146, 150, 156, 160, 176, 185, 219, 247], "0x7f3e0f840b10": 23, "load_inlin": [23, 208, 231], "op_sourc": [23, 208], "cpp_sourc": [23, 208, 231], "rout": [23, 60, 139, 144, 213], "quirki": 23, "with_opt": 23, "no_python_abi_suffix": 23, "bottom": [23, 98, 168, 171, 226, 260], "suffix": [23, 48, 82, 144], "tag": [23, 51, 100, 103, 116, 173, 174, 208, 237, 245, 262], "0x7ff51c5b7bd0": 23, "hao": 24, "chen": [24, 173, 174, 204, 222], "unifi": [24, 95, 121, 129, 195, 229], "ssl": 24, "modular": [24, 110, 112], "fixmatch": 24, "defixmatch": 24, "speech": [24, 73, 98, 100, 103, 128, 247], "light": [24, 25, 52, 129, 208, 229, 262], "vit": 24, "strong": [24, 98, 176, 192, 262], "unlabel": 24, "confid": [24, 52, 99, 126, 159, 160, 169, 230], "threshold": [24, 49, 60, 82, 109, 110, 126, 159, 163, 171, 219, 247], "statu": [24, 126, 163, 173, 174, 263], "absorb": 24, "gaussian": [24, 47, 52, 126, 159], "overcom": [24, 113], "quantiti": [24, 97, 121, 124, 145, 150, 154], "trade": [24, 126, 152, 234], "afford": 24, "nlp": [24, 42, 92, 93, 99, 102, 103, 113, 114, 115, 116, 118, 127, 128, 137, 165, 177, 185, 193, 199, 230, 234, 247, 252], "audio": [24, 26, 27, 28, 29, 30, 34, 38, 44, 121, 140, 167, 170], "semilearn": 24, "get_dataset": 24, "get_data_load": 24, "weak": [24, 262], "get_net_build": 24, "get_algorithm": 24, "get_config": 24, "hyper": [24, 164], "vit_tiny_patch2_32": 24, "use_pretrain": 24, "pretrain_path": 24, "microsoft": [24, 107, 108, 137, 168], "vit_tiny_patch2_32_mlp_im_1k_32": 24, "num_train_it": 24, "num_eval_it": 24, "num_log_it": 24, "adamw": [24, 75, 110, 122, 160], "layer_decai": 24, "cifar10": [24, 57, 87, 92, 97, 168, 220, 250, 253], "num_label": [24, 99], "img_siz": 24, "crop_ratio": 24, "875": 24, "data_dir": [24, 87, 117, 122, 137, 148, 157, 185], "ulb_samples_per_class": 24, "hard_label": 24, "ema_p": 24, "999": [24, 52, 94, 96, 169], "ent_loss_ratio": 24, "uratio": 24, "ulb_loss_ratio": 24, "dataset_dict": 24, "include_lb_to_ulb": 24, "train_lb_load": 24, "train_lb": 24, "train_ulb_load": 24, "train_ulb": 24, "eval_load": 24, "from_nam": 24, "tb_log": 24, "logger": [24, 137, 146, 148, 171, 185, 195], "lb_imb_ratio": 24, "ulb_imb_ratio": 24, "1500": [24, 122, 231], "ulb_num_label": 24, "3000": [24, 169], "kihyuk": 24, "sohn": 24, "yidong": 24, "usb_semisup_learn": 24, "jamesre": 25, "fb": 25, "michael": [25, 42, 98, 210, 211, 230, 255], "suo": 25, "rev2": 25, "hierarchi": [25, 60, 177], "__version__": [25, 42, 107, 119, 137, 146, 158, 185, 188, 206, 208, 222], "mycel": 25, "my_cel": 25, "3x4": 25, "redefin": 25, "succinctli": [25, 153], "mydecisiong": [25, 252], "dg": 25, "tape": [25, 42, 76], "traced_cel": [25, 252], "rewind": 25, "tracedmodul": [25, 60, 85, 252], "ir": [25, 110, 142, 144, 183, 216], "commonli": [25, 49, 69, 87, 97, 158, 165, 168, 179, 216, 220, 239, 247, 263], "acquir": [25, 112, 134, 156, 159, 163], "laden": 25, "submodul": [25, 49, 60, 85, 153, 164, 202, 218, 222, 228, 234], "branch": [25, 173, 174, 177, 178, 199, 206, 220, 224, 225], "nowher": 25, "faithfulli": [25, 189], "analysi": [25, 87, 107, 115, 121, 123, 143, 144, 164, 168, 171, 174, 176, 184, 226, 234], "scripted_g": 25, "scripted_cel": [25, 252], "decis": [25, 100, 136, 189, 190, 192, 207, 224, 225, 247, 255], "myrnnloop": 25, "xs": [25, 134, 166], "rnn_loop": 25, "wraprnn": 25, "freestand": 25, "wrapped_rnn": 25, "neurip": 25, "1hiicg6jrkbnr5hvk2": 25, "vnmi88vi9puzej": 25, "intro_to_torchscript_tutori": [25, 203], "audio_data_augmentation_tutori": [26, 28], "redirect": [26, 27, 28, 29, 30, 31, 74, 140, 151, 167, 170, 180, 217], "audio_datasets_tutori": 27, "audio_feature_extractions_tutori": 29, "audio_io_tutori": 30, "\u57fa\u7840\u77e5\u8bc6": [32, 33, 34, 35, 37, 38, 39, 40, 41, 121], "\u5feb\u901f\u5165\u95e8": [32, 33, 34, 36, 37, 39, 40, 41, 251], "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668": [32, 33, 36, 37, 38, 39, 40, 41], "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": [32, 34, 36, 37, 38, 39, 40, 41], "\u4f18\u5316\u6a21\u578b\u53c2\u6570": [32, 33, 34, 36, 39, 40, 41], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [32, 33, 34, 36, 37, 38, 40, 41, 235, 251], "\u5728\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6": [32, 250], "\u6700\u5e38\u7528\u7684\u7b97\u6cd5\u662f": 32, "\u53cd\u5411\u4f20\u64ad": [32, 37], "\u5728\u8fd9\u4e2a\u7b97\u6cd5\u4e2d": 32, "\u53c2\u6570": [32, 95, 240], "\u6a21\u578b\u6743\u91cd": 32, "\u6839\u636e\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u7ed9\u5b9a\u53c2\u6570\u7684": 32, "\u68af\u5ea6": [32, 89], "\u8fdb\u884c\u8c03\u6574": 32, "\u4e3a\u4e86\u8ba1\u7b97\u8fd9\u4e9b\u68af\u5ea6": 32, "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5185\u7f6e\u7684\u5fae\u5206\u5f15\u64ce": 32, "\u79f0\u4e3a": [32, 39, 89], "\u5b83\u652f\u6301\u5bf9\u4efb\u4f55\u8ba1\u7b97\u56fe\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 32, "\u8003\u8651\u6700\u7b80\u5355\u7684\u5355\u5c42\u795e\u7ecf\u7f51\u7edc": 32, "\u5177\u6709\u8f93\u5165": 32, "\u548c": [32, 34, 36, 37, 38, 39, 41, 89, 90, 92, 95, 96, 111, 118, 121, 233, 236, 240, 241, 242, 243, 246, 249, 250], "\u4ee5\u53ca\u4e00\u4e9b\u635f\u5931\u51fd\u6570": 32, "\u53ef\u4ee5\u5728": [32, 104], "\u4e2d\u6309\u4ee5\u4e0b\u65b9\u5f0f\u5b9a\u4e49\u5b83": 32, "binary_cross_entropy_with_logit": [32, 230], "\u8fd9\u6bb5\u4ee3\u7801\u5b9a\u4e49\u4e86\u4ee5\u4e0b": 32, "\u8ba1\u7b97\u56fe": [32, 111], "\u5728\u8fd9\u4e2a\u7f51\u7edc\u4e2d": 32, "\u662f": [32, 34, 92, 93, 104, 236], "\u6211\u4eec\u9700\u8981\u5bf9\u5b83\u4eec\u8fdb\u884c\u4f18\u5316": 32, "\u56e0\u6b64": [32, 89, 111, 240, 242], "\u6211\u4eec\u9700\u8981\u80fd\u591f\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u8fd9\u4e9b\u53d8\u91cf\u7684\u68af\u5ea6": 32, "\u4e3a\u4e86\u505a\u5230\u8fd9\u4e00\u70b9": 32, "\u6211\u4eec\u8bbe\u7f6e\u4e86\u8fd9\u4e9b\u5f20\u91cf\u7684": 32, "\u5c5e\u6027": [32, 89, 95], "\u6216\u5728\u521b\u5efa\u540e\u4f7f\u7528": 32, "\u65b9\u6cd5\u6765\u8bbe\u7f6e": 32, "\u6211\u4eec\u5e94\u7528\u4e8e\u5f20\u91cf\u4ee5\u6784\u5efa\u8ba1\u7b97\u56fe\u7684\u51fd\u6570\u5b9e\u9645\u4e0a\u662f": 32, "\u7c7b\u7684\u5bf9\u8c61": 32, "\u8fd9\u4e2a\u5bf9\u8c61\u77e5\u9053\u5982\u4f55\u5728": 32, "\u524d\u5411": [32, 92, 111, 250], "\u65b9\u5411\u8ba1\u7b97\u51fd\u6570": 32, "\u4e5f\u77e5\u9053\u5982\u4f55\u5728": 32, "\u6b65\u9aa4\u4e2d\u8ba1\u7b97\u5176\u5bfc\u6570": 32, "\u5bf9\u4e8e\u53cd\u5411\u4f20\u64ad\u51fd\u6570\u7684\u5f15\u7528\u5b58\u50a8\u5728\u5f20\u91cf\u7684": 32, "\u5c5e\u6027\u4e2d": [32, 250], "\u60a8\u53ef\u4ee5\u5728": 32, "\u6587\u6863": [32, 89, 93, 95], "__": [32, 37, 40, 90, 94, 171, 234], "\u4e2d\u627e\u5230\u6709\u5173": 32, "\u7684\u66f4\u591a\u4fe1\u606f": 32, "\u4e3a\u4e86\u4f18\u5316\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570\u6743\u91cd": 32, "\u6211\u4eec\u9700\u8981\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u53c2\u6570\u7684\u5bfc\u6570": 32, "\u5373\u5728\u67d0\u4e9b\u56fa\u5b9a\u7684": 32, "\u503c\u4e0b": 32, "\u6211\u4eec\u9700\u8981": 32, "frac": [32, 43, 64, 85, 89, 98, 99, 101, 103, 111, 125, 130, 135, 159, 160, 262], "partial": [32, 43, 75, 87, 89, 101, 112, 113, 122, 123, 124, 125, 136, 141, 145, 216, 220, 262], "\u8981\u8ba1\u7b97\u8fd9\u4e9b\u5bfc\u6570": 32, "\u6211\u4eec\u8c03\u7528": [32, 95], "\u7136\u540e\u4ece": 32, "\u4e2d\u68c0\u7d22\u503c": 32, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b": [32, 37, 95], "\u6240\u6709\u5177\u6709": 32, "\u7684\u5f20\u91cf\u90fd\u5728\u8ddf\u8e2a\u5b83\u4eec\u7684\u8ba1\u7b97\u5386\u53f2\u5e76\u652f\u6301\u68af\u5ea6\u8ba1\u7b97": 32, "\u7136\u800c": [32, 111, 246], "\u6709\u4e9b\u60c5\u51b5\u4e0b\u6211\u4eec\u4e0d\u9700\u8981\u8fd9\u6837\u505a": 32, "\u4f8b\u5982": [32, 33, 34, 38, 40, 89, 92, 93, 95, 104, 246, 250], "\u5f53\u6211\u4eec\u5df2\u7ecf\u8bad\u7ec3\u597d\u6a21\u578b\u5e76\u53ea\u60f3\u5c06\u5176\u5e94\u7528\u4e8e\u4e00\u4e9b\u8f93\u5165\u6570\u636e\u65f6": 32, "\u5373\u6211\u4eec\u53ea\u60f3\u901a\u8fc7\u7f51\u7edc\u8fdb\u884c": 32, "\u8ba1\u7b97": [32, 95], "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5c06\u6211\u4eec\u7684\u8ba1\u7b97\u4ee3\u7801\u5305\u88f9\u5728": 32, "\u5757\u4e2d\u6765\u505c\u6b62\u8ddf\u8e2a\u8ba1\u7b97": 32, "\u53e6\u4e00\u79cd\u5b9e\u73b0\u76f8\u540c\u7ed3\u679c\u7684\u65b9\u6cd5\u662f\u5bf9\u5f20\u91cf\u4f7f\u7528": 32, "\u65b9\u6cd5": [32, 33, 39, 89, 94, 95, 104, 233], "z_det": 32, "\u5e0c\u671b\u7981\u7528\u68af\u5ea6\u8ddf\u8e2a\u7684\u539f\u56e0\u53ef\u80fd\u5982\u4e0b": 32, "\u5c06\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u67d0\u4e9b\u53c2\u6570\u6807\u8bb0\u4e3a": 32, "\u51bb\u7ed3\u53c2\u6570": 32, "\u5728\u4ec5\u8fdb\u884c\u524d\u5411\u4f20\u9012\u65f6": 32, "\u52a0\u901f\u8ba1\u7b97": 32, "\u56e0\u4e3a\u4e0d\u8ddf\u8e2a\u68af\u5ea6\u7684\u5f20\u91cf\u4e0a\u7684\u8ba1\u7b97\u4f1a\u66f4\u9ad8\u6548": 32, "\u6982\u5ff5\u4e0a": 32, "\u5728\u4e00\u4e2a\u7531": 32, "\u5bf9\u8c61": [32, 92, 104, 246], "\u7ec4\u6210\u7684\u6709\u5411\u65e0\u73af\u56fe": 32, "dag": 32, "\u4e2d\u8bb0\u5f55\u6570\u636e": 32, "\u548c\u6240\u6709\u6267\u884c\u7684\u64cd\u4f5c": 32, "\u4ee5\u53ca\u4ea7\u751f\u7684\u65b0\u5f20\u91cf": 32, "\u5728\u8fd9\u4e2a": 32, "\u4e2d": [32, 34, 92, 104, 121, 233, 235, 236, 246, 248, 251], "\u53f6\u5b50\u8282\u70b9\u662f\u8f93\u5165\u5f20\u91cf": 32, "\u6839\u8282\u70b9\u662f\u8f93\u51fa\u5f20\u91cf": 32, "\u901a\u8fc7\u4ece\u6839\u5230\u53f6\u8ddf\u8e2a\u8fd9\u4e2a\u56fe": 32, "\u53ef\u4ee5\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 32, "\u5728\u524d\u5411\u4f20\u9012\u4e2d": 32, "\u540c\u65f6\u505a\u4e24\u4ef6\u4e8b": 32, "\u6267\u884c\u8bf7\u6c42\u7684\u64cd\u4f5c\u4ee5\u8ba1\u7b97\u7ed3\u679c\u5f20\u91cf": 32, "\u5728": [32, 33, 89, 92, 93, 94, 96, 104, 121, 139, 246, 249], "\u4e2d\u7ef4\u62a4\u64cd\u4f5c\u7684": 32, "\u68af\u5ea6\u51fd\u6570": 32, "\u5f53\u5728": 32, "\u6839\u8282\u70b9\u4e0a\u8c03\u7528": 32, "\u65f6": [32, 89, 90, 95], "\u53cd\u5411\u4f20\u9012\u5f00\u59cb": 32, "\u7136\u540e": [32, 93, 104, 111], "\u4ece\u6bcf\u4e2a": 32, "\u5c06\u5b83\u4eec\u7d2f\u79ef\u5230\u5404\u81ea\u5f20\u91cf\u7684": 32, "\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219": 32, "\u4e00\u76f4\u4f20\u64ad\u5230\u53f6\u5b50\u5f20\u91cf": 32, "\u5728\u5f88\u591a\u60c5\u51b5\u4e0b": 32, "\u6211\u4eec\u6709\u4e00\u4e2a\u6807\u91cf\u635f\u5931\u51fd\u6570": 32, "\u9700\u8981\u8ba1\u7b97\u76f8\u5bf9\u4e8e\u67d0\u4e9b\u53c2\u6570\u7684\u68af\u5ea6": 32, "\u4e5f\u6709\u4e00\u4e9b\u60c5\u51b5\u4e0b": 32, "\u8f93\u51fa\u51fd\u6570\u662f\u4e00\u4e2a\u4efb\u610f\u7684\u5f20\u91cf": 32, "\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b": [32, 39, 95, 104, 240], "\u5141\u8bb8\u60a8\u8ba1\u7b97\u6240\u8c13\u7684": 32, "\u96c5\u53ef\u6bd4\u4e58\u79ef": 32, "\u800c\u4e0d\u662f\u5b9e\u9645\u7684\u68af\u5ea6": 32, "vec": [32, 43, 89, 98, 99, 144, 145, 150], "langl": 32, "x_1": [32, 101, 116, 150, 262], "x_n": [32, 52], "rangl": 32, "y_1": [32, 101, 116], "y_m": 32, "ccc": [32, 43, 89], "y_": [32, 43, 89, 98], "x_": [32, 43, 89, 262], "cdot": [32, 43, 52, 89, 103, 125], "vdot": [32, 43, 89], "ddot": [32, 43, 89], "v_1": 32, "v_m": 32, "retain_graph": [32, 76, 191, 205], "nsecond": 32, "ncall": 32, "accumul": [32, 43, 47, 49, 52, 69, 76, 98, 99, 101, 102, 103, 111, 115, 129, 130, 146, 152, 160, 161, 162, 163, 230, 234], "leaf": [32, 43, 183], "life": [32, 97, 113, 127, 128], "autogradqs_tutori": [32, 35, 40], "\u5f20\u91cf": [33, 34, 36, 37, 38, 39, 41, 70, 88, 89, 90, 93, 94, 95, 96, 104], "\u81ea\u52a8\u5fae\u5206": [33, 34, 36, 37, 38, 39, 40, 41, 88, 89, 90, 92, 93, 94, 95, 96, 111], "\u795e\u7ecf\u7f51\u7edc\u7531\u6267\u884c\u6570\u636e\u64cd\u4f5c\u7684": 33, "\u5c42": [33, 92, 93, 104, 111], "\u6a21\u5757": [33, 90], "\u7ec4\u6210": 33, "\u547d\u540d\u7a7a\u95f4\u63d0\u4f9b\u4e86\u6784\u5efa\u4f60\u81ea\u5df1\u7684\u795e\u7ecf\u7f51\u7edc\u6240\u9700\u7684\u6240\u6709\u6784\u5efa\u5757": 33, "\u4e2d\u7684\u6bcf\u4e2a\u6a21\u5757\u90fd\u662f": 33, "\u7684\u5b50\u7c7b": [33, 34, 92, 93], "\u795e\u7ecf\u7f51\u7edc\u672c\u8eab\u5c31\u662f\u4e00\u4e2a\u7531\u5176\u4ed6\u6a21\u5757": 33, "\u7ec4\u6210\u7684\u6a21\u5757": 33, "\u8fd9\u79cd\u5d4c\u5957\u7ed3\u6784\u5141\u8bb8\u8f7b\u677e\u6784\u5efa\u548c\u7ba1\u7406\u590d\u6742\u7684\u67b6\u6784": 33, "\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d": 33, "\u6211\u4eec\u5c06\u6784\u5efa\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 33, "\u7528\u4e8e\u5bf9": 33, "fashionmnist": [33, 34, 37, 38, 41, 94, 96, 169], "\u6570\u636e\u96c6\u4e2d\u7684\u56fe\u50cf\u8fdb\u884c\u5206\u7c7b": 33, "\u6211\u4eec\u5e0c\u671b\u80fd\u591f\u5728\u786c\u4ef6\u52a0\u901f\u5668": 33, "\u5982": [33, 93, 104], "\u6216": [33, 38, 72, 93, 95, 96, 104, 236, 242], "\u4e0a\u8bad\u7ec3\u6211\u4eec\u7684\u6a21\u578b": 33, "\u5982\u679c\u53ef\u7528": [33, 38], "\u8ba9\u6211\u4eec\u68c0\u67e5\u4e00\u4e0b": 33, "\u662f\u5426\u53ef\u7528": 33, "\u5426\u5219\u6211\u4eec\u4f7f\u7528": 33, "\u6211\u4eec\u901a\u8fc7\u7ee7\u627f": 33, "\u6765\u5b9a\u4e49\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 33, "\u5e76\u5728": [33, 38], "\u65b9\u6cd5\u4e2d\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc\u5c42": 33, "\u6bcf\u4e2a": 33, "\u5b50\u7c7b\u90fd\u5728": 33, "\u65b9\u6cd5\u4e2d\u5b9e\u73b0\u5bf9\u8f93\u5165\u6570\u636e\u7684\u64cd\u4f5c": 33, "neuralnetwork": [33, 37, 38, 187], "linear_relu_stack": [33, 37, 38, 219], "logit": [33, 37, 38, 97, 118, 137, 148, 185, 219], "\u6211\u4eec\u521b\u5efa\u4e00\u4e2a": 33, "\u7684\u5b9e\u4f8b": [33, 93], "\u5e76\u5c06\u5176\u79fb\u52a8\u5230": 33, "\u4e0a": [33, 38, 89, 95, 104], "\u7136\u540e\u6253\u5370\u5176\u7ed3\u6784": 33, "\u8981\u4f7f\u7528\u6a21\u578b": 33, "\u6211\u4eec\u5c06\u8f93\u5165\u6570\u636e\u4f20\u9012\u7ed9\u5b83": 33, "\u8fd9\u5c06\u6267\u884c\u6a21\u578b\u7684": 33, "\u4ee5\u53ca\u4e00\u4e9b": 33, "\u540e\u53f0\u64cd\u4f5c": 33, "270111b7b611d174967ed204776985cefca9c144": 33, "l866": 33, "\u4e0d\u8981\u76f4\u63a5\u8c03\u7528": 33, "\u5c06\u8f93\u5165\u4f20\u9012\u7ed9\u6a21\u578b\u4f1a\u8fd4\u56de\u4e00\u4e2a\u4e8c\u7ef4\u5f20\u91cf": 33, "\u5176\u4e2d": [33, 93, 95, 111], "\u5bf9\u5e94\u6bcf\u4e2a\u7c7b\u522b\u7684": 33, "\u4e2a\u539f\u59cb\u9884\u6d4b\u503c\u7684\u8f93\u51fa": 33, "\u5bf9\u5e94\u6bcf\u4e2a\u8f93\u51fa\u7684\u5404\u4e2a\u503c": 33, "\u6211\u4eec\u901a\u8fc7\u5c06\u5176\u4f20\u9012\u7ed9": 33, "\u6a21\u5757\u7684\u5b9e\u4f8b\u6765\u83b7\u5f97\u9884\u6d4b\u6982\u7387": 33, "pred_probab": [33, 219], "y_pred": [33, 63, 64, 65, 67, 68, 69, 71, 72, 111, 219], "argmax": [33, 37, 38, 98, 102, 104, 115, 119, 123, 129, 137, 146, 148, 162, 185, 219, 221], "\u8ba9\u6211\u4eec\u5206\u89e3\u4e00\u4e0b": 33, "\u6a21\u578b\u4e2d\u7684\u5404\u5c42": 33, "\u4e3a\u4e86\u89e3\u91ca\u5b83": 33, "\u6211\u4eec\u5c06\u53d6\u4e00\u4e2a\u5305\u542b": 33, "\u5f20": 33, "28x28": [33, 104, 169], "\u5c3a\u5bf8\u56fe\u50cf\u7684\u5c0f\u6279\u91cf\u6837\u672c": 33, "\u5e76\u89c2\u5bdf\u5b83\u5728\u901a\u8fc7\u7f51\u7edc\u65f6\u53d1\u751f\u4e86\u4ec0\u4e48": 33, "input_imag": [33, 58, 59], "\u6211\u4eec\u521d\u59cb\u5316": 33, "\u5c06\u6bcf\u4e2a\u4e8c\u7ef4": 33, "\u56fe\u50cf\u8f6c\u6362\u4e3a\u5305\u542b": 33, "784": [33, 94, 104, 138, 169], "\u4e2a\u50cf\u7d20\u503c\u7684\u8fde\u7eed\u6570\u7ec4": 33, "\u4fdd\u7559\u5c0f\u6279\u91cf\u7ef4\u5ea6": 33, "flat_imag": 33, "\u7ebf\u6027\u5c42": 33, "\u662f\u4e00\u4e2a\u6a21\u5757": 33, "\u5b83\u4f7f\u7528\u5b58\u50a8\u7684\u6743\u91cd": 33, "\u548c\u504f\u7f6e": [33, 104], "\u5bf9\u8f93\u5165\u5e94\u7528\u7ebf\u6027\u53d8\u6362": 33, "layer1": [33, 89, 149, 157, 160, 195], "in_featur": [33, 109, 117, 123, 157, 178, 179, 201, 202, 239], "hidden1": [33, 234], "\u975e\u7ebf\u6027\u6fc0\u6d3b\u51fd\u6570\u521b\u5efa\u4e86\u6a21\u578b\u8f93\u5165\u548c\u8f93\u51fa\u4e4b\u95f4\u7684\u590d\u6742\u6620\u5c04": 33, "\u5b83\u4eec\u5728\u7ebf\u6027\u53d8\u6362\u4e4b\u540e\u5e94\u7528": 33, "\u4ee5\u5f15\u5165": 33, "\u975e\u7ebf\u6027": [33, 93], "\u5e2e\u52a9\u795e\u7ecf\u7f51\u7edc\u5b66\u4e60\u5404\u79cd\u73b0\u8c61": 33, "\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d": 33, "\u6211\u4eec\u5728\u7ebf\u6027\u5c42\u4e4b\u95f4\u4f7f\u7528": 33, "\u4f46\u8fd8\u6709\u5176\u4ed6\u6fc0\u6d3b\u51fd\u6570\u53ef\u4ee5\u5728\u4f60\u7684\u6a21\u578b\u4e2d\u5f15\u5165\u975e\u7ebf\u6027": 33, "\u662f\u4e00\u4e2a\u6709\u5e8f\u7684\u6a21\u5757\u5bb9\u5668": 33, "\u6570\u636e\u6309\u7167\u5b9a\u4e49\u7684\u987a\u5e8f\u4f9d\u6b21\u901a\u8fc7\u6240\u6709\u6a21\u5757": 33, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u5e8f\u5217\u5bb9\u5668\u6765\u5feb\u901f\u7ec4\u5408\u4e00\u4e2a\u7f51\u7edc": 33, "seq_modul": 33, "\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u540e\u4e00\u4e2a\u7ebf\u6027\u5c42\u8fd4\u56de\u7684\u662f": 33, "\u5bf9\u6570\u51e0\u7387": 33, "infti": [33, 160], "\u8303\u56f4\u5185\u7684\u539f\u59cb\u503c": 33, "\u8fd9\u4e9b\u503c\u4f1a\u88ab\u4f20\u9012\u5230": 33, "\u5bf9\u6570\u51e0\u7387\u88ab\u7f29\u653e\u5230\u503c\u4e3a": 33, "\u7684\u8303\u56f4": 33, "\u8868\u793a\u6a21\u578b\u5bf9\u6bcf\u4e2a\u7c7b\u522b\u7684\u9884\u6d4b\u6982\u7387": 33, "\u53c2\u6570\u6307\u793a\u503c\u5fc5\u987b\u5728\u5176\u6cbf\u7740\u7684\u7ef4\u5ea6\u4e0a\u6c42\u548c\u4e3a": 33, "\u795e\u7ecf\u7f51\u7edc\u5185\u90e8\u7684\u8bb8\u591a\u5c42\u90fd\u662f": 33, "\u53c2\u6570\u5316": 33, "\u7684": [33, 34, 71, 72, 89, 90, 95, 104, 121, 233], "\u5373\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4f1a\u4f18\u5316\u7684\u76f8\u5173\u6743\u91cd\u548c\u504f\u7f6e": 33, "\u901a\u8fc7\u5b50\u7c7b\u5316": 33, "\u53ef\u4ee5\u81ea\u52a8\u8ddf\u8e2a\u6a21\u578b\u5bf9\u8c61\u5185\u5b9a\u4e49\u7684\u6240\u6709\u5b57\u6bb5": 33, "\u5e76\u4f7f\u7528\u6a21\u578b\u7684": 33, "\u65b9\u6cd5\u8bbf\u95ee\u6240\u6709\u53c2\u6570": 33, "\u5728\u8fd9\u4e2a\u793a\u4f8b\u4e2d": [33, 111, 241, 251], "\u6211\u4eec\u904d\u5386\u6bcf\u4e2a\u53c2\u6570": 33, "\u5e76\u6253\u5370\u5176\u5927\u5c0f\u4ee5\u53ca\u503c\u7684\u9884\u89c8": 33, "buildmodel_tutori": [33, 35, 37, 38], "\u5904\u7406\u6570\u636e\u6837\u672c\u7684\u4ee3\u7801\u53ef\u80fd\u4f1a\u53d8\u5f97\u6df7\u4e71\u4e14\u96be\u4ee5\u7ef4\u62a4": 34, "\u7406\u60f3\u60c5\u51b5\u4e0b": 34, "\u6211\u4eec\u5e0c\u671b\u6570\u636e\u96c6\u4ee3\u7801\u4e0e\u6a21\u578b\u8bad\u7ec3\u4ee3\u7801\u89e3\u8026": 34, "\u4ee5\u63d0\u9ad8\u53ef\u8bfb\u6027\u548c\u6a21\u5757\u5316": 34, "\u63d0\u4f9b\u4e86\u4e24\u4e2a\u6570\u636e\u5904\u7406\u7684\u57fa\u672c\u5de5\u5177": 34, "\u5b83\u4eec\u5141\u8bb8\u60a8\u4f7f\u7528\u9884\u52a0\u8f7d\u7684\u6570\u636e\u96c6\u4ee5\u53ca\u60a8\u81ea\u5df1\u7684\u6570\u636e": 34, "\u5b58\u50a8\u6837\u672c\u53ca\u5176\u5bf9\u5e94\u7684\u6807\u7b7e": [34, 38], "\u800c": [34, 38, 89], "\u5219\u4e3a": 34, "\u5305\u88c5\u4e86\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 34, "\u4ee5\u4fbf\u4e8e\u8bbf\u95ee\u6837\u672c": 34, "\u57df\u5e93\u63d0\u4f9b\u4e86\u8bb8\u591a\u9884\u52a0\u8f7d\u7684\u6570\u636e\u96c6": 34, "\u8fd9\u4e9b\u6570\u636e\u96c6\u662f": 34, "\u5e76\u5b9e\u73b0\u4e86\u7279\u5b9a\u4e8e\u8be5\u6570\u636e\u7684\u51fd\u6570": 34, "\u5b83\u4eec\u53ef\u4ee5\u7528\u4e8e\u6a21\u578b\u7684\u539f\u578b\u8bbe\u8ba1\u548c\u57fa\u51c6\u6d4b\u8bd5": 34, "\u60a8\u53ef\u4ee5\u5728\u4ee5\u4e0b\u94fe\u63a5\u627e\u5230\u8fd9\u4e9b\u6570\u636e\u96c6": 34, "\u56fe\u50cf\u6570\u636e\u96c6": 34, "\u6587\u672c\u6570\u636e\u96c6": 34, "\u97f3\u9891\u6570\u636e\u96c6": 34, "\u4e0b\u9762\u662f\u4e00\u4e2a\u4ece": 34, "\u52a0\u8f7d": [34, 39, 240, 242], "fashion": [34, 49, 60, 94, 96, 107, 122, 124, 126, 134, 162, 166, 169, 171, 220], "\u6570\u636e\u96c6\u7684\u793a\u4f8b": 34, "zalando": 34, "\u7684\u5546\u54c1\u56fe\u7247\u6570\u636e\u96c6": 34, "\u5305\u62ec": [34, 89, 90, 93, 96, 233], "\u4e2a\u8bad\u7ec3\u6837\u672c\u548c": 34, "\u4e2a\u6d4b\u8bd5\u6837\u672c": 34, "\u6bcf\u4e2a\u6837\u672c\u5305\u542b\u4e00\u4e2a": 34, "\u7684\u7070\u5ea6\u56fe\u50cf\u548c\u4e00\u4e2a\u6765\u81ea": 34, "\u4e2a\u7c7b\u522b\u4e4b\u4e00\u7684\u6807\u7b7e": 34, "\u6211\u4eec\u4f7f\u7528\u4ee5\u4e0b\u53c2\u6570\u52a0\u8f7d": 34, "\u6570\u636e\u96c6": [34, 38, 92, 96, 104, 121, 233, 236], "\u662f\u5b58\u50a8\u8bad\u7ec3": 34, "\u6d4b\u8bd5\u6570\u636e\u7684\u8def\u5f84": 34, "\u6307\u5b9a\u662f\u8bad\u7ec3\u96c6\u8fd8\u662f\u6d4b\u8bd5\u96c6": 34, "\u8868\u793a\u5982\u679c\u6570\u636e\u5728": 34, "\u8def\u5f84\u4e2d\u4e0d\u53ef\u7528": 34, "\u5219\u4ece\u4e92\u8054\u7f51\u4e0b\u8f7d\u6570\u636e": 34, "target_transform": [34, 38, 41], "\u6307\u5b9a\u7279\u5f81\u548c\u6807\u7b7e\u7684\u8f6c\u6362": 34, "read_imag": [34, 178], "training_data": [34, 37, 38, 98, 102], "\u6211\u4eec\u53ef\u4ee5\u50cf\u5217\u8868\u4e00\u6837\u624b\u52a8\u7d22\u5f15": 34, "\u4f7f\u7528": [34, 88, 94, 95, 121, 139, 236, 242, 250], "\u6765\u53ef\u89c6\u5316\u8bad\u7ec3\u6570\u636e\u4e2d\u7684\u4e00\u4e9b\u6837\u672c": 34, "labels_map": 34, "shirt": [34, 38, 94, 96, 169], "trouser": [34, 38, 94, 96, 169], "pullov": [34, 38, 94, 96, 169], "dress": [34, 38, 94, 96, 169], "coat": [34, 38, 94, 96, 169], "sandal": [34, 38, 94, 96, 169], "sneaker": [34, 38, 94, 96, 169], "ankl": [34, 38, 94, 96, 169], "boot": [34, 38, 94, 96, 158, 169], "add_subplot": [34, 127, 165, 169], "\u81ea\u5b9a\u4e49\u6570\u636e\u96c6\u7c7b\u5fc5\u987b\u5b9e\u73b0\u4e09\u4e2a\u51fd\u6570": 34, "\u8bf7\u770b\u8fd9\u4e2a\u5b9e\u73b0\u793a\u4f8b": 34, "\u56fe\u50cf\u5b58\u50a8\u5728\u76ee\u5f55": 34, "img_dir": 34, "\u5b83\u4eec\u7684\u6807\u7b7e\u5355\u72ec\u5b58\u50a8\u5728": 34, "csv": [34, 49, 51, 122], "\u6587\u4ef6": [34, 90, 104], "annotations_fil": 34, "\u5177\u4f53\u4ee3\u7801\u5b9e\u73b0\u5982\u4e0b": 34, "customimagedataset": 34, "img_label": 34, "read_csv": [34, 51], "img_path": [34, 117, 178], "iloc": [34, 51], "\u51fd\u6570\u5728\u5b9e\u4f8b\u5316\u6570\u636e\u96c6\u5bf9\u8c61\u65f6\u8fd0\u884c\u4e00\u6b21": 34, "\u6211\u4eec\u521d\u59cb\u5316\u5305\u542b\u56fe\u50cf\u7684\u76ee\u5f55": 34, "\u6ce8\u91ca\u6587\u4ef6\u548c\u4e24\u79cd\u8f6c\u6362": 34, "\u5728\u4e0b\u4e00\u90e8\u5206\u4e2d\u5c06\u66f4\u8be6\u7ec6\u5730\u4ecb\u7ecd": 34, "\u6587\u4ef6\u7684\u5185\u5bb9\u5982\u4e0b": 34, "tshirt1": 34, "tshirt2": 34, "ankleboot999": 34, "\u51fd\u6570\u8fd4\u56de\u6570\u636e\u96c6\u4e2d\u7684\u6837\u672c\u6570\u91cf": 34, "\u51fd\u6570\u52a0\u8f7d\u5e76\u8fd4\u56de\u6570\u636e\u96c6\u4e2d\u7ed9\u5b9a\u7d22\u5f15": 34, "\u7684\u6837\u672c": 34, "\u6839\u636e\u7d22\u5f15": 34, "\u5b83\u786e\u5b9a\u56fe\u50cf\u5728\u78c1\u76d8\u4e0a\u7684\u4f4d\u7f6e": 34, "\u5c06\u5176\u8f6c\u6362\u4e3a\u5f20\u91cf": 34, "\u4ece": [34, 39, 71, 90, 92, 93, 96], "\u4e2d\u7684": [34, 92, 104, 236], "\u6570\u636e\u4e2d\u68c0\u7d22\u76f8\u5e94\u7684\u6807\u7b7e": 34, "\u5bf9\u5b83\u4eec\u8c03\u7528\u8f6c\u6362\u51fd\u6570": 34, "\u5982\u679c\u9002\u7528": 34, "\u5e76\u4ee5\u5143\u7ec4\u5f62\u5f0f\u8fd4\u56de\u5f20\u91cf\u56fe\u50cf\u548c\u76f8\u5e94\u7684\u6807\u7b7e": 34, "\u4e00\u6b21\u68c0\u7d22\u6211\u4eec\u6570\u636e\u96c6\u7684\u4e00\u4e2a\u6837\u672c\u7684\u7279\u5f81\u548c\u6807\u7b7e": 34, "\u5728\u8bad\u7ec3\u6a21\u578b\u65f6": [34, 89], "\u6211\u4eec\u901a\u5e38\u5e0c\u671b\u4ee5": 34, "\u5c0f\u6279\u91cf": 34, "\u7684\u65b9\u5f0f\u4f20\u9012\u6837\u672c": 34, "\u5728\u6bcf\u4e2a\u5468\u671f\u91cd\u65b0\u968f\u673a\u6392\u5217\u6570\u636e\u4ee5\u51cf\u5c11\u6a21\u578b\u8fc7\u62df\u5408": 34, "\u5e76\u4f7f\u7528": [34, 104, 121, 241, 246], "\u52a0\u901f\u6570\u636e\u68c0\u7d22": 34, "\u662f\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 34, "\u5b83\u901a\u8fc7\u7b80\u5355\u7684": 34, "\u4e3a\u6211\u4eec\u62bd\u8c61\u4e86\u8fd9\u4e9b\u590d\u6742\u6027": 34, "train_dataload": [34, 37, 38, 75, 115, 118, 148, 165], "shuffl": [34, 44, 45, 51, 52, 55, 73, 87, 92, 94, 96, 97, 104, 113, 115, 116, 117, 122, 123, 129, 135, 157, 158, 162, 166, 168, 169, 178, 221, 236, 250], "test_dataload": [34, 37, 38, 115], "train_featur": 34, "train_label": 34, "\u6211\u4eec\u5df2\u7ecf\u5c06\u6570\u636e\u96c6\u52a0\u8f7d\u5230": 34, "\u5e76\u53ef\u4ee5\u6839\u636e\u9700\u8981\u5bf9\u6570\u636e\u96c6\u8fdb\u884c\u8fed\u4ee3": 34, "\u4e0b\u9762\u7684\u6bcf\u6b21\u8fed\u4ee3\u90fd\u4f1a\u8fd4\u56de\u4e00\u4e2a\u6279\u6b21\u7684": 34, "\u5206\u522b\u5305\u542b": 34, "\u4e2a\u7279\u5f81\u548c\u6807\u7b7e": 34, "\u56e0\u4e3a\u6211\u4eec\u6307\u5b9a\u4e86": 34, "\u6240\u4ee5\u5728\u8fed\u4ee3\u5b8c\u6240\u6709\u6279\u6b21\u540e\u6570\u636e\u4f1a\u88ab\u91cd\u65b0\u6d17\u724c": 34, "\u5982\u679c\u60f3\u5bf9\u6570\u636e\u52a0\u8f7d\u987a\u5e8f\u8fdb\u884c\u66f4\u7cbe\u7ec6\u7684\u63a7\u5236": 34, "\u8bf7\u67e5\u770b": [34, 37, 94, 95], "data_tutori": [34, 35, 37, 38], "quickstart_tutori": [35, 36, 38], "tensorqs_tutori": [35, 40], "tensor_tutori": [35, 46, 48, 57], "dataquickstart_tutori": 35, "transforms_tutori": [35, 41], "autograd_tutori": [35, 37, 43, 46, 57], "optimization_tutori": [35, 37, 38], "saveloadrun_tutori": [35, 38, 39], "sphx_glr_beginner_basics_intro": 35, "sphx_glr_beginner_basics_saveloadrun_tutori": 35, "sphx_glr_beginner_basics_transforms_tutori": 35, "sphx_glr_beginner_basics_autogradqs_tutori": 35, "sphx_glr_beginner_basics_buildmodel_tutori": 35, "sphx_glr_beginner_basics_tensorqs_tutori": 35, "sphx_glr_beginner_basics_optimization_tutori": 35, "sphx_glr_beginner_basics_data_tutori": 35, "sphx_glr_beginner_basics_quickstart_tutori": 35, "suraj": [36, 53, 54, 55, 56, 109, 131, 132, 146, 176], "subramanian": [36, 53, 54, 55, 56, 109, 131, 132, 146, 176], "juarez": 36, "cassi": 36, "breviu": 36, "dmitri": 36, "soshnikov": 36, "ari": 36, "bornstein": 36, "\u5927\u591a\u6570\u673a\u5668\u5b66\u4e60\u5de5\u4f5c\u6d41\u6d89\u53ca\u5904\u7406\u6570\u636e": 36, "\u521b\u5efa\u6a21\u578b": 36, "\u4f18\u5316\u6a21\u578b\u53c2\u6570\u548c\u4fdd\u5b58\u8bad\u7ec3\u597d\u7684\u6a21\u578b": 36, "\u672c\u6559\u7a0b\u5c06\u5411\u60a8\u4ecb\u7ecd\u5728pytorch\u4e2d\u5b9e\u73b0\u7684\u5b8c\u6574ml\u5de5\u4f5c\u6d41": 36, "\u5e76\u63d0\u4f9b\u94fe\u63a5\u4ee5\u4e86\u89e3\u6709\u5173\u8fd9\u4e9b\u6982\u5ff5\u7684\u66f4\u591a\u4fe1\u606f": 36, "\u6211\u4eec\u5c06\u4f7f\u7528fashionmnist\u6570\u636e\u96c6\u6765\u8bad\u7ec3\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 36, "\u8be5\u7f51\u7edc\u53ef\u4ee5\u9884\u6d4b\u8f93\u5165\u56fe\u50cf\u662f\u5426\u5c5e\u4e8e\u4ee5\u4e0b\u7c7b\u522b\u4e4b\u4e00": 36, "t\u6064": 36, "\u4e0a\u8863": 36, "\u957f\u88e4": 36, "\u5957\u5934\u886b": 36, "\u8fde\u8863\u88d9": 36, "\u5916\u5957": 36, "\u51c9\u978b": 36, "\u886c\u886b": 36, "\u8fd0\u52a8\u978b": 36, "\u5305\u6216\u8e1d\u9774": 36, "\u672c\u6559\u7a0b\u5047\u8bbe\u60a8\u5bf9python\u548c\u6df1\u5ea6\u5b66\u4e60\u6982\u5ff5\u6709\u57fa\u672c\u7684\u4e86\u89e3": [36, 88], "\u60a8\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u51e0\u79cd\u65b9\u5f0f\u8fd0\u884c\u672c\u6559\u7a0b": [36, 88], "\u5728\u4e91\u7aef": [36, 88], "\u8fd9\u662f\u5f00\u59cb\u7684\u6700\u7b80\u5355\u65b9\u5f0f": [36, 88], "\u6bcf\u4e2a\u90e8\u5206\u7684\u9876\u90e8\u90fd\u6709\u4e00\u4e2a": 36, "\u5728microsoft": 36, "learn\u4e2d\u8fd0\u884c": 36, "\u5728googl": 36, "colab\u4e2d\u8fd0\u884c": [36, 236], "\u7684\u94fe\u63a5": 36, "\u5206\u522b\u4f1a\u5728microsoft": 36, "learn\u6216googl": 36, "colab\u4e2d\u6253\u5f00\u4e00\u4e2a\u96c6\u6210\u7684\u7b14\u8bb0\u672c": 36, "\u63d0\u4f9b\u5e26\u6709\u4ee3\u7801\u7684\u5b8c\u5168\u6258\u7ba1\u73af\u5883": 36, "\u672c\u5730\u8fd0\u884c": 36, "\u6b64\u9009\u9879\u9700\u8981\u60a8\u9996\u5148\u5728\u672c\u5730\u673a\u5668\u4e0a\u8bbe\u7f6epytorch\u548ctorchvis": [36, 88], "\u5b89\u88c5\u8bf4\u660e": [36, 88], "\u4e0b\u8f7d\u7b14\u8bb0\u672c\u6216\u5c06\u4ee3\u7801\u590d\u5236\u5230\u60a8\u559c\u6b22\u7684ide\u4e2d": 36, "\u5982\u679c\u60a8\u719f\u6089\u5176\u4ed6\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6": 36, "\u8bf7\u5148\u67e5\u770b": 36, "\u4ee5\u5feb\u901f\u719f\u6089pytorch\u7684api": 36, "\u5982\u679c\u60a8\u662f\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6\u7684\u65b0\u624b": 36, "\u8bf7\u76f4\u63a5\u8fdb\u5165\u6211\u4eec\u9010\u6b65\u6307\u5357\u7684\u7b2c\u4e00\u90e8\u5206": 36, "\u4f18\u5316\u6a21\u578b": 36, "\u4fdd\u5b58": [36, 240, 242], "\u52a0\u8f7d\u548c\u4f7f\u7528\u6a21\u578b": 36, "\u73b0\u5728\u6211\u4eec\u6709\u4e86\u6a21\u578b\u548c\u6570\u636e": 37, "\u662f\u65f6\u5019\u901a\u8fc7\u5728\u6570\u636e\u4e0a\u4f18\u5316\u6a21\u578b\u53c2\u6570\u6765\u8bad\u7ec3": 37, "\u9a8c\u8bc1\u548c\u6d4b\u8bd5\u6211\u4eec\u7684\u6a21\u578b\u4e86": 37, "\u8bad\u7ec3\u6a21\u578b\u662f\u4e00\u4e2a\u8fed\u4ee3\u8fc7\u7a0b": 37, "\u5728\u6bcf\u6b21\u8fed\u4ee3\u4e2d": 37, "\u6a21\u578b\u4f1a\u5bf9\u8f93\u51fa\u8fdb\u884c\u731c\u6d4b": 37, "\u8ba1\u7b97\u5176\u731c\u6d4b\u7684\u8bef\u5dee": 37, "\u635f\u5931": [37, 89, 96], "\u6536\u96c6\u8bef\u5dee\u76f8\u5bf9\u4e8e\u5176\u53c2\u6570\u7684\u5bfc\u6570": 37, "\u5982\u6211\u4eec\u5728": 37, "\u524d\u4e00\u8282": 37, "_\u4e2d\u6240\u89c1": 37, "\u5e76\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6cd5": 37, "\u4f18\u5316": [37, 92, 250], "\u8fd9\u4e9b\u53c2\u6570": 37, "\u6709\u5173\u6b64\u8fc7\u7a0b\u7684\u66f4\u8be6\u7ec6\u8bb2\u89e3": 37, "3blue1brown": [37, 43], "\u7684\u8fd9\u4e2a\u89c6\u9891": 37, "www": [37, 49, 94, 104, 137, 165, 178, 236, 260, 262], "youtub": [37, 53, 54, 55, 56, 89, 90, 92, 93, 94, 95, 96, 121, 131, 132, 175], "tiehlnjs5u8": 37, "\u6211\u4eec\u52a0\u8f7d\u524d\u51e0\u8282\u4e2d\u7684": 37, "\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668": 37, "_\u548c": 37, "\u6784\u5efa\u6a21\u578b": [37, 88, 89, 90, 92, 94, 95, 96], "_\u7684\u4ee3\u7801": 37, "flatten": [37, 38, 44, 47, 68, 69, 73, 87, 97, 105, 111, 118, 123, 124, 129, 134, 136, 138, 146, 148, 150, 154, 157, 162, 193, 195, 203, 209, 219, 231, 233, 239], "\u8d85\u53c2\u6570\u662f\u53ef\u8c03\u53c2\u6570": 37, "\u5b83\u4eec\u53ef\u4ee5\u8ba9\u60a8\u63a7\u5236\u6a21\u578b\u7684\u4f18\u5316\u8fc7\u7a0b": 37, "\u4e0d\u540c\u7684\u8d85\u53c2\u6570\u503c\u4f1a\u5f71\u54cd\u6a21\u578b\u7684\u8bad\u7ec3\u548c\u6536\u655b\u901f\u5ea6": 37, "\u9605\u8bfb\u66f4\u591a": 37, "\u5173\u4e8e\u8d85\u53c2\u6570\u8c03\u6574\u7684\u5185\u5bb9": 37, "\u6211\u4eec\u4e3a\u8bad\u7ec3\u5b9a\u4e49\u4ee5\u4e0b\u8d85\u53c2\u6570": 37, "epoch\u6570\u91cf": 37, "\u8fed\u4ee3\u6574\u4e2a\u6570\u636e\u96c6\u7684\u6b21\u6570": 37, "\u6279\u91cf\u5927\u5c0f": 37, "\u5728\u66f4\u65b0\u53c2\u6570\u4e4b\u524d": 37, "\u901a\u8fc7\u7f51\u7edc\u4f20\u64ad\u7684\u6570\u636e\u6837\u672c\u6570\u91cf": 37, "\u5b66\u4e60\u7387": 37, "\u5728\u6bcf\u4e2a\u6279\u6b21": 37, "epoch\u4e2d\u66f4\u65b0\u6a21\u578b\u53c2\u6570\u7684\u5e45\u5ea6": 37, "\u8f83\u5c0f\u7684\u503c\u4f1a\u5bfc\u81f4\u5b66\u4e60\u901f\u5ea6\u7f13\u6162": 37, "\u800c\u8f83\u5927\u7684\u503c\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0\u4e0d\u53ef\u9884\u6d4b\u7684\u884c\u4e3a": 37, "learning_r": [37, 47, 49, 63, 64, 68, 69, 71, 72, 97, 111, 126, 127, 128, 137, 148, 165], "\u4e00\u65e6\u8bbe\u7f6e\u597d\u8d85\u53c2\u6570": 37, "\u6211\u4eec\u5c31\u53ef\u4ee5\u7528\u4f18\u5316\u5faa\u73af\u6765\u8bad\u7ec3\u548c\u4f18\u5316\u6211\u4eec\u7684\u6a21\u578b": 37, "\u4f18\u5316\u5faa\u73af\u7684\u6bcf\u6b21\u8fed\u4ee3\u79f0\u4e3a\u4e00\u4e2a": 37, "\u6bcf\u4e2aepoch\u7531\u4e24\u4e2a\u4e3b\u8981\u90e8\u5206\u7ec4\u6210": 37, "\u8bad\u7ec3\u5faa\u73af": 37, "\u8fed\u4ee3\u8bad\u7ec3\u6570\u636e\u96c6\u5e76\u5c1d\u8bd5\u6536\u655b\u5230\u6700\u4f73\u53c2\u6570": 37, "\u9a8c\u8bc1": [37, 96], "\u6d4b\u8bd5\u5faa\u73af": 37, "\u8fed\u4ee3\u6d4b\u8bd5\u6570\u636e\u96c6\u4ee5\u68c0\u67e5\u6a21\u578b\u6027\u80fd\u662f\u5426\u6709\u63d0\u9ad8": 37, "\u8ba9\u6211\u4eec\u7b80\u8981\u4e86\u89e3\u8bad\u7ec3\u5faa\u73af\u4e2d\u4f7f\u7528\u7684\u4e00\u4e9b\u6982\u5ff5": 37, "\u8df3\u5230\u524d\u9762\u67e5\u770b\u4f18\u5316\u5faa\u73af\u7684": 37, "\u5f53\u9762\u5bf9\u4e00\u4e9b\u8bad\u7ec3\u6570\u636e\u65f6": 37, "\u6211\u4eec\u672a\u8bad\u7ec3\u7684\u7f51\u7edc\u53ef\u80fd\u4e0d\u4f1a\u7ed9\u51fa\u6b63\u786e\u7684\u7b54\u6848": 37, "\u8861\u91cf\u83b7\u5f97\u7684\u7ed3\u679c\u4e0e\u76ee\u6807\u503c\u7684\u5dee\u5f02\u7a0b\u5ea6": 37, "\u8fd9\u662f\u6211\u4eec\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u5e0c\u671b\u6700\u5c0f\u5316\u7684": 37, "\u8981\u8ba1\u7b97\u635f\u5931": 37, "\u6211\u4eec\u4f7f\u7528\u7ed9\u5b9a\u6570\u636e\u6837\u672c\u7684\u8f93\u5165\u8fdb\u884c\u9884\u6d4b": 37, "\u5e76\u5c06\u5176\u4e0e\u771f\u5b9e\u7684\u6570\u636e\u6807\u7b7e\u503c\u8fdb\u884c\u6bd4\u8f83": 37, "\u5e38\u89c1\u7684\u635f\u5931\u51fd\u6570\u5305\u62ec\u7528\u4e8e\u56de\u5f52\u4efb\u52a1\u7684": 37, "\u5747\u65b9\u8bef\u5dee": [37, 93], "\u4ee5\u53ca\u7528\u4e8e\u5206\u7c7b\u7684": 37, "nllloss": [37, 99, 102, 103, 110, 115, 127, 128, 165], "\u8d1f\u5bf9\u6570\u4f3c\u7136": 37, "_\u7ed3\u5408\u4e86": 37, "logsoftmax": [37, 78, 110, 115, 127, 128], "\u6211\u4eec\u5c06\u6a21\u578b\u7684\u8f93\u51falogits\u4f20\u9012\u7ed9": 37, "\u5b83\u5c06\u6807\u51c6\u5316logits\u5e76\u8ba1\u7b97\u9884\u6d4b\u8bef\u5dee": 37, "loss_fn": [37, 38, 68, 69, 78, 96, 111, 118, 133, 134, 136, 146, 149, 154, 161, 214, 230, 258], "\u4f18\u5316\u662f\u8c03\u6574\u6a21\u578b\u53c2\u6570\u4ee5\u51cf\u5c11\u6bcf\u6b21\u8bad\u7ec3\u6b65\u9aa4\u4e2d\u7684\u6a21\u578b\u8bef\u5dee\u7684\u8fc7\u7a0b": 37, "\u4f18\u5316\u7b97\u6cd5": 37, "\u5b9a\u4e49\u4e86\u8fd9\u4e2a\u8fc7\u7a0b\u5982\u4f55\u8fdb\u884c": 37, "\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d\u6211\u4eec\u4f7f\u7528\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u6cd5": 37, "\u6240\u6709\u4f18\u5316\u903b\u8f91\u90fd\u5c01\u88c5\u5728": 37, "\u5bf9\u8c61\u4e2d": 37, "\u5728\u8fd9\u91cc": [37, 90, 92, 96, 111, 242], "\u6211\u4eec\u4f7f\u7528sgd\u4f18\u5316\u5668": 37, "\u6b64\u5916": [37, 93], "pytorch\u4e2d\u8fd8\u6709\u8bb8\u591a": 37, "\u4e0d\u540c\u7684\u4f18\u5316\u5668": 37, "\u5982adam\u548crmsprop": 37, "\u5b83\u4eec\u5bf9\u4e0d\u540c\u7c7b\u578b\u7684\u6a21\u578b\u548c\u6570\u636e\u6548\u679c\u66f4\u597d": 37, "\u6211\u4eec\u901a\u8fc7\u6ce8\u518c\u9700\u8981\u8bad\u7ec3\u7684\u6a21\u578b\u53c2\u6570\u5e76\u4f20\u5165\u5b66\u4e60\u7387\u8d85\u53c2\u6570\u6765\u521d\u59cb\u5316\u4f18\u5316\u5668": 37, "\u5728\u8bad\u7ec3\u5faa\u73af\u4e2d": 37, "\u4f18\u5316\u5206\u4e3a\u4e09\u4e2a\u6b65\u9aa4": 37, "\u8c03\u7528": [37, 95, 104, 240, 241, 246], "\u6765\u91cd\u7f6e\u6a21\u578b\u53c2\u6570\u7684\u68af\u5ea6": 37, "\u68af\u5ea6\u4f1a\u7d2f\u52a0": 37, "\u4e3a\u9632\u6b62\u91cd\u590d\u8ba1\u7b97": 37, "\u6211\u4eec\u5728\u6bcf\u6b21\u8fed\u4ee3\u65f6\u663e\u5f0f\u5c06\u5176\u5f52\u96f6": 37, "\u53cd\u5411\u4f20\u64ad\u9884\u6d4b\u635f\u5931": 37, "pytorch\u4f1a\u5c06\u635f\u5931\u76f8\u5bf9\u4e8e\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u5b58\u50a8\u4e0b\u6765": 37, "\u4e00\u65e6\u6211\u4eec\u6709\u4e86\u68af\u5ea6": 37, "\u5c31\u8c03\u7528": 37, "\u901a\u8fc7\u53cd\u5411\u4f20\u64ad\u4e2d\u6536\u96c6\u7684\u68af\u5ea6\u6765\u8c03\u6574\u53c2\u6570": 37, "\u6211\u4eec\u5b9a\u4e49\u4e86": 37, "train_loop": 37, "\u6765\u5faa\u73af\u6267\u884c\u4f18\u5316\u4ee3\u7801": 37, "\u5e76\u5b9a\u4e49\u4e86": 37, "test_loop": 37, "\u6765\u8bc4\u4f30\u6a21\u578b\u5728\u6d4b\u8bd5\u6570\u636e\u4e0a\u7684\u6027\u80fd": 37, "unnecessari": [37, 171, 177, 212], "7f": [37, 38], "8f": [37, 38], "\u6211\u4eec\u521d\u59cb\u5316\u635f\u5931\u51fd\u6570\u548c\u4f18\u5316\u5668": 37, "\u5e76\u5c06\u5b83\u4eec\u4f20\u9012\u7ed9": 37, "\u60a8\u53ef\u4ee5\u5c1d\u8bd5\u589e\u52a0epoch\u7684\u6570\u91cf\u4ee5\u89c2\u5bdf\u6a21\u578b\u6027\u80fd\u7684\u63d0\u5347": 37, "warmstart": [37, 235], "\u672c\u8282\u5c06\u4ecb\u7ecd\u673a\u5668\u5b66\u4e60\u4efb\u52a1\u4e2d\u5e38\u7528\u7684api": 38, "\u60f3\u66f4\u6df1\u5165\u4e86\u89e3\u5404\u6a21\u5757\u5185\u5bb9": 38, "\u53ef\u53c2\u8003\u6bcf\u8282\u6587\u672b\u5904\u7684\u94fe\u63a5": 38, "\u63d0\u4f9b\u4e86\u4e24\u4e2a\u7528\u4e8e": 38, "\u5904\u7406\u6570\u636e\u7684\u539f\u8bed": 38, "\u5219\u5728": 38, "\u5916\u90e8\u5c01\u88c5\u4e00\u5c42": 38, "\u53d8\u4e3a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 38, "\u63d0\u4f9b\u4e86\u7279\u5b9a\u9886\u57df\u7684\u5e93": 38, "torchaudio": [38, 50, 92, 96, 121, 122, 158, 168, 184, 187, 236], "\u6240\u6709\u8fd9\u4e9b\u5e93\u90fd\u5305\u542b\u4e86\u5bf9\u5e94\u6570\u636e\u96c6": 38, "\u5728\u672c\u6559\u7a0b\u4e2d": [38, 233, 240, 242, 243, 246, 248, 249, 250], "\u6211\u4eec\u5c06\u4f7f\u7528": [38, 89, 90, 96, 104, 233, 236, 240, 241, 242, 243, 248, 249], "\u6a21\u5757\u5305\u542b\u8bb8\u591a\u73b0\u5b9e\u4e16\u754c\u89c6\u89c9\u6570\u636e": 38, "cifar": [38, 44, 92, 169], "coco": [38, 178], "\u6570\u636e\u96c6\u5217\u8868": 38, "\u6211\u4eec\u4f7f\u7528": [38, 41, 96, 104, 111, 249], "\u6bcf\u4e2atorchvis": 38, "\u5305\u62ec\u4e24\u4e2a\u53c2\u6570": 38, "\u5206\u522b\u7528\u4e8e\u4fee\u6539\u6837\u672c\u6570\u636e\u548c\u6807\u7b7e": 38, "\u6211\u4eec\u5c06": [38, 90, 95], "\u4f5c\u4e3a\u53c2\u6570\u4f20\u9012\u7ed9": 38, "\u5728\u6570\u636e\u96c6\u4e0a\u5c01\u88c5\u4e86\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 38, "\u652f\u6301\u81ea\u52a8\u6279\u5904\u7406": 38, "\u91c7\u6837": 38, "\u6253\u4e71\u548c\u591a\u8fdb\u7a0b\u6570\u636e\u52a0\u8f7d": 38, "\u8fd9\u91cc\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u6279\u5904\u7406\u5927\u5c0f\u4e3a": 38, "\u5373": [38, 89, 104], "\u6bcf\u6279\u5c06\u8fd4\u56de\u5927\u5c0f\u4e3a": 38, "\u7684\u7279\u5f81\u6570\u636e\u548c\u6807\u7b7e": 38, "\u83b7\u53d6\u66f4\u591a\u5173\u4e8e": 38, "pytorch\u6570\u636e\u52a0\u8f7d": 38, "\u7684\u4fe1\u606f": 38, "\u8981\u5728": [38, 72], "\u4e2d\u5b9a\u4e49\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 38, "\u6211\u4eec\u9700\u8981\u521b\u5efa\u4e00\u4e2a\u7ee7\u627f\u81ea": 38, "\u7684\u7c7b": [38, 93], "\u6211\u4eec\u5728": [38, 94, 104], "\u51fd\u6570\u4e2d\u5b9a\u4e49\u7f51\u7edc\u7684\u5c42": 38, "\u51fd\u6570\u4e2d\u6307\u5b9a\u6570\u636e\u5982\u4f55\u7ecf\u8fc7\u7f51\u7edc": 38, "\u4e3a\u4e86\u52a0\u901f\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u8fd0\u7b97": 38, "\u6211\u4eec\u5c06\u5176\u79fb\u5230": 38, "pytorch\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": 38, "\u7684\u5185\u5bb9": 38, "\u7ec3\u4e00\u4e2a\u6a21\u578b": 38, "\u6211\u4eec\u9700\u8981\u4e00\u4e2a": 38, "\u635f\u5931\u51fd\u6570": [38, 89, 92, 104], "\u548c\u4e00\u4e2a": 38, "\u4f18\u5316\u5668": [38, 92, 241, 242, 249], "\u5728\u5355\u4e2a\u8bad\u7ec3\u5faa\u73af\u4e2d": 38, "\u6a21\u578b\u5bf9\u8bad\u7ec3\u6570\u636e\u96c6": 38, "\u5206\u6279\u8f93\u5165": 38, "\u8fdb\u884c\u9884\u6d4b": 38, "\u5e76\u901a\u8fc7\u53cd\u5411\u4f20\u64ad\u9884\u6d4b\u8bef\u5dee\u6765\u8c03\u6574\u6a21\u578b\u7684\u53c2\u6570": 38, "\u6211\u4eec\u8fd8\u9700\u68c0\u67e5\u6a21\u578b\u5728\u6d4b\u8bd5\u6570\u636e\u96c6\u4e0a\u7684\u6548\u679c": 38, "\u4ee5\u786e\u4fdd\u5b83\u5728\u6301\u7eed\u5b66\u4e60": 38, "\u901a\u8fc7\u591a\u6b21\u8fed\u4ee3": 38, "\u8fdb\u884c\u8bad\u7ec3": 38, "\u5728\u6bcf\u4e2a\u8fed\u4ee3\u8fc7\u7a0b\u4e2d": 38, "\u6a21\u578b\u901a\u8fc7\u5bf9\u53c2\u6570\u7684\u5b66\u4e60\u4ee5\u63d0\u9ad8\u9884\u6d4b\u51c6\u786e\u6027": 38, "\u6211\u4eec\u5728\u6bcf\u4e2a": [38, 104], "\u6253\u5370\u6a21\u578b\u7684\u51c6\u786e\u7387\u548c\u635f\u5931": 38, "\u6211\u4eec\u5e0c\u671b\u770b\u5230\u968f\u7740\u6bcf\u4e2a": 38, "\u8bad\u7ec3": [38, 96, 236], "\u6a21\u578b\u9884\u6d4b\u51c6\u786e\u7387\u4e0d\u65ad\u63d0\u9ad8": 38, "\u635f\u5931\u9010\u6e10\u51cf\u5c11": 38, "\u8bad\u7ec3\u6a21\u578b": [38, 88, 89, 90, 92, 93, 94, 95], "\u4fdd\u5b58\u6a21\u578b\u7684\u5e38\u89c1\u65b9\u6cd5\u662f\u5c06\u5185\u90e8\u72b6\u6001\u5b57\u5178": 38, "\u5305\u542b\u6a21\u578b\u53c2\u6570": 38, "\u5e8f\u5217\u5316": 38, "\u52a0\u8f7d\u6a21\u578b\u7684\u8fc7\u7a0b\u5305\u62ec\u91cd\u65b0\u521b\u5efa\u6a21\u578b\u7ed3\u6784\u5e76\u52a0\u8f7d\u5176\u5185\u90e8\u72b6\u6001\u5b57\u5178": 38, "\u8fd9\u4e2a\u6a21\u578b\u73b0\u5728\u53ef\u4ee5\u7528\u6765\u8fdb\u884c\u9884\u6d4b\u4e86": 38, "\u83b7\u53d6\u66f4\u591a\u6709\u5173": 38, "\u5728\u672c\u8282\u4e2d": 39, "\u6211\u4eec\u5c06\u5b66\u4e60\u5982\u4f55\u901a\u8fc7\u4fdd\u5b58": 39, "\u52a0\u8f7d\u4ee5\u53ca\u8fd0\u884c\u6a21\u578b\u9884\u6d4b": 39, "\u6765\u6301\u4e45\u5316\u6a21\u578b": 39, "pytorch\u6a21\u578b\u5c06\u5b66\u4e60\u5230\u7684\u53c2\u6570\u5b58\u50a8\u5728\u4e00\u4e2a\u5185\u90e8\u72b6\u6001\u5b57\u5178\u4e2d": 39, "\u8fd9\u4e9b\u53c2\u6570\u53ef\u4ee5\u901a\u8fc7": 39, "\u8fdb\u884c\u6301\u4e45\u5316": 39, "vgg16": [39, 147], "imagenet1k_v1": [39, 90, 117, 139, 168, 195, 229], "model_weight": 39, "\u8981\u52a0\u8f7d\u6a21\u578b\u6743\u91cd": 39, "\u60a8\u9700\u8981\u5148\u521b\u5efa\u4e00\u4e2a\u76f8\u540c\u6a21\u578b\u7684\u5b9e\u4f8b": 39, "\u7136\u540e\u4f7f\u7528": [39, 241, 243], "\u65b9\u6cd5\u52a0\u8f7d\u53c2\u6570": 39, "untrain": 39, "\u6ce8\u610f": [39, 89, 90, 95, 96, 104, 240, 242, 250], "\u5728\u8fdb\u884c\u63a8\u7406\u4e4b\u524d": 39, "\u8bf7\u786e\u4fdd\u8c03\u7528": [39, 240], "\u65b9\u6cd5\u4ee5\u5c06": 39, "layers\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": [39, 242], "\u5982\u679c\u4e0d\u8fd9\u6837\u505a": [39, 241], "\u5c06\u5bfc\u81f4\u4e0d\u4e00\u81f4\u7684\u63a8\u7406\u7ed3\u679c": 39, "\u5728\u52a0\u8f7d\u6a21\u578b\u6743\u91cd\u65f6": 39, "\u6211\u4eec\u9700\u8981\u5148\u5b9e\u4f8b\u5316\u6a21\u578b\u7c7b": 39, "\u56e0\u4e3a\u7c7b\u5b9a\u4e49\u4e86\u7f51\u7edc\u7684\u7ed3\u6784": 39, "\u6211\u4eec\u53ef\u80fd\u5e0c\u671b\u5c06\u8fd9\u4e2a\u7c7b\u7684\u7ed3\u6784\u4e0e\u6a21\u578b\u4e00\u8d77\u4fdd\u5b58": 39, "\u6211\u4eec\u53ef\u4ee5\u5c06": 39, "\u800c\u4e0d\u662f": [39, 89, 95, 96, 104, 111], "\u4f20\u9012\u7ed9": [39, 240], "\u51fd\u6570": [39, 41, 89, 92, 104, 111, 233, 240, 242], "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u65b9\u5f0f\u52a0\u8f7d\u6a21\u578b": 39, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528checkpoint": 39, "\u7684\u5b9e\u7528\u6280\u5de7": 39, "\u7c7b\u4f3c\u4e8e\u6570\u7ec4\u548c\u77e9\u9635": 40, "\u5f20\u91cf\u4e5f\u662f\u4e00\u79cd\u7279\u5b9a\u7684\u6570\u636e\u7ed3\u6784": 40, "\u5728pytorch\u4e2d": [40, 111, 233, 242], "\u6211\u4eec\u4f7f\u7528\u5f20\u91cf\u5bf9\u4e00\u4e2a\u6a21\u578b\u7684\u53c2\u6570": 40, "\u8f93\u5165\u548c\u8f93\u51fa\u8fdb\u884c\u7f16\u7801": 40, "\u5f20\u91cf\u7684\u7ed3\u6784\u7c7b\u4f3c\u4e8e": 40, "\u4e2d\u7684ndarrai": 40, "\u800c\u5f20\u91cf\u53ef\u4ee5\u8fd0\u884c\u5728gpu\u53ca\u5176\u4ed6\u76f8\u4f3c\u7684\u786c\u4ef6\u52a0\u901f\u5668\u4e0a": 40, "\u4e8b\u5b9e\u4e0a": [40, 92, 93], "\u4e3a\u4e86\u51cf\u5c11\u6570\u636e\u7684\u62f7\u8d1d": 40, "\u5f20\u91cf\u548cnumpi": 40, "arrays\u5728\u5e95\u5c42\u5e38\u5e38\u5171\u4eab\u540c\u4e00\u5757\u5185\u5b58": 40, "bridg": [40, 85, 225], "role": [40, 103, 156, 163, 177, 262], "\u5728\u81ea\u52a8\u5fae\u5206": 40, "\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u4f7f\u7528\u5f20\u91cf\u8fdb\u884c\u4f18\u5316": 40, "\u5728\u540e\u7eed": 40, "\u7ae0\u8282\u53ef\u4ee5\u770b\u5230\u66f4\u591a\u6709\u5173\u5185\u5bb9": 40, "\u5982\u679c\u5df2\u7ecf\u5bf9ndarrays\u5341\u5206\u719f\u6089\u4e86": 40, "\u90a3\u5bf9\u5f20\u91cf\u7684api\u4e5f\u53ef\u4ee5\u8fd0\u7528\u81ea\u5982": 40, "\u5982\u679c\u8fd8\u4e0d\u719f\u6089": 40, "\u4e0b\u9762\u7684\u6559\u7a0b\u4f1a\u5e2e\u52a9\u4f60\u4e0a\u624b": 40, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u591a\u79cd\u65b9\u5f0f\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf": 40, "\u4f7f\u7528\u6570\u636e\u521b\u5efa": 40, "\u901a\u8fc7\u5df2\u5b9a\u4e49\u7684\u6570\u636e\u53ef\u4ee5\u76f4\u63a5\u521b\u5efa\u51fa\u6765\u5f20\u91cf": 40, "\u521b\u5efa\u65f6\u4f1a\u81ea\u52a8\u63a8\u65ad\u6570\u636e\u7c7b\u578b": 40, "x_data": [40, 48], "\u4f7f\u7528numpi": 40, "array\u521b\u5efa": 40, "\u53ef\u4ee5\u4f7f\u7528numpi": 40, "array\u521b\u5efa\u5f20\u91cf": 40, "\u53cd\u4e4b\u4ea6\u53ef": 40, "np_arrai": [40, 48], "x_np": [40, 48], "\u4f7f\u7528\u5df2\u6709\u5f20\u91cf\u521b\u5efa": 40, "\u65b0\u7684\u5f20\u91cf\u4f1a\u4fdd\u7559\u539f\u5f20\u91cf\u7684\u5c5e\u6027": 40, "\u5f62\u72b6": [40, 95], "\u6570\u636e\u7c7b\u578b": [40, 72], "\u9664\u975e\u521b\u5efa\u65f6\u663e\u793a\u58f0\u660e": 40, "x_one": [40, 48], "Ones": [40, 48], "x_rand": [40, 48], "rand_lik": [40, 48, 95, 141, 153], "\u901a\u8fc7\u968f\u673a\u6216\u5e38\u91cf\u521b\u5efa": 40, "\u63cf\u8ff0\u4e86\u5f20\u91cf\u7684\u7ef4\u5ea6": 40, "\u5728\u4e0b\u9762\u7684\u65b9\u6cd5\u8c03\u7528\u65f6": 40, "\u901a\u8fc7\u5b83\u6765\u58f0\u660e\u521b\u5efa\u5f20\u91cf\u7684\u7ef4\u5ea6": 40, "rand_tensor": [40, 48], "ones_tensor": [40, 48], "zeros_tensor": [40, 48], "\u5f20\u91cf\u7684\u5c5e\u6027\u4fdd\u5b58\u4e86\u5176\u5f62\u72b6": 40, "\u4ee5\u53ca\u5176\u5b58\u50a8\u8bbe\u5907\u7c7b\u578b": 40, "\u5f20\u91cf\u6709\u8d85\u8fc7100\u4e2a\u64cd\u4f5c\u65b9\u6cd5": 40, "\u5305\u62ec\u7b97\u6570": 40, "\u7ebf\u6027\u4ee3\u6570": 40, "\u77e9\u9635\u64cd\u4f5c": 40, "\u8f6c\u7f6e": 40, "\u7d22\u5f15": 40, "\u5207\u7247": 40, "\u91c7\u6837\u7b49": 40, "\u90fd\u5728": 40, "\u8fd9\u91cc": [40, 41, 90, 93, 95, 96, 104], "\u6709\u8be6\u7ec6\u7684\u63cf\u8ff0": 40, "\u6bcf\u4e2a\u64cd\u4f5c\u90fd\u53ef\u4ee5\u5728gpu\u4e0a\u8fd0\u884c": 40, "\u901a\u5e38\u6bd4\u5728cpu\u4e0a\u901f\u5ea6\u66f4\u5feb": 40, "\u5982\u679c\u4f60\u5728\u4f7f\u7528colab": 40, "\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539runtim": 40, "gpu\u6765\u5206\u914d\u4e00\u4e2agpu": 40, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u5f20\u91cf\u662f\u5728cpu\u4e0a\u521b\u5efa\u7684": 40, "\u53ef\u4ee5\u901a\u8fc7": [40, 93], "\u65b9\u6cd5\u5c06\u5f20\u91cf\u663e\u793a\u7684\u8f6c\u79fb\u5230gpu\u4e0a": 40, "\u5982\u679cgpu\u5728\u4f60\u7684\u73af\u5883\u91cc\u53ef\u7528\u7684\u8bdd": 40, "\u9700\u8981\u6ce8\u610f\u7684\u662f": 40, "\u5728\u4e0d\u540c\u8bbe\u5907\u95f4\u590d\u5236\u5927\u578b\u5f20\u91cf\u9700\u8981\u6d88\u8017\u5927\u91cf\u5185\u5b58": 40, "\u5e76\u4e14\u8017\u65f6\u8f83\u957f": 40, "\u5c1d\u8bd5\u4e0b\u5217\u64cd\u4f5c": 40, "\u5982\u679c\u4f60\u5df2\u7ecf\u5bf9numpi": 40, "api\u5341\u5206\u719f\u6089": 40, "\u4e0a\u624b\u5f20\u91cfapi\u5c06\u4f1a\u5f88\u7b80\u5355": 40, "\u7c7b\u4f3cnumpy\u7684\u7d22\u5f15\u548c\u5207\u7247\u64cd\u4f5c": 40, "\u8fde\u63a5\u5f20\u91cf": 40, "\u4f60\u53ef\u4ee5\u4f7f\u7528": [40, 95], "\u6cbf\u7740\u7ed9\u5b9a\u7684\u7ef4\u5ea6\u8fde\u63a5\u4e00\u7cfb\u5217\u5f20\u91cf": 40, "\u53e6\u4e00\u4e2a\u5f20\u91cf\u8fde\u63a5\u64cd\u4f5c\u7b26": 40, "\u4e0e": [40, 92, 93, 95, 111], "\u7a0d\u6709\u4e0d\u540c": 40, "\u8bf7\u53c2\u9605": [40, 89, 94, 95, 246], "\u8fd0\u7b97\u64cd\u4f5c": 40, "y1": [40, 178, 245], "y2": 40, "y3": 40, "wise": [40, 48, 73, 95, 99, 110, 124, 135, 144, 147, 150], "z1": [40, 144], "z2": 40, "z3": 40, "\u5355\u4e2a\u5143\u7d20\u7684\u5f20\u91cf": 40, "\u5728\u805a\u5408\u8fd0\u7b97\u573a\u666f\u4e2d": 40, "\u4f60\u53ef\u80fd\u4f1a\u5f97\u5230\u4e00\u4e2a\u5355\u5143\u7d20\u7684\u5f20\u91cf": 40, "\u53ef\u4f7f\u7528": 40, "\u5c06\u5176\u4f20\u5524\u4e3apython\u6570\u503c": 40, "agg": [40, 149, 165], "agg_item": 40, "\u539f\u5730\u64cd\u4f5c": 40, "\u4fee\u6539\u5f20\u91cf\u4e2d\u7684\u539f\u503c\u64cd\u4f5c\u79f0\u4e3a\u539f\u5730\u64cd\u4f5c": 40, "\u5b83\u4eec\u4ee5": 40, "\u540e\u7f00\u8868\u793a": 40, "t_": [40, 48, 262], "\u4f1a\u6539\u53d8": 40, "add_": [40, 48, 80, 95, 127, 128, 173, 174, 189, 206, 216], "\u5f20\u91cf\u5728\u4f7f\u7528cpu\u65f6": 40, "\u53ef\u4e0enumpi": 40, "arrays\u5171\u4eab\u5185\u5b58\u7a7a\u95f4": 40, "\u4fee\u6539\u5176\u4e2d\u4e00\u4e2a\u4f1a\u540c\u6b65\u6620\u5c04\u5230\u53e6\u4e00\u4e2a\u4e0a": 40, "\u5bf9\u4e8e\u5f20\u91cf\u7684\u4fee\u6539\u4f53\u73b0\u5230\u4e86numpi": 40, "array\u4e0a": 40, "\u6570\u636e\u5e76\u4e0d\u603b\u662f\u4ee5\u8bad\u7ec3\u673a\u5668\u5b66\u4e60\u7b97\u6cd5\u6240\u9700\u7684\u6700\u7ec8\u5904\u7406\u5f62\u5f0f\u5448\u73b0": 41, "\u6765\u5bf9\u6570\u636e\u8fdb\u884c\u4e00\u4e9b\u5904\u7406": 41, "\u4f7f\u5176\u9002\u7528\u4e8e\u8bad\u7ec3": 41, "\u6240\u6709": [41, 95], "\u6570\u636e\u96c6\u90fd\u6709\u4e24\u4e2a\u53c2\u6570": 41, "\u7528\u4e8e\u4fee\u6539\u7279\u5f81": 41, "\u7528\u4e8e\u4fee\u6539\u6807\u7b7e": 41, "\u5b83\u4eec\u63a5\u53d7\u5305\u542b\u8f6c\u6362\u903b\u8f91\u7684\u53ef\u8c03\u7528\u5bf9\u8c61": 41, "\u6a21\u5757\u63d0\u4f9b\u4e86\u51e0\u79cd\u5e38\u7528\u7684\u8f6c\u6362": 41, "\u7684\u7279\u5f81\u662f\u4ee5": 41, "\u56fe\u50cf\u683c\u5f0f\u5448\u73b0\u7684": 41, "\u6807\u7b7e\u662f\u6574\u6570": 41, "\u5bf9\u4e8e\u8bad\u7ec3": 41, "\u6211\u4eec\u9700\u8981\u5c06\u7279\u5f81\u8f6c\u6362\u4e3a\u5f52\u4e00\u5316\u7684\u5f20\u91cf": 41, "\u5c06\u6807\u7b7e\u8f6c\u6362\u4e3a\u7f16\u7801\u7684\u5f20\u91cf": 41, "\u4e3a\u4e86\u8fdb\u884c\u8fd9\u4e9b\u8f6c\u6362": 41, "\u6211\u4eec\u4f7f\u7528\u4e86": 41, "ds": [41, 127, 128, 165], "scatter_": [41, 134, 149, 161], "\u5c06": [41, 92, 121, 242, 243], "\u56fe\u50cf\u6216": 41, "ndarrai": [41, 48, 51, 95, 110, 171], "\u8f6c\u6362\u4e3a": 41, "floattensor": [41, 49, 60, 95], "\u5e76\u5c06\u56fe\u50cf\u7684\u50cf\u7d20\u5f3a\u5ea6\u503c\u7f29\u653e\u5230\u8303\u56f4": 41, "\u5e94\u7528\u4efb\u4f55\u7528\u6237\u5b9a\u4e49\u7684": 41, "\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u51fd\u6570\u5c06\u6574\u6570\u8f6c\u6362\u4e3a\u72ec\u70ed\u7f16\u7801\u7684\u5f20\u91cf": 41, "\u5b83\u9996\u5148\u521b\u5efa\u4e00\u4e2a\u5927\u5c0f\u4e3a": 41, "\u6211\u4eec\u6570\u636e\u96c6\u4e2d\u6807\u7b7e\u7684\u6570\u91cf": 41, "\u7684\u96f6\u5f20\u91cf": 41, "\u7136\u540e\u8c03\u7528": 41, "\u5728\u7531\u6807\u7b7e": 41, "\u6307\u5b9a\u7684\u7d22\u5f15\u4e0a\u8d4b\u503c\u4e3a": 41, "gschwind": 42, "bt": 42, "fastpath": 42, "acceler": [42, 48, 50, 57, 75, 95, 121, 149, 177, 188, 194, 196, 207, 211, 219, 220, 234, 247, 257], "multiheadattent": [42, 164, 193], "mha": [42, 190, 193], "exploit": [42, 97, 146, 165], "sparsiti": [42, 103, 121, 156, 189, 191, 196], "criteria": [42, 52], "blog": [42, 122, 123, 127, 131, 176, 219, 229], "xlm": [42, 137, 185], "predefin": [42, 49, 97, 136, 200, 221, 247], "robertaclassificationhead": 42, "xlmr_larg": 42, "xlmr_large_encod": 42, "classifier_head": 42, "input_dim": [42, 146, 218, 223], "get_model": [42, 104, 113, 161], "small_input_batch": 42, "hello": [42, 49, 58, 59, 60, 99, 103, 139, 152], "big_input_batch": 42, "princ": 42, "genoa": 42, "lucca": 42, "famili": [42, 219], "estat": 42, "buonapart": 42, "war": 42, "defend": [42, 73], "infami": 42, "horror": 42, "perpetr": 42, "antichrist": 42, "believ": [42, 190], "he": [42, 113, 115, 142, 146, 165], "friend": [42, 49, 152], "faith": 42, "slave": 42, "frighten": 42, "juli": 42, "1805": 42, "speaker": [42, 49], "anna": 42, "pavlovna": 42, "scherer": 42, "maid": 42, "honor": 42, "empress": 42, "marya": 42, "fedorovna": 42, "she": [42, 113, 165], "greet": 42, "vasili": 42, "kuragin": 42, "man": [42, 113, 115, 262, 263], "recept": 42, "cough": 42, "suffer": [42, 61, 113, 168, 216], "la": [42, 99], "gripp": 42, "st": [42, 103, 115], "petersburg": 42, "elit": [42, 261, 263, 265], "input_batch": [42, 49, 58, 59, 60, 158], "model_input": [42, 113], "padding_valu": [42, 118], "_transformer_encoder_layer_fwd": 42, "use_cuda": [42, 49, 73, 89, 119, 129, 146, 232, 238], "enable_nested_tensor": 42, "prop": 43, "proportion": [43, 152], "travers": [43, 163, 221], "walkthrough": [43, 48, 82, 109, 225], "resnet18_weight": [43, 195, 229], "3a": [43, 158], "9a": 43, "2b": 43, "dq": [43, 197], "external_grad": 43, "deposit": 43, "bf": 43, "chain": [43, 99, 100, 115, 129, 144, 161, 191, 200], "acycl": [43, 76], "finetun": [43, 75, 125, 152], "unfrozen": 43, "exclusionari": 43, "autodiff": [43, 121, 145], "pillow": [44, 92, 213], "scipi": [44, 121, 130, 172], "librosa": 44, "cython": 44, "nltk": 44, "spaci": [44, 116, 118], "viz": [44, 90, 229], "huge": [44, 99, 103, 124, 133, 136, 149], "airplan": [44, 97], "automobil": [44, 97], "bird": [44, 92, 250], "deer": [44, 92, 250], "dog": [44, 58, 59, 92, 97, 102, 113, 178, 188, 204, 229, 250, 257], "frog": [44, 92, 250], "hors": [44, 92, 250], "truck": [44, 92, 97, 250], "3x32x32": 44, "color": [44, 51, 52, 58, 59, 90, 94, 126, 146, 147, 158, 169, 171, 178, 213, 231, 262], "32x32": [44, 47, 92, 97, 105, 169], "extrem": [44, 103, 147, 262], "pilimag": 44, "brokenpipeerror": 44, "trainset": [44, 87, 92, 169, 250], "trainload": [44, 87, 92, 169, 250], "testset": [44, 87, 92, 169, 250], "testload": [44, 87, 92, 169, 250], "plane": [44, 92, 134, 250], "car": [44, 58, 59, 92, 113, 250], "fun": [44, 49, 105, 107, 108, 159, 234], "unnorm": [44, 92, 118, 169], "npimg": [44, 92, 94, 96, 169], "datait": [44, 92, 94, 96, 169], "make_grid": [44, 51, 52, 92, 94, 96, 117, 157, 166, 169], "5s": [44, 92], "fc1": [44, 47, 73, 78, 87, 92, 93, 94, 96, 105, 112, 123, 129, 138, 154, 156, 162, 166, 169, 185, 203, 221, 233, 239, 240, 241, 242, 243, 248, 249, 250], "fc2": [44, 47, 73, 78, 87, 92, 93, 94, 96, 105, 112, 123, 129, 138, 154, 156, 162, 166, 169, 185, 203, 221, 233, 239, 240, 241, 242, 243, 248, 249, 250], "84": [44, 47, 51, 87, 92, 93, 94, 96, 105, 109, 112, 136, 146, 156, 169, 176, 187, 239, 240, 241, 242, 243, 248, 249, 250], "fc3": [44, 47, 87, 92, 93, 94, 96, 105, 112, 138, 156, 169, 239, 240, 241, 242, 243, 248, 249, 250], "classif": [44, 52, 58, 59, 73, 75, 87, 97, 99, 115, 117, 119, 123, 128, 137, 148, 158, 166, 171, 178, 185, 206, 224, 225], "entropi": [44, 52, 118, 124], "running_loss": [44, 87, 92, 94, 96, 97, 117, 157, 169, 250], "2000": [44, 63, 64, 65, 67, 68, 69, 71, 72, 87, 92, 97, 111, 169, 171, 173, 174, 231, 250, 258], "1999": [44, 65, 87, 92, 111, 250], "mini": [44, 47, 49, 52, 78, 79, 87, 102, 104, 139, 146, 154, 158, 169, 204, 221], "cifar_net": 44, "learnt": 44, "truth": [44, 73, 105, 178, 196], "okai": 44, "groundtruth": 44, "wasn": [44, 98, 101], "energi": [44, 49, 60, 262], "chanc": [44, 49, 97, 146, 252], "hmmm": 44, "correct_pr": 44, "classnam": [44, 52], "total_pr": 44, "correct_count": 44, "chat": [44, 49, 60, 79, 165], "cifar10_tutori": [44, 46, 57], "sung": 45, "kim": 45, "jenni": 45, "kang": 45, "mytensor": 45, "my_tensor": [45, 93, 112, 240], "parallelli": 45, "output_s": [45, 49, 51, 60, 78, 127, 128, 136, 165, 178], "data_s": [45, 78], "getitem": [45, 115], "randomdataset": 45, "__getitem__": [45, 51, 104, 135, 178], "rand_load": 45, "capsul": 45, "monitor": [45, 113, 135, 177], "tin": 45, "former_torchi": [45, 77], "parallelism_tutori": [45, 77, 79], "data_parallel_tutori": [45, 46], "neural_networks_tutori": [46, 47, 57], "gentl": [46, 56, 57, 120], "glimps": 47, "convnet": [47, 81, 136, 146, 157, 162], "5x5": [47, 92, 93, 156], "affin": [47, 92, 102, 129, 166, 176, 179, 218, 247], "wx": [47, 92, 93], "c1": [47, 89, 92, 144, 191], "subsampl": 47, "2x2": [47, 93], "c3": [47, 89, 92], "s4": [47, 92], "f5": [47, 92], "f6": [47, 92], "lenet": [47, 73, 92, 93, 96, 156, 221], "nsampl": [47, 49, 78, 236], "nchannel": [47, 78], "next_funct": [47, 89], "clear": [47, 51, 73, 98, 99, 102, 103, 125, 144, 163, 171, 186, 191, 213, 231], "sub_": 47, "nesterov": [47, 112], "overridden": [48, 136, 237], "breez": [48, 80], "subtli": 48, "problemat": [48, 144, 153, 247, 262], "matthew": [49, 60, 86, 112], "inkawhich": [49, 52, 60, 73, 85, 86, 112], "movi": [49, 50, 60, 113], "cornel": [49, 50, 60], "dialog": [49, 50, 60], "hot": [49, 73, 103, 127, 128, 136, 165], "artifici": [49, 60, 97], "intellig": 49, "onlin": [49, 136, 137, 146, 159, 162, 257], "helpdesk": 49, "bot": [49, 60], "compani": [49, 115], "IT": 49, "teach": [49, 52, 97, 165], "boom": 49, "am": [49, 60, 101, 113, 128, 165, 208], "hospit": [49, 113], "lawyer": 49, "arrest": 49, "kid": 49, "sorri": [49, 95], "san": [49, 113], "francisco": [49, 104, 113], "goodby": [49, 193], "luong": [49, 60, 165], "jointli": [49, 165], "acknowledg": [49, 135], "borrow": [49, 61, 123, 134, 163], "yuan": [49, 60, 222], "kuei": [49, 60], "wu": [49, 60, 186], "ywk991112": [49, 60], "sean": [49, 60, 127, 128, 165], "robertson": [49, 60, 127, 128, 165], "spro": [49, 60], "floydhub": [49, 60], "textutil": [49, 60], "unicodedata": [49, 60, 127, 128, 165], "codec": 49, "itertool": [49, 160, 163, 200, 231], "reformat": 49, "rich": [49, 226], "charact": [49, 60, 103, 113, 127, 128, 131, 159, 165, 262], "220": [49, 163], "579": [49, 147], "292": [49, 87], "035": 49, "617": 49, "713": [49, 92], "utter": [49, 50], "divers": 49, "variat": [49, 130, 189, 203, 231], "formal": [49, 189], "sentiment": 49, "datafil": 49, "corpus_nam": [49, 50, 60], "printlin": 49, "readlin": [49, 75, 127, 128], "jsonl": [49, 50], "tab": [49, 116, 165, 169, 188, 226], "sentenc": [49, 60, 93, 98, 99, 102, 103, 113, 118, 128, 135, 137, 165, 193, 262], "loadlinesandconvers": 49, "lineid": 49, "characterid": 49, "conversationid": 49, "movieid": 49, "extractsentencepair": 49, "iso": 49, "8859": 49, "linejson": 49, "lineobj": 49, "conversation_id": 49, "convobj": 49, "movie_id": 49, "qa_pair": 49, "inputlin": 49, "targetlin": 49, "wrong": [49, 52, 73, 99, 127, 144, 172, 195], "formatted_movie_lin": 49, "delimit": [49, 115, 116], "unescap": 49, "unicode_escap": 49, "nprocess": 49, "nwrite": 49, "outputfil": 49, "writer": [49, 94, 96, 127, 137, 142, 158, 159, 169, 185, 245], "linetermin": 49, "writerow": 49, "busi": [49, 115, 128, 176], "implicit": [49, 226, 247, 262], "discret": [49, 220, 262], "voc": [49, 60], "addword": [49, 60, 165], "addsent": [49, 60, 165], "infrequ": 49, "pad_token": [49, 60, 137], "sos_token": [49, 60, 165, 252], "eos_token": [49, 60, 165], "word2index": [49, 60, 165], "word2count": [49, 60, 165], "index2word": [49, 60, 165], "min_count": [49, 60], "keep_word": [49, 60], "reiniti": [49, 52, 60], "unicod": [49, 127, 128, 165], "ascii": [49, 103, 127, 128, 165], "unicodetoascii": [49, 127, 128, 165], "letter": [49, 60, 127, 128, 165, 263], "lowercas": [49, 60, 165], "punctuat": [49, 165], "normalizestr": [49, 60, 165], "aid": [49, 112, 113, 237], "filterpair": [49, 165], "stackoverflow": [49, 127, 128, 160, 165, 231], "518232": [49, 127, 128, 165], "2809427": [49, 127, 128, 165], "nfd": [49, 127, 128, 165], "mn": [49, 127, 128, 165], "za": [49, 60, 165], "readvoc": 49, "loadpreparedata": 49, "save_dir": [49, 60, 146, 171], "npair": 49, "tactic": 49, "benefici": [49, 60, 120], "soften": [49, 97], "difficulti": [49, 159], "trimrareword": 49, "keep_pair": 49, "input_sent": [49, 60, 165], "output_sent": [49, 165], "keep_input": 49, "keep_output": 49, "massag": 49, "accommod": 49, "shorter": [49, 51, 116, 165, 168, 189], "english": [49, 99, 102, 113, 116, 118, 127, 165], "indexesfromsent": [49, 60, 165], "zeropad": 49, "inputvar": 49, "outputvar": 49, "batch2traindata": 49, "bunch": [49, 127, 128, 226], "aforement": [49, 82, 97, 221], "fillvalu": 49, "zip_longest": 49, "binarymatrix": 49, "seq": [49, 98, 102, 124, 134, 136], "indexes_batch": [49, 60], "padlist": 49, "padvar": 49, "max_target_len": 49, "booltensor": 49, "pair_batch": 49, "output_batch": 49, "small_batch_s": 49, "input_vari": 49, "target_vari": 49, "brain": 49, "sutskev": 49, "discov": [49, 108, 113, 135, 162], "accomplish": [49, 52, 150, 202, 215, 231], "jeddy92": [49, 60], "ts_seq2seq_intro": [49, 60], "invent": [49, 52, 159], "cho": [49, 176, 177], "2014": [49, 52], "bidirect": [49, 60, 98, 121, 136, 137], "gru": [49, 60, 93, 110, 127, 128, 165], "past": [49, 50, 101, 194, 213, 262], "colah": 49, "2015": [49, 97], "unpack": [49, 60, 137, 141, 183, 185, 206, 208], "pack_padded_sequ": [49, 60], "pad_packed_sequ": [49, 60], "input_seq": [49, 60, 252], "input_length": [49, 60, 122, 252], "n_layer": [49, 60, 252], "num_direct": 49, "encoderrnn": [49, 60, 165, 252], "sole": [49, 168], "combat": [49, 103], "bahdanau": [49, 165], "groundwork": 49, "h_t": [49, 102], "_s": 49, "attn": [49, 60, 165], "softmax": [49, 60, 90, 93, 97, 102, 103, 104, 110, 127, 128, 158, 161, 163, 165, 169, 193, 219, 256], "concat": [49, 60, 101, 110, 119, 182, 200], "dot_scor": [49, 60], "encoder_output": [49, 60, 165], "general_scor": [49, 60], "concat_scor": [49, 60], "attn_energi": [49, 60], "unidirect": [49, 60], "input_step": [49, 60], "last_hidden": [49, 60, 78], "luongattndecoderrnn": [49, 60, 252], "attn_model": [49, 60], "embedding_dropout": [49, 60], "rnn_output": [49, 60], "attn_weight": [49, 60, 165], "bmm": [49, 60, 144, 165, 193, 207, 231], "concat_input": [49, 60], "concat_output": [49, 60], "masknllloss": 49, "ntotal": 49, "crossentropi": 49, "masked_select": [49, 238], "clever": [49, 99, 113], "teacher": [49, 97, 121, 165], "teacher_forcing_ratio": [49, 165], "wheel": [49, 97, 159, 168, 196], "instabl": [49, 165], "craft": [49, 73, 103, 128], "essenc": [49, 101, 262], "nan": [49, 190], "overshoot": 49, "steep": 49, "cliff": 49, "goodfellow": [49, 52, 73], "2016": 49, "deeplearningbook": 49, "realiti": [49, 52, 60, 73, 101, 157, 164], "encoder_optim": [49, 165], "decoder_optim": [49, 165], "print_loss": 49, "n_total": 49, "encoder_hidden": [49, 60, 165, 252], "decoder_input": [49, 60, 165], "decoder_hidden": [49, 60, 165], "use_teacher_forc": 49, "decoder_output": [49, 60, 165], "mask_loss": 49, "topi": [49, 127, 128, 165], "tie": 49, "trainit": [49, 165], "n_iter": [49, 127, 128, 172], "explanatori": 49, "lift": [49, 58, 59, 113, 205, 223], "tarbal": 49, "encoder_n_lay": [49, 60], "decoder_n_lay": [49, 60, 252], "print_everi": [49, 127, 128, 165], "save_everi": [49, 53, 55, 146], "loadfilenam": [49, 60], "training_batch": 49, "start_iter": 49, "print_loss_avg": [49, 165], "percent": [49, 103, 143, 145, 154, 165, 234], "makedir": [49, 137, 185], "en_opt": [49, 60], "de_opt": [49, 60], "voc_dict": [49, 60], "tar": [49, 60, 75, 112, 118, 236, 241, 262], "NOT": [49, 60, 80, 85, 98, 102, 112, 130, 131, 133, 152, 208], "greedysearchdecod": [49, 252], "all_token": [49, 60], "all_scor": [49, 60], "decoder_scor": [49, 60], "searcher": [49, 60], "evaluateinput": [49, 60], "press": [49, 52, 262], "gracefulli": [49, 53, 162, 214], "prompt": [49, 50, 60, 184, 213, 257], "decoded_word": [49, 60, 165], "output_word": [49, 60, 165], "keyerror": [49, 60], "regardless": [49, 98, 145, 162, 263], "cb_model": [49, 60], "checkpoint_it": [49, 60], "_checkpoint": [49, 60, 122], "encoder_sd": [49, 60], "decoder_sd": [49, 60], "encoder_optimizer_sd": [49, 60], "decoder_optimizer_sd": [49, 60], "embedding_sd": [49, 60], "decoder_learning_ratio": 49, "uncom": [49, 51, 60, 64, 72, 101, 111], "folk": 49, "congratul": [49, 108, 125, 241], "tailor": [49, 135], "cool": [49, 52, 152, 154, 188, 205], "chatbot_tutori": 49, "uninstal": [50, 137], "reinstal": 50, "chatbot": [50, 60, 252], "browser": [50, 105, 168, 262], "subfold": 50, "visit": [50, 112, 113, 127, 184, 221], "in_": 50, "_colab": 50, "_name": 50, "mount": 50, "gdrive": 50, "upload": 50, "rerun": [50, 152], "evolv": [50, 103, 144, 150], "t4": 50, "sasank": [51, 117, 157], "chilamkurthi": [51, 117, 157], "scikit": [51, 137], "skimag": 51, "facial": 51, "pose": [51, 215], "landmark": 51, "dlib": 51, "part_0_x": 51, "part_0_i": 51, "part_1_x": 51, "part_1_i": 51, "part_2_x": 51, "part_67_x": 51, "part_67_i": 51, "0805personali01": 51, "83": [51, 176, 219, 246], "134": [51, 204], "1084239450_e76e00b7e7": 51, "70": [51, 147, 163, 177, 191, 201, 231], "236": 51, "257": [51, 231], "312": [51, 147], "person": [51, 58, 59, 113, 178], "img_nam": 51, "landmarks_fram": 51, "face_landmark": 51, "asarrai": [51, 75, 90], "show_landmark": 51, "scatter": [51, 79, 123, 133, 135, 171], "imread": 51, "facelandmarksdataset": 51, "csv_file": 51, "root_dir": 51, "is_tensor": 51, "face_dataset": 51, "fig": [51, 52, 117, 127, 149, 157, 165, 169], "set_titl": [51, 117, 157, 166, 169], "randomcrop": [51, 157], "crop": [51, 126, 166, 178, 213], "tsfm": 51, "transformed_sampl": 51, "edg": [51, 98, 105, 119, 121, 143, 168, 179, 197, 200, 262], "new_w": 51, "extern": [51, 97, 112, 126, 143, 144, 186, 199, 209, 247, 260, 262], "safer": [51, 231], "stick": [51, 113, 135, 147, 260], "tsfrm": 51, "transformed_dataset": 51, "lose": [51, 53, 97, 146, 227, 234, 251, 260], "collate_fn": [51, 115, 118, 178], "show_landmarks_batch": 51, "sample_batch": 51, "images_batch": 51, "landmarks_batch": 51, "im_siz": 51, "grid_border_s": 51, "indent": [51, 147, 231, 262], "i_batch": 51, "4th": [51, 80, 207], "imagefold": [51, 52, 92, 117, 157], "ant": [51, 117, 157, 265], "xxy": 51, "jpeg": [51, 139, 213], "xxz": 51, "bee": [51, 117, 157, 262], "123": [51, 163, 219, 263], "nsdf3": 51, "asd932_": 51, "data_transform": [51, 117, 157], "randomsizedcrop": 51, "hymenoptera_dataset": 51, "hymenoptera_data": [51, 117, 157], "dataset_load": 51, "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b": [51, 121], "data_loading_tutori": 51, "nathan": [52, 73, 85, 86], "celebr": [52, 121], "pictur": [52, 73, 124, 165], "thorough": [52, 176, 177], "shed": [52, 229], "spend": [52, 82, 152, 231, 238], "sake": [52, 127, 136, 156, 160], "ian": 52, "constantli": [52, 73, 160], "outsmart": 52, "equilibrium": 52, "perfect": [52, 191], "notat": [52, 73, 110], "chw": [52, 158], "3x64x64": 52, "thought": [52, 83, 113, 116, 190, 262], "latent": [52, 103], "p_": 52, "p_g": 52, "minimax": 52, "logd": 52, "underset": 52, "mathbb": [52, 85, 150, 160], "sim": 52, "radford": 52, "unsupervis": 52, "compris": [52, 60, 112], "drawn": [52, 159], "volum": [52, 123], "tip": [52, 58, 59, 103, 169, 235, 251], "dset": 52, "vutil": 52, "anim": 52, "manualse": 52, "use_deterministic_algorithm": 52, "dataroot": 52, "image_s": [52, 152], "spatial": [52, 121, 178], "64x64": 52, "nc": [52, 89], "nz": 52, "ngf": 52, "ndf": 52, "num_epoch": [52, 117, 118, 157, 159, 178, 198], "0002": 52, "ngpu": 52, "celeba": 52, "celeb": 52, "img_align_celeba": 52, "188242": 52, "173822": 52, "284702": 52, "537394": 52, "real_batch": 52, "stdev": 52, "weights_init": 52, "netg": 52, "netd": 52, "constant_": [52, 134], "dataparallel": [52, 120, 121, 125, 137, 149, 185, 230, 247], "downsampl": [52, 134, 146], "promot": 52, "healthi": 52, "bceloss": [52, 110], "ell": [52, 165], "l_1": 52, "l_n": 52, "quad": [52, 160], "y_n": 52, "bce": 52, "gt": [52, 78, 109, 252], "fixed_nois": 52, "establish": [52, 60, 234], "optimizerd": 52, "optimizerg": 52, "Be": 52, "somewhat": 52, "incorrect": [52, 125, 130, 172, 252], "collaps": 52, "went": [52, 144, 197], "ganhack": 52, "secondli": [52, 187], "loss_d": 52, "loss_g": 52, "img_list": 52, "real_cpu": 52, "b_size": 52, "errd_real": 52, "errd_fak": 52, "d_g_z1": 52, "errd": 52, "errg": 52, "d_g_z2": 52, "stat": [52, 55, 122, 159, 168, 195, 198, 238, 246], "tloss_d": 52, "tloss_g": 52, "versu": [52, 73, 121, 207], "im": [52, 75, 113], "artistanim": 52, "repeat_delai": 52, "blit": 52, "to_jshtml": 52, "music": 52, "dcgan_faces_tutori": 52, "mingpt": [53, 54, 55, 56, 131, 132], "aw": [53, 55, 123, 131, 132, 176, 177, 251], "p3": [53, 54, 55, 64, 111, 131, 132], "8xlarg": [53, 55], "failur": [53, 61, 132, 133, 144, 173, 174, 211], "disrupt": 53, "suscept": [53, 215], "elast": [53, 122, 133, 215], "attempt": [53, 99, 122, 173, 174, 207, 237], "minutia": 53, "multinod": [53, 131, 175], "load_snapshot": 53, "snapshot_path": 53, "train_step": 53, "should_checkpoint": 53, "save_snapshot": 53, "membership": [53, 132], "intervent": [53, 97, 185], "diff": [53, 55, 60, 82, 121, 197, 231], "multigpu": [53, 55, 132], "multigpu_torchrun": 53, "envvari": 53, "ddp_setup": [53, 55], "12355": [53, 55, 123, 133, 214], "local_rank": [53, 122, 132, 137, 185], "gpu_id": [53, 55, 132], "_save_snapshot": 53, "model_st": 53, "epochs_run": 53, "_load_snapshot": 53, "max_epoch": [53, 148], "_run_epoch": [53, 55], "total_epoch": [53, 55], "nproc_per_nod": [53, 122, 124, 133, 215], "migrat": [53, 55, 176], "fault": [54, 55, 56, 60, 61, 87, 131, 132], "toler": [54, 55, 56, 61, 87, 131, 132], "cluster": [54, 122, 126, 131, 132, 133, 135, 214, 215], "torchrun": [54, 122, 124, 131, 132, 215], "amazon": 54, "ec2": [54, 123], "gentli": 54, "convert_sync_batchnorm": 55, "single_gpu": 55, "mytraindataset": 55, "distributedsampl": [55, 56, 122, 123, 137, 185], "destroy_process_group": [55, 122, 123, 133, 214], "excess": [55, 82, 124, 220, 230], "set_epoch": [55, 122, 123], "b_sz": 55, "_run_batch": 55, "ckp": 55, "_save_checkpoint": 55, "load_train_obj": 55, "prepare_dataload": 55, "shorthand": [55, 262], "ring": [56, 124], "destroi": [56, 141, 263], "soumith": [57, 81, 135], "chintala": [57, 81, 135], "scientif": [57, 95], "blitz": [57, 105, 110, 169], "jeff": [58, 59, 119], "tang": [58, 59, 119], "review": [58, 59, 78, 113, 131, 137, 157, 173, 174, 176, 177, 189, 190, 192, 220], "jeremiah": [58, 59], "chung": [58, 59, 126], "region": [58, 59, 126, 143, 166, 171, 176, 177, 178, 226, 230, 247], "bicycl": [58, 59], "bu": [58, 59], "autonom": [58, 59], "favor": [58, 126, 150, 159], "pitfal": [58, 59], "beyond": [58, 59, 61, 101, 155, 156, 209], "ndk": [58, 208, 224, 227], "recip": [58, 59, 61, 109, 119, 120, 177, 188, 194, 204, 206, 208, 210, 212, 213, 216, 222, 226, 229, 230, 231, 232, 234, 237, 238, 244, 251, 254, 256, 257, 258], "deeplabv3_script": [58, 59, 204, 222], "deeplabv3_resnet50": [58, 59, 204, 222, 223], "resnet101": [58, 147], "hub": [58, 59, 119, 168, 204, 222, 223], "v0": [58, 59, 121, 146, 160, 178, 204, 222, 223, 259], "scriptedm": [58, 59], "168mb": [58, 59], "deeplab": [58, 59, 121, 204], "input_tensor": [58, 59, 158, 165, 166, 194, 213], "400x400": [58, 59], "oncreat": [58, 208], "mainact": [58, 206, 208, 222], "assetfilepath": [58, 208, 222], "ioexcept": [58, 208], "imagesegment": [58, 204, 222], "breakpoint": [58, 59], "73": [58, 144, 163, 176, 201, 231], "inputtensor": [58, 128, 155, 206], "tensorimageutil": [58, 223], "bitmaptofloat32tensor": 58, "bitmap": 58, "torchvision_norm_mean_rgb": [58, 223], "torchvision_norm_std_rgb": [58, 223], "getdataasfloatarrai": 58, "outtensor": 58, "todictstringkei": 58, "pytorch_vision_deeplabv3_resnet101": [58, 59], "outputtensor": [58, 59, 155, 187, 188, 206, 223], "getwidth": 58, "getheight": 58, "emul": [58, 146, 185, 204], "consum": [58, 59, 75, 107, 109, 125, 144, 149, 159, 161, 163, 164, 182, 188, 195, 200, 213, 238, 247, 256, 257], "bulk": [58, 59, 129], "heaviest": [58, 59], "intvalu": 58, "classnum": [58, 59], "maxi": [58, 59], "maxj": [58, 59], "maxnum": [58, 59], "green": [58, 59, 60, 98, 113, 122, 124, 169], "sheep": [58, 59], "black": [58, 59, 73, 82, 124, 126, 161, 165], "0xffff0000": 58, "0xff00ff00": 58, "0xff0000ff": 58, "0xff000000": 58, "outputbitmap": 58, "imageview": 58, "bmpsegment": 58, "createscaledbitmap": 58, "getconfig": 58, "setpixel": 58, "setimagebitmap": 58, "textview": 58, "helloworld": [59, 119, 187, 188, 224, 225], "deeplabv3_resnet101": 59, "viewcontrol": [59, 222], "swift": [59, 222, 225], "uiviewcontrol": 59, "var": [59, 80, 129, 187, 208], "uiimag": 59, "func": [59, 104, 118, 121, 138, 141, 144, 145, 150, 154, 193, 205, 244], "viewdidload": 59, "torchmodul": [59, 188, 222, 225], "filepath": [59, 222], "forresourc": [59, 222], "oftyp": [59, 222], "fileatpath": [59, 222], "fatalerror": [59, 222], "predictimag": [59, 188], "unsign": [59, 144, 231], "imagebuff": [59, 188], "autogradmod": [59, 208], "non_var_type_mod": 59, "nsmutablearrai": 59, "floatinput": 59, "nil": [59, 222], "addobject": 59, "outputdict": 59, "_impl": [59, 187, 188, 222], "togenericdict": 59, "floatbuff": [59, 206, 223], "temporarili": 59, "nsmutabledata": 59, "datawithlength": 59, "sizeof": [59, 208], "mutablebyt": 59, "floatvalu": 59, "uiimageview": 59, "convertrgbbuffertouiimag": 59, "uiimagehelp": 59, "uitextview": 59, "segmentimag": 59, "phase": [60, 76, 78, 117, 135, 157, 163, 187, 194, 200, 204, 238, 255], "imper": 60, "idiomat": 60, "defer": 60, "optimiz": 60, "decor": [60, 61, 85, 110, 120, 146, 161, 172, 247], "caveat": [60, 113, 133, 161, 200, 231, 237], "remind": [60, 113, 176], "necessarili": [60, 105, 107, 108, 130], "cooper": [60, 220], "chronolog": 60, "attend": 60, "greedili": 60, "_length": 60, "adher": [60, 202], "stem": 60, "surround": 60, "freedom": [60, 165], "__constants__": [60, 252], "liter": [60, 263], "_devic": [60, 252], "_sos_token": [60, 252], "pep": [60, 262], "3107": 60, "mypi": 60, "_decoder_n_lay": [60, 252], "evaluateexampl": 60, "stdin": 60, "4000_checkpoint": 60, "test_seq": 60, "num": [60, 104, 129, 137, 161, 185], "_word": 60, "test_seq_length": 60, "traced_encod": [60, 252], "presenc": [60, 172, 199, 229], "unscript": [60, 256], "test_encoder_output": 60, "test_encoder_hidden": 60, "test_decoder_hidden": 60, "test_decoder_input": 60, "traced_decod": [60, 252], "scripted_search": 60, "script_modul": [60, 85], "scripted_chatbot": 60, "deploy_seq2seq_hybrid_frontend_tutori": 60, "shen": [61, 123, 133, 134, 149, 155, 161, 163], "li": [61, 103, 123, 127, 128, 133, 134, 135, 149, 155, 161, 163, 172, 176, 177], "categor": [61, 82, 136, 161, 163, 177], "lifetim": [61, 163], "c10d": [61, 133, 155, 247], "all_gath": [61, 122, 123, 135, 155], "p2p": 61, "isend": [61, 135], "gradual": [61, 85, 152], "willing": [61, 113], "hurdl": 61, "vldb": 61, "starter": 61, "unbalanc": 61, "zeroredundancyoptim": [61, 155, 251], "footprint": [61, 109, 122, 123, 131, 152, 218, 219, 228, 230, 258], "uneven": [61, 120], "fsdp": [61, 121, 124, 131, 214, 215], "growth": [61, 171, 192], "recoveri": [61, 133], "sometim": [61, 125, 130, 132, 133, 136, 145, 160, 163, 165, 184, 191, 192, 247], "inevit": [61, 133], "oom": [61, 122, 152, 230], "desynchron": 61, "pillar": 61, "protocol": [61, 115], "spirit": [61, 103, 137, 262], "hogwild": 61, "async_execut": [61, 120, 121, 161], "polynomi": [63, 64, 65, 67, 68, 69, 111], "euclidean": [63, 64, 67, 68, 69, 97, 111], "linspac": [63, 64, 65, 67, 68, 69, 71, 72, 89, 111], "held": [63, 78, 97, 103, 111, 127, 162], "polynomial_autograd": 63, "bx": [64, 111], "cx": [64, 99, 111], "p_3": [64, 111], "5x": [64, 111], "legendr": 64, "legendrepolynomial3": [64, 111], "polynomial_custom_funct": 64, "strang": [65, 85, 111, 262], "fifth": [65, 263], "dynamicnet": [65, 111], "tough": [65, 111, 113], "30000": [65, 111, 135], "dynamic_net": 65, "polynomial3": [67, 111], "polynomial_modul": 67, "xx": [68, 69, 111, 144], "flaten": [68, 111], "mse": [68, 93, 97, 111], "linear_lay": [68, 69, 111], "polynomial_nn": 68, "overwritten": [69, 111, 185, 237], "checkout": [69, 111, 117, 188, 206], "polynomial_optim": 69, "\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f": [71, 72], "\u5230": [71, 72, 89, 95], "\u901a\u8fc7\u6700\u5c0f\u5316\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9\u6765\u8bad\u7ec3\u9884\u6d4b": 71, "\u8be5\u5b9e\u73b0\u4f7f\u7528": [71, 72], "\u624b\u52a8\u8ba1\u7b97\u524d\u5411\u4f20\u9012": 71, "\u635f\u5931\u548c\u53cd\u5411\u4f20\u9012": [71, 72], "numpy\u6570\u7ec4\u662f\u4e00\u4e2a\u901a\u7528\u7684n\u7ef4\u6570\u7ec4": 71, "\u5b83\u4e0d\u4e86\u89e3\u6df1\u5ea6\u5b66\u4e60": [71, 72], "\u68af\u5ea6\u6216\u8ba1\u7b97\u56fe": 71, "\u53ea\u662f\u7528\u4e8e\u6267\u884c\u901a\u7528\u6570\u503c\u8ba1\u7b97\u7684\u4e00\u4e2a\u5e93": 71, "grad_y_pr": [71, 72, 111], "grad_a": [71, 72, 111], "grad_b": [71, 72, 111], "grad_c": [71, 72, 111], "grad_d": [71, 72, 111], "polynomial_numpi": 71, "\u901a\u8fc7\u6700\u5c0f\u5316\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9\u6765\u8bad\u7ec3\u9884\u6d4b\u4ece": 72, "\u5f20\u91cf\u624b\u52a8\u8ba1\u7b97\u524d\u5411\u4f20\u9012": 72, "\u5f20\u91cf\u57fa\u672c\u4e0a\u4e0e": 72, "\u6570\u7ec4\u76f8\u540c": 72, "\u8ba1\u7b97\u56fe\u6216\u68af\u5ea6": 72, "\u53ea\u662f\u7528\u4e8e\u4efb\u610f\u6570\u503c\u8ba1\u7b97\u7684\u901a\u7528n\u7ef4\u6570\u7ec4": 72, "\u6570\u7ec4\u548c": 72, "\u5f20\u91cf\u4e4b\u95f4\u6700\u5927\u7684\u533a\u522b\u662f": 72, "\u5f20\u91cf\u53ef\u4ee5\u5728": 72, "\u4e0a\u8fd0\u884c": 72, "\u4e0a\u8fd0\u884c\u64cd\u4f5c": 72, "\u53ea\u9700\u5c06\u5f20\u91cf\u8f6c\u6362\u4e3a": 72, "polynomial_tensor": 72, "appreci": [73, 98, 113], "overlook": [73, 231], "secur": [73, 168], "awar": [73, 124, 126, 135, 136, 137, 147, 164, 173, 174, 176, 183, 187, 188, 189, 196, 254], "vulner": 73, "surpris": [73, 153], "impercept": 73, "perturb": 73, "drastic": 73, "overarch": 73, "misclassif": 73, "alter": [73, 112, 184, 234, 239], "har": 73, "remark": [73, 172], "jump": [73, 102, 105, 107, 108, 139, 146], "mathbf": 73, "nabla_": [73, 99], "007": 73, "misclassifi": 73, "gibbon": 73, "clearli": [73, 126, 189, 190], "pretrained_model": [73, 171], "lenet_mnist_model": [73, 221], "dropout1": [73, 123, 162, 203, 233], "dropout2": [73, 123, 162, 203, 233], "9216": [73, 123, 129, 154, 162, 203, 233], "log_softmax": [73, 93, 97, 99, 102, 103, 104, 123, 129, 148, 154, 162, 165, 166, 203, 221, 233], "test_load": [73, 97, 123, 129, 162, 166, 221], "1307": [73, 123, 129, 135, 148, 162, 166, 221], "3081": [73, 123, 129, 135, 148, 162, 166, 221], "fgsm_attack": 73, "clean": [73, 102, 122, 123, 133, 152, 187, 189, 195, 262], "data_grad": 73, "_imag": 73, "_grad": 73, "sign_data_grad": 73, "perturbed_imag": 73, "denorm": 73, "strength": [73, 169, 195], "adv_exampl": 73, "init_pr": 73, "bother": 73, "datagrad": 73, "data_denorm": 73, "perturbed_data": 73, "reappli": 73, "perturbed_data_norm": 73, "final_pr": 73, "adv_ex": 73, "adv": 73, "final_acc": 73, "ttest": 73, "trend": [73, 83, 168], "curv": [73, 149, 168, 169], "linearli": 73, "ytick": [73, 169], "xtick": [73, 169], "lunch": [73, 194], "BUT": [73, 101], "percept": 73, "tradeoff": [73, 121, 125, 126, 135, 159], "evid": 73, "fontsiz": 73, "orig": [73, 142], "nip": [73, 118], "defens": 73, "competit": [73, 138, 154], "defenc": 73, "perhap": [73, 127, 156, 214, 252], "dirti": 73, "fgsm_tutori": 73, "torchvision_tutori": [74, 178], "multimod": [75, 121], "ow": 75, "ubiquit": 75, "caption": [75, 262, 265], "vqa": 75, "unimod": 75, "contrast": [75, 128, 149, 154, 177, 189], "textvqa": 75, "bert": [75, 93, 121, 123, 177, 196, 199, 228, 234], "dl": [75, 104, 177, 184, 207, 208, 221, 262], "fbaipublicfil": [75, 184], "pythia": 75, "gz": [75, 104, 118, 236, 262, 263], "xf": 75, "prepend": [75, 154], "exclam": 75, "34602": 75, "answers_textvqa_more_than_1": 75, "answer_to_idx": 75, "uniform": [75, 113, 176, 202], "berttoken": [75, 137, 185], "functool": [75, 87, 113, 122, 123, 141, 145], "image_transform": 75, "return_tensor": 75, "ans_to_count": 75, "max_valu": 75, "ans_idx": 75, "uncas": [75, 137, 144, 177, 185], "set_transform": 75, "flava_model_for_classif": 75, "mlp": [75, 124, 138, 176], "toi": [75, 98, 102, 123, 133, 142, 149, 163, 175, 199, 214, 244], "mdetr": 75, "omnivor": 75, "multitask": 75, "flava_finetuning_tutori": 75, "flush": [76, 94, 96, 188, 203, 208, 230, 245, 262], "twice": [76, 130, 184, 219, 231, 238, 258], "retain_vari": 76, "freed": [76, 122, 152, 197], "fail": [76, 112, 125, 144, 147, 158, 160, 164, 172, 190, 196, 198, 200, 208, 220, 222, 230, 241], "autograd_tutorial_old": [76, 77], "tensor_tutorial_old": [77, 80], "nnft_tutori": [77, 78], "redesign": 78, "concatt": 78, "caddtabl": 78, "nngraph": 78, "input1": 78, "input2": 78, "pdb": 78, "debugg": [78, 104], "mnistconvnet": 78, "pool1": 78, "pool2": 78, "crazi": 78, "legal": [78, 193], "ephemer": [78, 152], "classnll": 78, "err": 78, "printnorm": 78, "register_forward_hook": [78, 239], "printgradnorm": 78, "register_backward_hook": 78, "i2h": [78, 127, 128], "h2o": [78, 127], "penn": [78, 178], "bank": 78, "timestep": [78, 98, 102, 127, 128, 160], "dataparallelmodel": 79, "block2": 79, "block3": 79, "becam": [79, 208], "inaccess": 79, "clash": 79, "mydataparallel": 79, "__getattr__": [79, 85], "attributeerror": 79, "getattr": [79, 146, 147, 185, 209, 247], "primit": [79, 121, 124, 145, 177, 197, 207], "mpi": [79, 135], "parallel_appli": 79, "clariti": [79, 142, 234], "output_devic": [79, 133], "distributedmodel": 79, "\u6df1\u5ea6\u5b66\u4e60": [79, 127, 128, 165], "60\u5206\u949f\u5165\u95e8": [79, 127, 128, 165], "uniniti": [80, 136, 202], "postfix": 80, "narrow_": 80, "lua": [80, 81, 127, 128, 165], "1st": [80, 97, 102, 123], "5th": 80, "camelcas": 80, "anymor": [80, 245], "indexadd": 80, "index_add_": 80, "chartensor": 80, "anupam": [82, 83, 116], "bhatnagar": [82, 83], "holistictraceanalysi": 82, "deactiv": 82, "trace_dir": 82, "trace_analysi": 82, "traceanalysi": 82, "engag": [82, 196], "time_spent_df": 82, "get_temporal_breakdown": 82, "enqueu": 82, "slowdown": [82, 122, 125], "consecut": [82, 128, 136, 146, 149, 158, 171, 177], "insuffici": [82, 160, 176], "delai": [82, 133, 161, 176], "stall": [82, 176, 177], "gap": [82, 85], "nanosecond": 82, "consecutive_kernel_delai": 82, "get_idle_time_breakdown": 82, "idle_time_df": 82, "show_idle_interval_stat": 82, "percentag": [82, 119, 143, 156, 176, 193], "visualize_pctg": 82, "comm": 82, "comp": 82, "mem": [82, 109, 238], "proport": [82, 152], "pie": [82, 152], "chart": 82, "kernel_type_metrics_df": 82, "kernel_metrics_df": 82, "get_gpu_kernel_breakdown": 82, "bottleneck": [82, 109, 122, 124, 132, 134, 149, 152, 161, 168, 172, 176, 177, 210, 226], "plotli": [82, 126], "hover": [82, 126, 158], "pan": 82, "num_kernel": 82, "duration_ratio": 82, "preced": [82, 129, 136, 142, 177, 182, 197, 199, 262], "lab": [82, 169, 184], "image_render": 82, "jupyterlab": 82, "gpu_kernel_breakdown": 82, "tflop": 82, "oversubscrib": 82, "unresolv": [82, 191], "extent": 82, "overlap_df": 82, "get_comm_comp_overlap": 82, "h2d": [82, 212], "d2h": [82, 212], "d2d": 82, "memcpi": 82, "memset": 82, "outstand": [82, 199], "generate_trace_with_count": 82, "_with_count": 82, "screenshot": [82, 226], "get_memory_bw_summari": 82, "get_queue_length_summari": 82, "get_memory_bw_time_seri": 82, "get_queue_length_time_seri": 82, "mem_bw_summari": 82, "queue_len_summari": 82, "mem_bw_seri": 82, "queue_len_seri": 82, "get_queue_length_seri": 82, "25th": 82, "50th": 82, "75th": 82, "percentil": 82, "cudalaunchkernel": 82, "cudamemcpyasync": 82, "cudamemsetasync": 82, "kernel_info_df": 82, "get_cuda_kernel_launch_stat": 82, "outlier": [82, 160], "microsecond": [82, 145, 164, 218, 223, 231], "cutoff": 82, "runtime_cutoff": 82, "launch_delay_cutoff": 82, "occasion": [83, 162, 165], "hta": [83, 168], "tracediff": 83, "cumul": [83, 159, 160, 175], "compare_trac": 83, "ops_diff": 83, "absent": 83, "visualize_counts_diff": 83, "visualize_duration_diff": 83, "ten": [83, 97], "compare_traces_output": 83, "sort_valu": [83, 126], "diff_count": 83, "diff_dur": 83, "differer": 83, "overshadow": 83, "profilerstep": [83, 144], "trace_diff_demo": 83, "learning_hybrid_frontend_through_example_tutori": [84, 85], "hybrid_frontend": 84, "introduction_to_hybrid_frontend_tutori": 84, "intens": [85, 144, 177, 207, 247], "shini": 85, "enjoi": [85, 146], "aquaint": 85, "refin": 85, "proven": [85, 192, 199], "resouc": 85, "consumpt": [85, 109, 122, 124, 126, 144, 156, 168, 213, 251, 258], "discrep": 85, "interwork": 85, "intrus": [85, 152], "broken": [85, 101, 118, 177], "epsilon": [85, 129, 136, 146, 159, 160], "biggl": 85, "lfloor": 85, "prod_": 85, "biggr": 85, "rfloor": 85, "hline": 85, "190": [85, 163, 171, 231], "4377": 85, "59051": 85, "traced_fn": 85, "script_fn": 85, "floor": [85, 95, 127, 128, 165], "accomod": [85, 131], "fmod": [85, 191], "traced_modul": 85, "n_trace": 85, "onnx": [85, 121], "dramat": 87, "industri": 87, "tensorboard": [87, 88, 91, 96, 121, 126, 148, 235, 238, 251], "slight": [87, 130, 219, 232], "pathlib": [87, 104, 122, 126, 146, 171, 194], "random_split": [87, 115], "get_checkpoint": 87, "ashaschedul": 87, "cloudpickl": 87, "trial": [87, 126, 148, 230], "load_data": 87, "train_cifar": 87, "as_directori": 87, "checkpoint_dir": [87, 214], "pkl": [87, 104, 222], "checkpoint_st": 87, "start_epoch": 87, "net_state_dict": 87, "optimizer_state_dict": [87, 112, 214, 220, 241], "luckili": [87, 144, 191, 231], "fraction": [87, 231], "checkpoint_data": 87, "wb": [87, 104, 152, 257], "dump": [87, 144, 152, 188, 207, 222, 231, 246], "from_directori": 87, "val_step": 87, "bad": [87, 113, 125, 139, 173, 174, 177, 184], "wast": [87, 168, 193, 196, 202, 231, 237, 239], "test_ab": 87, "train_subset": 87, "val_subset": 87, "valload": 87, "epoch_step": 87, "test_accuraci": 87, "loguniform": [87, 231], "gpus_per_tri": 87, "resources_per_tri": 87, "num_sampl": [87, 122], "checkpoint_at_end": 87, "max_num_epoch": 87, "abspath": [87, 155], "max_t": 87, "grace_period": 87, "reduction_factor": 87, "best_trial": 87, "get_best_tri": 87, "last_result": 87, "best_trained_model": 87, "best_checkpoint": 87, "get_best_checkpoint": 87, "best_checkpoint_data": 87, "test_acc": 87, "000668163": 87, "31479": 87, "0977": 87, "0331514": 87, "31605": 87, "0983": 87, "000150295": 87, "30755": 87, "1023": 87, "0128248": 87, "66912": 87, "4391": 87, "00464561": 87, "7316": 87, "3463": 87, "00031556": 87, "19409": 87, "1736": 87, "00574329": 87, "85679": 87, "3368": 87, "00325652": 87, "30272": 87, "0984": 87, "000342987": 87, "76044": 87, "003734": 87, "53101": 87, "4761": 87, "0037339984519545164": 87, "5310075663924216": 87, "4737": 87, "hyperparameter_tuning_tutori": 87, "\u7b80\u4ecb": [88, 89, 90, 91, 93, 94], "tensorboard\u652f\u6301": [88, 89, 90, 92, 93, 94, 95, 96], "\u6a21\u578b\u7406\u89e3": [88, 89, 90, 92, 93, 94, 95, 96], "\u4f5c\u8005": 88, "brad": 88, "heintz": 88, "\u672c\u6559\u7a0b\u4e0eyoutube\u4e0a\u7684": 88, "\u521d\u5b66\u8005\u7cfb\u5217": 88, "\u540c\u6b65": 88, "\u6bcf\u4e2a\u90e8\u5206\u7684\u9876\u90e8\u90fd\u6709\u4e00\u4e2acolab\u94fe\u63a5": 88, "\u5b83\u4f1a\u5728\u5b8c\u5168\u6258\u7ba1\u7684\u73af\u5883\u4e2d\u6253\u5f00\u4e00\u4e2a\u5305\u542b\u4ee3\u7801\u7684\u7b14\u8bb0\u672c": 88, "\u4e13\u4e1a\u63d0\u793a": 88, "\u4f7f\u7528gpu\u8fd0\u884c\u65f6\u7684colab\u53ef\u4ee5\u52a0\u901f\u64cd\u4f5c": 88, "\u8fd0\u884c\u65f6": 88, "\u66f4\u6539\u8fd0\u884c\u65f6\u7c7b\u578b": 88, "\u672c\u5730": 88, "\u4e0b\u8f7dnotebook\u6216\u5c06\u4ee3\u7801\u590d\u5236\u5230\u60a8\u559c\u6b22\u7684ide\u4e2d": 88, "\u81ea\u52a8\u5fae\u5206\u57fa\u7840": 88, "\u652f\u6301": [88, 96], "captum": [88, 91, 235, 251], "\u8fdb\u884c\u6a21\u578b\u7406\u89e3": 88, "\u8ddf\u968f\u4e0b\u9762\u7684\u89c6\u9891\u6216\u5728": [89, 90, 92, 93, 94, 95, 96], "\u4e0a\u89c2\u770b": [89, 90, 92, 93, 94, 95, 96], "\u529f\u80fd\u662f\u4f7f": 89, "\u5728\u6784\u5efa\u673a\u5668\u5b66\u4e60\u9879\u76ee\u65f6\u7075\u6d3b\u4e14\u5feb\u901f\u7684\u90e8\u5206\u539f\u56e0": 89, "\u5b83\u5141\u8bb8\u5bf9\u590d\u6742\u8ba1\u7b97\u5feb\u901f\u8f7b\u677e\u5730\u8ba1\u7b97\u591a\u4e2a\u504f\u5bfc\u6570": 89, "\u4e5f\u79f0\u4e3a": 89, "\u8fd9\u4e2a\u64cd\u4f5c\u662f\u57fa\u4e8e\u53cd\u5411\u4f20\u64ad\u7684\u795e\u7ecf\u7f51\u7edc\u5b66\u4e60\u7684\u6838\u5fc3": 89, "\u7684\u5f3a\u5927\u4e4b\u5904\u5728\u4e8e\u5b83\u5728\u8fd0\u884c\u65f6\u52a8\u6001\u5730": 89, "\u8ddf\u8e2a\u4f60\u7684\u8ba1\u7b97": 89, "\u8fd9\u610f\u5473\u7740\u5982\u679c\u4f60\u7684\u6a21\u578b\u6709\u51b3\u7b56\u5206\u652f\u6216\u957f\u5ea6\u5728\u8fd0\u884c\u65f6\u624d\u77e5\u9053\u7684\u5faa\u73af": 89, "\u8ba1\u7b97\u4ecd\u7136\u4f1a\u88ab\u6b63\u786e\u8ddf\u8e2a": 89, "\u4f60\u4f1a\u5f97\u5230\u6b63\u786e\u7684\u68af\u5ea6\u6765\u9a71\u52a8\u5b66\u4e60": 89, "\u7ed3\u5408\u4f60\u7684\u6a21\u578b\u662f\u7528": 89, "\u6784\u5efa\u7684\u4e8b\u5b9e": 89, "\u8fd9\u6bd4\u4f9d\u8d56\u4e8e\u5bf9\u66f4\u52a0\u4e25\u683c\u7ed3\u6784\u5316\u7684\u6a21\u578b\u8fdb\u884c\u9759\u6001\u5206\u6790\u6765\u8ba1\u7b97\u68af\u5ea6\u7684\u6846\u67b6\u63d0\u4f9b\u4e86\u66f4\u5927\u7684\u7075\u6d3b\u6027": 89, "\u673a\u5668\u5b66\u4e60\u6a21\u578b\u662f\u4e00\u4e2a": 89, "\u6709\u8f93\u5165\u548c\u8f93\u51fa": 89, "\u5728\u672c\u8ba8\u8bba\u4e2d": 89, "\u6211\u4eec\u5c06\u628a\u8f93\u5165\u89c6\u4e3a\u4e00\u4e2a": 89, "\u7ef4\u5411\u91cf": 89, "\u5176\u5143\u7d20\u4e3a": 89, "\u7136\u540e\u6211\u4eec\u53ef\u4ee5\u5c06\u6a21\u578b": 89, "\u8868\u793a\u4e3a\u8f93\u5165\u7684\u5411\u91cf\u503c\u51fd\u6570": 89, "\u6211\u4eec\u5c06\u6a21\u578b": 89, "\u7684\u8f93\u51fa\u503c\u89c6\u4e3a\u5411\u91cf": 89, "\u56e0\u4e3a\u4e00\u822c\u6765\u8bf4": 89, "\u4e00\u4e2a\u6a21\u578b\u53ef\u80fd\u6709\u4efb\u610f\u6570\u91cf\u7684\u8f93\u51fa": 89, "\u7531\u4e8e\u6211\u4eec\u4e3b\u8981\u5728\u8bad\u7ec3\u7684\u80cc\u666f\u4e0b\u8ba8\u8bba\u81ea\u52a8\u5fae\u5206": 89, "\u6211\u4eec\u611f\u5174\u8da3\u7684\u8f93\u51fa\u5c06\u662f\u6a21\u578b\u7684\u635f\u5931": 89, "\u662f\u6a21\u578b\u8f93\u51fa\u7684\u5355\u503c\u6807\u91cf\u51fd\u6570": 89, "\u8be5\u51fd\u6570\u8868\u793a\u6211\u4eec\u6a21\u578b\u5bf9\u7279\u5b9a\u8f93\u5165\u7684": 89, "\u7406\u60f3": 89, "\u8f93\u51fa\u7684\u9884\u6d4b\u504f\u5dee\u6709\u591a\u5927": 89, "\u4ece\u8fd9\u4e00\u70b9\u5f00\u59cb": 89, "\u6211\u4eec\u901a\u5e38\u4f1a\u7701\u7565\u5411\u91cf\u7b26\u53f7": 89, "\u4f8b\u5982\u4f7f\u7528": 89, "\u6211\u4eec\u5e0c\u671b\u6700\u5c0f\u5316\u635f\u5931": 89, "\u5728\u7406\u60f3\u60c5\u51b5\u4e0b": [89, 95], "\u5373\u5b8c\u7f8e\u6a21\u578b\u7684\u60c5\u51b5\u4e0b": 89, "\u8fd9\u610f\u5473\u7740\u8c03\u6574\u5176\u5b66\u4e60\u6743\u91cd": 89, "\u4e5f\u5c31\u662f\u8be5\u51fd\u6570\u7684\u53ef\u8c03\u53c2\u6570": 89, "\u4f7f\u5f97\u5bf9\u4e8e\u6240\u6709\u8f93\u5165": 89, "\u635f\u5931\u4e3a\u96f6": 89, "\u5728\u73b0\u5b9e\u4e16\u754c\u4e2d": 89, "\u8fd9\u610f\u5473\u7740\u4e00\u4e2a\u8fed\u4ee3\u8fc7\u7a0b": 89, "\u4e0d\u65ad\u5fae\u8c03\u5b66\u4e60\u6743\u91cd": 89, "\u76f4\u5230\u6211\u4eec\u770b\u5230\u5bf9\u4e8e\u5e7f\u6cdb\u7684\u8f93\u5165": 89, "\u5f97\u5230\u53ef\u63a5\u53d7\u7684\u635f\u5931": 89, "\u6211\u4eec\u5982\u4f55\u51b3\u5b9a\u6743\u91cd\u5e94\u8be5\u671d\u54ea\u4e2a\u65b9\u5411\u5fae\u8c03\u591a\u8fdc\u5462": 89, "\u6211\u4eec\u5e0c\u671b": 89, "\u6700\u5c0f\u5316": 89, "\u8fd9\u610f\u5473\u7740\u4f7f\u5176\u5173\u4e8e\u8f93\u5165\u7684\u4e00\u9636\u5bfc\u6570\u7b49\u4e8e0": 89, "\u4f46\u662f\u8bf7\u8bb0\u4f4f": 89, "\u635f\u5931\u4e0d\u662f": 89, "\u76f4\u63a5": 89, "\u7531\u8f93\u5165\u5bfc\u51fa\u7684": 89, "\u800c\u662f\u7531\u6a21\u578b\u8f93\u51fa\u7684\u51fd\u6570\u5bfc\u51fa\u7684": 89, "\u800c\u6a21\u578b\u8f93\u51fa\u53c8\u662f\u8f93\u5165\u7684\u76f4\u63a5\u51fd\u6570": 89, "\u6839\u636e\u5fae\u79ef\u5206\u7684\u94fe\u5f0f\u6cd5\u5219": 89, "\u6211\u4eec\u6709": [89, 95], "\u662f\u590d\u6742\u7684\u5730\u65b9": 89, "\u5982\u679c\u6211\u4eec\u518d\u6b21\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u5c55\u5f00\u6a21\u578b\u8f93\u51fa\u5173\u4e8e\u8f93\u5165\u7684\u504f\u5bfc\u6570\u7684\u8868\u8fbe\u5f0f": 89, "\u5b83\u5c06\u6d89\u53ca\u6bcf\u4e2a\u4e58\u4ee5\u7684\u5b66\u4e60\u6743\u91cd": 89, "\u6bcf\u4e2a\u6fc0\u6d3b\u51fd\u6570\u4ee5\u53ca\u6a21\u578b\u4e2d\u7684\u6bcf\u4e2a\u5176\u4ed6\u6570\u5b66\u53d8\u6362\u7684\u8bb8\u591a\u5c40\u90e8\u504f\u5bfc\u6570": 89, "\u6211\u4eec\u8bd5\u56fe\u6d4b\u91cf\u5176\u68af\u5ea6\u7684\u6bcf\u4e2a\u53d8\u91cf\u7684\u5b8c\u6574\u8868\u8fbe\u5f0f": 89, "\u90fd\u662f\u901a\u8fc7\u8ba1\u7b97\u56fe\u4e2d\u6240\u6709\u53ef\u80fd\u8def\u5f84\u7684\u5c40\u90e8\u68af\u5ea6\u4e4b\u548c\u7684\u4e58\u79ef": 89, "\u7279\u522b\u611f\u5174\u8da3\u7684\u662f\u5b66\u4e60\u6743\u91cd\u4e0a\u7684\u68af\u5ea6": 89, "\u5b83\u4eec\u544a\u8bc9\u6211\u4eec": 89, "\u5e94\u8be5\u671d\u54ea\u4e2a\u65b9\u5411\u6539\u53d8\u6bcf\u4e2a\u6743\u91cd": 89, "\u4ee5\u4f7f\u635f\u5931\u51fd\u6570\u66f4\u63a5\u8fd1\u4e8e\u96f6": 89, "\u7531\u4e8e\u8fd9\u4e9b\u5c40\u90e8\u5bfc\u6570\u7684\u6570\u91cf": 89, "\u6bcf\u4e2a\u5bf9\u5e94\u4e8e\u8ba1\u7b97\u56fe\u4e2d\u7684\u5355\u72ec\u8def\u5f84": 89, "\u5f80\u5f80\u4f1a\u968f\u7740\u795e\u7ecf\u7f51\u7edc\u7684\u6df1\u5ea6\u5448\u6307\u6570\u589e\u957f": 89, "\u56e0\u6b64\u8ba1\u7b97\u5b83\u4eec\u7684\u590d\u6742\u5ea6\u4e5f\u4f1a\u589e\u52a0": 89, "\u8fd9\u5c31\u662f\u81ea\u52a8\u5fae\u5206\u53d1\u6325\u4f5c\u7528\u7684\u5730\u65b9": 89, "\u5b83\u8ddf\u8e2a\u6bcf\u4e00\u6b65\u8ba1\u7b97\u7684\u5386\u53f2": 89, "\u4f60\u5728pytorch\u6a21\u578b\u4e2d\u8ba1\u7b97\u7684\u6bcf\u4e2a\u5f20\u91cf\u90fd\u4fdd\u7559\u4e86\u5176\u8f93\u5165\u5f20\u91cf\u548c\u521b\u5efa\u5b83\u7684\u51fd\u6570\u7684\u5386\u53f2\u8bb0\u5f55": 89, "\u7ed3\u5408pytorch\u4e2d\u7528\u4e8e\u5bf9\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c\u7684\u6bcf\u4e2a\u51fd\u6570\u90fd\u5185\u7f6e\u4e86\u8ba1\u7b97\u81ea\u8eab\u5bfc\u6570\u7684\u5b9e\u73b0\u8fd9\u4e00\u4e8b\u5b9e": 89, "\u8fd9\u6781\u5927\u5730\u52a0\u5feb\u4e86\u5b66\u4e60\u6240\u9700\u7684\u5c40\u90e8\u5bfc\u6570\u7684\u8ba1\u7b97\u901f\u5ea6": 89, "\u8fd9\u662f\u5f88\u591a\u7406\u8bba": 89, "\u4f46\u5728\u5b9e\u8df5\u4e2d\u4f7f\u7528\u81ea\u52a8\u5fae\u5206\u662f\u4ec0\u4e48\u6837\u7684\u5462": 89, "\u8ba9\u6211\u4eec\u4ece\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u5f00\u59cb": 89, "\u9996\u5148": [89, 90, 92, 95, 104], "\u6211\u4eec\u5c06\u5bfc\u5165\u4e00\u4e9b\u5185\u5bb9": 89, "\u4ee5\u4fbf\u53ef\u4ee5\u7ed8\u5236\u7ed3\u679c": 89, "ticker": [89, 127, 165], "\u63a5\u4e0b\u6765": [89, 92, 95, 104], "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a\u8f93\u5165\u5f20\u91cf": 89, "\u5176\u503c\u5747\u5300\u5206\u5e03\u5728\u533a\u95f4": 89, "2\u03c0": 89, "\u5e76\u6307\u5b9a": 89, "\u4e0e\u5927\u591a\u6570\u521b\u5efa\u5f20\u91cf\u7684\u51fd\u6570\u4e00\u6837": 89, "\u63a5\u53d7\u4e00\u4e2a\u53ef\u9009\u7684": 89, "\u9009\u9879": 89, "\u8bbe\u7f6e\u6b64\u6807\u5fd7\u610f\u5473\u7740\u5728\u968f\u540e\u7684\u6bcf\u4e2a\u8ba1\u7b97\u4e2d": 89, "\u90fd\u4f1a\u5728\u8be5\u8ba1\u7b97\u7684\u8f93\u51fa\u5f20\u91cf\u4e2d\u7d2f\u79ef\u8ba1\u7b97\u5386\u53f2": 89, "\u6211\u4eec\u5c06\u6267\u884c\u4e00\u4e2a\u8ba1\u7b97": 89, "\u5e76\u7ed8\u5236\u5176\u8f93\u51fa\u4e0e\u8f93\u5165\u7684\u5173\u7cfb\u56fe": 89, "\u8ba9\u6211\u4eec\u4ed4\u7ec6\u770b\u770b\u5f20\u91cf": 89, "\u5f53\u6211\u4eec\u6253\u5370\u5b83\u65f6": 89, "\u6211\u4eec\u770b\u5230\u4e00\u4e2a\u6307\u793a\u5b83\u6b63\u5728\u8ddf\u8e2a\u5176\u8ba1\u7b97\u5386\u53f2\u7684\u6307\u793a\u7b26": 89, "\u8fd9\u4e2a": [89, 92], "\u7ed9\u4e86\u6211\u4eec\u4e00\u4e2a\u63d0\u793a": 89, "\u5f53\u6211\u4eec\u6267\u884c\u53cd\u5411\u4f20\u64ad\u6b65\u9aa4\u5e76\u8ba1\u7b97\u68af\u5ea6\u65f6": 89, "\u6211\u4eec\u9700\u8981\u8ba1\u7b97\u6240\u6709\u8fd9\u4e2a\u5f20\u91cf\u8f93\u5165\u7684": 89, "\u7684\u5bfc\u6570": 89, "\u8ba9\u6211\u4eec\u6267\u884c\u66f4\u591a\u8ba1\u7b97": 89, "\u6700\u540e": [89, 92, 96, 104, 240], "\u8ba9\u6211\u4eec\u8ba1\u7b97\u4e00\u4e2a\u5355\u5143\u7d20\u8f93\u51fa": 89, "\u5f53\u4f60\u5728\u4e0d\u5e26\u53c2\u6570\u7684\u60c5\u51b5\u4e0b\u5bf9\u4e00\u4e2a\u5f20\u91cf\u8c03\u7528": 89, "\u5b83\u671f\u671b\u8c03\u7528\u5f20\u91cf\u53ea\u5305\u542b\u4e00\u4e2a\u5143\u7d20": 89, "\u5c31\u50cf\u5728\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u65f6\u4e00\u6837": 89, "\u6bcf\u4e2a\u5b58\u50a8\u5728\u6211\u4eec\u5f20\u91cf\u4e2d\u7684": 89, "\u5141\u8bb8\u4f60\u4f7f\u7528\u5176": 89, "\u6cbf\u7740\u8ba1\u7b97\u8def\u5f84\u4e00\u76f4\u56de\u6eaf\u5230\u5176\u8f93\u5165": 89, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230": 89, "\u4e0a\u6df1\u5165\u94bb\u7814\u8fd9\u4e2a\u5c5e\u6027\u4f1a\u663e\u793a\u6211\u4eec\u4e4b\u524d\u6240\u6709\u5f20\u91cf\u7684\u68af\u5ea6\u51fd\u6570": 89, "\u88ab\u62a5\u544a\u4e3a": 89, "\u8868\u793a\u8fd9\u662f\u4e00\u4e2a\u6ca1\u6709\u81ea\u8eab\u5386\u53f2\u7684\u51fd\u6570\u8f93\u5165": 89, "na": [89, 92], "\u6709\u4e86\u8fd9\u4e9b\u673a\u5236": 89, "\u6211\u4eec\u5982\u4f55\u83b7\u53d6\u5bfc\u6570\u5462": 89, "\u60a8\u5728\u8f93\u51fa\u4e0a\u8c03\u7528": 89, "\u5e76\u68c0\u67e5\u8f93\u5165\u7684": 89, "\u5c5e\u6027\u6765\u68c0\u67e5\u68af\u5ea6": 89, "\u56de\u987e\u4e00\u4e0b\u6211\u4eec\u4e3a\u4e86\u8fbe\u5230\u8fd9\u4e00\u6b65\u6240\u91c7\u53d6\u7684\u8ba1\u7b97\u6b65\u9aa4": 89, "\u6dfb\u52a0\u4e00\u4e2a\u5e38\u6570": 89, "\u5c31\u50cf\u6211\u4eec\u8ba1\u7b97": 89, "\u65f6\u6240\u505a\u7684\u90a3\u6837": 89, "\u4e0d\u4f1a\u6539\u53d8\u5bfc\u6570": 89, "\u5269\u4e0b\u7684\u5c31\u662f": 89, "\u5b83\u7684\u5bfc\u6570\u5e94\u8be5\u662f": 89, "\u4ece\u4e0a\u9762\u7684\u56fe\u4e2d\u53ef\u4ee5\u770b\u51fa": 89, "\u8fd9\u6b63\u662f\u6211\u4eec\u6240\u770b\u5230\u7684": 89, "\u8bf7\u6ce8\u610f": [89, 96, 104, 249], "\u53ea\u6709\u8ba1\u7b97\u56fe\u7684": 89, "\u53f6\u5b50\u8282\u70b9": 89, "\u624d\u4f1a\u8ba1\u7b97\u5b83\u4eec\u7684\u68af\u5ea6": 89, "\u5982\u679c\u4f60\u5c1d\u8bd5": 89, "\u4f60\u4f1a\u5f97\u5230": 89, "\u5728\u8fd9\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u4e2d": 89, "\u53ea\u6709\u8f93\u5165\u662f\u53f6\u5b50\u8282\u70b9": 89, "\u6240\u4ee5\u53ea\u6709\u5b83\u6709\u8ba1\u7b97\u68af\u5ea6": 89, "\u6211\u4eec\u5df2\u7ecf\u7b80\u5355\u5730\u770b\u4e86\u4e00\u4e0b\u81ea\u52a8\u6c42\u5bfc\u662f\u5982\u4f55\u5de5\u4f5c\u7684": 89, "\u4f46\u662f\u5f53\u5b83\u5728\u5b9e\u9645\u5e94\u7528\u4e2d": 89, "\u770b\u8d77\u6765\u4f1a\u662f\u4ec0\u4e48\u6837\u5b50\u5462": 89, "\u8ba9\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u5c0f\u6a21\u578b\u5e76\u68c0\u67e5\u5b83\u5728\u5355\u4e2a\u8bad\u7ec3\u6279\u6b21\u540e\u662f\u5982\u4f55\u53d8\u5316\u7684": 89, "\u5b9a\u4e49\u4e00\u4e9b\u5e38\u91cf": 89, "\u6211\u4eec\u7684\u6a21\u578b": 89, "\u4ee5\u53ca\u4e00\u4e9b\u8f93\u5165\u548c\u8f93\u51fa": 89, "dim_in": 89, "dim_out": 89, "tinymodel": [89, 93], "layer2": [89, 149, 157, 160], "some_input": 89, "ideal_output": 89, "\u4f60\u53ef\u80fd\u4f1a\u6ce8\u610f\u5230": 89, "\u6211\u4eec\u4ece\u672a\u4e3a\u6a21\u578b\u7684\u5c42\u8bbe\u7f6e": 89, "\u7684\u5b50\u7c7b\u4e2d": 89, "\u5047\u5b9a\u6211\u4eec\u5e0c\u671b\u8ddf\u8e2a\u5c42\u6743\u91cd\u7684\u68af\u5ea6\u4ee5\u8fdb\u884c\u5b66\u4e60": 89, "\u5982\u679c\u6211\u4eec\u67e5\u770b\u6a21\u578b\u7684\u5c42": 89, "\u6211\u4eec\u53ef\u4ee5\u68c0\u67e5\u6743\u91cd\u7684\u503c": 89, "\u5e76\u9a8c\u8bc1\u5c1a\u672a\u8ba1\u7b97\u4efb\u4f55\u68af\u5ea6": 89, "\u53ea\u6253\u5370\u4e00\u5c0f\u90e8\u5206": 89, "\u8ba9\u6211\u4eec\u770b\u770b\u5f53\u6211\u4eec\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u6279\u6b21\u65f6\u4f1a\u53d1\u751f\u4ec0\u4e48\u53d8\u5316": 89, "\u4f5c\u4e3a\u635f\u5931\u51fd\u6570": [89, 104], "\u4e4b\u95f4\u7684\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9": 89, "\u5e76\u4f7f\u7528\u57fa\u672c\u7684\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u4f18\u5316\u5668": 89, "\u73b0\u5728": [89, 90, 94, 104, 236], "\u8ba9\u6211\u4eec\u8c03\u7528": 89, "\u5e76\u770b\u770b\u4f1a\u53d1\u751f\u4ec0\u4e48": 89, "\u6bcf\u4e2a\u5b66\u4e60\u6743\u91cd\u7684\u68af\u5ea6\u90fd\u5df2\u7ecf\u8ba1\u7b97\u51fa\u6765\u4e86": 89, "\u4f46\u6743\u91cd\u4fdd\u6301\u4e0d\u53d8": 89, "\u56e0\u4e3a\u6211\u4eec\u8fd8\u6ca1\u6709\u8fd0\u884c\u4f18\u5316\u5668": 89, "\u4f18\u5316\u5668\u8d1f\u8d23\u6839\u636e\u8ba1\u7b97\u51fa\u7684\u68af\u5ea6\u66f4\u65b0\u6a21\u578b\u6743\u91cd": 89, "\u4f60\u5e94\u8be5\u770b\u5230": 89, "\u7684\u6743\u91cd\u5df2\u7ecf\u6539\u53d8": 89, "\u5173\u4e8e\u8fd9\u4e2a\u8fc7\u7a0b\u7684\u4e00\u4e2a\u91cd\u8981\u4e8b\u9879": 89, "\u5728\u8c03\u7528": 89, "\u4e4b\u540e": [89, 104], "\u4f60\u9700\u8981\u8c03\u7528": 89, "\u5426\u5219\u6bcf\u6b21\u4f60\u8fd0\u884c": 89, "\u5b66\u4e60\u6743\u91cd\u4e0a\u7684\u68af\u5ea6\u5c06\u4f1a\u7d2f\u79ef": 89, "set_to_non": [89, 230, 247], "\u5728\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u540e": 89, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u5728\u591a\u6b21\u8fd0\u884c": 89, "\u5927\u591a\u6570\u68af\u5ea6\u7684\u5e45\u5ea6\u4f1a\u53d8\u5f97\u66f4\u5927": 89, "\u5982\u679c\u5728\u8fd0\u884c\u4e0b\u4e00\u4e2a\u8bad\u7ec3\u6279\u6b21\u4e4b\u524d": 89, "\u6ca1\u6709\u5c06\u68af\u5ea6\u6e05\u96f6": 89, "\u68af\u5ea6\u5c31\u4f1a\u4ee5\u8fd9\u79cd\u65b9\u5f0f\u81a8\u80c0": 89, "\u4ece\u800c\u5bfc\u81f4\u4e0d\u6b63\u786e\u548c": 89, "\u4e0d\u53ef\u9884\u6d4b\u7684\u5b66\u4e60\u7ed3\u679c": 89, "\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b": [89, 240, 250], "\u4f60\u9700\u8981\u5bf9\u662f\u5426\u542f\u7528\u81ea\u52a8\u6c42\u5bfc\u8fdb\u884c\u7ec6\u7c92\u5ea6\u63a7\u5236": 89, "\u6709\u591a\u79cd\u65b9\u6cd5\u53ef\u4ee5\u505a\u5230\u8fd9\u4e00\u70b9": 89, "\u5177\u4f53\u53d6\u51b3\u4e8e\u60c5\u51b5": 89, "\u6700\u7b80\u5355\u7684\u65b9\u6cd5\u662f\u76f4\u63a5\u66f4\u6539\u5f20\u91cf\u4e0a\u7684": 89, "\u6807\u5fd7": 89, "b1": 89, "b2": 89, "\u5728\u4e0a\u9762\u7684\u5355\u5143\u683c\u4e2d": [89, 95], "\u6709\u4e00\u4e2a": [89, 93], "\u4e00\u4e2a": [89, 92, 233, 249], "\u8ba1\u7b97\u5386\u53f2\u7684\u8ddf\u8e2a\u8bb0\u5f55": 89, "\u8fd9\u662f\u6211\u4eec\u6240\u671f\u671b\u7684": 89, "\u56e0\u4e3a\u5b83\u662f\u4ece\u4e00\u4e2a\u542f\u7528\u4e86": 89, "\u7684\u5f20\u91cf": [89, 92, 95, 111], "\u6d3e\u751f\u51fa\u6765\u7684": 89, "\u5f53\u6211\u4eec\u4f7f\u7528": 89, "\u663e\u5f0f\u5730\u5173\u95ed": 89, "\u8ba1\u7b97\u5386\u53f2\u5c31\u4e0d\u518d\u88ab\u8ddf\u8e2a\u4e86": 89, "\u6b63\u5982\u6211\u4eec\u5728\u8ba1\u7b97": 89, "\u6240\u770b\u5230\u7684\u90a3\u6837": 89, "\u5982\u679c\u4f60\u53ea\u9700\u8981\u4e34\u65f6\u5173\u95ed": 89, "\u4e00\u4e2a\u66f4\u597d\u7684\u65b9\u6cd5\u662f\u4f7f\u7528": 89, "c2": 89, "\u4e5f\u53ef\u4ee5\u7528\u4f5c\u51fd\u6570\u6216\u65b9\u6cd5\u88c5\u9970\u5668": 89, "add_tensors1": 89, "add_tensors2": 89, "\u6709\u4e00\u4e2a\u5bf9\u5e94\u7684\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668": 89, "enable_grad": 89, "\u7528\u4e8e\u5728\u5c1a\u672a\u542f\u7528\u65f6": 89, "\u6253\u5f00": [89, 95, 121], "\u5b83\u4e5f\u53ef\u4ee5\u7528\u4f5c\u88c5\u9970\u5668": 89, "\u4f60\u53ef\u80fd\u6709\u4e00\u4e2a\u9700\u8981\u68af\u5ea6\u8ddf\u8e2a\u7684\u5f20\u91cf": 89, "\u4f46\u4f60\u60f3\u8981\u4e00\u4e2a\u4e0d\u9700\u8981\u7684\u526f\u672c": 89, "\u4e3a\u6b64": [89, 90, 94, 95, 104], "\u6211\u4eec\u6709\u5f20\u91cf\u5bf9\u8c61\u7684": 89, "\u5b83\u521b\u5efa\u4e00\u4e2a\u4e0e\u8ba1\u7b97\u5386\u53f2": 89, "\u5206\u79bb": 89, "\u7684\u5f20\u91cf\u526f\u672c": 89, "\u6211\u4eec\u4e4b\u524d\u8fd9\u6837\u505a\u662f\u56e0\u4e3a\u6211\u4eec\u60f3\u8981\u7ed8\u5236\u4e00\u4e9b\u5f20\u91cf\u7684\u56fe\u50cf": 89, "\u8fd9\u662f\u56e0\u4e3a": [89, 90], "\u671f\u671b\u8f93\u5165\u662f\u4e00\u4e2a": 89, "\u6570\u7ec4": [89, 104], "\u800c\u4ece\u5177\u6709": 89, "\u6570\u7ec4\u7684\u9690\u5f0f\u8f6c\u6362\u662f\u4e0d\u5141\u8bb8\u7684": 89, "\u5236\u4f5c\u4e00\u4e2a\u5206\u79bb\u7684\u526f\u672c\u8ba9\u6211\u4eec\u53ef\u4ee5\u7ee7\u7eed\u524d\u8fdb": 89, "\u5728\u672c\u7ec3\u4e60\u4e2d\u5230\u76ee\u524d\u4e3a\u6b62\u7684\u6bcf\u4e2a\u793a\u4f8b\u4e2d": 89, "\u6211\u4eec\u90fd\u4f7f\u7528\u4e86\u53d8\u91cf\u6765\u6355\u83b7\u8ba1\u7b97\u7684\u4e2d\u95f4\u503c": 89, "\u9700\u8981\u8fd9\u4e9b\u4e2d\u95f4\u503c\u6765\u6267\u884c\u68af\u5ea6\u8ba1\u7b97": 89, "\u5728\u4f7f\u7528": 89, "\u4f60\u5fc5\u987b": 89, "\u5c0f\u5fc3\u4f7f\u7528\u539f\u4f4d\u64cd\u4f5c": 89, "\u8fd9\u6837\u505a\u53ef\u80fd\u4f1a\u7834\u574f\u8ba1\u7b97\u5bfc\u6570\u6240\u9700\u7684\u4fe1\u606f": 89, "\u8c03\u7528\u65f6\u9700\u8981\u8fd9\u4e9b\u4fe1\u606f": 89, "\u5982\u679c\u4f60\u5c1d\u8bd5\u5bf9\u9700\u8981": 89, "\u7684\u53f6\u53d8\u91cf\u8fdb\u884c\u539f\u4f4d\u64cd\u4f5c": 89, "\u751a\u81f3\u4f1a\u963b\u6b62\u4f60": 89, "\u5982\u4e0b\u6240\u793a": [89, 104], "\u4f1a\u8be6\u7ec6\u8ddf\u8e2a\u4f60\u7684\u6bcf\u4e00\u6b65\u8ba1\u7b97": 89, "\u8fd9\u79cd\u8ba1\u7b97\u5386\u53f2": 89, "\u7ed3\u5408\u65f6\u95f4\u4fe1\u606f": 89, "\u5c06\u6784\u6210\u4e00\u4e2a\u65b9\u4fbf\u7684\u5206\u6790\u5668": 89, "\u5c31\u5185\u7f6e\u4e86\u8fd9\u4e2a\u529f\u80fd": 89, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u5feb\u901f\u4f7f\u7528\u793a\u4f8b": 89, "run_on_gpu": 89, "prf": 89, "key_averag": [89, 109, 144, 164, 219, 238], "sort_bi": [89, 109, 144, 164, 219, 238], "self_cpu_time_tot": [89, 109, 119, 144, 219, 238], "\u5206\u6790\u5668\u53ef\u4ee5\u6807\u8bb0\u4ee3\u7801\u7684\u5355\u4e2a\u5b50\u5757": 89, "\u6309\u8f93\u5165\u5f20\u91cf\u5f62\u72b6\u5206\u89e3\u6570\u636e": 89, "\u5e76\u5c06\u6570\u636e\u5bfc\u51fa\u4e3a": 89, "\u8ddf\u8e2a\u5de5\u5177\u6587\u4ef6": 89, "\u6709\u5173": 89, "\u7684\u5b8c\u6574\u8be6\u7ec6\u4fe1\u606f": 89, "\u5982\u679c\u4f60\u6709\u4e00\u4e2a\u5177\u6709": 89, "\u7ef4\u8f93\u5165\u548c": 89, "\u7ef4\u8f93\u51fa\u7684\u51fd\u6570": 89, "\u5b8c\u6574\u7684\u68af\u5ea6\u662f\u6bcf\u4e2a\u8f93\u51fa\u76f8\u5bf9\u4e8e\u6bcf\u4e2a\u8f93\u5165\u7684": 89, "\u5bfc\u6570\u7684\u77e9\u9635": 89, "\u5982\u679c\u4f60\u6709\u7b2c\u4e8c\u4e2a\u51fd\u6570": 89, "\u5b83": [89, 95, 96], "\u63a5\u53d7": 89, "\u7ef4\u8f93\u5165": 89, "\u4e5f\u5c31\u662f\u4e0e\u4e0a\u9762\u7684\u8f93\u51fa\u5177\u6709\u76f8\u540c\u7684\u7ef4\u5ea6": 89, "\u5e76\u8fd4\u56de\u4e00\u4e2a": 89, "\u6807\u91cf\u8f93\u51fa": 89, "\u4f60\u53ef\u4ee5\u7528\u4e00\u4e2a\u5217\u5411\u91cf\u6765\u8868\u793a\u5b83\u76f8\u5bf9\u4e8e": 89, "\u7684\u68af\u5ea6": 89, "\u8fd9\u5b9e\u9645\u4e0a\u53ea\u662f\u4e00\u4e2a\u4e00\u5217\u7684": 89, "\u66f4\u5177\u4f53\u5730\u8bf4": 89, "\u60f3\u8c61\u7b2c\u4e00\u4e2a\u51fd\u6570\u662f\u4f60\u7684": 89, "\u6a21\u578b": [89, 93, 121, 139, 233, 240], "\u53ef\u80fd\u6709\u8bb8\u591a\u8f93\u5165\u548c\u8bb8\u591a\u8f93\u51fa": 89, "\u7b2c\u4e8c\u4e2a\u51fd\u6570\u662f\u4e00\u4e2a\u635f\u5931\u51fd\u6570": 89, "\u4ee5\u6a21\u578b\u7684\u8f93\u51fa\u4f5c\u4e3a\u8f93\u5165": 89, "\u635f\u5931\u503c\u4f5c\u4e3a\u6807\u91cf\u8f93\u51fa": 89, "\u5982\u679c\u6211\u4eec\u5c06\u7b2c\u4e00\u4e2a\u51fd\u6570\u7684": 89, "\u4e0e\u7b2c\u4e8c\u4e2a\u51fd\u6570\u7684\u68af\u5ea6\u76f8\u4e58": 89, "\u5e76\u5e94\u7528\u94fe\u5f0f\u6cd5\u5219": 89, "\u6211\u4eec\u5f97\u5230": 89, "\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528\u7b49\u4ef7\u7684\u64cd\u4f5c": 89, "\u5e76\u5f97\u5230\u4e00\u4e2a\u884c\u5411\u91cf": 89, "\u6240\u5f97\u5230\u7684\u5217\u5411\u91cf\u5c31\u662f": 89, "\u7b2c\u4e8c\u4e2a\u51fd\u6570\u76f8\u5bf9\u4e8e\u7b2c\u4e00\u4e2a\u51fd\u6570\u7684\u8f93\u5165\u7684\u68af\u5ea6": 89, "\u6216\u8005\u5728\u6211\u4eec\u7684": 89, "\u6a21\u578b\u548c\u635f\u5931\u51fd\u6570\u7684\u60c5\u51b5\u4e0b": 89, "\u5c31\u662f\u635f\u5931\u76f8\u5bf9\u4e8e\u6a21\u578b\u8f93\u5165\u7684\u68af\u5ea6": 89, "\u662f\u4e00\u4e2a\u7528\u4e8e\u8ba1\u7b97\u8fd9\u4e9b\u4e58\u79ef\u7684\u5f15\u64ce": 89, "\u8fd9\u5c31\u662f\u6211\u4eec\u5728": 89, "\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u5982\u4f55\u7d2f\u79ef\u5b66\u4e60\u6743\u91cd\u7684\u68af\u5ea6": 89, "\u8c03\u7528\u4e5f\u53ef\u4ee5": 89, "\u63a5\u53d7\u4e00\u4e2a\u53ef\u9009\u7684\u5411\u91cf\u8f93\u5165": 89, "\u8be5\u5411\u91cf\u8868\u793a": 89, "\u5f20\u91cf\u4e0a\u7684\u4e00\u7ec4\u68af\u5ea6": 89, "\u8fd9\u4e9b\u68af\u5ea6\u5c06\u4e58\u4ee5\u524d\u9762\u7684": 89, "\u8ddf\u8e2a\u5f20\u91cf\u7684": 89, "\u8ba9\u6211\u4eec\u7528\u4e00\u4e2a\u5c0f\u5411\u91cf\u5c1d\u8bd5\u4e00\u4e2a\u5177\u4f53\u7684\u4f8b\u5b50": 89, "\u5982\u679c\u6211\u4eec\u5c1d\u8bd5\u73b0\u5728\u8c03\u7528": 89, "\u6211\u4eec\u4f1a\u5f97\u5230\u4e00\u4e2a\u8fd0\u884c\u65f6\u9519\u8bef\u548c\u4e00\u6761": 89, "\u6d88\u606f": 89, "\u8bf4\u660e\u53ea\u80fd": 89, "\u9690\u5f0f\u5730": 89, "\u4e3a\u6807\u91cf\u8f93\u51fa\u8ba1\u7b97\u68af\u5ea6": 89, "\u5bf9\u4e8e\u591a\u7ef4\u8f93\u51fa": 89, "\u671f\u671b\u6211\u4eec": 89, "\u63d0\u4f9b\u8fd9\u4e09\u4e2a\u8f93\u51fa\u7684\u68af\u5ea6": 89, "\u5b83\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u68af\u5ea6\u4e58\u4ee5jacobian\u77e9\u9635": 89, "\u4ee3\u66ff\u68af\u5ea6": 89, "\u8f93\u51fa\u68af\u5ea6\u90fd\u4e0e2\u7684\u5e42\u6709\u5173": 89, "\u8fd9\u6b63\u662f\u6211\u4eec\u4ece\u91cd\u590d\u7684\u53cc\u500d\u64cd\u4f5c\u4e2d\u6240\u671f\u671b\u7684": 89, "\u53ef\u4ee5\u76f4\u63a5\u8bbf\u95ee\u91cd\u8981\u7684\u5dee\u5206\u77e9\u9635\u548c\u5411\u91cf\u8fd0\u7b97": 89, "\u7279\u522b\u662f": 89, "\u5b83\u5141\u8bb8\u4f60\u8ba1\u7b97\u7279\u5b9a\u51fd\u6570\u5728\u7279\u5b9a\u8f93\u5165\u4e0b\u7684jacobian\u77e9\u9635\u548c": 89, "hessian\u77e9\u9635": 89, "\u7c7b\u4f3c\u4e8ejacobian\u77e9\u9635": 89, "\u4f46\u8868\u793a\u6240\u6709\u504f\u5bfc\u6570\u7684": 89, "\u7b2c\u4e8c\u9636": 89, "\u5bfc\u6570": 89, "\u5b83\u8fd8\u63d0\u4f9b\u4e86\u4e0e\u8fd9\u4e9b\u77e9\u9635": 89, "\u8fdb\u884c\u5411\u91cf\u4e58\u79ef\u7684\u65b9\u6cd5": 89, "\u8ba9\u6211\u4eec\u8ba1\u7b97\u4e00\u4e2a\u7b80\u5355\u51fd\u6570\u7684jacobian\u77e9\u9635": 89, "\u5bf9\u4e8e\u4e24\u4e2a\u5355\u5143\u7d20\u8f93\u5165\u8fdb\u884c\u8bc4\u4f30": 89, "exp_add": 89, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf": 89, "\u7b2c\u4e00\u4e2a\u8f93\u51fa\u5e94\u8be5\u7b49\u4e8e": 89, "\u56e0\u4e3a": [89, 104, 246], "\u5bfc\u6570\u662f": 89, "\u7b2c\u4e8c\u4e2a\u503c\u5e94\u8be5\u662f3": 89, "\u4f60\u5f53\u7136\u4e5f\u53ef\u4ee5\u5bf9\u66f4\u9ad8\u9636\u7684\u5f20\u91cf\u8fd9\u6837\u505a": 89, "hessian": [89, 121, 205], "\u65b9\u6cd5\u7684\u5de5\u4f5c\u65b9\u5f0f\u5b8c\u5168\u76f8\u540c": 89, "\u5047\u8bbe\u4f60\u7684": 89, "\u51fd\u6570\u662f\u4e24\u6b21\u53ef\u5fae\u7684": 89, "\u4f46\u8fd4\u56de\u6240\u6709\u4e8c\u9636\u5bfc\u6570\u7684\u77e9\u9635": 89, "\u5982\u679c\u4f60\u63d0\u4f9b\u4e86\u5411\u91cf": 89, "\u8fd8\u6709\u4e00\u4e2a\u76f4\u63a5\u8ba1\u7b97\u5411\u91cf": 89, "\u96c5\u53ef\u6bd4\u4e58\u79ef\u7684\u51fd\u6570": 89, "do_some_doubl": 89, "my_gradi": 89, "vjp": [89, 145, 150, 205], "jvp": [89, 141, 145, 150], "\u65b9\u6cd5\u6267\u884c\u4e0e": 89, "\u76f8\u540c\u7684\u77e9\u9635\u4e58\u6cd5": 89, "\u4f46\u64cd\u4f5c\u6570\u987a\u5e8f\u76f8\u53cd": 89, "vhp": [89, 121], "hvp": [89, 121], "\u65b9\u6cd5\u5bf9\u4e8e\u5411\u91cf": 89, "\u6d77\u68ee\u77e9\u9635\u4e58\u79ef\u4e5f\u662f\u5982\u6b64": 89, "\u6709\u5173\u66f4\u591a\u4fe1\u606f": [89, 94, 95, 250], "\u529f\u80fd": 89, "\u4e2d\u7684\u6027\u80fd\u8bf4\u660e": 89, "autogradyt_tutori": [89, 91], "\u4e0b\u8f7d\u7b14\u8bb0\u672c\u548c\u76f8\u5e94\u6587\u4ef6": 90, "\u62c9\u4e01\u8bed\u4e2d\u7684": 90, "\u7406\u89e3": 90, "\u662f\u4e00\u4e2a\u5f00\u6e90\u7684": 90, "\u53ef\u6269\u5c55\u7684\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u5e93": 90, "\u5efa\u7acb\u5728pytorch\u4e4b\u4e0a": 90, "\u968f\u7740\u6a21\u578b\u590d\u6742\u6027\u7684\u589e\u52a0\u548c\u7531\u6b64\u5e26\u6765\u7684\u900f\u660e\u5ea6\u7684\u7f3a\u4e4f": 90, "\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u65b9\u6cd5\u53d8\u5f97\u8d8a\u6765\u8d8a\u91cd\u8981": 90, "\u6a21\u578b\u7406\u89e3\u662f\u4e00\u4e2a\u6d3b\u8dc3\u7684\u7814\u7a76\u9886\u57df": 90, "\u4e5f\u662f\u8de8\u884c\u4e1a\u4f7f\u7528\u673a\u5668\u5b66\u4e60\u7684\u5b9e\u9645\u5e94\u7528\u7684\u4e00\u4e2a\u5173\u6ce8\u9886\u57df": 90, "captum\u63d0\u4f9b\u4e86\u6700\u5148\u8fdb\u7684\u7b97\u6cd5": 90, "\u5305\u62ec\u96c6\u6210\u68af\u5ea6": 90, "\u4e3a\u7814\u7a76\u4eba\u5458\u548c\u5f00\u53d1\u4eba\u5458\u63d0\u4f9b\u4e86\u4e00\u79cd\u7b80\u5355\u7684\u65b9\u5f0f\u6765\u7406\u89e3\u54ea\u4e9b\u7279\u5f81\u5bf9\u6a21\u578b\u7684\u8f93\u51fa\u505a\u51fa\u4e86\u8d21\u732e": 90, "\u5b8c\u6574\u7684\u6587\u6863": 90, "api\u53c2\u8003\u548c\u4e00\u5957\u5173\u4e8e\u7279\u5b9a\u4e3b\u9898\u7684\u6559\u7a0b\u53ef\u5728": 90, "\u7f51\u7ad9\u4e0a\u627e\u5230": 90, "captum\u5bf9\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u7684\u65b9\u6cd5\u662f\u57fa\u4e8e": 90, "\u5f52\u56e0": 90, "captum\u4e2d\u6709\u4e09\u79cd\u7c7b\u578b\u7684\u5f52\u56e0": 90, "\u7279\u5f81\u5f52\u56e0": 90, "\u8bd5\u56fe\u89e3\u91ca\u7279\u5b9a\u8f93\u51fa\u662f\u7531\u751f\u6210\u5b83\u7684\u8f93\u5165\u7684\u54ea\u4e9b\u7279\u5f81\u4ea7\u751f\u7684": 90, "\u7528\u67d0\u4e9b\u8bcd\u6765\u89e3\u91ca\u4e00\u7bc7\u7535\u5f71\u8bc4\u8bba\u662f\u6b63\u9762\u8fd8\u662f\u8d1f\u9762\u7684": 90, "\u5c31\u662f\u7279\u5f81\u5f52\u56e0\u7684\u4e00\u4e2a\u4f8b\u5b50": 90, "\u5c42\u5f52\u56e0": 90, "\u68c0\u67e5\u6a21\u578b\u7684\u9690\u85cf\u5c42\u5728\u7279\u5b9a\u8f93\u5165\u4e0b\u7684\u6d3b\u52a8": 90, "\u68c0\u67e5\u5377\u79ef\u5c42\u5bf9\u8f93\u5165\u56fe\u50cf\u7684\u7a7a\u95f4\u6620\u5c04\u8f93\u51fa\u5c31\u662f\u5c42\u5f52\u56e0\u7684\u4e00\u4e2a\u4f8b\u5b50": 90, "\u795e\u7ecf\u5143\u5f52\u56e0": 90, "\u7c7b\u4f3c\u4e8e\u5c42\u5f52\u56e0": 90, "\u4f46\u5173\u6ce8\u5355\u4e2a\u795e\u7ecf\u5143\u7684\u6d3b\u52a8": 90, "\u5728\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u4e2d": 90, "\u6211\u4eec\u5c06\u770b\u770b\u7279\u5f81\u5f52\u56e0\u548c\u5c42\u5f52\u56e0": 90, "\u6bcf\u79cd\u5f52\u56e0\u7c7b\u578b\u90fd\u6709\u591a\u79cd": 90, "\u5f52\u56e0\u7b97\u6cd5": 90, "\u4e0e\u4e4b\u76f8\u5173\u8054": 90, "\u8bb8\u591a\u5f52\u56e0\u7b97\u6cd5\u53ef\u5206\u4e3a\u4e24\u5927\u7c7b": 90, "\u57fa\u4e8e\u68af\u5ea6\u7684\u7b97\u6cd5": 90, "\u8ba1\u7b97\u6a21\u578b\u8f93\u51fa": 90, "\u5c42\u8f93\u51fa\u6216\u795e\u7ecf\u5143\u6fc0\u6d3b\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u53cd\u5411\u68af\u5ea6": 90, "\u96c6\u6210\u68af\u5ea6": 90, "\u7528\u4e8e\u7279\u5f81": 90, "\u5c42\u68af\u5ea6": 90, "\u6fc0\u6d3b": 90, "\u795e\u7ecf\u5143\u4f20\u5bfc": 90, "\u90fd\u662f\u57fa\u4e8e\u68af\u5ea6\u7684\u7b97\u6cd5": 90, "\u57fa\u4e8e\u6270\u52a8\u7684\u7b97\u6cd5": 90, "\u68c0\u67e5\u6a21\u578b": 90, "\u5c42\u6216\u795e\u7ecf\u5143\u7684\u8f93\u51fa\u5728\u8f93\u5165\u53d1\u751f\u53d8\u5316\u65f6\u7684\u53d8\u5316\u60c5\u51b5": 90, "\u8f93\u5165\u6270\u52a8\u53ef\u80fd\u662f\u6709\u9488\u5bf9\u6027\u7684\u6216\u968f\u673a\u7684": 90, "\u906e\u6321": 90, "\u7279\u5f81\u6d88\u878d": 90, "\u7279\u5f81\u7f6e\u6362": 90, "\u90fd\u662f\u57fa\u4e8e\u6270\u52a8\u7684\u7b97\u6cd5": 90, "\u6211\u4eec\u5c06\u5728\u4e0b\u9762\u68c0\u67e5\u8fd9\u4e24\u79cd\u7c7b\u578b\u7684\u7b97\u6cd5": 90, "\u7279\u522b\u662f\u5bf9\u4e8e\u5927\u578b\u6a21\u578b": 90, "\u4ee5\u4e0e\u88ab\u68c0\u67e5\u7684\u8f93\u5165\u7279\u5f81\u76f4\u63a5\u76f8\u5173\u7684\u65b9\u5f0f\u53ef\u89c6\u5316\u5f52\u56e0\u6570\u636e\u662f\u5f88\u6709\u4ef7\u503c\u7684": 90, "\u867d\u7136\u5f53\u7136\u53ef\u4ee5\u4f7f\u7528matplotlib": 90, "plotly\u6216\u7c7b\u4f3c\u5de5\u5177\u521b\u5efa\u81ea\u5df1\u7684\u53ef\u89c6\u5316": 90, "\u4f46captum\u63d0\u4f9b\u4e86\u4e13\u95e8\u7528\u4e8e\u5176\u5f52\u56e0\u7684\u589e\u5f3a\u5de5\u5177": 90, "attr": [90, 147, 155, 207, 229], "\u4e0b\u9762\u5bfc\u5165\u4e3a": 90, "\u63d0\u4f9b\u4e86\u6709\u52a9\u4e8e\u53ef\u89c6\u5316\u4e0e\u56fe\u50cf\u76f8\u5173\u7684\u5f52\u56e0\u7684\u51fd\u6570": 90, "\u662f\u5efa\u7acb\u5728captum\u4e4b\u4e0a\u7684\u4e00\u4e2a\u6613\u4e8e\u4f7f\u7528\u7684\u53ef\u89e3\u91ca\u6027\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6": 90, "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5e26\u6709\u73b0\u6210\u53ef\u89c6\u5316\u5de5\u5177\u7684\u5c0f\u90e8\u4ef6": 90, "\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u4efb\u610f\u6a21\u578b\u7c7b\u578b": 90, "\u8fd9\u4e24\u79cd\u53ef\u89c6\u5316\u5de5\u5177\u96c6\u90fd\u5c06\u5728\u672c\u7b14\u8bb0\u672c\u4e2d\u8fdb\u884c\u6f14\u793a": 90, "\u524d\u51e0\u4e2a\u793a\u4f8b\u5c06\u96c6\u4e2d\u5728\u8ba1\u7b97\u673a\u89c6\u89c9\u7528\u4f8b\u4e0a": 90, "\u4f46\u6700\u540e\u7684captum": 90, "insights\u90e8\u5206\u5c06\u6f14\u793a\u89c6\u89c9\u95ee\u7b54\u6a21\u578b\u4e2d\u7684\u5f52\u56e0\u53ef\u89c6\u5316": 90, "\u5728\u5f00\u59cb\u4e4b\u524d": [90, 233, 236, 241, 242, 243, 248, 249, 250], "\u4f60\u9700\u8981\u6709\u4e00\u4e2apython\u73af\u5883": 90, "6\u6216\u66f4\u9ad8\u7248\u672c": 90, "\u5bf9\u4e8ecaptum": 90, "insights\u793a\u4f8b": 90, "\u9700\u8981flask": 90, "1\u6216\u66f4\u9ad8\u7248\u672c\u548cflask": 90, "\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c": 90, "2\u6216\u66f4\u9ad8\u7248\u672c": 90, "4\u7248\u672c": 90, "\u56e0\u4e3acaptum\u76ee\u524d\u4f7f\u7528\u4e86\u4e00\u4e2a\u5728\u66f4\u9ad8\u7248\u672c\u4e2d\u53c2\u6570\u5df2\u88ab\u91cd\u547d\u540d\u7684matplotlib\u51fd\u6570": 90, "\u8981\u5728anaconda\u6216pip\u865a\u62df\u73af\u5883\u4e2d\u5b89\u88c5captum": 90, "\u8bf7\u4f7f\u7528\u4e0b\u9762\u9002\u7528\u4e8e\u60a8\u73af\u5883\u7684\u547d\u4ee4": 90, "flask": [90, 113, 121, 139, 251], "\u5728\u60a8\u8bbe\u7f6e\u7684\u73af\u5883\u4e2d\u91cd\u65b0\u542f\u52a8\u6b64\u7b14\u8bb0\u672c": 90, "\u60a8\u5c31\u53ef\u4ee5\u5f00\u59cb\u4e86": 90, "\u8ba9\u6211\u4eec\u770b\u4e00\u4e2a\u7b80\u5355\u7684\u89c6\u89c9\u793a\u4f8b": 90, "\u6211\u4eec\u5c06\u4ece\u4e00\u4e2a\u5728imagenet\u6570\u636e\u96c6\u4e0a\u9884\u8bad\u7ec3\u7684resnet\u6a21\u578b\u5f00\u59cb": 90, "\u6211\u4eec\u5c06\u83b7\u53d6\u4e00\u4e2a\u6d4b\u8bd5\u8f93\u5165": 90, "\u5e76\u4f7f\u7528\u4e0d\u540c\u7684": 90, "\u7b97\u6cd5\u6765\u68c0\u67e5\u8f93\u5165\u56fe\u50cf\u5982\u4f55\u5f71\u54cd\u8f93\u51fa": 90, "\u5e76\u67e5\u770b\u4e00\u4e9b\u6d4b\u8bd5\u56fe\u50cf\u7684\u8f93\u5165\u5f52\u56e0\u6620\u5c04\u7684\u6709\u7528\u53ef\u89c6\u5316": 90, "\u5bfc\u5165\u4e00\u4e9b\u5305": 90, "integratedgradi": 90, "occlus": [90, 229], "layergradcam": 90, "layerattribut": 90, "linearsegmentedcolormap": 90, "\u73b0\u5728\u6211\u4eec\u5c06\u4f7f\u7528torchvision\u6a21\u578b\u5e93\u4e0b\u8f7d\u4e00\u4e2a\u9884\u8bad\u7ec3\u7684resnet": 90, "\u7531\u4e8e\u6211\u4eec\u4e0d\u8fdb\u884c\u8bad\u7ec3": 90, "\u6211\u4eec\u5c06\u6682\u65f6\u5c06\u5176\u7f6e\u4e8e\u8bc4\u4f30\u6a21\u5f0f": 90, "\u4f60\u4ece\u4e2d\u83b7\u53d6\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u7684\u5730\u65b9\u5e94\u8be5\u4e5f\u6709\u4e00\u4e2a": 90, "\u6587\u4ef6\u5939": 90, "\u5176\u4e2d\u5305\u542b\u4e00\u4e2a": 90, "test_img": 90, "test_img_data": 90, "\u6211\u4eec\u7684resnet\u6a21\u578b\u662f\u5728imagenet\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u7684": 90, "\u5b83\u671f\u671b\u56fe\u50cf\u5177\u6709\u4e00\u5b9a\u7684\u5927\u5c0f": 90, "\u5e76\u4e14\u901a\u9053\u6570\u636e\u88ab\u5f52\u4e00\u5316\u5230\u7279\u5b9a\u7684\u503c\u8303\u56f4": 90, "\u6211\u4eec\u8fd8\u5c06\u83b7\u53d6\u6a21\u578b\u8bc6\u522b\u7684\u7c7b\u522b\u7684\u4eba\u7c7b\u53ef\u8bfb\u6807\u7b7e\u5217\u8868": 90, "\u5b83\u5e94\u8be5\u4e5f\u5728": 90, "\u6587\u4ef6\u5939\u4e2d": 90, "\u6a21\u578b\u671f\u671b224x224": 90, "3\u8272\u5f69\u56fe\u50cf": 90, "\u6807\u51c6imagenet\u5f52\u4e00\u5316": 90, "transform_norm": 90, "transformed_img": 90, "\u6a21\u578b\u9700\u8981\u4e00\u4e2a\u865a\u62df\u7684\u6279\u6b21\u7ef4\u5ea6": 90, "labels_path": 90, "imagenet_class_index": [90, 139], "json_data": 90, "idx_to_label": 90, "\u6211\u4eec\u53ef\u4ee5\u95ee": 90, "\u8fd9\u4e2a\u6a21\u578b\u8ba4\u4e3a\u8fd9\u5f20\u56fe\u50cf\u4ee3\u8868\u4ec0\u4e48": 90, "prediction_scor": 90, "pred_label_idx": 90, "squeeze_": [90, 95], "predicted_label": [90, 115], "\u9884\u6d4b": 90, "\u6211\u4eec\u5df2\u7ecf\u786e\u8ba4resnet\u8ba4\u4e3a\u6211\u4eec\u7684\u732b\u7684\u56fe\u50cf\u786e\u5b9e\u662f\u4e00\u53ea\u732b": 90, "\u4f46\u662f": [90, 93, 95], "\u4e3a\u4ec0\u4e48": 90, "\u6a21\u578b\u8ba4\u4e3a\u8fd9\u662f\u4e00\u5f20\u732b\u7684\u56fe\u50cf\u5462": 90, "\u8981\u56de\u7b54\u8fd9\u4e2a\u95ee\u9898": 90, "\u6211\u4eec\u5c31\u8981\u6c42\u52a9\u4e8ecaptum": 90, "\u8bd5\u56fe\u7528\u751f\u6210\u7279\u5b9a\u8f93\u51fa\u7684\u8f93\u5165\u7684\u7279\u5f81\u6765\u89e3\u91ca\u8be5\u8f93\u51fa": 90, "\u5b83\u4f7f\u7528\u7279\u5b9a\u7684\u8f93\u5165": 90, "\u5728\u8fd9\u91cc\u662f\u6211\u4eec\u7684\u6d4b\u8bd5\u56fe\u50cf": 90, "\u6765\u751f\u6210\u4e00\u4e2a\u8f93\u5165\u7279\u5f81\u5bf9\u7279\u5b9a\u8f93\u51fa\u7279\u5f81\u7684\u76f8\u5bf9\u91cd\u8981\u6027\u7684\u6620\u5c04": 90, "\u662fcaptum\u4e2d\u53ef\u7528\u7684\u7279\u5f81\u5f52\u56e0\u7b97\u6cd5\u4e4b\u4e00": 90, "\u96c6\u6210\u68af\u5ea6\u901a\u8fc7\u8fd1\u4f3c\u6a21\u578b\u8f93\u51fa\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u68af\u5ea6\u7684\u79ef\u5206": 90, "\u4e3a\u6bcf\u4e2a\u8f93\u5165\u7279\u5f81\u5206\u914d\u4e00\u4e2a\u91cd\u8981\u6027\u5206\u6570": 90, "\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d": [90, 95], "\u6211\u4eec\u5c06\u4f7f\u7528\u8f93\u51fa\u5411\u91cf\u7684\u4e00\u4e2a\u7279\u5b9a\u5143\u7d20": 90, "\u4e5f\u5c31\u662f\u8868\u793a\u6a21\u578b\u5bf9\u6240\u9009\u7c7b\u522b\u7684\u7f6e\u4fe1\u5ea6\u7684\u90a3\u4e2a\u5143\u7d20": 90, "\u5e76\u4f7f\u7528\u96c6\u6210\u68af\u5ea6\u6765\u7406\u89e3\u54ea\u4e9b\u8f93\u5165\u56fe\u50cf\u90e8\u5206\u5bf9\u8fd9\u4e2a\u8f93\u51fa\u505a\u51fa\u4e86\u8d21\u732e": 90, "\u4e00\u65e6\u6211\u4eec\u4ece\u96c6\u6210\u68af\u5ea6\u83b7\u5f97\u4e86\u91cd\u8981\u6027\u6620\u5c04": 90, "\u6211\u4eec\u5c06\u4f7f\u7528captum\u4e2d\u7684\u53ef\u89c6\u5316\u5de5\u5177\u6765\u63d0\u4f9b\u4e0e\u88ab\u68c0\u67e5\u7684\u8f93\u5165\u7279\u5f81\u76f4\u63a5\u76f8\u5173\u7684\u91cd\u8981\u6027\u6620\u5c04\u7684\u6709\u7528\u8868\u793a": 90, "captum\u7684": 90, "visualize_image_attr": 90, "\u51fd\u6570\u63d0\u4f9b\u4e86\u5404\u79cd\u81ea\u5b9a\u4e49\u663e\u793a\u5f52\u56e0\u6570\u636e\u7684\u9009\u9879": 90, "\u6211\u4eec\u4f20\u5165\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684matplotlib\u989c\u8272\u6620\u5c04": 90, "\u8fd0\u884c\u5e26\u6709": 90, "integrated_gradi": 90, "\u8c03\u7528\u7684\u5355\u5143\u683c\u901a\u5e38\u9700\u8981\u4e00\u4e24\u5206\u949f": 90, "\u7528\u6a21\u578b\u521d\u59cb\u5316\u5f52\u56e0\u7b97\u6cd5": 90, "\u8981\u6c42\u7b97\u6cd5\u5c06\u6211\u4eec\u7684\u8f93\u51fa\u76ee\u6807\u5f52\u56e0\u4e8e": 90, "attributions_ig": 90, "n_step": [90, 159, 161, 163], "\u663e\u793a\u539f\u59cb\u56fe\u50cf\u4ee5\u4f9b\u6bd4\u8f83": 90, "original_imag": [90, 229], "default_cmap": 90, "from_list": 90, "ffffff": 90, "0000ff": 90, "heat_map": [90, 229], "show_colorbar": [90, 229], "sign": [90, 153, 204], "\u5728\u4e0a\u9762\u7684\u56fe\u50cf\u4e2d": 90, "\u4f60\u5e94\u8be5\u53ef\u4ee5\u770b\u5230\u96c6\u6210\u68af\u5ea6\u5728\u56fe\u50cf\u4e2d\u732b\u7684\u4f4d\u7f6e\u7ed9\u51fa\u4e86\u6700\u5f3a\u7684\u4fe1\u53f7": 90, "\u57fa\u4e8e\u68af\u5ea6\u7684\u5f52\u56e0\u65b9\u6cd5\u6709\u52a9\u4e8e\u901a\u8fc7\u76f4\u63a5\u8ba1\u7b97\u8f93\u51fa\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u53d8\u5316\u6765\u7406\u89e3\u6a21\u578b": 90, "\u57fa\u4e8e\u6270\u52a8\u7684\u5f52\u56e0": 90, "\u65b9\u6cd5\u5219\u66f4\u76f4\u63a5\u5730\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898": 90, "\u901a\u8fc7\u5bf9\u8f93\u5165\u8fdb\u884c\u53d8\u5316\u6765\u6d4b\u91cf\u5bf9\u8f93\u51fa\u7684\u5f71\u54cd": 90, "\u5c31\u662f\u8fd9\u6837\u4e00\u79cd\u65b9\u6cd5": 90, "\u5b83\u6d89\u53ca\u66ff\u6362\u8f93\u5165\u56fe\u50cf\u7684\u90e8\u5206\u533a\u57df": 90, "\u5e76\u68c0\u67e5\u5bf9\u8f93\u51fa\u4fe1\u53f7\u7684\u5f71\u54cd": 90, "\u4e0b\u9762": [90, 92, 94, 95, 96], "\u6211\u4eec\u8bbe\u7f6e\u906e\u6321\u5f52\u56e0": 90, "\u4e0e\u914d\u7f6e\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u7c7b\u4f3c": 90, "\u4f60\u53ef\u4ee5\u6307\u5b9a\u76ee\u6807\u533a\u57df\u7684\u5927\u5c0f": 90, "\u4ee5\u53ca\u786e\u5b9a\u5355\u4e2a\u6d4b\u91cf\u95f4\u8ddd\u7684\u6b65\u957f\u957f\u5ea6": 90, "visualize_image_attr_multipl": [90, 229], "\u6765\u53ef\u89c6\u5316\u6211\u4eec\u7684\u906e\u6321\u5f52\u56e0\u8f93\u51fa": 90, "\u663e\u793a\u6bcf\u4e2a\u533a\u57df\u7684\u6b63\u9762\u548c\u8d1f\u9762\u5f52\u56e0\u7684\u70ed\u56fe": 90, "\u5e76\u7528\u6b63\u9762\u5f52\u56e0\u533a\u57df\u63a9\u7801\u539f\u59cb\u56fe\u50cf": 90, "\u63a9\u7801\u53ef\u4ee5\u7ed9\u51fa\u4e00\u4e2a\u975e\u5e38\u6709\u542f\u53d1\u6027\u7684\u89c6\u56fe": 90, "\u663e\u793a\u6a21\u578b\u53d1\u73b0\u54ea\u4e9b\u533a\u57df\u6700": 90, "\u50cf\u732b": 90, "attributions_occ": 90, "sliding_window_shap": [90, 229], "masked_imag": 90, "fig_siz": 90, "18": [90, 107, 108, 109, 118, 127, 144, 157, 158, 163, 173, 174, 184, 193, 219, 228, 231, 266], "\u540c\u6837": [90, 95, 104], "\u6211\u4eec\u770b\u5230\u56fe\u50cf\u4e2d\u5305\u542b\u732b\u7684\u533a\u57df\u88ab\u8d4b\u4e88\u4e86\u66f4\u5927\u7684\u91cd\u8981\u6027": 90, "\u5141\u8bb8\u4f60\u5c06\u6a21\u578b\u4e2d\u9690\u85cf\u5c42\u7684\u6d3b\u52a8\u5f52\u56e0\u4e8e\u8f93\u5165\u7684\u7279\u5f81": 90, "\u5c42\u5f52\u56e0\u7b97\u6cd5\u6765\u68c0\u67e5\u6a21\u578b\u4e2d\u4e00\u4e2a\u5377\u79ef\u5c42\u7684\u6d3b\u52a8": 90, "gradcam\u8ba1\u7b97\u76ee\u6807\u8f93\u51fa\u76f8\u5bf9\u4e8e\u7ed9\u5b9a\u5c42\u7684\u68af\u5ea6": 90, "\u5bf9\u6bcf\u4e2a\u8f93\u51fa\u901a\u9053": 90, "\u8f93\u51fa\u7684\u7b2c2\u7ef4": 90, "\u8fdb\u884c\u5e73\u5747": 90, "\u5e76\u5c06\u6bcf\u4e2a\u901a\u9053\u7684\u5e73\u5747\u68af\u5ea6\u4e58\u4ee5\u5c42\u6fc0\u6d3b": 90, "\u7ed3\u679c\u5728\u6240\u6709\u901a\u9053\u4e0a\u6c42\u548c": 90, "gradcam\u4e13\u4e3a\u5377\u79ef\u7f51\u7edc": 90, "\u8bbe\u8ba1": 90, "\u7531\u4e8e\u5377\u79ef\u5c42\u7684\u6d3b\u52a8\u901a\u5e38\u5728\u7a7a\u95f4\u4e0a\u6620\u5c04\u5230\u8f93\u5165": 90, "\u56e0\u6b64gradcam\u5f52\u56e0\u901a\u5e38\u4f1a\u88ab\u4e0a\u91c7\u6837": 90, "\u5e76\u7528\u4e8e\u63a9\u76d6\u8f93\u5165": 90, "\u5c42\u5f52\u56e0\u7684\u8bbe\u7f6e\u7c7b\u4f3c\u4e8e\u8f93\u5165\u5f52\u56e0": 90, "\u9664\u4e86\u9664\u4e86\u6a21\u578b\u4e4b\u5916": 90, "\u4f60\u8fd8\u5fc5\u987b\u6307\u5b9a\u6a21\u578b\u4e2d\u4f60\u5e0c\u671b\u68c0\u67e5\u7684": 90, "\u9690\u85cf\u5c42": 90, "\u4e0e\u4e0a\u9762\u4e00\u6837": 90, "\u5f53\u6211\u4eec\u8c03\u7528": 90, "\u6211\u4eec\u6307\u5b9a\u611f\u5174\u8da3\u7684\u76ee\u6807\u7c7b": 90, "layer_gradcam": 90, "layer3": [90, 149, 157, 160], "attributions_lgc": 90, "base_class": 90, "\u57fa\u7c7b\u4e2d\u7684\u4fbf\u5229\u65b9\u6cd5": 90, "interpol": [90, 119, 262], "\u6765\u4e0a\u91c7\u6837\u8fd9\u4e9b\u5f52\u56e0\u6570\u636e": 90, "\u4ee5\u4fbf\u4e0e\u8f93\u5165\u56fe\u50cf\u8fdb\u884c\u6bd4\u8f83": 90, "upsamp_attr_lgc": 90, "blended_heat_map": 90, "\u8fd9\u6837\u7684\u53ef\u89c6\u5316\u53ef\u4ee5\u8ba9\u4f60\u6df1\u5165\u4e86\u89e3\u9690\u85cf\u5c42\u5982\u4f55\u54cd\u5e94\u4f60\u7684\u8f93\u5165": 90, "insights\u662f\u4e00\u4e2a\u5efa\u7acb\u5728captum\u4e4b\u4e0a\u7684\u53ef\u89e3\u91ca\u6027\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6": 90, "\u65e8\u5728\u4fc3\u8fdb\u6a21\u578b\u7406\u89e3": 90, "insights\u53ef\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u5176\u4ed6\u7279\u5f81": 90, "\u5e2e\u52a9\u7528\u6237\u7406\u89e3\u7279\u5f81\u5f52\u56e0": 90, "\u5b83\u5141\u8bb8\u4f60\u53ef\u89c6\u5316": 90, "\u591a\u4e2a\u8f93\u5165": 90, "\u8f93\u51fa\u5bf9\u7684\u5f52\u56e0": 90, "\u5e76\u63d0\u4f9b\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u4efb\u610f\u6570\u636e\u7684\u53ef\u89c6\u5316\u5de5\u5177": 90, "\u5728\u672c\u7b14\u8bb0\u672c\u7684\u8fd9\u4e00\u90e8\u5206": 90, "\u6211\u4eec\u5c06\u4f7f\u7528captum": 90, "insights\u53ef\u89c6\u5316\u591a\u4e2a\u56fe\u50cf\u5206\u7c7b\u63a8\u7406": 90, "\u8ba9\u6211\u4eec\u6536\u96c6\u4e00\u4e9b\u56fe\u50cf": 90, "\u770b\u770b\u6a21\u578b\u5bf9\u5b83\u4eec\u7684\u770b\u6cd5": 90, "\u4e3a\u4e86\u589e\u52a0\u591a\u6837\u6027": 90, "\u6211\u4eec\u5c06\u4f7f\u7528\u732b": 90, "\u8336\u58f6\u548c\u4e09\u53f6\u866b\u5316\u77f3": 90, "teapot": 90, "trilobit": 90, "\u770b\u8d77\u6765\u6211\u4eec\u7684\u6a21\u578b\u90fd\u6b63\u786e\u8bc6\u522b\u4e86\u5b83\u4eec": 90, "\u6211\u4eec\u5f53\u7136\u5e0c\u671b\u6df1\u5165\u6316\u6398": 90, "insights\u5c0f\u90e8\u4ef6": 90, "\u6211\u4eec\u7528\u4e0b\u9762\u5bfc\u5165\u7684": 90, "attributionvisu": 90, "\u5bf9\u8c61\u5bf9\u5176\u8fdb\u884c\u914d\u7f6e": 90, "\u671f\u671b\u6279\u91cf\u6570\u636e": 90, "\u6240\u4ee5\u6211\u4eec\u5c06\u5f15\u5165captum\u7684": 90, "\u8f85\u52a9\u7c7b": 90, "\u6211\u4eec\u5c06\u67e5\u770b\u56fe\u50cf": 90, "\u56e0\u6b64\u6211\u4eec\u8fd8\u5c06\u5bfc\u5165": 90, "imagefeatur": 90, "\u6211\u4eec\u4f7f\u7528\u4ee5\u4e0b\u53c2\u6570\u914d\u7f6e": 90, "\u8981\u68c0\u67e5\u7684\u6a21\u578b\u6570\u7ec4": 90, "\u53ea\u6709\u4e00\u4e2a": 90, "\u4e00\u4e2a\u8bc4\u5206\u51fd\u6570": 90, "\u5141\u8bb8captum": 90, "insights\u4ece\u6a21\u578b\u4e2d\u63d0\u53d6\u524dk\u4e2a\u9884\u6d4b": 90, "\u6211\u4eec\u6a21\u578b\u8bad\u7ec3\u7684\u7c7b\u522b\u7684\u6709\u5e8f": 90, "\u4eba\u7c7b\u53ef\u8bfb\u5217\u8868": 90, "\u8981\u67e5\u627e\u7684\u7279\u5f81\u5217\u8868": 90, "\u662f\u4e00\u4e2a": 90, "\u4e00\u4e2a\u6570\u636e\u96c6": 90, "\u5b83\u662f\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 90, "\u8fd4\u56de\u8f93\u5165\u548c\u6807\u7b7e\u7684\u6279\u6b21": 90, "\u5c31\u50cf\u4f60\u7528\u4e8e\u8bad\u7ec3\u4e00\u6837": 90, "attr_vi": 90, "\u57fa\u7ebf\u662f\u5168\u96f6\u8f93\u5165": 90, "\u8fd9\u53ef\u80fd\u4f1a\u56e0\u4f60\u7684\u6570\u636e\u800c\u6709\u6240\u4e0d\u540c": 90, "baseline_func": 90, "\u5408\u5e76\u4e0a\u9762\u7684\u56fe\u50cf\u53d8\u6362": 90, "full_img_transform": 90, "score_func": 90, "\u7167\u7247": 90, "baseline_transform": 90, "input_transform": [90, 213], "282": 90, "849": [90, 219, 231], "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u5e76\u6ca1\u6709\u82b1\u8d39\u592a\u591a\u65f6\u95f4": 90, "\u4e0d\u50cf\u6211\u4eec\u4e4b\u524d\u7684\u5f52\u56e0\u90a3\u6837": 90, "insights\u5141\u8bb8\u4f60\u5728\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6\u4e2d\u914d\u7f6e\u4e0d\u540c\u7684\u5f52\u56e0\u7b97\u6cd5": 90, "\u4e4b\u540e\u5b83\u5c06\u8ba1\u7b97\u5e76\u663e\u793a": 90, "\u90a3\u4e2a": 90, "\u8fc7\u7a0b\u5c06\u9700\u8981\u51e0\u5206\u949f\u65f6\u95f4": 90, "\u8fd0\u884c\u4e0b\u9762\u7684\u5355\u5143\u683c\u5c06\u6e32\u67d3captum": 90, "\u7136\u540e\u4f60\u53ef\u4ee5\u9009\u62e9\u5f52\u56e0\u65b9\u6cd5\u53ca\u5176\u53c2\u6570": 90, "\u6839\u636e\u9884\u6d4b\u7684\u7c7b\u6216\u9884\u6d4b\u7684\u6b63\u786e\u6027\u8fc7\u6ee4\u6a21\u578b\u54cd\u5e94": 90, "\u67e5\u770b\u6a21\u578b\u7684\u9884\u6d4b\u53ca\u76f8\u5173\u6982\u7387": 90, "\u67e5\u770b\u5f52\u56e0\u4e0e": 90, "\u539f\u59cb\u56fe\u50cf\u7684\u70ed\u529b\u56fe": 90, "captumyt": 90, "introyt": 91, "rst": [91, 260, 262], "introyt1_tutori": [91, 92], "tensors_deeper_tutori": [91, 95], "modelsyt_tutori": [91, 93], "tensorboardyt_tutori": [91, 94], "trainingyt_tutori": 91, "captumyt_tutori": 91, "sphx_glr_beginner_introyt_modelsyt_tutori": 91, "sphx_glr_beginner_introyt_autogradyt_tutori": 91, "sphx_glr_beginner_introyt_trainingyt": 91, "sphx_glr_beginner_introyt_tensorboardyt_tutori": 91, "sphx_glr_beginner_introyt_captumyt": 91, "sphx_glr_beginner_introyt_tensors_deeper_tutori": 91, "sphx_glr_beginner_introyt_introyt1_tutori": 91, "\u4ece\u89c6\u9891\u7684": 92, "\u5f00\u59cb": [92, 93], "\u6211\u4eec\u5c06\u5bfc\u5165": 92, "\u8ba9\u6211\u4eec\u770b\u4e00\u4e9b\u57fa\u672c\u7684\u5f20\u91cf\u64cd\u4f5c": 92, "\u521b\u5efa\u5f20\u91cf\u7684\u51e0\u79cd\u65b9\u5f0f": 92, "\u4e0a\u9762": [92, 93, 94], "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a": 92, "5x3": 92, "\u7684\u96f6\u77e9\u9635": 92, "\u5e76\u67e5\u8be2\u5176\u6570\u636e\u7c7b\u578b": 92, "\u53d1\u73b0\u96f6\u662f": 92, "\u4f4d\u6d6e\u70b9\u6570": 92, "\u8fd9\u662f": [92, 93, 95], "\u7684\u9ed8\u8ba4\u8bbe\u7f6e": 92, "\u5982\u679c\u4f60\u60f3\u8981\u6574\u6570\u5462": 92, "\u53ef\u4ee5\u8986\u76d6\u9ed8\u8ba4\u8bbe\u7f6e": 92, "int16": [92, 95, 197, 234], "\u4f60\u53ef\u4ee5\u770b\u5230": [92, 93, 95], "\u5f53\u6211\u4eec\u6539\u53d8\u9ed8\u8ba4\u8bbe\u7f6e\u65f6": 92, "\u5728\u6253\u5370\u5f20\u91cf\u65f6\u4f1a\u6709\u6240\u63d0\u793a": 92, "\u901a\u5e38\u60c5\u51b5\u4e0b": 92, "\u4f1a\u4f7f\u7528\u7279\u5b9a\u7684\u79cd\u5b50\u521d\u59cb\u5316\u5b66\u4e60\u6743\u91cd": 92, "\u4ee5\u786e\u4fdd\u7ed3\u679c\u7684\u53ef\u91cd\u590d\u6027": 92, "1729": [92, 95], "r1": 92, "r2": 92, "\u65b0\u7684\u503c": 92, "r3": 92, "nshould": 92, "\u7531\u4e8e\u91cd\u65b0\u8bbe\u7f6e\u79cd\u5b50": 92, "\u6240\u4ee5\u4e0e": 92, "\u7684\u503c\u76f8\u540c": 92, "\u5f20\u91cf\u6267\u884c\u7b97\u672f\u8fd0\u7b97\u5f88\u76f4\u89c2": 92, "\u5f62\u72b6\u76f8\u4f3c\u7684\u5f20\u91cf\u53ef\u4ee5\u76f8\u52a0": 92, "\u76f8\u4e58\u7b49": 92, "\u4e0e\u6807\u91cf\u7684\u8fd0\u7b97\u4f1a\u5728\u6574\u4e2a\u5f20\u91cf\u4e0a\u5206\u5e03\u5f0f\u8fdb\u884c": 92, "\u6bcf\u4e2a\u5143\u7d20\u90fd\u4e58\u4ee5": 92, "\u5f62\u72b6\u76f8\u4f3c": 92, "\u56e0\u6b64\u5141\u8bb8\u76f8\u52a0": 92, "\u5f20\u91cf\u6309\u5143\u7d20\u76f8\u52a0": 92, "\u8fd9\u4e0e\u8f93\u5165\u5f20\u91cf\u5177\u6709\u76f8\u540c\u7684\u7ef4\u5ea6": 92, "\u53d6\u6d88\u6ce8\u91ca\u8fd9\u4e00\u884c\u4f1a\u5bfc\u81f4\u8fd0\u884c\u65f6\u9519\u8bef": 92, "\u8fd9\u91cc\u662f\u4e00\u4e9b\u53ef\u7528\u7684\u6570\u5b66\u8fd0\u7b97\u793a\u4f8b": 92, "\u503c\u5728": 92, "\u4e4b\u95f4": 92, "\u652f\u6301\u5e38\u89c1\u7684\u6570\u5b66\u8fd0\u7b97": 92, "nabsolut": 92, "\u4ee5\u53ca\u4e09\u89d2\u51fd\u6570": 92, "ninvers": 92, "asin": [92, 95], "\u548c\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97": 92, "\u5982\u884c\u5217\u5f0f\u548c\u5947\u5f02\u503c\u5206\u89e3": 92, "ndetermin": 92, "det": [92, 102, 153], "nsingular": 92, "decomposit": [92, 144], "svd": [92, 95], "\u4ee5\u53ca\u7edf\u8ba1\u548c\u805a\u5408\u8fd0\u7b97": 92, "naverag": 92, "std_mean": 92, "nmaximum": 92, "\u5173\u4e8e": 92, "\u5f20\u91cf\u7684\u5f3a\u5927\u529f\u80fd\u8fd8\u6709\u5f88\u591a\u9700\u8981\u4e86\u89e3": 92, "\u5305\u62ec\u5982\u4f55\u4e3a": 92, "\u4e0a\u7684\u5e76\u884c\u8ba1\u7b97\u8bbe\u7f6e\u5b83\u4eec": 92, "\u6211\u4eec\u5c06\u5728\u53e6\u4e00\u4e2a\u89c6\u9891\u4e2d\u6df1\u5165\u63a2\u8ba8": 92, "\u8ba9\u6211\u4eec\u8ba8\u8bba\u4e00\u4e0b\u5982\u4f55\u5728": 92, "\u4e2d\u8868\u793a\u6a21\u578b": 92, "\u6a21\u578b\u7684\u7236\u5bf9\u8c61": 92, "\u7528\u4e8e\u6fc0\u6d3b\u51fd\u6570": 92, "\u56fe": 92, "\u4e0a\u56fe\u662f": 92, "\u7684\u793a\u610f\u56fe": 92, "\u5b83\u662f\u6700\u65e9\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u4e4b\u4e00": 92, "\u4e5f\u662f\u6df1\u5ea6\u5b66\u4e60\u7206\u53d1\u5f0f\u53d1\u5c55\u7684\u9a71\u52a8\u529b\u4e4b\u4e00": 92, "\u5b83\u88ab\u6784\u5efa\u7528\u4e8e\u8bfb\u53d6\u624b\u5199\u6570\u5b57\u7684\u5c0f\u56fe\u50cf": 92, "\u5e76\u6b63\u786e\u5206\u7c7b\u56fe\u50cf\u4e2d\u8868\u793a\u7684\u6570\u5b57": 92, "\u5b83\u5de5\u4f5c\u539f\u7406\u7684\u7b80\u8ff0\u4e3a": 92, "\u662f\u4e00\u4e2a\u5377\u79ef\u5c42": 92, "\u5b83\u5728\u8f93\u5165\u56fe\u50cf\u4e2d\u626b\u63cf\u5b83\u5728\u8bad\u7ec3\u671f\u95f4\u5b66\u4e60\u5230\u7684\u7279\u5f81": 92, "\u5b83\u8f93\u51fa\u4e00\u4e2a\u7279\u5f81\u6fc0\u6d3b\u56fe": 92, "\u63cf\u8ff0\u5b83\u5728\u56fe\u50cf\u4e2d\u770b\u5230\u6bcf\u4e2a\u5b66\u4e60\u5230\u7684\u7279\u5f81\u7684\u4f4d\u7f6e": 92, "\u6fc0\u6d3b\u56fe": 92, "\u5728\u5c42": 92, "\u4e2d\u88ab\u4e0b\u91c7\u6837": 92, "\u662f\u53e6\u4e00\u4e2a\u5377\u79ef\u5c42": 92, "\u8fd9\u6b21\u626b\u63cf": 92, "\u7684\u6fc0\u6d3b\u56fe\u4ee5\u67e5\u627e\u7279\u5f81\u7ec4\u5408": 92, "\u5b83\u4e5f\u8f93\u51fa\u4e00\u4e2a\u6fc0\u6d3b\u56fe": 92, "\u63cf\u8ff0\u8fd9\u4e9b\u7279\u5f81\u7ec4\u5408\u7684\u7a7a\u95f4\u4f4d\u7f6e": 92, "\u8be5\u6fc0\u6d3b\u56fe\u5728\u5c42": 92, "\u6700\u540e\u7684\u5168\u8fde\u63a5\u5c42": 92, "\u662f\u4e00\u4e2a\u5206\u7c7b\u5668": 92, "\u5b83\u5c06\u6700\u7ec8\u7684\u6fc0\u6d3b\u56fe\u5206\u7c7b\u4e3a": 92, "\u4e2a": 92, "\u4e2d\u7684\u4e00\u4e2a": 92, "\u8868\u793a": 92, "\u4e2a\u6570\u5b57": 92, "\u6211\u4eec\u5982\u4f55\u5728\u4ee3\u7801\u4e2d\u8868\u793a\u8fd9\u4e2a\u7b80\u5355\u7684\u795e\u7ecf\u7f51\u7edc\u5462": 92, "\u4e2a\u8f93\u5165\u56fe\u50cf\u901a\u9053": 92, "\u9ed1\u767d": [92, 93], "\u4e2a\u8f93\u51fa\u901a\u9053": [92, 93], "\u7684\u6b63\u65b9\u5f62\u5377\u79ef\u6838": 92, "\u4e00\u4e2a\u4eff\u5c04\u64cd\u4f5c": [92, 93], "\u7a97\u53e3\u4e0a\u8fdb\u884c\u6700\u5927\u6c60\u5316": [92, 93], "\u5982\u679c\u5c3a\u5bf8\u662f\u6b63\u65b9\u5f62": [92, 93], "\u4f60\u53ea\u9700\u6307\u5b9a\u4e00\u4e2a\u6570\u5b57": [92, 93], "num_flat_featur": [92, 93], "\u9664\u6279\u6b21\u7ef4\u5ea6\u5916\u7684\u6240\u6709\u7ef4\u5ea6": [92, 93], "num_featur": [92, 93, 129], "\u67e5\u770b\u8fd9\u6bb5\u4ee3\u7801": 92, "\u4f60\u5e94\u8be5\u80fd\u591f\u53d1\u73b0\u4e00\u4e9b\u4e0e\u4e0a\u56fe\u7ed3\u6784\u76f8\u4f3c\u7684\u5730\u65b9": 92, "\u8fd9\u6f14\u793a\u4e86\u5178\u578b": 92, "\u6a21\u578b\u7684\u7ed3\u6784": 92, "\u5b83\u7ee7\u627f\u81ea": 92, "\u6a21\u5757\u53ef\u4ee5\u5d4c\u5957": 92, "\u5373\u4f7f": 92, "\u5c42\u7c7b\u4e5f\u7ee7\u627f\u81ea": 92, "\u4e00\u4e2a\u6a21\u578b\u5c06\u6709\u4e00\u4e2a": 92, "\u5728\u8fd9\u91cc\u5b83\u5b9e\u4f8b\u5316\u5176\u5c42": 92, "\u5e76\u52a0\u8f7d\u4efb\u4f55\u5b83\u53ef\u80fd\u9700\u8981\u7684\u6570\u636e\u7ec4\u4ef6": 92, "\u6a21\u578b\u53ef\u80fd\u52a0\u8f7d\u8bcd\u6c47\u8868": 92, "\u8fd9\u662f\u5b9e\u9645\u8ba1\u7b97\u53d1\u751f\u7684\u5730\u65b9": 92, "\u8f93\u5165\u901a\u8fc7\u7f51\u7edc\u5c42\u548c\u5404\u79cd\u51fd\u6570\u751f\u6210\u8f93\u51fa": 92, "\u9664\u6b64\u4e4b\u5916": 92, "\u4f60\u53ef\u4ee5\u50cf\u6784\u5efa\u4efb\u4f55\u5176\u4ed6": 92, "\u7c7b\u4e00\u6837\u6784\u5efa\u4f60\u7684\u6a21\u578b\u7c7b": 92, "\u6dfb\u52a0\u4efb\u4f55\u4f60\u9700\u8981\u652f\u6301\u6a21\u578b\u8ba1\u7b97\u7684\u5c5e\u6027\u548c\u65b9\u6cd5": 92, "\u8ba9\u6211\u4eec\u5b9e\u4f8b\u5316\u8fd9\u4e2a\u5bf9\u8c61\u5e76\u8fd0\u884c\u4e00\u4e2a\u793a\u4f8b\u8f93\u5165": 92, "\u5bf9\u8c61\u6253\u5370\u4e86\u4ec0\u4e48\u4fe1\u606f": 92, "\u7684\u9ed1\u767d\u56fe\u50cf": [92, 93, 104], "nimag": 92, "\u4e0d\u76f4\u63a5\u8c03\u7528": 92, "nraw": 92, "\u5982\u4e0a\u4ee3\u7801\u5b58\u5728\u4e00\u4e9b\u8981\u70b9": 92, "\u6211\u4eec\u5b9e\u4f8b\u5316": 92, "\u7c7b": [92, 93, 104, 246], "\u5e76\u6253\u5370": 92, "\u7684\u5b50\u7c7b\u5c06\u62a5\u544a\u5b83\u521b\u5efa\u7684\u5c42\u53ca\u5176\u5f62\u72b6\u548c\u53c2\u6570": 92, "\u8fd9\u53ef\u4ee5\u63d0\u4f9b\u4e00\u4e2a\u6a21\u578b\u7684\u6982\u89c8": 92, "\u5982\u679c\u4f60\u60f3\u4e86\u89e3\u5b83\u7684\u5904\u7406\u8fc7\u7a0b": 92, "\u5728\u4e0b\u9762": [92, 95], "\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u865a\u62df\u8f93\u5165": 92, "\u8868\u793a\u4e00\u4e2a": 92, "\u7684\u5355\u901a\u9053\u56fe\u50cf": 92, "\u4f60\u4f1a\u52a0\u8f7d\u4e00\u4e2a\u56fe\u50cf\u5207\u7247\u5e76\u5c06\u5176\u8f6c\u6362\u4e3a\u8fd9\u79cd\u5f62\u72b6\u7684\u5f20\u91cf": 92, "\u4f60\u53ef\u80fd\u5df2\u7ecf\u6ce8\u610f\u5230\u6211\u4eec\u7684\u5f20\u91cf\u6709\u4e00\u4e2a\u989d\u5916\u7684\u7ef4\u5ea6": 92, "\u6279\u6b21\u7ef4\u5ea6": 92, "\u6a21\u578b\u5047\u8bbe\u5b83\u4eec\u6b63\u5728\u5904\u7406\u6570\u636e": 92, "\u6279\u6b21": [92, 95, 96], "\u5305\u542b": [92, 104], "\u4e2a\u56fe\u50cf\u5207\u7247\u7684\u6279\u6b21\u5c06\u5177\u6709\u5f62\u72b6": 92, "\u7531\u4e8e\u6211\u4eec\u53ea\u4f7f\u7528\u4e00\u4e2a\u56fe\u50cf": 92, "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a\u5f62\u72b6\u4e3a": 92, "\u7684\u6279\u6b21": 92, "\u6211\u4eec\u901a\u8fc7\u50cf\u51fd\u6570\u4e00\u6837\u8c03\u7528\u5b83\u6765\u8981\u6c42\u6a21\u578b\u8fdb\u884c\u63a8\u7406": 92, "\u8fd9\u4e2a\u8c03\u7528\u7684\u8f93\u51fa\u8868\u793a\u6a21\u578b\u5bf9\u8f93\u5165\u8868\u793a\u7279\u5b9a\u6570\u5b57\u7684\u7f6e\u4fe1\u5ea6": 92, "\u7531\u4e8e\u8fd9\u4e2a\u6a21\u578b\u5b9e\u4f8b\u8fd8\u6ca1\u6709\u5b66\u4e60\u4efb\u4f55\u4e1c\u897f": 92, "\u6211\u4eec\u4e0d\u5e94\u8be5\u671f\u671b\u5728\u8f93\u51fa\u4e2d\u770b\u5230\u4efb\u4f55\u4fe1\u53f7": 92, "\u67e5\u770b": [92, 236], "\u7684\u5f62\u72b6": 92, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u4e5f\u6709\u4e00\u4e2a\u6279\u6b21\u7ef4\u5ea6": 92, "\u5176\u5927\u5c0f\u5e94\u8be5\u59cb\u7ec8\u4e0e\u8f93\u5165\u6279\u6b21\u7ef4\u5ea6\u76f8\u5339\u914d": 92, "\u5982\u679c\u6211\u4eec\u4f20\u5165\u4e86\u4e00\u4e2a\u5305\u542b": 92, "\u4e2a\u5b9e\u4f8b\u7684\u8f93\u5165\u6279\u6b21": 92, "\u5c06\u5177\u6709": 92, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u4f7f\u7528": 92, "\u4e2d\u7684\u4e00\u4e2a\u53ef\u4e0b\u8f7d\u7684\u5f00\u653e\u8bbf\u95ee\u6570\u636e\u96c6": 92, "\u5982\u4f55\u8f6c\u6362\u56fe\u50cf\u4ee5\u4f9b\u4f60\u7684\u6a21\u578b\u4f7f\u7528": 92, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528": 92, "\u5c06\u6570\u636e\u6279\u6b21\u63d0\u4f9b\u7ed9\u4f60\u7684\u6a21\u578b": 92, "\u6211\u4eec\u9700\u8981\u505a\u7684\u7b2c\u4e00\u4ef6\u4e8b\u662f\u5c06\u4f20\u5165\u7684\u56fe\u50cf\u8f6c\u6362\u4e3a": 92, "4914": 92, "4822": 92, "4465": 92, "2470": 92, "2435": 92, "2616": 92, "\u6211\u4eec\u4e3a\u8f93\u5165\u6307\u5b9a\u4e86\u4e24\u79cd\u8f6c\u6362": 92, "\u52a0\u8f7d\u7684\u56fe\u50cf\u8f6c\u6362\u4e3a": 92, "\u8c03\u6574\u5f20\u91cf\u7684\u503c": 92, "\u4f7f\u5176\u5e73\u5747\u503c\u4e3a\u96f6": 92, "\u6807\u51c6\u5dee\u4e3a": 92, "\u5927\u591a\u6570\u6fc0\u6d3b\u51fd\u6570\u5728": 92, "\u9644\u8fd1\u5177\u6709\u6700\u5f3a\u68af\u5ea6": [92, 93], "\u56e0\u6b64\u5c06\u6211\u4eec\u7684\u6570\u636e\u5c45\u4e2d\u53ef\u4ee5\u52a0\u5feb\u5b66\u4e60\u901f\u5ea6": 92, "\u4f20\u9012\u7ed9\u8f6c\u6362\u7684\u503c\u662f\u6570\u636e\u96c6\u4e2d\u56fe\u50cf\u7684": 92, "\u503c\u7684\u5747\u503c": 92, "\u7b2c\u4e00\u4e2a\u5143\u7ec4": 92, "\u548c\u6807\u51c6\u5dee": 92, "\u7b2c\u4e8c\u4e2a\u5143\u7ec4": 92, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u8fd0\u884c\u4ee5\u4e0b\u51e0\u884c\u4ee3\u7801\u81ea\u5df1\u8ba1\u7b97\u8fd9\u4e9b\u503c": 92, "concatdataset": 92, "\u5c06\u6240\u6709\u8bad\u7ec3\u56fe\u50cf\u5806\u53e0\u6210\u5f62\u72b6\u4e3a": 92, "50000": 92, "\u83b7\u53d6\u6bcf\u4e2a\u901a\u9053\u7684\u5747\u503c": 92, "\u8fd8\u6709\u8bb8\u591a\u5176\u4ed6\u53ef\u7528\u7684\u8f6c\u6362": 92, "\u5305\u62ec\u88c1\u526a": 92, "\u5c45\u4e2d": 92, "\u65cb\u8f6c\u548c\u53cd\u5c04": 92, "\u6211\u4eec\u5c06\u521b\u5efa": 92, "\u6570\u636e\u96c6\u7684\u4e00\u4e2a\u5b9e\u4f8b": 92, "\u8fd9\u662f\u4e00\u7ec4": 92, "\u7684\u5f69\u8272\u56fe\u50cf\u5207\u7247": 92, "\u4ee3\u8868": [92, 95], "\u7c7b\u7269\u4f53": 92, "\u79cd\u52a8\u7269": 92, "\u9e1f": 92, "\u732b": 92, "\u9e7f": 92, "\u72d7": 92, "\u9752\u86d9": 92, "\u9a6c": 92, "\u79cd\u8f66\u8f86": 92, "\u98de\u673a": 92, "\u6c7d\u8f66": 92, "\u8239": 92, "\u5361\u8f66": 92, "\u5f53\u4f60\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u65f6": 92, "\u5b83\u53ef\u80fd\u9700\u8981\u4e00\u4e9b\u65f6\u95f4\u6765\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u8fd9\u662f\u5728": 92, "\u4e2d\u521b\u5efa\u6570\u636e\u96c6\u5bf9\u8c61\u7684\u4e00\u4e2a\u793a\u4f8b": 92, "\u53ef\u4e0b\u8f7d\u7684\u6570\u636e\u96c6": 92, "\u5982\u4e0a\u9762\u7684": 92, "\u7c7b\u5305\u62ec": 92, "\u4e2d\u7684\u53ef\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u4ee5\u53ca\u8bf8\u5982": 92, "\u4e4b\u7c7b\u7684\u5b9e\u7528\u7a0b\u5e8f\u6570\u636e\u96c6\u7c7b": 92, "\u5b83\u5c06\u8bfb\u53d6\u4e00\u4e2a\u6807\u8bb0\u8fc7\u7684\u56fe\u50cf\u6587\u4ef6\u5939": 92, "\u4f60\u4e5f\u53ef\u4ee5\u521b\u5efa": 92, "\u7684\u81ea\u5df1\u7684\u5b50\u7c7b": 92, "\u5f53\u6211\u4eec\u5b9e\u4f8b\u5316\u6211\u4eec\u7684\u6570\u636e\u96c6\u65f6": 92, "\u6211\u4eec\u9700\u8981\u544a\u8bc9\u5b83\u4e00\u4e9b\u4e8b\u60c5": 92, "\u6211\u4eec\u5e0c\u671b\u6570\u636e\u5b58\u653e\u7684\u6587\u4ef6\u7cfb\u7edf\u8def\u5f84": 92, "\u6211\u4eec\u662f\u5426\u4f7f\u7528\u8fd9\u4e2a\u96c6\u5408\u8fdb\u884c\u8bad\u7ec3": 92, "\u5927\u591a\u6570\u6570\u636e\u96c6\u5c06\u88ab\u5206\u4e3a\u8bad\u7ec3\u548c\u6d4b\u8bd5\u5b50\u96c6": 92, "\u5982\u679c\u6211\u4eec\u8fd8\u6ca1\u6709\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u6211\u4eec\u662f\u5426\u5e0c\u671b\u4e0b\u8f7d\u5b83": 92, "\u6211\u4eec\u60f3\u5bf9\u6570\u636e\u5e94\u7528\u54ea\u4e9b\u8f6c\u6362": 92, "\u4e00\u65e6\u4f60\u7684\u6570\u636e\u96c6\u51c6\u5907\u5c31\u7eea": 92, "\u4f60\u5c31\u53ef\u4ee5\u5c06\u5b83\u4ea4\u7ed9": 92, "\u7684\u5b50\u7c7b\u5305\u88c5\u4e86\u5bf9\u6570\u636e\u7684\u8bbf\u95ee": 92, "\u5e76\u4e13\u95e8\u9488\u5bf9\u5b83\u6b63\u5728\u670d\u52a1\u7684\u6570\u636e\u7c7b\u578b": 92, "\u5bf9\u5b83\u6b63\u5728\u670d\u52a1\u7684\u6570\u636e\u4e00\u65e0\u6240\u77e5": 92, "\u4f46\u4f1a\u6839\u636e\u4f60\u6307\u5b9a\u7684\u53c2\u6570\u5c06": 92, "\u63d0\u4f9b\u7684\u8f93\u5165\u5f20\u91cf\u7ec4\u7ec7\u6210\u6279\u6b21": 92, "\u5728\u4e0a\u9762\u7684\u793a\u4f8b\u4e2d": [92, 111], "\u6211\u4eec\u8981\u6c42\u4e00\u4e2a": 92, "\u4e2d\u7ed9\u6211\u4eec\u6279\u6b21\u5927\u5c0f\u4e3a": 92, "\u968f\u673a\u6253\u4e71\u5b83\u4eec\u7684\u987a\u5e8f": 92, "\u5e76\u544a\u8bc9\u5b83\u542f\u52a8\u4e24\u4e2a\u5de5\u4f5c\u8fdb\u7a0b\u4ece\u78c1\u76d8\u52a0\u8f7d\u6570\u636e": 92, "\u53ef\u89c6\u5316\u4f60\u7684": 92, "\u63d0\u4f9b\u7684\u6279\u6b21\u662f\u4e00\u4e2a\u5f88\u597d\u7684\u505a\u6cd5": 92, "\u83b7\u53d6\u4e00\u4e9b\u968f\u673a\u8bad\u7ec3\u56fe\u50cf": 92, "\u663e\u793a\u56fe\u50cf": 92, "\u6253\u5370\u6807\u7b7e": 92, "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u5e94\u8be5\u4f1a\u663e\u793a\u4f60\u4e00\u6761\u56db\u5f20\u56fe\u50cf\u7684\u6761\u5e26": 92, "\u4ee5\u53ca\u6bcf\u5f20\u56fe\u50cf\u7684\u6b63\u786e\u6807\u7b7e": 92, "\u8ba9\u6211\u4eec\u628a\u6240\u6709\u7684\u90e8\u5206\u653e\u5728\u4e00\u8d77": 92, "\u8bad\u7ec3\u4e00\u4e2a\u6a21\u578b": 92, "\u6211\u4eec\u9700\u8981\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u636e\u96c6": 92, "\u5982\u679c\u4f60\u8fd8\u6ca1\u6709": 92, "\u8fd0\u884c\u4e0b\u9762\u7684\u5355\u5143\u683c\u6765\u786e\u4fdd\u6570\u636e\u96c6\u5df2\u4e0b\u8f7d": 92, "\u53ef\u80fd\u9700\u8981\u4e00\u5206\u949f": 92, "\u8fd0\u884c\u5bf9": 92, "\u8f93\u51fa\u7684\u68c0\u67e5": 92, "\u8fd9\u662f\u6211\u4eec\u5c06\u8981\u8bad\u7ec3\u7684\u6a21\u578b": 92, "\u5982\u679c\u5b83\u770b\u8d77\u6765\u5f88\u719f\u6089": 92, "\u90a3\u662f\u56e0\u4e3a\u5b83\u662f": 92, "\u7684\u4e00\u4e2a\u53d8\u4f53": 92, "\u5728\u672c\u89c6\u9891\u524d\u9762\u8ba8\u8bba\u8fc7": 92, "\u9002\u7528\u4e8e": 92, "\u8272\u56fe\u50cf": 92, "\u6211\u4eec\u6700\u540e\u9700\u8981\u7684\u662f\u4e00\u4e2a\u635f\u5931\u51fd\u6570\u548c\u4e00\u4e2a\u4f18\u5316\u5668": 92, "\u5982\u672c\u89c6\u9891\u524d\u9762\u6240\u8ba8\u8bba\u7684": 92, "\u662f\u8861\u91cf\u6a21\u578b\u9884\u6d4b\u4e0e\u7406\u60f3\u8f93\u51fa\u4e4b\u95f4\u5dee\u8ddd\u7684\u6307\u6807": 92, "\u4ea4\u53c9\u71b5\u635f\u5931\u662f\u50cf\u6211\u4eec\u8fd9\u6837\u7684\u5206\u7c7b\u6a21\u578b\u7684\u5178\u578b\u635f\u5931\u51fd\u6570": 92, "\u662f\u9a71\u52a8\u5b66\u4e60\u7684\u5173\u952e": 92, "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a\u5b9e\u73b0": 92, "\u968f\u673a\u68af\u5ea6\u4e0b\u964d": 92, "\u7684\u4f18\u5316\u5668": 92, "\u8fd9\u662f\u6700\u76f4\u63a5\u7684\u4f18\u5316\u7b97\u6cd5\u4e4b\u4e00": 92, "\u9664\u4e86\u7b97\u6cd5\u7684\u53c2\u6570": 92, "\u5982\u5b66\u4e60\u7387": 92, "\u548c\u52a8\u91cf": 92, "\u4e4b\u5916": [92, 93], "\u6211\u4eec\u8fd8\u4f20\u5165\u4e86": 92, "\u5b83\u662f\u6a21\u578b\u4e2d\u6240\u6709\u5b66\u4e60\u6743\u91cd\u7684\u96c6\u5408": 92, "\u8fd9\u662f\u4f18\u5316\u5668\u8981\u8c03\u6574\u7684\u5bf9\u8c61": 92, "\u6240\u6709\u8fd9\u4e9b\u90fd\u88ab\u7ec4\u88c5\u5230\u8bad\u7ec3\u5faa\u73af\u4e2d": 92, "\u7ee7\u7eed\u8fd0\u884c\u8fd9\u4e2a\u5355\u5143\u683c": 92, "\u5b83\u53ef\u80fd\u9700\u8981\u51e0\u5206\u949f\u624d\u80fd\u6267\u884c": 92, "\u5728\u6570\u636e\u96c6\u4e0a\u5faa\u73af\u591a\u6b21": [92, 94], "\u83b7\u53d6\u8f93\u5165": [92, 250], "\u5c06\u53c2\u6570\u68af\u5ea6\u5f52\u96f6": 92, "\u53cd\u5411": [92, 250], "\u6253\u5370\u7edf\u8ba1\u4fe1\u606f": [92, 250], "\u6bcf": 92, "\u4e2a\u5c0f\u6279\u6b21\u6253\u5370\u4e00\u6b21": 92, "\u6211\u4eec\u53ea\u8fdb\u884c\u4e86": 92, "\u4e2a\u8bad\u7ec3\u8f6e\u6b21": 92, "\u7b2c": 92, "\u884c": 92, "\u4e5f\u5c31\u662f\u5728\u8bad\u7ec3\u6570\u636e\u96c6\u4e0a\u8fdb\u884c\u4e86\u4e24\u6b21\u5b8c\u6574\u904d\u5386": 92, "\u6bcf\u6b21\u904d\u5386\u90fd\u6709\u4e00\u4e2a\u5185\u90e8\u5faa\u73af": 92, "\u904d\u5386\u8bad\u7ec3\u6570\u636e": 92, "\u63d0\u4f9b\u7ecf\u8fc7\u8f6c\u6362\u7684\u8f93\u5165\u56fe\u50cf\u6279\u6b21\u53ca\u5176\u6b63\u786e\u6807\u7b7e": 92, "\u5c06\u68af\u5ea6\u5f52\u96f6": [92, 96], "\u662f\u4e00\u4e2a\u91cd\u8981\u6b65\u9aa4": 92, "\u68af\u5ea6\u4f1a\u5728\u4e00\u4e2a\u6279\u6b21\u4e0a\u7d2f\u79ef": 92, "\u5982\u679c\u6211\u4eec\u4e0d\u4e3a\u6bcf\u4e2a\u6279\u6b21\u91cd\u7f6e\u5b83\u4eec": 92, "\u5b83\u4eec\u5c06\u7ee7\u7eed\u7d2f\u79ef": 92, "\u4ece\u800c\u63d0\u4f9b\u9519\u8bef\u7684\u68af\u5ea6\u503c": 92, "\u4f7f\u5b66\u4e60\u53d8\u5f97\u4e0d\u53ef\u80fd": 92, "\u5728\u7b2c": 92, "\u6211\u4eec": 92, "\u8981\u6c42\u6a21\u578b\u5bf9\u8fd9\u4e2a\u6279\u6b21\u8fdb\u884c\u9884\u6d4b": 92, "\u5728\u4e0b\u4e00\u884c": 92, "\u6211\u4eec\u8ba1\u7b97\u635f\u5931": 92, "\u6a21\u578b\u9884\u6d4b": 92, "\u6b63\u786e\u8f93\u51fa": 92, "\u4e4b\u95f4\u7684\u5dee\u5f02": 92, "\u6211\u4eec\u8fdb\u884c": 92, "\u4f20\u64ad": 92, "\u8ba1\u7b97\u5c06\u6307\u5bfc\u5b66\u4e60\u7684\u68af\u5ea6": 92, "\u4f18\u5316\u5668\u6267\u884c\u4e00\u6b65\u5b66\u4e60": 92, "\u5b83\u4f7f\u7528": 92, "\u8c03\u7528\u5f97\u5230\u7684\u68af\u5ea6\u6765\u8c03\u6574\u5b66\u4e60\u6743\u91cd": 92, "\u4ee5\u51cf\u5c0f\u635f\u5931": 92, "\u5faa\u73af\u7684\u5176\u4f59\u90e8\u5206\u5bf9\u8f6e\u6b21\u53f7": 92, "\u5df2\u5b8c\u6210\u7684\u8bad\u7ec3\u5b9e\u4f8b\u6570\u4ee5\u53ca\u8bad\u7ec3\u5faa\u73af\u4e2d\u6536\u96c6\u7684\u635f\u5931\u8fdb\u884c\u4e86\u4e00\u4e9b\u8f7b\u91cf\u7ea7\u62a5\u544a": 92, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u7c7b\u4f3c\u8fd9\u6837\u7684\u8f93\u51fa": 92, "235": [92, 109], "940": 92, "6000": 92, "8000": [92, 246], "573": 92, "507": 92, "12000": 92, "442": 92, "378": 92, "364": 92, "319": [92, 219, 238], "284": [92, 163], "267": 92, "\u6ce8\u610f\u635f\u5931\u503c\u662f\u5355\u8c03\u4e0b\u964d\u7684": 92, "\u8868\u660e\u6211\u4eec\u7684\u6a21\u578b\u5728\u7ee7\u7eed\u63d0\u9ad8\u5176\u5728\u8bad\u7ec3\u6570\u636e\u96c6\u4e0a\u7684\u6027\u80fd": 92, "\u4f5c\u4e3a\u6700\u540e\u4e00\u6b65": 92, "\u6211\u4eec\u5e94\u8be5\u68c0\u67e5\u6a21\u578b\u662f\u5426\u771f\u6b63\u505a\u5230\u4e86": 92, "\u6cdb\u5316": 92, "\u5b66\u4e60": [92, 104], "\u800c\u4e0d\u662f\u7b80\u5355\u5730": 92, "\u8bb0\u4f4f": 92, "\u4e86\u6570\u636e\u96c6": 92, "\u8fd9\u88ab\u79f0\u4e3a": 92, "\u8fc7\u62df\u5408": 92, "\u901a\u5e38\u8868\u660e\u6570\u636e\u96c6\u592a\u5c0f": 92, "\u6ca1\u6709\u8db3\u591f\u7684\u6837\u672c\u8fdb\u884c\u6cdb\u5316\u5b66\u4e60": 92, "\u6216\u8005\u6a21\u578b\u7684\u5b66\u4e60\u53c2\u6570\u6bd4\u6b63\u786e\u5efa\u6a21\u6570\u636e\u96c6\u6240\u9700\u7684\u66f4\u591a": 92, "\u8fd9\u5c31\u662f\u4e3a\u4ec0\u4e48\u6570\u636e\u96c6\u88ab\u5206\u4e3a\u8bad\u7ec3\u548c\u6d4b\u8bd5\u5b50\u96c6\u7684\u539f\u56e0": 92, "\u4e3a\u4e86\u6d4b\u8bd5\u6a21\u578b\u7684\u6cdb\u5316\u80fd\u529b": 92, "\u6211\u4eec\u8981\u6c42\u5b83\u5bf9\u4ece\u672a\u8bad\u7ec3\u8fc7\u7684\u6570\u636e\u8fdb\u884c\u9884\u6d4b": 92, "\u5982\u679c\u4f60\u4e00\u76f4\u8ddf\u968f\u4e0b\u6765": 92, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u6a21\u578b\u5728\u8fd9\u4e00\u70b9\u4e0a\u7684\u51c6\u786e\u7387\u5927\u7ea6\u4e3a": 92, "\u8fd9\u5e76\u4e0d\u662f\u6700\u5148\u8fdb\u7684\u6c34\u5e73": 92, "\u4f46\u6bd4\u968f\u673a\u8f93\u51fa\u7684": 92, "\u51c6\u786e\u7387\u8981\u597d\u5f97\u591a": 92, "\u8fd9\u8bc1\u660e\u4e86\u6a21\u578b\u786e\u5b9e\u53d1\u751f\u4e86\u4e00\u4e9b\u6cdb\u5316\u5b66\u4e60": 92, "\u5728\u8fd9\u4e2a\u89c6\u9891\u4e2d": 93, "\u6211\u4eec\u5c06\u8ba8\u8bba": 93, "\u63d0\u4f9b\u7684\u4e00\u4e9b\u7528\u4e8e\u6784\u5efa\u6df1\u5ea6\u5b66\u4e60\u7f51\u7edc\u7684\u5de5\u5177": 93, "\u9664\u4e86": 93, "\u6211\u4eec\u5728\u672c\u89c6\u9891\u4e2d\u8ba8\u8bba\u7684\u6240\u6709\u7c7b\u90fd\u662f": 93, "\u7684\u57fa\u7c7b": 93, "\u65e8\u5728\u5c01\u88c5\u7279\u5b9a\u4e8e": 93, "\u6a21\u578b\u53ca\u5176\u7ec4\u4ef6\u7684\u884c\u4e3a": 93, "\u7684\u4e00\u4e2a\u91cd\u8981\u884c\u4e3a\u662f\u6ce8\u518c\u53c2\u6570": 93, "\u5982\u679c\u7279\u5b9a\u7684": 93, "\u5b50\u7c7b\u5177\u6709\u5b66\u4e60\u6743\u91cd": 93, "\u8fd9\u4e9b\u6743\u91cd\u5c06\u8868\u793a\u4e3a": 93, "\u7c7b\u662f": 93, "\u5177\u6709\u7279\u6b8a\u884c\u4e3a": 93, "\u5373\u5f53\u5b83\u4eec\u88ab\u5206\u914d\u4e3a": 93, "\u7684\u5c5e\u6027\u65f6": 93, "\u5b83\u4eec\u5c06\u88ab\u6dfb\u52a0\u5230\u8be5\u6a21\u5757\u7684\u53c2\u6570\u5217\u8868\u4e2d": 93, "\u7c7b\u4e0a\u7684": 93, "\u65b9\u6cd5\u8bbf\u95ee\u8fd9\u4e9b\u53c2\u6570": 93, "\u4f5c\u4e3a\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50": 93, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684\u6a21\u578b": 93, "\u5305\u542b\u4e24\u4e2a\u7ebf\u6027\u5c42\u548c\u4e00\u4e2a\u6fc0\u6d3b\u51fd\u6570": 93, "\u6211\u4eec\u5c06\u521b\u5efa\u5b83\u7684\u4e00\u4e2a\u5b9e\u4f8b": 93, "\u5e76\u8981\u6c42\u5b83\u62a5\u544a\u5176\u53c2\u6570": 93, "linear1": [93, 103], "linear2": [93, 103], "njust": 93, "nmodel": 93, "\u8fd9\u663e\u793a\u4e86": 93, "\u6a21\u578b\u7684\u57fa\u672c\u7ed3\u6784": 93, "\u65b9\u6cd5\u5b9a\u4e49\u6a21\u578b\u7684\u5c42\u548c\u5176\u4ed6\u7ec4\u4ef6": 93, "\u8fd8\u6709\u4e00\u4e2a": 93, "\u65b9\u6cd5\u6267\u884c\u8ba1\u7b97": 93, "\u6ce8\u610f\u6211\u4eec\u53ef\u4ee5\u6253\u5370\u6a21\u578b\u6216\u4efb\u4f55\u5b50\u6a21\u5757": 93, "\u4ee5\u4e86\u89e3\u5176\u7ed3\u6784": 93, "\u6700\u57fa\u672c\u7684\u795e\u7ecf\u7f51\u7edc\u5c42\u7c7b\u578b\u662f": 93, "\u7ebf\u6027": 93, "\u5168\u8fde\u63a5": 93, "\u8fd9\u662f\u4e00\u79cd\u6bcf\u4e2a\u8f93\u5165\u90fd\u4f1a\u5f71\u54cd\u8be5\u5c42\u6bcf\u4e2a\u8f93\u51fa\u7684\u5c42": 93, "\u5176\u5f71\u54cd\u7a0b\u5ea6\u7531\u5c42\u7684\u6743\u91cd\u6307\u5b9a": 93, "\u5982\u679c\u4e00\u4e2a\u6a21\u578b\u6709": 93, "\u4e2a\u8f93\u5165\u548c": 93, "\u4e2a\u8f93\u51fa": 93, "\u6743\u91cd\u5c06\u662f\u4e00\u4e2a": 93, "\u77e9\u9635": [93, 95], "lin": [93, 99, 104, 137, 157, 172, 173, 174, 209], "nweight": 93, "noutput": 93, "\u5982\u679c\u4f60\u5c06": 93, "\u4e0e\u7ebf\u6027\u5c42\u7684\u6743\u91cd\u76f8\u4e58": 93, "\u5e76\u52a0\u4e0a\u504f\u7f6e": 93, "\u4f60\u4f1a\u53d1\u73b0\u5f97\u5230\u7684\u662f\u8f93\u51fa\u5411\u91cf": 93, "\u53e6\u4e00\u4e2a\u9700\u8981\u6ce8\u610f\u7684\u91cd\u8981\u7279\u6027\u662f": 93, "\u5f53\u6211\u4eec\u7528": 93, "\u68c0\u67e5\u5c42\u7684\u6743\u91cd\u65f6": 93, "\u5b83\u5c06\u81ea\u5df1\u62a5\u544a\u4e3a\u4e00\u4e2a": 93, "\u5e76\u8ba9\u6211\u4eec\u77e5\u9053\u5b83\u6b63\u5728\u4f7f\u7528": 93, "\u8ddf\u8e2a\u68af\u5ea6": 93, "\u4e0d\u540c\u7684\u9ed8\u8ba4\u884c\u4e3a": 93, "\u7ebf\u6027\u5c42\u5728\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u4e2d\u88ab\u5e7f\u6cdb\u4f7f\u7528": 93, "\u4f60\u4f1a\u7ecf\u5e38\u5728\u5206\u7c7b\u5668\u6a21\u578b\u7684\u672b\u7aef\u770b\u5230\u5b83\u4eec": 93, "\u5176\u4e2d\u6700\u540e\u4e00\u5c42\u5c06\u6709": 93, "\u662f\u5206\u7c7b\u5668\u6240\u5904\u7406\u7684\u7c7b\u522b\u6570": 93, "\u5377\u79ef": 93, "\u5c42\u88ab\u8bbe\u8ba1\u7528\u4e8e\u5904\u7406\u5177\u6709\u9ad8\u5ea6\u7a7a\u95f4\u76f8\u5173\u6027\u7684\u6570\u636e": 93, "\u5b83\u4eec\u5728\u8ba1\u7b97\u673a\u89c6\u89c9\u9886\u57df\u975e\u5e38\u5e38\u7528": 93, "\u7528\u4e8e\u68c0\u6d4b\u7ec4\u6210\u66f4\u9ad8\u7ea7\u7279\u5f81\u7684\u7d27\u5bc6\u7279\u5f81\u7ec4": 93, "\u5b83\u4eec\u4e5f\u51fa\u73b0\u5728\u5176\u4ed6\u4e0a\u4e0b\u6587\u4e2d": 93, "\u5e94\u7528\u7a0b\u5e8f\u4e2d": 93, "\u4e00\u4e2a\u5355\u8bcd\u7684\u76f4\u63a5\u4e0a\u4e0b\u6587": 93, "\u5373\u5e8f\u5217\u4e2d\u9644\u8fd1\u7684\u5176\u4ed6\u5355\u8bcd": 93, "\u53ef\u80fd\u4f1a\u5f71\u54cd\u53e5\u5b50\u7684\u542b\u4e49": 93, "\u6211\u4eec\u5728\u4e4b\u524d\u7684\u89c6\u9891\u4e2d\u770b\u5230\u4e86": 93, "lenet5": 93, "\u4e2d\u7684\u5377\u79ef\u5c42": 93, "\u8f93\u5165\u56fe\u50cf\u901a\u9053": 93, "\u8f93\u51fa\u901a\u9053": 93, "\u5e73\u65b9\u5377\u79ef\u6838": 93, "\u6765\u81ea\u56fe\u50cf\u7ef4\u5ea6": 93, "\u8ba9\u6211\u4eec\u5206\u89e3\u4e00\u4e0b\u8fd9\u4e2a\u6a21\u578b\u4e2d\u5377\u79ef\u5c42\u7684\u5de5\u4f5c\u539f\u7406": 93, "\u65e8\u5728\u63a5\u53d7": 93, "1x32x32": 93, "\u5377\u79ef\u5c42\u6784\u9020\u51fd\u6570\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570\u662f\u8f93\u5165\u901a\u9053\u6570": 93, "\u8fd9\u91cc\u662f": 93, "\u5982\u679c\u6211\u4eec\u6784\u5efa\u8fd9\u4e2a\u6a21\u578b\u6765\u67e5\u770b": 93, "\u8272\u5f69\u901a\u9053": 93, "\u5b83\u5c06\u662f": 93, "\u5377\u79ef\u5c42\u5c31\u50cf\u4e00\u4e2a\u626b\u63cf\u56fe\u50cf\u7684\u7a97\u53e3": 93, "\u5bfb\u627e\u5b83\u80fd\u8bc6\u522b\u7684\u6a21\u5f0f": 93, "\u8fd9\u4e9b\u6a21\u5f0f\u88ab\u79f0\u4e3a": 93, "\u7279\u5f81": 93, "\u5377\u79ef\u5c42\u7684\u4e00\u4e2a\u53c2\u6570\u662f\u6211\u4eec\u5e0c\u671b\u5b83\u5b66\u4e60\u7684\u7279\u5f81\u6570\u91cf": 93, "\u6784\u9020\u51fd\u6570\u7684\u7b2c\u4e8c\u4e2a\u53c2\u6570\u662f\u8f93\u51fa\u7279\u5f81\u7684\u6570\u91cf": 93, "\u6211\u4eec\u8981\u6c42\u6211\u4eec\u7684\u5c42\u5b66\u4e60": 93, "\u4e2a\u7279\u5f81": 93, "\u5c31\u5728\u4e0a\u9762": 93, "\u6211\u5c06\u5377\u79ef\u5c42\u6bd4\u4f5c\u4e00\u4e2a\u7a97\u53e3": 93, "\u4f46\u662f\u7a97\u53e3\u6709\u591a\u5927": 93, "\u7b2c\u4e09\u4e2a\u53c2\u6570\u662f\u7a97\u53e3\u6216\u5185\u6838\u5927\u5c0f": 93, "\u6570\u5b57": 93, "\u610f\u5473\u7740\u6211\u4eec\u9009\u62e9\u4e86\u4e00\u4e2a": 93, "\u7684\u5185\u6838": 93, "\u5982\u679c\u4f60\u5e0c\u671b\u5185\u6838\u7684\u9ad8\u5ea6\u4e0e\u5bbd\u5ea6\u4e0d\u540c": 93, "\u4f60\u53ef\u4ee5\u4e3a\u6b64\u53c2\u6570\u6307\u5b9a\u4e00\u4e2a\u5143\u7ec4": 93, "\u6765\u83b7\u5f97\u4e00\u4e2a": 93, "3x5": 93, "\u7684\u5377\u79ef\u6838": 93, "\u5377\u79ef\u5c42\u7684\u8f93\u51fa\u662f\u4e00\u4e2a": 93, "\u6fc0\u6d3b\u6620\u5c04": 93, "\u8f93\u5165\u5f20\u91cf\u4e2d\u7279\u5f81\u5b58\u5728\u7684\u7a7a\u95f4\u8868\u793a": 93, "\u5c06\u7ed9\u6211\u4eec\u4e00\u4e2a": 93, "6x28x28": 93, "\u7684\u8f93\u51fa\u5f20\u91cf": [93, 95], "\u662f\u7279\u5f81\u6570": 93, "\u662f\u6620\u5c04\u7684\u9ad8\u5ea6\u548c\u5bbd\u5ea6": 93, "\u6765\u81ea\u4e8e\u5f53\u5728": 93, "\u50cf\u7d20\u884c\u4e0a\u626b\u63cf": 93, "\u50cf\u7d20\u7a97\u53e3\u65f6": 93, "\u53ea\u6709": 93, "\u4e2a\u6709\u6548\u4f4d\u7f6e\u7684\u4e8b\u5b9e": 93, "\u6211\u4eec\u5c06\u5377\u79ef\u7684\u8f93\u51fa\u901a\u8fc7": 93, "\u7a0d\u540e\u5c06\u8ba8\u8bba\u6fc0\u6d3b\u51fd\u6570": 93, "\u7136\u540e\u901a\u8fc7\u6700\u5927\u6c60\u5316\u5c42": 93, "\u6700\u5927\u6c60\u5316\u5c42\u5c06\u6fc0\u6d3b\u6620\u5c04\u4e2d\u5f7c\u6b64\u9760\u8fd1\u7684\u7279\u5f81\u7ec4\u5408\u5728\u4e00\u8d77": 93, "\u5b83\u901a\u8fc7\u51cf\u5c0f\u5f20\u91cf\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 93, "\u5c06\u8f93\u51fa\u4e2d\u6bcf\u4e2a": 93, "\u7ec4\u7684\u5355\u5143\u683c\u5408\u5e76\u4e3a\u4e00\u4e2a\u5355\u5143\u683c": 93, "\u5e76\u5c06\u8be5\u5355\u5143\u683c\u7684\u503c\u5206\u914d\u4e3a\u7ec4\u6210\u5b83\u7684": 93, "\u4e2a\u5355\u5143\u683c\u4e2d\u7684\u6700\u5927\u503c": 93, "\u8fd9\u7ed9\u4e86\u6211\u4eec\u4e00\u4e2a\u8f83\u4f4e\u5206\u8fa8\u7387\u7684\u6fc0\u6d3b\u6620\u5c04": 93, "\u5c3a\u5bf8\u4e3a": 93, "6x14x14": 93, "\u6211\u4eec\u7684\u4e0b\u4e00\u4e2a\u5377\u79ef\u5c42": 93, "\u671f\u671b": 93, "\u4e2a\u8f93\u5165\u901a\u9053": 93, "\u5bf9\u5e94\u4e8e\u7b2c\u4e00\u5c42\u5bfb\u627e\u7684": 93, "\u6709": 93, "\u5e76\u4e14\u5185\u6838\u5927\u5c0f\u4e3a": 93, "3x3": 93, "\u5b83\u8f93\u51fa\u4e00\u4e2a": 93, "16x12x12": 93, "\u7684\u6fc0\u6d3b\u6620\u5c04": 93, "\u518d\u6b21\u901a\u8fc7\u6700\u5927\u6c60\u5316\u5c42\u51cf\u5c0f\u5230": 93, "16x6x6": 93, "\u5728\u5c06\u6b64\u8f93\u51fa\u4f20\u9012\u7ed9\u7ebf\u6027\u5c42\u4e4b\u524d": 93, "\u5b83\u88ab\u91cd\u65b0\u6574\u5f62\u4e3a\u4e00\u4e2a": 93, "576": 93, "\u5143\u7d20\u5411\u91cf": 93, "\u4f9b\u4e0b\u4e00\u5c42\u4f7f\u7528": 93, "\u6709\u9488\u5bf9": 93, "\u5f20\u91cf\u7684\u5377\u79ef\u5c42": 93, "\u5377\u79ef\u5c42\u6784\u9020\u51fd\u6570\u8fd8\u6709\u8bb8\u591a\u5176\u4ed6\u53ef\u9009\u53c2\u6570": 93, "\u5305\u62ec\u6b65\u957f\u957f\u5ea6": 93, "\u53ea\u626b\u63cf\u6bcf\u7b2c\u4e8c\u4e2a\u6216\u6bcf\u7b2c\u4e09\u4e2a\u4f4d\u7f6e": 93, "\u586b\u5145": 93, "\u56e0\u6b64\u4f60\u53ef\u4ee5\u626b\u63cf\u5230\u8f93\u5165\u7684\u8fb9\u7f18": 93, "\u7b49\u7b49": 93, "\u66f4\u591a\u4fe1\u606f\u8bf7\u53c2\u89c1": 93, "\u5faa\u73af\u795e\u7ecf\u7f51\u7edc": 93, "\u7528\u4e8e\u5e8f\u5217\u6570\u636e": 93, "\u4ece\u79d1\u5b66\u4eea\u5668\u7684\u65f6\u95f4\u5e8f\u5217\u6d4b\u91cf\u5230\u81ea\u7136\u8bed\u8a00\u53e5\u5b50\u518d\u5230": 93, "dna": 93, "\u6838\u82f7\u9178": 93, "\u901a\u8fc7\u7ef4\u62a4\u4e00\u4e2a": 93, "\u9690\u85cf\u72b6\u6001": 93, "\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 93, "\u8be5\u9690\u85cf\u72b6\u6001\u5145\u5f53\u4e00\u79cd\u8bb0\u5fc6": 93, "\u8bb0\u5f55\u5230\u76ee\u524d\u4e3a\u6b62\u5b83\u5728\u5e8f\u5217\u4e2d\u770b\u5230\u7684\u5185\u5bb9": 93, "\u5c42\u7684\u5185\u90e8\u7ed3\u6784": 93, "\u6216\u5176\u53d8\u4f53": 93, "\u957f\u77ed\u671f\u8bb0\u5fc6": 93, "\u95e8\u63a7\u5faa\u73af\u5355\u5143": 93, "\u76f8\u5f53\u590d\u6742": 93, "\u8d85\u51fa\u4e86\u672c\u89c6\u9891\u7684\u8303\u56f4": 93, "\u4f46\u6211\u4eec\u5c06\u5411\u4f60\u5c55\u793a\u57fa\u4e8e": 93, "\u7684\u8bcd\u6027\u6807\u6ce8\u5668": 93, "\u4e00\u79cd\u5206\u7c7b\u5668": 93, "\u7528\u4e8e\u544a\u8bc9\u4f60\u4e00\u4e2a\u5355\u8bcd\u662f\u540d\u8bcd": 93, "\u52a8\u8bcd\u7b49": 93, "\u7684\u6837\u5b50": 93, "lstmtagger": [93, 102], "vocab_s": [93, 98, 99, 102, 103, 115, 118, 137, 144, 185, 220], "tagset_s": [93, 98, 102], "word_embed": [93, 102], "\u63a5\u53d7\u8bcd\u5d4c\u5165\u4f5c\u4e3a\u8f93\u5165": 93, "\u5e76\u8f93\u51fa\u7ef4\u5ea6\u4e3a": 93, "\u7684\u9690\u85cf\u72b6\u6001": 93, "\u5c06\u4ece\u9690\u85cf\u72b6\u6001\u7a7a\u95f4\u6620\u5c04\u5230\u6807\u8bb0\u7a7a\u95f4\u7684\u7ebf\u6027\u5c42": 93, "hidden2tag": [93, 98, 102], "lstm_out": [93, 98, 102], "tag_spac": [93, 102], "tag_scor": [93, 102], "\u6784\u9020\u51fd\u6570\u6709\u56db\u4e2a\u53c2\u6570": 93, "\u662f\u8f93\u5165\u8bcd\u6c47\u8868\u4e2d\u5355\u8bcd\u7684\u6570\u91cf": 93, "\u6bcf\u4e2a\u5355\u8bcd\u662f\u4e00\u4e2a": 93, "\u7ef4\u7684\u4e00\u70ed\u5411\u91cf": 93, "\u6216\u5355\u4f4d\u5411\u91cf": 93, "\u662f\u8f93\u51fa\u6807\u7b7e\u96c6\u7684\u5927\u5c0f": 93, "\u662f\u8bcd\u6c47\u7684": 93, "\u5d4c\u5165": 93, "\u7a7a\u95f4\u7684\u5927\u5c0f": 93, "\u5d4c\u5165\u5c06\u8bcd\u6c47\u6620\u5c04\u5230\u4e00\u4e2a\u4f4e\u7ef4\u7a7a\u95f4": 93, "\u5728\u8be5\u7a7a\u95f4\u4e2d": 93, "\u610f\u4e49\u76f8\u4f3c\u7684\u5355\u8bcd\u5f7c\u6b64\u63a5\u8fd1": 93, "\u7684\u8bb0\u5fc6\u5927\u5c0f": 93, "\u8f93\u5165\u5c06\u662f\u4e00\u4e2a\u53e5\u5b50": 93, "\u5355\u8bcd\u8868\u793a\u4e3a\u4e00\u70ed\u5411\u91cf\u7684\u7d22\u5f15": 93, "\u5d4c\u5165\u5c42\u5c06\u628a\u8fd9\u4e9b\u6620\u5c04\u5230\u4e00\u4e2a": 93, "\u7ef4\u7684\u7a7a\u95f4": 93, "\u63a5\u6536\u8fd9\u4e2a\u5d4c\u5165\u5e8f\u5217\u5e76\u5bf9\u5176\u8fdb\u884c\u8fed\u4ee3": 93, "\u4ea7\u751f\u4e00\u4e2a\u957f\u5ea6\u4e3a": 93, "\u7684\u8f93\u51fa\u5411\u91cf": 93, "\u6700\u540e\u7684\u7ebf\u6027\u5c42\u5145\u5f53\u5206\u7c7b\u5668": 93, "\u5c06\u6700\u540e\u4e00\u5c42\u7684\u8f93\u51fa\u901a\u8fc7": 93, "\u8f6c\u6362\u4e3a\u4e00\u7ec4\u5f52\u4e00\u5316\u7684\u4f30\u8ba1\u6982\u7387": 93, "\u8868\u793a\u7ed9\u5b9a\u5355\u8bcd\u6620\u5c04\u5230\u7ed9\u5b9a\u6807\u7b7e\u7684\u6982\u7387": 93, "\u5982\u679c\u4f60\u60f3\u770b\u770b\u8fd9\u4e2a\u7f51\u7edc\u7684\u5b9e\u9645\u8fd0\u884c\u60c5\u51b5": 93, "\u53ef\u4ee5\u67e5\u770b": 93, "\u4e0a\u7684": [93, 121], "\u5e8f\u5217\u6a21\u578b\u548c": 93, "\u7f51\u7edc": 93, "\u6559\u7a0b": [93, 104], "\u662f\u591a\u7528\u9014\u7f51\u7edc": 93, "\u9886\u57df\u53d6\u5f97\u4e86\u6700\u5148\u8fdb\u7684\u6210\u679c": 93, "\u8ba8\u8bba\u8f6c\u6362\u5668\u67b6\u6784\u8d85\u51fa\u4e86\u672c\u89c6\u9891\u7684\u8303\u56f4": 93, "\u5141\u8bb8\u4f60\u5b9a\u4e49\u8f6c\u6362\u5668\u6a21\u578b\u7684\u6574\u4f53\u53c2\u6570": 93, "\u6ce8\u610f\u529b\u5934\u7684\u6570\u91cf": 93, "\u7f16\u7801\u5668\u548c\u89e3\u7801\u5668\u5c42\u7684\u6570\u91cf": 93, "\u548c\u6fc0\u6d3b\u51fd\u6570\u7b49": 93, "\u4f60\u751a\u81f3\u53ef\u4ee5\u7528\u6b63\u786e\u7684\u53c2\u6570\u4ece\u8fd9\u4e2a\u5355\u4e00\u7c7b\u6784\u5efa": 93, "\u7c7b\u8fd8\u5305\u542b\u5c01\u88c5\u5355\u4e2a\u7ec4\u4ef6": 93, "transformerdecod": 93, "\u548c\u5b50\u7ec4\u4ef6": 93, "transformerdecoderlay": 93, "\u8be6\u60c5\u8bf7\u67e5\u770b": 93, "\u4e2d\u5173\u4e8e\u8f6c\u6362\u5668\u7c7b\u7684\u5185\u5bb9": 93, "\u4ee5\u53ca": [93, 104], "\u4e0a\u76f8\u5173\u7684": 93, "\u8fd8\u6709\u5176\u4ed6\u7c7b\u578b\u7684\u5c42\u6267\u884c\u6a21\u578b\u4e2d\u7684\u91cd\u8981\u529f\u80fd": 93, "\u4f46\u5b83\u4eec\u81ea\u8eab\u4e0d\u53c2\u4e0e\u5b66\u4e60\u8fc7\u7a0b": 93, "\u6700\u5927\u6c60\u5316": 93, "\u53ca\u5176\u5b6a\u751f\u5c42\u6700\u5c0f\u6c60\u5316": 93, "\u901a\u8fc7\u7ec4\u5408\u5355\u5143\u5e76\u5c06\u8f93\u5165\u5355\u5143\u7684\u6700\u5927\u503c\u5206\u914d\u7ed9\u8f93\u51fa\u5355\u5143\u6765\u51cf\u5c0f\u5f20\u91cf": 93, "\u6211\u4eec\u4e4b\u524d\u770b\u5230\u8fc7\u8fd9\u4e00\u70b9": 93, "maxpool_lay": 93, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u7684\u503c": 93, "\u4f60\u4f1a\u53d1\u73b0\u6700\u5927\u6c60\u5316\u8f93\u51fa\u4e2d\u7684\u6bcf\u4e2a\u503c\u90fd\u662f": 93, "6x6": 93, "\u8f93\u5165\u7684\u6bcf\u4e2a\u8c61\u9650\u7684\u6700\u5927\u503c": 93, "\u5f52\u4e00\u5316\u5c42": 93, "\u5728\u5c06\u4e00\u5c42\u7684\u8f93\u51fa\u9988\u9001\u5230\u53e6\u4e00\u5c42\u4e4b\u524d": 93, "\u91cd\u65b0\u5c45\u4e2d\u5e76\u5f52\u4e00\u5316\u8f93\u51fa": 93, "\u5c45\u4e2d\u548c\u7f29\u653e\u4e2d\u95f4\u5f20\u91cf\u6709\u8bb8\u591a\u6709\u76ca\u7684\u6548\u679c": 93, "\u4f8b\u5982\u8ba9\u4f60\u53ef\u4ee5\u4f7f\u7528\u66f4\u9ad8\u7684\u5b66\u4e60\u7387\u800c\u4e0d\u4f1a\u51fa\u73b0\u68af\u5ea6\u7206\u70b8": 93, "\u6d88\u5931": 93, "norm_lay": [93, 134], "batchnorm1d": 93, "normed_tensor": 93, "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c": 93, "\u6211\u4eec\u4e3a\u8f93\u5165\u5f20\u91cf\u6dfb\u52a0\u4e86\u4e00\u4e2a\u5927\u7684\u7f29\u653e\u56e0\u5b50\u548c\u504f\u79fb\u91cf": 93, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u8f93\u5165\u5f20\u91cf\u7684": 93, "\u5de6\u53f3": 93, "\u7ecf\u8fc7\u5f52\u4e00\u5316\u5c42\u5904\u7406\u540e": 93, "\u4f60\u53ef\u4ee5\u770b\u5230\u503c\u53d8\u5c0f\u4e86": 93, "\u5e76\u4e14\u56f4\u7ed5\u7740": 93, "\u5206\u5e03": 93, "\u5e73\u5747\u503c\u5e94\u8be5\u975e\u5e38\u5c0f": 93, "\u8fd9\u662f\u6709\u76ca\u7684": 93, "\u56e0\u4e3a\u8bb8\u591a\u6fc0\u6d3b\u51fd\u6570": 93, "\u4e0b\u9762\u5c06\u8ba8\u8bba": 93, "\u4f46\u6709\u65f6\u5bf9\u4e8e\u5c06\u5b83\u4eec\u63a8\u79bb": 93, "\u5f88\u8fdc\u7684\u8f93\u5165\u4f1a\u9047\u5230\u68af\u5ea6\u6d88\u5931\u6216\u7206\u70b8\u7684\u95ee\u9898": 93, "\u5c06\u6570\u636e\u4fdd\u6301\u5728\u6700\u9661\u68af\u5ea6\u533a\u57df\u5468\u56f4\u5c06\u503e\u5411\u4e8e\u610f\u5473\u7740\u66f4\u5feb": 93, "\u66f4\u597d\u7684\u5b66\u4e60\u548c\u66f4\u9ad8\u7684\u53ef\u884c\u5b66\u4e60\u7387": 93, "\u662f\u4e00\u79cd\u9f13\u52b1\u6a21\u578b": 93, "\u7a00\u758f\u8868\u793a": 93, "\u7684\u5de5\u5177": 93, "\u4e5f\u5c31\u662f\u8bf4": [93, 95], "\u63a8\u52a8\u5b83\u5728\u63a8\u7406\u65f6\u4f7f\u7528\u8f83\u5c11\u7684\u6570\u636e": 93, "\u5c42\u7684\u5de5\u4f5c\u539f\u7406\u662f\u5728": 93, "\u8bad\u7ec3\u671f\u95f4": 93, "\u968f\u673a\u8bbe\u7f6e\u8f93\u5165\u5f20\u91cf\u7684\u4e00\u90e8\u5206": 93, "\u5c42\u5728\u63a8\u7406\u65f6\u603b\u662f\u5173\u95ed\u7684": 93, "\u8fd9\u8feb\u4f7f\u6a21\u578b\u9488\u5bf9\u8fd9\u79cd\u63a9\u7801\u6216\u51cf\u5c11\u7684\u6570\u636e\u96c6\u8fdb\u884c\u5b66\u4e60": 93, "\u5bf9\u793a\u4f8b\u5f20\u91cf\u7684\u5f71\u54cd": 93, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u53ef\u9009\u7684": 93, "\u53c2\u6570\u8bbe\u7f6e\u5355\u4e2a\u6743\u91cd\u4e22\u5f03\u7684\u6982\u7387": 93, "\u5982\u679c\u4e0d\u8bbe\u7f6e": 93, "\u9ed8\u8ba4\u4e3a": 93, "\u6fc0\u6d3b\u51fd\u6570\u4f7f\u6df1\u5ea6\u5b66\u4e60\u6210\u4e3a\u53ef\u80fd": 93, "\u795e\u7ecf\u7f51\u7edc\u5b9e\u9645\u4e0a\u662f\u4e00\u4e2a\u7a0b\u5e8f": 93, "\u6709\u8bb8\u591a\u53c2\u6570": 93, "\u7528\u4e8e": 93, "\u6a21\u62df\u4e00\u4e2a\u6570\u5b66\u51fd\u6570": 93, "\u5982\u679c\u6211\u4eec\u53ea\u662f\u91cd\u590d\u5730\u5c06\u5f20\u91cf\u4e0e\u5c42\u6743\u91cd\u76f8\u4e58": 93, "\u6211\u4eec\u53ea\u80fd\u6a21\u62df": 93, "\u7ebf\u6027\u51fd\u6570": 93, "\u6709\u591a\u5c42\u4e5f\u6ca1\u6709\u610f\u4e49": 93, "\u56e0\u4e3a\u6574\u4e2a\u7f51\u7edc\u53ef\u4ee5\u7b80\u5316\u4e3a\u5355\u4e2a\u77e9\u9635\u4e58\u6cd5": 93, "\u5728\u5c42\u4e4b\u95f4\u63d2\u5165": 93, "\u6fc0\u6d3b\u51fd\u6570\u4f7f\u5f97\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u80fd\u591f\u6a21\u62df\u4efb\u4f55\u51fd\u6570": 93, "\u800c\u4e0d\u4ec5\u4ec5\u662f\u7ebf\u6027\u51fd\u6570": 93, "\u6709\u5c01\u88c5\u6240\u6709\u4e3b\u8981\u6fc0\u6d3b\u51fd\u6570\u7684\u5bf9\u8c61": 93, "\u53ca\u5176\u8bb8\u591a\u53d8\u4f53": 93, "hardtanh": [93, 110, 252], "\u7b49": [93, 95, 104, 111], "\u5b83\u8fd8\u5305\u62ec\u5176\u4ed6\u51fd\u6570": 93, "\u8fd9\u4e9b\u51fd\u6570\u5728\u6a21\u578b\u7684\u8f93\u51fa\u9636\u6bb5\u6700\u6709\u7528": 93, "\u635f\u5931\u51fd\u6570\u544a\u8bc9\u6211\u4eec\u6a21\u578b\u7684\u9884\u6d4b\u4e0e\u6b63\u786e\u7b54\u6848\u76f8\u5dee\u591a\u8fdc": 93, "\u5305\u542b\u5404\u79cd\u635f\u5931\u51fd\u6570": 93, "\u5305\u62ec\u5e38\u89c1\u7684": 93, "\u8303\u6570": 93, "\u4ea4\u53c9\u71b5\u635f\u5931\u548c\u8d1f\u5bf9\u6570\u4f3c\u7136\u635f\u5931": 93, "\u5bf9\u4e8e\u5206\u7c7b\u5668\u5f88\u6709\u7528": 93, "\u8981\u8fd0\u884c\u6b64\u6559\u7a0b": 94, "\u60a8\u9700\u8981\u5b89\u88c5pytorch": 94, "matplotlib\u548ctensorboard": 94, "\u5b89\u88c5\u5b8c\u4f9d\u8d56\u9879\u540e": 94, "\u8bf7\u5728\u5b89\u88c5\u5b83\u4eec\u7684python\u73af\u5883\u4e2d\u91cd\u65b0\u542f\u52a8\u6b64\u7b14\u8bb0\u672c": 94, "\u5728\u672c\u7b14\u8bb0\u672c\u4e2d": 94, "\u6211\u4eec\u5c06\u8bad\u7ec3lenet": 94, "5\u7684\u53d8\u4f53": 94, "\u9488\u5bf9fashion": 94, "mnist\u6570\u636e\u96c6": 94, "mnist\u662f\u4e00\u7ec4\u63cf\u7ed8\u5404\u79cd\u670d\u88c5\u7684\u56fe\u50cf\u74e6\u7247": 94, "\u6709\u5341\u4e2a\u7c7b\u6807\u7b7e\u6307\u793a\u6240\u63cf\u7ed8\u7684\u670d\u88c5\u7c7b\u578b": 94, "pytorch\u6a21\u578b\u548c\u8bad\u7ec3\u5fc5\u9700\u54c1": 94, "\u56fe\u50cf\u6570\u636e\u96c6\u548c\u56fe\u50cf\u64cd\u4f5c": 94, "\u56fe\u50cf\u663e\u793a": 94, "summarywrit": [94, 96, 169, 245], "\u5982\u679c\u60a8\u4f7f\u7528\u7684\u73af\u5883\u5b89\u88c5\u4e86tensorflow": 94, "\u5982googl": 94, "\u8bf7\u53d6\u6d88\u6ce8\u91ca\u4ee5\u4e0b\u4ee3\u7801\u4ee5\u907f\u514d\u5c06\u5d4c\u5165\u4fdd\u5b58\u5230tensorboard\u76ee\u5f55\u65f6\u51fa\u73b0\u9519\u8bef": 94, "tb": [94, 172, 173, 174], "gfile": 94, "tensorflow_stub": 94, "\u8ba9\u6211\u4eec\u4ece\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u793a\u4f8b\u56fe\u50cf\u6dfb\u52a0\u5230tensorboard\u5f00\u59cb": 94, "\u6536\u96c6\u6570\u636e\u96c6\u5e76\u51c6\u5907\u6d88\u8d39": 94, "data\u4e2d\u5b58\u50a8\u5355\u72ec\u7684\u8bad\u7ec3\u548c\u9a8c\u8bc1\u5206\u5272": 94, "training_set": [94, 96], "validation_set": [94, 96], "training_load": [94, 96], "validation_load": [94, 96], "\u7c7b\u6807\u7b7e": 94, "\u5185\u8054\u56fe\u50cf\u663e\u793a\u7684\u8f85\u52a9\u51fd\u6570": [94, 96], "matplotlib_imshow": [94, 96, 169], "one_channel": [94, 96, 169], "\u53cd\u5f52\u4e00\u5316": 94, "grei": [94, 96, 119, 169, 188], "\u63d0\u53d6\u4e00\u62794\u5f20\u56fe\u50cf": 94, "\u4ece\u56fe\u50cf\u521b\u5efa\u7f51\u683c\u5e76\u663e\u793a\u5b83\u4eec": [94, 96], "img_grid": [94, 96, 169], "\u6211\u4eec\u4f7f\u7528torchvision\u548cmatplotlib\u521b\u5efa\u4e86\u4e00\u4e2a\u8f93\u5165\u6570\u636e\u5c0f\u6279\u91cf\u7684\u53ef\u89c6\u7f51\u683c": 94, "\u4e0a\u4f7f\u7528": 94, "add_imag": [94, 169], "\u8c03\u7528\u6765\u8bb0\u5f55\u56fe\u50cf": 94, "\u4ee5\u4f9btensorboard\u4f7f\u7528": 94, "\u6211\u4eec\u8fd8\u8c03\u7528": 94, "\u4ee5\u786e\u4fdd\u5b83\u7acb\u5373\u5199\u5165\u78c1\u76d8": 94, "\u9ed8\u8ba4log_dir\u53c2\u6570\u4e3a": 94, "\u4f46\u6700\u597d\u660e\u786e\u6307\u5b9a": 94, "summarywriter\u5728\u4e0a\u9762\u5bfc\u5165": 94, "fashion_mnist_experiment_1": [94, 169], "\u5c06\u56fe\u50cf\u6570\u636e\u5199\u5165tensorboard\u65e5\u5fd7\u76ee\u5f55": 94, "\u8981\u67e5\u770b": 94, "\u8bf7\u5728\u547d\u4ee4\u884c\u4e0a\u542f\u52a8tensorboard": 94, "logdir": [94, 168, 169, 245], "\u5e76\u5728\u65b0\u7684\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00http": 94, "6006": [94, 168, 169, 245], "\u5982\u679c\u60a8\u5728\u547d\u4ee4\u884c\u542f\u52a8tensorboard\u5e76\u5728\u65b0\u7684\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00\u5b83": 94, "\u901a\u5e38\u5728": 94, "\u60a8\u5e94\u8be5\u5728images\u9009\u9879\u5361\u4e0b\u770b\u5230\u56fe\u50cf\u7f51\u683c": 94, "tensorboard\u5bf9\u4e8e\u8ddf\u8e2a\u8bad\u7ec3\u7684\u8fdb\u5ea6\u548c\u6548\u679c\u5f88\u6709\u7528": 94, "\u6211\u4eec\u5c06\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u5faa\u73af": 94, "\u8ddf\u8e2a\u4e00\u4e9b\u6307\u6807": 94, "\u5e76\u4fdd\u5b58\u6570\u636e\u4ee5\u4f9btensorboard\u4f7f\u7528": 94, "\u8ba9\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u6a21\u578b\u6765\u5bf9\u6211\u4eec\u7684\u56fe\u50cf\u74e6\u7247\u8fdb\u884c\u5206\u7c7b": 94, "\u4ee5\u53ca\u7528\u4e8e\u8bad\u7ec3\u7684\u4f18\u5316\u5668\u548c\u635f\u5931\u51fd\u6570": 94, "\u73b0\u5728\u8ba9\u6211\u4eec\u8bad\u7ec3\u4e00\u4e2aepoch": 94, "\u5e76\u6bcf1000\u6279\u6b21\u8bc4\u4f30\u4e00\u6b21\u8bad\u7ec3\u4e0e\u9a8c\u8bc1\u96c6\u7684\u635f\u5931": 94, "\u57fa\u672c\u8bad\u7ec3\u5faa\u73af": 94, "\u6bcf1000\u4e2a\u5c0f\u6279\u91cf": 94, "\u5bf9\u7167\u9a8c\u8bc1\u96c6": 94, "running_vloss": [94, 96], "\u5728\u8bc4\u4f30\u6a21\u5f0f\u4e0b": 94, "\u53ef\u4ee5\u7701\u7565\u4e00\u4e9b\u7279\u5b9a\u4e8e\u6a21\u578b\u7684\u64cd\u4f5c": 94, "\u4f8b\u5982dropout\u5c42": 94, "\u5207\u6362\u5230\u8bc4\u4f30\u6a21\u5f0f": 94, "\u4f8b\u5982\u5173\u95ed\u6b63\u5219\u5316": 94, "vdata": [94, 96], "vinput": [94, 96], "vlabel": [94, 96], "voutput": [94, 96], "vloss": [94, 96], "\u5207\u6362\u56de\u8bad\u7ec3\u6a21\u5f0f": 94, "\u4f8b\u5982\u6253\u5f00\u6b63\u5219\u5316": 94, "avg_loss": [94, 96], "avg_vloss": [94, 96], "\u8bb0\u5f55\u6bcf\u6279\u6b21\u5e73\u5747\u7684\u8fd0\u884c\u635f\u5931": [94, 96], "add_scalar": [94, 96, 169, 245], "\u5207\u6362\u5230\u60a8\u6253\u5f00\u7684tensorboard": 94, "\u67e5\u770bscalars\u9009\u9879\u5361": 94, "tensorboard\u8fd8\u53ef\u7528\u4e8e\u68c0\u67e5\u6a21\u578b\u5185\u7684\u6570\u636e\u6d41": 94, "\u8bf7\u4f7f\u7528\u6a21\u578b\u548c\u793a\u4f8b\u8f93\u5165\u8c03\u7528": 94, "add_graph": [94, 169], "\u518d\u6b21\u83b7\u53d6\u4e00\u4e2a\u5c0f\u6279\u91cf\u7684\u56fe\u50cf": 94, "\u5c06\u901a\u8fc7\u60a8\u7684\u6a21\u578b\u8ddf\u8e2a\u793a\u4f8b\u8f93\u5165": 94, "\u5e76\u5c06\u5176\u6e32\u67d3\u4e3a\u56fe\u5f62": 94, "\u5f53\u60a8\u5207\u6362\u5230tensorboard\u65f6": 94, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u4e00\u4e2agraphs\u9009\u9879\u5361": 94, "\u53cc\u51fb": 94, "\u8282\u70b9\u53ef\u67e5\u770b\u6a21\u578b\u5185\u7684\u5c42\u548c\u6570\u636e\u6d41": 94, "\u6211\u4eec\u4f7f\u7528\u768428x28\u56fe\u50cf\u74e6\u7247\u53ef\u4ee5\u5efa\u6a21\u4e3a784\u7ef4\u5411\u91cf": 94, "\u5c06\u5176\u6295\u5f71\u5230\u8f83\u4f4e\u7ef4\u5ea6\u7684\u8868\u793a\u5f62\u5f0f\u53ef\u80fd\u4f1a\u5f88\u6709\u542f\u53d1\u6027": 94, "add_embed": [94, 169], "\u65b9\u6cd5\u5c06\u4e00\u7ec4\u6570\u636e\u6295\u5f71\u5230\u5177\u6709\u6700\u9ad8\u65b9\u5dee\u7684\u4e09\u4e2a\u7ef4\u5ea6\u4e0a": 94, "\u5e76\u5c06\u5b83\u4eec\u663e\u793a\u4e3a\u4ea4\u4e92\u5f0f3d\u56fe\u8868": 94, "\u65b9\u6cd5\u901a\u8fc7\u6295\u5f71\u5230\u5177\u6709\u6700\u9ad8\u65b9\u5dee\u7684\u4e09\u4e2a\u7ef4\u5ea6\u6765\u81ea\u52a8\u6267\u884c\u6b64\u64cd\u4f5c": 94, "\u6211\u4eec\u5c06\u91c7\u6837\u6570\u636e": 94, "\u5e76\u751f\u6210\u8fd9\u6837\u4e00\u4e2a\u5d4c\u5165": 94, "\u9009\u62e9\u968f\u673a\u5b50\u96c6\u7684\u6570\u636e\u548c\u76f8\u5e94\u7684\u6807\u7b7e": 94, "select_n_random": [94, 169], "perm": [94, 169], "randperm": [94, 169, 178], "\u63d0\u53d6\u968f\u673a\u5b50\u96c6\u7684\u6570\u636e": 94, "\u83b7\u53d6\u6bcf\u4e2a\u56fe\u50cf\u7684\u7c7b\u6807\u7b7e": 94, "class_label": [94, 169, 171], "\u8bb0\u5f55\u5d4c\u5165": 94, "label_img": [94, 169], "\u5982\u679c\u60a8\u5207\u6362\u5230tensorboard\u5e76\u9009\u62e9projector\u9009\u9879\u5361": 94, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u6295\u5f71\u76843d\u8868\u793a": 94, "\u60a8\u53ef\u4ee5\u65cb\u8f6c\u548c\u7f29\u653e\u6a21\u578b": 94, "\u5728\u5927\u5c0f\u4e0d\u540c\u7684\u5c3a\u5ea6\u4e0a\u68c0\u67e5\u5b83": 94, "\u770b\u770b\u60a8\u662f\u5426\u53ef\u4ee5\u53d1\u73b0\u6295\u5f71\u6570\u636e\u548c\u6807\u7b7e\u805a\u7c7b\u4e2d\u7684\u6a21\u5f0f": 94, "\u4e3a\u4e86\u66f4\u597d\u7684\u53ef\u89c1\u6027": 94, "\u5efa\u8bae": 94, "\u4ece\u5de6\u4fa7\u7684": 94, "\u4e0b\u62c9\u83dc\u5355\u4e2d\u9009\u62e9": 94, "\u5207\u6362\u9876\u90e8\u7684night": 94, "mode\u56fe\u6807": 94, "\u5c06\u6d45\u8272\u56fe\u50cf\u7f6e\u4e8e\u6df1\u8272\u80cc\u666f\u4e0a": 94, "pytorch\u5173\u4e8e": 94, "__\u7684\u6587\u6863": 94, "org\u6559\u7a0b": 94, "\u4e2d\u7684tensorboard\u6559\u7a0b\u5185\u5bb9": 94, "\u6709\u5173tensorboard\u7684\u66f4\u591a\u4fe1\u606f": 94, "tensorboard\u6587\u6863": 94, "\u5f20\u91cf\u662fpytorch\u4e2d\u7684\u4e2d\u5fc3\u6570\u636e\u62bd\u8c61": 95, "\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u63d0\u4f9b\u4e86\u5bf9": 95, "\u7c7b\u7684\u6df1\u5165\u4ecb\u7ecd": 95, "\u8ba9\u6211\u4eec\u5bfc\u5165pytorch\u6a21\u5757": 95, "\u6211\u4eec\u8fd8\u5c06\u6dfb\u52a0python\u7684\u6570\u5b66\u6a21\u5757": 95, "\u4ee5\u4fbf\u4e8e\u4e00\u4e9b\u793a\u4f8b": 95, "\u521b\u5efa\u5f20\u91cf\u6700\u7b80\u5355\u7684\u65b9\u6cd5\u662f\u4f7f\u7528": 95, "\u8ba9\u6211\u4eec\u89e3\u91ca\u4e0b\u521a\u624d\u53d1\u751f\u7684\u4e8b\u60c5": 95, "\u6211\u4eec\u4f7f\u7528\u9644\u52a0\u5230": 95, "\u6a21\u5757\u7684\u4f17\u591a\u5de5\u5382\u65b9\u6cd5\u4e4b\u4e00\u521b\u5efa\u4e86\u4e00\u4e2a\u5f20\u91cf": 95, "\u8be5\u5f20\u91cf\u662f\u4e8c\u7ef4\u7684": 95, "\u67093\u884c4\u5217": 95, "\u8fd4\u56de\u5bf9\u8c61\u7684\u7c7b\u578b\u662f": 95, "\u7684\u522b\u540d": 95, "pytorch\u5f20\u91cf\u752832\u4f4d\u6d6e\u70b9\u6570\u586b\u5145": 95, "\u66f4\u591a\u5173\u4e8e\u6570\u636e\u7c7b\u578b\u7684\u5185\u5bb9\u89c1\u4e0b\u6587": 95, "\u5f53\u6253\u5370\u4f60\u7684\u5f20\u91cf\u65f6": 95, "\u4f60\u53ef\u80fd\u4f1a\u770b\u5230\u4e00\u4e9b\u968f\u673a\u7684\u503c": 95, "\u8c03\u7528\u4e3a\u5f20\u91cf\u5206\u914d\u5185\u5b58": 95, "\u4f46\u4e0d\u4f1a\u7528\u4efb\u4f55\u503c\u521d\u59cb\u5316\u5b83": 95, "\u6240\u4ee5\u4f60\u770b\u5230\u7684\u662f\u5206\u914d\u65f6\u5185\u5b58\u4e2d\u7684\u4efb\u4f55\u503c": 95, "\u5173\u4e8e\u5f20\u91cf\u53ca\u5176\u7ef4\u6570\u548c\u672f\u8bed\u7684\u7b80\u8981\u8bf4\u660e": 95, "\u4f60\u6709\u65f6\u4f1a\u770b\u5230\u4e00\u7ef4\u5f20\u91cf\u88ab\u79f0\u4e3a": 95, "\u5411\u91cf": 95, "\u4e8c\u7ef4\u5f20\u91cf\u901a\u5e38\u88ab\u79f0\u4e3a": 95, "\u4efb\u4f55\u8d85\u8fc7\u4e24\u4e2a\u7ef4\u5ea6\u7684\u5f20\u91cf\u901a\u5e38\u90fd\u88ab\u79f0\u4e3a\u5f20\u91cf": 95, "\u5927\u591a\u6570\u60c5\u51b5\u4e0b": 95, "\u4f60\u4f1a\u5e0c\u671b\u7528\u4e00\u4e9b\u503c\u521d\u59cb\u5316\u4f60\u7684\u5f20\u91cf": 95, "\u5e38\u89c1\u7684\u60c5\u51b5\u662f\u5168\u96f6": 95, "\u5168\u4e00\u6216\u968f\u673a\u503c": 95, "\u6a21\u5757\u4e3a\u6240\u6709\u8fd9\u4e9b\u60c5\u51b5\u63d0\u4f9b\u4e86\u5de5\u5382\u65b9\u6cd5": 95, "\u5de5\u5382\u65b9\u6cd5\u90fd\u505a\u4e86\u4f60\u671f\u671b\u7684\u4e8b\u60c5": 95, "\u6211\u4eec\u6709\u4e00\u4e2a\u5168\u96f6\u5f20\u91cf": 95, "\u4e00\u4e2a\u5168\u4e00\u5f20\u91cf\u548c\u4e00\u4e2a\u968f\u673a\u503c\u57280\u52301\u4e4b\u95f4\u7684\u5f20\u91cf": 95, "\u8bf4\u5230\u968f\u673a\u5f20\u91cf": 95, "\u4f60\u662f\u5426\u6ce8\u610f\u5230\u5728\u5b83\u4e4b\u524d\u7acb\u5373\u8c03\u7528\u4e86": 95, "\u7528\u968f\u673a\u503c\u521d\u59cb\u5316\u5f20\u91cf": 95, "\u5982\u6a21\u578b\u7684\u5b66\u4e60\u6743\u91cd": 95, "\u662f\u5f88\u5e38\u89c1\u7684": 95, "\u4f46\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b": 95, "\u7279\u522b\u662f\u5728\u7814\u7a76\u73af\u5883\u4e2d": 95, "\u4f60\u53ef\u80fd\u5e0c\u671b\u5bf9\u7ed3\u679c\u7684\u53ef\u91cd\u590d\u6027\u6709\u4e00\u4e9b\u4fdd\u8bc1": 95, "\u624b\u52a8\u8bbe\u7f6e\u968f\u673a\u6570\u751f\u6210\u5668\u7684\u79cd\u5b50\u5c31\u662f\u8fd9\u6837\u505a\u7684\u65b9\u6cd5": 95, "\u8ba9\u6211\u4eec\u4ed4\u7ec6\u770b\u770b": 95, "random1": 95, "random2": 95, "random3": 95, "random4": 95, "\u4f60\u5e94\u8be5\u770b\u5230\u4e0a\u9762": 95, "\u5305\u542b\u76f8\u540c\u7684\u503c": 95, "\u4e5f\u662f\u5982\u6b64": 95, "\u624b\u52a8\u8bbe\u7f6erng\u7684\u79cd\u5b50\u4f1a\u91cd\u7f6e\u5b83": 95, "\u56e0\u6b64\u76f8\u540c\u7684\u968f\u673a\u6570\u8ba1\u7b97\u5728\u5927\u591a\u6570\u8bbe\u7f6e\u4e0b\u5e94\u8be5\u63d0\u4f9b\u76f8\u540c\u7684\u7ed3\u679c": 95, "\u8bf7\u53c2\u9605pytorch\u5173\u4e8e\u53ef\u91cd\u590d\u6027\u7684": 95, "\u5f53\u4f60\u5728\u4e24\u4e2a\u6216\u591a\u4e2a\u5f20\u91cf\u4e0a\u6267\u884c\u64cd\u4f5c\u65f6": 95, "\u5b83\u4eec\u901a\u5e38\u9700\u8981\u5177\u6709\u76f8\u540c\u7684": 95, "\u5177\u6709\u76f8\u540c\u7684\u7ef4\u6570\u548c\u6bcf\u4e2a\u7ef4\u5ea6\u4e2d\u7684\u76f8\u540c\u6570\u91cf\u7684\u5355\u5143": 95, "_like": [95, 147], "empty_like_x": 95, "empty_lik": [95, 108, 147, 173, 174, 189, 209], "zeros_like_x": 95, "ones_like_x": 95, "rand_like_x": 95, "\u4e0a\u9762\u4ee3\u7801\u5355\u5143\u4e2d\u7684\u7b2c\u4e00\u4e2a\u65b0\u4e8b\u7269\u662f\u5728\u5f20\u91cf\u4e0a\u4f7f\u7528": 95, "\u8fd9\u4e2a\u5c5e\u6027\u5305\u542b\u4e86\u6bcf\u4e2a\u7ef4\u5ea6\u5f20\u91cf\u7684\u8303\u56f4\u7684\u5217\u8868": 95, "\u662f\u4e00\u4e2a\u4e09\u7ef4\u5f20\u91cf": 95, "\u5f62\u72b6\u4e3a": 95, "\u6211\u4eec\u53ef\u4ee5\u9a8c\u8bc1\u6bcf\u4e2a\u8fd9\u4e9b\u65b9\u6cd5\u90fd\u8fd4\u56de\u4e00\u4e2a\u5177\u6709\u76f8\u540c\u7ef4\u6570\u548c\u8303\u56f4\u7684\u5f20\u91cf": 95, "\u521b\u5efa\u5f20\u91cf\u7684\u6700\u540e\u4e00\u79cd\u65b9\u5f0f\u662f\u76f4\u63a5\u4ecepytorch\u96c6\u5408\u4e2d\u6307\u5b9a\u5176\u6570\u636e": 95, "some_const": 95, "1415926": 95, "71828": 95, "61803": 95, "0072897": 95, "some_integ": 95, "more_integ": 95, "\u662f\u5728\u4f60\u5df2\u7ecf\u6709python\u5143\u7ec4\u6216\u5217\u8868\u6570\u636e\u7684\u60c5\u51b5\u4e0b\u521b\u5efa\u5f20\u91cf\u7684\u6700\u76f4\u63a5\u65b9\u5f0f": 95, "\u5982\u4e0a\u6240\u793a": 95, "\u5d4c\u5957\u96c6\u5408\u4f1a\u751f\u6210\u591a\u7ef4\u5f20\u91cf": 95, "\u521b\u5efa\u6570\u636e\u7684\u526f\u672c": 95, "\u8bbe\u7f6e\u5f20\u91cf\u7684\u6570\u636e\u7c7b\u578b\u6709\u4e24\u79cd\u65b9\u5f0f": 95, "int32": [95, 137, 165, 184, 185, 197, 200, 234], "\u8bbe\u7f6e\u5f20\u91cf\u5e95\u5c42\u6570\u636e\u7c7b\u578b\u7684\u6700\u7b80\u5355\u65b9\u5f0f\u662f\u5728\u521b\u5efa\u65f6\u4f7f\u7528\u53ef\u9009\u53c2\u6570": 95, "\u5728\u4e0a\u9762\u5355\u5143\u683c\u7684\u7b2c\u4e00\u884c\u4e2d": 95, "\u8bbe\u7f6e\u4e3a\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u6253\u5370": 95, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u662f\u7531": 95, "\u586b\u5145\u7684": 95, "python\u7684\u4e00\u4e2a\u5fae\u5999\u63d0\u793a": 95, "\u8fd9\u662f\u4e00\u4e2a\u6574\u6570\u7c7b\u578b\u800c\u4e0d\u662f\u6d6e\u70b9\u6570": 95, "\u4f60\u53ef\u80fd\u8fd8\u6ce8\u610f\u5230": 95, "\u6253\u5370": 95, "\u4e0e\u6211\u4eec\u5c06": 95, "\u4fdd\u7559\u4e3a\u9ed8\u8ba4\u503c": 95, "32\u4f4d\u6d6e\u70b9\u6570": 95, "\u65f6\u4e0d\u540c": 95, "\u6253\u5370\u5f20\u91cf\u65f6\u4e5f\u6307\u5b9a\u4e86\u5176": 95, "\u6211\u4eec\u4ece\u6307\u5b9a\u5f20\u91cf\u5f62\u72b6\u4e3a\u4e00\u7cfb\u5217\u6574\u6570\u53c2\u6570": 95, "\u8f6c\u4e3a\u5c06\u8fd9\u4e9b\u53c2\u6570\u5206\u7ec4\u5230\u4e00\u4e2a\u5143\u7ec4\u4e2d": 95, "\u8fd9\u4e0d\u662f\u7edd\u5bf9\u5fc5\u8981\u7684": 95, "pytorch\u4f1a\u5c06\u4e00\u7cfb\u5217\u521d\u59cb\u7684": 95, "\u672a\u6807\u8bb0\u7684\u6574\u6570\u53c2\u6570\u89c6\u4e3a\u5f20\u91cf\u5f62\u72b6": 95, "\u4f46\u662f\u5f53\u6dfb\u52a0\u53ef\u9009\u53c2\u6570\u65f6": 95, "\u5b83\u53ef\u4ee5\u4f7f\u4f60\u7684\u610f\u56fe\u66f4\u52a0\u53ef\u8bfb": 95, "\u8bbe\u7f6e\u6570\u636e\u7c7b\u578b\u7684\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u4f7f\u7528": 95, "\u6211\u4eec\u4ee5\u901a\u5e38\u7684\u65b9\u5f0f\u521b\u5efa\u4e86\u4e00\u4e2a\u968f\u673a\u6d6e\u70b9\u5f20\u91cf": 95, "\u6211\u4eec\u901a\u8fc7\u5c06": 95, "\u8f6c\u6362\u4e3a32\u4f4d\u6574\u6570\u6765\u521b\u5efa": 95, "\u5305\u542b\u4e0e": 95, "\u76f8\u540c\u7684\u503c": 95, "\u4f46\u88ab\u622a\u65ad\u4e3a\u6574\u6570": 95, "\u53ef\u7528\u7684\u6570\u636e\u7c7b\u578b\u5305\u62ec": 95, "bfloat": 95, "\u73b0\u5728\u4f60\u77e5\u9053\u4e86\u4e00\u4e9b\u521b\u5efa\u5f20\u91cf\u7684\u65b9\u6cd5": 95, "\u90a3\u4f60\u80fd\u5bf9\u5b83\u4eec\u505a\u4ec0\u4e48\u5462": 95, "\u8ba9\u6211\u4eec\u9996\u5148\u770b\u57fa\u672c\u7b97\u672f\u8fd0\u7b97": 95, "\u4ee5\u53ca\u5f20\u91cf\u5982\u4f55\u4e0e\u7b80\u5355\u7684\u6807\u91cf\u4ea4\u4e92": 95, "sqrt2": 95, "\u5982\u4f60\u6240\u89c1": [95, 104], "\u5f20\u91cf\u548c\u6807\u91cf\u4e4b\u95f4\u7684\u52a0\u6cd5": 95, "\u51cf\u6cd5": 95, "\u4e58\u6cd5": 95, "\u9664\u6cd5\u548c\u6307\u6570\u8fd0\u7b97\u90fd\u662f\u5728\u5f20\u91cf\u7684\u6bcf\u4e2a\u5143\u7d20\u4e0a\u5206\u5e03\u5f0f\u8fdb\u884c\u7684": 95, "\u7531\u4e8e\u8fd9\u79cd\u64cd\u4f5c\u7684\u8f93\u51fa\u5c06\u662f\u4e00\u4e2a\u5f20\u91cf": 95, "\u4f60\u53ef\u4ee5\u50cf\u901a\u5e38\u7684\u8fd0\u7b97\u7b26\u4f18\u5148\u7ea7\u89c4\u5219\u4e00\u6837\u5c06\u5b83\u4eec\u94fe\u63a5\u5728\u4e00\u8d77": 95, "\u5c31\u50cf\u6211\u4eec\u5728\u521b\u5efa": 95, "\u7684\u90a3\u4e00\u884c\u4e2d\u6240\u505a\u7684\u90a3\u6837": 95, "\u4e24\u4e2a\u5f20\u91cf\u4e4b\u95f4\u7684\u7c7b\u4f3c\u8fd0\u7b97\u4e5f\u50cf\u4f60\u76f4\u89c9\u4e0a\u671f\u671b\u7684\u90a3\u6837": 95, "powers2": 95, "dozen": [95, 165], "\u8fd9\u91cc\u9700\u8981\u6ce8\u610f\u7684\u662f": 95, "\u524d\u9762\u4ee3\u7801\u5355\u5143\u4e2d\u7684\u6240\u6709\u5f20\u91cf\u90fd\u5177\u6709\u76f8\u540c\u7684\u5f62\u72b6": 95, "\u5982\u679c\u6211\u4eec\u5c1d\u8bd5\u5728\u4e0d\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u4e0a\u6267\u884c\u4e8c\u5143\u8fd0\u7b97\u4f1a\u600e\u6837": 95, "\u4e0b\u9762\u7684\u5355\u5143\u683c\u4f1a\u629b\u51fa\u4e00\u4e2a\u8fd0\u884c\u65f6\u9519\u8bef": 95, "\u8fd9\u662f\u6709\u610f\u7684": 95, "\u4e00\u822c\u60c5\u51b5\u4e0b": 95, "\u4f60\u4e0d\u80fd\u4ee5\u8fd9\u79cd\u65b9\u5f0f\u5bf9\u4e0d\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c": 95, "\u5373\u4f7f\u5728\u4e0a\u9762\u7684\u5355\u5143\u683c\u4e2d": 95, "\u5f20\u91cf\u5177\u6709\u76f8\u540c\u6570\u91cf\u7684\u5143\u7d20": 95, "\u5982\u679c\u4f60\u719f\u6089numpi": 95, "ndarrays\u4e2d\u7684\u5e7f\u64ad\u8bed\u4e49": 95, "\u4f60\u4f1a\u53d1\u73b0\u8fd9\u91cc\u5e94\u7528\u7684\u662f\u76f8\u540c\u7684\u89c4\u5219": 95, "\u540c\u5f62\u89c4\u5219\u7684\u4f8b\u5916\u662f": 95, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u4f8b\u5b50": 95, "\u8fd9\u91cc\u7684\u6280\u5de7\u662f\u4ec0\u4e48": 95, "\u6211\u4eec\u662f\u5982\u4f55\u5c06": 95, "\u5f20\u91cf\u4e0e": 95, "\u5f20\u91cf\u76f8\u4e58\u7684": 95, "\u5e7f\u64ad\u662f\u4e00\u79cd\u5728\u5177\u6709\u76f8\u4f3c\u5f62\u72b6\u7684\u5f20\u91cf\u4e4b\u95f4\u6267\u884c\u64cd\u4f5c\u7684\u65b9\u5f0f": 95, "\u5728\u4e0a\u9762\u7684\u4f8b\u5b50\u4e2d": 95, "\u4e00\u884c\u56db\u5217\u7684\u5f20\u91cf\u4e0e\u4e24\u884c\u56db\u5217\u5f20\u91cf\u7684": 95, "\u4e24\u884c": 95, "\u76f8\u4e58": 95, "\u8fd9\u662f\u6df1\u5ea6\u5b66\u4e60\u4e2d\u4e00\u4e2a\u91cd\u8981\u7684\u64cd\u4f5c": 95, "\u5e38\u89c1\u7684\u4f8b\u5b50\u662f\u5c06\u4e00\u6279\u8f93\u5165\u5f20\u91cf\u7684\u5b66\u4e60\u6743\u91cd\u5f20\u91cf\u76f8\u4e58": 95, "\u5206\u522b\u5bf9\u6279\u6b21\u4e2d\u7684\u6bcf\u4e2a\u5b9e\u4f8b\u5e94\u7528\u8be5\u64cd\u4f5c": 95, "\u5e76\u8fd4\u56de\u4e00\u4e2a\u5f62\u72b6\u76f8\u540c\u7684\u5f20\u91cf": 95, "\u5c31\u50cf\u6211\u4eec\u4e0a\u9762\u7684": 95, "\u793a\u4f8b\u4e00\u6837": 95, "\u8fd4\u56de\u4e86\u4e00\u4e2a\u5f62\u72b6\u4e3a": 95, "\u5e7f\u64ad\u7684\u89c4\u5219\u662f": 95, "\u6bcf\u4e2a\u5f20\u91cf\u5fc5\u987b\u81f3\u5c11\u6709\u4e00\u4e2a\u7ef4\u5ea6": 95, "\u4e0d\u5141\u8bb8\u7a7a\u5f20\u91cf": 95, "\u6bd4\u8f83\u4e24\u4e2a\u5f20\u91cf\u7684\u7ef4\u5ea6\u5927\u5c0f": 95, "\u4ece\u6700\u540e\u4e00\u4e2a\u5230\u7b2c\u4e00\u4e2a": 95, "\u6bcf\u4e2a\u7ef4\u5ea6\u5fc5\u987b\u76f8\u7b49": 95, "\u5176\u4e2d\u4e00\u4e2a\u7ef4\u5ea6\u5fc5\u987b\u4e3a1": 95, "\u8be5\u7ef4\u5ea6\u5728\u5176\u4e2d\u4e00\u4e2a\u5f20\u91cf\u4e2d\u4e0d\u5b58\u5728": 95, "\u5f53\u7136": 95, "\u76f8\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u662f": 95, "\u53ef\u5e7f\u64ad": 95, "\u6b63\u5982\u4f60\u4e4b\u524d\u770b\u5230\u7684\u90a3\u6837": 95, "\u8fd9\u91cc\u6709\u4e00\u4e9b\u7b26\u5408\u4e0a\u8ff0\u89c4\u5219\u5e76\u5141\u8bb8\u5e7f\u64ad\u7684\u60c5\u51b5\u793a\u4f8b": 95, "\u7b2c3\u548c\u7b2c2\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c1\u7ef4\u4e0d\u5b58\u5728": 95, "\u7b2c3\u7ef4\u4e3a1": 95, "\u7b2c2\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c3\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c2\u7ef4\u4e3a1": 95, "\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u6bcf\u4e2a\u5f20\u91cf\u7684\u503c": 95, "\u521b\u5efa": 95, "\u7684\u4e58\u6cd5\u8fd0\u7b97\u662f\u5728": 95, "\u7684\u6bcf\u4e00\u5c42\u4e0a\u5e7f\u64ad\u7684": 95, "\u5bf9\u4e8e": 95, "\u8be5\u8fd0\u7b97\u5728": 95, "\u7684\u6bcf\u4e00\u5c42\u548c\u6bcf\u4e00\u884c\u4e0a\u90fd\u8fdb\u884c\u4e86\u5e7f\u64ad": 95, "\u6bcf\u4e00\u52173\u4e2a\u5143\u7d20\u90fd\u662f\u76f8\u540c\u7684": 95, "\u6211\u4eec\u98a0\u5012\u4e86\u4e00\u4e0b": 95, "\u73b0\u5728\u6bcf\u4e00\u884c\u5728\u5c42\u4e0e\u5217\u4e4b\u95f4\u90fd\u662f\u76f8\u540c\u7684": 95, "\u6709\u5173\u5e7f\u64ad\u7684\u66f4\u591a\u4fe1\u606f": 95, "\u8bf7\u53c2\u9605pytorch\u5173\u4e8e\u6b64\u7684": 95, "\u8fd9\u91cc\u6709\u4e00\u4e9b\u5c1d\u8bd5\u5e7f\u64ad\u4f46\u4f1a\u5931\u8d25\u7684\u4f8b\u5b50": 95, "\u7ef4\u5ea6\u5fc5\u987b\u4ece\u6700\u540e\u5230\u7b2c\u4e00\u4e2a\u5339\u914d": 95, "\u7b2c3\u548c\u7b2c2\u7ef4\u90fd\u4e0d\u540c": 95, "\u4e0d\u80fd\u4e0e\u7a7a\u5f20\u91cf\u8fdb\u884c\u5e7f\u64ad": 95, "\u5f20\u91cf\u6709\u8d85\u8fc7\u4e09\u767e\u79cd\u53ef\u4ee5\u6267\u884c\u7684\u64cd\u4f5c": 95, "\u8fd9\u91cc\u662f\u4e00\u4e9b\u4e3b\u8981\u64cd\u4f5c\u7c7b\u522b\u7684\u793a\u4f8b": 95, "\u5e38\u7528\u65b9\u6cd5": 95, "ceil": [95, 135], "\u4e09\u89d2\u51fd\u6570\u53ca\u5176\u53cd\u51fd\u6570": 95, "nsine": 95, "arcsin": 95, "\u4f4d\u8fd0\u7b97": 95, "nbitwis": 95, "xor": 95, "bitwise_xor": 95, "\u6bd4\u8f83\u64cd\u4f5c": 95, "nbroadcast": 95, "\u8fd4\u56de\u5e03\u5c14\u7c7b\u578b\u5f20\u91cf": 95, "\u5f52\u7ea6\u64cd\u4f5c": 95, "n\u5f52\u7ea6\u64cd\u4f5c": 95, "\u8fd4\u56de\u5355\u5143\u7d20\u5f20\u91cf": 95, "\u4ece\u8fd4\u56de\u7684\u5f20\u91cf\u4e2d\u63d0\u53d6\u503c": 95, "\u5e73\u5747\u503c": 95, "\u6807\u51c6\u5dee": 95, "prod": [95, 190], "\u6240\u6709\u6570\u5b57\u7684\u4e58\u79ef": 95, "\u8fc7\u6ee4\u552f\u4e00\u5143\u7d20": 95, "\u5411\u91cf\u548c\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97": 95, "\u5355\u4f4d\u5411\u91cf": 95, "m1": [95, 231], "\u968f\u673a\u77e9\u9635": 95, "m2": 95, "\u4e09\u500d\u5355\u4f4d\u77e9\u9635": 95, "n\u5411\u91cf\u548c\u77e9\u9635": 95, "\u5355\u4f4d\u5411\u91cf\u7684\u8d1f\u503c": 95, "m3": 95, "\u7684\u4e09\u500d": 95, "\u5947\u5f02\u503c\u5206\u89e3": 95, "\u6709\u5173\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u548c\u5b8c\u6574\u7684\u6570\u5b66\u51fd\u6570\u6e05\u5355": 95, "\u5927\u591a\u6570\u5f20\u91cf\u7684\u4e8c\u5143\u8fd0\u7b97\u5c06\u8fd4\u56de\u7b2c\u4e09\u4e2a\u65b0\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u8bf4": 95, "\u662f\u5f20\u91cf": 95, "\u65b0\u5f20\u91cf": 95, "\u5c06\u5360\u7528\u4e0e\u5176\u4ed6\u5f20\u91cf\u4e0d\u540c\u7684\u5185\u5b58\u533a\u57df": 95, "\u6709\u65f6\u60a8\u53ef\u80fd\u5e0c\u671b\u5c31\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u5982\u679c\u60a8\u6b63\u5728\u6267\u884c\u5143\u7d20wise\u8ba1\u7b97": 95, "\u53ef\u4ee5\u4e22\u5f03\u4e2d\u95f4\u503c": 95, "\u5927\u591a\u6570\u6570\u5b66\u51fd\u6570\u90fd\u6709\u4e00\u4e2a\u5e26\u6709\u9644\u52a0\u4e0b\u5212\u7ebf": 95, "\u7684\u7248\u672c": 95, "\u5b83\u5c06\u5c31\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u6b64\u64cd\u4f5c\u5728\u5185\u5b58\u4e2d\u521b\u5efa\u65b0\u5f20\u91cf": 95, "\u672a\u66f4\u6539": 95, "sin_": 95, "\u6ce8\u610f\u4e0b\u5212\u7ebf": 95, "\u88ab\u4fee\u6539": 95, "\u5bf9\u4e8e\u7b97\u672f\u8fd0\u7b97": 95, "\u6709\u4e00\u4e9b\u51fd\u6570\u7684\u884c\u4e3a\u7c7b\u4f3c": 95, "nafter": [95, 153], "\u8fd9\u4e9b\u5c31\u5730\u7b97\u672f\u51fd\u6570\u662f": 95, "\u5bf9\u8c61\u4e0a\u7684\u65b9\u6cd5": 95, "\u800c\u4e0d\u662f\u50cf\u8bb8\u591a\u5176\u4ed6\u51fd\u6570": 95, "\u90a3\u6837\u9644\u52a0\u5230": 95, "\u6a21\u5757\u4e0a": 95, "\u6b63\u5982\u4f60\u4ece": 95, "\u4e2d\u770b\u5230\u7684": 95, "\u88ab\u8c03\u7528\u7684\u5f20\u91cf\u662f\u5c31\u5730\u6539\u53d8\u7684\u90a3\u4e2a": 95, "\u8fd8\u6709\u53e6\u4e00\u79cd\u9009\u62e9": 95, "\u53ef\u4ee5\u5c06\u8ba1\u7b97\u7ed3\u679c\u653e\u5728\u4e00\u4e2a\u5df2\u7ecf\u5206\u914d\u7684\u5f20\u91cf\u4e2d": 95, "\u6211\u4eec\u5230\u76ee\u524d\u4e3a\u6b62\u770b\u5230\u7684\u8bb8\u591a\u65b9\u6cd5\u548c\u51fd\u6570": 95, "\u5305\u62ec\u521b\u5efa\u65b9\u6cd5": 95, "\u90fd\u6709\u4e00\u4e2a": 95, "\u8ba9\u4f60\u6307\u5b9a\u4e00\u4e2a\u5f20\u91cf\u6765\u63a5\u6536\u8f93\u51fa": 95, "\u5982\u679c": [95, 111, 246], "\u5f20\u91cf\u7684\u5f62\u72b6\u548c": 95, "\u6b63\u786e": 95, "\u8fd9\u53ef\u4ee5\u5728\u4e0d\u5206\u914d\u65b0\u5185\u5b58\u7684\u60c5\u51b5\u4e0b\u53d1\u751f": 95, "old_id": 95, "\u7684\u5185\u5bb9\u5df2\u7ecf\u6539\u53d8": 95, "\u6d4b\u8bd5": [95, 236], "\u662f\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u800c\u4e0d\u53ea\u662f\u5305\u542b\u76f8\u7b49\u7684\u503c": 95, "\u786e\u4fdd\u6211\u4eec\u7684\u65b0": 95, "\u662f\u65e7": 95, "\u7684\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u5bf9\u4e8e\u521b\u5efa\u4e5f\u53ef\u4ee5": 95, "\u53c8\u4e00\u6b21\u6539\u53d8": 95, "\u4ecd\u7136\u662f\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u4e2d\u7684\u4efb\u4f55\u5bf9\u8c61\u4e00\u6837": 95, "\u5c06\u5f20\u91cf\u8d4b\u503c\u7ed9\u53d8\u91cf\u4f1a\u4f7f\u8be5\u53d8\u91cf\u6210\u4e3a\u5f20\u91cf\u7684": 95, "\u6807\u7b7e": [95, 236, 250], "\u800c\u4e0d\u4f1a\u590d\u5236\u5b83": 95, "561": [95, 177], "\u6211\u4eec\u6539\u53d8": 95, "\u4e5f\u88ab\u6539\u53d8\u4e86": 95, "\u5982\u679c\u4f60\u60f3\u8981\u4e00\u4e2a\u5355\u72ec\u7684\u6570\u636e\u526f\u672c\u6765\u5904\u7406\u5462": 95, "\u8fd9\u65f6\u5c31\u53ef\u4ee5\u4f7f\u7528": 95, "\u5185\u5b58\u4e2d\u7684\u4e0d\u540c\u5bf9\u8c61": 95, "\u4f46\u4ecd\u7136\u5177\u6709\u76f8\u540c\u7684\u5185\u5bb9": 95, "\u6539\u53d8\u4e86": 95, "\u4f46": 95, "\u4ecd\u7136\u662f\u5168": 95, "\u6709\u4e00\u4e2a\u91cd\u8981\u7684\u4e8b\u60c5\u9700\u8981\u6ce8\u610f": 95, "\u5982\u679c\u4f60\u7684\u6e90\u5f20\u91cf\u542f\u7528\u4e86\u81ea\u52a8\u6c42\u5bfc": 95, "\u90a3\u4e48\u514b\u9686\u5f20\u91cf\u4e5f\u4f1a\u542f\u7528\u81ea\u52a8\u6c42\u5bfc": 95, "\u8fd9\u5c06\u5728\u5173\u4e8e\u81ea\u52a8\u6c42\u5bfc\u7684\u89c6\u9891\u4e2d\u66f4\u6df1\u5165\u5730\u4ecb\u7ecd": 95, "\u4f46\u5982\u679c\u4f60\u60f3\u4e86\u89e3\u7ec6\u8282\u7684\u7b80\u5355\u7248\u672c": 95, "\u8bf7\u7ee7\u7eed\u9605\u8bfb": 95, "\u5728\u8bb8\u591a\u60c5\u51b5\u4e0b": 95, "\u8fd9\u6b63\u662f\u4f60\u6240\u9700\u8981\u7684": 95, "\u5982\u679c\u4f60\u7684\u6a21\u578b\u5728\u5176": 95, "\u65b9\u6cd5\u4e2d\u6709\u591a\u4e2a\u8ba1\u7b97\u8def\u5f84": 95, "\u5e76\u4e14": 95, "\u539f\u59cb\u5f20\u91cf\u548c\u5b83\u7684\u514b\u9686": 95, "\u90fd\u4f1a\u5f71\u54cd\u6a21\u578b\u7684\u8f93\u51fa": 95, "\u90a3\u4e48\u4e3a\u4e86\u542f\u7528\u6a21\u578b\u5b66\u4e60": 95, "\u4f60\u5e0c\u671b\u4e24\u4e2a\u5f20\u91cf\u90fd\u542f\u7528\u81ea\u52a8\u6c42\u5bfc": 95, "\u901a\u5e38\u5982\u679c\u5b83\u662f\u4e00\u7ec4\u5b66\u4e60\u6743\u91cd\u6216\u6e90\u81ea\u6d89\u53ca\u6743\u91cd\u7684\u8ba1\u7b97": 95, "\u90a3\u4e48\u4f60\u5c31\u4f1a\u5f97\u5230\u6240\u9700\u7684\u7ed3\u679c": 95, "\u53e6\u4e00\u65b9\u9762": 95, "\u5982\u679c\u4f60\u6b63\u5728\u8fdb\u884c\u4e00\u4e2a\u8ba1\u7b97": 95, "\u90fd\u4e0d\u9700\u8981\u8ddf\u8e2a\u68af\u5ea6": 95, "\u90a3\u4e48\u53ea\u8981\u6e90\u5f20\u91cf\u5173\u95ed\u4e86\u81ea\u52a8\u6c42\u5bfc": 95, "\u4f60\u5c31\u53ef\u4ee5\u7ee7\u7eed\u4e86": 95, "\u8fd8\u6709\u7b2c\u4e09\u79cd\u60c5\u51b5": 95, "\u5047\u8bbe\u4f60\u5728\u6a21\u578b\u7684": 95, "\u51fd\u6570\u4e2d\u6267\u884c\u4e00\u4e2a\u8ba1\u7b97": 95, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u6240\u6709\u5185\u5bb9\u7684\u68af\u5ea6\u90fd\u6253\u5f00": 95, "\u4f46\u4f60\u60f3\u5728\u4e2d\u95f4\u63d0\u53d6\u4e00\u4e9b\u503c\u6765\u751f\u6210\u4e00\u4e9b\u6307\u6807": 95, "\u4f60": 95, "\u4e0d\u5e0c\u671b": 95, "\u514b\u9686\u7684\u6e90\u5f20\u91cf\u526f\u672c\u8ddf\u8e2a\u68af\u5ea6": 95, "\u5173\u95ed\u81ea\u52a8\u6c42\u5bfc\u7684\u5386\u53f2\u8bb0\u5f55\u8ddf\u8e2a\u53ef\u4ee5\u63d0\u9ad8\u6027\u80fd": 95, "\u4f60\u53ef\u4ee5\u5728\u6e90\u5f20\u91cf\u4e0a\u4f7f\u7528": 95, "\u6253\u5f00\u81ea\u52a8\u6c42\u5bfc": 95, "\u6b64\u5904\u53d1\u751f\u4e86\u4ec0\u4e48": 95, "\u6211\u4eec\u521b\u5efa\u4e86": 95, "\u5e76\u5c06": 95, "\u6211\u4eec\u8fd8\u6ca1\u6709\u4ecb\u7ecd\u8fd9\u4e2a\u53ef\u9009\u53c2\u6570": 95, "\u4f46\u5c06\u5728\u5173\u4e8e\u81ea\u52a8\u6c42\u5bfc\u7684\u5355\u5143\u4e2d\u4ecb\u7ecd": 95, "\u5b83\u544a\u8bc9\u6211\u4eec\u5c5e\u6027": 95, "\u8fd9\u610f\u5473\u7740\u81ea\u52a8\u6c42\u5bfc\u548c\u8ba1\u7b97\u5386\u53f2\u8ddf\u8e2a\u5df2\u6253\u5f00": 95, "\u6211\u4eec\u514b\u9686": 95, "\u5e76\u5c06\u5176\u6807\u8bb0\u4e3a": 95, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u6b63\u5728\u8ddf\u8e2a\u5176\u8ba1\u7b97\u5386\u53f2": 95, "\u5b83\u7ee7\u627f\u4e86": 95, "\u7684\u81ea\u52a8\u6c42\u5bfc\u8bbe\u7f6e": 95, "\u5e76\u6dfb\u52a0\u5230\u4e86\u8ba1\u7b97\u5386\u53f2\u4e2d": 95, "\u4f46\u9996\u5148\u8c03\u7528": 95, "\u6211\u4eec\u770b\u4e0d\u5230\u4efb\u4f55\u8ba1\u7b97\u5386\u53f2": 95, "\u4e5f\u6ca1\u6709": 95, "\u5c06\u5f20\u91cf\u4e0e\u5176\u8ba1\u7b97\u5386\u53f2\u5206\u79bb": 95, "\u5b83\u8bf4": 95, "\u65e0\u8bba\u63a5\u4e0b\u6765\u53d1\u751f\u4ec0\u4e48": 95, "\u90fd\u50cf\u81ea\u52a8\u6c42\u5bfc\u5173\u95ed\u65f6\u90a3\u6837\u8fdb\u884c": 95, "\u5b83\u8fd9\u6837\u505a": 95, "\u5e76\u4e0d\u4f1a\u6539\u53d8": 95, "\u5f53\u6211\u4eec\u5728\u6700\u540e\u518d\u6b21\u6253\u5370": 95, "\u5b83\u4fdd\u7559\u4e86\u5176": 95, "\u7684\u4e3b\u8981\u4f18\u52bf\u4e4b\u4e00\u662f\u5728": 95, "\u517c\u5bb9\u7684": 95, "\u4e0a\u6709\u5f3a\u5927\u7684\u52a0\u901f\u80fd\u529b": 95, "\u7684\u5e76\u884c\u8ba1\u7b97\u5e73\u53f0": 95, "\u5230\u76ee\u524d\u4e3a\u6b62": 95, "\u6211\u4eec\u6240\u505a\u7684\u4e00\u5207\u90fd\u662f\u5728": 95, "\u6211\u4eec\u5982\u4f55\u79fb\u52a8\u5230\u66f4\u5feb\u7684\u786c\u4ef6\u4e0a\u5462": 95, "\u6211\u4eec\u5e94\u8be5\u4f7f\u7528": 95, "\u65b9\u6cd5\u68c0\u67e5\u662f\u5426\u6709": 95, "\u53ef\u7528": 95, "\u5982\u679c\u4f60\u6ca1\u6709\u5b89\u88c5": 95, "\u9a71\u52a8\u7a0b\u5e8f": 95, "\u672c\u8282\u4e2d\u7684\u53ef\u6267\u884c\u5355\u5143\u683c\u5c06\u4e0d\u4f1a\u6267\u884c\u4efb\u4f55": 95, "\u76f8\u5173\u7684\u4ee3\u7801": 95, "\u4e00\u65e6\u6211\u4eec\u786e\u5b9a\u6709\u4e00\u4e2a\u6216\u591a\u4e2agpu\u53ef\u7528": 95, "\u6211\u4eec\u9700\u8981\u5c06\u6570\u636e\u653e\u5728gpu\u53ef\u4ee5\u8bbf\u95ee\u7684\u5730\u65b9": 95, "\u4f60\u7684cpu\u5728\u8ba1\u7b97\u673a\u7684ram\u4e0a\u5bf9\u6570\u636e\u8fdb\u884c\u8ba1\u7b97": 95, "\u4f60\u7684gpu\u6709\u4e13\u7528\u7684\u5185\u5b58\u8fde\u63a5\u5230\u5b83": 95, "\u6bcf\u5f53\u4f60\u60f3\u5728\u4e00\u4e2a\u8bbe\u5907\u4e0a\u6267\u884c\u8ba1\u7b97\u65f6": 95, "\u4f60\u5fc5\u987b\u5c06\u8be5\u8ba1\u7b97\u6240\u9700\u7684": 95, "\u6570\u636e\u79fb\u52a8\u5230\u8be5\u8bbe\u5907\u53ef\u8bbf\u95ee\u7684\u5185\u5b58\u4e2d": 95, "\u4fd7\u79f0": 95, "\u5c06\u6570\u636e\u79fb\u52a8\u5230gpu\u53ef\u8bbf\u95ee\u7684\u5185\u5b58": 95, "\u88ab\u7b80\u79f0\u4e3a": 95, "\u5c06\u6570\u636e\u79fb\u52a8\u5230gpu": 95, "\u6709\u591a\u79cd\u65b9\u5f0f\u53ef\u4ee5\u5c06\u6570\u636e\u79fb\u52a8\u5230\u76ee\u6807\u8bbe\u5907": 95, "\u4f60\u53ef\u4ee5\u5728\u521b\u5efa\u65f6\u8fd9\u6837\u505a": 95, "gpu_rand": 95, "\u65b0\u7684\u5f20\u91cf\u662f\u5728cpu\u4e0a\u521b\u5efa\u7684": 95, "\u6240\u4ee5\u6211\u4eec\u5fc5\u987b\u4f7f\u7528\u53ef\u9009\u7684": 95, "\u53c2\u6570\u6765\u6307\u5b9a\u6211\u4eec\u60f3\u5728gpu\u4e0a\u521b\u5efa\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u6253\u5370\u65b0\u7684\u5f20\u91cf\u65f6": 95, "\u4f60\u53ef\u4ee5\u770b\u5230pytorch\u4f1a\u544a\u8bc9\u6211\u4eec\u5b83\u5728\u54ea\u4e2a\u8bbe\u5907\u4e0a": 95, "\u5982\u679c\u4e0d\u5728cpu\u4e0a": 95, "\u67e5\u8be2gpu\u7684\u6570\u91cf": 95, "\u5982\u679c\u4f60\u6709\u591a\u4e2agpu": 95, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7d22\u5f15\u6307\u5b9a\u5b83\u4eec": 95, "\u4f5c\u4e3a\u7f16\u7801\u5b9e\u8df5": 95, "\u5728\u4efb\u4f55\u5730\u65b9\u90fd\u4f7f\u7528\u5b57\u7b26\u4e32\u5e38\u91cf\u6765\u6307\u5b9a\u8bbe\u5907\u662f\u76f8\u5f53\u8106\u5f31\u7684": 95, "\u65e0\u8bba\u4f60\u5728cpu\u8fd8\u662fgpu\u786c\u4ef6\u4e0a": 95, "\u4f60\u7684\u4ee3\u7801\u90fd\u5e94\u8be5\u7a33\u5065\u5730\u6267\u884c": 95, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u521b\u5efa\u4e00\u4e2a\u8bbe\u5907\u53e5\u67c4\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 95, "\u800c\u4e0d\u662f\u4f7f\u7528\u5b57\u7b26\u4e32\u4f20\u9012\u7ed9\u4f60\u7684\u5f20\u91cf": 95, "my_devic": 95, "\u5982\u679c\u4f60\u6709\u4e00\u4e2a\u5df2\u7ecf\u5b58\u5728\u4e8e\u4e00\u4e2a\u8bbe\u5907\u4e0a\u7684\u5f20\u91cf": 95, "\u65b9\u6cd5\u5c06\u5b83\u79fb\u52a8\u5230\u53e6\u4e00\u4e2a\u8bbe\u5907": 95, "\u4e0b\u9762\u4e00\u884c\u4ee3\u7801\u5728cpu\u4e0a\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf": 95, "\u5e76\u5c06\u5b83\u79fb\u52a8\u5230\u4f60\u5728\u4e0a\u4e00\u4e2a\u5355\u5143\u683c\u4e2d\u83b7\u53d6\u7684\u4efb\u4f55\u8bbe\u5907\u53e5\u67c4\u4e0a": 95, "\u91cd\u8981\u7684\u662f\u8981\u77e5\u9053": 95, "\u4e3a\u4e86\u8fdb\u884c\u6d89\u53ca\u4e24\u4e2a\u6216\u591a\u4e2a\u5f20\u91cf\u7684\u8ba1\u7b97": 95, "\u6240\u6709\u5f20\u91cf\u5fc5\u987b\u5728\u540c\u4e00\u8bbe\u5907\u4e0a": 95, "\u65e0\u8bba\u4f60\u662f\u5426\u6709gpu\u8bbe\u5907\u53ef\u7528": 95, "\u4ee5\u4e0b\u4ee3\u7801\u90fd\u4f1a\u629b\u51fa\u8fd0\u884c\u65f6\u9519\u8bef": 95, "thrown": [95, 192, 206], "\u6709\u65f6": 95, "\u4f60\u9700\u8981\u6539\u53d8\u5f20\u91cf\u7684\u5f62\u72b6": 95, "\u6211\u4eec\u5c06\u770b\u4e00\u4e9b\u5e38\u89c1\u7684\u60c5\u51b5": 95, "\u4ee5\u53ca\u5982\u4f55\u5904\u7406\u5b83\u4eec": 95, "\u4f60\u53ef\u80fd\u9700\u8981\u6539\u53d8\u7ef4\u5ea6\u6570\u91cf\u7684\u4e00\u79cd\u60c5\u51b5\u662f\u5c06\u5355\u4e2a\u5b9e\u4f8b\u8f93\u5165\u5230\u4f60\u7684\u6a21\u578b\u4e2d": 95, "pytorch\u6a21\u578b": 95, "\u901a\u5e38\u671f\u671b\u8f93\u5165": 95, "\u6570\u636e": [95, 236], "\u5047\u8bbe\u6709\u4e00\u4e2a\u6a21\u578b\u53ef\u4ee5\u5904\u74063x226x226\u7684\u56fe\u50cf": 95, "\u4e00\u4e2a226\u50cf\u7d20\u7684\u6b63\u65b9\u5f62": 95, "\u67093\u4e2a\u989c\u8272\u901a\u9053": 95, "\u5f53\u4f60\u52a0\u8f7d\u548c\u8f6c\u6362\u5b83\u65f6": 95, "\u4f60\u4f1a\u5f97\u5230\u4e00\u4e2a\u5f62\u72b6\u4e3a": 95, "226": 95, "\u4f46\u662f\u4f60\u7684\u6a21\u578b": 95, "\u671f\u671b\u8f93\u5165\u5f62\u72b6\u4e3a": 95, "\u662f\u6279\u6b21\u4e2d\u56fe\u50cf\u7684\u6570\u91cf": 95, "\u90a3\u4e48\u5982\u4f55\u521b\u5efa\u4e00\u4e2a\u6279\u6b21\u5927\u5c0f\u4e3a1\u7684\u8f93\u5165\u5462": 95, "\u65b9\u6cd5\u6dfb\u52a0\u4e86\u4e00\u4e2a\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u5728\u6700\u524d\u9762\u6dfb\u52a0\u4e86\u4e00\u4e2a\u65b0\u76840\u7ef4\u5ea6": 95, "\u73b0\u5728\u4f60\u6709\u4e86\u4e00\u4e2a\u6279\u6b21\u5927\u5c0f\u4e3a1\u7684\u8f93\u5165": 95, "\u90a3\u4e48\u5982\u679c\u662f": 95, "\u53bb\u9664": 95, "\u591a\u4f59\u76841\u7ef4\u5ea6\u5462": 95, "\u6211\u4eec\u6240\u8bf4\u7684\u6324\u538b": 95, "\u5c31\u662f\u5229\u7528\u4e86": 95, "\u4efb\u4f55\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u4e0d\u4f1a": 95, "\u6539\u53d8\u5f20\u91cf\u4e2d\u5143\u7d20\u7684\u6570\u91cf\u8fd9\u4e00\u4e8b\u5b9e": 95, "\u7ee7\u7eed\u4e0a\u9762\u7684\u4f8b\u5b50": 95, "\u5047\u8bbe\u6a21\u578b\u7684\u8f93\u51fa\u662f\u4e00\u4e2a20\u5143\u7d20\u7684\u5411\u91cf": 95, "\u5bf9\u4e8e\u6bcf\u4e2a\u8f93\u5165": 95, "\u90a3\u4e48\u4f60\u4f1a\u671f\u671b\u8f93\u51fa\u7684\u5f62\u72b6\u4e3a": 95, "\u662f\u8f93\u5165\u6279\u6b21\u4e2d\u7684\u5b9e\u4f8b\u6570\u91cf": 95, "\u8fd9\u610f\u5473\u7740\u5bf9\u4e8e\u6211\u4eec\u7684\u5355\u8f93\u5165\u6279\u6b21": 95, "\u6211\u4eec\u4f1a\u5f97\u5230\u5f62\u72b6\u4e3a": 95, "\u7684\u8f93\u51fa": [95, 236], "\u5982\u679c\u4f60\u60f3\u5bf9\u8be5\u8f93\u51fa\u8fdb\u884c\u4e00\u4e9b": 95, "\u975e\u6279\u6b21": 95, "\u4e00\u4e9b\u53ea\u671f\u671b20\u5143\u7d20\u5411\u91cf\u7684\u8ba1\u7b97": 95, "\u8be5\u600e\u4e48\u529e": 95, "\u4f60\u53ef\u4ee5\u4ece\u5f62\u72b6\u770b\u51fa": 95, "\u6211\u4eec\u7684\u4e8c\u7ef4\u5f20\u91cf\u73b0\u5728\u53d8\u6210\u4e86\u4e00\u7ef4\u7684": 95, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u5355\u5143\u683c\u7684\u8f93\u51fa": 95, "\u4f60\u4f1a\u53d1\u73b0\u6253\u5370": 95, "\u65f6\u4f1a\u663e\u793a\u4e00\u7ec4": 95, "\u989d\u5916": 95, "\u7684\u65b9\u62ec\u53f7": 95, "\u8fd9\u662f\u56e0\u4e3a\u591a\u4e86\u4e00\u4e2a\u7ef4\u5ea6": 95, "\u4f60\u53ea\u80fd\u5bf9\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6\u6267\u884c": 95, "\u770b\u4e0a\u9762\u6211\u4eec\u5c1d\u8bd5\u5bf9\u5927\u5c0f\u4e3a2\u7684\u7ef4\u5ea6": 95, "\u8fdb\u884c\u6324\u538b": 95, "\u5f97\u5230\u7684\u5f62\u72b6\u4e0e\u5f00\u59cb\u65f6\u76f8\u540c": 95, "\u7684\u8c03\u7528\u53ea\u80fd\u4f5c\u7528\u4e8e\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u56e0\u4e3a\u5bf9\u5176\u4ed6\u7ef4\u5ea6\u64cd\u4f5c\u4f1a\u6539\u53d8\u5f20\u91cf\u4e2d\u5143\u7d20\u7684\u6570\u91cf": 95, "\u4f60\u53ef\u80fd\u4f1a\u4f7f\u7528": 95, "\u7684\u53e6\u4e00\u4e2a\u573a\u666f\u662f\u4e3a\u4e86\u65b9\u4fbf\u5e7f\u64ad\u64cd\u4f5c": 95, "\u56de\u60f3\u4e00\u4e0b\u4e0a\u9762\u7684\u4f8b\u5b50": 95, "\u6211\u4eec\u6709\u4ee5\u4e0b\u4ee3\u7801": 95, "\u5176\u51c0\u6548\u679c\u662f\u5728\u7ef4\u5ea60\u548c2\u4e0a\u8fdb\u884c\u5e7f\u64ad\u64cd\u4f5c": 95, "\u5bfc\u81f4\u5f62\u72b6\u4e3a3x1\u7684\u968f\u673a\u5f20\u91cf\u4e0e": 95, "\u4e2d\u7684\u6bcf\u4e00\u52173\u5143\u7d20\u9010\u5143\u7d20\u76f8\u4e58": 95, "\u5982\u679c\u968f\u673a\u5411\u91cf\u53ea\u662f\u4e00\u4e2a3\u5143\u7d20\u5411\u91cf\u5462": 95, "\u6211\u4eec\u5c31\u5931\u53bb\u4e86\u5e7f\u64ad\u7684\u80fd\u529b": 95, "\u56e0\u4e3a\u6700\u540e\u7684\u7ef4\u5ea6\u4e0d\u4f1a\u6839\u636e\u5e7f\u64ad\u89c4\u5219\u5339\u914d": 95, "\u53ef\u4ee5\u89e3\u6551\u6211\u4eec": 95, "\u8bd5\u56fe\u5c06": 95, "\u4f1a\u5bfc\u81f4\u8fd0\u884c\u65f6\u9519\u8bef": 95, "\u53d8\u6210\u4e8c\u7ef4\u5f20\u91cf": 95, "\u5728\u672b\u5c3e\u6dfb\u52a0\u65b0\u7ef4\u5ea6": 95, "\u5e7f\u64ad\u518d\u6b21\u751f\u6548": 95, "\u65b9\u6cd5\u4e5f\u6709\u672c\u5730\u7248\u672c": 95, "batch_m": 95, "\u6709\u65f6\u4f60\u9700\u8981\u66f4\u5f7b\u5e95\u5730\u6539\u53d8\u5f20\u91cf\u7684\u5f62\u72b6": 95, "\u540c\u65f6\u4fdd\u7559\u5143\u7d20\u6570\u91cf\u548c\u5185\u5bb9\u4e0d\u53d8": 95, "\u4e00\u79cd\u60c5\u51b5\u662f\u5728\u6a21\u578b\u7684\u5377\u79ef\u5c42\u548c\u7ebf\u6027\u5c42\u4e4b\u95f4\u7684\u63a5\u53e3": 95, "\u8fd9\u5728\u56fe\u50cf\u5206\u7c7b\u6a21\u578b\u4e2d\u5f88\u5e38\u89c1": 95, "\u5377\u79ef\u6838\u4f1a\u4ea7\u751f\u5f62\u72b6\u4e3a": 95, "\u4f46\u63a5\u4e0b\u6765\u7684\u7ebf\u6027\u5c42\u671f\u671b\u4e00\u7ef4\u8f93\u5165": 95, "\u53ef\u4ee5\u4e3a\u4f60\u505a\u8fd9\u4ef6\u4e8b": 95, "\u53ea\u8981\u4f60\u8bf7\u6c42\u7684\u7ef4\u5ea6\u4e0e\u8f93\u5165\u5f20\u91cf\u5177\u6709\u76f8\u540c\u6570\u91cf\u7684\u5143\u7d20\u5373\u53ef": 95, "output3d": 95, "input1d": 95, "\u4e0a\u9762\u6700\u540e\u4e00\u884c\u5355\u5143\u683c\u4e2d\u7684": 95, "\u53c2\u6570\u662f\u56e0\u4e3apytorch\u5728\u6307\u5b9a\u5f20\u91cf\u5f62\u72b6\u65f6": 95, "\u671f\u671b\u4e00\u4e2a": 95, "\u5143\u7ec4": 95, "\u4f46\u5f53\u5f62\u72b6\u662f\u65b9\u6cd5\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570\u65f6": 95, "\u5b83\u5141\u8bb8\u6211\u4eec\u53ea\u4f7f\u7528\u4e00\u7cfb\u5217\u6574\u6570": 95, "\u6211\u4eec\u5fc5\u987b\u6dfb\u52a0\u62ec\u53f7\u548c\u9017\u53f7\u6765\u8bf4\u670d\u8be5\u65b9\u6cd5\u8fd9\u786e\u5b9e\u662f\u4e00\u4e2a\u5355\u5143\u7d20\u5143\u7ec4": 95, "\u5f53\u53ef\u80fd\u65f6": 95, "\u4f1a\u8fd4\u56de\u8be5\u5f20\u91cf\u7684": 95, "\u89c6\u56fe": 95, "\u4e5f\u5c31\u662f\u4e00\u4e2a\u5355\u72ec\u7684\u5f20\u91cf\u5bf9\u8c61": 95, "\u67e5\u770b\u76f8\u540c\u7684\u5e95\u5c42\u5185\u5b58\u533a\u57df": 95, "\u8fd9\u4e00\u70b9\u5f88\u91cd\u8981": 95, "\u8fd9\u610f\u5473\u7740\u5bf9\u6e90\u5f20\u91cf\u6240\u505a\u7684\u4efb\u4f55\u66f4\u6539\u90fd\u4f1a\u53cd\u6620\u5728\u8be5\u5f20\u91cf\u7684\u89c6\u56fe\u4e0a": 95, "\u9664\u975e\u4f60": 95, "\u786e\u5b9e\u6709\u4e00\u4e9b\u6761\u4ef6": 95, "\u8d85\u51fa\u4e86\u672c\u4ecb\u7ecd\u7684\u8303\u56f4": 95, "\u5fc5\u987b\u8fd4\u56de\u6570\u636e\u7684\u526f\u672c": 95, "kinship": 95, "numpy_arrai": 95, "pytorch_tensor": 95, "pytorch_rand": 95, "numpy_rand": 95, "\u5728\u8fc7\u53bb\u7684\u89c6\u9891\u4e2d": 96, "\u6211\u4eec\u8ba8\u8bba\u5e76\u6f14\u793a\u4e86": 96, "\u6a21\u5757\u4e2d\u7684\u795e\u7ecf\u7f51\u7edc\u5c42\u548c\u51fd\u6570\u6784\u5efa\u6a21\u578b": 96, "\u81ea\u52a8\u68af\u5ea6\u8ba1\u7b97\u7684\u673a\u5236": 96, "\u8fd9\u662f\u57fa\u4e8e\u68af\u5ea6\u7684\u6a21\u578b\u8bad\u7ec3\u7684\u6838\u5fc3": 96, "\u53ef\u89c6\u5316\u8bad\u7ec3\u8fdb\u5ea6\u548c\u5176\u4ed6\u6d3b\u52a8": 96, "\u5728\u672c\u89c6\u9891\u4e2d": 96, "\u6211\u4eec\u5c06\u4e3a\u60a8\u7684\u5e93\u5b58\u6dfb\u52a0\u4e00\u4e9b\u65b0\u5de5\u5177": 96, "\u6211\u4eec\u5c06\u719f\u6089\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668\u62bd\u8c61": 96, "\u4ee5\u53ca\u5b83\u4eec\u5982\u4f55\u7b80\u5316\u5411\u6a21\u578b\u8bad\u7ec3\u5faa\u73af\u63d0\u4f9b\u6570\u636e\u7684\u8fc7\u7a0b": 96, "\u6211\u4eec\u5c06\u8ba8\u8bba\u7279\u5b9a\u7684\u635f\u5931\u51fd\u6570\u4ee5\u53ca\u4f55\u65f6\u4f7f\u7528\u5b83\u4eec": 96, "\u6211\u4eec\u5c06\u4e86\u89e3": 96, "\u5b83\u4eec\u5b9e\u73b0\u4e86\u6839\u636e\u635f\u5931\u51fd\u6570\u7684\u7ed3\u679c\u8c03\u6574\u6a21\u578b\u6743\u91cd\u7684\u7b97\u6cd5": 96, "\u6211\u4eec\u5c06\u628a\u6240\u6709\u8fd9\u4e9b\u7ed3\u5408\u8d77\u6765": 96, "\u770b\u4e00\u4e2a\u5b8c\u6574\u7684": 96, "\u8bad\u7ec3\u5faa\u73af\u7684\u5b9e\u9645\u8fd0\u884c": 96, "\u7c7b\u5c01\u88c5\u4e86\u4ece\u5b58\u50a8\u4e2d\u63d0\u53d6\u6570\u636e\u5e76\u4ee5\u6279\u6b21\u5f62\u5f0f\u66b4\u9732\u7ed9\u8bad\u7ec3\u5faa\u73af\u7684\u8fc7\u7a0b": 96, "\u8d1f\u8d23\u8bbf\u95ee\u548c\u5904\u7406\u5355\u4e2a\u6570\u636e\u5b9e\u4f8b": 96, "\u4e2d\u63d0\u53d6\u6570\u636e\u5b9e\u4f8b": 96, "\u65e0\u8bba\u662f\u81ea\u52a8\u63d0\u53d6\u8fd8\u662f\u4f7f\u7528\u60a8\u5b9a\u4e49\u7684\u91c7\u6837\u5668": 96, "\u5c06\u5b83\u4eec\u6536\u96c6\u5230\u6279\u6b21\u4e2d": 96, "\u5e76\u8fd4\u56de\u7ed9\u60a8\u7684\u8bad\u7ec3\u5faa\u73af\u8fdb\u884c\u6d88\u8d39": 96, "\u53ef\u4ee5\u4e0e\u6240\u6709\u7c7b\u578b\u7684\u6570\u636e\u96c6\u4e00\u8d77\u4f7f\u7528": 96, "\u65e0\u8bba\u5b83\u4eec\u5305\u542b\u4ec0\u4e48\u7c7b\u578b\u7684\u6570\u636e": 96, "\u5bf9\u4e8e\u672c\u6559\u7a0b": [96, 233, 242, 243, 248, 249, 250], "\u63d0\u4f9b\u7684": 96, "\u6765\u96f6\u4e2d\u5fc3\u548c\u6807\u51c6\u5316\u56fe\u50cf\u74e6\u7247\u5185\u5bb9\u7684\u5206\u5e03": 96, "\u5e76\u4e0b\u8f7d\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u5206\u5272": 96, "datetim": [96, 122, 146], "\u521b\u5efa\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u96c6": 96, "\u5982\u679c\u9700\u8981\u5219\u4e0b\u8f7d": 96, "\u4e3a\u6211\u4eec\u7684\u6570\u636e\u96c6\u521b\u5efa\u6570\u636e\u52a0\u8f7d\u5668": 96, "\u8bad\u7ec3\u65f6\u6253\u4e71": 96, "\u9a8c\u8bc1\u65f6\u4e0d\u6253\u4e71": 96, "\u7c7b\u522b\u6807\u7b7e": 96, "\u62a5\u544a\u5206\u5272\u5927\u5c0f": 96, "\u8bad\u7ec3\u96c6\u6709": 96, "\u4e2a\u5b9e\u4f8b": 96, "\u9a8c\u8bc1\u96c6\u6709": 96, "\u50cf\u5f80\u5e38\u4e00\u6837": 96, "\u8ba9\u6211\u4eec\u53ef\u89c6\u5316\u6570\u636e\u4f5c\u4e3a\u5065\u5168\u6027\u68c0\u67e5": 96, "\u53cd\u6807\u51c6\u5316": 96, "\u6211\u4eec\u5728\u672c\u4f8b\u4e2d\u4f7f\u7528\u7684\u6a21\u578b\u662f": 96, "\u7684\u53d8\u4f53": 96, "\u5982\u679c\u60a8\u89c2\u770b\u4e86\u672c\u7cfb\u5217\u7684\u524d\u51e0\u4e2a\u89c6\u9891": 96, "\u5e94\u8be5\u4f1a\u5f88\u719f\u6089": 96, "\u6a21\u578b\u7ee7\u627f\u81ea": 96, "garmentclassifi": 96, "\u5bf9\u4e8e\u672c\u4f8b": [96, 236], "\u6211\u4eec\u5c06\u4f7f\u7528\u4ea4\u53c9\u71b5\u635f\u5931": 96, "\u4e3a\u4e86\u6f14\u793a\u76ee\u7684": 96, "\u6211\u4eec\u5c06\u521b\u5efa\u865a\u62df\u8f93\u51fa\u548c\u6807\u7b7e\u503c\u7684\u6279\u6b21": 96, "\u5c06\u5b83\u4eec\u901a\u8fc7\u635f\u5931\u51fd\u6570": 96, "\u5e76\u68c0\u67e5\u7ed3\u679c": 96, "\u635f\u5931\u51fd\u6570\u671f\u671b\u6570\u636e\u4ee5\u6279\u6b21\u5f62\u5f0f": 96, "\u6240\u4ee5\u6211\u4eec\u521b\u5efa\u4e86": 96, "\u4e2a\u6279\u6b21": 96, "\u8868\u793a\u6a21\u578b\u5bf9\u7ed9\u5b9a\u8f93\u5165\u7684": 96, "\u4e2a\u7c7b\u522b\u4e2d\u6bcf\u4e00\u4e2a\u7684\u7f6e\u4fe1\u5ea6": 96, "dummy_output": 96, "\u8868\u793a\u6b63\u786e\u7684\u7c7b\u522b\u5728\u6d4b\u8bd5\u7684": 96, "\u4e2a\u7c7b\u522b\u4e2d": 96, "dummy_label": 96, "\u6b64\u6279\u6b21\u7684\u603b\u635f\u5931": 96, "\u6211\u4eec\u5c06\u4f7f\u7528\u5e26\u52a8\u91cf\u7684\u7b80\u5355\u968f\u673a\u68af\u5ea6\u4e0b\u964d": 96, "\u5c1d\u8bd5\u4e00\u4e9b\u4f18\u5316\u65b9\u6848\u7684\u53d8\u4f53\u4f1a\u5f88\u6709\u542f\u53d1\u6027": 96, "\u5b66\u4e60\u7387\u51b3\u5b9a\u4e86\u4f18\u5316\u5668\u91c7\u53d6\u7684\u6b65\u957f\u5927\u5c0f": 96, "\u4e0d\u540c\u7684\u5b66\u4e60\u7387\u5bf9\u60a8\u7684\u8bad\u7ec3\u7ed3\u679c\u6709\u4f55\u5f71\u54cd": 96, "\u5728\u51c6\u786e\u6027\u548c\u6536\u655b\u65f6\u95f4\u65b9\u9762": 96, "\u52a8\u91cf\u5728\u591a\u4e2a\u6b65\u9aa4\u4e2d\u5c06\u4f18\u5316\u5668\u63a8\u5411\u6700\u5f3a\u68af\u5ea6\u7684\u65b9\u5411": 96, "\u6539\u53d8\u8fd9\u4e2a\u503c\u4f1a\u5bf9\u7ed3\u679c\u4ea7\u751f\u4ec0\u4e48\u5f71\u54cd": 96, "\u5c1d\u8bd5\u4e00\u4e9b\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5": 96, "\u5982\u5e73\u5747": 96, "\u60a8\u7684\u7ed3\u679c\u6709\u4f55\u4e0d\u540c": 96, "\u5305\u4e2d\u6307\u5b9a\u4f18\u5316\u5668": 96, "\u6211\u4eec\u6709\u4e00\u4e2a\u6267\u884c\u4e00\u4e2a\u8bad\u7ec3\u5468\u671f\u7684\u51fd\u6570": 96, "\u679a\u4e3e\u6570\u636e": 96, "\u5e76\u5728\u5faa\u73af\u7684\u6bcf\u4e00\u6b21\u901a\u8fc7\u65f6\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c": 96, "\u83b7\u53d6\u4e00\u6279\u8bad\u7ec3\u6570\u636e": 96, "\u5c06\u4f18\u5316\u5668\u7684\u68af\u5ea6\u5f52\u96f6": 96, "\u6267\u884c\u63a8\u7406": 96, "\u4e5f\u5c31\u662f\u4ece\u6a21\u578b\u83b7\u53d6\u8f93\u5165\u6279\u6b21\u7684\u9884\u6d4b": 96, "\u8ba1\u7b97\u8be5\u7ec4\u9884\u6d4b\u4e0e\u6570\u636e\u96c6\u4e0a\u7684\u6807\u7b7e\u4e4b\u95f4\u7684\u635f\u5931": 96, "\u8ba1\u7b97\u5b66\u4e60\u6743\u91cd\u7684\u53cd\u5411\u68af\u5ea6": 96, "\u544a\u8bc9\u4f18\u5316\u5668\u6267\u884c\u4e00\u4e2a\u5b66\u4e60\u6b65\u9aa4": 96, "\u4e5f\u5c31\u662f\u6839\u636e\u6211\u4eec\u9009\u62e9\u7684\u4f18\u5316\u7b97\u6cd5": 96, "\u57fa\u4e8e\u8be5\u6279\u6b21\u89c2\u5bdf\u5230\u7684\u68af\u5ea6\u6765\u8c03\u6574\u6a21\u578b\u7684\u5b66\u4e60\u6743\u91cd": 96, "\u5b83\u6bcf": 96, "\u4e2a\u6279\u6b21\u62a5\u544a\u4e00\u6b21\u635f\u5931": 96, "\u5b83\u62a5\u544a\u6700\u540e": 96, "\u4e2a\u6279\u6b21\u7684\u5e73\u5747\u6bcf\u6279\u6b21\u635f\u5931": 96, "\u4ee5\u4fbf\u4e0e\u9a8c\u8bc1\u8fd0\u884c\u8fdb\u884c\u6bd4\u8f83": 96, "epoch_index": 96, "tb_writer": 96, "last_loss": 96, "\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u8ddf\u8e2a\u6279\u6b21\u7d22\u5f15\u5e76\u8fdb\u884c\u4e00\u4e9b\u5468\u671f\u5185\u62a5\u544a": 96, "\u6bcf\u4e2a\u6570\u636e\u5b9e\u4f8b\u90fd\u662f\u4e00\u4e2a\u8f93\u5165": 96, "\u6807\u7b7e\u5bf9": 96, "\u5bf9\u4e8e\u6bcf\u4e2a\u6279\u6b21": 96, "\u5bf9\u8be5\u6279\u6b21\u8fdb\u884c\u9884\u6d4b": 96, "\u8ba1\u7b97\u635f\u5931\u53ca\u5176\u68af\u5ea6": 96, "\u8c03\u6574\u5b66\u4e60\u6743\u91cd": 96, "\u6536\u96c6\u6570\u636e\u5e76\u62a5\u544a": 96, "\u6bcf\u6279\u6b21\u635f\u5931": 96, "tb_x": 96, "\u6211\u4eec\u6bcf\u4e2a\u5468\u671f\u9700\u8981\u505a\u7684\u4e8b\u60c5\u6709": 96, "\u901a\u8fc7\u68c0\u67e5\u672a\u7528\u4e8e\u8bad\u7ec3\u7684\u4e00\u7ec4\u6570\u636e\u4e0a\u7684\u76f8\u5bf9\u635f\u5931\u6765\u6267\u884c\u9a8c\u8bc1": 96, "\u5e76\u62a5\u544a\u8fd9\u4e00\u70b9": 96, "\u4fdd\u5b58\u6a21\u578b\u7684\u526f\u672c": 96, "\u6211\u4eec\u5c06\u5728": 96, "\u4e2d\u8fdb\u884c\u62a5\u544a": 96, "\u8fd9\u9700\u8981\u8f6c\u5230\u547d\u4ee4\u884c\u542f\u52a8": 96, "\u5e76\u5728\u53e6\u4e00\u4e2a\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00\u5b83": 96, "\u5728\u5355\u72ec\u7684\u5355\u5143\u683c\u4e2d\u521d\u59cb\u5316": 96, "\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u8f7b\u677e\u5730\u5c06\u66f4\u591a\u5468\u671f\u6dfb\u52a0\u5230\u540c\u4e00\u8fd0\u884c\u4e2d": 96, "timestamp": [96, 128, 143, 226], "strftime": [96, 122, 146], "fashion_trainer_": 96, "epoch_numb": 96, "best_vloss": 96, "\u5468\u671f": 96, "\u786e\u4fdd\u68af\u5ea6\u8ddf\u8e2a\u5df2\u6253\u5f00": 96, "\u5e76\u5bf9\u6570\u636e\u8fdb\u884c\u4e00\u6b21\u4f20\u9012": 96, "\u5c06\u6a21\u578b\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 96, "\u7981\u7528": 96, "\u5e76\u4f7f\u7528\u6279\u91cf\u89c4\u8303\u5316\u7684\u7fa4\u4f53\u7edf\u8ba1\u6570\u636e": 96, "\u7981\u7528\u68af\u5ea6\u8ba1\u7b97\u5e76\u51cf\u5c11\u5185\u5b58\u6d88\u8017": 96, "\u6709\u6548": 96, "\u5bf9\u4e8e\u8bad\u7ec3\u548c\u9a8c\u8bc1": 96, "\u8bad\u7ec3\u4e0e\u9a8c\u8bc1\u635f\u5931": 96, "\u8ddf\u8e2a\u6700\u4f73\u6027\u80fd": 96, "\u5e76\u4fdd\u5b58\u6a21\u578b\u7684\u72b6\u6001": 96, "model_path": [96, 222], "\u8981\u52a0\u8f7d\u4fdd\u5b58\u7684\u6a21\u578b\u7248\u672c": 96, "\u4e00\u65e6\u52a0\u8f7d\u4e86\u6a21\u578b": 96, "\u5b83\u5c31\u53ef\u4ee5\u7528\u4e8e\u60a8\u9700\u8981\u7684\u4efb\u4f55\u4e8b\u60c5": 96, "\u66f4\u591a\u8bad\u7ec3": 96, "\u63a8\u7406\u6216\u5206\u6790": 96, "\u5982\u679c\u60a8\u7684\u6a21\u578b\u6709\u5f71\u54cd\u6a21\u578b\u7ed3\u6784\u7684\u6784\u9020\u51fd\u6570\u53c2\u6570": 96, "\u60a8\u9700\u8981\u63d0\u4f9b\u5b83\u4eec\u5e76\u4ee5\u4e0e\u4fdd\u5b58\u65f6\u76f8\u540c\u7684\u65b9\u5f0f\u914d\u7f6e\u6a21\u578b": 96, "\u4e0a\u7684\u6570\u636e\u5de5\u5177\u6587\u6863": 96, "\u5173\u4e8e\u4f7f\u7528\u56fa\u5b9a\u5185\u5b58\u8fdb\u884c": 96, "\u8bad\u7ec3\u7684\u8bf4\u660e": 96, "\u4e2d\u53ef\u7528\u6570\u636e\u96c6\u7684\u6587\u6863": 96, "\u4e2d\u53ef\u7528\u635f\u5931": 96, "trainingyt": 96, "alexandro": 97, "chariton": 97, "computation": [97, 171], "lightweight": [97, 121, 156, 213, 230, 251], "drone": 97, "4gb": [97, 152, 158, 223], "satur": [97, 199, 230], "subtract": [97, 247], "greedi": [97, 113, 118, 136, 146, 160], "transforms_cifar": 97, "test_dataset": [97, 115], "num_images_to_keep": 97, "50_000": [97, 159], "train_load": [97, 122, 123, 129, 162, 166, 168, 220, 221, 253], "extractor": [97, 171], "neuron": [97, 229], "deepnn": 97, "lightnn": 97, "detriment": 97, "denot": [97, 99, 102, 189, 190, 193, 262], "nn_deep": 97, "test_accuracy_deep": 97, "nn_light": 97, "new_nn_light": 97, "conclud": [97, 130, 149, 200], "total_params_deep": 97, "total_params_light": 97, "test_accuracy_light_c": 97, "interven": 97, "soft": [97, 160], "mistaken": 97, "valuabl": [97, 165, 193], "alon": [97, 112, 124, 165, 169], "meaningfulli": 97, "smoother": 97, "soft_target_loss_weight": 97, "ce_loss_weight": 97, "train_knowledge_distil": 97, "ce_loss": 97, "teacher_logit": 97, "student_logit": 97, "soft_target": 97, "soft_prob": 97, "soft_targets_loss": 97, "label_loss": 97, "ce": [97, 165], "test_accuracy_light_ce_and_kd": 97, "kd": 97, "coeffici": 97, "convei": [97, 200], "naiv": [97, 125, 145, 154, 164, 193], "rational": 97, "capac": [97, 131, 159, 160, 171, 247], "cosineembeddingloss": [97, 110], "obvious": [97, 101, 163], "somehow": [97, 103], "modifieddeepnncosin": 97, "flattened_conv_output": 97, "flattened_conv_output_after_pool": 97, "avg_pool1d": 97, "modifiedlightnncosin": 97, "modified_nn_deep": 97, "deep_nn": 97, "modified_deep_nn": 97, "modified_nn_light": 97, "hidden_represent": 97, "sample_input": [97, 209, 247], "total_class": 97, "hidden_representation_s": 97, "train_cosine_loss": 97, "hidden_rep_loss_weight": 97, "cosine_loss": 97, "teacher_hidden_represent": 97, "student_hidden_represent": 97, "hidden_rep_loss": 97, "test_multiple_output": 97, "disregard": 97, "test_accuracy_light_ce_and_cosine_loss": 97, "convolutional_fe_output_stud": 97, "convolutional_fe_output_teach": 97, "modifieddeepnnregressor": 97, "conv_feature_map": 97, "modifiedlightnnregressor": 97, "regressor_output": 97, "train_mse_loss": 97, "feature_map_weight": 97, "teacher_feature_map": 97, "regressor_feature_map": 97, "modified_nn_light_reg": 97, "modified_nn_deep_reg": 97, "test_accuracy_light_ce_and_mse_loss": 97, "cosineloss": 97, "wiggl": 97, "regressorms": 97, "hinton": [97, 127], "vinyal": 97, "dean": 97, "workshop": 97, "romero": 97, "balla": 97, "kahou": 97, "chassang": 97, "gatta": 97, "bengio": 97, "fitnet": 97, "thin": [97, 262], "confer": 97, "knowledge_distillation_tutori": 97, "kit": 98, "dynet": [98, 100], "opposit": [98, 190], "theano": [98, 100], "kera": [98, 100, 111], "difficult": [98, 113, 145, 153, 165, 191, 195, 205], "constitu": 98, "roughli": [98, 122, 133, 144, 149, 181, 247], "fat": [98, 113], "exception": 98, "entiti": [98, 103, 175, 262], "recognit": [98, 207, 247], "tagger": 98, "ner": 98, "sound": [98, 101, 173, 174], "scari": 98, "viterbi": [98, 102], "sum_": [98, 103, 160], "psi_i": 98, "sum_i": 98, "partit": [98, 121, 124, 135, 149, 214, 247], "emiss": 98, "textbf": 98, "psi_": 98, "y_i": [98, 102], "x_i": [98, 99], "tran": [98, 171], "h_i": [98, 102], "collin": 98, "robert": [98, 99, 101, 102, 103, 234], "guthri": [98, 99, 101, 102, 103, 234], "prepare_sequ": [98, 102], "to_ix": [98, 102], "log_sum_exp": 98, "max_scor": 98, "max_score_broadcast": 98, "bilstm_crf": 98, "tag_to_ix": [98, 102], "word_emb": 98, "num_lay": [98, 181, 230], "start_tag": 98, "stop_tag": 98, "_forward_alg": 98, "feat": [98, 171], "init_alpha": 98, "forward_var": 98, "alphas_t": 98, "next_tag": 98, "emit_scor": 98, "ith": [98, 103, 193], "trans_scor": 98, "next_tag_var": 98, "terminal_var": 98, "_get_lstm_featur": 98, "lstm_feat": 98, "_score_sent": 98, "_viterbi_decod": 98, "backpoint": 98, "init_vvar": 98, "bptrs_t": 98, "viterbivars_t": 98, "best_tag_id": 98, "path_scor": 98, "best_path": 98, "dont": [98, 99], "caller": [98, 134, 162, 212], "saniti": [98, 126, 159, 171, 256], "neg_log_likelihood": 98, "forward_scor": 98, "gold_scor": 98, "bilstm": 98, "tag_seq": 98, "street": [98, 263], "journal": 98, "todai": [98, 117, 157, 191, 223], "corpor": [98, 137], "monei": 98, "georgia": 98, "tech": 98, "univers": [98, 113, 115, 160, 171, 176, 262], "word_to_ix": [98, 99, 102, 103], "precheck_s": 98, "precheck_tag": 98, "sentence_in": [98, 102], "anywai": [98, 101], "gold": [98, 165], "perceptron": [98, 176], "score_sent": 98, "advanced_tutori": [98, 100], "workhors": 99, "2x5": 99, "acx": 99, "ac": [99, 171, 265], "sigma": [99, 159], "plenti": 99, "peopl": [99, 100, 103, 113, 117, 185, 200, 262], "shy": 99, "vanish": 99, "linearit": 99, "sum_j": 99, "x_j": 99, "theres": 99, "unseen": [99, 103], "supervis": [99, 166, 171], "eta": 99, "vari": [99, 113, 129, 146, 165, 172, 181, 182, 191, 193, 199, 210, 223, 230, 234], "spanish": [99, 127, 128], "bow": 99, "gusta": 99, "comer": 99, "cafeteria": 99, "creo": 99, "que": [99, 165], "sea": [99, 118], "una": 99, "buena": 99, "yo": 99, "si": [99, 155, 165], "bowclassifi": 99, "bow_vec": 99, "make_bow_vector": 99, "make_target": 99, "label_to_ix": 99, "bow_vector": 99, "log_prob": [99, 103, 161, 163], "bigger": [99, 127, 128, 158, 171, 262], "0th": [99, 154, 156, 164, 193], "deep_learning_tutori": [99, 100], "russel": 100, "norvig": 100, "book": [100, 102], "rip": 100, "pytorch_tutori": [100, 101], "word_embeddings_tutori": [100, 103], "lexic": 100, "sequence_models_tutori": [100, 102, 234], "bi": [100, 137], "crf": 100, "v_data": 101, "m_data": 101, "2x2x2": 101, "t_data": 101, "terminolog": 101, "z_1": 101, "x_2": [101, 116, 150, 262], "y_2": [101, 116], "z_2": 101, "complain": 101, "vagu": 101, "programm": [101, 103, 197, 199, 262], "x_0": [101, 262], "overbrac": [101, 102, 103], "y_0": 101, "z_0": 101, "gloss": 101, "new_z": 101, "NO": 101, "forgotten": 101, "classic": [102, 113, 147, 153, 166, 244], "markov": 102, "myriad": 102, "cow": 102, "q_": [102, 103, 146], "2nd": [102, 162, 193], "reader": [102, 135, 149, 176, 262], "unfamiliar": 102, "w_1": 102, "w_m": 102, "w_i": [102, 103], "_i": [102, 185], "_1": [102, 252], "_m": 102, "_j": 102, "ah_i": 102, "noun": 102, "verb": 102, "ate": 102, "everybodi": [102, 135], "affix": [102, 103], "bear": 102, "ly": 102, "adverb": 102, "c_w": 102, "x_w": 102, "po": [102, 118, 171], "capit": [103, 262], "enorm": [103, 171], "notion": [103, 118], "mathematician": 103, "physicist": 103, "orthograph": 103, "linguist": 103, "hypothesi": 103, "coffe": 103, "phi": [103, 262], "dissimilar": 103, "pain": [103, 113], "earth": [103, 113], "herself": 103, "lookup_tensor": 103, "hello_emb": 103, "context_s": 103, "shakespear": [103, 164], "sonnet": 103, "test_sent": 103, "forti": 103, "winter": [103, 113], "besieg": 103, "thy": 103, "brow": 103, "trench": 103, "beauti": [103, 229], "youth": 103, "proud": 103, "liveri": 103, "gaze": 103, "Will": [103, 257], "totter": 103, "weed": [103, 189], "treasur": 103, "lusti": 103, "thine": 103, "sunken": 103, "eat": [103, 152], "shame": 103, "thriftless": 103, "prais": 103, "thou": 103, "couldst": 103, "mine": [103, 164, 262], "excus": 103, "blood": 103, "cold": [103, 113, 165], "word_i": 103, "ngram": 103, "ngramlanguagemodel": 103, "context_idx": 103, "cbow": 103, "probabilist": [103, 159], "q_w": 103, "raw_text": 103, "studi": [103, 115, 121, 126, 156, 171, 176], "beings": 103, "inhabit": 103, "evolut": 103, "conjur": 103, "spell": [103, 127], "dedupl": 103, "make_context_vector": 103, "jeremi": 104, "howard": [104, 146, 155], "rachel": 104, "thoma": 104, "ingham": 104, "\u6211\u4eec\u5efa\u8bae\u5c06\u672c\u6559\u7a0b\u4f5c\u4e3a\u7b14\u8bb0\u672c": 104, "\u8fd0\u884c": 104, "\u8bf7\u70b9\u51fb\u9875\u9762\u9876\u90e8\u7684\u94fe\u63a5": 104, "\u4e0b\u8f7d\u7b14\u8bb0\u672c": 104, "\u63d0\u4f9b\u4e86\u4f18\u96c5\u8bbe\u8ba1\u7684\u6a21\u5757\u548c\u7c7b": 104, "\u4ee5\u5e2e\u52a9\u4f60\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 104, "\u4e3a\u4e86\u5145\u5206\u5229\u7528\u5b83\u4eec\u7684\u529f\u80fd": 104, "\u5e76\u901a\u8fc7\u81ea\u5b9a\u4e49\u5bf9\u5e94\u6a21\u5757\u6216\u7c7b": 104, "\u6765\u89e3\u51b3\u7279\u5b9a\u95ee\u9898": 104, "\u9700\u8981\u7406\u89e3\u5b83\u4eec\u7684\u5177\u4f53\u529f\u80fd": 104, "\u6211\u4eec\u5c06\u9996\u5148\u5728": 104, "\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u57fa\u672c\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u800c\u4e0d\u4f7f\u7528\u8fd9\u4e9b\u6a21\u578b\u7684\u4efb\u4f55\u7279\u6027": 104, "\u6211\u4eec\u6700\u521d\u53ea\u4f7f\u7528\u6700\u57fa\u672c\u7684": 104, "\u5f20\u91cf\u529f\u80fd": 104, "\u6211\u4eec\u5c06\u9010\u6b65\u6dfb\u52a0": 104, "\u4e2d\u7684\u4e00\u4e2a\u7279\u6027": 104, "\u5c55\u793a\u6bcf\u4e2a\u90e8\u5206\u7684\u4f5c\u7528": 104, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u5b83\u4eec\u8ba9\u4ee3\u7801\u66f4\u7b80\u6d01\u6216\u66f4\u7075\u6d3b": 104, "\u672c\u6559\u7a0b\u5047\u5b9a\u4f60\u5df2\u7ecf\u5b89\u88c5\u4e86": 104, "\u5e76\u4e14\u719f\u6089\u5f20\u91cf\u64cd\u4f5c\u7684\u57fa\u7840\u77e5\u8bc6": 104, "\u5982\u679c\u4f60\u719f\u6089": 104, "\u6570\u7ec4\u64cd\u4f5c": 104, "\u4f60\u4f1a\u53d1\u73b0\u8fd9\u91cc\u4f7f\u7528\u7684": 104, "\u5f20\u91cf\u64cd\u4f5c\u51e0\u4e4e\u76f8\u540c": 104, "\u6211\u4eec\u5c06\u4f7f\u7528\u7ecf\u5178\u7684": 104, "\u8be5\u6570\u636e\u96c6\u5305\u542b\u624b\u7ed8\u6570\u5b57": 104, "0\u52309\u4e4b\u95f4": 104, "\u6765\u5904\u7406\u8def\u5f84": 104, "\u6807\u51c6\u5e93\u7684\u4e00\u90e8\u5206": 104, "\u4e0b\u8f7d\u6570\u636e\u96c6": 104, "\u6211\u4eec\u53ea\u4f1a\u5728\u4f7f\u7528\u6a21\u5757\u65f6\u624d\u5bfc\u5165\u5b83\u4eec": 104, "\u56e0\u6b64\u4f60\u53ef\u4ee5\u6e05\u695a\u5730\u770b\u5230\u6bcf\u4e2a\u6b65\u9aa4\u4e2d\u6b63\u5728\u4f7f\u7528\u7684\u5185\u5bb9": 104, "exist_ok": 104, "\u8fd9\u4e2a\u6570\u636e\u96c6\u662f": 104, "\u6570\u7ec4\u683c\u5f0f\u7684": 104, "\u5e76\u4e14\u4f7f\u7528": 104, "\u5b58\u50a8": 104, "\u8fd9\u662f\u4e00\u4e2a": 104, "\u7279\u6709\u7684\u7528\u4e8e\u5e8f\u5217\u5316\u6570\u636e\u7684\u683c\u5f0f": 104, "gzip": 104, "as_posix": [104, 126], "x_train": [104, 150], "y_train": 104, "x_valid": 104, "y_valid": 104, "latin": 104, "\u6bcf\u5f20\u56fe\u50cf\u7684\u5c3a\u5bf8\u4e3a": 104, "\u5e76\u4ee5\u957f\u5ea6\u4e3a": 104, "\u7684\u5c55\u5e73\u884c\u5b58\u50a8": 104, "\u8ba9\u6211\u4eec\u6765\u770b\u770b\u5176\u4e2d\u4e00\u5f20": 104, "\u6211\u4eec\u9700\u8981\u5148\u5c06\u5176\u91cd\u5851\u4e3a\u4e8c\u7ef4": 104, "\u5728\u4e0d\u4f7f\u7528": 104, "\u65f6\u4f7f\u7528": 104, "importerror": 104, "\u6240\u4ee5\u6211\u4eec\u9700\u8981\u8f6c\u6362\u6211\u4eec\u7684\u6570\u636e": 104, "\u6211\u4eec\u53ea\u4f7f\u7528": [104, 250], "\u5f20\u91cf\u64cd\u4f5c\u521b\u5efa\u4e00\u4e2a\u6a21\u578b": 104, "\u6211\u4eec\u5047\u8bbe\u4f60\u5df2\u7ecf\u719f\u6089\u795e\u7ecf\u7f51\u7edc\u7684\u57fa\u7840\u77e5\u8bc6": 104, "\u5982\u679c\u4e0d\u719f\u6089": 104, "\u63d0\u4f9b\u65b9\u6cd5\u6765\u521b\u5efa": 104, "\u968f\u673a": 104, "\u96f6": 104, "\u586b\u5145\u7684\u5f20\u91cf": 104, "\u6211\u4eec\u5c06\u4f7f\u7528\u8fd9\u4e9b\u65b9\u6cd5\u4e3a\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u6a21\u578b\u521b\u5efa\u6743\u91cd\u548c\u504f\u7f6e": 104, "\u8fd9\u4e9b\u53ea\u662f\u5e38\u89c4\u7684\u5f20\u91cf": 104, "\u6709\u4e00\u4e2a\u975e\u5e38\u7279\u522b\u7684\u9644\u52a0\u529f\u80fd": 104, "\u6211\u4eec\u544a\u8bc9": 104, "\u5b83\u4eec\u9700\u8981\u68af\u5ea6": 104, "\u4f1a\u8bb0\u5f55\u5728\u5f20\u91cf\u4e0a\u5b8c\u6210\u7684\u6240\u6709\u64cd\u4f5c": 104, "\u4ee5\u4fbf\u5728\u53cd\u5411\u4f20\u64ad\u671f\u95f4": 104, "\u81ea\u52a8": 104, "\u8ba1\u7b97\u68af\u5ea6": 104, "\u5bf9\u4e8e\u6743\u91cd": 104, "\u6211\u4eec\u5728\u521d\u59cb\u5316": 104, "\u8bbe\u7f6e": 104, "\u56e0\u4e3a\u6211\u4eec\u4e0d\u5e0c\u671b\u521d\u59cb\u5316\u6b65\u9aa4\u5305\u62ec\u5728\u68af\u5ea6\u4e2d": 104, "\u4e2d\u7684\u5c3e\u968f": 104, "\u8868\u793a\u64cd\u4f5c\u662f\u5728\u539f\u5730\u6267\u884c": 104, "\u7531\u4e8e": [104, 249], "\u80fd\u591f\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4efb\u4f55\u6807\u51c6\u7684": 104, "\u6216\u53ef\u8c03\u7528\u5bf9\u8c61": 104, "\u4f5c\u4e3a\u6a21\u578b": 104, "\u8ba9\u6211\u4eec\u7f16\u5199\u4e00\u4e2a\u7b80\u5355\u7684\u77e9\u9635\u4e58\u6cd5\u548c\u5e7f\u64ad\u52a0\u6cd5": 104, "\u6765\u521b\u5efa\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u6a21\u578b": 104, "\u6211\u4eec\u8fd8\u9700\u8981\u7f16\u5199\u4e00\u4e2a\u6fc0\u6d3b\u51fd\u6570": 104, "\u63d0\u4f9b\u4e86\u8bb8\u591a\u9884\u5148\u7f16\u5199\u7684\u635f\u5931\u51fd\u6570": 104, "\u6fc0\u6d3b\u51fd\u6570\u7b49": 104, "\u4f60\u4ecd\u53ef\u4ee5\u4f7f\u7528\u666e\u901a\u7684": 104, "\u7f16\u5199\u81ea\u5df1\u7684\u51fd\u6570": 104, "\u4f1a\u4e3a\u4f60\u7684\u51fd\u6570\u81ea\u52a8\u521b\u5efa": 104, "\u6216\u77e2\u91cf\u5316": 104, "\u4ee3\u7801": 104, "xb": 104, "\u5728\u4e0a\u9762\u7684\u4ee3\u7801\u4e2d": 104, "\u8868\u793a\u77e9\u9635\u4e58\u6cd5\u64cd\u4f5c": 104, "\u5728\u4e00\u4e2a\u6570\u636e\u6279\u6b21\u4e0a\u8c03\u7528\u6211\u4eec\u7684\u51fd\u6570": 104, "\u5728\u672c\u4f8b\u4e2d\u4e3a64\u5f20\u56fe\u50cf": 104, "\u8fd9\u5c31\u662f\u4e00\u6b21": 104, "\u524d\u5411\u4f20\u9012": 104, "\u7531\u4e8e\u6211\u4eec\u5728\u5f00\u59cb\u65f6\u8bbe\u7f6e\u6743\u91cd\u4e3a\u968f\u673a\u6570\u503c": 104, "\u6b64\u65f6\u9884\u6d4b\u7ed3\u679c\u51c6\u786e\u6027\u8f83\u4f4e": 104, "\u5f20\u91cf\u4e0d\u4ec5\u5305\u542b\u5f20\u91cf\u503c": 104, "\u8fd8\u5305\u542b\u68af\u5ea6\u51fd\u6570": 104, "\u5728\u7a0d\u540e\u7684\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f1a\u7528\u5230\u5b83": 104, "\u8ba9\u6211\u4eec\u5b9e\u73b0": 104, "\u6211\u4eec\u53ef\u4ee5\u53ea\u4f7f\u7528\u6807\u51c6\u7684": 104, "nll": 104, "loss_func": 104, "\u8ba9\u6211\u4eec\u4f7f\u7528\u6211\u4eec\u7684\u968f\u673a\u6a21\u578b\u6765\u68c0\u67e5\u635f\u5931": 104, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u770b\u5230\u5728\u4e4b\u540e\u8fdb\u884c\u53cd\u5411\u4f20\u64ad\u540e": 104, "\u9884\u6d4b\u7ed3\u679c\u51c6\u786e\u7387\u662f\u5426\u6709\u6240\u63d0\u5347": 104, "yb": 104, "\u6211\u4eec\u8fd8\u8981\u5b9e\u73b0\u4e00\u4e2a\u51fd\u6570\u6765\u8ba1\u7b97\u6211\u4eec\u6a21\u578b\u7684\u51c6\u786e\u7387": 104, "\u5bf9\u4e8e\u6bcf\u4e2a\u9884\u6d4b\u7ed3\u679c": 104, "\u5982\u679c\u5177\u6709\u6700\u5927\u503c\u7684\u7d22\u5f15\u4e0e\u76ee\u6807\u503c\u5339\u914d": 104, "\u5219\u9884\u6d4b\u662f\u6b63\u786e\u7684": 104, "\u68c0\u67e5\u6211\u4eec\u968f\u673a\u6a21\u578b\u7684\u51c6\u786e\u7387": 104, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u770b\u5230\u968f\u7740\u635f\u5931\u7684\u6539\u5584": 104, "\u51c6\u786e\u7387\u662f\u5426\u6709\u6240\u63d0\u9ad8": 104, "\u73b0\u5728\u53ef\u4ee5\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u5faa\u73af": 104, "\u5bf9\u4e8e\u6bcf\u6b21\u8fed\u4ee3": 104, "\u9009\u62e9\u4e00\u4e2a\u5927\u5c0f\u4e3a": 104, "\u7684\u6279\u91cf\u6570\u636e": 104, "\u4f7f\u7528\u6a21\u578b\u8fdb\u884c\u9884\u6d4b": 104, "\u8ba1\u7b97\u635f\u5931": 104, "\u66f4\u65b0\u6a21\u578b\u7684\u68af\u5ea6": 104, "\u5373\u66f4\u65b0": 104, "\u6211\u4eec\u73b0\u5728\u4f7f\u7528\u8fd9\u4e9b\u68af\u5ea6\u6765\u66f4\u65b0\u6743\u91cd": 104, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u4e2d\u6267\u884c\u6b64\u64cd\u4f5c": 104, "\u56e0\u4e3a\u6211\u4eec\u4e0d\u5e0c\u671b\u8fd9\u4e9b\u64cd\u4f5c\u8bb0\u5f55\u4e3a\u4e0b\u4e00\u6b21\u68af\u5ea6\u8ba1\u7b97\u7684\u4e00\u90e8\u5206": 104, "\u4f60\u53ef\u4ee5\u5728": [104, 233], "\u9605\u8bfb\u6709\u5173": 104, "\u5982\u4f55\u8bb0\u5f55\u64cd\u4f5c\u7684\u66f4\u591a\u4fe1\u606f": 104, "\u6211\u4eec\u5c06\u68af\u5ea6\u8bbe\u7f6e\u4e3a\u96f6": 104, "\u4ee5\u4fbf\u6211\u4eec\u51c6\u5907\u8fdb\u884c\u4e0b\u4e00\u6b21\u5faa\u73af": 104, "\u5426\u5219": 104, "\u6211\u4eec\u7684\u68af\u5ea6\u5c06\u8bb0\u5f55\u6240\u6709\u5df2\u53d1\u751f\u7684\u64cd\u4f5c": 104, "\u6dfb\u52a0": 104, "\u68af\u5ea6\u5230\u5df2\u6709\u7684\u68af\u5ea6\u4e2d": 104, "\u800c\u4e0d\u662f\u66ff\u6362\u5b83\u4eec": 104, "set_trac": 104, "start_i": 104, "end_i": 104, "\u6211\u4eec\u5df2\u7ecf\u4ece\u96f6\u5f00\u59cb\u521b\u5efa\u5e76\u8bad\u7ec3\u4e86\u4e00\u4e2a\u6700\u5c0f\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u4f7f\u7528\u903b\u8f91\u56de\u5f52": 104, "\u6ca1\u6709\u9690\u85cf\u5c42": 104, "\u8ba9\u6211\u4eec\u68c0\u67e5\u4e00\u4e0b\u635f\u5931\u548c\u51c6\u786e\u7387": 104, "\u5e76\u5c06\u5b83\u4eec\u4e0e\u4e4b\u524d\u5f97\u5230\u7684\u7ed3\u679c\u8fdb\u884c\u6bd4\u8f83": 104, "\u9884\u8ba1\u635f\u5931\u4f1a\u51cf\u5c11": 104, "\u51c6\u786e\u7387\u4f1a\u63d0\u9ad8": 104, "\u73b0\u5728\u6211\u4eec\u5c06\u91cd\u6784\u4ee3\u7801": 104, "\u4f7f\u5176\u4e0e\u4e4b\u524d\u505a\u7684\u4e8b\u60c5\u76f8\u540c": 104, "\u53ea\u662f\u6211\u4eec\u5c06\u5f00\u59cb\u5229\u7528": 104, "\u4f7f\u5176\u66f4\u7b80\u6d01\u548c\u7075\u6d3b": 104, "\u4ece\u8fd9\u91cc\u5f00\u59cb\u7684\u6bcf\u4e00\u6b65": 104, "\u90fd\u8ba9\u6211\u4eec\u7684\u4ee3\u7801\u53d8\u5f97\u66f4\u77ed": 104, "\u66f4\u6613\u7406\u89e3\u548c\u66f4\u7075\u6d3b": 104, "\u7b2c\u4e00\u6b65\u4e5f\u662f\u6700\u7b80\u5355\u7684\u4e00\u6b65\u662f\u901a\u8fc7\u7528": 104, "\u901a\u5e38\u6309\u60ef\u4f8b\u5bfc\u5165\u4e3a\u547d\u540d\u7a7a\u95f4": 104, "\u4e2d\u7684\u6fc0\u6d3b\u548c\u635f\u5931\u51fd\u6570\u66ff\u6362\u6211\u4eec\u624b\u5199\u7684\u6fc0\u6d3b\u548c\u635f\u5931\u51fd\u6570": 104, "\u4ece\u800c\u4f7f\u6211\u4eec\u7684\u4ee3\u7801\u66f4\u7b80\u77ed": 104, "\u8be5\u6a21\u5757\u5305\u542b": 104, "\u5e93\u4e2d\u7684\u6240\u6709\u51fd\u6570": 104, "\u9664\u4e86\u5404\u79cd\u635f\u5931\u548c\u6fc0\u6d3b\u51fd\u6570": 104, "\u4f60\u8fd8\u4f1a\u770b\u5230\u4e00\u4e9b\u521b\u5efa\u795e\u7ecf\u7f51\u7edc\u7684\u4fbf\u6377\u51fd\u6570": 104, "\u6bd4\u5982\u6c60\u5316\u51fd\u6570": 104, "\u8fd8\u6709\u7528\u4e8e\u5377\u79ef": 104, "\u7ebf\u6027\u5c42\u7b49\u7684\u51fd\u6570": 104, "\u4f46\u6b63\u5982\u6211\u4eec\u5c06\u770b\u5230\u7684": 104, "\u8fd9\u4e9b\u901a\u5e38\u66f4\u9002\u5408\u4f7f\u7528\u5e93\u7684\u5176\u4ed6\u6a21\u5757\u6765\u5904\u7406": 104, "\u5982\u679c\u4f60\u4f7f\u7528neg": 104, "\u90a3\u4e48": [104, 111], "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u7ed3\u5408\u4e86\u4e24\u8005\u7684\u5355\u4e00\u51fd\u6570": 104, "cross_entropi": [104, 124], "\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u4ece\u6a21\u578b\u4e2d\u79fb\u9664\u6fc0\u6d3b\u51fd\u6570": 104, "\u6211\u4eec\u4e0d\u518d\u5728": 104, "\u51fd\u6570\u4e2d\u8c03\u7528": 104, "\u67e5\u770b\u4e0b\u635f\u5931\u548c\u51c6\u786e\u7387\u662f\u5426\u4e0e\u4e4b\u524d\u7ed3\u679c\u4e00\u81f4": 104, "\u4ee5\u5b9e\u73b0\u66f4\u6e05\u6670\u548c\u7b80\u6d01\u7684\u8bad\u7ec3\u5faa\u73af": 104, "\u6211\u4eec\u5c06\u7ee7\u627f": 104, "\u5b83\u672c\u8eab\u662f\u4e00\u4e2a\u7c7b": 104, "\u80fd\u591f\u8ddf\u8e2a\u72b6\u6001": 104, "\u6211\u4eec\u60f3\u521b\u5efa\u4e00\u4e2a\u7c7b\u6765\u4fdd\u5b58\u6211\u4eec\u7684\u6743\u91cd": 104, "\u504f\u7f6e\u548cforward\u65b9\u6cd5": 104, "\u6211\u4eec\u5c06\u4f1a\u4f7f\u7528": 104, "\u7684\u5c5e\u6027\u548c\u65b9\u6cd5": 104, "\u5927\u5199": 104, "\u7279\u6709\u7684\u6982\u5ff5": 104, "\u662f\u4f7f\u7528pytorch\u8fc7\u7a0b\u4e2d\u5927\u91cf\u4f7f\u7528\u7684\u7c7b": 104, "\u4e0d\u8981\u4e0e": 104, "\u6982\u5ff5\u7684": 104, "\u5c0f\u5199": 104, "\u6df7\u6dc6": 104, "mnist_logist": 104, "\u7531\u4e8e\u6211\u4eec\u73b0\u5728\u4f7f\u7528\u7684\u662f\u5bf9\u8c61\u800c\u4e0d\u662f\u4ec5\u4ec5\u4f7f\u7528\u51fd\u6570": 104, "\u6211\u4eec\u9996\u5148\u8981\u521b\u5efa\u6a21\u578b\u5bf9\u8c61": 104, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u50cf\u4e4b\u524d\u4e00\u6837\u8ba1\u7b97\u635f\u5931": 104, "\u5bf9\u8c61\u53ef\u4ee5\u50cf\u51fd\u6570\u4e00\u6837\u4f7f\u7528": 104, "\u5373\u5b83\u4eec\u662f": 104, "\u53ef\u8c03\u7528\u7684": 104, "\u4f1a\u81ea\u52a8\u8c03\u7528\u6211\u4eec\u7684": 104, "\u5728\u4e4b\u524d\u7684\u8bad\u7ec3\u5faa\u73af\u4e2d": 104, "\u6211\u4eec\u5fc5\u987b\u6309\u540d\u79f0\u66f4\u65b0\u6bcf\u4e2a\u53c2\u6570\u7684\u503c": 104, "\u5e76\u624b\u52a8\u5c06\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u5206\u522b\u6e05\u96f6": 104, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u5229\u7528": 104, "\u5b9a\u4e49\u7684\u65b9\u6cd5": 104, "\u6765\u4f7f\u8fd9\u4e9b\u6b65\u9aa4\u66f4\u7b80\u6d01": 104, "\u9632\u6b62\u5fd8\u8bb0\u5904\u7406\u67d0\u4e9b\u53c2\u6570\u5bfc\u81f4\u9519\u8bef": 104, "\u5c24\u5176\u662f\u5f53\u6211\u4eec\u5b9e\u73b0\u4e00\u4e2a\u66f4\u590d\u6742\u7684\u6a21\u578b\u65f6": 104, "\u5c06\u8bad\u7ec3\u5faa\u73af\u5305\u88c5\u5728\u4e00\u4e2a": 104, "\u51fd\u6570\u4e2d": 104, "\u8fd9\u6837\u53ef\u4ee5\u591a\u6b21\u8fd0\u884c\u5b83": 104, "gone": [104, 113, 125], "\u8ba9\u6211\u4eec\u67e5\u770b\u4e0b\u8bad\u7ec3\u540e": 104, "\u635f\u5931\u662f\u5426\u4e0b\u964d\u4e86": 104, "\u6211\u4eec\u7ee7\u7eed\u91cd\u6784\u4ee3\u7801": 104, "\u6765\u5b9e\u73b0\u7ebf\u6027\u5c42": 104, "\u4e0d\u518d\u624b\u52a8\u5b9a\u4e49\u548c\u521d\u59cb\u5316": 104, "\u4ee5\u53ca\u8ba1\u7b97": 104, "\u5177\u6709\u591a\u79cd\u9884\u5b9a\u4e49\u7684\u5c42": 104, "\u53ef\u4ee5\u5927\u5927\u7b80\u5316\u6211\u4eec\u7684\u4ee3\u7801": 104, "\u5e76\u4e14\u63d0\u9ad8\u6267\u884c\u901f\u5ea6": 104, "\u521d\u59cb\u5316\u6a21\u578b\u5bf9\u8c61": 104, "\u5e76\u8ba1\u7b97\u635f\u5931\u6570\u503c": 104, "\u65b9\u6cd5\u8fdb\u884c\u8bad\u7ec3\u6a21\u578b": 104, "\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c": 104, "\u5305\u542b\u591a\u79cd\u4f18\u5316\u7b97\u6cd5": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4f18\u5316\u5668\u7684": 104, "\u65b9\u6cd5\u8fdb\u884c\u4f18\u5316\u6b65\u9aa4": 104, "\u65e0\u9700\u624b\u52a8\u66f4\u65b0\u6bcf\u4e2a\u53c2\u6570": 104, "\u4e4b\u524d\u7684\u4f18\u5316\u6b65\u9aa4": 104, "\u91cd\u6784\u4e3a": 104, "\u5728\u4e0b\u4e2a\u8bad\u7ec3\u5faa\u73af\u5f00\u59cb\u524d": 104, "\u6211\u4eec\u9700\u8c03\u7528": 104, "\u5c06\u53c2\u6570\u7684\u68af\u5ea6\u91cd\u7f6e\u4e3a0": 104, "\u5b9a\u4e49\u521b\u5efa\u6a21\u578b\u548c\u4f18\u5316\u5668\u7684\u65b9\u6cd5\u5982\u4e0b": 104, "\u6709\u4e00\u4e2a\u62bd\u8c61\u7684": 104, "\u53ef\u4ee5\u662f\u4efb\u4f55\u5177\u6709": 104, "\u7531": 104, "\u7684\u6807\u51c6": 104, "\u51fd\u6570\u8c03\u7528": 104, "\u4f5c\u4e3a\u7d22\u5f15\u65b9\u5f0f": 104, "\u7684\u5bf9\u8c61": 104, "\u8be6\u7ec6\u4ecb\u7ecd\u4e86\u521b\u5efa\u4e00\u4e2a\u81ea\u5b9a\u4e49": 104, "faciallandmarkdataset": 104, "\u7c7b\u4f5c\u4e3a": 104, "\u5b50\u7c7b\u7684\u4f8b\u5b50": 104, "tensordataset": [104, 110, 137, 165, 185], "\u662f\u4e00\u4e2a\u5305\u88c5\u5f20\u91cf\u7684": 104, "\u4e3a\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u79cd\u8fed\u4ee3": 104, "\u7d22\u5f15\u548c\u6cbf\u5f20\u91cf\u7684\u7b2c\u4e00\u4e2a\u7ef4\u5ea6\u5207\u7247\u7684\u65b9\u5f0f": 104, "\u4f7f\u6211\u4eec\u5728\u8bad\u7ec3\u65f6\u66f4\u5bb9\u6613\u540c\u65f6\u8bbf\u95ee\u81ea\u53d8\u91cf\u548c\u56e0\u53d8\u91cf": 104, "\u5bf9": 104, "\u8fdb\u884c\u5305\u88c5": 104, "\u8ba9\u6211\u4eec\u66f4\u5bb9\u6613\u5bf9\u6570\u636e\u8fdb\u884c\u904d\u5386\u548c\u5207\u7247\u64cd\u4f5c": 104, "train_d": 104, "\u4e4b\u524d\u6211\u4eec\u9700\u8981\u5355\u72ec\u5904\u7406": 104, "\u4e24\u7ec4\u6570\u503c": 104, "\u73b0\u5728\u53ef\u4ee5\u5408\u5e76\u5904\u7406": 104, "\u4f60\u53ef\u4ee5\u4ece\u4efb\u4f55": 104, "\u521b\u5efa\u4e00\u4e2a": 104, "\u800c\u540e\u7531": 104, "\u8d1f\u8d23\u5bf9\u6570\u636e\u5206\u6279": 104, "\u6211\u4eec\u4e0d\u5fc5\u518d\u53bb\u5b9e\u73b0\u5206\u6279\u4ee3\u7801": 104, "\u4f1a\u81ea\u52a8\u4e3a\u6211\u4eec\u63d0\u4f9b\u6bcf\u6279\u6570\u636e": 104, "train_dl": 104, "\u4e4b\u524d\u6211\u4eec\u7f16\u5199\u5206\u6279\u4ee3\u7801\u5982\u4e0b": 104, "\u6211\u4eec\u7684\u5faa\u73af\u53d8\u5f97\u66f4\u52a0\u7b80\u6d01": 104, "\u81ea\u52a8\u4ecedataloader\u4e2d\u52a0\u8f7d": 104, "\u901a\u8fc7\u4f7f\u7528": [104, 236], "\u6211\u4eec\u5b9e\u73b0\u7684\u8bad\u7ec3\u5faa\u4ee3\u7801\u91cf\u5e76\u4e14\u66f4\u5bb9\u6613\u7406\u89e3": 104, "\u73b0\u5728\u8ba9\u6211\u4eec\u5c1d\u8bd5\u589e\u52a0\u4e00\u4e9b\u521b\u5efa\u5b9e\u9645\u6709\u6548\u6a21\u578b\u6240\u9700\u7684\u57fa\u672c\u529f\u80fd": 104, "\u5728\u7b2c\u4e00\u90e8\u5206\u4e2d": 104, "\u6211\u4eec\u53ea\u662f\u5b9e\u73b0\u4e86\u4f7f\u7528\u6570\u636e\u8fdb\u884c\u8bad\u7ec3\u7684\u903b\u8f91": 104, "\u5b9e\u9645\u5e94\u7528\u4e2d": 104, "\u8fd8\u9700\u8981": 104, "\u9a8c\u8bc1\u96c6": 104, "\u4ee5\u786e\u5b9a\u6211\u4eec\u7684\u6a21\u578b\u662f\u5426\u5b58\u5728\u8fc7\u62df\u5408\u95ee\u9898": 104, "\u6253\u4e71\u8bad\u7ec3\u6570\u636e\u662f": 104, "\u5341\u5206\u5fc5\u8981\u7684": 104, "\u4ee5\u9632\u6b62\u6279\u6b21\u4e4b\u95f4\u7684\u76f8\u5173\u6027\u548c\u8fc7\u62df\u5408": 104, "\u800c\u9a8c\u8bc1\u6570\u636e\u96c6\u5219\u65e0\u9700\u8fdb\u6b64\u64cd\u4f5c": 104, "\u65e0\u8bba\u6253\u4e71\u4e0e\u5426": 104, "\u9a8c\u8bc1\u635f\u5931\u503c\u662f\u76f8\u540c\u7684": 104, "\u800c\u4e14\u6253\u4e71\u64cd\u4f5c\u9700\u8981\u6d88\u8017\u989d\u5916\u7684\u65f6\u95f4": 104, "\u6ca1\u6709\u5b9e\u9645\u610f\u4e49": 104, "\u6211\u4eec\u5c06\u4e3a\u9a8c\u8bc1\u96c6\u4f7f\u7528\u7684\u6279\u91cf\u5927\u5c0f\u8bbe\u4e3a\u8bad\u7ec3\u96c6\u7684\u4e24\u500d": 104, "\u56e0\u4e3a\u9a8c\u8bc1\u96c6\u4e0d\u9700\u8981\u8fdb\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u56e0\u6b64\u9700\u8981\u7684\u5185\u5b58\u8f83\u5c11": 104, "\u4e0d\u9700\u8981\u5b58\u50a8\u68af\u5ea6": 104, "\u56e0\u6b64\u6211\u6211\u4eec\u53ef\u4ee5\u914d\u7f6e\u8f83\u5927\u5355\u6279\u6570\u91cf": 104, "\u63d0\u9ad8\u8ba1\u7b97\u901f\u5ea6": 104, "valid_d": 104, "valid_dl": 104, "\u7ed3\u675f\u65f6\u8ba1\u7b97\u5e76\u6253\u5370\u635f\u5931\u503c": 104, "\u6211\u4eec\u5728\u8bad\u7ec3\u4e4b\u524d\u603b\u662f\u8c03\u7528": 104, "\u5728\u63a8\u65ad\u4e4b\u524d\u8c03\u7528": 104, "\u5c42\u4f1a\u4f7f\u7528": 104, "\u6765\u786e\u4fdd\u5176\u7ed3\u679c\u6b63\u786e": 104, "valid_loss": 104, "\u6211\u4eec\u5728\u8ba1\u7b97\u8bad\u7ec3\u96c6\u548c\u9a8c\u8bc1\u96c6\u7684\u635f\u5931\u7c7b\u4f3c\u7684\u4ee3\u7801": 104, "\u62bd\u53d6\u4e00\u4e2a\u72ec\u7acb\u7684\u51fd\u6570": 104, "loss_batch": 104, "\u7528\u4e8e\u8ba1\u7b97\u4e00\u4e2a\u6279\u6b21\u7684\u635f\u5931": 104, "\u8bad\u7ec3\u96c6\u4f20\u5165\u4e00\u4e2a\u4f18\u5316\u5668": 104, "\u5e76\u4f7f\u7528\u5b83\u6267\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u5bf9\u4e8e\u9a8c\u8bc1\u96c6": 104, "\u5219\u4e0d\u4f20\u5165\u4f18\u5316\u5668": 104, "\u4e0d\u6267\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u5728\u6bcf\u4e2a\u8bad\u7ec3\u5faa\u73af\u4e2d\u8ba1\u7b97\u8bad\u7ec3\u548c\u9a8c\u8bc1\u635f\u5931": 104, "\u8fd4\u56de\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u96c6\u7684dataload": 104, "\u6211\u4eec\u83b7\u53d6\u6570\u636e\u52a0\u8f7d\u5668\u548c\u62df\u5408\u6a21\u578b\u7684\u6574\u4e2a\u8fc7\u7a0b\u53ef\u4ee5\u7528": 104, "\u884c\u4ee3\u7801\u6765\u5b9e\u73b0": 104, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e09\u884c\u57fa\u672c\u4ee3\u7801\u6765\u8bad\u7ec3\u5404\u79cd\u5404\u6837\u7684\u6a21\u578b": 104, "\u8ba9\u6211\u4eec\u770b\u770b\u662f\u5426\u53ef\u4ee5\u7528\u6765\u8bad\u7ec3\u4e00\u4e2a\u5377\u79ef\u795e\u7ecf\u7f51\u7edc": 104, "\u73b0\u5728\u6211\u4eec\u5c06\u4f7f\u7528\u4e09\u4e2a\u5377\u79ef\u5c42\u6784\u5efa\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u56e0\u4e3a\u524d\u9762\u90e8\u5206\u7684\u51fd\u6570\u90fd\u4e0d\u5047\u8bbe\u4efb\u4f55\u5173\u4e8e\u6a21\u578b\u5f62\u5f0f\u7684\u4e1c\u897f": 104, "\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u4e0d\u505a\u4efb\u4f55\u4fee\u6539\u7684\u60c5\u51b5\u4e0b\u4f7f\u7528\u5b83\u4eec\u6765\u8bad\u7ec3\u4e00\u4e2a": 104, "\u9884\u5b9a\u4e49\u7684": 104, "\u7c7b\u4f5c\u4e3a\u6211\u4eec\u7684\u5377\u79ef\u5c42": 104, "\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u5177\u6709": 104, "\u4e2a\u5377\u79ef\u5c42\u7684": 104, "\u6bcf\u4e2a\u5377\u79ef\u5c42\u540e\u9762\u8ddf\u7740\u4e00\u4e2a": 104, "\u6211\u4eec\u6267\u884c\u5e73\u5747\u6c60\u5316": 104, "\u7248\u7684": 104, "mnist_cnn": [104, 123], "avg_pool2d": [104, 206], "\u7684\u4e00\u79cd\u53d8\u4f53": 104, "\u901a\u8fc7\u7edf\u8ba1\u66f4\u65b0\u8bb0\u5f55\u6765\u63d0\u5347\u8bad\u7ec3\u901f\u5ea6": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528": [104, 111], "\u6765\u5e2e\u52a9\u6211\u4eec\u7b80\u5316\u4ee3\u7801": 104, "\u63d0\u4f9b\u4e86\u4e00\u79cd\u66f4\u7b80\u5355\u7684\u7f16\u5199\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u5f0f": 104, "\u5176\u4f1a\u6309\u987a\u5e8f\u8fd0\u884c\u5b9a\u4e49\u4e2d\u5305\u542b\u7684\u6bcf\u4e2a\u6a21\u5757": 104, "\u6211\u4eec\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a": 104, "\u81ea\u5b9a\u4e49\u5c42": 104, "\u6ca1\u6709\u7684": 104, "view\u5c42": 104, "\u521b\u5efa\u6a21\u578b\u5341\u5206\u7b80\u5355": 104, "avgpool2d": 104, "\u6211\u4eec\u7f16\u5199\u7684": 104, "\u5341\u5206\u7b80\u6d01": 104, "\u4f46\u4ec5\u9002\u7528\u4e8emnist": 104, "\u5b83\u5047\u8bbe\u8f93\u5165\u662f\u4e00\u4e2a": 104, "\u957f\u7684\u5411\u91cf": 104, "\u5b83\u5047\u8bbe\u6700\u7ec8\u7684": 104, "\u7f51\u683c\u5927\u5c0f\u662f": 104, "\u6211\u4eec\u4f7f\u7528\u7684\u5e73\u5747\u6c60\u5316\u6838\u5927\u5c0f": 104, "\u8ba9\u6211\u4eec\u53bb\u9664\u8fd9\u4e24\u4e2a\u5047\u8bbe": 104, "\u4f7f\u6211\u4eec\u7684\u6a21\u578b\u9002\u7528\u4e8e\u4efb\u4f552d\u5355\u901a\u9053\u56fe\u50cf": 104, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5c06\u6570\u636e\u9884\u5904\u7406\u79fb\u5230\u751f\u6210\u5668\u4e2d\u6765\u5220\u9664": 104, "wrappeddataload": 104, "__iter__": 104, "\u4e3a\u4e86\u8ba9\u6211\u4eec\u5b9a\u4e49\u6211\u4eec\u60f3\u8981\u7684\u8f93\u51fa\u5f20\u91cf\u7684\u5927\u5c0f": 104, "\u800c\u975e": 104, "\u8f93\u5165": [104, 250], "\u6211\u4eec\u53ef\u4ee5\u7528": 104, "adaptiveavgpool2d": [104, 134, 136], "\u66ff\u6362": 104, "\u4ece\u800c\u4f7f\u6211\u4eec\u7684\u6a21\u578b\u53ef\u9002\u7528\u4e8e\u4efb\u4f55\u5927\u5c0f\u7684\u8f93\u5165": 104, "\u8ba9\u6211\u4eec\u67e5\u770b\u4e0b\u7ed3\u679c": 104, "\u5728\u62e5\u6709": 104, "gpu\u7684\u73af\u5883\u4e2d": 104, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u52a0\u901f\u4ee3\u7801": 104, "\u9996\u5148\u68c0\u67e5\u4f60\u7684gpu\u5728pytorch\u4e2d\u662f\u5426\u6b63\u5e38\u5de5\u4f5c": 104, "\u7136\u540e\u521b\u5efa": 104, "\u4fee\u6539": 104, "\u6b65\u9aa4": 104, "\u5c06\u6570\u636e\u79fb\u52a8\u81f3": 104, "\u5c06\u6a21\u578b\u52a0\u8f7d\u5230": 104, "\u8fd0\u884c\u901f\u5ea6\u4f1a\u63d0\u5347\u5f88\u591a": 104, "\u7f16\u5199\u4e86\u4e00\u4e2a\u53ef\u4ee5\u7528\u4e8e\u591a\u79cd\u6a21\u578b\u8bad\u7ec3\u7684\u5b9e\u73b0": 104, "\u5b8c\u6574\u7684\u8bad\u7ec3\u4ee3\u7801": 104, "mnist_sampl": 104, "\u540e\u7eed\u8fd8\u53ef\u5c1d\u8bd5\u589e\u52a0\u5176\u4ed6\u529f\u80fd": 104, "\u4f8b\u5982\u6570\u636e\u589e\u5f3a": 104, "\u8d85\u53c2\u6570\u8c03\u4f18": 104, "\u76d1\u63a7\u8bad\u7ec3": 104, "\u8fc1\u79fb\u5b66\u4e60\u7b49\u7b49": 104, "\u8fd9\u4e9b\u529f\u80fd\u5728fastai\u5e93\u4e2d\u90fd\u6709\u63d0\u4f9b": 104, "\u8be5\u5e93\u662f\u4f7f\u7528\u672c\u6559\u7a0b\u4e2d\u6240\u793a\u7684\u76f8\u540c\u8bbe\u8ba1\u65b9\u6cd5\u5f00\u53d1\u7684": 104, "\u4e3a\u5e0c\u671b\u8fdb\u4e00\u6b65\u6539\u8fdb\u6a21\u578b\u7684\u4ece\u4e1a\u4eba\u5458\u63d0\u4f9b\u4e0b\u4e00\u6b65\u6307\u5bfc": 104, "\u6211\u4eec\u5b66\u4e60\u4e86\u5982\u4f55\u4f7f\u7528": 104, "\u73b0\u5728\u8ba9\u6211\u4eec\u603b\u7ed3\u4e00\u4e0b": 104, "\u521b\u5efa\u4e00\u4e2a\u7c7b\u4f3c\u4e8e\u51fd\u6570\u7684\u53ef\u8c03\u7528\u5bf9\u8c61": 104, "\u5176\u4e2d\u5305\u542b\u4e86\u72b6\u6001\u6570\u636e": 104, "\u5982\u795e\u7ecf\u7f51\u7edc\u5c42\u6743\u91cd": 104, "\u5b83\u53ef\u4ee5\u81ea\u52a8\u5bf9\u5305\u542b\u7684\u53c2\u6570": 104, "\u8fdb\u884c\u68af\u5ea6\u5f52\u96f6\u548c\u66f4\u65b0\u6743\u91cd\u7b49\u64cd\u4f5c": 104, "\u5bf9\u5f20\u91cf\u8fdb\u884c\u5305\u88c5": 104, "\u4f7f": [104, 249], "\u5bf9\u8c61\u5728\u8fdb\u884c\u53cd\u5411\u4f20\u64ad\u65f6": 104, "\u53ef\u66f4\u65b0\u6743\u91cd\u53c2\u6570": 104, "\u4ec5\u8bbe\u7f6e": 104, "\u53c2\u6570\u65f6\u751f\u6548": 104, "\u5305\u542b\u591a\u79cd\u6fc0\u6d3b\u51fd\u6570": 104, "\u4ee5\u53ca\u65e0\u72b6\u6001\u7684\u5377\u79ef\u5c42\u548c\u7ebf\u6027\u5c42\u7b49\u7684\u5b9e\u73b0": 104, "\u5305\u542b\u591a\u79cd\u4f18\u5316\u5668": 104, "\u5728\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f18\u5316\u6743\u91cd\u53c2\u6570": 104, "\u65b9\u6cd5\u7684\u62bd\u8c61\u63a5\u53e3\u5b9a\u4e49": 104, "\u5b9e\u73b0\u7c7b": 104, "\u8fdb\u884c\u5c01\u88c5": 104, "\u63d0\u4f9b\u5206\u6279\u904d\u5386\u6570\u636e\u96c6\u7684\u80fd\u529b": 104, "nn_tutori": 104, "registri": [105, 106, 107, 121, 208, 257], "thiago": [105, 107], "crepaldi": [105, 107], "gamut": 105, "supercomput": 105, "constrain": [105, 126, 153, 173, 174], "onnxscript": [105, 107, 108], "torch_input": 105, "onnx_program": [105, 108], "onnxprogram": 105, "protobuf": [105, 108, 187], "my_image_classifi": 105, "drag": [105, 152, 168, 169, 224, 225], "onnx_input": [105, 108], "adapt_torch_inputs_to_onnx": [105, 108], "onnxruntime_input": [105, 108], "onnxruntime_output": [105, 108], "torch_output": [105, 108], "adapt_torch_outputs_to_onnx": [105, 108], "assert_clos": [105, 108], "export_simple_model_to_onnx_tutori": [105, 106], "intro_onnx": [106, 107], "onnx_registry_tutori": [106, 108], "sphx_glr_beginner_onnx_intro_onnx": 106, "sphx_glr_beginner_onnx_export_simple_model_to_onnx_tutori": 106, "sphx_glr_beginner_onnx_onnx_registry_tutori": 106, "bytecod": [107, 172, 222], "fx": [107, 121, 144, 173, 174, 179, 196, 197, 200, 221, 247], "polish": [107, 127, 261], "newer": [107, 147, 152, 154, 247], "upgrad": [107, 153, 158, 168, 196], "opset18": [107, 108], "opset": [107, 108, 173, 174], "succe": 107, "ti": 108, "tai": 108, "titaiwang": 108, "empow": 108, "runtimeerrorwithdiagnost": 108, "call_funct": [108, 173, 200], "operator_nam": 108, "onnxregistri": 108, "input_x": 108, "input_i": 108, "input_add_x": 108, "input_add_i": 108, "aten_add_model": 108, "custom_aten_add": 108, "custom_aten": 108, "native_funct": 108, "yaml": [108, 131, 204, 221, 222], "castlik": 108, "onnx_registri": 108, "register_op": 108, "op_nam": 108, "is_registered_op": 108, "export_opt": 108, "exportopt": 108, "op_typ": 108, "custom_aten_add_model": 108, "custom_add_model": 108, "gelu": [108, 110], "customgelu": 108, "namspac": 108, "custom_ort": 108, "custom_aten_gelu": 108, "aten_gelu_model": 108, "input_gelu_x": 108, "diagram": [108, 160], "custom_aten_gelu_model": 108, "custom_gelu_model": 108, "_custom_op": 108, "mylibrari": 108, "addandround_op": 108, "tensor_x": 108, "impl_abstract": [108, 174], "addandround_op_impl_abstract": 108, "addandround_op_impl": 108, "_dynamo": [108, 144, 172, 173, 199, 255], "allow_in_graph": 108, "customfoo": 108, "input_addandround_x": 108, "custom_addandround_model": 108, "customop": 108, "customopon": 108, "customoptwo": 108, "cpu_op": 108, "custom_opset": 108, "custom_addandround": 108, "add_x": 108, "round_x": 108, "libcustom_op_librari": 108, "custom_op_librari": 108, "ort": 108, "lonnxruntim": 108, "ort_session_opt": 108, "sessionopt": 108, "register_custom_ops_librari": 108, "sess_opt": 108, "quicker": 109, "record_funct": [109, 144, 164, 219, 238], "incur": [109, 124, 212], "investig": [109, 113, 147, 156, 171, 172], "hi_idx": 109, "argwher": 109, "with_stack": [109, 168, 238], "profile_memori": [109, 168, 238], "group_by_stack_n": [109, 238], "traceback": [109, 144, 172, 173, 174], "193a910735e8": 109, "stacktrac": 109, "row_limit": [109, 144, 164, 238], "88": [109, 163, 176, 197], "212": 109, "953": 109, "mnt": [109, 135], "xarfus": 109, "au": 109, "07": [109, 122, 218, 219, 246], "715": 109, "848m": 109, "350": [109, 137], "151u": 109, "293": [109, 147], "342u": 109, "095u": 109, "931": 109, "006": 109, "476": 109, "338": 109, "759m": 109, "as_strid": [109, 144], "281": [109, 147], "808u": 109, "275": 109, "721u": 109, "_local": 109, "268": 109, "650u": [109, 238], "_scalar_dens": 109, "347": 109, "elimin": [109, 129, 138, 144, 145, 158, 183, 193, 216], "nonzero": [109, 247], "as_tupl": [109, 116], "089m": 109, "402m": 109, "491m": 109, "119": [109, 185], "441": 109, "587u": 109, "_numpi": 109, "395": [109, 163], "602u": 109, "801m": 109, "xxxx": 110, "alexnet": [110, 147], "printable_graph": 110, "tensor_seq": 110, "ret": [110, 149, 158, 161, 209], "disable_cuda": 110, "convxd": 110, "maxpoolxd": 110, "batchnormxd": 110, "dropout2d": [110, 162, 166, 203, 221, 233], "l1loss": 110, "ctcloss": 110, "poissonnllloss": 110, "kldivloss": 110, "bcewithlogitsloss": 110, "marginrankingloss": 110, "hingeembeddingloss": 110, "multilabelmarginloss": 110, "smoothl1loss": [110, 146, 160], "softmarginloss": 110, "multilabelsoftmarginloss": 110, "multimarginloss": 110, "tripletmarginloss": 110, "prelu": 110, "rrelu": 110, "celu": 110, "hardshrink": 110, "logsigmoid": 110, "softplu": 110, "softshrink": 110, "softsign": 110, "tanhshrink": 110, "softmin": 110, "softmax2d": 110, "adaptivesoftmaxwithloss": 110, "adadelta": [110, 123, 129], "sparseadam": 110, "adamax": 110, "asgd": 110, "rprop": 110, "lambdalr": 110, "multiplicativelr": 110, "multisteplr": 110, "exponentiallr": 110, "reducelronplateau": 110, "cycliclr": 110, "onecyclelr": 110, "cosineannealingwarmrestart": 110, "xsampler": 110, "subsetrandom": 110, "weightedrandom": 110, "justin": 111, "johnson": 111, "\u672c\u6559\u7a0b\u901a\u8fc7\u81ea\u5305\u542b\u793a\u4f8b\u4ecb\u7ecd\u4e86": 111, "\u7684\u57fa\u672c\u6982\u5ff5": [111, 121], "\u5728\u5176\u6838\u5fc3": 111, "pytorch\u63d0\u4f9b\u4e86\u4e24\u4e2a\u4e3b\u8981\u529f\u80fd": 111, "\u4e00\u4e2an\u7ef4\u5f20\u91cf": 111, "\u7c7b\u4f3c\u4e8enumpi": 111, "\u4f46\u53ef\u4ee5\u5728gpu\u4e0a\u8fd0\u884c": 111, "\u7528\u4e8e\u6784\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u81ea\u52a8\u5fae\u5206": 111, "\u6211\u4eec\u5c06\u4f7f\u7528\u62df\u5408": 111, "\u7684\u95ee\u9898\u4f5c\u4e3a\u793a\u4f8b": 111, "\u7f51\u7edc\u5c06\u5177\u6709\u56db\u4e2a\u53c2\u6570": 111, "\u5e76\u5c06\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6cd5\u8bad\u7ec3": 111, "\u901a\u8fc7\u6700\u5c0f\u5316\u7f51\u7edc\u8f93\u51fa\u4e0e\u771f\u5b9e\u8f93\u51fa\u4e4b\u95f4\u7684\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb": 111, "\u6765\u62df\u5408\u968f\u673a\u6570\u636e": 111, "\u53ef\u5728": 111, "\u672c\u6587\u672b\u5c3e\u5904": 111, "\u67e5\u770b\u793a\u4f8b": [111, 121], "\u5728\u4ecb\u7ecd": 111, "\u4e4b\u524d": 111, "\u6211\u4eec\u5c06\u5148\u4f7f\u7528": 111, "\u6765\u5b9e\u73b0\u7f51\u7edc": 111, "numpy\u63d0\u4f9b\u4e86\u4e00\u4e2an\u7ef4\u6570\u7ec4\u5bf9\u8c61": 111, "\u5e76\u63d0\u4f9b\u4e86\u8bb8\u591a\u7528\u4e8e\u64cd\u4f5c\u8fd9\u4e9b\u6570\u7ec4\u7684\u51fd\u6570": 111, "numpy\u662f\u4e00\u4e2a\u901a\u7528\u7684\u79d1\u5b66\u8ba1\u7b97\u6846\u67b6": 111, "\u5b83\u4e0d\u77e5\u9053\u4efb\u4f55\u5173\u4e8e\u8ba1\u7b97\u56fe": 111, "\u6df1\u5ea6\u5b66\u4e60\u6216\u68af\u5ea6\u7684\u4fe1\u606f": 111, "\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u4f7f\u7528": 111, "\u63d0\u4f9b\u7684\u65b9\u6cd5": 111, "\u624b\u52a8\u5b9e\u73b0\u524d\u5411\u548c\u540e\u5411\u4f20\u64ad\u8fc7\u7a0b": 111, "\u6765\u62df\u5408\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u5230\u6b63\u5f26\u51fd\u6570": 111, "numpy\u662f\u4e00\u4e2a\u5f88\u68d2\u7684\u6846\u67b6": 111, "\u4f46\u5b83\u4e0d\u80fd\u5229\u7528gpu\u6765\u52a0\u901f\u5176\u6570\u503c\u8ba1\u7b97": 111, "\u5bf9\u4e8e\u73b0\u4ee3\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc": 111, "gpu\u901a\u5e38\u63d0\u4f9b": 111, "50\u500d\u6216\u66f4\u5927\u7684\u52a0\u901f": 111, "numpy\u5bf9\u4e8e\u73b0\u4ee3\u6df1\u5ea6\u5b66\u4e60\u6765\u8bf4\u8fd8\u662f\u4e0d\u591f\u7684": 111, "\u6211\u4eec\u4ecb\u7ecd\u4e86pytorch\u6700\u57fa\u672c\u7684\u6982\u5ff5": 111, "\u4e00\u4e2apytorch\u5f20\u91cf\u5728\u6982\u5ff5\u4e0a\u4e0enumpy\u6570\u7ec4\u76f8\u540c": 111, "\u4e00\u4e2an\u7ef4\u6570\u7ec4": 111, "pytorch\u63d0\u4f9b\u4e86\u8bb8\u591a\u64cd\u4f5c\u8fd9\u4e9b\u5f20\u91cf\u7684\u51fd\u6570": 111, "\u53ef\u4ee5\u81ea\u52a8\u8ddf\u8e2a\u8ba1\u7b97\u56fe\u548c\u68af\u5ea6": 111, "\u5b83\u4eec\u4e5f\u4f5c\u4e3a\u79d1\u5b66\u8ba1\u7b97\u7684\u901a\u7528\u5de5\u5177\u975e\u5e38\u6709\u7528": 111, "\u4e0d\u540c": 111, "\u5f20\u91cf\u53ef\u4ee5\u5229\u7528gpu\u6765\u52a0\u901f\u5b83\u4eec\u7684\u6570\u503c\u8ba1\u7b97": 111, "\u8981\u5728gpu\u4e0a\u8fd0\u884c": 111, "\u60a8\u53ea\u9700\u8981\u6307\u5b9a\u6b63\u786e\u7684\u8bbe\u5907": 111, "\u5f20\u91cf\u6765\u62df\u5408\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u5230\u6b63\u5f26\u51fd\u6570\u4e2d": 111, "\u4e0e\u4e0a\u9762\u7684numpy\u793a\u4f8b\u7c7b\u4f3c": 111, "\u6211\u4eec\u9700\u8981\u624b\u52a8\u5b9e\u73b0\u7f51\u7edc\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u6211\u4eec\u5fc5\u987b\u624b\u52a8\u5b9e\u73b0\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u5bf9\u4e8e\u4e00\u4e2a\u5c0f\u578b\u7684\u4e24\u5c42\u7f51\u7edc\u6765\u8bf4": 111, "\u624b\u52a8\u5b9e\u73b0\u540e\u5411\u4f20\u9012\u5e76\u4e0d\u662f\u4ec0\u4e48\u5927\u95ee\u9898": 111, "\u4f46\u5bf9\u4e8e\u5927\u578b\u590d\u6742\u7684\u7f51\u7edc\u6765\u8bf4": 111, "\u5f88\u5feb\u5c31\u4f1a\u53d8\u5f97\u975e\u5e38\u9ebb\u70e6": 111, "\u5e78\u8fd0\u7684\u662f": 111, "\u6765\u81ea\u52a8\u8ba1\u7b97\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u540e\u5411\u4f20\u9012": 111, "pytorch\u4e2d\u7684": 111, "\u5305\u6b63\u662f\u63d0\u4f9b\u4e86\u8fd9\u79cd\u529f\u80fd": 111, "\u5f53\u4f7f\u7528\u81ea\u52a8\u6c42\u5bfc\u65f6": 111, "\u7f51\u7edc\u7684\u524d\u5411\u4f20\u9012\u5c06\u5b9a\u4e49\u4e00\u4e2a": 111, "\u56fe\u4e2d\u7684\u8282\u70b9\u662f\u5f20\u91cf": 111, "\u8fb9\u662f\u4ece\u8f93\u5165\u5f20\u91cf\u751f\u6210\u8f93\u51fa\u5f20\u91cf\u7684\u51fd\u6570": 111, "\u901a\u8fc7\u8fd9\u4e2a\u56fe\u8fdb\u884c\u53cd\u5411\u4f20\u64ad": 111, "\u7136\u540e\u53ef\u4ee5\u8f7b\u677e\u8ba1\u7b97\u68af\u5ea6": 111, "\u8fd9\u542c\u8d77\u6765\u5f88\u590d\u6742": 111, "\u4f46\u5728\u5b9e\u9645\u4f7f\u7528\u4e2d\u975e\u5e38\u7b80\u5355": 111, "\u6bcf\u4e2a\u5f20\u91cf\u4ee3\u8868\u8ba1\u7b97\u56fe\u4e2d\u7684\u4e00\u4e2a\u8282\u70b9": 111, "\u662f\u4e00\u4e2a\u8bbe\u7f6e\u4e86": 111, "\u5c06\u662f\u53e6\u4e00\u4e2a\u5f20\u91cf": 111, "\u5b83\u5305\u542b\u4e86": 111, "\u76f8\u5bf9\u4e8e\u67d0\u4e2a\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u6211\u4eec\u4f7f\u7528pytorch\u5f20\u91cf\u548c\u81ea\u52a8\u6c42\u5bfc\u6765\u5b9e\u73b0\u6211\u4eec\u7528\u4e09\u6b21\u591a\u9879\u5f0f\u62df\u5408\u6b63\u5f26\u6ce2\u7684\u793a\u4f8b": 111, "\u73b0\u5728\u6211\u4eec\u4e0d\u518d\u9700\u8981\u624b\u52a8\u5b9e\u73b0\u7f51\u7edc\u7684\u540e\u5411\u4f20\u9012": 111, "\u5728\u5e95\u5c42": 111, "\u6bcf\u4e2a\u539f\u59cb\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u5b9e\u9645\u4e0a\u662f\u5bf9\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c\u7684\u4e24\u4e2a\u51fd\u6570": 111, "\u51fd\u6570\u4ece\u8f93\u5165\u5f20\u91cf\u8ba1\u7b97\u8f93\u51fa\u5f20\u91cf": 111, "\u540e\u5411": 111, "\u51fd\u6570\u63a5\u6536\u8f93\u51fa\u5f20\u91cf\u76f8\u5bf9\u4e8e\u67d0\u4e2a\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u5e76\u8ba1\u7b97\u8f93\u5165\u5f20\u91cf\u76f8\u5bf9\u4e8e\u540c\u4e00\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5b9a\u4e49\u4e00\u4e2a": 111, "\u7684\u5b50\u7c7b\u5e76\u5b9e\u73b0": 111, "\u8f7b\u677e\u5b9a\u4e49\u81ea\u5df1\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u7b26": 111, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6784\u9020\u5b9e\u4f8b\u5e76\u50cf\u51fd\u6570\u4e00\u6837\u8c03\u7528\u5b83": 111, "\u4f20\u9012\u5305\u542b\u8f93\u5165\u6570\u636e\u7684\u5f20\u91cf": 111, "\u6765\u4f7f\u7528\u6211\u4eec\u65b0\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u7b26": 111, "\u6211\u4eec\u5c06\u6a21\u578b\u5b9a\u4e49\u4e3a": 111, "\u662f\u4e09\u9636\u7684": 111, "\u52d2\u8ba9\u5fb7\u591a\u9879\u5f0f": 111, "\u6211\u4eec\u7f16\u5199\u4e86\u81ea\u5df1\u7684\u81ea\u5b9a\u4e49\u81ea\u52a8\u6c42\u5bfc\u51fd\u6570\u6765\u8ba1\u7b97": 111, "\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u5e76\u4f7f\u7528\u5b83\u6765\u5b9e\u73b0\u6211\u4eec\u7684\u6a21\u578b": 111, "\u548c\u81ea\u52a8\u6c42\u5bfc": 111, "\u662f\u5b9a\u4e49\u590d\u6742\u64cd\u4f5c\u975e\u5e38\u5f3a\u5927\u7684\u529f\u80fd": 111, "\u539f\u59cb\u7684\u81ea\u52a8\u6c42\u5bfc\u8fd8\u662f\u4e0d\u8db3\u4ee5\u652f\u6301\u5b9e\u73b0\u5927\u578b\u795e\u7ecf\u7f51\u7edc": 111, "\u5728\u6784\u5efa\u795e\u7ecf\u7f51\u7edc\u65f6": 111, "\u6211\u4eec\u901a\u5e38\u4f1a\u8003\u8651\u5c06\u8ba1\u7b97\u5b89\u6392\u6210": 111, "\u5176\u4e2d\u4e00\u4e9b\u5c42\u5177\u6709": 111, "\u53ef\u5b66\u4e60\u7684\u53c2\u6570": 111, "\u8fd9\u4e9b\u53c2\u6570\u5c06\u5728\u5b66\u4e60\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u4f18\u5316": 111, "\u5728tensorflow\u4e2d": 111, "\u50cf": 111, "tflearn": 111, "\u63d0\u4f9b\u4e86\u76f8\u8f83\u4e8e\u539f\u59cb\u8ba1\u7b97\u56fe\u7684\u66f4\u9ad8\u5c42\u6b21\u7684\u62bd\u8c61": 111, "\u8fd9\u4e9b\u62bd\u8c61\u5bf9\u4e8e\u6784\u5efa\u795e\u7ecf\u7f51\u7edc\u975e\u5e38\u6709\u7528": 111, "\u5305\u8d77\u5230\u4e86\u540c\u6837\u7684\u4f5c\u7528": 111, "\u5305\u5b9a\u4e49\u4e86\u4e00\u7ec4": 111, "\u8fd9\u4e9b\u6a21\u5757\u76f8\u5f53\u4e8e\u795e\u7ecf\u7f51\u7edc\u5c42": 111, "\u4e00\u4e2a\u6a21\u5757\u63a5\u6536\u8f93\u5165\u5f20\u91cf\u5e76\u8ba1\u7b97\u8f93\u51fa\u5f20\u91cf": 111, "\u4f46\u4e5f\u53ef\u4ee5\u5305\u542b\u5185\u90e8\u72b6\u6001": 111, "\u4f8b\u5982\u5305\u542b\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u5f20\u91cf": 111, "\u5305\u8fd8\u5b9a\u4e49\u4e86\u4e00\u7ec4\u5e38\u7528\u4e8e\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u6709\u7528\u7684\u635f\u5931\u51fd\u6570": 111, "\u5305\u6765\u5b9e\u73b0\u6211\u4eec\u7684\u591a\u9879\u5f0f\u6a21\u578b\u7f51\u7edc": 111, "\u6211\u4eec\u901a\u8fc7\u4f7f\u7528": 111, "\u624b\u52a8\u66f4\u6539\u5f20\u91cf\u7684\u53ef\u5b66\u4e60\u53c2\u6570": 111, "\u6765\u66f4\u65b0\u6a21\u578b\u7684\u6743\u91cd": 111, "\u5bf9\u4e8e\u50cf\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u8fd9\u6837\u7684\u4f18\u5316\u7b97\u6cd5\u6765\u8bf4": 111, "\u8fd9\u5e76\u4e0d\u662f\u4e00\u4e2a\u5f88\u5927\u7684\u8d1f\u62c5": 111, "\u4f46\u5728\u5b9e\u8df5\u4e2d": 111, "\u6211\u4eec\u7ecf\u5e38\u4f7f\u7528\u66f4\u590d\u6742\u7684\u4f18\u5316\u5668\u6765\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 111, "\u6bd4\u5982": 111, "\u5305\u62bd\u8c61\u4e86\u4f18\u5316\u7b97\u6cd5\u7684\u5b9a\u4e49": 111, "\u5e76\u63d0\u4f9b\u4e86\u5e38\u7528\u4f18\u5316\u7b97\u6cd5\u7684\u5b9e\u73b0": 111, "\u6211\u4eec\u5c06\u50cf\u4ee5\u524d\u4e00\u6837\u4f7f\u7528": 111, "\u5305\u6765\u5b9a\u4e49\u6211\u4eec\u7684\u6a21\u578b": 111, "\u4f46\u6211\u4eec\u5c06\u4f7f\u7528": 111, "\u5305\u63d0\u4f9b\u7684": 111, "\u7b97\u6cd5\u6765\u4f18\u5316\u6a21\u578b": 111, "\u6709\u65f6\u4f60\u53ef\u80fd\u4f1a\u5e0c\u671b\u81ea\u5b9a\u4e49\u6bd4\u73b0\u6709\u6a21\u5757\u96c6\u66f4\u590d\u6742\u7684\u6a21\u578b": 111, "\u5728\u8fd9\u4e9b\u60c5\u51b5\u4e0b": 111, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7ee7\u627f": 111, "\u5e76\u5b9a\u4e49\u4e00\u4e2a": 111, "\u65b9\u6cd5\u6765\u81ea\u5b9a\u4e49\u6a21\u5757": 111, "\u8be5\u65b9\u6cd5\u63a5\u6536\u8f93\u5165\u5f20\u91cf": 111, "\u5e76\u4f7f\u7528\u5176\u4ed6\u6a21\u5757\u6216\u5728\u5f20\u91cf\u4e0a\u81ea\u52a8\u6c42\u5bfc\u7b49\u64cd\u4f5c\u751f\u6210\u65b0\u7684\u8f93\u51fa\u5f20\u91cf": 111, "\u6211\u4eec\u5c06\u5b9e\u73b0\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u4f5c\u4e3a\u81ea\u5b9a\u4e49\u6a21\u5757\u7684\u5b50\u7c7b": 111, "\u4f5c\u4e3a\u52a8\u6001\u8ba1\u7b97\u56fe\u548c\u6743\u91cd\u5171\u4eab\u7684\u4e00\u4e2a\u793a\u4f8b": 111, "\u6211\u4eec\u5b9e\u73b0\u4e86\u4e00\u4e2a\u975e\u5e38\u5947\u7279\u7684\u6a21\u578b": 111, "\u4e00\u4e2a\u4e09\u81f3\u4e94\u9636\u7684\u591a\u9879\u5f0f": 111, "\u5728\u6bcf\u6b21\u524d\u5411\u4f20\u9012\u65f6\u968f\u673a\u9009\u62e9\u4e00\u4e2a3\u52305\u4e4b\u95f4\u7684\u6570\u5b57": 111, "\u5e76\u4f7f\u7528\u8be5\u9636\u6570\u591a\u9879\u5f0f\u6765\u8ba1\u7b97": 111, "\u91cd\u590d\u4f7f\u7528\u76f8\u540c\u7684\u6743\u91cd\u591a\u6b21\u4ee5\u8ba1\u7b97\u56db\u9636\u548c\u4e94\u9636\u591a\u9879\u5f0f": 111, "\u5bf9\u4e8e\u8fd9\u4e2a\u6a21\u578b": 111, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528python\u6d41\u63a7\u5236\u6765\u5b9e\u73b0\u5faa\u73af": 111, "\u5e76\u4e14\u53ef\u4ee5\u901a\u8fc7\u5728\u5b9a\u4e49\u524d\u5411\u4f20\u9012\u65f6": 111, "\u591a\u6b21\u91cd\u590d\u4f7f\u7528\u76f8\u540c\u7684\u53c2\u6570": 111, "\u6765\u5b9e\u73b0\u6743\u91cd\u5171\u4eab": 111, "\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u5c06\u8fd9\u4e2a\u6a21\u578b\u5b9e\u73b0\u4e3a\u4e00\u4e2a\u6a21\u5757\u7684\u5b50\u7c7b": 111, "\u5177\u4f53\u793a\u4f8b\u5982\u4e0b": 111, "unpickl": 112, "facil": 112, "running_mean": [112, 142, 198, 249], "themodelclass": 112, "param_tensor": [112, 249], "var_nam": [112, 249], "param_group": [112, 159, 211, 216, 244], "dampen": 112, "4675713712": 112, "4675713784": 112, "4675714000": 112, "4675714072": 112, "4675714216": 112, "4675714288": 112, "4675714432": 112, "4675714504": 112, "4675714648": 112, "4675714720": 112, "_use_new_zipfile_seri": 112, "inconsist": [112, 144, 241], "best_model_st": 112, "deepcopi": [112, 138, 142, 157, 182, 198, 199], "overfit": [112, 128, 157], "model_script": 112, "model_state_dict": [112, 214, 220, 241], "theoptimizerclass": 112, "modela_state_dict": [112, 243], "modela": [112, 243], "modelb_state_dict": [112, 243], "modelb": [112, 243], "optimizera_state_dict": [112, 243], "optimizera": [112, 243], "optimizerb_state_dict": [112, 243], "optimizerb": [112, 243], "themodelaclass": 112, "themodelbclass": 112, "theoptimizeraclass": 112, "theoptimizerbclass": 112, "gan": [112, 121, 153, 243], "ensembl": [112, 121], "remap": 112, "overwrit": 112, "saving_loading_model": 112, "pendo": 113, "abbo": 113, "joe": [113, 133], "cum": 113, "cnndm": 113, "imdb": 113, "multi30k": [113, 118], "sentencepiec": 113, "t5transform": 113, "padding_idx": 113, "eos_idx": [113, 118], "max_seq_len": 113, "t5_sp_model_path": 113, "t5_tokenizer_bas": 113, "sp_model_path": 113, "t5_base_gener": 113, "t5_base": 113, "beam": 113, "sequence_gener": 113, "datapip": [113, 116], "appendix": 113, "cnndm_batch_siz": 113, "cnndm_datapip": 113, "apply_prefix": 113, "rows2columnar": 113, "cnndm_dataload": 113, "batch_prefix": 113, "sst2": 113, "imdb_batch_s": 113, "imdb_datapip": 113, "process_label": 113, "imdb_dataload": 113, "german": [113, 116, 118, 127, 128], "multi_batch_s": 113, "language_pair": [113, 118], "multi_datapip": 113, "multi_dataload": 113, "input_text": 113, "beam_siz": 113, "model_output": [113, 141, 162], "num_beam": 113, "output_text": 113, "year": [113, 150, 153], "tattoo": 113, "decad": [113, 176], "australia": 113, "campaign": 113, "honest": 113, "london": 113, "stephen": 113, "hendri": 113, "fame": [113, 265], "supermodel": 113, "sydnei": 113, "australian": 113, "fan": [113, 158], "him": 113, "hotel": 113, "heartthrob": 113, "strai": 113, "pooch": 113, "buri": 113, "stagger": 113, "nearbi": 113, "farm": 113, "dirt": 113, "emaci": 113, "disloc": 113, "jaw": 113, "leg": 113, "injuri": [113, 262], "cave": 113, "sinu": 113, "caviti": 113, "surgeri": [113, 171], "breath": 113, "theia": 113, "bulli": 113, "breed": 113, "appar": [113, 157], "whack": 113, "hammer": 113, "miracl": 113, "sara": 113, "mellado": 113, "mohammad": 113, "javad": 113, "zarif": 113, "iran": 113, "sunni": 113, "fridai": 113, "morn": 113, "bring": [113, 159, 168, 171, 184, 192, 205, 216, 234, 238, 247], "rejoin": 113, "john": 113, "kerri": 113, "foreign": 113, "minist": 113, "takeov": 113, "iranian": 113, "consul": 113, "tweet": 113, "american": 113, "week": 113, "ebola": 113, "west": 113, "africa": 113, "discharg": 113, "hasn": 113, "clinician": 113, "health": 113, "boston": 113, "viru": 113, "sierra": 113, "march": 113, "diagnos": [113, 132], "diseas": [113, 171], "maryland": 113, "nation": 113, "institut": 113, "patient": [113, 171], "campu": 113, "polic": 113, "offic": [113, 197, 198], "affair": 113, "admit": 113, "noos": 113, "wednesdai": 113, "incid": 113, "racist": 113, "colleg": 113, "duke": 113, "disciplinari": 113, "school": 113, "rope": 113, "sci": [113, 115], "fi": 113, "tv": 113, "underfund": 113, "misunderstood": 113, "babylon": 113, "star": 113, "trek": 113, "silli": [113, 125], "prosthet": 113, "cheap": 113, "cardboard": 113, "stilt": 113, "dialogu": 113, "cg": 113, "painfulli": 113, "clich\u00e9d": 113, "uninspir": 113, "viewer": [113, 238], "emot": 113, "genr": 113, "serious": 113, "cf": 113, "seriou": 113, "foolish": 113, "spark": 113, "Their": [113, 190, 192], "reaction": 113, "wooden": [113, 262], "maker": 113, "rubbish": 113, "gene": 113, "roddenberri": 113, "ash": 113, "orbit": 113, "dull": 113, "poorli": [113, 127], "advert": 113, "trudg": 113, "trabant": 113, "lumber": 113, "spoiler": 113, "kill": 113, "actor": [113, 136], "jeeez": 113, "dalla": 113, "entertain": 113, "rental": 113, "fight": 113, "van": 113, "damm": 113, "shoot": 113, "battl": 113, "shell": [113, 208, 213, 218, 223], "shotgun": 113, "terrorist": 113, "bomb": 113, "blow": 113, "br": 113, "inclus": [113, 173, 174, 246], "rabbit": 113, "hardli": [113, 115], "profound": 113, "stereotyp": 113, "angri": 113, "veteran": 113, "terrifi": 113, "illeg": 113, "alien": 113, "crook": 113, "cop": 113, "indiffer": 113, "bitchi": 113, "ladi": 113, "station": 113, "politician": 113, "federal": 113, "typecast": 113, "mexican": 113, "hollywood": 113, "1940": 113, "passabl": 113, "villain": 113, "certainli": [113, 143, 190, 192, 234], "knew": 113, "gui": [113, 226, 251, 262], "weren": [113, 138, 154], "desert": 113, "simplist": 113, "hamlet": 113, "annoi": [113, 145], "vd": 113, "daughter": 113, "film": 113, "semi": [113, 121, 193, 196], "alright": 113, "dam": 113, "disappoint": [113, 115], "budget": [113, 126], "poor": 113, "orang": [113, 125, 158], "ein": [113, 118], "mann": 113, "einem": [113, 118], "orangen": 113, "hut": 113, "der": 113, "etwa": 113, "schaut": 113, "mit": [113, 139], "orangefarbenen": 113, "anstarrt": 113, "terrier": 113, "lush": 113, "grass": 113, "front": [113, 115, 138, 156, 176, 177], "fenc": 113, "l\u00e4uft": 113, "auf": 113, "\u00fcppigem": 113, "gr\u00fcnem": 113, "gra": 113, "vor": [113, 118], "wei\u00dfen": 113, "zaun": 113, "\u00fcber": 113, "saftig": 113, "gr\u00fcne": 113, "girl": 113, "karat": 113, "m\u00e4dchen": 113, "bricht": 113, "einen": [113, 116], "st\u00f6ck": 113, "frontkick": 113, "karateanzug": 113, "brett": 113, "tritt": 113, "wear": 113, "jacket": 113, "helmet": 113, "snow": 113, "snowmobil": 113, "f\u00fcnf": 113, "menschen": [113, 118], "winterjacken": 113, "und": 113, "helmen": 113, "stehen": 113, "schnee": 113, "schneemobilen": 113, "hintergrund": 113, "leut": 113, "roof": 113, "hous": 113, "die": 113, "fixieren": 113, "da": 113, "dach": 113, "haus": 113, "reparieren": 113, "t5_tutori": 113, "firstnam": 114, "lastnam": 114, "gallery_pattern": 114, "neural_style_transfer_tutori": 114, "_build": 114, "beginner_sourc": 114, "link1": 114, "link2": 114, "template_tutori": 114, "portalock": 115, "ag_new": 115, "fear": 115, "pension": 115, "union": [115, 179], "turner": 115, "newal": 115, "stricken": 115, "firm": 115, "feder": 115, "mogul": 115, "race": [115, 135, 216], "spaceflight": 115, "toronto": 115, "canada": [115, 263], "rocket": 115, "ansari": 115, "prize": 115, "contest": 115, "fund": 115, "suborbit": 115, "flight": 115, "ky": 115, "grant": 115, "peptid": 115, "ap": 115, "chemistri": 115, "louisvil": 115, "amino": 115, "acid": 115, "protein": 115, "revisit": [115, 190, 262], "yield_token": [115, 118], "data_it": [115, 116, 118], "475": [115, 163], "5297": 115, "text_pipelin": 115, "label_pipelin": 115, "collate_batch": 115, "label_list": [115, 137, 171, 185], "text_list": 115, "_label": 115, "_text": 115, "processed_text": 115, "cumsum": 115, "textclassificationmodel": 115, "embed_dim": [115, 164], "sport": 115, "tec": 115, "total_acc": 115, "total_count": 115, "to_map_style_dataset": 115, "total_accu": 115, "num_train": 115, "split_train_": 115, "split_valid_": 115, "valid_dataload": 115, "accu_v": 115, "accu_test": 115, "golf": 115, "ag_news_label": 115, "ex_text_str": 115, "memphi": 115, "tenn": 115, "ago": 115, "jon": 115, "rahm": 115, "endur": 115, "season": 115, "weather": 115, "sundai": 115, "royal": 115, "portrush": 115, "wind": 115, "rain": 115, "thursdai": 115, "wgc": 115, "fedex": 115, "jude": 115, "invit": 115, "stori": 115, "mid": 115, "spaniard": 115, "stroke": 115, "flawless": 115, "pga": 115, "tour": 115, "nine": 115, "tpc": 115, "southwind": 115, "text_sentiment_ngrams_tutori": 115, "sharma": 116, "legaci": 116, "tatoeba": [116, 165], "deu": 116, "en_core_web_sm": [116, 118], "de_core_news_sm": [116, 118], "dp": [116, 124, 176, 177], "eng": [116, 165, 194], "file_path": 116, "data_pip": 116, "iterablewrapp": 116, "fileopen": 116, "parse_csv": 116, "skip_lin": 116, "removeattribut": 116, "engtoken": 116, "detoken": 116, "haben": 116, "sie": 116, "guten": 116, "gettoken": 116, "source_vocab": 116, "min_freq": [116, 118], "special_first": [116, 118], "target_vocab": 116, "get_ito": 116, "gettransform": 116, "text_tranform": 116, "vocabtransform": 116, "addtoken": 116, "temp_list": 116, "some_sent": 116, "798": 116, "transformed_sent": 116, "index_to_str": 116, "applytransform": 116, "sequence_pair": 116, "bucketbatch": 116, "sortbucket": 116, "batch_num": 116, "bucket_num": 116, "use_in_batch_shuffl": 116, "sort_kei": 116, "x_3": [116, 262], "y_3": 116, "x_4": [116, 262], "y_4": 116, "separatesourcetarget": 116, "applypad": 116, "pair_of_sequ": 116, "source_index_to_str": 116, "target_index_to_str": 116, "showsometransformedsent": 116, "traget": 116, "torchtext_custom_dataset_tutori": 116, "cs231n": 117, "licens": [117, 137, 139, 166], "bsd": [117, 166], "image_dataset": [117, 157], "dataset_s": [117, 157], "class_nam": [117, 139, 157, 171, 213], "train_model": [117, 157, 245], "tempdir": 117, "best_model_params_path": 117, "best_model_param": 117, "best_acc": [117, 157], "running_correct": [117, 157], "set_grad_en": [117, 157, 219], "epoch_loss": [117, 135, 157], "epoch_acc": [117, 157], "time_elaps": [117, 157], "visualize_model": [117, 157], "was_train": [117, 157], "images_so_far": 117, "model_ft": [117, 157], "num_ftr": [117, 157], "optimizer_ft": [117, 157], "exp_lr_schedul": [117, 157], "step_siz": [117, 122, 123, 129, 157, 178], "model_conv": 117, "optimizer_conv": 117, "visualize_model_predict": 117, "72100438_73de9f17af": 117, "transfer_learning_tutori": 117, "\u8fdb\u884c\u8bed\u8a00\u7ffb\u8bd1": [118, 121], "inbuilt": [118, 153], "1756": 118, "issuecom": 118, "1163664163": 118, "githubusercont": [118, 119, 178], "neychev": 118, "small_dl_repo": 118, "src_languag": 118, "tgt_languag": 118, "token_transform": 118, "vocab_transform": 118, "language_index": 118, "data_sampl": 118, "unk_idx": 118, "pad_idx": 118, "bos_idx": 118, "special_symbol": 118, "bo": 118, "ln": 118, "emb_siz": 118, "maxlen": [118, 160], "den": 118, "pos_embed": 118, "register_buff": [118, 153, 202], "token_embed": 118, "tokenembed": 118, "seq2seqtransform": 118, "num_encoder_lay": 118, "num_decoder_lay": 118, "src_vocab_s": 118, "tgt_vocab_s": 118, "dim_feedforward": 118, "src_tok_emb": 118, "tgt_tok_emb": 118, "positional_encod": 118, "trg": 118, "src_mask": 118, "tgt_mask": 118, "src_padding_mask": 118, "tgt_padding_mask": 118, "memory_key_padding_mask": 118, "src_emb": 118, "tgt_emb": 118, "tgt": [118, 165], "generate_square_subsequent_mask": 118, "sz": 118, "triu": [118, 153], "masked_fil": [118, 191], "create_mask": 118, "src_seq_len": 118, "tgt_seq_len": 118, "ffn_hid_dim": 118, "xavier_uniform_": 118, "ignore_index": 118, "pad_sequ": 118, "club": 118, "sequential_transform": 118, "txt_input": 118, "tensor_transform": 118, "token_id": 118, "text_transform": 118, "src_batch": 118, "tgt_batch": 118, "src_sampl": 118, "tgt_sampl": 118, "rstrip": 118, "train_epoch": [118, 165], "tgt_input": 118, "tgt_out": 118, "val_dataload": [118, 148], "ingredi": 118, "timeit": [118, 138, 144, 145, 149, 154, 193, 223, 234, 239, 246], "default_tim": [118, 193, 239], "train_loss": 118, "end_tim": [118, 230, 237], "greedy_decod": 118, "start_symbol": 118, "ys": 118, "prob": [118, 159, 161, 163, 169], "next_word": 118, "src_sentenc": 118, "num_token": 118, "tgt_token": 118, "lookup_token": 118, "grupp": 118, "von": 118, "steht": 118, "iglu": 118, "3f5ee243547dee91fbd053c1c4a845aa": 118, "pdf": 118, "harvard": 118, "edu": [118, 178], "translation_transform": 118, "geeta": [119, 176], "chauhan": [119, 176], "facebook": [119, 135, 204, 222], "android": [119, 121, 194, 196, 227, 228, 251, 252], "2012": [119, 263], "hundr": [119, 120, 124, 171], "distil": [119, 121, 187, 221], "timm": 119, "imagenet_default_mean": 119, "imagenet_default_std": 119, "facebookresearch": [119, 184], "deit_base_patch16_224": 119, "clsidx": 119, "269": [119, 147], "timber": [119, 188], "wolf": [119, 188], "cani": [119, 188], "lupu": [119, 188], "scripted_model": [119, 188], "fbdeit_script": 119, "346mb": 119, "qnnpack": [119, 158, 179, 218, 223, 228], "qconfig_spec": [119, 228], "scripted_quantized_model": 119, "fbdeit_scripted_quant": 119, "fbdeit_quantized_script": 119, "89mb": 119, "mobile_optim": [119, 188, 194, 206, 218, 222, 224, 225, 252], "optimize_for_mobil": [119, 188, 194, 206, 218, 222, 223, 224, 225, 252], "optimized_scripted_quantized_model": 119, "fbdeit_optimized_scripted_quant": 119, "_save_for_lite_interpret": [119, 187, 188, 194, 204, 222, 223], "fbdeit_optimized_scripted_quantized_lit": 119, "ptl": [119, 187, 204, 222, 223], "prof1": 119, "prof2": 119, "prof3": 119, "prof4": 119, "prof5": 119, "1236": 119, "69m": 119, "1226": 119, "72m": 119, "593": 119, "19m": 119, "598": 119, "01m": 119, "81": [119, 144, 219], "52": [119, 127, 147, 176, 219], "vt_tutori": 119, "spread": [120, 171], "demand": 120, "mesh": [120, 124, 215], "ddp_series_intro": 120, "utm_sourc": 120, "distr_land": 120, "utm_medium": 120, "distributeddata": 120, "ddp_tutori": 120, "intermediate_ddp_tutori": 120, "generic_join": 120, "fsdp_tutori": 120, "fsdp_getting_start": 120, "huggingfac": [120, 122, 123, 185, 201], "hf": 120, "t5": 120, "fsdp_adavnced_tutori": 120, "fsdp_advanc": 120, "tp_tutori": [120, 124], "distributed_device_mesh": 120, "rpc_tutori": 120, "rpc_getting_start": 120, "rpc_param_server_tutori": 120, "rpc_async_execut": 120, "rpc_ddp_tutori": 120, "rpc_plus_ddp": 120, "plug": [120, 155, 166, 223], "process_group_cpp_extension_tutori": 120, "custom_extensions_cpp": 120, "\u65b0\u589e\u6559\u7a0b": 121, "\u4f7f\u7528\u81ea\u5b9a\u4e49\u7684": 121, "triton": [121, 144, 172, 199, 251], "\u5185\u6838\u4e0e": 121, "tp": 121, "\u8fdb\u884c\u5927\u89c4\u6a21": 121, "\u6a21\u578b\u8bad\u7ec3": 121, "\u5229\u7528\u534a\u7ed3\u6784\u5316": 121, "\u7a00\u758f\u6027\u52a0\u901f": 121, "\u548c\u5f20\u91cf\u5b50\u7c7b\u7684\u6269\u5c55\u70b9": 121, "\u719f\u6089": 121, "\u7684\u6982\u5ff5\u548c\u6a21\u5757": 121, "\u901a\u8fc7\u672c\u5feb\u901f\u5165\u95e8\u6307\u5357": 121, "\u5b66\u4e60\u5982\u4f55\u52a0\u8f7d\u6570\u636e": 121, "\u6784\u5efa\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc": 121, "\u8bad\u7ec3\u548c\u4fdd\u5b58\u6a21\u578b": 121, "\u5f00\u542f": 121, "\u65c5\u7a0b": 121, "\u793a\u4f8b": 121, "\u5c0f\u5de7\u6613\u7528": 121, "\u5373\u65f6\u90e8\u7f72\u7684": 121, "\u4ee3\u7801\u793a\u4f8b": 121, "\u5168\u90e8": 121, "\u9010\u6b65\u6559\u4f60\u5982\u4f55\u7528pytorch\u6784\u5efa\u5b8c\u6574\u7684\u673a\u5668\u5b66\u4e60\u6d41\u7a0b": 121, "\u4ecb\u7ecd\u89c6\u9891": 121, "\u7528pytorch\u6784\u5efa\u5b8c\u6574\u7684\u673a\u5668\u5b66\u4e60\u5de5\u4f5c\u6d41\u7a0b": 121, "pytorch\u521d\u5b66\u8005\u7cfb\u5217": 121, "\u901a\u8fc7\u793a\u4f8b\u5b66\u4e60": 121, "\u672c\u6559\u7a0b\u901a\u8fc7\u72ec\u7acb\u7684\u793a\u4f8b\u4ecb\u7ecd\u4e86": 121, "\u4ec0\u4e48\u662f": 121, "\u6765\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 121, "\u5c55\u73b0\u6a21\u578b": 121, "\u6570\u636e\u548c\u8bad\u7ec3\u8fc7\u7a0b": 121, "\u5b66\u4e60\u4f7f\u7528": 121, "\u53ef\u89c6\u5316\u6570\u636e\u96c6\u548c\u6a21\u578b\u8bad\u7ec3\u8fc7\u7a0b": 121, "\u76ee\u6807\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b": 121, "\u5fae\u8c03\u9884\u8bad\u7ec3\u7684": 121, "\u4f7f\u7528\u8fc1\u79fb\u5b66\u4e60\u8bad\u7ec3\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u8fdb\u884c\u56fe\u50cf\u5206\u7c7b": 121, "\u4f18\u5316\u89c6\u89c9transformer\u6a21\u578b": 121, "\u5e94\u7528\u6700\u524d\u6cbf\u7684": 121, "\u57fa\u4e8e": 121, "\u6a21\u578b\u5230\u8ba1\u7b97\u673a\u89c6\u89c9\u4efb\u52a1\u4e2d": 121, "\u5bf9\u6297\u6027\u6837\u672c\u751f\u6210": 121, "dcgan": 121, "\u5b66\u4e60\u5982\u4f55\u901a\u8fc7\u89c6\u89c9\u6ce8\u610f\u673a\u5236\u589e\u5f3a\u4f60\u7684\u7f51\u7edc": 121, "tiatoolbox": 121, "\u5bf9\u56fe\u50cf\u8fdb\u884c\u63a8\u7406": 121, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528tiatoolbox\u5bf9\u56fe\u50cf\u8fdb\u884c\u63a8\u7406": 121, "usb": [121, 158], "\u7684\u534a\u76d1\u7763\u5b66\u4e60\u6559\u7a0b": 121, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528": [121, 251], "\u5bf9\u81ea\u5b9a\u4e49\u6570\u636e\u8fdb\u884c\u534a\u76d1\u7763\u5b66\u4e60\u7b97\u6cd5\u7684\u8bad\u7ec3": 121, "\u52a0\u8f7d\u6570\u636e": [121, 235, 251], "\u91cd\u91c7\u6837": 121, "\u5bf9\u97f3\u9891\u6ce2\u5f62\u8fdb\u884c\u91cd\u65b0\u91c7\u6837": 121, "\u6570\u636e\u589e\u5f3a": 121, "\u5e94\u7528\u6570\u636e\u589e\u5f3a": 121, "\u7279\u5f81\u63d0\u53d6": 121, "\u63d0\u53d6\u7279\u5f81": 121, "\u7279\u5f81\u589e\u5f3a": 121, "\u5bf9\u7279\u5f81\u8fdb\u884c\u589e\u5f3a": 121, "\u4e2d\u4f7f\u7528": 121, "wav2vec2": 121, "\u8fdb\u884c\u81ea\u52a8\u8bed\u97f3\u8bc6\u522b": 121, "\u7684\u9884\u8bad\u7ec3\u6a21\u578b\u6765\u6784\u5efa\u8bed\u97f3\u8bc6\u522b\u5e94\u7528\u7a0b\u5e8f": 121, "\u8bed\u97f3\u547d\u4ee4\u5206\u7c7b": 121, "\u5b66\u4e60\u5982\u4f55\u6b63\u786e\u683c\u5f0f\u5316\u97f3\u9891\u6570\u636e\u96c6": 121, "\u7136\u540e\u5728\u8be5\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3": 121, "\u6d4b\u8bd5\u97f3\u9891\u5206\u7c7b\u5668\u7f51\u7edc": 121, "\u8fdb\u884c\u6587\u672c\u8f6c\u8bed\u97f3": 121, "\u7684\u9884\u8bad\u7ec3\u6a21\u578b\u6784\u5efa\u6587\u672c\u8f6c\u8bed\u97f3\u5e94\u7528\u7a0b\u5e8f": 121, "\u8fdb\u884c\u5bf9\u9f50": 121, "\u9884\u8bad\u7ec3\u6a21\u578b\u5bf9\u6587\u672c\u8fdb\u884c\u4e0e\u8bed\u97f3\u5bf9\u9f50": 121, "\u63d0\u5347\u63a8\u7406\u6548\u7387": 121, "\u5b9e\u73b0\u7684": 121, "\u4ee5\u5b9e\u73b0\u9ad8\u6027\u80fd\u7684\u63a8\u65ad": 121, "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406": 121, "\u4f7f\u7528\u5b57\u7b26\u7ea7": 121, "\u5bf9\u59d3\u540d\u8fdb\u884c\u5206\u7c7b": 121, "\u6784\u5efa\u5e76\u8bad\u7ec3\u4e00\u4e2a\u57fa\u672c\u7684\u5b57\u7b26\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc": 121, "\u4ece\u96f6\u5f00\u59cb\u5206\u7c7b\u5355\u8bcd": 121, "\u800c\u4e0d\u4f7f\u7528": 121, "\u751f\u6210\u59d3\u540d": [121, 127, 165], "\u5728\u4f7f\u7528\u5b57\u7b26\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5bf9\u59d3\u540d\u8fdb\u884c\u5206\u7c7b\u4e4b\u540e": 121, "\u5b66\u4e60\u5982\u4f55\u4ece\u8bed\u8a00\u4e2d\u751f\u6210\u59d3\u540d": 121, "\u4f7f\u7528\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u8fdb\u884c\u7ffb\u8bd1": 121, "\u5728\u8fd9\u91cc\u6211\u4eec\u7f16\u5199\u81ea\u5df1\u7684\u7c7b\u548c\u51fd\u6570\u6765\u9884\u5904\u7406\u6570\u636e\u4ee5\u6267\u884c\u6211\u4eec\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\u5efa\u6a21\u4efb\u52a1": 121, "\u8fdb\u884c\u6587\u672c\u5206\u7c7b": 121, "\u5e93\u6784\u5efa\u6570\u636e\u96c6\u5e76\u5bf9\u6587\u672c\u8fdb\u884c\u5206\u7c7b": 121, "\u4ece\u96f6\u5f00\u59cb\u8bad\u7ec3\u4e00\u4e2a\u4f7f\u7528": 121, "\u7684\u8bed\u8a00\u7ffb\u8bd1\u6a21\u578b": 121, "\u4f7f\u7528torchtext\u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6": 121, "\u51c6\u5907\u81ea\u5b9a\u4e49\u6570\u636e\u96c6": 121, "\u53ef\u9009": 121, "\u6a21\u578b\u5bfc\u51fa\u4e3a": 121, "\u8fd0\u884c\u5b83": 121, "\u6784\u5efa\u4e00\u4e2a": 121, "\u56fe\u50cf\u5206\u7c7b\u5668\u6a21\u578b": 121, "\u7136\u540e\u5c06\u5176\u8f6c\u6362\u4e3a": 121, "\u683c\u5f0f": 121, "\u6700\u540e\u4f7f\u7528": 121, "\u90e8\u7f72\u5b83": 121, "\u4ecb\u7ecd": 121, "\u6f14\u793a\u5982\u4f55\u901a\u8fc7\u4f7f\u7528": 121, "\u6765\u89e3\u51b3\u4e0d\u652f\u6301\u7684\u64cd\u4f5c\u7b26": 121, "\u4ece\u800c\u5b9e\u73b0\u7aef\u5230\u7aef\u7684\u6d41\u7a0b": 121, "\u5f3a\u5316\u5b66\u4e60": 121, "dqn": 121, "cartpol": [121, 136, 160, 163], "\u4efb\u52a1\u4e0a\u8bad\u7ec3\u4e00\u4e2a": 121, "\u4ee3\u7406": 121, "\u4f7f\u7528torchrl\u8fdb\u884c\u5f3a\u5316\u5b66\u4e60": 121, "torchrl": [121, 136, 146], "proxim": [121, 159], "pendulum": [121, 159], "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684": 121, "mario": [121, 146, 153], "ddpg": 121, "\u4e2d\u90e8\u7f72": [121, 139], "densenet": [121, 139, 213], "121": [121, 139, 144, 178, 238], "\u4e2d\u52a0\u8f7d": [121, 139], "thumbnail": [121, 171], "holist": 121, "fuser": [121, 247], "nchw": [121, 129, 147, 177, 220, 223], "raspberri": 121, "nerur": 121, "netork": 121, "exploresever": 121, "tangent": [121, 141, 145], "plugin": [121, 168, 208], "rai": 121, "orthogon": [121, 153], "symmetr": [121, 137, 153, 197, 200], "prune": [121, 153, 196, 221], "snapshot": [121, 131, 174, 208, 222], "grok": 121, "torchserv": [121, 161, 213, 251], "torchx": 121, "inductor": [121, 174, 184, 196, 197, 254, 255], "scaled_dot_product_attent": [121, 164, 193], "paral": 121, "executorch": [121, 197], "sdk": [121, 208, 227, 257], "v3": [121, 228], "xnnpack": [121, 179, 197, 198, 200], "metal": 121, "shader": 121, "fp32": [121, 122, 131, 137, 147, 177, 179, 184, 185, 188, 197, 199, 207, 221, 234], "torchrec": 121, "distributedmodelparallel": 121, "torchmultimod": 121, "\u89c6\u89c9": 121, "\u6587\u672c": 121, "\u5f3a\u5316\u5b66\u4e60\u7684": 121, "\u53ef\u4ee5\u5c06\u5176\u878d\u5165\u73b0\u6709\u5de5\u4f5c\u5185\u5bb9": 121, "sheet": 121, "\u57fa\u7840\u5185\u5bb9\u901f\u89c8": 121, "\u4e0a\u7684\u6559\u7a0b": 121, "\u83b7\u53d6": 121, "\u4e0a\u8fd0\u884c\u6559\u7a0b": 121, "\u5b66\u4e60\u5982\u4f55\u5c06\u6559\u7a0b\u6570\u636e\u590d\u5236\u5230": 121, "\u4ee5\u4fbf\u60a8\u53ef\u4ee5\u5728": 121, "hamid": [122, 123, 176, 177], "shojanazeri": [122, 123, 176, 177], "wright": 122, "rohan": [122, 162], "varma": [122, 162], "yanli": [122, 123], "zhao": [122, 123], "wikihow": 122, "p4dn": 122, "pressur": 122, "fdsp": 122, "discard": [122, 123, 168, 238], "reduce_scatt": [122, 123, 124], "xxl": 122, "3b": [122, 158], "whl": [122, 137, 157, 168, 172, 184, 187, 188], "cu113": 122, "torch_nightli": [122, 137, 157, 187, 188], "wikihowal": 122, "wikihowsep": 122, "cs": 122, "summarization_dataset": 122, "t5_train": 122, "gpt2tokenizerfast": 122, "t5token": 122, "t5forconditionalgener": 122, "modeling_t5": 122, "t5block": 122, "checkpoint_wrapp": 122, "checkpointimpl": 122, "apply_activation_checkpointing_wrapp": 122, "fullyshardeddataparallel": [122, 123, 124, 155, 214, 215], "mixedprecis": 122, "backwardprefetch": [122, 123], "shardingstrategi": [122, 215], "fullstatedictconfig": 122, "statedicttyp": [122, 214], "transformer_auto_wrap_polici": 122, "enable_wrap": [122, 123], "cleanup": [122, 123, 133, 214], "setup_model": 122, "get_date_of_run": 122, "2022": 122, "12_pm": 122, "date_of_run": 122, "s_": [122, 160], "format_metrics_to_gb": 122, "gigabyt": 122, "metric_num": 122, "g_gigabyt": 122, "ndigit": 122, "fsdp_loss": 122, "inner_pbar": 122, "colour": 122, "desc": [122, 137, 185], "source_id": 122, "attention_mask": [122, 137, 185], "source_mask": 122, "target_id": [122, 165], "train_accuraci": 122, "val_load": 122, "fsdp_main": [122, 123], "type_path": 122, "output_length": 122, "print_text": 122, "150": [122, 163], "val_dataset": 122, "sampler1": [122, 123], "num_replica": [122, 123], "sampler2": [122, 123], "train_kwarg": [122, 123, 129], "test_kwarg": [122, 123, 129], "test_batch_s": [122, 123], "cuda_kwarg": [122, 123, 129], "t5_auto_wrap_polici": 122, "transformer_layer_cl": 122, "sharding_strategi": [122, 215], "shard_grad_op": 122, "zero2": 122, "full_shard": 122, "zero3": 122, "init_start_ev": [122, 123], "enable_tim": [122, 123, 172], "init_end_ev": [122, 123], "bf16_readi": 122, "is_bf16_support": 122, "loosevers": 122, "is_nccl_avail": 122, "mp_polici": 122, "bfsixteen": 122, "auto_wrap_polici": [122, 123], "mixed_precis": 122, "current_devic": [122, 230], "curr_val_loss": 122, "file_save_nam": 122, "time_of_run": 122, "dur": 122, "train_acc_track": 122, "val_acc_track": 122, "training_start_tim": 122, "track_memori": 122, "mem_alloc_track": 122, "mem_reserved_track": 122, "run_valid": 122, "zone": 122, "memory_alloc": [122, 129], "memory_reserv": 122, "save_model": [122, 123], "save_polici": 122, "offload_to_cpu": 122, "rank0_onli": 122, "state_dict_typ": 122, "full_state_dict": 122, "cpu_stat": 122, "currepoch": 122, "save_nam": 122, "barrier": [122, 123, 133, 135, 137, 176, 185], "metavar": [122, 123, 161, 163], "002": 122, "store_tru": [122, 123], "store_fals": 122, "nnode": [122, 133], "transfom": 122, "mhsa": 122, "ffn": 122, "fsdp_auto_wrap_polici": [122, 123], "bfloat16": [122, 184, 199, 207, 230, 237, 244, 247, 253], "v100": [122, 172, 175], "percis": 122, "fpsixteen": 122, "param_dtyp": 122, "reduce_dtyp": 122, "buffer_dtyp": 122, "fp32_polici": 122, "grad_bf16": 122, "backward_pr": 122, "backward_prefetch": 122, "backward_post": 122, "offload": [122, 123, 219], "allgath": [122, 123, 124, 155, 247], "ram": [122, 223, 237], "1t": [123, 131], "feasibl": 123, "possess": [123, 184, 237], "fsdp_mnist": 123, "size_based_auto_wrap_polici": 123, "default_auto_wrap_polici": 123, "fully_sharded_data_parallel": [123, 214], "cpuoffload": 123, "handwritten": 123, "ddp_loss": 123, "batch_idx": [123, 129, 148, 166, 220, 221, 253], "tloss": [123, 129, 166, 221], "6f": [123, 129, 166, 221], "view_a": [123, 129, 162, 166, 221], "dataset1": [123, 129], "dataset2": [123, 129], "my_auto_wrap_polici": 123, "min_num_param": 123, "elapsed_tim": [123, 172], "110": [123, 163, 185, 231], "85": [123, 137, 219, 231], "67462890625sec": 123, "_fsdp_wrapped_modul": 123, "flattenparamswrapp": 123, "_fpw_modul": 123, "peak": [123, 129, 152, 158, 184, 254, 258], "g4dn": 123, "xlarg": 123, "seal": 123, "20000": 123, "89130859375sec": 123, "auto_wrap": 123, "66": [123, 219, 231], "cpu_offload": 123, "offload_param": 123, "dpp": 123, "ddp_mnist": 123, "77766015625sec": 123, "wanchao": [124, 215], "liang": [124, 215], "tianyu": 124, "liu": 124, "devicemesh": [124, 251], "megatron": 124, "lm": [124, 212], "sp": 124, "parallelstyl": 124, "parallelize_modul": 124, "dtensor": 124, "foward": 124, "aris": [124, 184, 191], "exceed": [124, 159], "domin": [124, 147, 171, 203, 234], "consequ": [124, 160], "ballpark": [124, 234], "flop": 124, "llm": 124, "trillion": [124, 131], "month": 124, "llama": 124, "70b": 124, "2k": 124, "llama2": 124, "1k": 124, "colwiseparallel": 124, "rowwiseparallel": 124, "sequenceparallel": 124, "rmsnormpython": 124, "preparemoduleinput": 124, "preparemoduleoutput": 124, "device_mesh": [124, 215], "init_device_mesh": [124, 215], "tp_mesh": 124, "transformerblock": 124, "swiglu": 124, "w2": 124, "silu": 124, "w1": 124, "w3": 124, "colwis": 124, "rowwis": [124, 231], "parallelize_plan": 124, "layer_tp_plan": 124, "feed_foward": 124, "feed_forward": 124, "wq": 124, "wk": 124, "wv": 124, "wo": 124, "tp_plan": 124, "draft": [124, 135], "num_head": [124, 164], "layer_id": 124, "attn_lay": 124, "n_head": 124, "n_kv_head": 124, "tok_embed": 124, "input_layout": 124, "output_layout": 124, "attention_norm": 124, "ffn_norm": 124, "desired_input_layout": 124, "yellow": 124, "loss_parallel": 124, "use_local_output": 124, "mesh_2d": [124, 215], "submesh": 124, "dp_mesh": 124, "model_tp": 124, "model_2d": 124, "use_orig_param": 124, "broadli": 125, "torchviz": [125, 130], "_save": 125, "_saved_self": 125, "_saved_oth": 125, "kept": [125, 127, 263], "_saved_result": 125, "cycl": [125, 168, 207, 231, 238], "thumb": [125, 145, 159, 230], "pack_hook": 125, "unpack_hook": 125, "saved_tensors_hook": 125, "harmless": 125, "debat": 125, "__repr__": [125, 231, 244], "repr": [125, 231], "save_on_cpu": 125, "152": 125, "48gb": 125, "5gb": 125, "6x": [125, 177, 223], "savetocpu": 125, "uuid": 125, "tmp_dir": 125, "uuid4": 125, "leak": 125, "tmp_dir_obj": 125, "succeed": [125, 208], "selfdeletingtempfil": 125, "__del__": 125, "temp_fil": 125, "save_on_disk_threshold": 125, "tensor_or_sctf": 125, "savetodisk": 125, "autograd_saved_tensors_hooks_tutori": 125, "david": [126, 263], "eriksson": 126, "balandat": 126, "methodolog": [126, 177, 216, 220], "runnabl": [126, 144], "laptop": [126, 194], "sustain": 126, "botorch": 126, "bayesian": 126, "mnist_train_na": [126, 148], "appdef": 126, "log_path": [126, 148], "hidden_size_1": [126, 148], "hidden_size_2": [126, 148], "trial_idx": 126, "joinpath": 126, "torchx_imag": 126, "kubernet": 126, "local_cwd": 126, "torchxrunn": 126, "log_dir": [126, 169], "mkdtemp": 126, "ax_runn": 126, "tracker_bas": 126, "component_const_param": 126, "cfg": 126, "choiceparamet": 126, "parametertyp": 126, "rangeparamet": 126, "num_param": [126, 148], "pareto": 126, "frontier": 126, "weird": 126, "upper": [126, 153, 164, 238, 263], "parameter_typ": 126, "log_scal": 126, "is_ord": 126, "search_spac": 126, "parameter_constraint": 126, "outcom": [126, 200], "fetch": [126, 128, 134, 161, 162, 163, 176, 177], "proxi": [126, 189, 192, 231], "tensorboardcurvemetr": 126, "mytensorboardmetr": 126, "prespecifi": 126, "classmethod": [126, 183, 244], "get_ids_from_tri": 126, "queryabl": 126, "is_available_while_run": 126, "curve_nam": 126, "lower_is_bett": 126, "val_acc": [126, 148], "model_num_param": 126, "multiobjectiveoptimizationconfig": 126, "94": [126, 197, 219, 238], "multiobject": 126, "objectivethreshold": 126, "optimization_config": 126, "opt_config": 126, "objective_threshold": 126, "80_000": 126, "torchx_mnist": 126, "generationstrategi": 126, "total_tri": 126, "modelbridg": 126, "dispatch_util": 126, "choose_generation_strategi": 126, "gs": [126, 257], "num_trial": 126, "scheduleropt": 126, "max_pending_tri": 126, "generation_strategi": 126, "autom": [126, 143, 147, 171, 182], "run_all_tri": 126, "report_util": 126, "exp_to_df": 126, "_pareto_frontier_scatter_2d_plotli": 126, "surrog": 126, "uncertainti": 126, "cross_valid": 126, "compute_diagnost": 126, "diagnost": 126, "interact_cross_validation_plotli": 126, "init_notebook_plot": 126, "contour": 126, "interact_contour_plotli": 126, "metric_nam": 126, "kiuk": 126, "tristan": [126, 158], "rice": [126, 158], "ax_multiobjective_nas_tutori": [126, 148], "\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1": 127, "surnam": 127, "scottish": 127, "irish": 127, "schmidhub": 127, "czech": 127, "dutch": 127, "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60": [127, 128, 165], "unreason": [127, 128], "roman": [127, 263], "glob": [127, 128, 208], "findfil": [127, 128], "all_lett": [127, 128], "ascii_lett": [127, 128], "n_letter": [127, 128], "\u015blus\u00e0rski": 127, "category_lin": [127, 128], "all_categori": [127, 128], "splitext": [127, 128], "basenam": [127, 128], "n_categori": [127, 128], "italian": 127, "0s": [127, 136, 185], "line_length": 127, "lettertoindex": 127, "lettertotensor": 127, "linetotensor": 127, "jone": 127, "h2h": 127, "inithidden": [127, 128], "n_hidden": 127, "next_hidden": 127, "precomput": 127, "albert": 127, "greatest": [127, 171, 230], "categoryfromoutput": 127, "top_n": 127, "top_i": 127, "category_i": 127, "randomchoic": [127, 128], "randomtrainingexampl": [127, 128], "category_tensor": [127, 128], "line_tensor": 127, "005": [127, 160, 178], "plot_everi": [127, 128, 165], "current_loss": 127, "all_loss": [127, 128], "timesinc": [127, 128, 165], "guess_i": 127, "histor": [127, 128], "minu": [127, 168], "n_confus": 127, "111": [127, 163, 165, 176, 185, 231, 256], "cax": [127, 165], "matshow": [127, 165], "colorbar": [127, 165], "set_xticklabel": [127, 149, 165], "rotat": [127, 165, 166, 169], "set_yticklabel": [127, 165], "tick": [127, 165], "xaxi": [127, 165], "set_major_loc": [127, 165], "multipleloc": [127, 165], "yaxi": [127, 149, 165], "bright": 127, "incorrectli": [127, 198], "chines": [127, 128], "korean": 127, "greek": 127, "input_lin": 127, "n_predict": 127, "topv": [127, 128], "category_index": 127, "doveski": 127, "jackson": 127, "satoshi": 127, "bottl": [127, 144], "hazaki": 127, "japanes": 127, "5533": 127, "yournam": 127, "gender": 127, "subreddit": 127, "char_rnn_classification_tutori": 127, "russian": 128, "ru": 128, "rovakov": 128, "uantov": 128, "shavakov": 128, "ger": 128, "gerren": 128, "ereng": 128, "rosher": 128, "spa": 128, "salla": 128, "parer": 128, "allan": 128, "chi": 128, "chan": 128, "iun": 128, "\u8fdb\u884c\u59d3\u540d\u5206\u7c7b": [128, 165], "some_fil": [128, 133], "n\u00e9\u00e0l": 128, "o2o": 128, "muscl": [128, 171], "fuzz": 128, "chao": 128, "i2o": 128, "input_combin": 128, "output_combin": 128, "randomtrainingpair": 128, "abcd": 128, "categorytensor": 128, "targettensor": 128, "letter_index": 128, "input_line_tensor": 128, "target_line_tensor": 128, "0005": [128, 178], "start_lett": 128, "abc": [128, 171], "fiction": 128, "countri": 128, "citi": 128, "char_rnn_generation_tutori": 128, "adjac": [129, 262], "dilat": [129, 134], "track_running_statist": 129, "denomin": 129, "nenadmarku": [129, 142], "once_differenti": 129, "convolution_backward": 129, "grad_out": [129, 130], "grad_x": [129, 130], "conv_transpose2d": [129, 207], "unsqueeze_al": 129, "batch_norm_backward": 129, "sqrt_var": 129, "d_denom": 129, "denom": 129, "unnecessarili": 129, "d_var": 129, "d_mean_dx": 129, "reassign": [129, 156], "unbiased_var": 129, "unbias": 129, "fast_mod": 129, "fusedconvbn2dfunct": 129, "conv_weight": 129, "ndim": [129, 192], "x_conv_out": 129, "fusedconvbn": 129, "in_channel": [129, 146, 153, 178], "out_channel": [129, 146, 153, 178], "exp_avg_factor": 129, "factory_kwarg": 129, "weight_shap": 129, "kaiming_uniform_": [129, 202], "convbn1": 129, "convbn2": 129, "bn1": [129, 142, 149, 157], "track_running_stat": [129, 179, 218], "bn2": 129, "ntest": [129, 166], "geforc": 129, "rtx": 129, "3070": 129, "56gb": 129, "unfus": [129, 142], "68gb": 129, "shallow": [129, 136], "peak_memory_alloc": 129, "123456": 129, "max_memory_alloc": [129, 184, 230, 258], "reset_peak_memory_stat": [129, 184], "gb": [129, 184], "custom_function_conv_bn_tutori": 129, "finit": [130, 150], "differenc": 130, "magnifi": 130, "gradgradcheck": [130, 247], "make_dot": 130, "dout": [130, 145], "ouptut": 130, "sinh": 130, "cosh": 130, "expx": 130, "expnegx": 130, "_grad_out_exp": 130, "_grad_out_negexp": 130, "sinhbad": 130, "cube_backward": 130, "cubebackward": 130, "cube_forward": 130, "cube_backward_backward": 130, "sav_grad_out": 130, "cube_backward_backward_grad_out": 130, "cube": 130, "dgrad_out": 130, "artifact": [131, 174], "reachabl": [131, 132, 135], "2xlarg": [131, 132], "hydra": 131, "slurm": [131, 132, 133], "char_dataset": 131, "gpt2_train_cfg": 131, "bucket": [131, 247, 257], "aggress": 131, "rendezv": [132, 155], "nccl_debug": 132, "nccl_socket_ifnam": 132, "eth0": 132, "zhu": [133, 144], "trigger": [133, 144, 161, 163, 247], "clarifi": 133, "filestor": 133, "tcpstore": 133, "libtmp": 133, "toymodel": [133, 149, 214, 215], "net1": [133, 149, 214, 215], "net2": [133, 149, 214, 215], "demo_bas": 133, "ddp_model": [133, 258], "run_demo": 133, "demo_fn": 133, "caution": 133, "timeout": [133, 155], "straggler": [133, 168], "unpredict": 133, "spike": [133, 158], "AND": [133, 252], "torchelast": 133, "demo_checkpoint": 133, "checkpoint_path": [133, 184, 198], "gettempdir": 133, "toympmodel": 133, "dev0": 133, "dev1": 133, "demo_model_parallel": 133, "mp_model": 133, "ddp_mp_model": 133, "n_gpu": [133, 137, 185], "elastic_ddp": 133, "rdzv_id": [133, 215], "rdzv_backend": 133, "rdzv_endpoint": [133, 215], "29400": [133, 215], "aka": [133, 145, 147, 157, 173, 174, 220, 223], "scontrol": 133, "hostnam": 133, "slurm_nodelist": 133, "srun": 133, "torchrun_script": 133, "rpc_sync": [134, 161, 162, 163, 212], "embeddingt": [134, 163, 175], "amort": [134, 159, 161, 247], "resnetbas": 134, "conv1x1": 134, "inplan": 134, "width_per_group": 134, "_lock": 134, "_block": 134, "_norm_lay": 134, "base_width": 134, "_make_lay": 134, "previous_dil": 134, "parameter_rref": [134, 163, 212], "calle": [134, 161, 162, 212], "resnetshard1": 134, "nonlinear": 134, "x_rref": 134, "to_her": 134, "resnetshard2": 134, "distresnet50": 134, "micro": [134, 176, 177], "y_rref": 134, "num_split": 134, "p1_rref": 134, "p2_rref": 134, "out_futur": 134, "z_fut": 134, "wait_al": [134, 161], "remote_param": [134, 162, 163], "worker1": [134, 212], "worker2": 134, "image_w": [134, 149, 161], "image_h": [134, 149, 161], "run_mast": 134, "one_hot_indic": [134, 149, 161], "passiv": [134, 161, 163], "num_worker_thread": [134, 212], "tik": [134, 161, 212], "tok": [134, 161, 212], "s\u00e9b": 135, "arnold": 135, "practition": [135, 192, 257], "sysadmin": 135, "coordin": [135, 166, 178, 184, 192], "pdsh": 135, "clustershel": 135, "init_process": 135, "127": [135, 179, 200], "set_start_method": 135, "ip": 135, "recv": [135, 163], "irecv": 135, "dst": 135, "req": 135, "nor": [135, 142, 179, 189], "undefin": [135, 149, 189, 190, 191], "behaviour": 135, "fanci": 135, "baidu": 135, "deepspeech": 135, "communc": 135, "new_group": [135, 215], "commut": 135, "scatter_list": 135, "gather_list": 135, "tnt": 135, "splitdataset": 135, "data_idx": 135, "datapartition": 135, "1234": 135, "data_len": 135, "part_len": 135, "partition_dataset": 135, "get_world_s": 135, "partition_s": 135, "train_set": [135, 168], "average_gradi": 135, "voil\u00e0": 135, "send_buff": 135, "recv_buff": 135, "accum": 135, "send_req": 135, "bandwidth": [135, 168, 196, 219], "subsect": [135, 262], "eleg": 135, "handi": [135, 146, 169], "smi": [135, 230], "mvapich2": 135, "ipc": [135, 168], "recompil": [135, 142, 172, 198, 211], "requisit": 135, "forg": [135, 221], "openmpi": 135, "mpirun": 135, "myscript": 135, "handshak": 135, "superflu": 135, "readili": 135, "fcntl": 135, "nf": 135, "sharedfil": 135, "23456": 135, "socket": [135, 144, 176, 177, 247], "everyon": 135, "unclear": [135, 149, 173, 174], "natalia": 135, "gimelshein": 135, "carrier": [136, 159], "brought": [136, 159], "mod": [136, 142, 143, 172, 173, 174, 194, 203, 232, 244], "set_exploration_typ": [136, 159], "totensorimag": 136, "egreedymodul": 136, "lstmmodul": 136, "qvaluemodul": 136, "dqnloss": 136, "84x84": 136, "accessori": [136, 158], "stamp": 136, "is_init": 136, "tensordictprim": 136, "primer": [136, 192], "disappear": 136, "keep_dim": 136, "backbon": [136, 171], "flank": 136, "assist": [136, 215], "num_cel": [136, 159], "squeeze_output": 136, "aggregator_class": 136, "aggregator_kwarg": 136, "n_cell": 136, "tensordictmodulebas": 136, "batch_first": [136, 165], "make_tensordict_prim": 136, "action_valu": [136, 146], "qval": 136, "action_spac": [136, 146, 160], "qvalueactor": 136, "stoch_polici": 136, "exploration_modul": 136, "eps_init": 136, "set_recurrent_mod": 136, "redund": 136, "delay_valu": 136, "3e": [136, 154, 159], "longest": [136, 143], "npai": 136, "chosen_action_valu": 136, "recurrent_st": 136, "to_tensordict": 136, "non_block": 136, "step_count": [136, 159], "action_spread": 136, "dqn_with_rnn_tutori": 136, "jianyu": 137, "huang": [137, 155, 214], "jessica": [137, 157], "paraphras": 137, "mrpc": [137, 185], "dolan": 137, "brockett": 137, "2005": 137, "imbalanc": 137, "sklearn": [137, 171], "tochvis": 137, "cu101": [137, 157], "bertconfig": [137, 185], "bertforsequenceclassif": [137, 185], "glue_compute_metr": [137, 185], "glue_output_mod": [137, 185], "output_mod": [137, 185], "glue_processor": [137, 185], "processor": [137, 176, 185, 199, 207, 220, 247, 251], "glue_convert_examples_to_featur": [137, 185], "convert_examples_to_featur": [137, 185], "getlogg": [137, 148, 171, 185], "basicconfig": [137, 185], "asctim": [137, 185], "levelnam": [137, 185], "datefmt": [137, 185], "modeling_util": [137, 185], "setlevel": [137, 148, 185], "__config__": [137, 185], "parallel_info": [137, 185], "sep": [137, 193], "glue_data": [137, 185], "download_glue_data": [137, 185], "glue_dir": [137, 185], "task_nam": [137, 185], "out_dir": [137, 185], "run_glu": 137, "model_typ": [137, 184, 185], "model_name_or_path": [137, 185], "do_train": 137, "do_ev": 137, "do_lower_cas": [137, 185], "max_seq_length": [137, 185], "per_gpu_eval_batch_s": [137, 185], "per_gpu_train_batch_s": 137, "save_step": 137, "output_dir": [137, 185], "get_label": [137, 185], "overwrite_cach": [137, 185], "copyright": [137, 263], "inc": 137, "apach": [137, 176, 177], "complianc": 137, "law": [137, 193], "AS": 137, "IS": 137, "warranti": 137, "OR": [137, 245], "OF": 137, "govern": [137, 161], "permiss": 137, "mnli": [137, 185], "mi": [137, 185, 265], "eval_task_nam": [137, 185], "eval_outputs_dir": [137, 185], "eval_task": [137, 185], "eval_output_dir": [137, 185], "load_and_cache_exampl": [137, 185], "eval_sampl": [137, 185], "eval_dataload": [137, 185, 221], "eval_loss": 137, "nb_eval_step": [137, 185], "out_label_id": [137, 185], "distilbert": [137, 185], "token_type_id": [137, 185], "xlnet": [137, 185], "roberta": [137, 185], "segment_id": [137, 185], "tmp_eval_loss": 137, "regress": [137, 166, 185, 231, 245], "output_eval_fil": [137, 185], "eval_result": [137, 185], "cached_features_fil": [137, 185], "cached_": [137, 185], "get_dev_exampl": [137, 185], "get_train_exampl": [137, 185], "pad_on_left": 137, "convert_tokens_to_id": 137, "pad_token_segment_id": 137, "all_input_id": [137, 185], "all_attention_mask": [137, 185], "all_token_type_id": [137, 185], "all_label": [137, 185], "438": [137, 185], "181": [137, 231], "30522": 137, "eval_start_tim": [137, 185], "eval_end_tim": [137, 185], "eval_duration_tim": [137, 185], "408": [137, 177], "prec": [137, 147], "9019": 137, "902": [137, 185], "8788": 137, "8956": 137, "asymmetr": [137, 200], "openmp": [137, 176, 207, 226], "tbb": 137, "ids_tensor": [137, 185], "dummy_input": [137, 185, 224, 225, 252, 256], "traced_model": [137, 142, 185, 247], "bert_traced_eager_qu": 137, "loaded_quantized_model": [137, 182, 197], "implic": [137, 185], "devlin": 137, "lee": 137, "toutanova": 137, "zafrir": 137, "boudoukh": 137, "izsak": 137, "wasserblat": 137, "2019": 137, "q8bert": 137, "8bit": 137, "tradition": [138, 202], "simplemlp": 138, "pretend": [138, 154], "minibatch": [138, 154], "num_model": [138, 154], "6400": 138, "predictions_diff_minibatch_loop": 138, "predictions2": 138, "stack_module_st": 138, "functional_cal": [138, 141, 150, 154], "base_model": 138, "fmodel": 138, "predictions1_vmap": 138, "in_dim": [138, 145, 154, 205, 234], "predictions2_vmap": 138, "without_vmap": [138, 145, 154], "with_vmap": [138, 145, 154], "avinash": 139, "sajjanshetti": 139, "refresh": [139, 169], "endpoint": [139, 213, 251], "class_id": [139, 213], "n02124075": 139, "egyptian_cat": [139, 213], "jsonifi": [139, 213], "image_net_xxx": 139, "transform_imag": [139, 213], "image_byt": 139, "my_transform": [139, 213], "bytesio": [139, 229], "densenet121": [139, 147, 172, 213], "get_predict": [139, 213], "y_hat": [139, 213], "predicted_idx": 139, "img_byt": 139, "TO": [139, 252], "flask_env": 139, "flask_app": [139, 213], "resp": 139, "recogn": [139, 155, 200], "ui": [139, 158, 245, 251, 261], "streamer": 139, "queue": [139, 247], "flask_rest_api_tutori": 139, "forced_alignment_tutori": 140, "incomplet": 141, "eagerli": [141, 152, 174], "primal": [141, 145, 262], "dual": [141, 262], "forward_ad": 141, "fwad": 141, "dual_level": 141, "make_du": 141, "dual_input": 141, "unpack_du": 141, "dual_input_alt": 141, "plain_tensor": 141, "dual_output": 141, "namedtupl": [141, 160], "delattr": 141, "setattr": [141, 142, 147], "fresh": [141, 230], "dual_param": 141, "jvp2": 141, "gi": 141, "check_forward_ad": 141, "check_backward_ad": 141, "check_undefined_grad": 141, "check_batched_grad": 141, "functorch": [141, 173, 174], "downsid": 141, "ft": 141, "primal0": 141, "tangent0": 141, "primal1": 141, "tangent1": 141, "primal_out": 141, "tangent_out": 141, "new_fn": 141, "reformul": [141, 150], "make_functional_with_buff": 141, "analog": [141, 191, 192], "consolid": [141, 161, 198], "func_params_onli": 141, "jvp_out": 141, "dual_numb": 141, "forward_ad_usag": 141, "horac": 142, "wrappedbatchnorm": 142, "symbolic_trac": [142, 143, 172], "bake": 142, "fuse_conv_bn_ev": 142, "batch_norm": [142, 238], "fused_conv": 142, "fuse_conv_bn_weight": 142, "running_var": [142, 198], "conv_w": 142, "conv_b": 142, "bn_rm": 142, "bn_rv": 142, "bn_ep": 142, "bn_w": 142, "bn_b": 142, "bn_var_rsqrt": 142, "rsqrt": 142, "_parent_nam": 142, "qualnam": 142, "atom": 142, "baz": 142, "rsplit": 142, "replace_node_modul": 142, "new_modul": 142, "parent_nam": 142, "graphmodul": [142, 143, 172, 173, 174, 179], "fx_model": 142, "call_modul": 142, "replace_all_uses_with": 142, "erase_nod": 142, "lint": 142, "simplif": [142, 234], "fused_model": 142, "rn18": [142, 143], "fused_rn18": 142, "jit_rn18": 142, "conclus": 142, "tracker": [142, 143], "fx_conv_bn_fus": 142, "nicer": 143, "instrument": [143, 251], "tabul": [143, 172], "traced_rn18": 143, "ca": 143, "profilinginterpret": 143, "gm": [143, 172, 200], "total_runtime_sec": 143, "runtimes_sec": 143, "intercept": [143, 177], "t_start": 143, "return_v": 143, "t_end": 143, "run_nod": 143, "setdefault": 143, "should_sort": 143, "node_summari": 143, "mean_total_runtim": 143, "mean_runtim": 143, "pct_total": 143, "pct": 143, "clock": [143, 231], "interp": 143, "51393": 143, "fx_profiling_tutori": 143, "xuan": 144, "liao": 144, "haozh": 144, "jiong": [144, 176, 177, 186, 199, 200], "gong": [144, 176, 177, 186, 199, 200], "weihan": 144, "intricaci": 144, "troubleshoot": 144, "pinpoint": [144, 177], "foo1": 144, "x1": [144, 150, 178], "x2": [144, 150], "8390": 144, "compiled_foo1": 144, "neg1": 144, "torch_compile_debug": 144, "_inductor": [144, 174, 184, 186, 199], "model___20": 144, "torchinductor_root": 144, "rx": 144, "crxfi2ybd7yp5sbj2pnhw33wfhtdw7wumvrobyp5sjvdui5ktjc2": 144, "fx_graph_runn": 144, "fx_graph_transform": 144, "ir_post_fus": 144, "ir_pre_fus": 144, "output_cod": [144, 255], "forward1": 144, "arg0_1": [144, 173, 186], "arg1_1": [144, 173], "codecach": 144, "asynccompil": 144, "async_compil": 144, "cpp_fused_cat_maximum_neg_0": 144, "gv": 144, "cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x": 144, "in_ptr0": [144, 254], "in_ptr1": [144, 254], "out_ptr0": 144, "pragma": 144, "ivdep": 144, "i0": 144, "static_cast": 144, "0l": 144, "8390l": 144, "1l": [144, 186], "i1": 144, "8l": 144, "tmp0": 144, "tmp1": 144, "tmp2": 144, "tmp3": 144, "max_propagate_nan": 144, "dynamo": [144, 173, 174, 186, 255], "aot_eag": 144, "aot": [144, 254], "neg2": 144, "exc": [144, 173], "backendcompilerfail": 144, "cppcompileerror": 144, "xg": 144, "cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx": 144, "deduct": 144, "substitut": [144, 145, 152, 200, 262], "deduc": 144, "buf0": [144, 186], "schedulernod": 144, "computedbuff": 144, "memorydep": 144, "c0": 144, "67120": 144, "unmet_depend": 144, "met_depend": 144, "nodeus": 144, "can_inplac": 144, "buf0_loop_bodi": 144, "var_rang": 144, "z0": 144, "index0": 144, "index1": 144, "get_index": 144, "get_index_1": 144, "load_1": 144, "get_index_2": 144, "silent": [144, 172, 199, 244], "minifi": 144, "dead": 144, "unus": [144, 155], "minif": 144, "foo2": 144, "expected_result": 144, "compiled_foo2": 144, "actual_result": 144, "neg3": 144, "tol": 144, "test_script": 144, "assertionerror": 144, "torchdynamo_repro_aft": 144, "torchdynamo_repro_level": 144, "forward2": 144, "conduct": [144, 155, 184], "mobilebertforquestionansw": 144, "xeon": [144, 147, 176, 199, 207, 220], "platinum": [144, 176], "8358": 144, "60ghz": 144, "kmp_blocktim": [144, 247], "kmp_set": 144, "kmp_affin": [144, 247], "compact": [144, 209, 247], "ld_preload": [144, 247], "conda_prefix": [144, 231], "dirnam": [144, 155, 226], "libiomp5": [144, 247], "libjemalloc": 144, "malloc_conf": 144, "oversize_threshold": 144, "background_thread": 144, "metadata_thp": 144, "dirty_decay_m": 144, "muzzy_decay_m": 144, "numactl": [144, 247], "bench": [144, 176, 177], "csarron": 144, "mobilebert": 144, "seq_length": [144, 220], "input_dict": 144, "compiled_model": [144, 164], "num_it": [144, 159], "warmup": [144, 168, 194, 203, 210, 211, 219, 223, 238], "eager_t": 144, "inductor_t": 144, "1023553796113": 144, "339": 144, "95180135127157": 144, "359459053287382": 144, "355x": 144, "enable_kernel_profil": 144, "profileract": [144, 164, 219, 238], "result_dir": 144, "prof_trac": 144, "my_schedul": [144, 238], "skip_first": [144, 238], "trace_handl": [144, 238], "step_num": [144, 238], "on_trace_readi": [144, 168, 238], "370": 144, "814m": 144, "362": 144, "161": [144, 218], "276m": 144, "363": 144, "416m": 144, "488": [144, 231], "154m": 144, "194": 144, "clamp_min": [144, 219], "444m": 144, "258m": [144, 219], "810": 144, "920m": 144, "447m": 144, "_softmax": 144, "087m": 144, "376": [144, 173, 187], "888m": 144, "77": 144, "430m": 144, "502m": 144, "161m": 144, "850": 144, "377m": 144, "386": [144, 163, 193], "index_select": 144, "000u": [144, 238], "986": 144, "420m": 144, "703": 144, "656": [144, 258], "963": 144, "864m": 144, "_mkl_linear": 144, "231": [144, 231, 238], "573m": [144, 238], "992m": 144, "336": [144, 238], "642m": 144, "graph_0_cpp_fused_constant_pad_nd_embedding_0": 144, "915": 144, "911": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_151": 144, "901": [144, 185], "graph_0_cpp_fused__mkl_linear_add_mul_relu_226": 144, "899": [144, 256], "graph_0_cpp_fused__mkl_linear_add_mul_relu_361": 144, "898": [144, 256], "graph_0_cpp_fused__mkl_linear_add_mul_relu_121": 144, "895": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_31": 144, "893": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_76": 144, "892": [144, 158, 231, 256], "graph_0_cpp_fused__mkl_linear_add_mul_relu_256": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_346": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_241": 144, "891": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_316": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_91": 144, "890": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_106": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_211": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_61": 144, "889": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_286": 144, "graph_0_cpp_fused_": 144, "63x": 144, "cblas_sgemm_comput": 144, "339m": 144, "94x": 144, "cpp_fused__mkl_linear_add_mul_relu_151": 144, "clrlgu27q4ggd472umdzwsu6qcpqxcuusjxqvx2hwitjbujiiz7z": 144, "in_out_ptr0": 144, "in_ptr2": 144, "in_ptr3": 144, "arrayref": 144, "omp": [144, 176], "num_thread": [144, 231, 246], "16384l": 144, "512l": 144, "loadu": 144, "tmp5": 144, "tmp7": 144, "tmp4": 144, "tmp6": 144, "tmp8": 144, "neck": 144, "arg_0": 144, "arg_1": 144, "arg_2": 144, "arg_3": 144, "arg_4": 144, "add_0": 144, "add_1": 144, "mul_1": 144, "add_2": 144, "16384": [144, 231], "inductor_func": 144, "780875144992024": 144, "9588955780491233": 144, "0286805751604735": 144, "smallest": [144, 156], "solid": 144, "analyt": [144, 260], "hotspot": [144, 176, 177], "phenomenon": 144, "inductor_debug_cpu": 144, "jax": [145, 150, 205], "compute_jac": 145, "xp": 145, "jacobian_row": [145, 205], "unit_vector": 145, "rid": [145, 216], "vjp_fn": [145, 150], "ft_jacobian": 145, "argnum": 145, "millisecond": [145, 155, 187, 223, 247], "get_perf": [145, 154], "first_descriptor": [145, 154], "second_descriptor": [145, 154], "final_gain": [145, 154], "no_vmap_tim": [145, 154], "with_vmap_tim": [145, 154], "ft_jac_weight": 145, "ft_jac_bia": 145, "rigor": [145, 234], "taller": 145, "din": 145, "using_fwd": 145, "using_bwd": 145, "jacfwd_tim": 145, "jacrev_tim": 145, "hessiani": 145, "overwhelm": 145, "hess_api": 145, "hess_fwdfwd": 145, "hess_revrev": 145, "compute_batch_jacobian": 145, "batch_jacobian0": 145, "predict_with_output_sum": 145, "batch_jacobian1": 145, "movedim": 145, "compute_batch_hessian": 145, "batch_hess": 145, "hvp_revrev": 145, "result_hvp_revrev": 145, "jacobians_hessian": 145, "yuansong": 146, "feng": [146, 155], "steven": 146, "guo": 146, "cheatsheet": 146, "companion": 146, "bro": 146, "dequ": [146, 160], "framestack": 146, "ne": [146, 165, 173, 238], "nes_pi": 146, "joypadspac": 146, "gym_super_mario_bro": 146, "tube": 146, "mushroom": 146, "supermariobro": 146, "new_step_api": 146, "apply_api_compat": 146, "next_stat": [146, 160], "trunc": 146, "240": [146, 163, 238], "pipe": 146, "sky": 146, "grayscaleobserv": 146, "resizeobserv": 146, "skipfram": 146, "movement": 146, "_skip": 146, "total_reward": 146, "trunk": 146, "observationwrapp": 146, "obs_shap": 146, "observation_spac": 146, "permute_orient": 146, "antialia": 146, "num_stack": 146, "exploration_r": 146, "marionet": 146, "state_dim": 146, "dnn": [146, 238], "exploration_rate_decai": 146, "99999975": 146, "exploration_rate_min": 146, "curr_step": 146, "5e5": 146, "lazyfram": 146, "action_idx": 146, "__array__": 146, "first_if_tupl": 146, "ddqn": 146, "output_dim": 146, "__build_cnn": 146, "q_target": 146, "3136": 146, "_e": 146, "argmax_": 146, "td_target": 146, "td_estim": 146, "current_q": 146, "q_onlin": 146, "next_state_q": 146, "best_act": 146, "next_q": 146, "td_t": 146, "td_e": 146, "leftarrow": 146, "nabla": [146, 262], "00025": 146, "update_q_onlin": 146, "sync_q_target": 146, "save_path": 146, "mario_net_": 146, "chkpt": 146, "burnin": 146, "1e4": 146, "learn_everi": 146, "sync_everi": 146, "td_est": 146, "td_tgt": 146, "metriclogg": 146, "save_log": 146, "episod": [146, 160, 161, 163], "meanreward": 146, "meanlength": 146, "meanloss": 146, "meanqvalu": 146, "timedelta": 146, "ep_rewards_plot": 146, "reward_plot": 146, "ep_lengths_plot": 146, "length_plot": 146, "ep_avg_losses_plot": 146, "loss_plot": 146, "ep_avg_qs_plot": 146, "q_plot": 146, "ep_reward": [146, 161, 163], "ep_length": 146, "ep_avg_loss": 146, "ep_avg_q": 146, "moving_avg_ep_reward": 146, "moving_avg_ep_length": 146, "moving_avg_ep_avg_loss": 146, "moving_avg_ep_avg_q": 146, "init_episod": 146, "record_tim": 146, "log_step": 146, "curr_ep_reward": 146, "curr_ep_length": 146, "curr_ep_loss": 146, "curr_ep_q": 146, "curr_ep_loss_length": 146, "log_episod": 146, "mean_ep_reward": 146, "mean_ep_length": 146, "mean_ep_loss": 146, "mean_ep_q": 146, "last_record_tim": 146, "time_since_last_record": 146, "8d": 146, "clf": [146, 160], "moving_avg_": 146, "_plot": 146, "flag_get": 146, "mario_rl_tutori": 146, "vitali": 147, "fedyunin": 147, "densest": 147, "4x4": 147, "10x3x16x16": 147, "memory_format": [147, 194, 199, 206, 207, 216, 218, 220, 223], "channels_last": [147, 177, 194, 199, 207, 218, 220, 223], "contiguous_format": 147, "minor": [147, 157, 163, 169, 220, 221], "ambigu": [147, 190, 191], "n1hw": 147, "contrari": [147, 156], "restrid": 147, "special_x": 147, "unintend": 147, "7603": 147, "apex": 147, "main_amp": 147, "resnet50": [147, 149, 158, 161, 176, 177, 220, 247, 253], "o2": 147, "opt_level": 147, "keep_batchnorm_fp32": 147, "nonetyp": 147, "loss_scal": 147, "cast_model_typ": 147, "patch_torch_funct": 147, "master_weight": 147, "125": [147, 238], "866": 147, "230": [147, 163, 171], "949": 147, "6735125184": 147, "6735": 147, "259": 147, "562": 147, "773": 147, "481": 147, "355": 147, "693": 147, "6968704462": 147, "6852": 147, "55": [147, 176, 197, 204, 231], "58": [147, 201, 221], "258": [147, 262], "461": 147, "775": 147, "089": 147, "433": 147, "965": 147, "7877287269": 147, "7194": 147, "833": 147, "771": 147, "710": 147, "487": 147, "8285319805": 147, "7467": 147, "260": [147, 163], "380": 147, "770": 147, "090": 147, "525": 147, "908": 147, "7370464802": 147, "7447": 147, "360": 147, "623": 147, "555": 147, "728": 147, "7592862844": 147, "7472": 147, "917": 147, "345": [147, 178], "774": 147, "746": [147, 231], "115": [147, 185, 219], "9698858261": 147, "9218": 147, "324": 147, "597": 147, "659": 147, "2505953312": 147, "0879": 147, "767": [147, 223], "785": 147, "7579724789": 147, "7580": 147, "198": 147, "482": 147, "135": [147, 158, 231], "414": 147, "716": [147, 219, 231], "7007197738": 147, "7293": 147, "250": [147, 163, 238], "387": 147, "1010": 147, "516": 147, "7113101482": 147, "7233": 147, "667": 147, "197": 147, "340": 147, "1013": 147, "023": 147, "588": 147, "333": 147, "8943189979": 147, "7661": 147, "541": 147, "7113249302": 147, "9551": 147, "1011": 147, "163": 147, "683": 147, "574": 147, "8537774086": 147, "7716": 147, "279": 147, "453": 147, "7595844269": 147, "3413": 147, "429": 147, "827": 147, "743": [147, 173], "883": 147, "8196096420": 147, "4011": 147, "volta": [147, 230, 247], "mnasnet0_5": 147, "mnasnet0_75": 147, "mnasnet1_0": 147, "mnasnet1_3": 147, "mobilenet_v2": [147, 158, 178, 187, 188, 194, 206, 223, 224, 225, 228], "resnet152": 147, "resnet34": 147, "resnext50_32x4d": 147, "shufflenet_v2_x0_5": [147, 158], "shufflenet_v2_x1_0": [147, 158], "shufflenet_v2_x1_5": [147, 158], "shufflenet_v2_x2_0": [147, 158], "squeezenet1_0": 147, "squeezenet1_1": 147, "vgg11": 147, "vgg11_bn": 147, "vgg13": 147, "vgg13_bn": 147, "vgg16_bn": 147, "vgg19_bn": 147, "wide_resnet101_2": 147, "wide_resnet50_2": 147, "ic": 147, "lake": [147, 220], "densenet161": 147, "densenet169": 147, "googlenet": [147, 158, 228], "inception_v3": [147, 158], "resnext101_32x8d": [147, 158], "spite": 147, "contains_cl": 147, "print_input": 147, "check_wrapp": 147, "check_cl": 147, "was_cl": 147, "old_attr": 147, "exclude_funct": 147, "has_nam": 147, "nc11": 147, "memory_format_tutori": 147, "pytorch_lightn": 148, "lightningmodul": 148, "pl_logger": 148, "torchmetr": 148, "multiclass_accuraci": 148, "path_dataset": 148, "mnistmodel": 148, "tunabl": 148, "hidden_lay": [148, 178], "validation_step": 148, "prog_bar": 148, "configure_optim": 148, "prepare_data": 148, "mnist_train": 148, "mnist_val": 148, "run_training_job": 148, "mnist_model": 148, "enable_progress_bar": 148, "default_root_dir": 148, "tensorboardlogg": 148, "train_tim": 148, "log_metr": 148, "capture_output": 148, "val_accuraci": 148, "stitch": [149, 161, 162], "modelparallelresnet50": 149, "seq1": 149, "maxpool": [149, 157, 200], "seq2": 149, "layer4": [149, 157], "avgpool": [149, 157], "deterior": 149, "quantit": 149, "switch_backend": [149, 165], "num_repeat": 149, "mp_run_tim": 149, "mp_mean": 149, "mp_std": 149, "rn_run_tim": 149, "rn_mean": 149, "rn_std": 149, "fig_nam": 149, "yerr": 149, "center": [149, 160, 168, 229, 247], "ecolor": 149, "capsiz": 149, "set_ylabel": 149, "set_xtick": [149, 157], "mp_vs_rn": 149, "idl": [149, 161, 168, 238], "pipelineparallelresnet50": 149, "split_siz": 149, "s_next": 149, "s_prev": 149, "pp_run_tim": 149, "pp_mean": 149, "pp_std": 149, "mp_vs_rn_vs_pp": 149, "destin": [149, 163, 212], "errorbar": 149, "ro": 149, "set_xlabel": 149, "split_size_tradeoff": 149, "prev": 149, "model_parallel_tutori": 149, "jacrev": 150, "21632": 150, "x_test": 150, "fnet_singl": 150, "j_": 150, "empirical_ntk_jacobian_contract": 150, "jac1": 150, "jac2": 150, "einsum": 150, "naf": 150, "mbf": 150, "nmab": 150, "j1": 150, "j2": 150, "diagon": 150, "einsum_expr": 150, "maf": 150, "nma": 150, "asymptot": 150, "i_o": 150, "i_": 150, "e_o": 150, "textrm": 150, "_o": 150, "empirical_ntk_ntk_vp": 150, "get_ntk": 150, "func_x1": 150, "func_x2": 150, "get_ntk_slic": 150, "nmkk": 150, "nmk": 150, "tensorfloat": 150, "sacrific": [150, 194], "allow_tf32": 150, "result_from_jacobian_contract": 150, "result_from_ntk_vp": 150, "luck": [150, 152], "neural_tangent_kernel": 150, "deprec": [151, 168, 180, 217], "homepag": [151, 180], "ooz": 152, "_might_": 152, "vit_l_16": 152, "2p": 152, "_record_memory_histori": 152, "_snapshot": 152, "memory_viz": 152, "devot": 152, "bat": 152, "2gb": [152, 158], "6gb": 152, "foreach": 152, "reveal": [152, 164, 172, 173, 229, 231], "silver": 152, "bullet": 152, "sizabl": 152, "tantamount": 152, "lora": 152, "unlock": [152, 182, 185, 216], "optimizer_dict": 152, "optimizer_hook": 152, "neat": 152, "lrschedul": [152, 251], "convinc": 152, "slate": 152, "bwd": 152, "likewis": 152, "woohoo": 152, "apart": 152, "shrunk": 152, "0gb": 152, "optimizer_step_in_backward_tutori": 152, "lezcano": 153, "surprisingli": 153, "ill": 153, "singular": [153, 164], "frobeniu": 153, "spectral": 153, "lipschitz": 153, "x\u1d40": 153, "triangular": 153, "linearsymmetr": 153, "n_featur": 153, "reimplement": [153, 156], "register_parametr": 153, "skew": [153, 168, 238], "unparametr": 153, "nparametr": 153, "moduledict": [153, 201], "parametrizationlist": [153, 201], "weight_orig": [153, 156], "noisyparametr": 153, "caylei": 153, "cayleymap": 153, "linalg": 153, "spd": 153, "matrixexponenti": 153, "matrix_exp": 153, "layer_orthogon": 153, "layer_spd": 153, "eigvalsh": 153, "right_invers": 153, "cayley_transform": 153, "matrix_map": 153, "neg_": 153, "pruningparametr": 153, "p_drop": 153, "full_lik": [153, 189], "bernoulli": 153, "niniti": 153, "remove_parametr": 153, "unconstrain": [153, 173, 174], "parametri": 153, "leave_parametr": 153, "privaci": [154, 156], "simplecnn": 154, "compute_grad": 154, "compute_sample_grad": 154, "sample_grad": 154, "per_sample_grad": 154, "named_buff": [154, 156], "compute_loss": 154, "ft_compute_grad": 154, "ft_compute_sample_grad": 154, "ft_per_sample_grad": 154, "25x": [154, 171, 201], "second_r": 154, "first_r": 154, "opacu": 154, "tian": 155, "processgroupnccl": 155, "processgroupgloo": 155, "processgroupmpi": 155, "ucc": 155, "oneccl": [155, 247], "trainum": 155, "emerg": 155, "backenddummi": 155, "chrono": 155, "allgatheropt": 155, "allreduceopt": 155, "workdummi": 155, "optyp": 155, "recvanysourc": 155, "future_": 155, "iscomplet": 155, "issuccess": 155, "kunsettimeout": 155, "virtual": [155, 237], "getfutur": 155, "outputtensorvec": 155, "listtyp": 155, "tensortyp": 155, "markcomplet": 155, "createbackenddummi": 155, "backenddummyconstructor": 155, "__attribute__": 155, "register_backend": 155, "cpp_function": [155, 231], "libraries_dir": 155, "dummy_collect": 155, "michela": 156, "paganini": 156, "biolog": 156, "batteri": 156, "lucki": 156, "subnetwork": 156, "lotteri": 156, "ticket": 156, "destruct": [156, 177], "0a0": [156, 188, 206], "8e8a5e0": 156, "lecun": 156, "1998": 156, "nelement": 156, "unprun": 156, "basepruningmethod": 156, "adequ": [156, 159], "random_unstructur": 156, "_orig": 156, "intact": [156, 161, 244], "weight_mask": 156, "_mask": 156, "forward_pre_hook": 156, "_forward_pre_hook": 156, "l1_unstructur": 156, "bias_orig": 156, "bias_mask": 156, "pruningcontain": 156, "compute_mask": 156, "ln_structur": 156, "_tensor_nam": 156, "perman": 156, "undo": 156, "new_model": [156, 157], "global_unstructur": 156, "parameters_to_prun": 156, "pruning_method": 156, "l1unstructur": 156, "induc": 156, "apply_mask": 156, "shouldn": 156, "unstructur": 156, "preprun": 156, "pruning_typ": 156, "foobarpruningmethod": 156, "default_mask": 156, "foobar_unstructur": 156, "pruning_tutori": 156, "zafar": 157, "takhirov": 157, "initializaion": 157, "unfreez": 157, "set_ytick": 157, "nrow": 157, "best_model_wt": 157, "current_row": 157, "current_col": 157, "lbl": 157, "jdx": 157, "model_f": 157, "isol": 157, "create_combined_model": 157, "model_fe_featur": 157, "new_head": 157, "default_qat_qconfig": 157, "model_ft_tun": 157, "model_quantized_and_train": 157, "heat": 158, "sink": [158, 262], "5v": 158, "sd": 158, "card": [158, 164], "8gb": 158, "arm": [158, 219, 228], "64bit": 158, "aarch64": 158, "arm64": [158, 188, 204, 206, 218, 223], "raspberrypi": 158, "raspios_arm64": 158, "rpi": 158, "internet": 158, "sdcard": 158, "start_x": 158, "128m": 158, "gpu_mem": 158, "commment": 158, "camera_auto_detect": 158, "v4l2": 158, "reboot": 158, "video4linux2": 158, "video0": 158, "picamera": 158, "36fp": 158, "30fp": 158, "framer": 158, "cv2": 158, "cap": [158, 159, 168], "videocaptur": 158, "cap_prop_frame_width": 158, "cap_prop_frame_height": 158, "cap_prop_fp": 158, "bgr": 158, "chose": [158, 230], "mobilenet_v3_larg": 158, "109": 158, "233": [158, 163], "885": [158, 219], "204": [158, 219, 231], "195": [158, 163], "132": 158, "82": [158, 197, 219], "prequant": 158, "20fp": 158, "cap_v4l2": 158, "last_log": 158, "frame_count": 158, "htop": [158, 176], "mug": 158, "allevi": 158, "repetit": [159, 231], "maximis": 159, "clipppoloss": 159, "theta_k": 159, "pi_": 159, "shift": [159, 262], "lingua": 159, "franca": 159, "normalparamextractor": 159, "replaybuff": 159, "samplerwithoutreplac": 159, "lazytensorstorag": 159, "tanhnorm": 159, "max_grad_norm": 159, "sub_batch_s": 159, "inner": [159, 177, 263], "cardin": 159, "clip_epsilon": 159, "entropy_ep": 159, "deepmind": [159, 166], "interchang": 159, "panel": [159, 168], "inverteddoublependulum": 159, "transmit": [159, 262], "gymwrapp": 159, "loos": 159, "supplementari": 159, "told": 159, "stringent": 159, "mu_": 159, "d_ob": 159, "d_action": 159, "mu": [159, 171, 262], "policy_modul": 159, "distribution_kwarg": 159, "return_log_prob": 159, "discount": [159, 160, 161], "value_net": 159, "value_modul": 159, "datacollector": 159, "multisyncdatacollector": 159, "refil": [159, 223], "max_siz": 159, "value_target": 159, "advantage_modul": 159, "average_ga": 159, "critic_network": 159, "entropy_bonu": 159, "entropy_coef": 159, "critic_coef": 159, "loss_critic_typ": 159, "smooth_l1": 159, "eval_str": 159, "tensordict_data": 159, "data_view": 159, "subdata": 159, "loss_object": 159, "loss_crit": 159, "loss_entropi": 159, "cum_reward_str": 159, "stepcount_str": 159, "lr_str": 159, "horizon": 159, "eval_rollout": 159, "videorecord": 159, "reinforcement_ppo": 159, "tower": 160, "cart": 160, "pole": 160, "attach": [160, 195, 200, 209, 213], "upright": 160, "classic_control": 160, "decorrel": 160, "replaymemori": 160, "cyclic": 160, "formul": 160, "r_": 160, "t_0": 160, "r_t": 160, "uncertain": 160, "tempor": 160, "max_a": 160, "obei": 160, "bellman": 160, "huber": 160, "noisi": [160, 231, 246], "mathcal": 160, "le": [160, 165], "mathrm": 160, "n_observ": 160, "n_action": 160, "left0exp": 160, "right0exp": 160, "select_act": [160, 161, 163], "eps_start": 160, "eps_end": 160, "eps_decai": 160, "plot_dur": 160, "underneath": 160, "policy_net": 160, "target_net": 160, "amsgrad": 160, "steps_don": 160, "eps_threshold": 160, "episode_dur": 160, "show_result": 160, "durations_t": 160, "unfold": [160, 165], "optimize_model": 160, "s_t": 160, "a_t": 160, "19343": 160, "3343043": 160, "non_final_mask": 160, "non_final_next_st": 160, "state_batch": 160, "action_batch": 160, "reward_batch": 160, "next_state_valu": 160, "expected_state_action_valu": 160, "clip_grad_value_": 160, "num_episod": [160, 161], "i_episod": [160, 161, 163], "\u03b8": 160, "\u03c4": 160, "target_net_state_dict": 160, "policy_net_state_dict": 160, "reinforcement_q_learn": 160, "unblock": 161, "callback": 161, "update_and_fetch_model": 161, "future_model": 161, "notifi": [161, 168], "batch_update_s": 161, "batchupdateparameterserv": 161, "curr_update_s": 161, "ps_rref": 161, "setti": 161, "set_result": 161, "get_worker_info": [161, 163], "543": 161, "affine1": [161, 163], "affine2": [161, 163], "action_scor": [161, 163], "select_action_batch": 161, "run_episod": [161, 163], "agent_rref": [161, 163], "start_step": 161, "curr_reward": 161, "saved_log_prob": [161, 163], "rob": 161, "ob_rref": [161, 163], "running_reward": [161, 163], "ob_rank": [161, 163], "ob_info": [161, 163], "observer_nam": [161, 163], "future_act": 161, "pending_st": 161, "select_acion": 161, "ob_id": [161, 163], "oberv": [161, 163], "policy_loss": [161, 163], "n_episod": 161, "print_log": 161, "rank0": [161, 163], "agent_nam": [161, 163], "tlast": [161, 163], "taverag": [161, 163], "next_devic": 162, "call_method": 162, "remote_method": 162, "foo_inst": 162, "parameterserv": 162, "input_devic": 162, "intention": [162, 163, 212], "miscellan": 162, "get_dist_gradi": 162, "get_gradi": 162, "get_param_rref": 162, "cid": 162, "cpu_grad": 162, "k_cpu": 162, "v_cpu": 162, "paramt": 162, "param_rref": [162, 163], "run_parameter_serv": 162, "param_serv": 162, "global_lock": 162, "get_parameter_serv": 162, "parameter_serv": 162, "offlin": 162, "trainernet": 162, "param_server_rref": 162, "get_global_param_rref": 162, "paramat": 162, "run_training_loop": 162, "nueral": 162, "get_accuraci": 162, "correct_sum": 162, "trainer_": 162, "traffic": [162, 176], "listen": [162, 213], "subprocess": [162, 231, 247], "rpc_parameter_serv": 162, "solver": 163, "formatter_class": 163, "argumentdefaultshelpformatt": 163, "report_reward": 163, "_max_episode_step": 163, "finfo": 163, "reward_threshold": 163, "finish_episod": 163, "min_reward": 163, "distinguish": [163, 169], "surpass": 163, "ctrl": 163, "131": 163, "130": [163, 219], "137": 163, "140": 163, "104": 163, "170": [163, 178], "126": [163, 173], "180": [163, 173, 174, 219, 231], "213": 163, "322": [163, 219], "165": 163, "272": [163, 219], "210": 163, "168": [163, 173], "184": [163, 185], "208": [163, 171, 229], "270": [163, 171], "405": 163, "280": 163, "290": 163, "464": 163, "3163778435275": 163, "vehicl": 163, "rnnmodel": 163, "emb_table_rref": 163, "decoder_rref": 163, "_remote_method": 163, "rremot": 163, "_parameter_rref": 163, "run_train": 163, "nindic": 163, "driss": 164, "guessou": 164, "flashattent": 164, "benchmark_torch_function_in_microsecond": [164, 210], "max_sequence_len": 164, "embed_dimens": 164, "sdpbackend": 164, "sdpa_kernel": 164, "math_tim": 164, "flash_attent": 164, "flash_tim": 164, "flash": [164, 184], "efficient_attent": 164, "efficient_tim": 164, "efficientattent": 164, "andrej": 164, "karpathi": 164, "nanogpt": 164, "causalselfattent": 164, "is_caus": [164, 193], "c_attn": 164, "c_proj": 164, "resid_dropout": 164, "query_project": 164, "head_dim": 164, "attn_mask": 164, "dropout_p": [164, 165, 193], "heads_per_dim": 164, "generate_rand_batch": 164, "pad_percentag": 164, "seq_len_list": 164, "gauss": 164, "nested_tensor": [164, 193], "random_nt": 164, "random_dens": 164, "nt": [164, 193], "166": 164, "616": 164, "726": 164, "amaz": 164, "record_shap": [164, 168, 238], "compili": 164, "cuda_time_tot": [164, 238], "compiled_causal_attention_trac": 164, "concentr": 164, "6090": 164, "49m": 164, "3273": 164, "17m": 164, "commit": [164, 196, 207], "ae3a8d5": 164, "causal_upper_left": 164, "causal_lower_right": 164, "sequence_length_q": 164, "sequence_length_kv": 164, "upper_left_bia": 164, "lower_right_bia": 164, "issubclass": 164, "causalbia": 164, "corner": 164, "attn_scor": 164, "out_upper_left": 164, "out_lower_right": 164, "out_is_caus": 164, "compiled_sdpa": 164, "scaled_dot_product_attention_tutori": 164, "french": 165, "il": 165, "est": [165, 168, 265], "peindr": 165, "tableau": 165, "paint": 165, "pourquoi": 165, "pa": 165, "essay": 165, "vin": 165, "delicieux": 165, "delici": 165, "wine": 165, "poet": 165, "romancier": 165, "novelist": 165, "vou": 165, "trop": 165, "maigr": 165, "skinni": 165, "condens": [165, 209, 246], "phrase": [165, 262], "\u5b57\u7b26\u7ea7": 165, "__future__": [165, 171, 237, 244], "unicode_liter": 165, "print_funct": 165, "manyth": 165, "anki": 165, "fra": 165, "froid": 165, "lang": [165, 208, 261], "n_word": [165, 252], "readlang": 165, "lang1": 165, "lang2": 165, "input_lang": [165, 252], "output_lang": [165, 252], "apostroph": 165, "eng_prefix": 165, "preparedata": 165, "je": 165, "sui": 165, "noir": 165, "decoderrnn": 165, "target_tensor": 165, "forward_step": 165, "burden": [165, 247], "attn_appli": 165, "bahdanauattent": 165, "ua": 165, "va": 165, "attndecoderrnn": [165, 252], "input_gru": 165, "tensorfromsent": 165, "tensorsfrompair": 165, "get_dataload": 165, "inp_id": 165, "tgt_id": 165, "exhibit": [165, 247], "coher": 165, "grammar": 165, "wander": 165, "asminut": 165, "es": 165, "n_epoch": 165, "plot_loss": 165, "print_loss_tot": 165, "plot_loss_tot": 165, "plot_loss_avg": 165, "showplot": 165, "decoder_attn": 165, "decoded_id": 165, "judgement": 165, "evaluaterandomli": 165, "showattent": 165, "bone": 165, "evaluateandshowattent": 165, "aussi": 165, "grand": 165, "son": 165, "pere": 165, "fatigu": 165, "pour": 165, "conduir": 165, "desol": 165, "idiot": 165, "reellement": 165, "fier": 165, "iot": 165, "word2vec": 165, "glove": 165, "autoencod": 165, "seq2seq_translation_tutori": 165, "ghassen": 166, "hamrouni": 166, "geometr": 166, "invari": [166, 190], "urllib": 166, "build_open": 166, "addhead": 166, "mozilla": 166, "install_open": 166, "boil": 166, "affine_grid": 166, "grid_sampl": 166, "conv2_drop": [166, 221], "regressor": 166, "fc_loc": 166, "size_averag": 166, "convert_image_np": 166, "visualize_stn": 166, "transformed_input_tensor": 166, "in_grid": 166, "out_grid": 166, "axarr": 166, "spatial_transformer_tutori": 166, "speech_recognition_pipeline_tutori": 167, "tensorboard_trace_handl": 168, "batch_data": [168, 171], "torch_tb_profil": 168, "safari": 168, "pytorch_profil": 168, "breakdown": 168, "dropdown": 168, "callstack": 168, "multiprocessor": 168, "occup": 168, "tooltip": 168, "toolbar": 168, "keyboard": [168, 262], "mous": [168, 262], "resnet18_4work": 168, "76m": [168, 182], "132m": 168, "torchtbprofil": 168, "memory_demo_1_10": 168, "gpu0": 168, "distributed_bert": 168, "rocm": 168, "docker": [168, 257], "profiler_tutori": 168, "test_cifar10": 168, "vi": [168, 262], "kfd": 168, "sys_ptrac": 168, "seccomp": 168, "unconfin": 168, "shm": [168, 212], "8g": 168, "apt": [168, 171, 208], "libjpeg": 168, "rocm5": 168, "scp": 168, "tensorboard_profiler_tutori": 168, "plot_classes_pr": 169, "four_fashion_mnist_imag": 169, "datapoint": 169, "night": [169, 263], "thoroughli": 169, "clearer": 169, "images_to_prob": 169, "preds_tensor": 169, "el": 169, "add_figur": 169, "global_step": [169, 245], "scroll": [169, 260, 264], "test_siz": 169, "class_prob": 169, "class_probs_batch": 169, "test_prob": 169, "test_label": 169, "add_pr_curve_tensorboard": 169, "class_index": 169, "tensorboard_truth": 169, "tensorboard_prob": 169, "add_pr_curv": 169, "poke": 169, "tacotron2_pipeline_tutori": 170, "wsi": 171, "tissu": 171, "biopsi": 171, "scanner": 171, "pathologist": 171, "cancer": 171, "microscop": 171, "tumor": 171, "000x100": 171, "25x0": 171, "micron": 171, "pyramid": 171, "magnif": 171, "sketch": 171, "histoencod": 171, "jopo666": 171, "openjpeg": 171, "openslid": 171, "pixman": 171, "qq": 171, "libopenjp2": 171, "libpixman": 171, "echo": [171, 208, 262], "brew": 171, "hashandl": 171, "nopython": 171, "shutil": 171, "zipfil": 171, "mpl": 171, "cm": 171, "accuracy_scor": 171, "confusion_matrix": 171, "patch_predictor": 171, "iopatchpredictorconfig": 171, "misc": 171, "download_data": 171, "grab_files_from_dir": 171, "overlay_prediction_mask": 171, "wsicor": 171, "wsiread": 171, "rcparam": 171, "dpi": 171, "facecolor": 171, "dark": 171, "on_gpu": 171, "suppress": 171, "overli": 171, "suppress_console_output": 171, "redirect_stderr": 171, "stringio": 171, "abnorm": [171, 226], "global_save_dir": 171, "mainten": 171, "rmdir": 171, "dir_path": 171, "is_dir": 171, "rmtree": 171, "kather": 171, "100k": 171, "wsi_path": 171, "sample_wsi": 171, "sv": 171, "patches_path": 171, "kather100k": 171, "weights_path": 171, "dc": 171, "warwick": 171, "uk": 171, "tcga": 171, "3l": 171, "aa1b": 171, "01z": 171, "dx1": 171, "8923a151": 171, "a690": 171, "40b7": 171, "9e5a": 171, "fcbedfc2394f": 171, "extractal": 171, "pc": 171, "patch_list": 171, "dataset_path": 171, "image_ext": 171, "tif": 171, "label_dict": 171, "glass": 171, "mucosa": 171, "deb": 171, "debri": 171, "tum": 171, "colorect": 171, "adenocarcinoma": 171, "epithelium": 171, "adi": 171, "adipos": 171, "muc": 171, "mucu": 171, "stroma": 171, "lym": 171, "lymphocyt": 171, "dataset_class_path": 171, "patch_list_single_class": 171, "file_typ": 171, "299": 171, "211": [171, 219, 238], "176": 171, "178": 171, "209": 171, "232": [171, 231], "modelabc": 171, "tia": 171, "toolbox": 171, "readthedoc": 171, "_autosummari": 171, "models_abc": 171, "preproc_func": 171, "predictor": [171, 178], "pretrained_weight": 171, "cnnmodel": 171, "conf": [171, 221, 260, 267], "df_cm": 171, "215": [171, 177], "993000": 171, "000000": 171, "00000": 171, "988636": 171, "011364": 171, "991304": 171, "008696": 171, "996503": 171, "003497": 171, "004808": 171, "990385": 171, "988764": 171, "011236": 171, "996296": 171, "003704": 171, "004785": 171, "985646": 171, "004310": 171, "99569": 171, "input_resolut": 171, "patch_input_shap": 171, "stride_shap": 171, "wsi_ioconfig": 171, "mpp": 171, "return_prob": 171, "ioconfig": 171, "merge_predict": 171, "wsi_output": 171, "wsi_predict": 171, "overlai": 171, "overlay_patch_predict": 171, "overview_resolut": 171, "overview_unit": 171, "wsi_overview": 171, "slide_thumbnail": 171, "label_color_dict": 171, "get_cmap": 171, "set1": 171, "pred_map": 171, "label_info": 171, "return_ax": 171, "histolog": 171, "pohjonen": 171, "joona": 171, "helsinki": 171, "umap": 171, "semantic_segmentor": 171, "deepfeatureextractor": 171, "iosegmentorconfig": 171, "histoencwrapp": 171, "histoenc": 171, "feat_extract": 171, "extract_featur": 171, "num_block": 171, "avg_pool": 171, "infer_batch": 171, "img_patches_devic": 171, "create_encod": 171, "prostate_medium": 171, "662": 171, "446": 171, "605": 171, "169": [171, 219], "155": [171, 173], "output_resolut": 171, "patch_output_shap": 171, "auto_generate_mask": 171, "otsu": 171, "num_loader_work": 171, "num_postproc_work": 171, "wsi_featur": 171, "umap_reduc": 171, "n_neighbor": 171, "n_compon": 171, "manhattan": 171, "random_st": 171, "fit_transform": 171, "npy": 171, "5mpp": 171, "4mpp": 171, "william": [172, 173, 174], "wen": [172, 173, 174], "modern": [172, 187, 194], "h100": 172, "elsewher": 172, "gpu_ok": 172, "device_cap": 172, "get_device_cap": [172, 210, 211, 255], "torchinductor": [172, 186, 199], "torchtriton": 172, "cu117": 172, "opt_foo1": 172, "opt_foo2": 172, "opt_mod": 172, "generate_data": 172, "init_model": 172, "model_opt": 172, "eager_tim": 172, "compile_tim": 172, "eager_m": 172, "compile_m": 172, "train_opt": 172, "dashboard": [172, 245], "struggl": 172, "fn1": 172, "fn2": 172, "test_fn": 172, "out1": [172, 234], "out2": [172, 234], "inp1": [172, 173, 174], "inp2": [172, 173, 174], "traced_f1": 172, "print_exc": [172, 173, 174], "fx_f1": 172, "concrete_arg": 172, "compile_f1": 172, "f2": 172, "script_f2": 172, "compile_f2": 172, "f3": 172, "dct": 172, "traced_f3": 172, "disallow": 172, "compile_f3": 172, "unoptim": 172, "custom_backend": 172, "example_input": [172, 179, 181, 182, 183, 197, 198, 199, 200, 247], "print_tabular": 172, "opt_model": 172, "opt_bar": 172, "resum": [172, 198, 214, 241], "explain_output": 172, "torch_compile_tutori": 172, "zhengxu": [173, 174], "angela": [173, 174], "exportedprogram": [173, 174, 197], "synonym": [173, 174], "dynamic_shap": [173, 174], "exportedgraph": [173, 174], "exported_mod": [173, 174], "exported_program": 173, "2178": 173, "4397": 173, "4774": 173, "0943": [173, 185], "4656": 173, "8333": 173, "5912": 173, "4689": 173, "2122": 173, "1996": 173, "4628": 173, "7495": 173, "3900": 173, "4515": 173, "8187": 173, "8938": 173, "5753": 173, "7709": 173, "8081": 173, "8002": 173, "9441": 173, "5711": 173, "0921": [173, 201], "3438": 173, "3268": 173, "4640": 173, "2434": 173, "7253": 173, "6886": 173, "6982": 173, "5100": [173, 246], "2279": 173, "2951": 173, "1055": 173, "2088": 173, "5022": 173, "1468": [173, 231], "5220": 173, "1592": 173, "9096": 173, "4248": 173, "2142": 173, "relubackward0": 173, "graph_modul": [173, 174], "f32": 173, "arg2_1": 173, "arg3_1": 173, "torch_export_nightly_tutori": 173, "exportgraphsignatur": 173, "inputspec": 173, "inputkind": 173, "tensorargu": 173, "user_input": 173, "outputspec": 173, "outputkind": 173, "user_output": 173, "graph_signatur": [173, 174], "range_constraint": [173, 174], "equality_constraint": 173, "inputs_to_paramet": 173, "inputs_to_buff": 173, "buffers_to_mut": 173, "backward_signatur": 173, "assertion_dep_token": 173, "bad1": [173, 174], "usererror": 173, "control_flow": [173, 174], "cond": [173, 174], "bad2": [173, 174], "ban": 173, "aot_export": 173, "bad3": [173, 174], "call_id": 173, "tensorvari": 173, "bad4": [173, 174], "builtinvari": 173, "constantvari": 173, "bad1_fix": 173, "true_fn": [173, 174], "false_fn": [173, 174], "exported_bad1_fix": [173, 174], "8415": 173, "5403": 173, "predic": [173, 174], "operand": [173, 174], "mymodule2": [173, 174], "mod2": [173, 174], "exported_mod2": [173, 174], "dynamic_shapes_example1": 173, "inp1_dim0": [173, 174], "inp1_dim1": [173, 174], "dynamic_shapes1": [173, 174], "exported_dynamic_shapes_example1": [173, 174], "0828": 173, "8190": 173, "0037": 173, "0221": 173, "0898": 173, "8182": 173, "9165": 173, "3572": 173, "7422": 173, "4423": 173, "2497": 173, "1912": 173, "0522": 173, "4442": 173, "4188": 173, "8161": 173, "inp1_dim1_bad": [173, 174], "dynamic_shapes1_bad": [173, 174], "inp3": [173, 174], "dynamic_shapes_example2": 173, "inp2_dim0": [173, 174], "inner_dim": [173, 174], "inp3_dim1": [173, 174], "dynamic_shapes2": [173, 174], "exported_dynamic_shapes_example2": [173, 174], "5352": 173, "3836": 173, "8961": 173, "3412": 173, "3891": 173, "4326": 173, "1697": [173, 258], "inp4": [173, 174], "inp5": [173, 174], "dynamic_shapes_example3": [173, 174], "dynamic_shapes3": [173, 174], "inp4_dim": [173, 174], "inp5_dim": [173, 174], "violat": 173, "inp4_dim0": [173, 174], "inp5_dim0": [173, 174], "inp5_dim1": [173, 174], "torch_log": [173, 174, 251], "inp4_dim1": [173, 174], "suggested_fix": [173, 174], "shared_dim": [173, 174], "dynamic_shapes3_fix": [173, 174], "exported_dynamic_shapes_example3": [173, 174], "1510": 173, "1174": 173, "5075": 173, "3566": 173, "2102": 173, "2033": 173, "3611": 173, "9041": 173, "2987": 173, "5751": 173, "1508": 173, "4470": 173, "2460": 173, "9288": 173, "1764": 173, "5879": 173, "5107": 173, "0845": 173, "3962": 173, "4359": 173, "2877": 173, "2839": 173, "3742": 173, "5569": 173, "0485": 173, "1028": 173, "4692": 173, "3837": 173, "8744": 173, "4191": 173, "9387": 173, "8480": 173, "9857": 173, "7783": 173, "2220": 173, "5934": 173, "9793": 173, "1118": 173, "9817": 173, "6156": 173, "2070": 173, "6976": 173, "8177": 173, "4002": 173, "3291": 173, "0860": 173, "7406": 173, "6509": 173, "1847": 173, "6311": 173, "8144": 173, "0439": 173, "9141": 173, "8778": 173, "5971": 173, "8781": 173, "1364": 173, "3096": 173, "0822": 173, "0587": 173, "3681": 173, "_log": [173, 174, 211, 255], "set_log": [173, 174, 211, 255], "657": 173, "symbolic_convert": 173, "374": 173, "658": 173, "symbolic_shap": 173, "create_env": 173, "663": 173, "create_symbol": 173, "s0": 173, "665": 173, "s1": [173, 192], "9223372036854775806": 173, "677": [173, 184], "680": 173, "734": [173, 238], "_meta_registr": 173, "1891": 173, "meta_mm": 173, "738": 173, "return_valu": 173, "output_graph": 173, "dynamo_normalization_capturing_compil": 173, "747": [173, 210], "produce_guard": 173, "839": 173, "eval_fram": 173, "847": 173, "rangeconstraint": 173, "min_val": 173, "max_val": 173, "inputdim": 173, "my_custom_librari": [173, 174], "compositeexplicitautograd": [173, 174], "custom_op_meta": [173, 174], "custom_op_exampl": 173, "exported_custom_op_exampl": [173, 174], "print_read": [173, 174], "5947": 173, "8062": 173, "6231": 173, "6615": 173, "5412": 173, "evidenc": [173, 174], "_schema": [173, 174], "is_mut": [173, 174], "run_decomposit": [173, 174], "decomposition_t": [173, 174], "_op": [173, 174], "operatorbas": [173, 174], "core_ir_ep": [173, 174], "num_us": 173, "placehold": 173, "get_decomposit": [173, 174], "_decomp": [173, 174], "decomp_t": [173, 174], "cond_pred": [173, 174], "stronger": 174, "safeti": 174, "bad2_nonstrict": 174, "bad3_nonstrict": 174, "bad4_nonstrict": 174, "bad1fix": 174, "dynamicshapesexample1": 174, "dynamicshapesexample2": 174, "deriveddimexample1": 174, "dimx": 174, "dimi": 174, "derived_dynamic_shapes1": 174, "derived_dim_example1": 174, "deriveddimexample2": 174, "dz": 174, "dy": 174, "derived_dynamic_shapes2": 174, "derived_dim_example2": 174, "dynamicshapesexample3": 174, "customopexampl": 174, "aotinductor": 174, "tensorrt": [174, 179], "so_path": 174, "aot_compil": 174, "compiler_aot_inductor": 174, "aot_load": 174, "torch_export_tutori": 174, "dlrm": [175, 247], "dmp": 175, "datastructur": 175, "k80": 175, "appripri": 175, "product_t": 175, "user_t": 175, "101": 175, "202": 175, "303": 175, "product_eb": 175, "jag": [175, 193], "404": 175, "505": 175, "606": 175, "keyedtensor": 175, "3x64": 175, "pooled_embed": 175, "criteo": 175, "terabyt": 175, "jean": [176, 177], "saroufim": [176, 177], "ashok": [176, 177], "emani": [176, 177], "tl": [176, 185, 254], "dr": [176, 185], "numa": [176, 177], "upi": 176, "fma": [176, 177], "hyperthread": 176, "contend": 176, "ultra": 176, "cpu_launcher_en": [176, 177], "toepliz": 176, "toggl": [176, 258], "use_logical_cor": 176, "vtune": [176, 251], "8180m": 176, "omp_num_thread": [176, 247], "982": 176, "__kmp_fork_barri": 176, "589": 176, "neglig": 176, "887": 176, "530": 176, "lscpu": 176, "112": [176, 185, 204, 238], "llc": [176, 177], "asid": 176, "get_num_thread": [176, 231], "node_id": [176, 177], "base_handl": 176, "56x4": 176, "affinit": [176, 177], "amplifi": 176, "slot": 176, "uop": [176, 177], "__sched_yield": 176, "disassoci": 176, "exacerb": 176, "core_51": 176, "8180": 176, "tid": 176, "97097": 176, "cpu_81": 176, "cpu_14": 176, "cpu_5": 176, "cpu_70": 176, "cpu_100": 176, "cpu_24": 176, "num_physical_cor": 176, "94290": 176, "cpu_78": 176, "cpu_108": 176, "microarchitectur": 176, "onednn": [176, 177, 199, 207, 219, 220, 226], "immens": [176, 177], "ning": [176, 177], "jing": [176, 177], "xu": [176, 177, 187, 188], "20x": 177, "toplev": 177, "pmu": 177, "mispredict": 177, "hierarch": 177, "retir": 177, "specul": 177, "cancel": [177, 231, 247], "untun": 177, "subsystem": 177, "l3": 177, "dram": 177, "starv": 177, "wll": 177, "uncomplet": 177, "oneapi": [177, 226], "deconvolut": [177, 229], "emit_itt": [177, 226], "intel_extension_for_pytorch": [177, 220, 253], "ipex_en": 177, "submetr": 177, "spinlock": 177, "arena": 177, "enable_tcmalloc": 177, "enable_jemalloc": 177, "use_default_alloc": 177, "range_push": [177, 226], "step_": 177, "range_pop": [177, 226], "step_x": 177, "step_99": 177, "308": 177, "261": 177, "843": 177, "8960": 177, "cpu_launcher_arg": 177, "688": 177, "251": 177, "401": 177, "392": [177, 210], "bf16": [177, 184, 199, 207, 219], "ipex": [177, 220, 251, 253], "8x": 177, "851": 177, "310": [177, 231], "7x": [177, 184], "803": 177, "248": 177, "eltwis": 177, "elementwis": [177, 247, 255], "nhwc": [177, 194, 220, 223], "disable_auto_channels_last": 177, "reorder": [177, 207, 219, 226, 247], "731": [177, 256], "634": 177, "fudan": 178, "databas": 178, "pedestrian": 178, "keypoint": 178, "tv_tensor": 178, "boundingbox": 178, "x0": 178, "y0": 178, "image_id": 178, "iscrowd": 178, "compliant": 178, "pycocotool": 178, "gautamchitni": 178, "cocoapi": 178, "cocodataset": 178, "pythonapi": 178, "get_height_and_width": 178, "ci": 178, "upenn": 178, "jshi": 178, "ped_html": 178, "pennfudanp": 178, "pedmask": 178, "fudanped00001_mask": 178, "fudanped00002_mask": 178, "fudanped00003_mask": 178, "fudanped00004_mask": 178, "pngimag": 178, "fudanped00001": 178, "fudanped00002": 178, "fudanped00003": 178, "fudanped00004": 178, "fudanped00046": 178, "fudanped00046_mask": 178, "122": [178, 238], "tvtensor": 178, "masks_to_box": 178, "pennfudandataset": 178, "listdir": 178, "mask_path": 178, "obj_id": 178, "num_obj": 178, "crowd": 178, "xyxi": 178, "canvas_s": 178, "get_siz": 178, "zoo": 178, "faster_rcnn": 178, "fastrcnnpredictor": 178, "fasterrcnn_resnet50_fpn": 178, "roi_head": 178, "box_predictor": 178, "cls_score": 178, "fasterrcnn": 178, "rpn": 178, "anchorgener": 178, "anchor": 178, "anchor_gener": 178, "aspect_ratio": 178, "featmap_nam": 178, "roi_pool": 178, "multiscaleroialign": 178, "sampling_ratio": 178, "rcnn": 178, "rpn_anchor_gener": 178, "box_roi_pool": 178, "mask_rcnn": 178, "maskrcnnpredictor": 178, "get_model_instance_segment": 178, "maskrcnn_resnet50_fpn": 178, "in_features_mask": 178, "mask_predictor": 178, "conv5_mask": 178, "coco_util": 178, "coco_ev": 178, "get_transform": 178, "todtyp": 178, "topuretensor": 178, "print_freq": 178, "draw_bounding_box": 178, "draw_segmentation_mask": 178, "eval_transform": 178, "rgba": 178, "pred_label": 178, "pred_box": 178, "output_imag": 178, "train2017": 178, "prepare_fx": [179, 181, 182, 183], "convert_fx": [179, 181, 182, 183], "default_weight_observ": 179, "get_default_qconfig_map": 179, "minmaxobserv": [179, 200], "backend_config": 179, "backendpatternconfig": 179, "dtypewithconstraint": 179, "observationtyp": 179, "quantize_fx": [179, 181, 182], "fp32_linear": 179, "quant1": 179, "dequant1": 179, "quant2": 179, "dequant2": 179, "bracket": [179, 262], "fp32_conv_relu": 179, "quint8_with_constraint": 179, "quant_min_lower_bound": 179, "quant_max_upper_bound": 179, "scale_min_lower_bound": 179, "weighted_int8_dtype_config": 179, "input_dtyp": 179, "output_dtyp": 179, "weight_dtyp": 179, "bias_dtyp": 179, "fuse_conv2d_relu": 179, "convrelu2d": [179, 182], "linear_config": 179, "set_pattern": 179, "set_observation_typ": 179, "output_use_different_observer_as_input": 179, "add_dtype_config": 179, "set_root_modul": 179, "set_qat_modul": 179, "set_reference_quantized_modul": 179, "conv_relu_config": 179, "set_fused_modul": 179, "set_fuser_method": 179, "fused_conv_relu_config": 179, "my_backend": 179, "set_backend_pattern_config": 179, "quant_max": [179, 200], "activation_observ": 179, "with_arg": [179, 200], "quant_min": [179, 200], "qconfig_map": [179, 181, 182, 183], "set_object_typ": [179, 181, 182, 197], "use_bn": 179, "quantizedlinear": 179, "012136868201196194": 179, "zero_point": [179, 185, 200], "qscheme": [179, 200], "per_tensor_affin": [179, 200], "quantizedconvrelu2d": 179, "0029353597201406956": 179, "linear_input_scale_0": 179, "linear_input_zero_point_0": 179, "quantize_per_tensor": [179, 185, 197, 221], "dequantize_2": 179, "015307803638279438": 179, "dequantize_1": 179, "get_fbgemm_backend_config": 179, "get_qnnpack_backend_config": 179, "get_native_backend_config": 179, "rfc": [179, 190, 262], "0019": [179, 185], "tldr": [181, 182], "default_dynamic_qconfig": [181, 185], "qconfigmap": [181, 183, 197, 200], "release": 181, "set_glob": [181, 182, 183, 197, 198, 199], "prepared_model": [181, 182, 197, 198, 199], "metamind": 181, "asset": [181, 206, 208, 224], "lstm_model": 181, "float_qparams_weight_only_qconfig": 181, "model_to_quant": [181, 182, 197], "forunct": 181, "fx_graph_mode_ptq_dynam": 181, "charl": 182, "hernandez": 182, "traceabl": 182, "identitc": [182, 197], "resnet18_pretrained_float": [182, 197, 198], "fuse_fx": 182, "recursivescriptmodul": [182, 185, 197, 198], "qconfig_opt": [182, 197], "set_module_name_regex": 182, "set_module_nam": [182, 197], "set_module_name_object_type_ord": 182, "object_typ": 182, "module_name_regex": 182, "module_nam": 182, "serila": [182, 197], "fx_graph_mode_model_file_path": 182, "resnet18_fx_graph_mode_quant": 182, "erro": 182, "convrelu": 182, "moduleattributeerror": 182, "_modul": 182, "conv1_weight_after_fus": 182, "conv1_weight_after_qu": 182, "resnet18_script": [182, 197], "eager_quantized_model": 182, "eager_mode_model_fil": 182, "resnet18_eager_mode_quant": 182, "aibench": 182, "192": 182, "48m": 182, "63m": 182, "non_traceable_code_1": 183, "traceable_cod": 183, "non_traceable_code_2": 183, "fp32traceabl": 183, "traceable_submodul": 183, "traceable_code_1": 183, "traceable_code_2": 183, "model_fp32": 183, "non_traceable_cod": 183, "fp32nontrac": 183, "non_traceable_submodul": 183, "prepare_custom_config_dict": 183, "non_traceable_module_nam": 183, "non_traceable_module_class": 183, "mnontrac": 183, "model_prepar": 183, "transpose_for_scor": 183, "new_x_shap": 183, "num_attention_head": 183, "attention_head_s": 183, "custommodul": 183, "observednontrac": 183, "from_float": 183, "from_observ": 183, "staticquantnontrac": 183, "float_to_observed_custom_module_class": 183, "convert_custom_config_dict": 183, "observed_to_quantized_custom_module_class": 183, "model_quant": [183, 224, 225, 228, 252], "thee": 183, "dynamicquantnontrac": 183, "weightonlyquantmnontrac": 183, "test_custom_module_class": 183, "test_quantize_fx": 183, "hdcharl": 184, "pg509": 184, "330": 184, "myenv": 184, "cu121": 184, "vit_h": 184, "segment_anyth": 184, "sam_vit_h_4b8939": 184, "sam_checkpoint_base_path": 184, "change_linear_weights_to_int8_dqtensor": 184, "sam_model_registri": 184, "batchsiz": 184, "only_one_block": 184, "adaptive_autorang": 184, "min_run_tim": [184, 231, 246], "max_run_tim": 184, "1e9": 184, "get_sam_model": 184, "sam": 184, "image_encod": 184, "fp32_re": 184, "16m": 184, "33gb": 184, "instant": 184, "protect": [184, 208, 222, 223], "bf16_re": 184, "43m": 184, "17gb": 184, "autotun": [184, 247, 254], "comp_r": 184, "95m": 184, "24gb": 184, "int4": 184, "change_linear_weights_to_int8_woqtensor": 184, "change_linear_weights_to_int4_woqtensor": 184, "apply_dynamic_qu": 184, "apply_weight_only_int8_qu": 184, "change_linear_weight": 184, "quant_r": 184, "04m": 184, "58gb": 184, "force_fuse_int_mm_with_mul": 184, "78m": 184, "37gb": 184, "unquant": [184, 200], "epilogu": 184, "enlarg": 184, "epilogue_fus": 184, "coordinate_descent_tun": 184, "coordinate_descent_check_all_direct": 184, "39gb": 184, "10x": [184, 207], "729": 184, "65m": 184, "96gb": 184, "28m": 184, "93gb": 184, "gpu_quantization_torchao_tutori": 184, "supriya": 185, "rao": 185, "per_channel_dynamic_qconfig": 185, "quantize_dynamic_jit": 185, "ts_model": 185, "installaion": 185, "necesessari": 185, "lenght": 185, "qconfig_glob": 185, "qconfig_sub": 185, "qconfig_fc": 185, "242141": 185, "354759": 185, "188": [185, 231], "157": 185, "4s": 185, "quantized_model_debug": 185, "prepare_dynamic_jit": 185, "convert_dynamic_jit": 185, "406429": 185, "897": 185, "113": 185, "4_scale_0": 185, "114": 185, "4_zero_point_0": 185, "4_axis_0": 185, "4_scalar_type_0": 185, "quantize_per_channel": 185, "1640": 185, "_choose_qparams_per_tensor": 185, "98304": 185, "linear_dynam": 185, "_c": [185, 187, 244, 247], "0157": 185, "0257": 185, "0269": 185, "0158": 185, "0764": 185, "0548": 185, "0325": 185, "0423": 185, "0528": 185, "1382": 185, "0069": 185, "0106": 185, "0113": 185, "0275": 185, "0253": 185, "0457": 185, "0090": 185, "0512": 185, "0555": 185, "0277": 185, "0543": 185, "0539": 185, "0619": 185, "1040": 185, "0598": [185, 201], "0465": 185, "0009": 185, "0949": 185, "0097": 185, "0183": 185, "0085": 185, "clonebackward": 185, "0011": 185, "0010": 185, "0034": 185, "0013": 185, "0012": 185, "0015": 185, "0016": 185, "0036": 185, "0014": 185, "0008": 185, "0023": 185, "0018": 185, "0031": 185, "0022": 185, "0024": 185, "016605": 185, "182": 185, "878029": 185, "jit_model_path_float": 185, "jit_model_path_eag": 185, "jit_model_path_graph": 185, "chunyuan": 186, "bao": 186, "cpp_wrapper": [186, 199], "opt_fn": 186, "assert_size_strid": 186, "empty_strid": [186, 206, 238], "cpp_fused_add_lift_fresh_0": 186, "c_void_p": 186, "constant0": 186, "inductor_entry_cpp": 186, "19l": 186, "cppwrappercodecach": 186, "cpp_wrapper_src": 186, "c2buojsvlqbywxe3itb43hldieh4jqulk72iswa2awalwev7hjn2": 186, "_wrap_func": 186, "args_tensor": 186, "constants_tensor": 186, "_deviceguard": 186, "lift_fresh": 186, "stream0": 186, "get_cuda_stream": 186, "triton_poi_fused_add_lift_fresh_0": 186, "run_intermediate_hook": 186, "cudaguard": 186, "device_guard": 186, "loadkernel": 186, "torchinductor_us": 186, "cmm6xjgijjffxjku4akv55eyzibirvw6bti6uqmfnruujm5cvvmw": 186, "cubin": 186, "triton_poi_fused_add_lift_fresh_0_0d1d2d3": 186, "cudeviceptr": 186, "var_0": 186, "reinterpret_cast": [186, 208], "var_1": 186, "var_2": 186, "var_3": 186, "kernel_args_var_0": 186, "cudastream_t": 186, "getcurrentcudastream": 186, "launchkernel": 186, "czbpeilh4qqmbyejdgsbpdfuk2ss5jigl2qjb7xs4gearrjvuwem": 186, "tao": [187, 188], "solidifi": [187, 194], "coremltool": 187, "0b5": 187, "to_backend": 187, "_coreml": 187, "compilespec": 187, "coremlcomputeunit": 187, "mobilenetv2_spec": 187, "allow_low_precis": 187, "compile_spec": 187, "_jit_to_backend": 187, "coreml": 187, "mobilenetv2_coreml": 187, "cpuandgpu": 187, "mil": 187, "385": 187, "1496": 187, "anaconda3": 187, "name_sanitization_util": 187, "userwarn": [187, 189, 190, 191, 192], "647": 187, "var_647": 187, "new_nam": 187, "138": 187, "495": [187, 231], "1977": 187, "backend_detail": 187, "codegen_backend_modul": 187, "desktop": [187, 188, 208], "cocoapod": [187, 188, 204, 222, 225], "podfil": [187, 222, 225], "pod": [187, 204, 222, 225, 227, 251], "lite": [187, 204, 222], "client": [188, 223], "prepack": [188, 208, 252], "pytorch_root": [188, 206], "use_pytorch_metal_export": 188, "ON": [188, 195, 218, 223], "41237a4": [188, 206], "optimized_model": [188, 199], "export_opnam": [188, 222], "mobilenetv2_met": 188, "optimized_mobil": 188, "adaptive_avg_pool2d": 188, "copy_to_host": 188, "metal_prepack": 188, "conv2d_run": 188, "conect": 188, "slighli": 188, "malamut": 188, "malemut": 188, "alaskan": 188, "eskimo": 188, "huski": 188, "ios_arch": [188, 223], "use_pytorch_met": 188, "build_io": [188, 204, 222, 223], "a9": 188, "nsarrai": 188, "nsnumber": 188, "inferencemod": 188, "metalperformanceshad": 188, "1369": 189, "clr": 189, "sparse_coo_tensor": [189, 192], "state_sum": 189, "addcmul_": 189, "addcdiv_": 189, "_make_spars": 189, "grad_indic": 189, "coalesc": [189, 230], "_indic": 189, "grad_valu": 189, "_valu": 189, "sparse_mask": [189, 192], "std_valu": 189, "sqrt_": 189, "state_sum2": 189, "masked_grad": 189, "get_data": [189, 191, 192], "std2": 189, "masked_tensor": [189, 190, 191, 192], "to_spars": [189, 192], "param2": [189, 202], "glanc": [189, 244], "dodg": 189, "make_spars": 189, "diverg": [189, 191, 231, 247], "brittl": 189, "argu": 189, "densif": 189, "csc": [189, 192], "bsr": [189, 192], "bsc": 189, "conflat": 189, "disentangl": 189, "purposefulli": 189, "to_dens": [189, 192], "cleaner": [189, 191, 196, 197], "relianc": 189, "unreli": [189, 191], "maskedarrai": [189, 196], "maskedtensor_adagrad": 189, "maskedtensor_overview": [190, 191, 192], "unspecifi": [190, 191, 192, 196], "intersect": 190, "logical_or": 190, "npm0": 190, "ma": 190, "masked_arrai": 190, "npm1": 190, "mt0": 190, "mt1": [190, 192], "mt2": [190, 192], "get_mask": [190, 191], "mt": [190, 191, 192], "amin": [190, 192], "amax": 190, "data0": 190, "data1": 190, "mask0": 190, "mask1": 190, "intent": [190, 197, 200, 208, 214, 262], "necessit": 190, "maskedtensor_advanced_semant": 190, "as_masked_tensor": 191, "afterthought": 191, "born": 191, "recur": 191, "inabl": 191, "10729": 191, "troubl": 191, "mx": 191, "52248": 191, "frustrat": 191, "4132": 191, "67180": 191, "longstand": 191, "bgrad1": 191, "isnan": 191, "unsaf": 191, "61474": 191, "nanmax": 191, "nanmin": 191, "lend": 191, "argmin": 191, "substructur": 192, "sparse_coo": 192, "sparse_csr": 192, "nse": 192, "sparse_tensor_data": 192, "sparse_tensor_mask": 192, "dense_masked_tensor": 192, "to_sparse_coo": 192, "to_sparse_csr": 192, "nuanc": 192, "sparse_coo_mt": 192, "crow_indic": 192, "col_indic": 192, "nnz": 192, "mt_sparse_csr": 192, "mt_sparse_coo": 192, "mt_dens": 192, "is_spars": 192, "is_sparse_coo": 192, "is_sparse_csr": 192, "surfac": 192, "vast": 192, "mask_valu": 192, "sparse_csr_tensor": 192, "synergi": 192, "invest": 192, "maskedtensor_spars": 192, "rag": 193, "invalu": 193, "nestedtensor": [193, 196], "padded_out_tensor": 193, "to_padded_tensor": 193, "poss": 193, "is_nest": 193, "irregularli": 193, "nt_reshap": 193, "nt_transpos": 193, "nt_mm": 193, "nt3": 193, "nt4": 193, "nt5": 193, "embrac": 193, "padded_sent": 193, "nested_sent": 193, "semnat": 193, "ux": [193, 197, 199], "padded_sentences_for_softmax": 193, "e_q": 193, "e_k": 193, "e_v": 193, "e_tot": 193, "query_proj": 193, "key_proj": 193, "value_proj": 193, "e_out": 193, "out_proj": 193, "e_head": 193, "sdpa": 193, "l_t": 193, "l_": 193, "attn_output": 193, "todo": [193, 260], "unflatten": 193, "zipf": 193, "zipf_sentence_length": 193, "unigram": 193, "858": [193, 218], "sentence_length": 193, "ibatch": 193, "gen_batch": 193, "jagged_to_pad": 193, "jt": 193, "padding_v": 193, "unbind": [193, 205], "padded_queri": 193, "padded_kei": 193, "padded_valu": 193, "output_nest": 193, "time_nest": 193, "output_pad": 193, "time_pad": 193, "entry_length": 193, "compiled_mha": 193, "compiled_output_nest": 193, "compiled_time_nest": 193, "compiled_output_pad": 193, "compiled_time_pad": 193, "_nnapi": 194, "convert_model_to_nnapi": 194, "bundled_input": [194, 204, 209], "make_mobilenetv2_nnapi": 194, "output_dir_path": 194, "quantize_mod": 194, "quantize_cor": 194, "quantize_ifac": 194, "input_float": 194, "nnapi_nhwc": 194, "nnapi_model": 194, "bundlewrapp": 194, "augment_model_with_bundled_input": 194, "bundle_large_tensor": [194, 204], "quant_": 194, "quant_ful": 194, "speed_benchmark_torch": [194, 218, 223], "pthreadpool_s": 194, "use_bundled_input": 194, "use_caching_alloc": 194, "200gb": 194, "googlesourc": [194, 206], "envsetup": 194, "aosp_x86_64": 194, "j16": 194, "lib64": 194, "libneuralnetwork": 194, "ctype": 194, "cdll": 194, "loadlibrari": [194, 208], "get_all_bundled_input": [194, 209], "_numeric_suit": 195, "ns": 195, "default_eval_fn": 195, "qmodel": 195, "img_data": 195, "compare_weight": 195, "wt_compare_dict": 195, "nkei": 195, "sqnr": 195, "relationship": 195, "nomin": 195, "compute_error": 195, "pn": 195, "log10": 195, "hist": 195, "compare_model_output": 195, "act_compare_dict": 195, "white_list": 195, "outputlogg": 195, "default_numeric_suite_compare_model_output_white_list": 195, "prepare_model_output": 195, "get_matching_activ": 195, "myoutputlogg": 195, "logger_cl": 195, "prepare_model_with_stub": 195, "shadowlogg": 195, "compare_model_stub": 195, "quantizablebasicblock": 195, "module_swap_list": 195, "ob_dict": 195, "get_logger_dict": 195, "myshadowlogg": 195, "is_quant": 195, "db": [195, 197], "numeric_suite_tutori": 195, "pypi": [196, 221], "pt2": [196, 199, 210, 211, 215], "optimizi": 196, "nnapi": 196, "autovector": [196, 205], "maskedtensor": 196, "coo": 196, "csr": 196, "14k": 197, "prepare_pt2": [197, 199], "convert_pt2": [197, 198, 199], "capture_pre_autograd_graph": [197, 198, 199], "shoud": [197, 198, 199], "quantize_pt2": [197, 198, 199], "xnnpackquant": [197, 198, 200], "get_symmetric_quantization_config": [197, 198], "backendconfig": [197, 200], "fake_qu": 197, "embedding_byt": 197, "executorchquant": 197, "prone": [197, 215], "composed_quant": 197, "quantization_cap": 197, "minmax": 197, "exported_model": [197, 198, 199], "dynamic_dim": [197, 198], "xnnpack_quant": [197, 198], "themodel": 197, "fp32_op": 197, "qauntiz": 197, "quantized_linear": 197, "x_int8": 197, "x_scale": 197, "x_zero_point": 197, "weight_int8": 197, "weight_scal": [197, 200], "weight_zero_point": 197, "bias_fp32": 197, "output_scal": 197, "output_zero_point": 197, "x_fp32": 197, "quantized_decompos": 197, "dequantize_per_tensor": 197, "x_i8": 197, "x_quant_min": 197, "x_quant_max": 197, "weight_fp32": 197, "weight_i8": 197, "weight_quant_min": 197, "weight_quant_max": 197, "weight_permut": 197, "permute_copi": 197, "out_fp32": 197, "out_i8": 197, "out_scal": 197, "out_zero_point": 197, "out_quant_min": 197, "out_quant_max": 197, "float32_op": 197, "use_reference_represent": 197, "x_int16": 197, "weight_int16": 197, "acc_int32": 197, "out_dtyp": 197, "bias_scal": 197, "bias_int32": 197, "out_int8": 197, "qmin": 197, "qmax": 197, "pt2e_quantized_model_file_path": 197, "resnet18_pt2e_quant": 197, "quantized_ep": 197, "loaded_quantized_ep": 197, "ptq": [198, 199], "prepare_qat_pt2": [198, 199], "move_exported_model_to_ev": [198, 199], "move_exported_model_to_train": 198, "subgraph": 198, "_native_batch_norm_legit": 198, "cudnn_batch_norm": 198, "num_observer_update_epoch": 198, "num_batch_norm_update_epoch": 198, "num_epochs_between_ev": 198, "subseq": 198, "new_arg": 198, "prepared_model_copi": 198, "checkpoint_": 198, "lesli": [199, 200], "fang": [199, 200], "weiwen": [199, 200], "xia": [199, 200], "x86inductorquant": 199, "spr": 199, "x86_inductor_quant": 199, "xiq": 199, "traced_b": 199, "aten_graph": 199, "get_default_x86_inductor_quantization_config": 199, "is_dynam": [199, 200], "converted_model": 199, "absenc": [199, 229], "mirror": 199, "device_typ": [199, 230, 253], "qconvolut": 199, "qlinear": 199, "conting": 199, "qmaxpool2d": 199, "torchinductor_freez": 199, "example_x86inductorquantizer_pytorch_2_1": 199, "torchbench": [199, 219], "example_x86inductorquantizer_qat": 199, "kimish": 200, "patel": 200, "quantiat": 200, "qnnpackquant": 200, "quantizationspec": 200, "quantizationannot": 200, "bitwidth": 200, "histogramobserv": 200, "dataclass": 200, "input_qspec_map": 200, "output_qspec": 200, "_annot": 200, "matcher": 200, "get_source_partit": 200, "add_partit": 200, "add_nod": 200, "output_nod": 200, "act_quantization_spec": 200, "observer_or_fake_quant_ctr": 200, "input_act_qspec": 200, "output_act_qspec": 200, "input_act0": 200, "input_act1": 200, "quantization_annot": 200, "sharedquantizationspec": 200, "average_pool": 200, "edgeornod": 200, "conv1_out": 200, "conv2_out": 200, "qspec1": 200, "cat_input0": 200, "cat_input1": 200, "share_qparams_with_input_act0_qspec": 200, "fixedqparamsquantizationspec": 200, "act_qspec": 200, "sigmoid_nod": 200, "input_act": 200, "derivedquantizationspec": 200, "derive_qparams_fn": 200, "observerorfakequant": 200, "observerbas": 200, "fakequantizebas": 200, "obejct": 200, "obs_or_fq": 200, "fq": 200, "act_obs_or_fq": 200, "weight_obs_or_fq": 200, "act_scal": 200, "act_zp": 200, "calculate_qparam": 200, "weight_zp": 200, "bias_qspec": 200, "derived_from": 200, "per_tensor_symmetr": 200, "weight_quantization_spec": 200, "backendquant": 200, "quantizationconfig": 200, "get_input_act_qspec": 200, "get_output_act_qspec": 200, "get_weight_qspec": 200, "get_bias_qspec": 200, "relu_nod": 200, "maybe_conv_nod": 200, "conv1d": [200, 207, 247], "recognz": 200, "subgraphmatch": 200, "conv_relu_pattern": 200, "name_node_map": 200, "input_nod": 200, "weight_nod": 200, "bias_nod": 200, "exact_match": 201, "53358561967833": 201, "9280493093186": 201, "927572380751371": 201, "607915310189128": 201, "18846387788653": 201, "91255673766136": 201, "parameter": 201, "elemen": 201, "paramter": 201, "bertoutput": 201, "parametrizedlinear": 201, "fakespars": 201, "layernorm": 201, "elementwise_affin": 201, "59602649006622": 201, "51610004515979": 201, "0237": 201, "0130": 201, "0462": 201, "0272": 201, "0436": 201, "0492": 201, "0844": 201, "0340": 201, "0302": 201, "0350": 201, "0303": 201, "0175": 201, "0529": 201, "0327": 201, "0213": 201, "0258": 201, "0239": 201, "0380": 201, "0562": 201, "0432": 201, "0262": 201, "0227": 201, "0244": 201, "0784": 201, "0761": 201, "0225": 201, "0395": 201, "0684": 201, "0344": 201, "43897824030275": 201, "48718950090766": 201, "621004460379481": 201, "368514601141214": 201, "702805917710066": 201, "244": [201, 226], "19364519417286": 201, "87x": 201, "skip_init": 202, "param1": 202, "some_buff": 202, "to_empti": [202, 244], "intial": 202, "fnet": 203, "___torch_mangle_3": 203, "fnet2": 203, "0107": 203, "0048": 203, "torchscript_freez": 203, "lai": [204, 222], "cccclai": 204, "dhruv": 204, "matani": 204, "dhruvbird": 204, "scripted_modul": [204, 209, 222], "input_image_1": 204, "input_tensor_1": 204, "input_batch_1": 204, "input_image_2": 204, "input_tensor_2": 204, "input_batch_2": 204, "step2": 204, "bundled_model_input": 204, "bundled_model": [204, 209], "bundle_input": [204, 209], "deeplabv3_scripted_with_bundled_input": 204, "macosx_deployment_target": [204, 206], "max_job": 204, "tracing_bas": 204, "model_trac": 204, "model_input_path": 204, "build_yaml_path": 204, "armeabi": 204, "v7a": 204, "v8a": [204, 206, 218, 223], "selected_op_list": [204, 222], "build_pytorch_android": [204, 206, 222], "cmd": 204, "build_lite_interpret": 204, "chenlai": 204, "aar": [204, 206, 208], "xarg": 204, "ls": 204, "lah": 204, "rw": 204, "staff": 204, "13m": 204, "feb": 204, "pytorch_android": [204, 206, 208, 224], "36k": 204, "pytorch_android_torchvis": [204, 222, 224], "gradl": [204, 206, 222, 224, 227], "androidx": [204, 208, 222], "appcompat": [204, 208, 222], "constraintlayout": [204, 222], "testimplement": [204, 222], "junit": [204, 222], "androidtestimplement": [204, 222], "ext": [204, 220, 222, 262, 263], "espresso": [204, 222], "v7": [204, 208], "fbjni": [204, 208, 222], "allproject": [204, 208], "jcenter": [204, 208], "flatdir": 204, "ios_platform": [204, 222], "deintegr": 204, "all_load": 204, "bitcod": 204, "deeplabv3": [204, 222], "deeplabv3_on_android": 204, "42368": 205, "unsuccessfulli": 205, "rummag": 205, "batched_dot": [205, 231], "feature_s": 205, "shenanigin": 205, "feature_vec": 205, "8304": 205, "23475": 205, "basis_vector": 205, "get_vjp": 205, "jacobian_vmap": 205, "performantli": 205, "7786": 205, "grad_sampl": 205, "batch_of_sampl": 205, "vmap_recip": 205, "ivan": [206, 208], "kobzarev": [206, 208], "use_vulkan": 206, "vulkan_wrapp": 206, "use_vulkan_wrapp": 206, "libvulkan": 206, "vulkansdk": 206, "lunarg": 206, "vulkan_sdk": 206, "vulkan_sdk_root": 206, "install_vulkan": 206, "use_vulkan_shaderc_runtim": 206, "android_abi": [206, 208, 218, 223], "build_android": [206, 218, 223], "script_model": 206, "mobilenet2": 206, "32bit": 206, "script_model_vulkan": 206, "optimization_blocklist": 206, "mobileoptimizertyp": 206, "vulkan_automatic_gpu_transf": 206, "is_vulkan_avail": 206, "tensor_vulkan": 206, "tensor_output_vulkan": 206, "tensor_output": 206, "_adaptive_avg_pool2d": 206, "_cat": 206, "hardtanh_": 206, "transpose_": 206, "upsample_nearest2d": 206, "allocatefloatbuff": [206, 223], "fromblob": [206, 223], "mmodul": [206, 222, 223], "test_app": 206, "testapp": [206, 223], "l133": 206, "apploc": 206, "installmbvulkanlocalbasedebug": 206, "mbq": 206, "swiftshad": 206, "tmul": 207, "gen": 207, "3rd": [207, 220], "avx": [207, 220], "vnni": [207, 220], "024": 207, "conv3d": [207, 247], "conv_transpose1d": 207, "conv_transpose3d": 207, "baddbmm": 207, "addbmm": 207, "onednn_verbos": 207, "mkldnn": [207, 219], "verbose_on": 207, "6dbeffbae1f23cbbeae17adb7b5b13f1f37c080": 207, "nthr": 207, "isa": [207, 247], "prim_templ": 207, "prop_kind": 207, "memory_descriptor": 207, "auxiliari": 207, "problem_desc": 207, "exec_tim": 207, "exec": 207, "undef": 207, "src_f32": 207, "f0": 207, "dst_f32": 207, "scratchpad": 207, "2561": 207, "avx512_core_amx_bf16": 207, "forward_train": 207, "src_bf16": 207, "acdb": 207, "wei_bf16": 207, "abcd16b16a2b": 207, "bia_f32": 207, "dst_bf16": 207, "alg": 207, "convolution_direct": 207, "mb7_ic2oc1_ih224oh111kh3sh2dh1ph1_iw224ow111kw3sw2dw1pw1": 207, "628906": 207, "brg": 207, "avx512_core_amx_int8": 207, "src_s8": 207, "wei_s8": 207, "ba16a64b4a": 207, "dst_s8": 207, "1x30522": 207, "30522x768": 207, "1x768": 207, "66382": 207, "r19c": 208, "android_ndk": 208, "3859397": 208, "android_sdk": 208, "android_hom": 208, "gradle_hom": 208, "jdk": [208, 227], "java_hom": 208, "openjdk": 208, "opencv_android_sdk": 208, "registeroper": 208, "cento": 208, "yum": 208, "devel": 208, "libopencv": 208, "nativeapp": 208, "useandroidx": 208, "enablejetifi": 208, "buildscript": 208, "classpath": 208, "maven": [208, 222], "oss": [208, 222], "sonatyp": [208, 222], "extractfornativebuild": 208, "compilesdkvers": 208, "buildtoolsvers": 208, "defaultconfig": 208, "applicationid": 208, "minsdkvers": 208, "targetsdkvers": 208, "versioncod": 208, "versionnam": 208, "externalnativebuild": 208, "dandroid_stl": 208, "_share": 208, "buildtyp": 208, "minifyen": 208, "sourceset": 208, "jnilib": 208, "srcdir": 208, "extractaarfornativebuild": 208, "dolast": 208, "absolutefil": 208, "ziptre": 208, "builddir": 208, "jni": 208, "whentaskad": 208, "dependson": 208, "nexu": 208, "libpytorch_jni": 208, "libfbjni": 208, "stl": 208, "pytorch_nativeapp": 208, "build_dir": 208, "cmake_source_dir": 208, "pytorch_testapp_cpp_dir": 208, "cmake_current_list_dir": 208, "pytorch_testapp_sourc": 208, "pytorch_include_dir": 208, "pytorch_link_dir": 208, "target_compile_opt": 208, "fexcept": 208, "build_subdir": 208, "find_librari": 208, "pytorch_librari": 208, "pytorch_jni": 208, "no_cmake_find_root_path": 208, "fbjni_librari": 208, "endif": 208, "opencv_include_dir": 208, "target_include_directori": 208, "opencv_lib_dir": 208, "opencv_librari": 208, "opencv_java4": 208, "libopencv_java4": 208, "logcat": 208, "torschscript": 208, "androidmanifest": 208, "xml": 208, "xmln": 208, "apk": 208, "allowbackup": 208, "pytorchnativeapp": 208, "supportsrtl": 208, "theme": 208, "darkactionbar": 208, "appcompatact": 208, "fileoutputstream": 208, "inputstream": 208, "outputstream": 208, "assetnam": 208, "getfilesdir": 208, "getabsolutepath": 208, "getasset": 208, "savedinstancest": 208, "modelfileabsolutefilepath": 208, "nativecli": 208, "loadandforwardmodel": 208, "assertfilepath": 208, "nativep": 208, "libpytorch_nativeapp": 208, "modelpath": 208, "cassert": 208, "cmath": 208, "unistd": 208, "alogi": 208, "__android_log_print": 208, "android_log_info": 208, "__va_args__": 208, "alog": 208, "android_log_error": 208, "ostringstream": 208, "c_str": 208, "jitcallguard": 208, "no_autograd_guard": 208, "non_var_guard": 208, "graphoptimizerenabledguard": 208, "no_optimizer_guard": 208, "jnienv": 208, "jclass": 208, "jstring": 208, "jmodelpath": 208, "getstringutfchar": 208, "t_out": 208, "releasestringutfchar": 208, "jniexport": 208, "jint": 208, "jni_onload": 208, "javavm": 208, "vm": [208, 263], "getenv": [208, 231], "jni_version_1_6": 208, "jni_ok": 208, "jni_err": 208, "findclass": 208, "jninativemethod": 208, "ljava": 208, "rc": 208, "registern": 208, "intermix": 208, "assembledebug": 208, "installdebug": 208, "icon": [208, 260, 262], "adb": [208, 218, 223], "grep": 208, "26968": 208, "9484": 208, "1757": 208, "5832": 208, "9144": 208, "8867": 208, "0933": 208, "4004": 208, "3389": 208, "5200": [208, 231], "7625": 208, "5724": 208, "2073": 208, "4613": 208, "2730": 208, "6789": 208, "2247": 208, "2790": 208, "0067": 208, "9266": 208, "6034": 208, "1941": 208, "7021": 208, "5368": 208, "3803": 208, "0188": 208, "2021": [208, 221], "7412": 208, "2257": 208, "5044": 208, "6592": 208, "0826": 208, "0084": 208, "8733": 208, "5435": 208, "1087": 208, "1066": 208, "9926": 208, "1047": 208, "5311": 208, "9178": 208, "5451": 208, "0473": 208, "7571": 208, "3909": 208, "4039": 208, "5085": 208, "2776": 208, "4080": 208, "9203": 208, "3655": 208, "4395": 208, "4467": 208, "9837": 208, "3335": 208, "0445": 208, "8039": 208, "2512": 208, "3122": 208, "6543": 208, "5819": 208, "5680": 208, "6442": 208, "3090": 208, "6197": 208, "0773": 208, "5967": 208, "1105": 208, "0274": 208, "0330": 208, "0124": 208, "8644": 208, "0493": 208, "7633": 208, "9657": 208, "3469": 208, "3159": 208, "0683": 208, "4529": 208, "4559": 208, "7038": 208, "8396": 208, "9716": 208, "5279": 208, "1780": 208, "3849": 208, "4368": 208, "1480": 208, "jacob": 209, "szwejbka": 209, "example_dict": 209, "all_info": 209, "get_bundled_inputs_functions_and_info": 209, "func_nam": 209, "input_func_nam": 209, "get_inputs_function_nam": 209, "func_to_run": 209, "model_funct": 209, "decompress": 209, "ie": 209, "bundle_randn": 209, "deflat": 209, "create_exampl": 209, "deflated_input": 209, "inflatablearg": 209, "randn_lik": 209, "bundle_optional_dict_of_randn": 209, "fmt_fn": 209, "lazo": [210, 211, 255], "eager_runtim": 210, "compiled_runtim": 210, "2437149845064u": 210, "07384741178u": 210, "linearlr": 211, "sched": 211, "total_it": 211, "compiling_optimizer_lr_schedul": 211, "set_device_map": 212, "worker0": 212, "payload": [212, 244], "infiniband": 212, "cma": 212, "comm_mod": 212, "pend": [212, 223, 245], "current_stream": 212, "34x": 212, "3145179748535156": 212, "06867480278015137": 212, "image_classifi": 213, "kitten": 213, "index_to_nam": 213, "infil": 213, "timg": 213, "models_": 213, "render_predict": 213, "prediction_idx": 213, "stridx": 213, "img_class_map": 213, "mapping_file_path": 213, "isfil": 213, "curl": [213, 262], "multipart": 213, "recevi": 213, "285": 213, "iri": [214, 215], "rodrigo": 214, "kumpera": 214, "chien": 214, "chin": 214, "luca": 214, "pasqualin": 214, "adddition": 214, "get_state_dict": 214, "run_fsdp_checkpoint_save_exampl": 214, "sharded_state_dict": 214, "checkpoint_id": 214, "reshard": 214, "set_state_dict": 214, "run_fsdp_checkpoint_load_exampl": 214, "optim_state_dict": 214, "run_checkpoint_load_exampl": 214, "effortlessli": 215, "homogen": 215, "num_node_devic": 215, "shard_rank_list": 215, "shard_group": 215, "current_shard_group": 215, "current_replicate_group": 215, "shard_factor": 215, "replicate_group_rank": 215, "replicate_group": 215, "2d_setup": 215, "mesh_dim_nam": 215, "thru": 215, "get_group": 215, "mesh_dim": 215, "2d_setup_with_device_mesh": 215, "meshshap": 215, "hybrid_shard": 215, "sequanc": 215, "quasi": 216, "hyperbol": 216, "qhm": 216, "qhm_updat": 216, "dp_list": 216, "momentum_buffer_list": 216, "nu": [216, 262], "weight_decay_typ": 216, "d_p": 216, "momentum_buff": 216, "polymorph": 216, "functionalqhm": 216, "params_with_grad": 216, "preserve_format": 216, "functional_optim_map": 216, "remote_params_list": 216, "dist_optim": 216, "annotatedconvbnrelumodel": [218, 223], "prepare_sav": 218, "torchscript_model": [218, 223, 224, 225, 252], "torchscript_model_optim": [218, 223, 224, 225], "model_fus": 218, "bnrelu2d": 218, "build_pytorch_mobil": [218, 222, 223], "dbuild_binari": [218, 223], "input_typ": [218, 223], "6189": 218, "575": 218, "6216": 218, "sunita": 219, "nadamp": 219, "graviton3": 219, "sve": 219, "simd": 219, "graviton2": 219, "bla": 219, "acl": 219, "c7g": 219, "bfloa16": 219, "r7g": 219, "m7g": 219, "4vcpu": 219, "myneuralnetwork": 219, "11008": 219, "mymodel_infer": 219, "813": 219, "255m": 219, "177": 219, "032m": 219, "160u": 219, "162": [219, 231], "054m": 219, "540": 219, "180u": 219, "738m": 219, "201": 219, "955m": 219, "985": 219, "282m": 219, "421m": 219, "043m": 219, "810u": 219, "356m": 219, "179": 219, "388m": 219, "896": 219, "940u": 219, "mmla": 219, "dnnl_default_fpmath_mod": 219, "943": 219, "052": 219, "507m": 219, "167": 219, "653m": 219, "838": 219, "265u": 219, "107": 219, "593m": 219, "358": 219, "643u": 219, "167m": 219, "262": 219, "911m": 219, "060": 219, "533m": 219, "414m": 219, "892m": 219, "307u": 219, "281m": 219, "934m": 219, "670u": 219, "fastmath": 219, "821": 219, "914": 219, "713m": 219, "244m": 219, "711": 219, "220u": 219, "322m": 219, "307": 219, "740u": 219, "094": 219, "495m": 219, "921": 219, "736m": 219, "131m": 219, "441m": 219, "803u": 219, "942m": 219, "144": 219, "186m": 219, "720": 219, "930u": 219, "848": 219, "944": 219, "148m": 219, "141": [219, 231], "309m": 219, "706": 219, "545u": 219, "916m": 219, "720u": 219, "431m": 219, "06": 219, "471m": 219, "951": 219, "170m": 219, "027m": 219, "243m": 219, "143u": 219, "928m": 219, "143": 219, "237m": 219, "185u": 219, "47x": 219, "outweigh": 219, "till": [219, 228], "torch_mkldnn_matmul_min_dim": 219, "958": 219, "612m": 219, "124m": 219, "620u": 219, "951m": 219, "170u": 219, "423m": 219, "034": 219, "691m": 219, "988": 219, "628m": 219, "520m": 219, "945m": 219, "817u": 219, "382m": 219, "136": 219, "910u": 219, "781": 219, "604m": 219, "295": 219, "437m": 219, "477m": 219, "516m": 219, "558": 219, "387u": 219, "708m": 219, "499m": 219, "788": 219, "627m": 219, "982m": 219, "385m": 219, "617u": 219, "932m": 219, "297": 219, "369m": 219, "487m": 219, "038m": 219, "060m": 219, "300u": 219, "013m": 219, "106": 219, "710u": 219, "521m": 219, "750m": 219, "216": 219, "475m": 219, "033m": 219, "110u": 219, "285m": 219, "345m": 219, "725u": 219, "margin": 219, "thp_mem_alloc_en": 219, "321": 219, "069m": 219, "568m": 219, "613m": 219, "602m": 219, "682": 219, "007u": 219, "777m": 219, "082m": 219, "329": 219, "097m": 219, "547m": 219, "325": 219, "115m": 219, "626m": 219, "08x": 219, "avx512": 220, "amx": [220, 221], "xmx": 220, "xpu": 220, "claus": [220, 221, 258], "roialign": 220, "bertmodel": 220, "check_trac": 220, "cache_en": [220, 247], "memoryformat": 220, "channelslast": [220, 223], "intel_ext_pt_cpu": 220, "libpytorch_path": 220, "ldd": 220, "workspac": 220, "cmake_have_libc_pthread": 220, "0x00007f3cf98e0000": 220, "libc10": 220, "0x00007f3cf985a000": 220, "libintel": 220, "0x00007f3cf70fc000": 220, "libtorch_cpu": [220, 246], "0x00007f3ce16ac000": 220, "libdnnl_graph": 220, "0x00007f3cde954000": 220, "mitig": [221, 247], "fc1_drop": 221, "pytorch_fx": 221, "accuracy_criterion": 221, "neural_compressor": 221, "calib_dataload": 221, "q_model": 221, "top1metr": 221, "quant_aware_train": 221, "training_func": 221, "q_func": 221, "dummy_dataset": 221, "dummydataset": 221, "linearrelu": 221, "best_configur": 221, "best_model_weight": 221, "int8_model": 221, "martin": 222, "pytorchstreamread": 222, "regener": 222, "model_psth": 222, "_load_for_lite_interpret": [222, 223], "optimized_scripted_modul": 222, "pytorch_android_lit": 222, "litemoduleload": 222, "getapplicationcontext": 222, "prebuilt": [222, 251], "use_framework": 222, "libtorch_lit": 222, "nullabl": 222, "instancetyp": 222, "initwithfileatpath": 222, "nsstring": 222, "_load_for_mobil": [222, 223], "utf8str": 222, "nslog": 222, "architechtur": 222, "dsp": 223, "calibration_data": 223, "588kb": 223, "nio": 223, "suboptim": 223, "analysisresult": 223, "analyzeimag": 223, "imageproxi": 223, "rotationdegre": 223, "modulefileabsolutefilepath": 223, "minputtensorbuff": 223, "minputtensor": 223, "imageyuv420centercroptofloatbuff": 223, "getimag": 223, "flatbuff": 223, "_use_flatbuff": 223, "jit_model": 223, "ff": 223, "5387594579999999": 223, "038842832999999466": 223, "nake": 223, "rf": 223, "speedbenchark_torch": 223, "speedbenchmark": 223, "121318": 223, "24281": 223, "trace_model": 223, "rubi": 223, "iphonex": 223, "2121": 223, "722447": 223, "762": 223, "mobilenetv2_quant": [224, 225], "hackathon": [224, 225], "xcworkspac": 225, "your_project_nam": 225, "unexpectedli": 226, "path_of_launch": 226, "iteration_n": 226, "brown": 226, "percerntag": 226, "occupi": 226, "jitter": [226, 231], "enrich": 226, "ittsampl": 226, "292820": 226, "iteration_": 226, "basefold": 226, "bash_sourc": 226, "torchscipt": [227, 251], "ota": 228, "incept": 228, "print_model_s": 228, "mdl": 228, "model_dynamic_quant": 228, "model_static_quant": 228, "98mb": 228, "tra": 228, "model_qat": 228, "gradcam": 229, "freepik": 229, "puppi": 229, "dog_58409": 229, "6024": 229, "center_crop": 229, "283": 229, "labrador": 229, "occlud": 229, "attribution_dog": 229, "persian": 229, "attribution_cat": 229, "guidedbackprop": 229, "deeplift": 229, "gradientshap": 229, "forward_func": 229, "pictori": 229, "textual": 229, "vis_typ": 229, "vis_sign": 229, "distractor": 229, "visualize_text": 229, "imdb_torchtext_interpret": 229, "gilbert": 229, "tanner": 229, "gilberttann": 229, "captum_recip": [229, 235], "carilli": 230, "ture": 230, "kepler": 230, "maxwel": 230, "pascal": 230, "modest": 230, "gc": 230, "empty_cach": 230, "reset_max_memory_alloc": 230, "end_timer_and_print": 230, "local_msg": 230, "make_model": 230, "in_siz": 230, "out_siz": 230, "513": 230, "modestli": 230, "underflow": 230, "scaler": 230, "unscal": 230, "use_amp": 230, "unscale_": 230, "max_norm": 230, "bitwis": 230, "rough": 230, "suspect": 230, "docstr": [230, 262, 263], "subregion": 230, "backtrac": 230, "torch_show_cpp_stacktrac": 230, "amp_recip": [230, 235], "tediou": 231, "mistak": 231, "batched_dot_mul_sum": 231, "batched_dot_bmm": 231, "mul_sum": 231, "0x7fb10400d0f0": 231, "379": 231, "0x7fb103d67048": 231, "sub_label": 231, "0x7fb103d54080": 231, "118": 231, "0x7fb16935d2e8": 231, "2775": 231, "0x7fb10400d080": 231, "reliabl": 231, "m0": 231, "274": 231, "748": 231, "432": 231, "22657": 231, "11899": 231, "609": 231, "23098": 231, "27246": 231, "267073": 231, "118823": 231, "189": 231, "2782": 231, "7471": 231, "11874": 231, "173": 231, "7264": 231, "27824": 231, "100060": 231, "121499": 231, "2773": 231, "12833": 231, "6295": 231, "27062": 231, "71804": 231, "120365": 231, "103": 231, "2804": 231, "6764": 231, "11871": 231, "6640": 231, "27592": 231, "73003": 231, "120083": 231, "trim_significant_figur": 231, "callgrindstat": [231, 246], "trip": 231, "ab_test_result": 231, "dot_fn": 231, "ab_result": 231, "36000": 231, "40000": 231, "round_tripped_result": 231, "stark": 231, "fuzzer": 231, "fuzzedparamet": 231, "fuzzedtensor": 231, "parameteralia": 231, "10000000": 231, "k0": 231, "k1": 231, "discontigu": 231, "example_fuzz": 231, "minval": 231, "maxval": 231, "min_el": 231, "max_el": 231, "probability_contigu": 231, "tensor_param": 231, "725": 231, "383": 231, "5039": 231, "1200": [231, 257], "2140": 231, "1296": 231, "41000": 231, "1598": 231, "519": 231, "763": 231, "1082": 231, "op_fuzz": 231, "binaryopfuzz": 231, "473": 231, "12642115": 231, "8192": 231, "4800": 231, "20400": 231, "110000": 231, "400000": 231, "493": 231, "1100": [231, 246], "2440": 231, "870": 231, "2030": 231, "23600": 231, "24000": [231, 246], "62374": 231, "90000": 231, "240372": 231, "16000": 231, "40156": 231, "2670": 231, "opac": 231, "complementari": 231, "insensit": 231, "environment": 231, "batched_dot_src": 231, "batched_dot_mul_sum_v0": 231, "batched_dot_mul_sum_v1": 231, "cpp_lib": 231, "extra_cflag": 231, "extra_include_path": 231, "module_import_str": 231, "67631": 231, "importlib": 231, "spec_from_file_loc": 231, "module_from_spec": 231, "exec_modul": 231, "textwrap": 231, "pretty_print": 231, "machineri": 231, "t_baselin": 231, "stats_v0": 231, "collect_callgrind": 231, "stats_v1": 231, "as_standard": [231, 246], "denois": 231, "ing": 231, "wrap_pybind_function_impl_": 231, "linewidth": 231, "valgrind_wrapp": [231, 246], "timer_interfac": [231, 246], "0x7fb0f06e7630": 231, "2392671": 231, "4367": 231, "rel_with_deb_info": [231, 246], "0x7fb10400d208": 231, "2378978": 231, "functioncount": [231, 246], "0x7fb1000ab358": 231, "0x000000000020d9e0": 231, "0x000000000020db10": 231, "integer_sequ": 231, "0ul": 231, "1ul": 231, "undefinedtensorimpl": 231, "reset_": 231, "5935": 231, "0x000000000022c0e0": 231, "13693": 231, "changing_default_devic": 232, "\u6df1\u5ea6\u5b66\u4e60\u4f7f\u7528\u4eba\u5de5\u795e\u7ecf\u7f51\u7edc": 233, "\u8fd9\u662f\u7531\u8bb8\u591a\u4e92\u8fde\u5355\u5143\u5c42\u7ec4\u6210\u7684\u8ba1\u7b97\u7cfb\u7edf": 233, "\u901a\u8fc7\u5c06\u6570\u636e\u4f20\u9012\u5230\u8fd9\u4e9b\u4e92\u8fde\u5355\u5143": 233, "\u795e\u7ecf\u7f51\u7edc\u80fd\u591f\u5b66\u4e60\u5982\u4f55\u8fd1\u4f3c\u5c06\u8f93\u5165\u8f6c\u6362\u4e3a\u8f93\u51fa\u6240\u9700\u7684\u8ba1\u7b97": 233, "\u53ef\u4ee5\u4f7f\u7528": [233, 246], "\u5305\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": 233, "\u63d0\u4f9b\u4e86\u4f18\u96c5\u8bbe\u8ba1\u7684\u6a21\u5757\u548c\u7c7b\u6765\u5e2e\u52a9\u60a8\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 233, "\u4e2d\u6709\u5c42": 233, "\u4ee5\u53ca\u4e00\u4e2a\u8fd4\u56de": 233, "\u6765\u5b9a\u4e49\u4e00\u4e2a\u7528\u4e8e": 233, "hhttp": 233, "\u7684\u795e\u7ecf\u7f51\u7edc": 233, "\u5982\u679c\u8fd8\u6ca1\u6709\u5b89\u88c5": [233, 240, 241, 242, 249], "\u7684\u8bdd": 233, "\u6211\u4eec\u9700\u8981\u5148\u5b89\u88c5\u5b83": [233, 242, 243, 248, 249], "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u6240\u6709\u5fc5\u8981\u5e93": [233, 236, 240, 241, 242, 243, 248, 249, 250], "\u53ca\u5176\u5b50\u6a21\u5757": [233, 240, 241, 242, 243, 248, 249], "\u6211\u4eec\u7684\u7f51\u7edc\u5c06\u8bc6\u522b\u56fe\u50cf": 233, "\u6211\u4eec\u5c06\u4f7f\u7528pytorch\u5185\u7f6e\u7684\u5377\u79ef\u8fc7\u7a0b": 233, "\u5377\u79ef\u5c06\u6bcf\u4e2a\u56fe\u50cf\u5143\u7d20\u4e0e\u5176\u5c40\u90e8\u90bb\u5c45\u76f8\u52a0": 233, "\u5e76\u7531\u4e00\u4e2a\u5c0f\u77e9\u9635": 233, "\u5185\u6838": 233, "\u52a0\u6743": 233, "\u8be5\u5185\u6838\u53ef\u5e2e\u52a9\u6211\u4eec\u4ece\u8f93\u5165\u56fe\u50cf\u4e2d\u63d0\u53d6\u67d0\u4e9b\u7279\u5f81": 233, "\u5982\u8fb9\u7f18\u68c0\u6d4b": 233, "\u9510\u5229\u5ea6": 233, "\u6a21\u7cca\u5ea6\u7b49": 233, "\u5b9a\u4e49\u6a21\u578b\u7684": 233, "\u7c7b\u6709\u4e24\u4e2a\u8981\u6c42": 233, "\u7b2c\u4e00\u662f\u7f16\u5199\u4e00\u4e2a\u5f15\u7528": 233, "\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d": 233, "\u4f60\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u5168\u8fde\u63a5\u5c42": 233, "\u4f7f\u7528\u5377\u79ef": 233, "\u6211\u4eec\u5c06\u5b9a\u4e49\u6211\u4eec\u7684\u6a21\u578b\u4ee5\u63a5\u53d71\u4e2a\u8f93\u5165\u56fe\u50cf\u901a\u9053": 233, "\u5e76\u8f93\u51fa\u4e0e\u6211\u4eec\u7684\u76ee\u6807\u76f8\u5339\u914d\u768410\u4e2a\u6807\u7b7e": 233, "\u8868\u793a0\u52309\u7684\u6570\u5b57": 233, "\u8fd9\u4e2a\u7b97\u6cd5\u7531\u4f60\u81ea\u5df1\u521b\u5efa": 233, "\u6211\u4eec\u5c06\u9075\u5faa\u6807\u51c6\u7684mnist\u7b97\u6cd5": 233, "\u7b2c\u4e00\u4e2a2d\u5377\u79ef\u5c42": 233, "\u63a5\u53d71\u4e2a\u8f93\u5165\u901a\u9053": 233, "\u56fe\u50cf": 233, "\u8f93\u51fa32\u4e2a\u5377\u79ef\u7279\u5f81": 233, "\u4f7f\u75283x3\u7684\u65b9\u5f62\u6838": 233, "\u7b2c\u4e8c\u4e2a2d\u5377\u79ef\u5c42": 233, "\u63a5\u53d732\u4e2a\u8f93\u5165\u5c42": 233, "\u8f93\u51fa64\u4e2a\u5377\u79ef\u7279\u5f81": 233, "\u8bbe\u8ba1\u4e3a\u786e\u4fdd\u76f8\u90bb\u50cf\u7d20\u8981\u4e48\u5168\u4e3a0": 233, "\u8981\u4e48\u5168\u4e3a\u6fc0\u6d3b": 233, "\u5177\u6709\u4e00\u5b9a\u8f93\u5165\u6982\u7387": 233, "\u7b2c\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42": 233, "\u7b2c\u4e8c\u4e2a\u5168\u8fde\u63a5\u5c42": 233, "\u8f93\u51fa\u6211\u4eec\u768410\u4e2a\u6807\u7b7e": 233, "my_nn": 233, "\u6211\u4eec\u5df2\u7ecf\u5b8c\u6210\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u5b9a\u4e49": 233, "\u73b0\u5728\u6211\u4eec\u5fc5\u987b\u5b9a\u4e49\u6570\u636e\u5982\u4f55\u901a\u8fc7\u5b83": 233, "\u5f53\u4f60\u4f7f\u7528pytorch\u6784\u5efa\u6a21\u578b\u65f6": 233, "\u4f60\u53ea\u9700\u8981\u5b9a\u4e49": 233, "\u5b83\u5c06\u6570\u636e\u4f20\u9012\u5230\u8ba1\u7b97\u56fe": 233, "\u5373\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 233, "\u8fd9\u5c06\u4ee3\u8868\u6211\u4eec\u7684\u524d\u5411\u7b97\u6cd5": 233, "\u51fd\u6570\u4e2d\u4f7f\u7528\u4efb\u4f55\u5f20\u91cf\u64cd\u4f5c": 233, "x\u8868\u793a\u6211\u4eec\u7684\u6570\u636e": 233, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9conv1": 233, "\u5bf9x\u4f7f\u7528\u6574\u6d41\u7ebf\u6027\u6fc0\u6d3b\u51fd\u6570": 233, "\u5bf9x\u8fd0\u884c\u6700\u5927\u6c60\u5316": 233, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9dropout1": 233, "\u5c55\u5e73x": 233, "start_dim": 233, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9": 233, "\u5bf9x\u5e94\u7528softmax": 233, "\u4e3a\u4e86\u786e\u4fdd\u6211\u4eec\u5f97\u5230\u671f\u671b\u7684\u8f93\u51fa": 233, "\u8ba9\u6211\u4eec\u901a\u8fc7\u4e00\u4e9b\u968f\u673a\u6570\u636e\u6d4b\u8bd5\u6211\u4eec\u7684\u6a21\u578b": 233, "\u7b49\u540c\u4e8e\u4e00\u4e2a\u968f\u673a\u768428x28\u56fe\u50cf": 233, "random_data": 233, "\u8fd9\u4e2a\u7ed3\u679c\u5f20\u91cf\u4e2d\u7684\u6bcf\u4e2a\u6570\u5b57\u90fd\u7b49\u540c\u4e8e\u968f\u673a\u5f20\u91cf\u6240\u5173\u8054\u7684\u6807\u7b7e\u7684\u9884\u6d4b": 233, "\u795d\u8d3a\u4f60": [233, 241, 242, 249, 250], "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u5b9a\u4e49\u4e86\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 233, "\u67e5\u770b\u8fd9\u4e9b\u5176\u4ed6\u6559\u7a0b\u4ee5\u7ee7\u7eed\u5b66\u4e60": [233, 242], "\u662f\u4ec0\u4e48": [233, 235, 236, 251], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406": 233, "defining_a_neural_network": [233, 235], "postprocess": 234, "quanitz": 234, "lstm_for_demonstr": 234, "out_dim": 234, "29592": 234, "model_dimens": 234, "sequence_length": 234, "lstm_depth": 234, "_lstm": 234, "float_lstm": 234, "quantized_lstm": 234, "kb": [234, 238], "mileag": 234, "mag1": 234, "hidden2": 234, "mag2": 234, "mag3": 234, "documentaion": 234, "dynamic_quant": [234, 235], "loading_data_recip": [235, 236], "what_is_state_dict": [235, 249], "saving_and_loading_models_for_infer": [235, 242], "custom_dataset_transforms_load": 235, "save_load_across_devic": [235, 240], "saving_and_loading_a_general_checkpoint": [235, 241], "saving_multiple_models_in_one_fil": [235, 243], "warmstarting_model_using_parameters_from_a_different_model": [235, 248], "zeroing_out_gradi": [235, 250], "mobile_perf": 235, "\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": [235, 251], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": [235, 251], "\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 235, "\u521b\u5efa\u795e\u7ecf\u7f51\u7edc": [235, 251], "\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": [235, 251], "timer\u5feb\u901f\u5165\u95e8": 235, "sphx_glr_recipes_recipes_zeroing_out_gradi": 235, "\u4e2d\u6e05\u96f6\u68af\u5ea6": [235, 250], "\u63d0\u4f9b\u4e86\u5e7f\u6cdb\u7684\u795e\u7ecf\u7f51\u7edc\u6784\u5efa\u6a21\u5757": 236, "\u5e76\u62e5\u6709\u7b80\u5355": 236, "\u76f4\u89c2\u4e14\u7a33\u5b9a\u7684": 236, "pytorch\u5305\u542b\u7528\u4e8e\u51c6\u5907\u548c\u52a0\u8f7d\u5e38\u89c1\u6570\u636e\u96c6\u7684\u5de5\u5177\u5305": 236, "\u4e3a\u8bad\u7ec3\u6a21\u578b\u63d0\u4f9b\u6570\u636e": 236, "\u6570\u636e\u52a0\u8f7d\u5de5\u5177\u7684\u6838\u5fc3\u7c7b\u4e3a": 236, "\u5b83\u8868\u793a\u6570\u636e\u96c6\u4e0a\u7684\u4e00\u4e2a": 236, "\u53ef\u8fed\u4ee3\u5bf9\u8c61": 236, "\u63d0\u4f9b\u4e86\u5185\u7f6e\u7684\u9ad8\u8d28\u91cf\u6570\u636e\u96c6": 236, "\u53ef\u901a\u8fc7": 236, "\u4f7f\u7528\u8fd9\u4e9b\u6570\u636e\u96c6\u53ef\u901a\u8fc7": 236, "\u672a\u6765\u4f1a\u6301\u7eed\u65b0\u589e": 236, "yesno": 236, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u6709\u6548\u5730\u5c06\u6570\u636e\u4ece": 236, "\u52a0\u8f7d\u5230": 236, "\u5b89\u88c5": 236, "\u6211\u4eec\u9700\u8981\u5b89\u88c5": 236, "\u4ee5\u8bbf\u95ee\u8be5\u6570\u636e\u96c6": 236, "\u5982\u679c\u5728googl": 236, "\u8bf7\u53d6\u6d88\u6ce8\u91ca\u4ee5\u4e0b\u884c": 236, "\u6839\u636e\u4f7f\u7528\u7684\u5185\u7f6e\u6570\u636e\u96c6": 236, "\u60a8\u8fd8\u53ef\u4ee5\u5b89\u88c5\u5e76\u5bfc\u5165": 236, "\u6570\u636e\u96c6\u5305\u542b\u4e00\u4e2a\u4eba\u8bf4\u5e0c\u4f2f\u6765\u8bed": 236, "\u5426": 236, "\u768460\u4e2a\u5f55\u97f3": 236, "\u6bcf\u4e2a\u5f55\u97f3\u957f\u5ea6\u4e3a8\u4e2a\u5355\u8bcd": 236, "\u66f4\u591a\u4fe1\u606f": 236, "\u521b\u5efa\u4e86\u4e00\u4e2a": 236, "openslr": 236, "waves_yesno": 236, "folder_in_arch": 236, "\u6570\u636e\u96c6\u4e2d\u7684\u6bcf\u4e2a\u6761\u76ee\u90fd\u662f\u4e00\u4e2a\u5143\u7ec4": 236, "\u5f62\u5f0f\u4e3a": 236, "\u6ce2\u5f62": 236, "\u91c7\u6837\u7387": 236, "\u60a8\u5fc5\u987b\u4e3a": 236, "\u6570\u636e\u96c6\u8bbe\u7f6e\u4e00\u4e2a": 236, "\u76ee\u5f55": 236, "\u7528\u4e8e\u5b58\u653e\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u636e\u96c6": 236, "\u5176\u4ed6\u53c2\u6570\u662f\u53ef\u9009\u7684": 236, "\u663e\u793a\u4e86\u5b83\u4eec\u7684\u9ed8\u8ba4\u503c": 236, "\u4ee5\u4e0b\u662f\u5176\u4ed6\u53c2\u6570\u7684\u4e00\u4e9b\u6709\u7528\u4fe1\u606f": 236, "\u5982\u679c\u4e3atrue": 236, "\u5219\u4ece\u4e92\u8054\u7f51\u4e0b\u8f7d\u6570\u636e\u96c6\u5e76\u5c06\u5176\u653e\u5728root\u76ee\u5f55\u4e2d": 236, "\u5982\u679c\u6570\u636e\u96c6\u5df2\u4e0b\u8f7d": 236, "\u5219\u4e0d\u4f1a\u91cd\u65b0\u4e0b\u8f7d": 236, "\u8ba9\u6211\u4eec\u8bbf\u95ee": 236, "\u4e2d\u7684\u4e00\u4e2a\u6570\u636e\u70b9\u662f\u4e00\u4e2a\u5143\u7ec4": 236, "\u5176\u4e2d\u6807\u7b7e\u662f\u4e00\u4e2a\u6574\u6570\u5217\u8868": 236, "1\u8868\u793aye": 236, "0\u8868\u793ano": 236, "yesno_data": 236, "\u9009\u62e9\u6570\u636e\u70b9\u7f16\u53f73": 236, "\u7684\u793a\u4f8b": 236, "waveform": 236, "sample_r": 236, "nlabel": 236, "\u5728\u5b9e\u8df5\u4e2d\u4f7f\u7528\u8fd9\u4e9b\u6570\u636e\u65f6": 236, "\u6700\u597d\u5c06\u6570\u636e\u5212\u5206\u4e3a": 236, "\u6570\u636e\u96c6\u548c": 236, "\u8fd9\u53ef\u786e\u4fdd\u60a8\u6709\u672a\u4f7f\u7528\u7684\u6570\u636e\u6765\u6d4b\u8bd5\u6a21\u578b\u7684\u6027\u80fd": 236, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u8bbf\u95ee\u6570\u636e\u96c6": 236, "\u6211\u4eec\u5fc5\u987b\u901a\u8fc7": 236, "\u4f20\u9012\u5b83": 236, "\u5c06\u6570\u636e\u96c6\u548c\u91c7\u6837\u5668\u7ec4\u5408\u5728\u4e00\u8d77": 236, "\u8fd4\u56de\u6570\u636e\u96c6\u4e0a\u7684\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 236, "\u6211\u4eec\u7684\u6570\u636e\u73b0\u5728\u53ef\u4ee5\u4f7f\u7528": 236, "\u8fdb\u884c\u8fed\u4ee3": 236, "\u5728\u5f00\u59cb\u8bad\u7ec3\u6a21\u578b\u65f6": 236, "\u8fd9\u5c06\u662f\u5fc5\u9700\u7684": 236, "\u60a8\u4f1a\u6ce8\u610f\u5230": 236, "\u5bf9\u8c61\u4e2d\u7684\u6bcf\u4e2a\u6570\u636e\u6761\u76ee\u90fd\u8f6c\u6362\u4e3a\u4e00\u4e2a\u5f20\u91cf": 236, "\u5176\u4e2d\u5305\u542b\u8868\u793a\u6ce2\u5f62": 236, "\u91c7\u6837\u7387\u548c\u6807\u7b7e\u7684\u5f20\u91cf": 236, "\u60a8\u53ef\u4ee5\u9009\u62e9\u53ef\u89c6\u5316\u6570\u636e": 236, "\u4ee5\u8fdb\u4e00\u6b65\u4e86\u89e3": 236, "\u795d\u8d3a\u60a8": [236, 240, 243, 248], "\u60a8\u5df2\u6210\u529f\u5728pytorch\u4e2d\u52a0\u8f7d\u6570\u636e": 236, "\u67e5\u770b\u8fd9\u4e9b\u5176\u4ed6\u6559\u7a0b": [236, 248, 249, 250], "\u7ee7\u7eed\u60a8\u7684\u5b66\u4e60": [236, 248], "\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc": 236, "pytorch\u4e2d\u7684state_dict": 236, "mikayla": [237, 244], "gawarecki": [237, 244], "somemodul": 237, "meta_m": 237, "undesir": 237, "upfront": 237, "my_special_routin": 237, "fancier": 237, "my_processing_funct": 237, "processed_t": 237, "new_m": 237, "param_in_model": 237, "param_in_state_dict": 237, "set_swap_module_params_on_convers": [237, 244], "swap_tensor": 237, "module_load_state_dict_tip": 237, "model_infer": 238, "_fork": 238, "cpu_time_tot": 238, "509m": 238, "503m": 238, "931m": 238, "597m": 238, "700m": 238, "585m": 238, "_convolut": 238, "450m": 238, "mkldnn_convolut": 238, "838m": 238, "114m": 238, "556m": 238, "693m": 238, "_batch_norm_impl_index": 238, "482m": 238, "724": 238, "100u": 238, "native_batch_norm": 238, "229m": 238, "109m": 238, "705": 238, "450u": 238, "332": 238, "631m": 238, "286u": 238, "668m": 238, "292m": 238, "988u": 238, "549m": 238, "group_by_input_shap": 238, "008m": 238, "956m": 238, "909m": 238, "834m": 238, "332m": 238, "303m": 238, "273m": 238, "233m": 238, "751m": 238, "occurr": 238, "666m": 238, "484m": 238, "_convolution_nogroup": 238, "thnn_conv2d": 238, "thnn_conv2d_forward": 238, "im2col_kernel": 238, "844m": 238, "sgemm_32x32x32_nn": 238, "206m": 238, "sgemm_32x32x32_nn_vec": 238, "093m": 238, "015m": 238, "self_cpu_memory_usag": 238, "max_pool2d_with_indic": 238, "572": 238, "resize_": 238, "064m": 238, "cpu_memory_usag": 238, "self_cuda_time_tot": 238, "439": 238, "_conv_forward": 238, "1051": 238, "_call_impl": 238, "016m": 238, "659m": 238, "trace_": 238, "profiler_recip": 238, "t_larg": 239, "fw_hook": 239, "reasoning_about_shap": 239, "\u60a8\u53ef\u80fd\u9700\u8981\u5728\u4e0d\u540c\u7684\u8bbe\u5907\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u795e\u7ecf\u7f51\u7edc\u6a21\u578b": 240, "\u4f7f\u7528pytorch\u5728\u4e0d\u540c\u8bbe\u5907\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u662f\u76f8\u5bf9\u76f4\u63a5\u7684": 240, "\u6211\u4eec\u5c06\u5c1d\u8bd5\u5728cpu\u548cgpu\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 240, "\u4e3a\u4e86\u8ba9\u672c\u6559\u7a0b\u4e2d\u7684\u6bcf\u4e2a\u4ee3\u7801\u5757\u90fd\u80fd\u6b63\u786e\u8fd0\u884c": 240, "\u60a8\u5fc5\u987b\u5148\u5c06\u8fd0\u884c\u73af\u5883\u5207\u6362\u5230": 240, "\u6216\u66f4\u9ad8": 240, "\u5b8c\u6210\u540e": 240, "\u6211\u4eec\u9700\u8981\u5b89\u88c5\u5b83": [240, 241], "\u4fdd\u5b58\u548c\u52a0\u8f7d": 240, "\u4e3a\u4e86\u6f14\u793a": [240, 242, 243, 249], "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a\u7528\u4e8e\u8bad\u7ec3\u56fe\u50cf\u7684\u795e\u7ecf\u7f51\u7edc": [240, 241, 242, 243, 248, 249], "\u8981\u4e86\u89e3\u66f4\u591a\u4fe1\u606f": [240, 241, 242, 243, 248, 249, 250], "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u7684\u6559\u7a0b": [240, 242, 243, 248, 249], "\u5f53\u5728cpu\u4e0a\u52a0\u8f7d\u4f7f\u7528gpu\u8bad\u7ec3\u7684\u6a21\u578b\u65f6": 240, "\u8bf7\u5c06": 240, "\u51fd\u6570\u7684": 240, "\u6307\u5b9a\u4fdd\u5b58\u8def\u5f84": [240, 243, 248], "\u5f20\u91cf\u5e95\u5c42\u7684\u5b58\u50a8\u5c06\u4f7f\u7528": 240, "\u53c2\u6570\u52a8\u6001\u91cd\u65b0\u6620\u5c04\u5230cpu\u8bbe\u5907": 240, "\u5f53\u5728gpu\u4e0a\u52a0\u8f7d\u4f7f\u7528gpu\u8bad\u7ec3\u548c\u4fdd\u5b58\u7684\u6a21\u578b\u65f6": 240, "\u53ea\u9700\u4f7f\u7528": 240, "\u5c06\u521d\u59cb\u5316\u7684\u6a21\u578b\u8f6c\u6362\u4e3acuda\u4f18\u5316\u6a21\u578b": 240, "\u8bf7\u786e\u4fdd\u5bf9\u6240\u6709\u6a21\u578b\u8f93\u5165\u4f7f\u7528": 240, "\u4e3a\u6a21\u578b\u51c6\u5907\u6570\u636e": 240, "\u4f1a\u8fd4\u56de": 240, "\u5728gpu\u4e0a\u7684\u65b0\u526f\u672c": 240, "\u5b83\u4e0d\u4f1a\u8986\u76d6": 240, "\u8bf7\u8bb0\u4f4f\u624b\u52a8\u8986\u76d6\u5f20\u91cf": 240, "\u5f53\u5728gpu\u4e0a\u52a0\u8f7d\u4f7f\u7528cpu\u8bad\u7ec3\u548c\u4fdd\u5b58\u7684\u6a21\u578b\u65f6": 240, "\u8bf7\u5728": 240, "\u51fd\u6570\u4e2d\u5c06": [240, 248], "\u53c2\u6570\u8bbe\u7f6e\u4e3a": [240, 248], "\u5c06\u6a21\u578b\u52a0\u8f7d\u5230\u7ed9\u5b9a\u7684gpu\u8bbe\u5907": 240, "\u5c06\u6a21\u578b\u7684\u53c2\u6570\u5f20\u91cf\u8f6c\u6362\u4e3acuda\u5f20\u91cf": 240, "\u8fd8\u8981\u786e\u4fdd\u5bf9\u6240\u6709\u6a21\u578b\u8f93\u5165\u4f7f\u7528": 240, "\u4e3acuda\u4f18\u5316\u7684\u6a21\u578b\u51c6\u5907\u6570\u636e": 240, "\u9009\u62e9\u60a8\u60f3\u7528\u7684gpu\u8bbe\u5907\u7f16\u53f7": 240, "\u662f\u4e00\u4e2a\u6a21\u578b\u5305\u88c5\u5668": 240, "\u53ef\u4ee5\u542f\u7528\u5e76\u884cgpu\u5229\u7528": 240, "\u8981\u901a\u7528\u5730\u4fdd\u5b58": 240, "\u8bf7\u4fdd\u5b58": 240, "\u8fd9\u6837": 240, "\u60a8\u5c31\u53ef\u4ee5\u7075\u6d3b\u5730\u5c06\u6a21\u578b\u52a0\u8f7d\u5230\u4efb\u4f55\u8bbe\u5907": 240, "\u52a0\u8f7d\u5230\u4efb\u4f55\u60a8\u60f3\u8981\u7684\u8bbe\u5907": 240, "\u60a8\u5df2\u6210\u529f\u5728pytorch\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 240, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9\u6a21\u578b\u7528\u4e8e\u63a8\u7406\u6216\u6062\u590d\u8bad\u7ec3\u53ef\u4ee5\u5e2e\u52a9\u4f60\u4ece\u4e0a\u6b21\u79bb\u5f00\u7684\u5730\u65b9\u7ee7\u7eed": 241, "\u5f53\u4fdd\u5b58\u901a\u7528\u68c0\u67e5\u70b9\u65f6": 241, "\u4f60\u5fc5\u987b\u4fdd\u5b58\u4e0d\u4ec5\u4ec5\u662f\u6a21\u578b\u7684": 241, "\u540c\u65f6\u4e5f\u5f88\u91cd\u8981\u4fdd\u5b58\u4f18\u5316\u5668\u7684": 241, "\u56e0\u4e3a\u5b83\u5305\u542b\u4e86\u5728\u6a21\u578b\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u66f4\u65b0\u7684\u7f13\u51b2\u533a\u548c\u53c2\u6570": 241, "\u6839\u636e\u4f60\u81ea\u5df1\u7684\u7b97\u6cd5": 241, "\u4f60\u53ef\u80fd\u8fd8\u9700\u8981\u4fdd\u5b58\u4f60\u79bb\u5f00\u65f6\u7684": 241, "\u6700\u65b0\u8bb0\u5f55\u7684\u8bad\u7ec3\u635f\u5931": 241, "\u5916\u90e8\u7684": 241, "\u5c42\u7b49\u7b49": 241, "\u8981\u4fdd\u5b58\u591a\u4e2a\u68c0\u67e5\u70b9": 241, "\u4f60\u5fc5\u987b\u5c06\u5b83\u4eec\u7ec4\u7ec7\u5728\u4e00\u4e2a\u5b57\u5178\u4e2d": 241, "\u6765\u5e8f\u5217\u5316\u8fd9\u4e2a\u5b57\u5178": 241, "\u4e00\u4e2a\u5e38\u89c1\u7684": 241, "\u7ea6\u5b9a\u662f\u4f7f\u7528": 241, "\u6587\u4ef6\u6269\u5c55\u540d\u6765\u4fdd\u5b58\u8fd9\u4e9b\u68c0\u67e5\u70b9": 241, "\u8981\u52a0\u8f7d\u8fd9\u4e9b\u9879\u76ee": 241, "\u9996\u5148\u521d\u59cb\u5316\u6a21\u578b\u548c\u4f18\u5316\u5668": [241, 243], "\u5728\u672c\u5730\u52a0\u8f7d\u5b57\u5178": [241, 243], "\u4ece\u8fd9\u91cc\u5f00\u59cb": [241, 243], "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u5730\u67e5\u8be2\u5b57\u5178\u6765\u8f7b\u677e\u8bbf\u95ee\u4fdd\u5b58\u7684\u9879\u76ee": 241, "\u5c31\u50cf\u4f60\u671f\u671b\u7684\u90a3\u6837": 241, "\u6211\u4eec\u5c06\u63a2\u7d22\u5982\u4f55\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u68c0\u67e5\u70b9": 241, "\u5bf9\u4e8e\u8fd9\u4e2a\u793a\u4f8b": 241, "\u4e3a\u4e86\u793a\u4f8b": 241, "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u7684\u793a\u4f8b": 241, "\u6536\u96c6\u6240\u6709\u76f8\u5173\u4fe1\u606f\u5e76\u6784\u5efa\u5b57\u5178": [241, 243], "\u9644\u52a0\u4fe1\u606f": 241, "\u7136\u540e\u5728\u672c\u5730\u52a0\u8f7d\u5b57\u5178": [241, 243], "\u6216\u8005": [241, 246], "\u4f60\u5fc5\u987b\u8c03\u7528model": 241, "\u6765\u5c06dropout\u548c\u6279\u5f52\u4e00\u5316\u5c42\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 241, "\u7136\u540e\u624d\u80fd\u8fd0\u884c\u63a8\u7406": 241, "\u5c06\u4f1a\u5f97\u5230\u4e0d\u4e00\u81f4\u7684\u63a8\u7406\u7ed3\u679c": 241, "\u5982\u679c\u4f60\u5e0c\u671b\u6062\u590d\u8bad\u7ec3": 241, "\u4ee5\u786e\u4fdd\u8fd9\u4e9b\u5c42\u5904\u4e8e\u8bad\u7ec3\u6a21\u5f0f": [241, 243], "\u4f60\u5df2\u7ecf\u6210\u529f\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u4e00\u4e2a\u901a\u7528\u68c0\u67e5\u70b9": 241, "\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u6709\u4e24\u79cd\u65b9\u6cd5": 242, "\u7b2c\u4e00\u79cd\u662f\u4fdd\u5b58\u548c\u52a0\u8f7d": 242, "\u7b2c\u4e8c\u79cd\u662f\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b": 242, "\u51fd\u6570\u4fdd\u5b58\u6a21\u578b\u7684": 242, "\u4e3a\u540e\u7eed\u6062\u590d\u6a21\u578b\u63d0\u4f9b\u8f83\u5927\u7684\u7075\u6d3b\u6027": 242, "\u4fdd\u5b58\u6a21\u578b\u7684\u63a8\u8350\u4f7f\u7528\u6b64\u65b9\u6cd5": 242, "\u56e0\u4e3a\u53ea\u9700\u8981\u4fdd\u5b58\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u7684\u5b66\u4e60\u53c2\u6570": 242, "\u5f53\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b\u65f6": 242, "\u4f60\u4f7f\u7528python": 242, "\u6a21\u5757\u4fdd\u5b58\u6574\u4e2a\u6a21\u5757": 242, "\u4f7f\u7528\u8fd9\u79cd\u65b9\u6cd5\u8bed\u6cd5\u6700\u76f4\u89c2": 242, "\u4ee3\u7801\u91cf\u6700\u5c11": 242, "\u4f46\u8fd9\u79cd\u65b9\u6cd5\u7684\u7f3a\u70b9\u662f\u5e8f\u5217\u5316\u7684\u6570\u636e\u4e0e\u4fdd\u5b58\u6a21\u578b\u65f6\u4f7f\u7528\u7684\u7279\u5b9a\u7c7b\u548c\u76ee\u5f55\u7ed3\u6784\u7ed1\u5b9a\u5728\u4e00\u8d77": 242, "\u539f\u56e0\u662fpickle\u4e0d\u4fdd\u5b58\u6a21\u578b\u7c7b\u672c\u8eab": 242, "\u800c\u662f\u4fdd\u5b58\u5305\u542b\u8be5\u7c7b\u7684\u6587\u4ef6\u7684\u8def\u5f84": 242, "\u8be5\u8def\u5f84\u5728\u52a0\u8f7d\u65f6\u4f7f\u7528": 242, "\u5f53\u5728\u5176\u4ed6\u9879\u76ee\u4e2d\u4f7f\u7528\u6216\u91cd\u6784\u540e": 242, "\u4ee3\u7801\u53ef\u80fd\u4f1a\u51fa\u73b0\u5404\u79cd\u5f02\u5e38\u5bfc\u81f4\u7a0b\u5e8f\u4e2d\u65ad": 242, "\u6211\u4eec\u5c06\u5c55\u793a\u4e24\u79cd\u65b9\u5f0f\u5982\u4f55\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 242, "\u8ba9\u6211\u4eec\u53ea\u4f7f\u7528": 242, "\u6765\u4fdd\u5b58\u548c\u52a0\u8f7d\u6211\u4eec\u7684\u6a21\u578b": 242, "\u8def\u5f84": 242, "state_dict_model": 242, "\u901a\u5e38\u4f7f\u7528": 242, "\u6587\u4ef6\u6269\u5c55\u540d\u6765\u4fdd\u5b58\u6a21\u578b": 242, "\u51fd\u6570\u63a5\u53d7\u4e00\u4e2a\u5b57\u5178\u5bf9\u8c61": 242, "\u800c\u4e0d\u662f\u4fdd\u5b58\u5bf9\u8c61\u7684\u8def\u5f84": 242, "\u8fd9\u610f\u5473\u7740\u4f60\u5fc5\u987b\u5148\u53cd\u5e8f\u5217\u5316\u4fdd\u5b58\u7684state_dict": 242, "\u7136\u540e\u518d\u4f20\u9012\u7ed9": 242, "\u4e0d\u80fd\u4f7f\u7528": 242, "\u6765\u52a0\u8f7d": 242, "\u8fd8\u8981\u8bb0\u4f4f": 242, "\u5728\u8fd0\u884c\u63a8\u7406\u4e4b\u524d": [242, 243], "\u4f60\u5fc5\u987b\u8c03\u7528": 242, "\u5c06dropout\u548cbatch": 242, "\u5426\u5219\u5c06\u5bfc\u81f4\u63a8\u7406\u7ed3\u679c\u4e0d\u4e00\u81f4": [242, 243], "\u73b0\u5728\u8ba9\u6211\u4eec\u5c1d\u8bd5\u5c06\u6574\u4e2a\u6a21\u578b\u8fdb\u884c\u4fdd\u5b58\u548c\u52a0\u8f7d": 242, "entire_model": 242, "\u540c\u6837\u8981\u8bb0\u4f4f\u5728\u8fd0\u884c\u63a8\u7406\u4e4b\u524d\u8c03\u7528": 242, "\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 242, "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u7528\u4e8e\u63a8\u7406\u7684\u6a21\u578b": 242, "pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 242, "pytorch\u4e2d\u5c06\u591a\u4e2a\u6a21\u578b\u4fdd\u5b58\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d": 242, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 243, "\u53ef\u4ee5\u5e2e\u52a9\u60a8\u91cd\u7528\u4e4b\u524d\u8bad\u7ec3\u8fc7\u7684\u6a21\u578b": 243, "\u5f53\u4fdd\u5b58\u7531\u591a\u4e2a": 243, "\u7ec4\u6210\u7684\u6a21\u578b\u65f6": 243, "\u4f8b\u5982\u751f\u6210\u5bf9\u6297\u7f51\u7edc": 243, "\u5e8f\u5217\u5230\u5e8f\u5217\u6a21\u578b\u6216\u6a21\u578b\u96c6\u5408\u65f6": 243, "\u60a8\u5fc5\u987b\u4fdd\u5b58\u6bcf\u4e2a\u6a21\u578b\u7684state_dict\u548c\u76f8\u5e94\u7684\u4f18\u5316\u5668": 243, "\u60a8\u8fd8\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u5730\u5c06\u5176\u9644\u52a0\u5230\u5b57\u5178\u4e2d\u6765\u4fdd\u5b58\u4efb\u4f55\u53ef\u80fd\u6709\u52a9\u4e8e\u6062\u590d\u8bad\u7ec3\u7684\u5176\u4ed6\u9879\u76ee": 243, "\u8981\u52a0\u8f7d\u6a21\u578b": 243, "\u60a8\u53ef\u4ee5\u50cf\u671f\u671b\u7684\u90a3\u6837\u7b80\u5355\u5730\u67e5\u8be2\u5b57\u5178\u6765\u8f7b\u677e\u8bbf\u95ee\u4fdd\u5b58\u7684\u9879\u76ee": 243, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u4f7f\u7528pytorch\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u591a\u4e2a\u6a21\u578b": 243, "\u5982\u679c\u5c1a\u672a\u5b89\u88c5": [243, 248, 250], "\u6784\u5efa\u4e24\u4e2a\u53d8\u91cf\u7528\u4e8e\u6700\u7ec8\u4fdd\u5b58\u6a21\u578b": 243, "neta": [243, 248], "netb": [243, 248], "\u4e3a\u6211\u4eec\u521b\u5efa\u7684\u6bcf\u4e2a\u6a21\u578b\u6784\u5efa\u4f18\u5316\u5668": 243, "\u8bb0\u4f4f\u9996\u5148\u521d\u59cb\u5316\u6a21\u578b\u548c\u4f18\u5316\u5668": 243, "optimmodela": 243, "optimmodelb": 243, "\u60a8\u5fc5\u987b\u8c03\u7528": 243, "\u5c42\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 243, "\u5982\u679c\u60a8\u5e0c\u671b\u6062\u590d\u8bad\u7ec3": 243, "\u8bf7\u8c03\u7528": 243, "\u60a8\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u591a\u4e2a\u6a21\u578b": 243, "hereaft": 244, "t2": 244, "__slots__": 244, "pertin": 244, "__torch_dispatch__": 244, "new_param": 244, "myquantizedlinearweight": 244, "__new__": 244, "_make_wrapper_subclass": 244, "storage_offset": 244, "_to_copi": 244, "new_elem": 244, "op_tabl": 244, "param_nam": 244, "__setattr__": 244, "module_load": 244, "__torch_function__": 244, "param_kei": 244, "custom_torch_funct": 244, "dest": 244, "disabletorchfunctionsubclass": 244, "scalar_valu": 245, "walltim": 245, "tfevent": 245, "tensorboard_with_pytorch": 245, "\u6211\u4eec\u5c06\u4ecb\u7ecd": 246, "\u7684\u4e3b\u8981api": 246, "timer\u57fa\u4e8e": 246, "\u5e76\u505a\u4e86\u4e00\u4e9bpytorch\u7279\u5b9a\u7684\u4fee\u6539": 246, "\u672c\u6559\u7a0b\u4e0d\u8981\u6c42\u8bfb\u8005\u719f\u6089\u5185\u7f6e\u7684": 246, "\u4f46\u5047\u8bbe\u8bfb\u8005\u719f\u6089\u6027\u80fd\u5de5\u4f5c\u7684\u57fa\u7840\u77e5\u8bc6": 246, "\u6709\u5173\u66f4\u5168\u9762\u7684\u6027\u80fd\u8c03\u4f18\u6559\u7a0b": 246, "\u5185\u5bb9": 246, "\u4f7f\u7528callgrind\u8fdb\u884ca": 246, "\u7528\u4e8e\u5b9a\u4e49\u4efb\u52a1": 246, "\u5c06\u5728\u5faa\u73af\u4e2d\u8fd0\u884c\u5e76\u8ba1\u65f6\u7684\u8ba1\u7b97": 246, "\u5c06\u5728\u8c03\u7528\u6d4b\u91cf\u5faa\u73af\u4e4b\u524d\u8fd0\u884c": 246, "\u7528\u4e8e\u586b\u5145": 246, "\u6240\u9700\u7684\u4efb\u4f55\u72b6\u6001": 246, "\u4ece\u5916\u90e8\u4f5c\u7528\u57df\u4f20\u9012\u53d8\u91cf": 246, "\u63a7\u5236pytorch\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570": 246, "\u9ed8\u8ba4\u503c": 246, "\u6b64\u65b9\u6cd5\u5c06\u5904\u7406\u8bf8\u5982\u9009\u62e9\u5408\u9002\u7684\u91cd\u590d\u6b21\u6570": 246, "\u56fa\u5b9a\u7ebf\u7a0b\u6570\u4ee5\u53ca\u63d0\u4f9b\u7ed3\u679c\u7684\u65b9\u4fbf\u8868\u793a\u7b49\u7ec6\u8282": 246, "measurement\u5bf9\u8c61\u5b58\u50a8\u591a\u6b21\u91cd\u590d\u7684\u7ed3\u679c": 246, "\u5e76\u63d0\u4f9b\u5404\u79cd\u5b9e\u7528\u529f\u80fd": 246, "0x7f1929a38ed0": 246, "iqr": 246, "424": 246, "cpp_timer": 246, "0x7f192b019ed0": 246, "\u4e0d\u51fa\u6240\u6599": 246, "\u4ee3\u7801\u7247\u6bb5\u7684\u901f\u5ea6\u66f4\u5feb": 246, "\u53d8\u5316\u4e5f\u66f4\u5c0f": 246, "\u4e3a\u4e86\u6df1\u5165\u8c03\u67e5": 246, "\u5c01\u88c5\u4e86": 246, "\u4ee5\u6536\u96c6\u6307\u4ee4\u8ba1\u6570": 246, "\u8fd9\u4e9b\u6307\u4ee4\u8ba1\u6570\u975e\u5e38\u6709\u7528": 246, "\u56e0\u4e3a\u5b83\u4eec\u63d0\u4f9b\u4e86\u7ec6\u7c92\u5ea6\u548c\u786e\u5b9a\u6027\u7684": 246, "\u6216\u5728python\u7684\u60c5\u51b5\u4e0b\u566a\u58f0\u5f88\u4f4e\u7684": 246, "\u89c1\u89e3": 246, "\u8bf4\u660e\u4e86\u4ee3\u7801\u7247\u6bb5\u662f\u5982\u4f55\u8fd0\u884c\u7684": 246, "0x7f1929a35850": 246, "563600": 246, "\u7684\u5b57\u7b26\u4e32\u8868\u793a\u5f62\u5f0f\u7c7b\u4f3c\u4e8e": 246, "\u662f\u4e00\u4e2apython\u6982\u5ff5": 246, "\u79fb\u9664\u4e86\u5728cpython\u89e3\u91ca\u5668\u4e2d\u5df2\u77e5\u7684\u566a\u58f0\u8c03\u7528": 246, "\u4e3a\u4e86\u8fdb\u884c\u66f4\u8be6\u7ec6\u7684\u5206\u6790": 246, "\u6211\u4eec\u9700\u8981\u67e5\u770b\u7279\u5b9a\u7684\u8c03\u7528": 246, "\u8fd4\u56de\u4e00\u4e2a": 246, "\u4ee5\u4fbf\u4e8e\u6b64\u64cd\u4f5c": 246, "\u4ece\u6982\u5ff5\u4e0a\u8bb2": 246, "\u53ef\u4ee5\u88ab\u89c6\u4e3a\u4e00\u4e2a\u5e26\u6709\u4e00\u4e9b\u5b9e\u7528\u65b9\u6cd5\u7684\u6210\u5bf9\u5143\u7ec4": 246, "\u5176\u4e2d\u6bcf\u4e00\u5bf9\u90fd\u662f": 246, "\u6307\u4ee4\u6570\u91cf": 246, "\u6587\u4ef6\u8def\u5f84\u548c\u51fd\u6570\u540d\u79f0": 246, "\u5173\u4e8e\u8def\u5f84\u7684\u8bf4\u660e": 246, "\u901a\u5e38\u6211\u4eec\u4e0d\u5173\u5fc3\u7edd\u5bf9\u8def\u5f84": 246, "\u4e00\u4e2a\u4e58\u6cd5\u8c03\u7528\u7684\u5b8c\u6574\u8def\u5f84\u548c\u51fd\u6570\u540d\u662f\u8fd9\u6837\u7684": 246, "tensormethod": 246, "ab_ref": 246, "\u800c\u5b9e\u9645\u4e0a": 246, "\u6211\u4eec\u611f\u5174\u8da3\u7684\u6240\u6709\u4fe1\u606f\u90fd\u53ef\u4ee5\u8868\u793a\u4e3a": 246, "\u4f1a\u5c3d\u6700\u5927\u52aa\u529b\u53bb\u9664\u6587\u4ef6\u8def\u5f84\u4e2d\u4f4e\u4fe1\u53f7\u90e8\u5206": 246, "\u4ee5\u53ca\u5171\u4eab\u5bf9\u8c61": 246, "\u901a\u5e38\u5efa\u8bae\u4f7f\u7528": 246, "inclusive_stat": 246, "0x7f192a6dfd90": 246, "47264": 246, "_int_fre": 246, "25963": 246, "_int_malloc": 246, "19900": 246, "tensorit": 246, "tensoriteratorconfig": 246, "18000": 246, "__tls_get_addr": 246, "13500": 246, "malloc": [246, 247], "11300": 246, "smallvector": 246, "10345": 246, "_int_memalign": 246, "9200": 246, "iteratorbas": 246, "get_strid": 246, "173472": 246, "\u8fd9\u4ecd\u7136\u6709\u5f88\u591a\u5185\u5bb9\u9700\u8981\u6d88\u5316": 246, "\u8ba9\u6211\u4eec\u4f7f\u7528": 246, "\u65b9\u6cd5\u6765\u53bb\u9664\u4e00\u4e9b\u51fd\u6570\u8def\u5f84": 246, "\u5e76\u4e22\u5f03\u51fd\u6570\u8c03\u7528": 246, "\u8fd9\u6837\u505a\u65f6": 246, "\u4efb\u4f55\u51b2\u7a81": 246, "\u90fd\u5c06\u6620\u5c04\u5230": 246, "\u7684\u8ba1\u6570\u5c06\u88ab\u7d2f\u52a0": 246, "group_by_fil": 246, "fn_name": 246, "fn_dir": 246, "fn_file": 246, "0x7f192995d750": 246, "118200": 246, "tensoriter": 246, "65000": 246, "20900": 246, "15900": 246, "15100": 246, "cpualloc": 246, "12500": 246, "352327": 246, "\u6307\u4ee4\u8ba1\u6570\u6700\u6709\u7528\u7684\u7279\u6027\u4e4b\u4e00\u662f\u5141\u8bb8\u5bf9\u8ba1\u7b97\u8fdb\u884c\u7ec6\u7c92\u5ea6\u6bd4\u8f83": 246, "\u8fd9\u5728\u5206\u6790\u6027\u80fd\u65f6\u81f3\u5173\u91cd\u8981": 246, "\u4e3a\u4e86\u770b\u5230\u8fd9\u4e00\u70b9": 246, "\u8ba9\u6211\u4eec\u5c06\u4e24\u4e2a\u5927\u5c0f\u4e3a128\u7684\u5f20\u91cf\u76f8\u4e58\u4e0e\u4e00\u4e2a": 246, "\u7684\u4e58\u6cd5\u8fdb\u884c\u6bd4\u8f83": 246, "\u540e\u8005\u5c06\u5bf9\u7b2c\u4e8c\u4e2a\u5f20\u91cf\u8fdb\u884c\u5e7f\u64ad": 246, "a0": 246, "b0": 246, "a1": 246, "a127": 246, "broadcasting_stat": 246, "\u6211\u4eec\u7ecf\u5e38\u9700\u8981\u5bf9\u4e24\u79cd\u4e0d\u540c\u7684\u73af\u5883\u8fdb\u884ca": 246, "\u4f8b\u5982\u6d4b\u8bd5\u4e00\u4e2apr": 246, "\u6216\u5c1d\u8bd5\u4e0d\u540c\u7684\u7f16\u8bd1\u6807\u5fd7": 246, "\u8fd9\u5f88\u7b80\u5355": 246, "\u90fd\u662f\u53efpickle\u5316\u7684": 246, "\u53ea\u9700\u5728\u6bcf\u4e2a\u73af\u5883\u4e2d\u4fdd\u5b58\u6d4b\u91cf\u7ed3\u679c": 246, "\u7136\u540e\u5728\u5355\u4e2a\u8fdb\u7a0b\u4e2d\u52a0\u8f7d\u5b83\u4eec\u8fdb\u884c\u5206\u6790": 246, "extract_fn_nam": 246, "17600": 246, "tensoriteratorbas": 246, "compute_strid": 246, "12700": 246, "allocate_or_resize_output": 246, "10200": 246, "smallvectorimpl": 246, "7400": 246, "infer_s": 246, "6200": 246, "invert_perm": 246, "6064": 246, "reorder_dimens": 246, "4300": 246, "compatible_strid": 246, "check_tensor_options_and_extract_memory_format": 246, "__memcmp_avx2_movb": 246, "empty_cpu": 246, "1300": 246, "2400": 246, "6100": 246, "compute_fast_setup_typ": 246, "22600": 246, "fast_set_up": 246, "58091": 246, "\u6240\u4ee5\u5e7f\u64ad\u7248\u672c\u6bcf\u6b21\u8c03\u7528\u9700\u8981\u989d\u5916580\u6761\u6307\u4ee4": 246, "\u56de\u60f3\u4e00\u4e0b\u6211\u4eec\u6536\u96c6\u4e86100\u6b21\u8fd0\u884c\u7684\u6837\u672c": 246, "\u7ea6\u536010": 246, "\u6709\u76f8\u5f53\u591a\u7684": 246, "\u6240\u4ee5\u8ba9\u6211\u4eec\u6df1\u5165\u7814\u7a76\u8fd9\u4e9b\u8c03\u7528": 246, "\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u505a\u5230\u8fd9\u4e00\u70b9": 246, "0x7f19299544d0": 246, "compute_shap": 246, "2300": 246, "coalesce_dimens": 246, "\u8fd9\u8bf4\u660e\u4e86\u6b63\u5728\u53d1\u751f\u7684\u60c5\u51b5": 246, "\u8bbe\u7f6e\u4e2d\u6709\u4e00\u6761\u5feb\u901f\u8def\u5f84": 246, "\u4f46\u5728": 246, "\u7684\u60c5\u51b5\u4e0b": 246, "\u6211\u4eec\u9519\u8fc7\u4e86\u5b83": 246, "\u4e0d\u5f97\u4e0d\u8fdb\u884c\u66f4\u901a\u7528\u7684\u5206\u6790": 246, "\u8fd9\u66f4\u52a0\u6602\u8d35": 246, "\u88ab\u8fc7\u6ee4\u5668\u7701\u7565\u7684\u6700\u663e\u8457\u7684\u8c03\u7528\u662f": 246, "\u8fd9\u4e5f\u662f\u66f4\u901a\u7528\u8bbe\u7f6e\u7684\u4e00\u90e8\u5206": 246, "\u603b\u4e4b": 246, "\u6765\u6536\u96c6\u5899\u4e0a\u65f6\u95f4": 246, "\u5982\u679c\u8ba1\u65f6\u53d8\u5316\u8fc7\u9ad8": 246, "\u8bf7\u589e\u52a0": 246, "\u6216\u8005\u5982\u679c\u65b9\u4fbf\u7684\u8bdd": 246, "\u8f6c\u79fb\u5230": 246, "\u5bf9\u4e8e\u7ec6\u7c92\u5ea6\u5206\u6790": 246, "\u6765\u6d4b\u91cf\u6307\u4ee4\u8ba1\u6570": 246, "__add__": 246, "__sub__": 246, "\u6765\u5207\u5206\u548c\u5904\u7406\u5b83\u4eec": 246, "\u9690\u542b\u7684": 246, "\u4e0d\u5305\u542b": 246, "\u5c06\u81ea\u52a8\u586b\u5145\u5b83": 246, "\u8fd9\u610f\u5473\u7740": 246, "\u5c06\u6b63\u5e38\u5de5\u4f5c": 246, "\u4e0d\u8fc7\u5176\u4ed6\u5bfc\u5165\u5e94\u8be5\u653e\u5728": 246, "\u4e3a\u4e86\u63d0\u4f9b\u6709\u5173\u6267\u884c\u7684": 246, "\u5185\u90e8\u4fe1\u606f\u7684\u5b8c\u6574\u4fe1\u606f": 246, "\u9700\u8981\u8bbf\u95ee": 246, "\u8c03\u8bd5\u7b26\u53f7": 246, "\u8fd9\u662f\u901a\u8fc7\u5728\u6784\u5efa": 246, "\u65f6\u8bbe\u7f6e": 246, "\u6765\u5b9e\u73b0\u7684": 246, "\u5426\u5219\u51fd\u6570\u8c03\u7528\u5c06\u662f\u4e0d\u900f\u660e\u7684": 246, "\u751f\u6210\u7684": 246, "\u5c06\u5728\u7f3a\u5c11\u8c03\u8bd5\u7b26\u53f7\u65f6\u53d1\u51fa\u8b66\u544a": 246, "timer_quick_start": 246, "szymon": 247, "migacz": 247, "inexpens": 247, "fused_gelu": 247, "erf": 247, "41421": 247, "conjunct": 247, "carefulli": 247, "anomali": 247, "detect_anomali": 247, "set_detect_anomali": 247, "emit_nvtx": 247, "nth": 247, "cpunodebind": 247, "membind": 247, "pytorch_script": 247, "thrash": 247, "gomp_cpu_affin": 247, "omp_proc_bind": 247, "omp_schedul": 247, "libgomp": 247, "sleep": 247, "jemalloc": 247, "tcmalloc": 247, "emphas": 247, "neighbor": 247, "enable_onednn_fus": 247, "optimize_for_infer": 247, "avx512_bf16": 247, "_jit_set_autocast_mod": 247, "ccl": 247, "alltoal": 247, "cuda_tensor": 247, "guidelin": 247, "slide": 247, "no_sync": 247, "tuning_guid": 247, "\u5728\u8f6c\u79fb\u5b66\u4e60\u6216\u8bad\u7ec3\u65b0\u7684\u590d\u6742\u6a21\u578b\u65f6": 248, "\u52a0\u8f7d\u90e8\u5206\u6a21\u578b\u662f\u5f88\u5e38\u89c1\u7684\u573a\u666f": 248, "\u5229\u7528\u5df2\u7ecf\u8bad\u7ec3\u597d\u7684\u53c2\u6570": 248, "\u5373\u4f7f\u53ea\u6709\u5c11\u6570\u53ef\u7528": 248, "\u4e5f\u5c06\u6709\u52a9\u4e8e\u52a0\u5feb\u8bad\u7ec3\u8fc7\u7a0b\u7684\u542f\u52a8": 248, "\u5e76\u6709\u671b\u4f7f\u60a8\u7684\u6a21\u578b\u6bd4\u4ece\u5934\u5f00\u59cb\u8bad\u7ec3\u6536\u655b\u5f97\u66f4\u5feb": 248, "\u65e0\u8bba\u60a8\u662f\u52a0\u8f7d\u7f3a\u5c11\u67d0\u4e9b\u952e\u7684\u90e8\u5206": 248, "\u8fd8\u662f\u52a0\u8f7d\u6bd4\u9884\u671f\u7684\u6a21\u578b\u66f4\u591a\u952e\u7684": 248, "\u60a8\u90fd\u53ef\u4ee5\u901a\u8fc7": 248, "\u4ee5\u5ffd\u7565\u4e0d\u5339\u914d\u7684\u952e": 248, "\u6211\u4eec\u5c06\u5c1d\u8bd5\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": 248, "\u6211\u4eec\u5c06\u521b\u5efa\u4e24\u4e2a\u795e\u7ecf\u7f51\u7edc": 248, "\u5c06\u7c7b\u578b": 248, "\u7684\u4e00\u4e2a\u53c2\u6570\u52a0\u8f7d\u5230\u7c7b\u578b": 248, "\u5982\u679c\u60a8\u60f3\u5c06\u4e00\u4e2a\u5c42\u7684\u53c2\u6570\u52a0\u8f7d\u5230\u53e6\u4e00\u4e2a\u5c42": 248, "\u4f46\u662f\u67d0\u4e9b\u952e\u4e0d\u5339\u914d": 248, "\u53ea\u9700\u5c06\u8981\u52a0\u8f7d\u7684": 248, "\u4e2d\u7684\u53c2\u6570\u952e\u540d\u79f0\u66f4\u6539\u4e3a\u4e0e\u8981\u52a0\u8f7d\u5230\u7684\u6a21\u578b\u4e2d\u7684\u952e\u540d\u79f0\u76f8\u5339\u914d\u5373\u53ef": 248, "\u60a8\u53ef\u4ee5\u770b\u5230\u6240\u6709\u952e\u90fd\u5339\u914d\u6210\u529f": 248, "\u60a8\u5df2\u6210\u529f\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u70ed\u542f\u52a8": 248, "\u4f7f\u7528pytorch\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 248, "\u5728pytorch\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [248, 250], "\u6a21\u578b\u7684\u53ef\u5b66\u4e60\u53c2\u6570": 249, "\u5373\u6743\u91cd\u548c\u504f\u7f6e": 249, "\u5305\u542b\u5728\u6a21\u578b\u7684\u53c2\u6570\u4e2d": 249, "\u901a\u8fc7": 249, "\u8bbf\u95ee": 249, "\u53ea\u662f\u4e00\u4e2a": 249, "\u5b57\u5178\u5bf9\u8c61": 249, "\u5b83\u5c06\u6bcf\u4e00\u5c42\u6620\u5c04\u5230\u5176\u53c2\u6570\u5f20\u91cf": 249, "\u5982\u679c\u4f7f\u7528": 249, "\u4fdd\u5b58\u6216\u52a0\u8f7d\u6a21\u578b": 249, "\u5c31\u662f\u4e00\u4e2a\u4e0d\u53ef\u6216\u7f3a\u7684\u5b9e\u4f53": 249, "\u5bf9\u8c61\u662f": 249, "\u5b57\u5178": 249, "\u5b83\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u88ab\u4fdd\u5b58": 249, "\u66f4\u65b0": 249, "\u4fee\u6539\u548c\u6062\u590d": 249, "\u6a21\u578b\u548c\u4f18\u5316\u5668\u66f4\u597d\u7684\u505a\u5230\u4e86\u6a21\u5757\u5316": 249, "\u53ea\u6709\u5177\u6709\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u5c42": 249, "\u5377\u79ef\u5c42": 249, "\u7ebf\u6027\u5c42\u7b49": 249, "\u548c\u5df2\u6ce8\u518c\u7684\u7f13\u51b2\u533a": 249, "\u5728\u6a21\u578b\u7684": 249, "\u4e2d\u6709\u6761\u76ee": 249, "\u4f18\u5316\u5668\u5bf9\u8c61": 249, "\u4e5f\u6709\u4e00\u4e2a": 249, "\u5b83\u5305\u542b\u4e86\u4f18\u5316\u5668\u72b6\u6001\u7684\u4fe1\u606f": 249, "\u4ee5\u53ca\u4f7f\u7528\u7684\u8d85\u53c2\u6570": 249, "\u6211\u4eec\u5c06\u770b\u5230\u5982\u4f55\u5728\u4e00\u4e2a\u7b80\u5355\u7684\u6a21\u578b\u4e2d": 249, "\u662f\u5982\u4f55\u4f7f\u7528\u7684": 249, "\u5b9a\u4e49\u548c\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": 249, "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u5fc5\u8981\u5e93": 249, "\u73b0\u5728\u6211\u4eec\u5df2\u7ecf\u6784\u5efa\u4e86\u6a21\u578b\u548c\u4f18\u5316\u5668": 249, "\u6211\u4eec\u53ef\u4ee5\u4e86\u89e3\u5b83\u4eec\u5404\u81ea\u7684": 249, "\u5c5e\u6027\u4e2d\u4fdd\u5b58\u4e86\u4ec0\u4e48": 249, "\u8fd9\u4e9b\u4fe1\u606f\u5bf9\u4e8e\u5c06\u6765\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u548c\u4f18\u5316\u5668\u5f88\u6709\u7528": 249, "\u4f60\u5df2\u7ecf\u6210\u529f\u4f7f\u7528\u4e86": 249, "\u7ee7\u7eed\u4f60\u7684\u5b66\u4e60": 249, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406": 249, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 249, "\u6a21\u578b\u80fd\u591f\u901a\u8fc7\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6765\u63d0\u9ad8\u5b83\u4eec\u7684\u7cbe\u5ea6": 250, "\u7b80\u800c\u8a00\u4e4b": 250, "\u68af\u5ea6\u4e0b\u964d\u662f\u901a\u8fc7\u8c03\u6574\u6a21\u578b\u4e2d\u7684\u6743\u91cd\u548c\u504f\u7f6e\u6765\u6700\u5c0f\u5316\u635f\u5931": 250, "\u6216\u8bef\u5dee": 250, "\u7684\u8fc7\u7a0b": 250, "\u662fpytorch\u7684\u4e2d\u5fc3\u7c7b": 250, "\u5f53\u4f60\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf\u65f6": 250, "\u5982\u679c\u5c06\u5176\u5c5e\u6027": 250, "\u8bbe\u7f6e\u4e3a": 250, "\u8be5\u5bf9\u8c61\u4f1a\u8ddf\u8e2a\u5bf9\u5b83\u7684\u6240\u6709\u64cd\u4f5c": 250, "\u8fd9\u53d1\u751f\u5728\u540e\u7eed\u7684\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d": 250, "\u8be5\u5f20\u91cf\u7684\u68af\u5ea6\u5c06\u7d2f\u79ef\u5230": 250, "\u6240\u6709\u68af\u5ea6\u7684\u7d2f\u79ef": 250, "\u6216\u6c42\u548c": 250, "\u662f\u5728\u5bf9\u635f\u5931\u5f20\u91cf\u8c03\u7528": 250, "\u65f6\u8ba1\u7b97\u7684": 250, "\u53ef\u80fd\u9700\u8981\u6e05\u96f6\u5f20\u91cf\u7684\u68af\u5ea6": 250, "\u5f53\u4f60\u5f00\u59cb\u8bad\u7ec3\u5faa\u73af\u65f6": 250, "\u4f60\u5e94\u8be5\u6e05\u96f6\u68af\u5ea6": 250, "\u4ee5\u4fbf\u6b63\u786e\u6267\u884c\u6b64\u8ddf\u8e2a": 250, "\u6211\u4eec\u5c06\u5b66\u4e60\u5982\u4f55\u4f7f\u7528pytorch\u5e93\u6e05\u96f6\u68af\u5ea6": 250, "\u6211\u4eec\u5c06\u901a\u8fc7\u5728pytorch\u5185\u7f6e\u7684": 250, "\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u6765\u6f14\u793a\u5982\u4f55\u505a\u5230\u8fd9\u4e00\u70b9": 250, "\u7531\u4e8e\u6211\u4eec\u5c06\u5728\u672c\u6559\u7a0b\u4e2d\u8bad\u7ec3\u6570\u636e": 250, "\u5982\u679c\u4f60\u5728\u53ef\u8fd0\u884c\u7684\u7b14\u8bb0\u672c\u4e2d": 250, "\u6700\u597d\u5c06\u8fd0\u884c\u65f6\u5207\u6362\u5230gpu\u6216tpu": 250, "\u6211\u4eec\u9700\u8981\u5b89\u88c5\u5b83\u4eec": 250, "\u6b65\u9aa41\u52304\u8bbe\u7f6e\u4e86\u6211\u4eec\u7528\u4e8e\u8bad\u7ec3\u7684\u6570\u636e\u548c\u795e\u7ecf\u7f51\u7edc": 250, "\u6e05\u96f6\u68af\u5ea6\u7684\u8fc7\u7a0b\u53d1\u751f\u5728\u6b65\u9aa45": 250, "\u5982\u679c\u4f60\u5df2\u7ecf\u6784\u5efa\u4e86\u6570\u636e\u548c\u795e\u7ecf\u7f51\u7edc": 250, "\u53ef\u4ee5\u8df3\u8fc7\u524d\u56db\u6b65": 250, "\u76f4\u63a5\u8fdb\u5165\u7b2c5\u6b65": 250, "\u5b9a\u4e49\u635f\u5931\u51fd\u6570": 250, "\u6765\u8bbf\u95ee\u6570\u636e\u96c6": 250, "pytorch\u63d0\u4f9b\u4e86\u5404\u79cd\u5185\u7f6e\u6570\u636e\u96c6": 250, "\u8bf7\u53c2\u9605\u52a0\u8f7d\u6570\u636e\u6559\u7a0b": 250, "\u6211\u4eec\u5c06\u4f7f\u7528\u5377\u79ef\u795e\u7ecf\u7f51\u7edc": 250, "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u6559\u7a0b": 250, "\u8ba9\u6211\u4eec\u4f7f\u7528\u5206\u7c7b\u4ea4\u53c9\u71b5\u635f\u5931\u548c\u5e26\u52a8\u91cf\u7684sgd": 250, "\u6211\u4eec\u53ea\u9700\u8981\u904d\u5386\u6570\u636e\u8fed\u4ee3\u5668": 250, "\u5e76\u5c06\u8f93\u5165\u9988\u9001\u5230\u7f51\u7edc\u4e2d\u5e76\u4f18\u5316": 250, "\u5bf9\u4e8e\u6bcf\u4e2a\u6570\u636e\u5b9e\u4f53": 250, "\u6211\u4eec\u90fd\u4f1a\u6e05\u96f6\u68af\u5ea6": 250, "\u8fd9\u662f\u4e3a\u4e86\u786e\u4fdd\u5728\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6": 250, "\u6211\u4eec\u4e0d\u4f1a\u8ddf\u8e2a\u4efb\u4f55\u4e0d\u5fc5\u8981\u7684\u4fe1\u606f": 250, "data\u662f\u4e00\u4e2a\u5305\u542b": 250, "\u7684\u5217\u8868": 250, "\u6e05\u96f6\u53c2\u6570\u68af\u5ea6": 250, "\u6bcf2000\u4e2a\u5c0f\u6279\u6b21\u6253\u5370\u4e00\u6b21": 250, "\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528": 250, "\u53ea\u8981\u4f60\u7684\u6240\u6709\u6a21\u578b\u53c2\u6570\u90fd\u5728\u8be5\u4f18\u5316\u5668\u4e2d": 250, "\u548c\u4f7f\u7528": 250, "\u662f\u4e00\u6837\u7684": 250, "\u8bf7\u6839\u636e\u5177\u4f53\u60c5\u51b5\u51b3\u5b9a\u4f7f\u7528\u54ea\u4e00\u79cd\u65b9\u5f0f": 250, "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u6e05\u96f6\u4e86\u68af\u5ea6": 250, "\u7ee7\u7eed\u4f60\u7684\u5b66\u4e60\u4e4b\u65c5": 250, "\u5728pytorch\u4e2d\u52a0\u8f7d\u6570\u636e": 250, "bite": 251, "\u4e0e\u5165\u95e8\u6559\u7a0b\u4e0d\u540c": 251, "\u6b64\u7cfb\u5217\u901a\u8fc7\u7b80\u6d01\u5b9e\u7528\u7684\u793a\u4f8b": 251, "\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528pytorch\u7684\u7279\u6027": 251, "\u6765\u51c6\u5907\u548c\u52a0\u8f7d\u5e38\u89c1\u7684\u6570\u636e\u96c6": 251, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528torch": 251, "\u4e3amnist\u6570\u636e\u96c6\u521b\u5efa\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 251, "\u5bf9\u8c61\u548c": 251, "\u5b57\u5178\u5728": 251, "\u4e2d\u4fdd\u5b58\u6216\u52a0\u8f7d\u6a21\u578b": 251, "\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406\u7684\u4e24\u79cd\u65b9\u5f0f": 251, "state_dict\u548c\u5b8c\u6574\u6a21\u578b": 251, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e00\u4e2a\u901a\u7528\u7684\u68c0\u67e5\u70b9\u6a21\u578b": 251, "\u53ef\u4ee5\u5e2e\u52a9\u60a8\u4ece\u4e0a\u6b21\u505c\u6b62\u7684\u5730\u65b9\u7ee7\u7eed\u63a8\u7406\u6216\u8bad\u7ec3": 251, "\u63a2\u7d22\u5982\u4f55\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u68c0\u67e5\u70b9": 251, "\u5b66\u4e60\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 251, "\u6709\u52a9\u4e8e\u91cd\u7528\u60a8\u4e4b\u524d\u8bad\u7ec3\u8fc7\u7684\u6a21\u578b": 251, "\u4e86\u89e3\u5982\u4f55\u901a\u8fc7\u90e8\u5206\u52a0\u8f7d\u6a21\u578b\u6216\u52a0\u8f7d\u90e8\u5206\u6a21\u578b\u65b9\u5f0f\u6765\u70ed\u542f\u52a8\u8bad\u7ec3\u8fc7\u7a0b": 251, "\u8fd9\u53ef\u4ee5\u5e2e\u52a9\u60a8\u7684\u6a21\u578b\u6bd4\u4ece\u5934\u5f00\u59cb\u8bad\u7ec3\u6536\u655b\u5f97\u66f4\u5feb": 251, "\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 251, "\u4e86\u89e3\u5982\u4f55\u4f7f\u7528pytorch\u5728\u4e0d\u540c\u8bbe\u5907": 251, "cpu\u548cgpu": 251, "\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 251, "\u6e05\u96f6\u68af\u5ea6": 251, "\u4e86\u89e3\u4f55\u65f6\u5e94\u8be5\u6e05\u96f6\u68af\u5ea6": 251, "\u4ee5\u53ca\u8fd9\u6837\u505a\u5982\u4f55\u6709\u52a9\u4e8e\u63d0\u9ad8\u6a21\u578b\u7684\u7cbe\u5ea6": 251, "\u5b66\u4e60\u5982\u4f55\u6d4b\u91cf\u4ee3\u7801\u7247\u6bb5\u7684\u8fd0\u884c\u65f6\u95f4\u548c\u6536\u96c6\u6307\u4ee4": 251, "itt": 251, "andriod": 251, "graviton": 251, "compressor": 251, "tensorpip": 251, "dcp": 251, "diffus": 251, "vertex": 251, "tracerwarn": 252, "_0": 252, "WITH": 252, "encoder_input": 252, "decoder_input1": 252, "decoder_input2": 252, "decoder_input3": 252, "scripted_encod": 252, "scripted_decod": 252, "optimized_torchscript_model": 252, "hoist": 252, "blocklist": 252, "compile_model": 253, "resnet50_weight": 253, "weights_prepack": 253, "oguz": 254, "ulgen": 254, "_triton": 254, "has_triton": 254, "add_kernel": 254, "out_ptr": 254, "n_element": 254, "block_siz": 254, "constexpr": 254, "pid": 254, "program_id": 254, "block_start": 254, "add_fn": 254, "cdiv": 254, "nx": 254, "ny": 254, "ni": 254, "num_stag": 254, "num_warp": 254, "add_kernel_autotun": 254, "torch_compile_user_defined_triton_kernel_tutori": 254, "repl": 256, "r18": 256, "r18_script": 256, "unscripted_output": 256, "scripted_output": 256, "unscripted_top5": 256, "scripted_top5": 256, "463": 256, "ts": 256, "msg_without_backtrac": 256, "output_sm": 256, "softmaxfuncopt": 256, "top5_tensor": 256, "ndone": 256, "418": 256, "845": 256, "644": 256, "cpulongtyp": 256, "exposit": 256, "streamlin": 257, "billabl": 257, "model_artifact": 257, "mar": 257, "your_model_nam": 257, "bucket_nam": 257, "bucket_uri": 257, "gsutil": 257, "aiplatform": 257, "vertexai": 257, "pytorch_prediction_image_uri": 257, "model_display_nam": 257, "stable_diffusion_1_5": 257, "model_descript": 257, "your_project": 257, "central1": 257, "staging_bucket": 257, "display_nam": 257, "serving_container_image_uri": 257, "artifact_uri": 257, "tesla": 257, "p100": 257, "n1": 257, "endpoint_display_nam": 257, "deployed_model_display_nam": 257, "machine_typ": 257, "accelerator_typ": 257, "nvidia_tesla_p100": 257, "accelerator_count": 257, "traffic_percentag": 257, "deploy_request_timeout": 257, "examplepup": 257, "basebal": 257, "jersei": 257, "base64": 257, "b64decod": 257, "vendor": 257, "deepspe": 258, "marian": 258, "oftentim": 258, "exp_avg": 258, "exp_avg_sq": 258, "peer": 258, "print_peak_memori": 258, "use_zero": 258, "optimizer_class": 258, "0mb": 258, "992": 258, "1361": 258, "3453": 258, "6123046875": 258, "pytorch_sphinx_them": [260, 267], "html_theme_opt": 260, "canonical_url": 260, "analytics_id": 260, "logo_onli": 260, "display_vers": 260, "prev_next_buttons_loc": 260, "style_external_link": 260, "vcs_pageview_mod": 260, "collapse_navig": 260, "sticky_navig": [260, 264], "navigation_depth": 260, "includehidden": 260, "titles_onli": 260, "canon": 260, "trail": 260, "slash": 260, "sidebar": [260, 266], "display_github": 260, "display_gitlab": 260, "gitlab": 260, "bitbucket": 260, "toctre": 260, "unlimit": 260, "github_url": 260, "bitbucket_url": 260, "gitlab_url": 260, "visitor": 260, "revert": 260, "misbuild": 260, "sticki": [260, 266], "nav": [260, 266], "django": 261, "payment": 261, "dotpai": 261, "dotpayprovid": 261, "seller_id": 261, "pl": 261, "gatewai": 261, "purchas": 261, "seller": 261, "data_item_1": 261, "data_item_2": 261, "data_item_3": 261, "lorem": [261, 263, 265], "ipsum": [261, 263, 265], "dolor": [261, 263, 265], "amet": [261, 263, 265], "consectetur": [261, 263, 265], "adipisc": [261, 263, 265], "fusc": [261, 265], "congu": [261, 265], "eu": [261, 265], "hendrerit": [261, 265], "matti": [261, 263], "emphasi": 262, "hyperlink": 262, "uri": 262, "anonym": 262, "exceedingli": 262, "ugli": 262, "autodoc": [262, 263], "test_py_modul": [262, 266], "2822": 262, "subscript": 262, "superscript": 262, "interfer": 262, "mmb": 262, "menuselect": 262, "whitespac": 262, "hyphen": 262, "restructuredtext": [262, 263], "literal_block": 262, "spaces_and_linebreak": 262, "markup_process": 262, "eric": 262, "orchestra": 262, "leader": 262, "philosoph": 262, "ipso": 262, "facto": 262, "ancient": 262, "sing": 262, "elk": 262, "brontosaurus": 262, "thicker": 262, "ann": 262, "begun": 262, "someurl": 262, "pane": 262, "shell_command": 262, "window_nam": 262, "session_nam": 262, "some_funct": 262, "THE": 262, "heaven": 262, "hexagram": 262, "unbroken": 262, "unrestrict": 262, "conceiv": 262, "men": 262, "deiti": 262, "holi": 262, "sage": 262, "ruler": 262, "awaken": 262, "sphinx_rtd_them": [262, 263], "tt": 262, "descnam": 262, "descclassnam": 262, "myclass": 262, "dothismethod": 262, "flox": 262, "unreferenc": 262, "nonexist": 262, "bold": 262, "ital": 262, "heck": 262, "backlink": 262, "indirect": 262, "docutil": [262, 263], "sourceforg": [262, 263], "clickabl": 262, "revis": [262, 263], "structuredtext": 262, "nickel": 262, "mad": 262, "scientist": 262, "bread": 262, "wash": 262, "ear": 262, "closet": 262, "bathroom": 262, "trash": 262, "mother": 262, "rho_": 262, "thing1": 262, "thing2": 262, "thing3": 262, "prose": 262, "provok": 262, "mental": 262, "exert": 262, "advis": 262, "subtitl": 262, "border": 262, "disconnect": 262, "arab": 263, "iii": 263, "iv": 263, "goodger": 263, "a1b": 263, "2c3": 263, "myself": 263, "humankind": 263, "tue": 263, "jan": 263, "7302": 263, "redistribut": 263, "reattribut": 263, "sell": 263, "bui": 263, "rent": 263, "leas": 263, "excerpt": 263, "stapl": 263, "mutil": 263, "anyon": 263, "bibliograph": 263, "markup": [263, 266], "literal": 263, "yahoo": 263, "oh": 263, "heh": 263, "beat": 263, "hehe": 263, "cackl": 263, "lone": 263, "guangzhou": 263, "destini": 263, "dream": 263, "sixth": 263, "donec": [263, 265], "porttitor": [263, 265], "odio": [263, 265], "posuer": [263, 265], "vita": [263, 265], "ornar": [263, 265], "libero": [263, 265], "loborti": [263, 265], "justo": [263, 265], "vestibulum": [263, 265], "nibh": [263, 265], "aliquet": [263, 265], "sed": [263, 265], "feugiat": [263, 265], "sagitti": [263, 265], "nequ": [263, 265], "qui": [263, 265], "eleifend": 263, "dui": [263, 265], "rutrum": [263, 265], "lectu": [263, 265], "suscipit": [263, 265], "nam": [263, 265], "mauri": [263, 265], "arcu": [263, 265], "interdum": 265, "nec": 265, "finibu": 265, "dictum": 265, "velit": 265, "ut": 265, "efficitur": 265, "aliquam": 265, "erat": 265, "diam": 265, "gravida": 265, "imperdiet": 265, "tellu": 265, "nisl": 265, "praesent": 265, "eget": 265, "elementum": 265, "rhoncu": 265, "tincidunt": 265, "suspendiss": 265, "volutpat": 265, "scelerisqu": 265, "tristiqu": 265, "aenean": 265, "condimentum": 265, "risu": 265, "accumsan": 265, "laoreet": 265, "maximu": 265, "sapien": 265, "ligula": 265, "fringilla": 265, "commodo": 265, "proin": 265, "pharetra": 265, "etiam": 265, "turpi": 265, "luctu": 265, "vel": 265, "malesuada": 265, "dignissim": 265, "nunc": 265, "augu": 265, "sem": 265, "cursu": 265, "nulla": 265, "pellentesqu": 265, "morbi": 265, "senectu": 265, "netu": 265, "egesta": 265, "placerat": 265, "tortor": 265, "iaculi": 265, "venenati": 265, "cra": 265, "puru": 265, "ero": 265, "vehicula": 265, "auctor": 265, "phasellu": 265, "viverra": 265, "conval": 265, "faucibu": 265, "vulput": 265, "feli": 265, "sodal": 265, "maecena": 265, "semper": 265, "enim": 265, "blandit": 265, "sollicitudin": 265, "urna": 265, "orci": 265, "lacu": 265, "quisqu": 265, "facilisi": 265, "curabitur": 265, "variu": 265, "bibendum": 265, "massa": 265, "magna": 265, "tempu": 265, "metu": 265, "nisi": 265, "pretium": 265, "leo": 265, "euismod": 265, "ultric": 265, "dapibu": 265, "lacinia": 265, "vivamu": 265, "molesti": 265, "hac": 265, "habitass": 265, "platea": 265, "dictumst": 265, "changelog": 266, "submenu": 266, "symlink": 267, "subtre": 267, "_theme": 267, "html_theme": 267, "html_theme_path": 267}, "objects": {"": [[261, 0, 1, "", "Data_item_1"], [261, 0, 1, "", "Data_item_2"], [261, 0, 1, "", "Data_item_3"]], "payments.dotpay": [[261, 1, 1, "", "DotpayProvider"]]}, "objtypes": {"0": "py:data", "1": "py:class"}, "objnames": {"0": ["py", "data", "Python data"], "1": ["py", "class", "Python class"]}, "titleterms": {"onnx": [0, 20, 105, 106, 107, 108, 110], "live": 0, "tutori": [0, 42, 49, 50, 54, 57, 114, 120, 122, 153, 156, 157, 173, 174, 179, 186, 195, 220, 221], "what": [0, 6, 10, 11, 15, 17, 44, 52, 56, 57, 60, 112, 119, 130, 138, 147, 154, 201, 205, 211, 212, 213, 215, 216, 226, 234, 256, 258], "overview": [0, 1, 17, 60, 108, 114, 136, 144, 164, 175, 191, 221], "prepar": [0, 49, 60, 113, 115, 127, 128, 139, 165, 168, 179, 182, 187, 188, 189, 190, 191, 194, 197, 198, 206, 208, 223, 224, 225], "environ": [0, 1, 14, 23, 53, 60, 136, 146, 159, 171, 184, 187, 194], "download": [0, 137, 171, 181, 185, 262, 267], "train": [0, 1, 3, 6, 7, 11, 14, 19, 24, 44, 49, 52, 53, 55, 61, 87, 99, 110, 112, 115, 117, 120, 122, 124, 125, 127, 128, 131, 132, 134, 135, 136, 152, 157, 159, 160, 165, 166, 169, 181, 182, 197, 198, 199, 220, 221, 228, 247, 253], "pytorch": [0, 3, 4, 5, 6, 10, 12, 15, 19, 20, 24, 25, 43, 46, 50, 54, 57, 61, 63, 64, 65, 67, 68, 69, 72, 81, 88, 91, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 108, 109, 110, 111, 121, 135, 137, 147, 158, 168, 171, 176, 177, 179, 180, 188, 195, 196, 197, 198, 199, 200, 206, 207, 208, 209, 217, 219, 220, 221, 223, 224, 225, 226, 227, 231, 233, 235, 236, 238, 239, 240, 241, 242, 243, 245, 247, 248, 249, 251, 253, 257], "style": [0, 12], "transfer": [0, 12, 157], "model": [0, 1, 4, 6, 7, 9, 12, 17, 18, 19, 20, 21, 25, 45, 49, 55, 58, 59, 60, 73, 74, 79, 85, 97, 102, 103, 105, 112, 113, 115, 117, 122, 124, 125, 131, 133, 134, 136, 137, 138, 143, 146, 147, 149, 150, 156, 157, 165, 166, 168, 169, 171, 175, 178, 179, 181, 182, 185, 187, 188, 194, 195, 197, 198, 203, 206, 208, 209, 210, 211, 218, 220, 221, 223, 224, 225, 226, 229, 234, 238, 240, 247, 252, 256, 257], "convert": [0, 4, 25, 58, 59, 60, 80, 147, 179, 182, 187, 194, 197, 198], "coreml": 0, "run": [0, 6, 7, 20, 22, 45, 49, 50, 53, 54, 55, 58, 59, 60, 73, 85, 97, 115, 126, 127, 133, 168, 171, 174, 185, 194, 210, 211, 213, 238, 245, 256], "io": [0, 59, 187, 188, 204, 222, 223, 225], "app": [0, 58, 59, 126, 187, 206, 208, 213, 224, 225], "conclus": [0, 1, 2, 3, 5, 6, 9, 14, 15, 17, 19, 21, 22, 23, 49, 75, 82, 97, 105, 108, 114, 124, 136, 137, 143, 144, 146, 152, 159, 164, 172, 173, 174, 176, 177, 181, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 203, 204, 207, 211, 214, 215, 219, 222, 237, 244, 254, 255], "torchrl": [1, 14, 159], "object": [1, 58, 59, 99, 126, 178], "code": [1, 2, 14, 22, 54, 183, 186, 189, 206, 208, 226, 262], "ddpg": 1, "loss": [1, 12, 37, 44, 47, 49, 52, 97, 98, 110, 124, 128, 136, 159, 230], "prerequisit": [1, 58, 59, 97, 115, 157, 177, 186, 199, 200, 254], "import": [1, 12, 45, 55, 87, 110, 137, 171, 197, 198, 213, 238, 256], "setup": [1, 17, 18, 23, 87, 116, 135, 136, 137, 150, 168, 169, 175, 179, 185, 187, 195, 201, 208, 210, 211, 213, 223, 231, 238, 255], "lossmodul": 1, "The": [1, 6, 87, 125, 134, 155, 165, 213, 226, 262], "__init__": [1, 34], "method": [1, 15, 22, 135, 150, 177, 178, 192, 244, 252], "valu": [1, 136, 153, 159, 252], "estim": [1, 146], "actor": 1, "put": [1, 146, 175, 178], "thing": [1, 14], "togeth": [1, 14, 124, 146, 152, 175, 178, 230], "forward": [1, 5, 6, 21, 78, 109, 141, 145, 178, 223], "call": 1, "transform": [1, 7, 14, 41, 42, 51, 118, 119, 122, 124, 137, 145, 154, 159, 164, 166], "parallel": [1, 7, 21, 45, 56, 61, 120, 122, 123, 124, 133, 134, 149, 247], "execut": [1, 4, 14, 18, 105, 161, 168, 238, 247], "normal": [1, 44, 159], "observ": [1, 183], "stat": 1, "build": [1, 4, 5, 10, 22, 23, 58, 59, 99, 116, 142, 143, 155, 157, 204, 206, 208, 213, 218, 222, 256, 260], "explor": [1, 4, 18], "data": [1, 6, 7, 9, 19, 44, 45, 49, 50, 52, 55, 56, 60, 61, 87, 110, 115, 117, 122, 123, 124, 127, 128, 133, 157, 159, 165, 166, 168, 171, 181, 191, 195, 247, 261], "collector": [1, 136, 159], "evalu": [1, 7, 49, 60, 115, 117, 125, 126, 127, 137, 157, 165, 182, 185, 197, 230], "your": [1, 4, 5, 10, 60, 151, 178, 183, 184, 213, 223, 256], "record": [1, 168], "replai": [1, 136, 159, 160], "buffer": [1, 136, 159, 247], "storag": [1, 257], "batch": [1, 7, 8, 14, 115, 116, 129, 142, 145, 161, 219, 247], "size": [1, 137, 185, 197, 234], "modul": [1, 4, 6, 15, 25, 60, 67, 85, 93, 104, 111, 134, 136, 137, 141, 149, 153, 156, 195, 202, 218, 237, 244], "construct": [1, 18, 55, 191, 192], "target": [1, 7, 146, 247, 262], "network": [1, 6, 44, 47, 52, 87, 99, 102, 110, 118, 127, 128, 136, 146, 159, 160, 166, 230], "updat": [1, 47, 146, 161, 202], "optim": [1, 44, 52, 69, 99, 104, 110, 111, 119, 126, 152, 163, 177, 210, 211, 216, 219, 223, 224, 225, 247, 252, 258], "time": [1, 82, 109, 137, 223, 238], "polici": [1, 14, 122, 136, 159], "experi": [1, 14, 15, 126, 179], "result": [1, 3, 45, 52, 73, 105, 109, 115, 126, 127, 130, 159, 165, 166, 168, 185, 201, 226, 229, 231], "next": [1, 44, 52, 73, 159], "step": [1, 4, 58, 59, 75, 114, 134, 152, 155, 159, 168, 218, 224, 225, 231, 234, 238], "autograd": [2, 8, 10, 43, 63, 64, 76, 89, 111, 125, 141, 163], "c": [2, 3, 4, 5, 6, 8, 10, 22, 23, 186, 206, 208, 220, 246, 256], "frontend": [2, 6, 85, 86], "basic": [2, 6, 21, 25, 35, 133, 134, 141, 149, 155, 161, 172, 173, 174, 203, 219, 254], "oper": [2, 5, 8, 10, 22, 23, 48, 101, 108, 177, 179, 191, 192, 193, 200, 207, 208, 223, 247], "comput": [2, 14, 43, 82, 101, 103, 145, 150, 157, 229, 247], "higher": 2, "order": [2, 247], "gradient": [2, 12, 32, 73, 76, 154, 191, 230, 247], "us": [2, 3, 5, 6, 7, 11, 12, 13, 20, 22, 23, 24, 25, 43, 50, 53, 60, 105, 109, 112, 113, 116, 119, 123, 129, 131, 133, 134, 136, 138, 141, 154, 155, 161, 162, 163, 164, 168, 169, 188, 191, 200, 206, 208, 212, 214, 215, 221, 222, 223, 226, 228, 229, 237, 238, 245, 247, 252, 254, 255, 258], "custom": [2, 5, 10, 14, 15, 22, 23, 51, 67, 108, 117, 120, 129, 130, 141, 155, 156, 157, 173, 174, 178, 208, 216, 222, 257], "function": [2, 7, 12, 15, 19, 37, 44, 47, 52, 64, 73, 78, 85, 87, 97, 98, 99, 110, 115, 129, 130, 137, 141, 145, 150, 154, 156, 157, 159, 182, 197, 198, 231, 238, 247], "translat": [2, 113], "from": [2, 19, 22, 43, 50, 105, 112, 131, 171, 175, 176, 177, 178, 188, 237], "python": [2, 5, 22, 23, 58, 59, 85, 155, 206, 252, 255], "cuda": [3, 5, 50, 80, 82, 212], "graph": [3, 43, 60, 101, 105, 108, 172, 173, 174, 177, 181, 182, 183, 185, 199, 247], "api": [3, 4, 6, 89, 110, 139, 141, 147, 152, 155, 185, 186, 200, 206, 226, 247, 255], "get": [3, 4, 10, 58, 59, 82, 103, 123, 133, 144, 151, 163, 193, 213, 214, 215, 220, 221, 224, 225], "start": [3, 7, 82, 123, 133, 151, 163, 193, 214, 215, 220, 221], "\u5728": [4, 158], "\u4e2d\u52a0\u8f7d": 4, "torchscript": [4, 21, 22, 23, 25, 60, 110, 112, 172, 203, 208, 216, 220, 247, 252, 256], "\u6a21\u578b": [4, 92, 96, 119], "1": [4, 9, 19, 44, 58, 59, 78, 85, 105, 134, 137, 150, 155, 157, 168, 169, 176, 178, 179, 181, 182, 185, 195, 199, 200, 213, 218, 223, 224, 225, 228, 231, 233, 234, 236, 238, 240, 241, 242, 243, 246, 248, 250, 252, 264], "torch": [4, 43, 61, 80, 81, 93, 101, 104, 112, 133, 156, 164, 172, 173, 174, 176, 191, 197, 198, 205, 210, 223, 230, 231, 237, 240, 244, 254, 255], "script": [4, 23, 25, 53, 85, 119, 151, 185, 224, 225, 252], "via": [4, 15, 267], "trace": [4, 23, 25, 82, 83, 85, 143, 172, 177, 183, 185, 204, 226, 238, 252], "annot": [4, 200], "2": [4, 9, 17, 19, 44, 45, 58, 59, 78, 85, 105, 134, 137, 150, 155, 157, 168, 169, 176, 177, 178, 179, 181, 182, 185, 195, 197, 198, 199, 200, 201, 213, 218, 223, 224, 225, 228, 231, 233, 234, 236, 238, 240, 241, 242, 243, 246, 248, 249, 250, 252, 264, 265], "serial": [4, 15, 22, 137, 156], "file": [4, 49, 105, 112, 131, 165, 208, 213], "3": [4, 9, 19, 44, 45, 58, 59, 85, 105, 134, 137, 155, 168, 169, 176, 179, 181, 182, 185, 195, 199, 200, 218, 223, 224, 225, 228, 231, 233, 234, 236, 238, 240, 241, 242, 243, 246, 248, 249, 250, 252, 264], "load": [4, 6, 7, 9, 12, 22, 25, 44, 49, 53, 58, 59, 60, 97, 112, 117, 131, 133, 137, 157, 165, 166, 197, 198, 214, 223, 231, 237, 247, 256], "A": [4, 23, 43, 46, 98, 129, 200, 226, 230, 248, 262], "minim": [4, 97], "applic": [4, 6, 135, 155, 208, 244], "depend": [4, 105, 107, 164], "libtorch": [4, 188], "4": [4, 9, 17, 19, 44, 58, 59, 85, 105, 134, 137, 155, 158, 168, 169, 179, 182, 185, 200, 201, 218, 223, 228, 231, 233, 234, 236, 238, 240, 241, 242, 243, 246, 248, 249, 250, 264], "5": [4, 19, 44, 58, 59, 105, 168, 169, 179, 182, 185, 200, 223, 231, 234, 236, 238, 240, 241, 242, 246, 250, 264], "help": [4, 168], "extens": [5, 10, 13, 120, 155, 177, 207, 211, 220, 244, 253], "motiv": [5, 6, 85, 182, 189, 197, 200], "exampl": [5, 13, 21, 22, 58, 59, 73, 78, 79, 85, 99, 102, 103, 112, 125, 186, 200, 218, 220, 253, 262, 264], "write": [5, 6, 14, 51, 135, 169, 178, 183, 189, 200, 216], "setuptool": [5, 23], "op": [5, 8, 108, 173, 174], "pass": [5, 11, 109, 142, 152], "backward": [5, 10, 21, 78, 122, 129, 130, 152], "bind": [5, 22], "perform": [5, 109, 138, 143, 144, 147, 154, 164, 168, 176, 177, 197, 219, 221, 223, 247], "comparison": [5, 129, 133, 154, 172, 182], "gpu": [5, 6, 44, 45, 55, 79, 87, 95, 104, 110, 112, 168, 184, 188, 220, 247], "devic": [5, 12, 15, 112, 122, 206, 212, 232, 237, 247], "jit": [5, 10, 23, 110, 158], "compil": [5, 23, 144, 164, 172, 210, 211, 254, 255], "mix": [5, 25, 122, 131, 230, 247], "accessor": 5, "integr": [5, 15, 187, 194], "defin": [6, 7, 8, 9, 19, 22, 44, 47, 49, 60, 64, 97, 115, 126, 134, 137, 159, 171, 178, 179, 181, 182, 197, 198, 218, 231, 252, 254], "neural": [6, 12, 44, 47, 87, 110, 146, 150, 221], "regist": [6, 8, 10, 15, 23], "paramet": [6, 13, 45, 60, 93, 112, 156, 159, 161, 162, 200, 202, 231, 247, 261], "submodul": [6, 183], "travers": 6, "hierarchi": [6, 226], "mode": [6, 18, 19, 141, 145, 181, 182, 183, 185, 197, 220], "ownership": 6, "dcgan": [6, 52], "wa": 6, "gan": [6, 52], "agan": 6, "gener": [6, 7, 15, 52, 110, 112, 113, 115, 126, 218, 231, 247, 261], "discrimin": [6, 52, 98], "loop": [6, 14, 134, 136, 159, 160, 198], "move": [6, 22], "checkpoint": [6, 55, 112, 122, 133, 146, 198, 214, 237, 247], "recov": 6, "state": [6, 258], "inspect": [6, 153, 156, 169, 230], "imag": [6, 12, 20, 44, 58, 59, 105, 117, 119, 139, 157, 171, 213, 257, 262, 263], "distribut": [7, 11, 16, 18, 53, 55, 56, 61, 82, 110, 120, 133, 134, 135, 162, 163, 175, 214, 216, 247], "pipelin": [7, 115, 134, 149], "multipl": [7, 44, 112, 156], "process": [7, 53, 55, 58, 59, 115, 133, 134, 155, 161, 213], "input": [7, 11, 52, 55, 58, 59, 60, 73, 127, 130, 149, 175, 195, 209, 231, 247, 252], "sequenc": [7, 102, 124], "scale": [7, 124, 132, 164], "pipe": 7, "initi": [7, 48, 52, 53, 115, 133, 135, 146, 153, 193, 202], "test": [7, 9, 10, 14, 44, 73, 87, 115, 129, 142, 178, 206, 218], "dataset": [7, 19, 45, 51, 104, 110, 113, 115, 137, 178, 182, 185, 197, 198], "output": [7, 58, 59, 113, 130, 221], "dispatch": [8, 10, 164], "schema": 8, "backend": [8, 10, 15, 135, 144, 155, 179, 197, 198, 199, 206, 247, 253], "implement": [8, 22, 23, 52, 73, 98, 129, 153, 155, 161, 162, 164, 189, 191, 202], "For": 8, "do": [8, 44, 130, 147, 234], "need": [8, 183], "In": 8, "place": [8, 80], "view": [8, 168], "ad": [8, 87, 169, 208, 230], "support": [8, 10, 87, 108, 157, 164, 192, 202, 213, 216], "go": [8, 44, 52, 73, 171], "beyond": 8, "autocast": [8, 230], "tracer": 8, "beta": [9, 17, 19, 108, 137, 141, 142, 143, 147, 157, 164, 194, 209, 210, 211, 219, 222, 255], "dynam": [9, 21, 98, 137, 173, 174, 181, 185, 195, 228, 234], "quantiz": [9, 19, 119, 137, 157, 179, 181, 182, 183, 184, 185, 195, 197, 198, 199, 200, 221, 223, 224, 225, 228, 234], "an": [9, 10, 14, 20, 44, 58, 59, 60, 102, 103, 115, 125, 136, 159, 211, 237, 257, 266], "lstm": [9, 21, 98, 102, 136], "word": [9, 99, 103], "languag": [9, 103], "introduct": [9, 12, 24, 43, 52, 58, 59, 61, 91, 101, 137, 153, 168, 171, 172, 175, 185, 186, 187, 188, 189, 192, 194, 195, 199, 200, 202, 204, 206, 207, 209, 218, 222, 223, 224, 225, 227, 228, 231, 234, 238, 252], "text": [9, 49, 262], "pretrain": [9, 60, 178, 224, 225, 228], "extend": [10, 22, 23, 108, 156], "new": [10, 15, 58, 59, 64, 98, 115, 129, 227], "s": [10, 60, 101, 146, 177, 190], "kei": 10, "full": [10, 87, 213], "list": [10, 263], "kernel": [10, 15, 82, 150, 219, 254], "against": 10, "nativ": [10, 208], "compat": [10, 188], "known": 10, "issu": 10, "addit": [10, 42, 114, 168, 234], "note": [10, 60, 98, 200, 229], "futur": [10, 15], "work": [10, 11, 15, 122, 123, 124, 147, 214], "stai": 10, "touch": 10, "uneven": 11, "join": 11, "context": [11, 260], "manag": 11, "requir": [11, 17, 105, 125, 156, 201, 212, 213, 216, 226, 256, 258], "distributeddataparallel": [11, 61, 133, 247], "zeroredundancyoptim": [11, 258], "keyword": 11, "argument": [11, 252], "how": [11, 15, 122, 123, 124, 152, 182, 197, 198, 200, 212, 214, 215, 216, 222, 226, 245, 256, 258, 260], "doe": [11, 17, 125, 201], "joinabl": 11, "joinhook": 11, "make": [11, 98, 116, 183, 208], "toi": [11, 200], "class": [11, 14, 22, 51, 97, 153], "underli": 12, "principl": [12, 176, 177, 192], "packag": [12, 78], "select": [12, 136, 204], "content": [12, 111, 219, 260, 261, 262, 263, 264, 265], "descent": 12, "creat": [13, 45, 49, 99, 101, 126, 127, 128, 143, 150, 156, 247, 257], "numpi": [13, 40, 48, 71, 80, 95, 111, 190], "scipi": 13, "less": 13, "parametr": [13, 153, 156], "pendulum": 14, "\u4f7f\u7528": [14, 42, 55, 90, 93, 96, 104, 118, 159, 246], "\u7f16\u5199\u73af\u5883\u548ctransform": 14, "effect": 14, "action": [14, 136], "_step": 14, "reset": 14, "simul": 14, "_reset": 14, "metadata": [14, 15], "env": 14, "_spec": 14, "spec": 14, "shape": [14, 173, 174, 239], "reproduc": 14, "seed": 14, "wrap": [14, 122, 178], "envbas": 14, "our": [14, 18, 129, 135, 142, 152, 175], "rollout": 14, "simpl": [14, 45, 105, 143, 165, 230, 238], "facilit": 15, "privateuse1": 15, "guard": 15, "deseri": [15, 22], "other": [15, 18, 168], "improv": [15, 109, 168, 219], "user": [15, 81, 127, 183, 206, 254], "renam": 15, "name": [15, 127], "properti": 15, "relat": [15, 171, 177, 244], "combin": [16, 124, 133], "dataparallel": [16, 45, 56, 61, 79, 87, 112, 133, 240], "rpc": [16, 61, 120, 134, 161, 162, 163, 180, 212, 217], "framework": [16, 162, 163], "acceler": [17, 151, 201], "bert": [17, 137, 185, 201], "semi": [17, 24, 201], "structur": [17, 201, 265], "sparsiti": [17, 192, 201], "problem": [17, 200, 201], "solv": [17, 201], "intro": [17, 201], "establish": 17, "baselin": [17, 182], "prune": [17, 156, 201], "spars": [17, 189, 192, 201], "infer": [17, 58, 59, 112, 117, 119, 137, 176, 213, 219, 220, 230, 247, 252, 253, 256], "torchrec": [18, 175], "shard": [18, 122, 123, 124, 134, 258], "instal": [18, 75, 82, 105, 137, 157, 175, 221, 245, 267], "embed": [18, 103], "distributedmodelparallel": [18, 175], "multiprocess": 18, "tabl": [18, 111, 260, 261, 262, 263, 264, 265], "wise": 18, "static": [19, 98, 182, 195, 228], "eager": [19, 182, 185], "architectur": 19, "helper": [19, 137, 182, 192, 197, 198], "loader": [19, 87], "imagenet": 19, "post": [19, 181, 182, 197, 199, 213, 228], "awar": [19, 198, 199, 221, 228], "speedup": [19, 172, 230], "option": [20, 43, 45, 114, 178, 206, 213, 260, 261, 263], "\u6a21\u578b\u5bfc\u51fa\u5230": 20, "\u5e76\u4f7f\u7528": 20, "runtim": [20, 105, 108, 247], "\u8fd0\u884c": 20, "syntax": [21, 85, 203], "appli": [21, 124, 137, 149, 199], "ensembl": [21, 138], "bidirect": 21, "layer": [21, 90, 124, 129, 247], "asid": 21, "visual": [21, 105, 117, 152, 157, 165, 166, 226, 229], "project": [22, 260], "With": [22, 168, 208], "cmake": [22, 23, 208], "save": [22, 25, 53, 55, 60, 105, 112, 122, 125, 130, 131, 133, 146, 152, 197, 198, 214, 230, 231, 240], "To": [22, 213], "ivalu": 22, "take": 22, "return": [22, 125], "bound": [22, 177], "appendix": [23, 192], "more": [23, 58, 59, 119, 125, 144, 145, 161, 168, 175, 187, 188, 194, 209, 218, 222, 224, 225, 227, 228, 231, 234, 238, 245, 252, 257], "wai": [23, 154, 262], "supervis": 24, "learn": [24, 35, 46, 58, 59, 85, 98, 99, 100, 110, 117, 119, 120, 137, 146, 157, 161, 163, 168, 176, 187, 188, 194, 209, 218, 222, 224, 225, 227, 228, 231, 234, 238, 245, 252], "usb": 24, "built": [24, 179, 188], "upon": 24, "freematch": 24, "softmatch": 24, "cifar": [24, 97], "10": [24, 97, 152, 182, 264], "onli": [24, 183, 220, 221], "40": 24, "label": [24, 171], "specif": [24, 171, 197, 198, 247], "imbalanc": 24, "algorithm": [24, 160], "\u4ecb\u7ecd": [25, 82, 88, 90, 94, 95, 107, 233, 249, 250], "author": [25, 105], "further": [25, 32, 43, 53, 55, 56, 105, 107, 108, 109, 114, 117, 131, 132, 136, 179, 189, 191, 192], "read": [25, 32, 43, 53, 55, 56, 105, 107, 108, 109, 114, 131, 132, 136, 171, 177, 179, 189, 191, 192, 226], "\u97f3\u9891\u6570\u636e\u589e\u5f3a": 26, "\u97f3\u9891\u6570\u636e\u96c6": 27, "\u97f3\u9891\u7279\u5f81\u589e\u5f3a": 28, "\u97f3\u9891\u7279\u5f81\u63d0\u53d6": 29, "\u97f3\u9891": 30, "i": [30, 44], "o": 30, "audio": 31, "\u91cd\u91c7\u6837": 31, "\u81ea\u52a8\u5fae\u5206": 32, "\u5f20\u91cf": [32, 40, 72, 92, 111], "\u51fd\u6570\u548c\u8ba1\u7b97\u56fe": 32, "\u8ba1\u7b97\u68af\u5ea6": 32, "\u7981\u7528\u68af\u5ea6\u8ddf\u8e2a": 32, "\u66f4\u591a\u5173\u4e8e\u8ba1\u7b97\u56fe": 32, "\u53ef\u9009\u9605\u8bfb": 32, "\u5f20\u91cf\u68af\u5ea6": 32, "tensor": [32, 48, 63, 72, 76, 80, 95, 101, 110, 111, 120, 124, 125, 127, 152, 164, 192, 193, 200, 211, 223, 244, 247, 252], "\u548c\u96c5\u53ef\u6bd4\u4e58\u79ef": 32, "jacobian": [32, 145, 150], "product": [32, 145, 150, 164], "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": [33, 250], "\u83b7\u53d6\u8bad\u7ec3\u8bbe\u5907": 33, "\u5b9a\u4e49\u7c7b": 33, "\u6a21\u578b\u5c42": 33, "nn": [33, 61, 67, 68, 78, 85, 93, 104, 111, 112, 156, 175, 237, 240, 244], "flatten": 33, "linear": [33, 99, 104], "relu": [33, 179], "sequenti": [33, 104], "softmax": [33, 99, 191], "\u6a21\u578b\u53c2\u6570": 33, "\u5ef6\u4f38\u9605\u8bfb": [33, 34, 37, 41], "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668": 34, "\u52a0\u8f7d\u6570\u636e\u96c6": 34, "\u8fed\u4ee3\u548c\u53ef\u89c6\u5316\u6570\u636e\u96c6": 34, "\u521b\u5efa\u81ea\u5b9a\u4e49\u6570\u636e\u96c6": 34, "__len__": 34, "__getitem__": 34, "\u4f7f\u7528\u6570\u636e\u52a0\u8f7d\u5668\u4e3a\u8bad\u7ec3\u51c6\u5907\u6570\u636e": 34, "\u901a\u8fc7": [34, 242], "dataload": [34, 51, 104, 110], "\u8fdb\u884c\u8fed\u4ee3": 34, "\u57fa\u7840\u77e5\u8bc6": 36, "\u8fd0\u884c\u6559\u7a0b\u4ee3\u7801": [36, 88], "\u5982\u4f55\u4f7f\u7528\u672c\u6307\u5357": 36, "\u4f18\u5316\u6a21\u578b\u53c2\u6570": [37, 38], "\u524d\u7f6e\u4ee3\u7801": 37, "\u8d85\u53c2\u6570": 37, "\u4f18\u5316\u5faa\u73af": 37, "\u635f\u5931\u51fd\u6570": [37, 93, 96], "\u4f18\u5316\u5668": [37, 96], "\u5b8c\u6574\u5b9e\u73b0": 37, "\u5feb\u901f\u5165\u95e8": 38, "\u5904\u7406\u6570\u636e": 38, "\u521b\u5efa\u6a21\u578b": 38, "\u4fdd\u5b58\u6a21\u578b": [38, 248], "\u52a0\u8f7d\u6a21\u578b": 38, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [39, 242], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u6743\u91cd": 39, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u5e26\u6709\u7ed3\u6784\u7684\u6a21\u578b": 39, "\u76f8\u5173\u6559\u7a0b": 39, "\u521d\u59cb\u5316\u5f20\u91cf": 40, "\u5f20\u91cf\u7684\u5c5e\u6027": 40, "\u5f20\u91cf\u64cd\u4f5c": 40, "\u4e0enumpy\u8f6c\u6362": 40, "\u5f20\u91cf\u8f6c\u4e3anumpi": 40, "arrai": [40, 48, 80], "array\u8f6c\u4e3a\u5f20\u91cf": 40, "totensor": 41, "lambda": 41, "better": 42, "\u8fdb\u884c\u5feb\u901f": 42, "\u63a8\u65ad": 42, "featur": [42, 102, 117, 122, 157, 168, 171, 220, 221], "thi": [42, 57, 122, 152, 263, 266], "inform": [42, 85, 144], "summari": [42, 45, 113, 122, 164, 227], "gentl": 43, "background": 43, "usag": [43, 110, 129, 141, 149, 152, 172, 173, 174, 176, 206, 219, 221, 253, 254], "differenti": [43, 101, 141], "vector": [43, 138, 145, 150], "calculu": 43, "exclus": 43, "dag": 43, "classifi": [44, 99, 105, 119, 157, 171], "about": [44, 137, 239], "cifar10": 44, "convolut": [44, 129, 136, 142, 247], "where": [44, 52, 73, 171, 191], "dummi": 45, "8": [45, 182, 231, 246, 264], "deep": [46, 98, 99, 100, 110, 176], "60": 46, "minut": 46, "blitz": 46, "backprop": 47, "weight": [47, 52, 65, 195], "attribut": [48, 229, 252], "bridg": [48, 80, 95], "chatbot": 49, "preprocess": [49, 146], "format": [49, 105, 112, 147, 177, 223, 247], "trim": 49, "seq2seq": [49, 60, 118, 165], "encod": [49, 60, 103, 165], "decod": [49, 60, 165], "procedur": 49, "mask": [49, 191], "singl": [49, 149], "iter": [49, 51, 115, 156], "greedi": [49, 60], "my": 49, "googl": [50, 257], "colab": 50, "version": [50, 150], "drive": 50, "enabl": [50, 186, 247], "compos": [51, 145, 254], "through": [51, 85, 179, 199], "afterword": 51, "torchvis": [51, 74, 178], "\u6559\u7a0b": [52, 75, 86, 97, 121, 159, 160, 166], "adversari": [52, 73], "fault": 53, "toler": 53, "torchrun": [53, 133], "why": [53, 56, 124, 125, 191, 193, 215], "grace": 53, "restart": 53, "group": [53, 55, 155], "provid": 53, "variabl": [53, 247], "snapshot": [53, 152], "trainer": 53, "constructor": [53, 247], "resum": [53, 112, 230], "\u5206\u5e03\u5f0f\u5e76\u884c": 54, "video": 54, "section": [54, 265], "ddp": [55, 56, 120, 131, 133, 247], "\u8fdb\u884c\u591a": 55, "\u8bad\u7ec3": 55, "job": [55, 238], "you": [56, 124, 229], "should": [56, 124], "prefer": [56, 223], "over": 56, "dp": 56, "\u6df1\u5ea6\u5b66\u4e60": 57, "60\u5206\u949f\u5165\u95e8": 57, "goal": 57, "segment": [58, 59, 178], "deeplabv3": [58, 59], "android": [58, 204, 206, 208, 218, 222, 223, 224], "deploy": [58, 59, 221, 256], "reus": [58, 59, 223], "complet": [58, 59], "ui": [58, 59], "refactor": [58, 59, 183], "recap": [58, 59, 122], "deploi": [60, 213, 257], "acknowledg": [60, 126, 176, 177], "handl": 60, "attent": [60, 164, 165], "search": [60, 87], "chang": [60, 232], "host": [60, 194], "own": [60, 135, 183, 213], "greedysearchdecod": 60, "print": [60, 109], "\u5206\u5e03\u5f0f\u6982\u8ff0": 61, "fullyshardeddataparallel": 61, "elast": 61, "base": [61, 113, 157, 180, 204, 217, 260], "develop": 61, "control": [65, 164, 173, 174, 247], "flow": [65, 173, 174, 200], "share": [65, 200], "warm": 71, "up": [71, 126, 149, 171, 178, 179, 184, 210, 211, 219, 234], "\u5bf9\u6297\u6837\u672c\u751f\u6210": 73, "threat": 73, "fast": [73, 219], "sign": 73, "attack": 73, "under": 73, "fgsm": 73, "accuraci": [73, 87, 137, 144, 197, 221, 234], "vs": [73, 145, 190], "epsilon": 73, "sampl": [73, 128, 154, 226], "finetun": [74, 117, 157, 178], "torchmultimod": 75, "\u5fae\u8c03": 75, "flava": 75, "track": [76, 130, 169], "histori": 76, "convnet": [78, 117], "hook": [78, 125, 152], "recurr": [78, 136], "net": 78, "multi": [79, 87, 126, 176], "part": [79, 85, 102, 157, 177], "cpu": [79, 112, 122, 125, 143, 144, 176, 177, 207, 220, 247], "inplac": 80, "out": [80, 129, 142], "zero": 80, "index": [80, 191, 261], "No": 80, "camel": 80, "case": [80, 133, 209, 247], "former": 81, "holist": [82, 83], "analysi": [82, 83, 177], "hta": 82, "tempor": 82, "breakdown": 82, "idl": 82, "durat": 82, "commun": [82, 87, 135, 212], "overlap": 82, "augment": [82, 102, 247], "counter": 82, "memori": [82, 102, 109, 125, 129, 147, 152, 160, 176, 177, 219, 223, 238, 247], "bandwidth": 82, "queue": 82, "length": [82, 247], "launch": [82, 134, 226], "statist": 82, "\u5dee\u5f02\u5206\u6790": 83, "hybrid": [85, 86], "pure": 85, "top": [85, 177], "level": [85, 102, 260, 262, 263], "rai": 87, "tune": [87, 122, 137, 177, 219, 247], "\u8d85\u53c2\u6570\u8c03\u4f18": 87, "configur": [87, 126, 137, 177, 185, 197, 198, 226, 260], "set": [87, 126, 137, 171, 176, 179, 182, 184, 185, 197, 210, 211, 234, 247], "space": 87, "youtub": [88, 91], "\u81ea\u52a8\u5fae\u5206\u57fa\u7840": 89, "\u6211\u4eec\u4e3a\u4ec0\u4e48\u9700\u8981": 89, "\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50": 89, "\u81ea\u52a8\u6c42\u5bfc\u5728\u8bad\u7ec3\u4e2d": 89, "\u5173\u95ed\u548c\u6253\u5f00\u81ea\u52a8\u6c42\u5bfc": 89, "\u548c\u539f\u4f4d\u64cd\u4f5c": 89, "\u5206\u6790\u5668": 89, "\u9ad8\u7ea7\u4e3b\u9898": 89, "\u66f4\u591a": 89, "\u7ec6\u8282\u548c\u9ad8\u7ea7": 89, "\u9ad8\u7ea7": 89, "captum": [90, 229], "\u8fdb\u884c\u6a21\u578b\u7406\u89e3": 90, "\u5b89\u88c5": [90, 158], "\u7b2c\u4e00\u4e2a\u793a\u4f8b": 90, "\u4f7f\u7528\u96c6\u6210\u68af\u5ea6\u8fdb\u884c\u7279\u5f81\u5f52\u56e0": 90, "\u4f7f\u7528\u906e\u6321\u8fdb\u884c\u7279\u5f81\u5f52\u56e0": 90, "\u4f7f\u7528\u5c42\u68af\u5ea6\u7c7b\u6fc0\u6d3b\u6620\u5c04": 90, "gradcam": 90, "\u8fdb\u884c\u5c42\u5f52\u56e0": 90, "\u4f7f\u7528captum": 90, "insights\u8fdb\u884c\u53ef\u89c6\u5316": 90, "\u7b80\u4ecb": [92, 95, 96, 236, 240, 241, 242, 243, 248], "\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668": [92, 96], "\u8bad\u7ec3\u4f60\u7684": 92, "\u6784\u5efa\u6a21\u578b": 93, "\u548c": [93, 104, 158, 171, 248], "\u5e38\u89c1\u5c42\u7c7b\u578b": 93, "\u7ebf\u6027\u5c42": 93, "\u5377\u79ef\u5c42": 93, "\u5faa\u73af\u5c42": 93, "\u8f6c\u6362\u5668": 93, "\u5176\u4ed6\u5c42\u548c\u51fd\u6570": 93, "\u6570\u636e\u64cd\u4f5c\u5c42": 93, "\u6fc0\u6d3b\u51fd\u6570": 93, "tensorboard": [94, 168, 169, 245], "\u652f\u6301": 94, "\u5f00\u59cb\u4e4b\u524d": 94, "\u5728tensorboard\u4e2d\u663e\u793a\u56fe\u50cf": 94, "\u7ed8\u5236\u6807\u91cf\u4ee5\u53ef\u89c6\u5316\u8bad\u7ec3": 94, "\u53ef\u89c6\u5316\u60a8\u7684\u6a21\u578b": 94, "\u4f7f\u7528\u5d4c\u5165\u53ef\u89c6\u5316\u60a8\u7684\u6570\u636e\u96c6": 94, "\u5176\u4ed6\u8d44\u6e90": [94, 96], "\u521b\u5efa\u5f20\u91cf": 95, "\u968f\u673a\u5f20\u91cf\u548c\u79cd\u5b50": 95, "\u5f20\u91cf\u5f62\u72b6": 95, "\u5f20\u91cf\u6570\u636e\u7c7b\u578b": 95, "\u4f7f\u7528pytorch\u5f20\u91cf\u8fdb\u884c\u6570\u5b66\u548c\u903b\u8f91\u8fd0\u7b97": 95, "\u5f20\u91cf\u5e7f\u64ad": 95, "\u66f4\u591a\u5f20\u91cf\u6570\u5b66\u8fd0\u7b97": 95, "\u672c\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u590d\u5236\u5f20\u91cf": 95, "\u79fb\u52a8\u5230": 95, "\u64cd\u4f5c\u5f20\u91cf\u5f62\u72b6": 95, "\u6539\u53d8\u7ef4\u5ea6\u6570\u91cf": 95, "\u8bad\u7ec3\u6a21\u578b": 96, "\u8bad\u7ec3\u5faa\u73af": 96, "\u6bcf\u5468\u671f\u6d3b\u52a8": 96, "knowledg": 97, "distil": 97, "util": [97, 110, 156, 160, 207, 223, 231, 244, 247], "cross": 97, "entropi": 97, "cosin": 97, "intermedi": [97, 130, 247], "regressor": 97, "advanc": [98, 122, 135, 168, 177, 190, 207, 230, 254], "decis": 98, "bi": 98, "crf": 98, "versu": 98, "toolkit": 98, "condit": 98, "random": [98, 115], "field": [98, 263], "discuss": 98, "exercis": [98, 102, 103, 114, 127, 128, 165, 177], "tag": [98, 102], "block": [99, 231, 262], "affin": 99, "map": 99, "non": [99, 174, 183, 211, 218, 247], "probabl": 99, "compon": [99, 144], "logist": 99, "regress": 99, "bag": [99, 103], "nlp": 100, "librari": [101, 171, 188, 208, 224, 225, 238, 247], "reshap": 101, "automat": [101, 141, 230], "long": [102, 238, 264, 266], "short": [102, 226], "term": 102, "speech": 102, "tagger": 102, "charact": 102, "lexic": 103, "semant": [103, 189, 190], "dens": [103, 164], "n": 103, "gram": 103, "continu": 103, "\u5177\u4f53\u662f\u4ec0\u4e48": 104, "mnist": 104, "\u6570\u636e\u96c6\u8bbe\u7f6e": 104, "\u4ece\u96f6\u5f00\u59cb\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u4e0d\u4f7f\u7528": 104, "\u91cd\u6784": 104, "\u6dfb\u52a0\u9a8c\u8bc1\u96c6": 104, "\u521b\u5efa": 104, "fit": [104, 152], "get_data": 104, "cnn": 104, "\u5305\u88c5": 104, "\u603b\u7ed3": [104, 158, 246], "export": [105, 112, 173, 174, 197, 198, 199, 200, 256], "netron": 105, "6": [105, 168, 169, 179, 182, 223, 231, 238, 240, 246, 264], "7": [105, 168, 179, 182, 231, 238, 246, 264], "compar": [105, 119, 185, 195, 218, 231], "ones": 105, "registri": 108, "unsupport": 108, "aten": [108, 200], "exist": [108, 147, 149], "without": [108, 206, 218], "registr": 108, "fx": [108, 142, 143, 172, 181, 182, 183, 199], "\u6a21\u578b\u5206\u6790": 109, "debug": [109, 144, 182, 185, 197, 247], "profil": [109, 143, 144, 168, 177, 180, 217, 226, 238], "cheat": 110, "sheet": 110, "vision": [110, 157, 247], "creation": 110, "dimension": 110, "algebra": 110, "activ": 110, "rate": 110, "schedul": [110, 126, 211], "datasampl": 110, "also": [110, 210, 254], "see": [110, 210, 254], "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60": 111, "\u70ed\u8eab": 111, "\u81ea\u52a8\u6c42\u5bfc": 111, "\u5f20\u91cf\u548c\u81ea\u52a8\u6c42\u5bfc": 111, "\u5b9a\u4e49\u65b0\u7684\u81ea\u52a8\u6c42\u5bfc\u51fd\u6570": 111, "\u81ea\u5b9a\u4e49": 111, "\u6a21\u5757": 111, "\u63a7\u5236\u6d41": 111, "\u6743\u91cd\u5171\u4eab": 111, "\u793a\u4f8b": [111, 251], "state_dict": [112, 242, 249], "recommend": [112, 127, 200], "entir": 112, "One": [112, 134], "warmstart": 112, "differ": [112, 178], "across": 112, "t5": [113, 122], "summar": 113, "sentiment": 113, "classif": 113, "generationutil": 113, "templat": 114, "torchtext": [115, 116], "\u6587\u672c\u5206\u7c7b": 115, "access": [115, 176, 191, 247], "raw": 115, "instanc": [115, 178], "split": 115, "\u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6": 116, "vocabulari": 116, "numeric": 116, "sentenc": 116, "bucket": 116, "pad": 116, "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b": 117, "few": [117, 157], "predict": [117, 139, 157, 171], "fix": [117, 200, 252], "extractor": [117, 157], "\u6570\u636e\u83b7\u53d6\u548c\u5904\u7406": 118, "\u7684": 118, "\u6570\u636e\u6574\u7406": 118, "\u5f15\u7528": 118, "\u4f18\u5316\u89c6\u89c9": 119, "deit": 119, "lite": [119, 188], "interpret": [119, 143, 204, 222, 229], "speed": [119, 133, 149, 219], "fsdp": [120, 122, 123], "tp": [120, 124], "devicemesh": [120, 215], "\u6b22\u8fce\u6765\u5230": 121, "\u66f4\u591a\u8d44\u6e90": 121, "fulli": [122, 123, 124], "fine": [122, 137], "hf": 122, "precis": [122, 131, 230, 247], "intial": 122, "strategi": [122, 126], "prefetch": 122, "stream": 122, "rank0": 122, "larg": 124, "when": [124, 130, 131, 191, 252], "layernorm": 124, "rmsnorm": 124, "typic": 125, "than": [125, 176], "concept": 125, "pack": 125, "unpack": 125, "some": 125, "unconvent": 125, "int": 125, "tupl": 125, "str": 125, "disk": 125, "na": 126, "ax": 126, "torchx": 126, "runner": 126, "searchspac": 126, "metric": 126, "optimizationconfig": 126, "choos": 126, "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406": [127, 128, 165], "\u5b57\u7b26\u7ea7": [127, 128], "rnn": [127, 128, 163], "\u8fdb\u884c\u59d3\u540d\u5206\u7c7b": 127, "turn": 127, "plot": [127, 128, 165], "\u751f\u6210\u59d3\u540d": 128, "fuse": [129, 142, 152, 164, 218, 223, 247], "norm": [129, 142, 247], "formula": 129, "batchnorm": 129, "doubl": 130, "real": 131, "world": 131, "cloud": [131, 257], "enough": 131, "multinod": 132, "local": [132, 176], "global": [132, 137, 156, 185], "rank": 132, "heteregen": 132, "troubleshoot": [132, 230], "between": [133, 191], "skew": 133, "partit": 134, "resnet50": 134, "stitch": 134, "Into": 134, "point": [135, 195, 244], "collect": [135, 159, 231], "ring": 135, "allreduc": 135, "topic": [135, 230, 262], "dqn": [136, 160], "mlp": 136, "q": [136, 160], "huggingfac": 137, "necessari": [137, 238], "token": 137, "check": [137, 185, 197], "refer": [137, 179, 195, 262], "vmap": [138, 205], "\u5b9a\u4e49": 139, "\u4f9d\u8d56": 139, "\u7b80\u5355\u7684": 139, "web": 139, "server": [139, 161, 162], "\u63a8\u7406": 139, "wav2vec2": [140, 167], "\u5f3a\u5236\u5bf9\u9f50": 140, "fuser": 142, "fusion": [142, 179], "benchmark": [142, 185, 194, 210, 218, 223, 231], "resnet18": [142, 143, 200], "captur": [143, 152, 199], "symbol": [143, 183], "investig": 143, "inductor": [144, 186, 199], "log": [144, 146, 245], "determin": 144, "error": [144, 230, 252], "hessian": 145, "hvp": 145, "vhp": 145, "revers": 145, "jacrev": 145, "jacfwd": 145, "functorch": 145, "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684": 146, "rl": 146, "agent": 146, "definit": [146, 263], "act": 146, "cach": [146, 153], "recal": 146, "td": 146, "all": [146, 152, 175, 230, 238, 247, 252], "let": 146, "plai": 146, "channel": [147, 177, 223], "last": [147, 177, 223], "gain": 147, "machin": 149, "best": 149, "practic": [149, 168], "tangent": 150, "ntk": 150, "contract": 150, "nvfuser": 151, "dure": [152, 247], "disclaim": 152, "techniqu": 152, "register_post_accumulate_grad_hook": 152, "everyth": [152, 178], "line": [152, 185, 262], "hand": 153, "ar": 153, "first": [153, 176, 177], "citizen": 153, "concaten": 153, "remov": [153, 156], "per": 154, "grad": [154, 191, 247], "effici": [154, 176, 189, 222, 247], "cpp": 155, "subclass": [155, 164, 244], "expos": 155, "re": 156, "0": [157, 191], "nightli": [157, 173], "raspberri": 158, "pi": 158, "\u4e0a\u8fdb\u884c\u5b9e\u65f6\u63a8\u7406": 158, "30": 158, "fp": 158, "\u51c6\u5907\u73af\u5883": 158, "\u8bbe\u7f6e": 158, "opencv": 158, "\u89c6\u9891\u6355\u83b7": 158, "\u56fe\u7247\u5904\u7406": 158, "\u9009\u62e9\u6a21\u578b": 158, "mobilenetv2": [158, 187, 194], "\u91cf\u5316\u548c": 158, "\u6027\u80fd\u4f18\u5316": 158, "\u540e\u7eed": 158, "\u5f3a\u5316\u5b66\u4e60": [159, 160], "ppo": 159, "hyperparamet": [159, 160], "asynchron": [161, 247], "cartpol": 161, "solver": 161, "reinforc": 163, "rref": 163, "high": 164, "dot": 164, "sdpa": 164, "explicit": 164, "hardwar": 164, "causal": 164, "self": 164, "nestedtensor": 164, "attn_bia": 164, "\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1": 165, "spatial": 166, "depict": 166, "stn": 166, "\u8fdb\u884c\u8bed\u97f3\u8bc6\u522b": 167, "event": 168, "analyz": [168, 238], "amd": 168, "\u53ef\u89c6\u5316\u6a21\u578b": 169, "\u6570\u636e\u548c\u8bad\u7ec3": 169, "projector": 169, "assess": 169, "tacotron2": 170, "\u6587\u672c\u8f6c\u8bed\u97f3": 170, "tiatoolbox": 171, "\u8fdb\u884c\u5168\u5207\u7247\u56fe\u50cf\u5206\u7c7b": 171, "clean": 171, "befor": [171, 229], "patch": 171, "patchpredictor": 171, "whole": 171, "slide": 171, "extract": 171, "patholog": 171, "here": 171, "demonstr": 172, "torchdynamo": 172, "break": [173, 174], "constraint": [173, 174, 179], "decomposit": [173, 174], "exportdb": [173, 174], "strict": 174, "program": 174, "embeddingbag": 175, "embeddingbagcollect": 175, "queri": 175, "vanilla": 175, "offset": 175, "repres": 175, "minibatch": 175, "keyedjaggedtensor": 175, "kjt": 175, "resourc": [175, 213, 234, 256, 257], "grok": [176, 177], "intel": [176, 177, 207, 220, 221, 226, 247, 253], "avoid": [176, 247], "logic": 176, "core": [176, 187], "alwai": 176, "faster": 176, "remot": 176, "pin": 176, "worker": 176, "default": [176, 230, 232], "torchserv": [176, 177, 257], "set_num_thread": 176, "number": [176, 262, 263], "physic": 176, "launcher": [176, 177], "down": [177, 263], "microarchitectur": 177, "tma": 177, "back": 177, "end": 177, "vtune": [177, 226], "instrument": [177, 226], "technolog": [177, 226], "itt": [177, 226], "leverag": [177, 207], "alloc": [177, 219, 247], "tcmalloc": 177, "jemalloc": 177, "ptmalloc": 177, "boost": 177, "\u5bf9\u8c61\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b": 178, "pennfudan": 178, "modifi": [178, 230], "add": [178, 224, 225], "backbon": 178, "detect": 178, "prototyp": [179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 196, 197, 198, 201, 204], "backendconfig": 179, "deriv": [179, 200], "pattern": [179, 200], "each": 179, "dtypeconfig": 179, "conv": 179, "qconfigmap": [179, 182], "satisfi": 179, "faulti": 179, "workload": [180, 207, 217, 226, 247], "eval": [182, 197], "specifi": [182, 185], "calibr": [182, 197], "9": [182, 264], "float": [182, 195], "guid": [183, 247], "skip": [183, 202, 247], "traceabl": 183, "torchao": 184, "glue": 185, "qconfig_dict": 185, "one": [185, 263], "wrapper": [186, 206], "ml": 187, "maco": 187, "metal": 188, "sourc": [188, 208], "adagrad": 189, "maskedtensor": [189, 190, 191, 192], "simpler": 189, "origin": 189, "maskedarrai": 190, "reduct": [190, 192], "slice": 191, "distinguish": 191, "nan": [191, 230], "anoth": 191, "x": 191, "yield": 191, "nansum": 191, "nanmean": 191, "safe": 191, "miss": 191, "coo": 192, "csr": 192, "unari": 192, "binari": 192, "nest": 193, "nnapi": 194, "numer": 195, "suit": 195, "correspond": 195, "locat": 195, "its": 195, "equival": 195, "same": 195, "recip": [196, 218, 223, 224, 225, 227, 228, 235, 252], "lower": [197, 199], "qat": 198, "x86": 199, "common": [200, 209, 252], "param": 200, "ir": 200, "pt2e": 200, "match": [200, 247], "directli": [200, 247], "subgraphmatcherwithnamenodemap": 200, "detail": 202, "freez": 203, "mobil": [204, 222, 223, 224, 225, 227, 252], "so": 205, "vulkan": 206, "workflow": [206, 228], "desktop": 206, "sdk": 206, "java": [206, 208], "upload": [206, 257], "matrix": 207, "amx": 207, "guidelin": 207, "can": [207, 263], "confirm": 207, "being": 207, "prebuilt": [208, 257], "gradl": 208, "manifest": [208, 230], "bundl": 209, "uncommon": 209, "inflat": 209, "arg": [209, 261], "lr": 211, "happen": 211, "direct": [212, 262], "tensorpip": 212, "flask": 213, "both": 213, "quickli": 213, "bring": 213, "servic": 213, "pre": [213, 218, 224, 225, 227, 228, 252], "dcp": 214, "hsdp": 215, "requisit": [218, 224, 225, 227, 228, 252], "two": 218, "fuse_modul": [218, 223], "tool": 218, "aw": 219, "graviton": 219, "processor": 219, "bfloat16": [219, 220], "math": [219, 262], "openbla": 219, "smaller": 219, "dimens": 219, "overhead": 219, "linux": 219, "transpar": 219, "huge": 219, "page": [219, 260], "thp": 219, "float32": 220, "imper": 220, "float16": 220, "zoo": 220, "eas": 221, "compressor": 221, "driven": 221, "mobile_optim": 223, "mobilenet": [224, 225, 228], "v2": [224, 225, 228], "showcas": 226, "begin": 229, "final": 229, "gradscal": 230, "e": 230, "g": 230, "clip": 230, "amp": [230, 247], "minor": 230, "inf": 230, "type": [230, 252], "mismatch": 230, "mai": 230, "cudnn_status_bad_param": 230, "timeit": 231, "timer": [231, 246], "autorang": 231, "fuzz": 231, "instruct": 231, "count": 231, "callgrind": [231, 246], "\u521b\u5efa\u795e\u7ecf\u7f51\u7edc": 233, "\u73af\u5883\u8bbe\u7f6e": [233, 240, 241, 242, 243, 248, 249, 250], "\u5177\u4f53\u6b65\u9aa4": [233, 240, 241, 242, 243, 248, 249, 250], "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u5fc5\u8981\u5e93": [233, 236, 240, 241, 242, 243, 248, 250], "\u5b9a\u4e49\u548c\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": [233, 241, 242, 243], "\u6307\u5b9a\u6570\u636e\u5982\u4f55\u901a\u8fc7\u4f60\u7684\u6a21\u578b": 233, "\u53ef\u9009": [233, 236], "\u901a\u8fc7\u4f60\u7684\u6a21\u578b\u4f20\u9012\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5": 233, "\u5b66\u4e60\u66f4\u591a": [233, 236, 248, 249], "look": 234, "latenc": 234, "\u52a0\u8f7d\u6570\u636e": 236, "\u4f7f\u7528\u6b65\u9aa4": 236, "\u8bbf\u95ee\u6570\u636e\u96c6\u4e2d\u7684\u6570\u636e": 236, "\u904d\u5386\u6570\u636e": 236, "\u53ef\u89c6\u5316\u6570\u636e": 236, "tip": 237, "mmap": 237, "true": [237, 247], "meta": [237, 262], "load_state_dict": [237, 244], "assign": 237, "instanti": 238, "resnet": 238, "consumpt": 238, "examin": 238, "stack": 238, "reason": 239, "\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 240, "\u5b9a\u4e49\u5e76\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": [240, 248, 249], "\u5728gpu\u4e0a\u4fdd\u5b58": 240, "cpu\u4e0a\u52a0\u8f7d": 240, "gpu\u4e0a\u52a0\u8f7d": 240, "\u5728cpu\u4e0a\u4fdd\u5b58": 240, "\u5728gpu\u4e0a\u52a0\u8f7d": 240, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 241, "\u521d\u59cb\u5316\u4f18\u5316\u5668": [241, 242, 243, 249], "\u4fdd\u5b58\u901a\u7528\u68c0\u67e5\u70b9": 241, "\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 241, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b": 242, "\u7ee7\u7eed\u5b66\u4e60": [242, 250], "\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 243, "\u4fdd\u5b58\u591a\u4e2a\u6a21\u578b": 243, "\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 243, "swap_tensor": 244, "scalar": 245, "timer\u5feb\u901f\u5165\u95e8": 246, "\u5b9a\u4e49timer": 246, "wall\u65f6\u95f4": 246, "blocked_autorang": 246, "\u4ee3\u7801\u7247\u6bb5": 246, "\u6307\u4ee4\u8ba1\u6570": 246, "collect_callgrind": 246, "\u6df1\u5165\u63a2\u8ba8": 246, "\u8fdb\u884ca": 246, "b\u6d4b\u8bd5": 246, "\u811a\u6ce8": 246, "disabl": 247, "calcul": 247, "valid": 247, "bia": 247, "follow": 247, "none": 247, "instead": 247, "zero_grad": 247, "pointwis": 247, "channels_last": 247, "uniform": 247, "numa": 247, "openmp": 247, "libiomp": 247, "switch": 247, "onednn": 247, "cudnn": 247, "auto": 247, "tuner": 247, "unnecessari": 247, "synchron": 247, "prealloc": 247, "reduc": 247, "accumul": 247, "find_unused_paramet": 247, "balanc": 247, "\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": 248, "b": 248, "\u52a0\u8f7d\u5230\u6a21\u578b": 248, "\u4e2d": 249, "\u662f\u4ec0\u4e48": 249, "\u4e2d\u7684": 249, "\u8bbf\u95ee\u6a21\u578b\u548c\u4f18\u5316\u5668\u7684": 249, "\u52a0\u8f7d\u548c\u6807\u51c6\u5316\u6570\u636e\u96c6": 250, "\u5b9a\u4e49\u635f\u5931\u51fd\u6570\u548c\u4f18\u5316\u5668": 250, "\u5728\u8bad\u7ec3\u7f51\u7edc\u65f6\u6e05\u96f6\u68af\u5ea6": 250, "convers": 252, "runtimeerror": 252, "lookup": 252, "cannot": 252, "rang": 252, "must": 252, "found": 252, "fp32": 253, "bf16": 253, "triton": 254, "limit": 254, "torch_log": 255, "engin": 256, "stabl": 257, "diffus": 257, "vertex": 257, "ai": 257, "endpoint": 257, "handler": 257, "artifact": 257, "gc": 257, "contain": 257, "onto": 257, "changelog": 259, "wide": 260, "html": 260, "theme": [260, 266], "toc": 260, "test_py_modul": 261, "paragraph": [262, 265], "markup": 262, "inlin": 262, "liter": 262, "quot": 262, "doctest": 262, "emphas": 262, "sidebar": 262, "ch": 262, "ien": 262, "creativ": 262, "footnot": 262, "citat": 262, "glossari": 262, "center": 262, "figur": 262, "admonit": 262, "And": 262, "rubric": 262, "titl": 262, "replac": 262, "compound": 262, "link": 262, "enumer": 263, "bullet": 263, "second": 263, "But": 263, "deeper": 263, "rabbit": 263, "hole": 263, "hlist": 263, "grid": 263, "giant": 263, "have": 263, "caption": [263, 266], "like": 263, "sticki": 264, "nav": 264, "menu": [264, 266], "11": 264, "12": 264, "13": 264, "14": 264, "15": 264, "16": 264, "17": 264, "18": 264, "19": 264, "20": 264, "submenu": 264, "subsubmenu": 264, "element": 265, "document": [265, 266], "subsect": 265, "subsubsect": 265, "demo": 266, "incred": 266, "git": 267}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file +Search.setIndex({"docnames": ["advanced/ONNXLive", "advanced/coding_ddpg", "advanced/cpp_autograd", "advanced/cpp_cuda_graphs", "advanced/cpp_export", "advanced/cpp_extension", "advanced/cpp_frontend", "advanced/ddp_pipeline", "advanced/dispatcher", "advanced/dynamic_quantization_tutorial", "advanced/extend_dispatcher", "advanced/generic_join", "advanced/neural_style_tutorial", "advanced/numpy_extensions_tutorial", "advanced/pendulum", "advanced/privateuseone", "advanced/rpc_ddp_tutorial", "advanced/semi_structured_sparse", "advanced/sharding", "advanced/static_quantization_tutorial", "advanced/super_resolution_with_onnxruntime", "advanced/torch-script-parallelism", "advanced/torch_script_custom_classes", "advanced/torch_script_custom_ops", "advanced/usb_semisup_learn", "beginner/Intro_to_TorchScript_tutorial", "beginner/audio_data_augmentation_tutorial", "beginner/audio_datasets_tutorial", "beginner/audio_feature_augmentation_tutorial", "beginner/audio_feature_extractions_tutorial", "beginner/audio_io_tutorial", "beginner/audio_resampling_tutorial", "beginner/basics/autogradqs_tutorial", "beginner/basics/buildmodel_tutorial", "beginner/basics/data_tutorial", "beginner/basics/index", "beginner/basics/intro", "beginner/basics/optimization_tutorial", "beginner/basics/quickstart_tutorial", "beginner/basics/saveloadrun_tutorial", "beginner/basics/tensorqs_tutorial", "beginner/basics/transforms_tutorial", "beginner/bettertransformer_tutorial", "beginner/blitz/autograd_tutorial", "beginner/blitz/cifar10_tutorial", "beginner/blitz/data_parallel_tutorial", "beginner/blitz/index", "beginner/blitz/neural_networks_tutorial", "beginner/blitz/tensor_tutorial", "beginner/chatbot_tutorial", "beginner/colab", "beginner/data_loading_tutorial", "beginner/dcgan_faces_tutorial", "beginner/ddp_series_fault_tolerance", "beginner/ddp_series_intro", "beginner/ddp_series_multigpu", "beginner/ddp_series_theory", "beginner/deep_learning_60min_blitz", "beginner/deeplabv3_on_android", "beginner/deeplabv3_on_ios", "beginner/deploy_seq2seq_hybrid_frontend_tutorial", "beginner/dist_overview", "beginner/examples_autograd/index", "beginner/examples_autograd/polynomial_autograd", "beginner/examples_autograd/polynomial_custom_function", "beginner/examples_nn/dynamic_net", "beginner/examples_nn/index", "beginner/examples_nn/polynomial_module", "beginner/examples_nn/polynomial_nn", "beginner/examples_nn/polynomial_optim", "beginner/examples_tensor/index", "beginner/examples_tensor/polynomial_numpy", "beginner/examples_tensor/polynomial_tensor", "beginner/fgsm_tutorial", "beginner/finetuning_torchvision_models_tutorial", "beginner/flava_finetuning_tutorial", "beginner/former_torchies/autograd_tutorial_old", "beginner/former_torchies/index", "beginner/former_torchies/nnft_tutorial", "beginner/former_torchies/parallelism_tutorial", "beginner/former_torchies/tensor_tutorial_old", "beginner/former_torchies_tutorial", "beginner/hta_intro_tutorial", "beginner/hta_trace_diff_tutorial", "beginner/hybrid_frontend/index", "beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial", "beginner/hybrid_frontend_tutorial", "beginner/hyperparameter_tuning_tutorial", "beginner/introyt", "beginner/introyt/autogradyt_tutorial", "beginner/introyt/captumyt", "beginner/introyt/index", "beginner/introyt/introyt1_tutorial", "beginner/introyt/modelsyt_tutorial", "beginner/introyt/tensorboardyt_tutorial", "beginner/introyt/tensors_deeper_tutorial", "beginner/introyt/trainingyt", "beginner/knowledge_distillation_tutorial", "beginner/nlp/advanced_tutorial", "beginner/nlp/deep_learning_tutorial", "beginner/nlp/index", "beginner/nlp/pytorch_tutorial", "beginner/nlp/sequence_models_tutorial", "beginner/nlp/word_embeddings_tutorial", "beginner/nn_tutorial", "beginner/onnx/export_simple_model_to_onnx_tutorial", "beginner/onnx/index", "beginner/onnx/intro_onnx", "beginner/onnx/onnx_registry_tutorial", "beginner/profiler", "beginner/ptcheat", "beginner/pytorch_with_examples", "beginner/saving_loading_models", "beginner/t5_tutorial", "beginner/template_tutorial", "beginner/text_sentiment_ngrams_tutorial", "beginner/torchtext_custom_dataset_tutorial", "beginner/transfer_learning_tutorial", "beginner/translation_transformer", "beginner/vt_tutorial", "distributed/home", "index", "intermediate/FSDP_adavnced_tutorial", "intermediate/FSDP_tutorial", "intermediate/TP_tutorial", "intermediate/autograd_saved_tensors_hooks_tutorial", "intermediate/ax_multiobjective_nas_tutorial", "intermediate/char_rnn_classification_tutorial", "intermediate/char_rnn_generation_tutorial", "intermediate/custom_function_conv_bn_tutorial", "intermediate/custom_function_double_backward_tutorial", "intermediate/ddp_series_minGPT", "intermediate/ddp_series_multinode", "intermediate/ddp_tutorial", "intermediate/dist_pipeline_parallel_tutorial", "intermediate/dist_tuto", "intermediate/dqn_with_rnn_tutorial", "intermediate/dynamic_quantization_bert_tutorial", "intermediate/ensembling", "intermediate/flask_rest_api_tutorial", "intermediate/forced_alignment_with_torchaudio_tutorial", "intermediate/forward_ad_usage", "intermediate/fx_conv_bn_fuser", "intermediate/fx_profiling_tutorial", "intermediate/inductor_debug_cpu", "intermediate/jacobians_hessians", "intermediate/mario_rl_tutorial", "intermediate/memory_format_tutorial", "intermediate/mnist_train_nas", "intermediate/model_parallel_tutorial", "intermediate/neural_tangent_kernels", "intermediate/nvfuser_intro_tutorial", "intermediate/optimizer_step_in_backward_tutorial", "intermediate/parametrizations", "intermediate/per_sample_grads", "intermediate/process_group_cpp_extension_tutorial", "intermediate/pruning_tutorial", "intermediate/quantized_transfer_learning_tutorial", "intermediate/realtime_rpi", "intermediate/reinforcement_ppo", "intermediate/reinforcement_q_learning", "intermediate/rpc_async_execution", "intermediate/rpc_param_server_tutorial", "intermediate/rpc_tutorial", "intermediate/scaled_dot_product_attention_tutorial", "intermediate/seq2seq_translation_tutorial", "intermediate/spatial_transformer_tutorial", "intermediate/speech_recognition_pipeline_tutorial", "intermediate/tensorboard_profiler_tutorial", "intermediate/tensorboard_tutorial", "intermediate/text_to_speech_with_torchaudio", "intermediate/tiatoolbox_tutorial", "intermediate/torch_compile_tutorial", "intermediate/torch_export_nightly_tutorial", "intermediate/torch_export_tutorial", "intermediate/torchrec_tutorial", "intermediate/torchserve_with_ipex", "intermediate/torchserve_with_ipex_2", "intermediate/torchvision_tutorial", "prototype/backend_config_tutorial", "prototype/distributed_rpc_profiling", "prototype/fx_graph_mode_ptq_dynamic", "prototype/fx_graph_mode_ptq_static", "prototype/fx_graph_mode_quant_guide", "prototype/gpu_quantization_torchao_tutorial", "prototype/graph_mode_dynamic_bert_tutorial", "prototype/inductor_cpp_wrapper_tutorial", "prototype/ios_coreml_workflow", "prototype/ios_gpu_workflow", "prototype/maskedtensor_adagrad", "prototype/maskedtensor_advanced_semantics", "prototype/maskedtensor_overview", "prototype/maskedtensor_sparsity", "prototype/nestedtensor", "prototype/nnapi_mobilenetv2", "prototype/numeric_suite_tutorial", "prototype/prototype_index", "prototype/pt2e_quant_ptq", "prototype/pt2e_quant_qat", "prototype/pt2e_quant_x86_inductor", "prototype/pt2e_quantizer", "prototype/semi_structured_sparse", "prototype/skip_param_init", "prototype/torchscript_freezing", "prototype/tracing_based_selective_build", "prototype/vmap_recipe", "prototype/vulkan_workflow", "recipes/amx", "recipes/android_native_app_with_custom_op", "recipes/bundled_inputs", "recipes/compiling_optimizer", "recipes/compiling_optimizer_lr_scheduler", "recipes/cuda_rpc", "recipes/deployment_with_flask", "recipes/distributed_checkpoint_recipe", "recipes/distributed_device_mesh", "recipes/distributed_optim_torchscript", "recipes/distributed_rpc_profiling", "recipes/fuse", "recipes/inference_tuning_on_aws_graviton", "recipes/intel_extension_for_pytorch", "recipes/intel_neural_compressor_for_pytorch", "recipes/mobile_interpreter", "recipes/mobile_perf", "recipes/model_preparation_android", "recipes/model_preparation_ios", "recipes/profile_with_itt", "recipes/ptmobile_recipes_summary", "recipes/quantization", "recipes/recipes/Captum_Recipe", "recipes/recipes/amp_recipe", "recipes/recipes/benchmark", "recipes/recipes/changing_default_device", "recipes/recipes/defining_a_neural_network", "recipes/recipes/dynamic_quantization", "recipes/recipes/index", "recipes/recipes/loading_data_recipe", "recipes/recipes/module_load_state_dict_tips", "recipes/recipes/profiler_recipe", "recipes/recipes/reasoning_about_shapes", "recipes/recipes/save_load_across_devices", "recipes/recipes/saving_and_loading_a_general_checkpoint", "recipes/recipes/saving_and_loading_models_for_inference", "recipes/recipes/saving_multiple_models_in_one_file", "recipes/recipes/swap_tensors", "recipes/recipes/tensorboard_with_pytorch", "recipes/recipes/timer_quick_start", "recipes/recipes/tuning_guide", "recipes/recipes/warmstarting_model_using_parameters_from_a_different_model", "recipes/recipes/what_is_state_dict", "recipes/recipes/zeroing_out_gradients", "recipes/recipes_index", "recipes/script_optimized", "recipes/torch_compile_backend_ipex", "recipes/torch_compile_user_defined_triton_kernel_tutorial", "recipes/torch_logs", "recipes/torchscript_inference", "recipes/torchserve_vertexai_tutorial", "recipes/zero_redundancy_optimizer", "src/pytorch-sphinx-theme/docs/changelog", "src/pytorch-sphinx-theme/docs/configuring", "src/pytorch-sphinx-theme/docs/demo/api", "src/pytorch-sphinx-theme/docs/demo/demo", "src/pytorch-sphinx-theme/docs/demo/lists_tables", "src/pytorch-sphinx-theme/docs/demo/long", "src/pytorch-sphinx-theme/docs/demo/structure", "src/pytorch-sphinx-theme/docs/index", "src/pytorch-sphinx-theme/docs/installing", "src/pytorch_sphinx_theme/docs/changelog", "src/pytorch_sphinx_theme/docs/configuring", "src/pytorch_sphinx_theme/docs/demo/api", "src/pytorch_sphinx_theme/docs/demo/demo", "src/pytorch_sphinx_theme/docs/demo/lists_tables", "src/pytorch_sphinx_theme/docs/demo/long", "src/pytorch_sphinx_theme/docs/demo/structure", "src/pytorch_sphinx_theme/docs/index", "src/pytorch_sphinx_theme/docs/installing"], "filenames": ["advanced/ONNXLive.rst", "advanced/coding_ddpg.rst", "advanced/cpp_autograd.rst", "advanced/cpp_cuda_graphs.rst", "advanced/cpp_export.rst", "advanced/cpp_extension.rst", "advanced/cpp_frontend.rst", "advanced/ddp_pipeline.rst", "advanced/dispatcher.rst", "advanced/dynamic_quantization_tutorial.rst", "advanced/extend_dispatcher.rst", "advanced/generic_join.rst", "advanced/neural_style_tutorial.rst", "advanced/numpy_extensions_tutorial.rst", "advanced/pendulum.rst", "advanced/privateuseone.rst", "advanced/rpc_ddp_tutorial.rst", "advanced/semi_structured_sparse.rst", "advanced/sharding.rst", "advanced/static_quantization_tutorial.rst", "advanced/super_resolution_with_onnxruntime.rst", "advanced/torch-script-parallelism.rst", "advanced/torch_script_custom_classes.rst", "advanced/torch_script_custom_ops.rst", "advanced/usb_semisup_learn.rst", "beginner/Intro_to_TorchScript_tutorial.rst", "beginner/audio_data_augmentation_tutorial.rst", "beginner/audio_datasets_tutorial.rst", "beginner/audio_feature_augmentation_tutorial.rst", "beginner/audio_feature_extractions_tutorial.rst", "beginner/audio_io_tutorial.rst", "beginner/audio_resampling_tutorial.rst", "beginner/basics/autogradqs_tutorial.rst", "beginner/basics/buildmodel_tutorial.rst", "beginner/basics/data_tutorial.rst", "beginner/basics/index.rst", "beginner/basics/intro.rst", "beginner/basics/optimization_tutorial.rst", "beginner/basics/quickstart_tutorial.rst", "beginner/basics/saveloadrun_tutorial.rst", "beginner/basics/tensorqs_tutorial.rst", "beginner/basics/transforms_tutorial.rst", "beginner/bettertransformer_tutorial.rst", "beginner/blitz/autograd_tutorial.rst", "beginner/blitz/cifar10_tutorial.rst", "beginner/blitz/data_parallel_tutorial.rst", "beginner/blitz/index.rst", "beginner/blitz/neural_networks_tutorial.rst", "beginner/blitz/tensor_tutorial.rst", "beginner/chatbot_tutorial.rst", "beginner/colab.rst", "beginner/data_loading_tutorial.rst", "beginner/dcgan_faces_tutorial.rst", "beginner/ddp_series_fault_tolerance.rst", "beginner/ddp_series_intro.rst", "beginner/ddp_series_multigpu.rst", "beginner/ddp_series_theory.rst", "beginner/deep_learning_60min_blitz.rst", "beginner/deeplabv3_on_android.rst", "beginner/deeplabv3_on_ios.rst", "beginner/deploy_seq2seq_hybrid_frontend_tutorial.rst", "beginner/dist_overview.rst", "beginner/examples_autograd/index.rst", "beginner/examples_autograd/polynomial_autograd.rst", "beginner/examples_autograd/polynomial_custom_function.rst", "beginner/examples_nn/dynamic_net.rst", "beginner/examples_nn/index.rst", "beginner/examples_nn/polynomial_module.rst", "beginner/examples_nn/polynomial_nn.rst", "beginner/examples_nn/polynomial_optim.rst", "beginner/examples_tensor/index.rst", "beginner/examples_tensor/polynomial_numpy.rst", "beginner/examples_tensor/polynomial_tensor.rst", "beginner/fgsm_tutorial.rst", "beginner/finetuning_torchvision_models_tutorial.rst", "beginner/flava_finetuning_tutorial.rst", "beginner/former_torchies/autograd_tutorial_old.rst", "beginner/former_torchies/index.rst", "beginner/former_torchies/nnft_tutorial.rst", "beginner/former_torchies/parallelism_tutorial.rst", "beginner/former_torchies/tensor_tutorial_old.rst", "beginner/former_torchies_tutorial.rst", "beginner/hta_intro_tutorial.rst", "beginner/hta_trace_diff_tutorial.rst", "beginner/hybrid_frontend/index.rst", "beginner/hybrid_frontend/learning_hybrid_frontend_through_example_tutorial.rst", "beginner/hybrid_frontend_tutorial.rst", "beginner/hyperparameter_tuning_tutorial.rst", "beginner/introyt.rst", "beginner/introyt/autogradyt_tutorial.rst", "beginner/introyt/captumyt.rst", "beginner/introyt/index.rst", "beginner/introyt/introyt1_tutorial.rst", "beginner/introyt/modelsyt_tutorial.rst", "beginner/introyt/tensorboardyt_tutorial.rst", "beginner/introyt/tensors_deeper_tutorial.rst", "beginner/introyt/trainingyt.rst", "beginner/knowledge_distillation_tutorial.rst", "beginner/nlp/advanced_tutorial.rst", "beginner/nlp/deep_learning_tutorial.rst", "beginner/nlp/index.rst", "beginner/nlp/pytorch_tutorial.rst", "beginner/nlp/sequence_models_tutorial.rst", "beginner/nlp/word_embeddings_tutorial.rst", "beginner/nn_tutorial.rst", "beginner/onnx/export_simple_model_to_onnx_tutorial.rst", "beginner/onnx/index.rst", "beginner/onnx/intro_onnx.rst", "beginner/onnx/onnx_registry_tutorial.rst", "beginner/profiler.rst", "beginner/ptcheat.rst", "beginner/pytorch_with_examples.rst", "beginner/saving_loading_models.rst", "beginner/t5_tutorial.rst", "beginner/template_tutorial.rst", "beginner/text_sentiment_ngrams_tutorial.rst", "beginner/torchtext_custom_dataset_tutorial.rst", "beginner/transfer_learning_tutorial.rst", "beginner/translation_transformer.rst", "beginner/vt_tutorial.rst", "distributed/home.rst", "index.rst", "intermediate/FSDP_adavnced_tutorial.rst", "intermediate/FSDP_tutorial.rst", "intermediate/TP_tutorial.rst", "intermediate/autograd_saved_tensors_hooks_tutorial.rst", "intermediate/ax_multiobjective_nas_tutorial.rst", "intermediate/char_rnn_classification_tutorial.rst", "intermediate/char_rnn_generation_tutorial.rst", "intermediate/custom_function_conv_bn_tutorial.rst", "intermediate/custom_function_double_backward_tutorial.rst", "intermediate/ddp_series_minGPT.rst", "intermediate/ddp_series_multinode.rst", "intermediate/ddp_tutorial.rst", "intermediate/dist_pipeline_parallel_tutorial.rst", "intermediate/dist_tuto.rst", "intermediate/dqn_with_rnn_tutorial.rst", "intermediate/dynamic_quantization_bert_tutorial.rst", "intermediate/ensembling.rst", "intermediate/flask_rest_api_tutorial.rst", "intermediate/forced_alignment_with_torchaudio_tutorial.rst", "intermediate/forward_ad_usage.rst", "intermediate/fx_conv_bn_fuser.rst", "intermediate/fx_profiling_tutorial.rst", "intermediate/inductor_debug_cpu.rst", "intermediate/jacobians_hessians.rst", "intermediate/mario_rl_tutorial.rst", "intermediate/memory_format_tutorial.rst", "intermediate/mnist_train_nas.rst", "intermediate/model_parallel_tutorial.rst", "intermediate/neural_tangent_kernels.rst", "intermediate/nvfuser_intro_tutorial.rst", "intermediate/optimizer_step_in_backward_tutorial.rst", "intermediate/parametrizations.rst", "intermediate/per_sample_grads.rst", "intermediate/process_group_cpp_extension_tutorial.rst", "intermediate/pruning_tutorial.rst", "intermediate/quantized_transfer_learning_tutorial.rst", "intermediate/realtime_rpi.rst", "intermediate/reinforcement_ppo.rst", "intermediate/reinforcement_q_learning.rst", "intermediate/rpc_async_execution.rst", "intermediate/rpc_param_server_tutorial.rst", "intermediate/rpc_tutorial.rst", "intermediate/scaled_dot_product_attention_tutorial.rst", "intermediate/seq2seq_translation_tutorial.rst", "intermediate/spatial_transformer_tutorial.rst", "intermediate/speech_recognition_pipeline_tutorial.rst", "intermediate/tensorboard_profiler_tutorial.rst", "intermediate/tensorboard_tutorial.rst", "intermediate/text_to_speech_with_torchaudio.rst", "intermediate/tiatoolbox_tutorial.rst", "intermediate/torch_compile_tutorial.rst", "intermediate/torch_export_nightly_tutorial.rst", "intermediate/torch_export_tutorial.rst", "intermediate/torchrec_tutorial.rst", "intermediate/torchserve_with_ipex.rst", "intermediate/torchserve_with_ipex_2.rst", "intermediate/torchvision_tutorial.rst", "prototype/backend_config_tutorial.rst", "prototype/distributed_rpc_profiling.rst", "prototype/fx_graph_mode_ptq_dynamic.rst", "prototype/fx_graph_mode_ptq_static.rst", "prototype/fx_graph_mode_quant_guide.rst", "prototype/gpu_quantization_torchao_tutorial.rst", "prototype/graph_mode_dynamic_bert_tutorial.rst", "prototype/inductor_cpp_wrapper_tutorial.rst", "prototype/ios_coreml_workflow.rst", "prototype/ios_gpu_workflow.rst", "prototype/maskedtensor_adagrad.rst", "prototype/maskedtensor_advanced_semantics.rst", "prototype/maskedtensor_overview.rst", "prototype/maskedtensor_sparsity.rst", "prototype/nestedtensor.rst", "prototype/nnapi_mobilenetv2.rst", "prototype/numeric_suite_tutorial.rst", "prototype/prototype_index.rst", "prototype/pt2e_quant_ptq.rst", "prototype/pt2e_quant_qat.rst", "prototype/pt2e_quant_x86_inductor.rst", "prototype/pt2e_quantizer.rst", "prototype/semi_structured_sparse.rst", "prototype/skip_param_init.rst", "prototype/torchscript_freezing.rst", "prototype/tracing_based_selective_build.rst", "prototype/vmap_recipe.rst", "prototype/vulkan_workflow.rst", "recipes/amx.rst", "recipes/android_native_app_with_custom_op.rst", "recipes/bundled_inputs.rst", "recipes/compiling_optimizer.rst", "recipes/compiling_optimizer_lr_scheduler.rst", "recipes/cuda_rpc.rst", "recipes/deployment_with_flask.rst", "recipes/distributed_checkpoint_recipe.rst", "recipes/distributed_device_mesh.rst", "recipes/distributed_optim_torchscript.rst", "recipes/distributed_rpc_profiling.rst", "recipes/fuse.rst", "recipes/inference_tuning_on_aws_graviton.rst", "recipes/intel_extension_for_pytorch.rst", "recipes/intel_neural_compressor_for_pytorch.rst", "recipes/mobile_interpreter.rst", "recipes/mobile_perf.rst", "recipes/model_preparation_android.rst", "recipes/model_preparation_ios.rst", "recipes/profile_with_itt.rst", "recipes/ptmobile_recipes_summary.rst", "recipes/quantization.rst", "recipes/recipes/Captum_Recipe.rst", "recipes/recipes/amp_recipe.rst", "recipes/recipes/benchmark.rst", "recipes/recipes/changing_default_device.rst", "recipes/recipes/defining_a_neural_network.rst", "recipes/recipes/dynamic_quantization.rst", "recipes/recipes/index.rst", "recipes/recipes/loading_data_recipe.rst", "recipes/recipes/module_load_state_dict_tips.rst", "recipes/recipes/profiler_recipe.rst", "recipes/recipes/reasoning_about_shapes.rst", "recipes/recipes/save_load_across_devices.rst", "recipes/recipes/saving_and_loading_a_general_checkpoint.rst", "recipes/recipes/saving_and_loading_models_for_inference.rst", "recipes/recipes/saving_multiple_models_in_one_file.rst", "recipes/recipes/swap_tensors.rst", "recipes/recipes/tensorboard_with_pytorch.rst", "recipes/recipes/timer_quick_start.rst", "recipes/recipes/tuning_guide.rst", "recipes/recipes/warmstarting_model_using_parameters_from_a_different_model.rst", "recipes/recipes/what_is_state_dict.rst", "recipes/recipes/zeroing_out_gradients.rst", "recipes/recipes_index.rst", "recipes/script_optimized.rst", "recipes/torch_compile_backend_ipex.rst", "recipes/torch_compile_user_defined_triton_kernel_tutorial.rst", "recipes/torch_logs.rst", "recipes/torchscript_inference.rst", "recipes/torchserve_vertexai_tutorial.rst", "recipes/zero_redundancy_optimizer.rst", "src/pytorch-sphinx-theme/docs/changelog.rst", "src/pytorch-sphinx-theme/docs/configuring.rst", "src/pytorch-sphinx-theme/docs/demo/api.rst", "src/pytorch-sphinx-theme/docs/demo/demo.rst", "src/pytorch-sphinx-theme/docs/demo/lists_tables.rst", "src/pytorch-sphinx-theme/docs/demo/long.rst", "src/pytorch-sphinx-theme/docs/demo/structure.rst", "src/pytorch-sphinx-theme/docs/index.rst", "src/pytorch-sphinx-theme/docs/installing.rst", "src/pytorch_sphinx_theme/docs/changelog.rst", "src/pytorch_sphinx_theme/docs/configuring.rst", "src/pytorch_sphinx_theme/docs/demo/api.rst", "src/pytorch_sphinx_theme/docs/demo/demo.rst", "src/pytorch_sphinx_theme/docs/demo/lists_tables.rst", "src/pytorch_sphinx_theme/docs/demo/long.rst", "src/pytorch_sphinx_theme/docs/demo/structure.rst", "src/pytorch_sphinx_theme/docs/index.rst", "src/pytorch_sphinx_theme/docs/installing.rst"], "titles": ["ONNX Live Tutorial", "TorchRL objectives: Coding a DDPG loss", "Autograd in C++ Frontend", "Using CUDA Graphs in PyTorch C++ API", "\u5728 C++ \u4e2d\u52a0\u8f7d TorchScript \u6a21\u578b", "Custom C++ and CUDA Extensions", "Using the PyTorch C++ Frontend", "Training Transformer models using Distributed Data Parallel and Pipeline Parallelism", "Registering a Dispatched Operator in C++", "(beta) Dynamic Quantization on an LSTM Word Language Model", "Extending dispatcher for a new backend in C++", "Distributed Training with Uneven Inputs Using the Join Context Manager", "Neural Transfer Using PyTorch", "Creating Extensions Using NumPy and SciPy", "Pendulum\uff1a\u4f7f\u7528 TorchRL \u7f16\u5199\u73af\u5883\u548ctransforms", "Facilitating New Backend Integration by PrivateUse1", "Combining Distributed DataParallel with Distributed RPC Framework", "(beta) Accelerating BERT with semi-structured (2:4) sparsity", "Exploring TorchRec sharding", "(beta) Static Quantization with Eager Mode in PyTorch", "(optional) PyTorch \u6a21\u578b\u5bfc\u51fa\u5230 ONNX \u5e76\u4f7f\u7528 ONNX Runtime \u8fd0\u884c", "Dynamic Parallelism in TorchScript", "Extending TorchScript with Custom C++ Classes", "Extending TorchScript with Custom C++ Operators", "Semi-Supervised Learning using USB built upon PyTorch", "TorchScript \u4ecb\u7ecd", "\u97f3\u9891\u6570\u636e\u589e\u5f3a", "\u97f3\u9891\u6570\u636e\u96c6", "\u97f3\u9891\u7279\u5f81\u589e\u5f3a", "\u97f3\u9891\u7279\u5f81\u63d0\u53d6", "\u97f3\u9891 I/O", "Audio \u91cd\u91c7\u6837", "\u81ea\u52a8\u5fae\u5206", "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc", "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668", "Learn the Basics", "\u57fa\u7840\u77e5\u8bc6", "\u4f18\u5316\u6a21\u578b\u53c2\u6570", "\u5feb\u901f\u5165\u95e8", "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "\u5f20\u91cf", "Transforms", "\u4f7f\u7528 Better Transformer \u8fdb\u884c\u5feb\u901f Transformer \u63a8\u65ad", "A Gentle Introduction to torch.autograd", "Training a Classifier", "Optional: Data Parallelism", "Deep Learning with PyTorch: A 60 Minute Blitz", "Neural Networks", "Tensors", "Chatbot Tutorial", "Running Tutorials in Google Colab", "Writing Custom Datasets, DataLoaders and Transforms", "DCGAN \u6559\u7a0b", "Fault-tolerant Distributed Training with torchrun", "PyTorch \u5206\u5e03\u5f0f\u5e76\u884c - Video Tutorials", "\u4f7f\u7528 DDP \u8fdb\u884c\u591a GPU \u8bad\u7ec3", "What is Distributed Data Parallel (DDP)", "PyTorch \u6df1\u5ea6\u5b66\u4e60\uff1a60\u5206\u949f\u5165\u95e8", "Image Segmentation DeepLabV3 on Android", "Image Segmentation DeepLabV3 on iOS", "Deploying a Seq2Seq Model with TorchScript", "PyTorch \u5206\u5e03\u5f0f\u6982\u8ff0", "<no title>", "PyTorch: Tensors and autograd", "PyTorch: Defining New autograd Functions", "PyTorch: Control Flow + Weight Sharing", "<no title>", "PyTorch: Custom nn Modules", "PyTorch: nn", "PyTorch: optim", "<no title>", "Warm-up: numpy", "PyTorch\uff1a\u5f20\u91cf(Tensors)", "\u5bf9\u6297\u6837\u672c\u751f\u6210", "Finetuning Torchvision Models", "TorchMultimodal \u6559\u7a0b\uff1a\u5fae\u8c03 FLAVA", "Autograd", "<no title>", "nn package", "Multi-GPU Examples", "Tensors", "PyTorch for Former Torch Users", "Holistic Trace Analysis \u4ecb\u7ecd", "Holistic Trace Analysis \u5dee\u5f02\u5206\u6790", "<no title>", "Learning Hybrid Frontend Syntax Through Example", "Hybrid Frontend \u6559\u7a0b", "Ray Tune \u8d85\u53c2\u6570\u8c03\u4f18", "PyTorch \u4ecb\u7ecd - YouTube", "\u81ea\u52a8\u5fae\u5206\u57fa\u7840", "\u4f7f\u7528 Captum \u8fdb\u884c\u6a21\u578b\u7406\u89e3", "Introduction to PyTorch on YouTube", "PyTorch \u7b80\u4ecb", "\u4f7f\u7528 PyTorch \u6784\u5efa\u6a21\u578b", "PyTorch TensorBoard \u652f\u6301", "PyTorch Tensors \u4ecb\u7ecd", "\u4f7f\u7528 PyTorch \u8bad\u7ec3\u6a21\u578b", "Knowledge Distillation \u6559\u7a0b", "Advanced: Making Dynamic Decisions and the Bi-LSTM CRF", "Deep Learning with PyTorch", "Deep Learning for NLP with Pytorch", "Introduction to PyTorch", "Sequence Models and Long Short-Term Memory Networks", "Word Embeddings: Encoding Lexical Semantics", "torch.nn \u5177\u4f53\u662f\u4ec0\u4e48?", "Export a PyTorch model to ONNX", "ONNX", "ONNX \u4ecb\u7ecd", "Extending the ONNX Registry", "PyTorch \u6a21\u578b\u5206\u6790", "PyTorch Cheat Sheet", "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60 PyTorch", "Saving and Loading Models", "T5-Base Model for Summarization, Sentiment Classification, and Translation", "Template Tutorial", "torchtext \u6587\u672c\u5206\u7c7b", "Torchtext \u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6", "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b", "\u6570\u636e\u83b7\u53d6\u548c\u5904\u7406", "\u4f18\u5316\u89c6\u89c9 Transformer \u6a21\u578b", "Distributed and Parallel Training Tutorials", "\u6b22\u8fce\u6765\u5230 PyTorch \u6559\u7a0b", "Advanced Model Training with Fully Sharded Data Parallel (FSDP)", "Getting Started with Fully Sharded Data Parallel(FSDP)", "Large Scale Transformer model training with Tensor Parallel (TP)", "Hooks for autograd saved tensors", "Multi-Objective NAS with Ax", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5b57\u7b26\u7ea7 RNN \u8fdb\u884c\u59d3\u540d\u5206\u7c7b", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5b57\u7b26\u7ea7 RNN \u751f\u6210\u59d3\u540d", "Fusing Convolution and Batch Norm using Custom Function", "Double Backward with Custom Functions", "Training \u201creal-world\u201d models with DDP", "Multinode Training", "Getting Started with Distributed Data Parallel", "Distributed Pipeline Parallelism Using RPC", "Writing Distributed Applications with PyTorch", "Recurrent DQN: Training recurrent policies", "(beta) Dynamic Quantization on BERT", "Model ensembling", "API \u5b9a\u4e49", "Wav2Vec2 \u5f3a\u5236\u5bf9\u9f50", "Forward-mode Automatic Differentiation (Beta)", "(beta) Building a Convolution/Batch Norm fuser in FX", "(beta) Building a Simple CPU Performance Profiler with FX", "Inductor CPU backend debugging and profiling", "Jacobians, Hessians, hvp, vhp, and more: composing function transforms", "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684 RL Agent", "(beta) Channels Last Memory Format in PyTorch", "<no title>", "Single-Machine Model Parallel Best Practices", "Neural Tangent Kernels", "Getting Started - Accelerate Your Scripts with nvFuser", "How to save memory by fusing the optimizer step into the backward pass", "Parametrizations Tutorial", "Per-sample-gradients", "Customize Process Group Backends Using Cpp Extensions", "Pruning Tutorial", "(beta) Quantized Transfer Learning for Computer Vision Tutorial", "\u5728 Raspberry Pi 4 \u4e0a\u8fdb\u884c\u5b9e\u65f6\u63a8\u7406 (30 fps!)", "\u4f7f\u7528 TorchRL \u5f3a\u5316\u5b66\u4e60 (PPO) \u6559\u7a0b", "\u5f3a\u5316\u5b66\u4e60 (DQN) \u6559\u7a0b", "Implementing Batch RPC Processing Using Asynchronous Executions", "Implementing a Parameter Server Using Distributed RPC Framework", "Getting Started with Distributed RPC Framework", "(Beta) Implementing High-Performance Transformers with Scaled Dot Product Attention (SDPA)", "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\uff1a\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1", "Spatial Transformer Networks \u6559\u7a0b", "Wav2Vec2 \u8fdb\u884c\u8bed\u97f3\u8bc6\u522b", "PyTorch Profiler With TensorBoard", "TensorBoard \u53ef\u89c6\u5316\u6a21\u578b\u3001\u6570\u636e\u548c\u8bad\u7ec3", "Tacotron2 \u6587\u672c\u8f6c\u8bed\u97f3", "PyTorch \u548c TIAToolbox \u8fdb\u884c\u5168\u5207\u7247\u56fe\u50cf\u5206\u7c7b", "Introduction to torch.compile", "torch.export Nightly Tutorial", "torch.export Tutorial", "Introduction to TorchRec", "Grokking PyTorch Intel CPU performance from first principles", "Grokking PyTorch Intel CPU performance from first principles (Part 2)", "TorchVision \u5bf9\u8c61\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b", "(prototype) PyTorch BackendConfig Tutorial", "Profiling PyTorch RPC-Based Workloads", "(prototype) FX Graph Mode Post Training Dynamic Quantization", "(prototype) FX Graph Mode Post Training Static Quantization", "(prototype) FX Graph Mode Quantization User Guide", "(prototype) GPU Quantization with TorchAO", "(prototype) Graph Mode Dynamic Quantization on BERT", "Inductor C++ Wrapper Tutorial", "(Prototype) Convert Mobilenetv2 to Core ML", "(Prototype) Use iOS GPU in PyTorch", "(Prototype) Efficiently writing \u201csparse\u201d semantics for Adagrad with MaskedTensor", "(Prototype) MaskedTensor Advanced Semantics", "(Prototype) MaskedTensor Overview", "(Prototype) MaskedTensor Sparsity", "Getting Started with Nested Tensors", "(Beta) Convert MobileNetV2 to NNAPI", "PyTorch Numeric Suite Tutorial", "PyTorch Prototype Recipes", "(prototype) PyTorch 2 Export Post Training Quantization", "(prototype) PyTorch 2 Export Quantization-Aware Training (QAT)", "PyTorch 2 Export Quantization with X86 Backend through Inductor", "How to Write a Quantizer for PyTorch 2 Export Quantization", "(prototype) Accelerating BERT with semi-structured (2:4) sparsity", "Skipping Module Parameter Initialization", "Model Freezing in TorchScript", "(prototype) Tracing-based Selective Build Mobile Interpreter in Android and iOS", "torch.vmap", "PyTorch Vulkan Backend User Workflow", "Leverage Intel\u00ae Advanced Matrix Extensions", "Making Native Android Application that uses PyTorch prebuilt libraries", "(beta) Bundling inputs to PyTorch Models", "(beta) Compiling the optimizer with torch.compile", "(beta) Running the compiled optimizer with an LR Scheduler", "Direct Device-to-Device Communication with TensorPipe CUDA RPC", "Deploying with Flask", "Getting Started with Distributed Checkpoint (DCP)", "Getting Started with DeviceMesh", "Distributed Optimizer with TorchScript support", "Profiling PyTorch RPC-Based Workloads", "Fuse Modules Recipe", "(Beta) PyTorch Inference Performance Tuning on AWS Graviton Processors", "Intel\u00ae Extension for PyTorch*", "Ease-of-use quantization for PyTorch with Intel\u00ae Neural Compressor", "(beta) Efficient mobile interpreter in Android and iOS", "Pytorch Mobile Performance Recipes", "Model Preparation for Android Recipe", "Model Preparation for iOS Recipe", "Profiling PyTorch workloads with The Instrumentation and Tracing Technology (ITT) API", "Summary of PyTorch Mobile Recipes", "Quantization Recipe", "Model Interpretability using Captum", "Automatic Mixed Precision", "PyTorch Benchmark", "Changing default device", "PyTorch \u521b\u5efa\u795e\u7ecf\u7f51\u7edc", "Dynamic Quantization", "PyTorch Recipes", "PyTorch \u52a0\u8f7d\u6570\u636e", "Tips for Loading an nn.Module from a Checkpoint", "PyTorch Profiler", "Reasoning about Shapes in PyTorch", "PyTorch \u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "PyTorch \u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9", "PyTorch \u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b", "PyTorch \u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b", "Extension points in nn.Module for load_state_dict and tensor subclasses", "How to use TensorBoard with PyTorch", "Timer\u5feb\u901f\u5165\u95e8", "Performance Tuning Guide", "PyTorch \u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8", "PyTorch \u4e2d state_dict \u662f\u4ec0\u4e48", "\u4ecb\u7ecd", "PyTorch \u793a\u4f8b", "Script and Optimize for Mobile Recipe", "Intel\u00ae Extension for PyTorch* Backend", "Using User-Defined Triton Kernels with torch.compile", "(beta) Using TORCH_LOGS python API with torch.compile", "TorchScript for Deployment", "Deploying a PyTorch Stable Diffusion model as a Vertex AI Endpoint", "Shard Optimizer States with ZeroRedundancyOptimizer", "Changelog", "Configuration", "5. test_py_module", "3. Paragraph Level Markup", "4. Lists & Tables", "1. Long Sticky Nav", "1. Structural Elements", "<no title>", "Installation", "Changelog", "Configuration", "5. test_py_module", "3. Paragraph Level Markup", "4. Lists & Tables", "1. Long Sticky Nav", "1. Structural Elements", "<no title>", "Installation"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 40, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 234, 237, 238, 239, 240, 241, 244, 245, 247, 252, 254, 255, 256, 257, 258, 260, 261, 262, 264, 265, 269, 270, 271, 273, 274], "show": [0, 1, 5, 10, 11, 12, 14, 17, 18, 19, 22, 24, 34, 42, 44, 51, 52, 58, 59, 61, 73, 75, 82, 83, 85, 87, 90, 104, 108, 109, 113, 115, 116, 117, 118, 119, 121, 123, 126, 127, 128, 129, 130, 133, 134, 136, 138, 139, 144, 145, 147, 149, 155, 157, 158, 159, 160, 161, 163, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 179, 182, 185, 187, 188, 189, 194, 195, 197, 198, 201, 204, 208, 211, 212, 214, 215, 216, 220, 222, 223, 225, 226, 228, 229, 230, 231, 234, 245, 247, 257, 258, 260, 262, 269, 271], "you": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 31, 32, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 64, 65, 67, 68, 73, 75, 76, 78, 81, 82, 85, 86, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 112, 113, 114, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 178, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 216, 219, 220, 222, 223, 224, 225, 226, 228, 230, 231, 232, 234, 237, 240, 241, 245, 247, 252, 254, 255, 256, 257, 258, 260, 262, 263, 264, 269, 271, 272, 273], "neural": [0, 2, 5, 13, 14, 17, 20, 32, 35, 43, 46, 49, 51, 57, 60, 68, 73, 78, 79, 81, 97, 98, 99, 100, 101, 102, 103, 105, 107, 111, 116, 117, 119, 121, 126, 127, 128, 129, 136, 149, 156, 159, 160, 162, 165, 166, 169, 171, 177, 187, 194, 196, 199, 201, 207, 219, 220, 226, 234, 235, 247, 251], "ha": [0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 47, 49, 50, 58, 59, 60, 61, 63, 68, 73, 74, 75, 76, 78, 80, 83, 85, 87, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 111, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 129, 130, 131, 132, 135, 136, 137, 138, 140, 142, 144, 145, 147, 150, 151, 152, 153, 156, 157, 158, 159, 160, 163, 164, 165, 167, 168, 169, 170, 171, 173, 174, 175, 176, 177, 178, 180, 182, 183, 184, 185, 187, 189, 190, 191, 192, 193, 195, 197, 198, 200, 201, 202, 203, 208, 211, 212, 213, 216, 217, 220, 221, 223, 228, 229, 231, 232, 234, 244, 247, 252, 256, 257, 258, 262, 263, 271, 272], "been": [0, 1, 3, 4, 6, 7, 9, 14, 15, 17, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 42, 50, 58, 59, 69, 73, 74, 80, 83, 85, 87, 101, 102, 105, 113, 119, 123, 128, 129, 130, 131, 135, 136, 140, 142, 143, 144, 145, 150, 151, 152, 153, 156, 158, 159, 160, 164, 167, 168, 169, 170, 171, 173, 174, 176, 177, 180, 182, 187, 189, 192, 193, 198, 199, 200, 201, 211, 216, 217, 220, 221, 226, 231, 244, 245, 257, 263, 272], "export": [0, 4, 8, 20, 21, 23, 47, 60, 85, 106, 107, 108, 110, 121, 132, 133, 137, 144, 164, 172, 196, 203, 204, 207, 208, 209, 219, 222, 230, 247, 251, 257], "from": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 33, 34, 37, 38, 41, 42, 44, 45, 47, 48, 49, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 67, 68, 69, 73, 75, 76, 78, 80, 82, 83, 85, 87, 90, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103, 104, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 172, 173, 174, 179, 181, 182, 183, 184, 185, 187, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 208, 209, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 234, 235, 238, 244, 245, 246, 247, 251, 252, 254, 256, 257, 258, 260, 261, 262, 263, 269, 270, 271, 272], "appl": [0, 98, 102, 176, 184, 187, 188], "format": [0, 1, 5, 7, 9, 12, 16, 17, 19, 20, 23, 25, 51, 52, 58, 59, 60, 87, 94, 95, 96, 97, 107, 108, 110, 115, 119, 121, 122, 123, 129, 135, 137, 143, 144, 156, 157, 158, 161, 163, 166, 168, 169, 171, 173, 174, 176, 178, 181, 182, 185, 187, 188, 189, 191, 192, 194, 197, 198, 200, 201, 203, 207, 216, 220, 221, 224, 225, 228, 229, 230, 231, 234, 236, 251, 256, 262, 263, 271, 272], "us": [0, 1, 4, 8, 9, 10, 14, 15, 16, 17, 18, 19, 21, 32, 33, 38, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 107, 108, 110, 111, 114, 115, 117, 118, 120, 121, 122, 124, 125, 126, 127, 128, 130, 132, 135, 137, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 156, 157, 158, 159, 160, 165, 166, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 189, 190, 192, 193, 194, 195, 196, 197, 198, 199, 201, 202, 203, 204, 205, 207, 209, 210, 211, 213, 216, 218, 219, 220, 224, 225, 227, 230, 231, 232, 234, 235, 239, 244, 246, 251, 257, 260, 261, 262, 263, 269, 270, 271, 272], "allow": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 19, 22, 23, 24, 25, 32, 43, 49, 50, 51, 52, 53, 60, 61, 79, 82, 83, 85, 87, 97, 99, 101, 102, 103, 105, 108, 113, 119, 122, 123, 124, 126, 128, 130, 135, 136, 137, 139, 142, 146, 147, 150, 152, 153, 155, 156, 157, 159, 160, 161, 163, 164, 165, 166, 171, 172, 173, 174, 175, 176, 177, 178, 185, 186, 189, 190, 193, 195, 197, 198, 199, 200, 206, 208, 212, 215, 216, 228, 230, 231, 234, 244, 245, 260, 269], "easili": [0, 1, 5, 12, 19, 24, 45, 60, 61, 73, 95, 97, 109, 112, 118, 119, 122, 124, 126, 133, 135, 142, 143, 144, 150, 156, 159, 160, 163, 171, 172, 173, 174, 176, 177, 178, 182, 184, 202, 214, 215, 221, 231], "deep": [0, 1, 6, 12, 13, 25, 47, 49, 52, 60, 69, 97, 101, 103, 117, 119, 120, 121, 127, 128, 129, 137, 144, 145, 146, 153, 156, 157, 160, 165, 171, 175, 177, 207, 210, 211, 218, 221, 226, 247, 260, 269], "learn": [0, 1, 4, 6, 7, 9, 13, 14, 17, 20, 21, 25, 43, 45, 47, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 69, 73, 79, 81, 82, 84, 86, 87, 97, 101, 103, 104, 105, 107, 108, 112, 113, 114, 115, 116, 121, 122, 123, 126, 127, 128, 131, 132, 133, 135, 136, 144, 145, 148, 152, 153, 154, 156, 158, 159, 160, 162, 165, 166, 169, 171, 173, 174, 175, 177, 178, 184, 189, 190, 191, 192, 193, 196, 197, 199, 200, 201, 203, 204, 207, 208, 210, 211, 212, 213, 214, 215, 216, 219, 221, 223, 226, 229, 237, 244, 247, 251, 253, 256, 257, 258], "devic": [0, 1, 3, 6, 7, 8, 9, 10, 11, 14, 16, 18, 19, 20, 23, 24, 25, 33, 38, 40, 42, 43, 44, 45, 48, 49, 50, 52, 53, 55, 56, 58, 59, 60, 61, 63, 64, 72, 73, 79, 80, 87, 89, 95, 97, 99, 104, 105, 110, 111, 115, 117, 118, 120, 121, 123, 124, 125, 126, 129, 132, 133, 134, 135, 136, 137, 138, 144, 146, 147, 149, 150, 152, 154, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 168, 174, 175, 178, 179, 181, 182, 184, 185, 186, 187, 188, 193, 194, 197, 198, 199, 201, 202, 208, 210, 211, 214, 215, 218, 219, 220, 223, 228, 230, 231, 235, 239, 240, 244, 251, 252, 254, 255, 258], "case": [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 16, 17, 20, 22, 23, 25, 32, 43, 49, 51, 60, 61, 68, 73, 75, 82, 85, 97, 98, 99, 101, 102, 103, 108, 111, 112, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 134, 135, 136, 138, 139, 141, 144, 145, 147, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 176, 177, 178, 179, 184, 185, 189, 191, 192, 193, 194, 197, 200, 201, 202, 205, 206, 208, 216, 220, 223, 229, 230, 231, 234, 239, 244, 252, 254], "stream": [0, 3, 15, 82, 98, 119, 134, 149, 158, 186, 208, 220], "camera": [0, 121, 158], "open": [0, 5, 9, 12, 20, 38, 49, 50, 58, 59, 60, 75, 87, 90, 103, 104, 105, 107, 115, 116, 117, 119, 122, 127, 128, 135, 137, 138, 139, 143, 146, 152, 154, 165, 166, 168, 171, 181, 185, 188, 204, 206, 208, 213, 220, 221, 222, 223, 224, 225, 226, 229, 257], "network": [0, 2, 3, 5, 7, 8, 12, 13, 14, 17, 19, 20, 21, 25, 32, 35, 43, 46, 49, 51, 57, 60, 68, 69, 73, 78, 79, 81, 92, 97, 98, 100, 101, 103, 105, 107, 111, 116, 117, 119, 121, 125, 126, 129, 132, 133, 143, 149, 150, 153, 156, 157, 162, 165, 168, 169, 171, 177, 194, 196, 199, 201, 207, 219, 220, 221, 226, 234, 235, 239, 247, 252], "exchang": [0, 49, 105, 107, 122, 135, 165, 168], "an": [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 32, 42, 43, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 61, 65, 67, 69, 73, 75, 76, 78, 80, 82, 83, 85, 86, 87, 92, 97, 98, 99, 100, 101, 105, 107, 108, 109, 110, 111, 112, 113, 116, 117, 121, 122, 123, 124, 126, 127, 128, 129, 130, 132, 133, 134, 135, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 154, 155, 156, 158, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 234, 235, 239, 244, 247, 251, 252, 254, 255, 256, 260, 262, 263, 269, 271, 272], "repres": [0, 1, 5, 7, 10, 12, 13, 18, 20, 21, 25, 43, 49, 51, 52, 60, 63, 73, 75, 82, 85, 97, 103, 105, 107, 109, 110, 115, 116, 122, 123, 124, 126, 127, 136, 139, 141, 142, 143, 146, 147, 159, 160, 163, 165, 171, 173, 174, 176, 178, 182, 189, 193, 197, 198, 204, 213, 231, 244, 262, 271], "With": [0, 4, 8, 10, 15, 16, 17, 18, 19, 21, 42, 48, 52, 58, 59, 61, 73, 85, 101, 115, 124, 130, 135, 137, 144, 149, 150, 152, 161, 162, 163, 164, 165, 176, 177, 184, 186, 194, 197, 199, 200, 201, 204, 207, 211, 212, 215, 216, 224, 225, 226, 228, 229, 234, 237, 244, 247, 256, 258, 260, 262, 269, 271], "ai": [0, 75, 90, 99, 100, 104, 123, 126, 137, 146, 165, 175, 207, 214, 220, 229, 251], "develop": [0, 1, 3, 5, 8, 10, 12, 15, 23, 24, 58, 59, 60, 82, 85, 101, 105, 107, 113, 115, 135, 139, 147, 155, 163, 168, 179, 184, 186, 187, 188, 189, 192, 197, 198, 200, 204, 208, 214, 220, 221, 222, 227, 234, 235, 262, 263, 271, 272], "can": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 34, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 64, 65, 67, 68, 73, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 234, 237, 239, 244, 245, 247, 249, 252, 254, 255, 256, 257, 258, 260, 262, 269, 271], "more": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 19, 20, 21, 22, 25, 38, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53, 55, 56, 61, 67, 69, 73, 75, 76, 78, 79, 85, 97, 98, 99, 101, 102, 103, 105, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 121, 122, 124, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 139, 141, 142, 143, 146, 149, 150, 152, 153, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 176, 177, 178, 179, 182, 183, 184, 185, 189, 190, 191, 192, 193, 195, 196, 197, 198, 199, 201, 203, 204, 205, 206, 207, 208, 212, 213, 214, 215, 216, 219, 220, 221, 223, 226, 229, 237, 244, 247, 255, 256, 258, 260, 263, 269, 272], "move": [0, 1, 4, 5, 7, 12, 23, 26, 27, 28, 29, 30, 31, 40, 43, 47, 48, 73, 74, 99, 110, 122, 123, 124, 132, 133, 134, 136, 140, 146, 149, 152, 153, 154, 155, 157, 160, 162, 163, 164, 166, 167, 168, 170, 177, 178, 183, 188, 190, 198, 199, 206, 209, 212, 214, 219, 223, 231, 234, 247, 252], "between": [0, 1, 5, 6, 8, 11, 12, 14, 16, 17, 19, 21, 22, 23, 40, 47, 48, 49, 58, 59, 60, 65, 73, 82, 83, 85, 87, 95, 97, 98, 99, 102, 103, 108, 121, 123, 124, 126, 135, 136, 137, 143, 146, 147, 149, 150, 156, 160, 162, 163, 164, 165, 169, 171, 172, 173, 174, 176, 177, 178, 181, 184, 185, 186, 189, 190, 192, 195, 196, 198, 199, 200, 201, 218, 229, 230, 231, 232, 234, 247, 255, 258, 262, 263, 271, 272], "state": [0, 1, 5, 8, 9, 10, 11, 12, 14, 17, 22, 38, 44, 49, 52, 53, 55, 60, 61, 78, 79, 87, 97, 98, 102, 112, 119, 122, 123, 127, 128, 129, 131, 133, 136, 137, 138, 141, 146, 152, 154, 156, 159, 160, 161, 162, 163, 165, 168, 181, 185, 189, 192, 195, 201, 214, 216, 229, 230, 234, 237, 251], "art": [0, 5, 44, 52, 79, 103, 119, 137, 156, 185, 229], "tool": [0, 3, 6, 8, 14, 21, 25, 51, 60, 82, 87, 98, 123, 133, 135, 136, 144, 161, 164, 168, 169, 171, 177, 182, 195, 208, 209, 213, 223, 226, 237, 254, 257], "choos": [0, 1, 8, 10, 12, 15, 44, 49, 52, 55, 59, 65, 87, 99, 111, 112, 124, 128, 133, 135, 143, 146, 153, 158, 159, 160, 165, 168, 171, 177, 178, 184, 185, 197, 199, 212, 226, 227, 229, 230], "combin": [0, 5, 10, 21, 61, 75, 87, 97, 98, 101, 103, 115, 120, 121, 123, 125, 127, 128, 129, 138, 150, 156, 157, 160, 163, 165, 183, 186, 193, 197, 199, 215, 221, 231, 234], "best": [0, 5, 6, 7, 8, 17, 23, 37, 43, 52, 58, 61, 73, 87, 98, 105, 108, 109, 112, 115, 117, 119, 121, 131, 134, 135, 137, 138, 144, 154, 157, 158, 160, 161, 163, 166, 184, 194, 199, 201, 219, 220, 221, 223, 247, 251, 254, 262, 271], "them": [0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 23, 25, 43, 44, 47, 48, 49, 51, 53, 55, 59, 60, 61, 65, 67, 68, 73, 75, 78, 87, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 111, 112, 115, 116, 118, 121, 122, 124, 126, 127, 128, 129, 130, 134, 135, 136, 138, 139, 143, 144, 145, 149, 150, 152, 153, 154, 156, 158, 160, 161, 162, 163, 171, 176, 177, 178, 181, 184, 191, 193, 194, 195, 200, 201, 202, 208, 209, 211, 213, 218, 219, 220, 221, 225, 230, 231, 234, 237, 244, 247, 252, 260, 269], "support": [0, 4, 6, 7, 11, 14, 15, 16, 17, 18, 19, 22, 23, 24, 42, 47, 51, 56, 60, 61, 73, 78, 80, 83, 85, 91, 97, 105, 107, 109, 113, 121, 122, 123, 126, 130, 132, 133, 135, 136, 137, 141, 144, 147, 153, 155, 156, 158, 159, 161, 162, 163, 168, 171, 172, 173, 174, 176, 177, 178, 179, 181, 182, 183, 185, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 198, 199, 200, 201, 204, 206, 207, 208, 210, 211, 212, 214, 219, 220, 221, 223, 228, 229, 231, 247, 251, 252, 254, 255, 260, 261, 269, 270], "commun": [0, 11, 15, 18, 55, 61, 110, 113, 121, 122, 123, 124, 126, 131, 132, 133, 155, 159, 161, 162, 163, 168, 171, 176, 196, 215, 247, 251], "partner": [0, 113], "about": [0, 1, 4, 5, 6, 7, 8, 9, 10, 14, 15, 17, 19, 20, 21, 22, 23, 38, 42, 43, 49, 52, 53, 54, 55, 57, 73, 78, 87, 97, 99, 100, 101, 102, 103, 105, 107, 108, 109, 112, 113, 117, 119, 120, 121, 122, 126, 127, 128, 130, 132, 133, 135, 138, 139, 142, 143, 144, 145, 152, 154, 157, 158, 159, 160, 161, 163, 164, 165, 166, 168, 171, 172, 173, 174, 176, 178, 183, 184, 185, 187, 188, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 203, 204, 208, 209, 215, 216, 222, 223, 228, 234, 235, 237, 244, 251, 260, 269], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 37, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 67, 68, 69, 73, 75, 76, 78, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 226, 228, 229, 230, 231, 234, 237, 241, 244, 245, 247, 251, 252, 254, 255, 256, 257, 258, 260, 262, 263, 264, 269, 271, 272, 273], "go": [0, 4, 11, 12, 13, 14, 16, 18, 19, 21, 22, 23, 25, 48, 49, 51, 58, 59, 60, 78, 95, 98, 101, 102, 105, 107, 108, 117, 119, 121, 122, 125, 127, 132, 135, 138, 141, 142, 143, 145, 157, 158, 160, 162, 165, 169, 177, 178, 179, 184, 187, 188, 189, 200, 204, 213, 214, 223, 228, 231, 234, 245, 256], "walk": [0, 5, 6, 10, 15, 16, 22, 23, 24, 25, 43, 54, 58, 59, 60, 61, 100, 114, 120, 121, 125, 144, 146, 162, 176, 179, 184, 186, 187, 188, 199, 204, 222, 230, 245], "through": [0, 1, 3, 4, 5, 6, 7, 8, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 34, 43, 44, 47, 49, 52, 54, 55, 58, 59, 60, 61, 73, 75, 78, 84, 87, 97, 98, 99, 100, 101, 102, 105, 107, 108, 110, 114, 115, 118, 119, 120, 121, 122, 124, 125, 127, 129, 130, 135, 138, 142, 143, 144, 145, 146, 147, 149, 150, 152, 154, 155, 159, 160, 161, 162, 163, 164, 165, 168, 169, 171, 172, 174, 175, 176, 177, 182, 183, 184, 186, 187, 188, 189, 191, 195, 196, 197, 200, 201, 204, 205, 208, 209, 212, 214, 219, 220, 221, 222, 228, 230, 231, 245, 262, 271], "4": [0, 1, 2, 3, 5, 6, 7, 12, 13, 14, 16, 21, 23, 24, 25, 32, 34, 36, 40, 43, 45, 48, 51, 52, 53, 54, 55, 63, 64, 65, 73, 75, 80, 87, 90, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 108, 111, 113, 115, 116, 117, 119, 121, 122, 123, 125, 126, 129, 131, 132, 135, 136, 144, 146, 147, 149, 152, 153, 156, 157, 159, 160, 161, 162, 163, 166, 171, 173, 174, 176, 178, 181, 184, 189, 190, 191, 192, 193, 196, 197, 198, 204, 207, 208, 215, 219, 222, 245, 252, 254, 260, 262, 263, 266, 269, 271, 272, 275], "main": [0, 1, 3, 4, 5, 6, 7, 11, 16, 19, 22, 23, 52, 53, 55, 58, 59, 61, 87, 97, 104, 107, 108, 113, 119, 122, 123, 127, 131, 134, 135, 137, 144, 157, 160, 161, 162, 163, 166, 173, 174, 176, 177, 178, 184, 186, 187, 197, 200, 205, 206, 208, 218, 220, 221, 222, 223, 226, 247, 256, 258, 260, 262, 264, 269, 271, 273], "step": [0, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 37, 38, 43, 44, 47, 49, 52, 60, 61, 65, 67, 69, 73, 82, 85, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 110, 111, 115, 117, 118, 119, 120, 121, 122, 123, 127, 128, 129, 131, 133, 135, 136, 137, 139, 142, 144, 146, 149, 150, 153, 157, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 176, 177, 178, 179, 181, 182, 184, 185, 188, 193, 194, 195, 197, 198, 199, 200, 201, 202, 204, 206, 208, 209, 210, 211, 214, 216, 220, 221, 222, 223, 226, 228, 230, 238, 244, 245, 247, 250, 252, 253, 257, 258], "we": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 34, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 73, 75, 76, 78, 79, 82, 83, 85, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 219, 222, 223, 224, 225, 226, 228, 229, 231, 234, 237, 239, 244, 245, 249, 252, 254, 255, 256, 257, 258, 260, 262, 269, 271], "work": [0, 1, 2, 4, 5, 6, 7, 9, 12, 14, 17, 18, 20, 21, 22, 23, 25, 42, 43, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 73, 78, 85, 87, 97, 98, 100, 103, 113, 115, 116, 119, 121, 125, 127, 128, 129, 130, 131, 133, 134, 135, 136, 138, 139, 141, 142, 143, 145, 149, 152, 153, 154, 155, 156, 158, 159, 161, 163, 164, 165, 168, 171, 173, 174, 176, 178, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 201, 202, 203, 205, 206, 207, 208, 213, 215, 219, 220, 223, 224, 225, 230, 231, 234, 244, 247, 252, 253, 262, 263, 271, 272], "virtualenv": 0, "order": [0, 4, 6, 11, 12, 15, 17, 20, 22, 34, 44, 45, 49, 50, 55, 60, 63, 64, 65, 67, 68, 69, 73, 82, 87, 105, 107, 108, 109, 111, 113, 118, 121, 123, 125, 126, 128, 130, 133, 134, 135, 142, 143, 144, 145, 147, 155, 156, 162, 165, 166, 171, 172, 173, 174, 175, 178, 179, 182, 188, 191, 193, 194, 200, 201, 205, 213, 216, 222, 237, 252], "avoid": [0, 5, 16, 44, 58, 59, 87, 97, 122, 123, 124, 129, 133, 134, 135, 147, 150, 152, 159, 161, 177, 184, 189, 190, 193, 196, 201, 202, 223, 230, 231, 234, 237, 244], "conflict": [0, 16, 144], "your": [0, 2, 6, 8, 9, 11, 12, 14, 15, 17, 18, 19, 22, 23, 25, 38, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 58, 59, 61, 67, 73, 75, 78, 82, 87, 99, 101, 102, 103, 105, 107, 108, 109, 110, 112, 113, 114, 121, 122, 123, 125, 129, 130, 131, 132, 133, 135, 136, 137, 139, 141, 143, 145, 146, 147, 149, 152, 153, 155, 156, 157, 158, 159, 162, 163, 164, 166, 168, 169, 171, 172, 173, 174, 176, 177, 185, 186, 187, 188, 194, 196, 197, 198, 199, 200, 201, 202, 204, 205, 206, 209, 210, 215, 216, 218, 222, 224, 225, 229, 230, 231, 234, 245, 246, 251, 254, 257, 260, 262, 263, 267, 269, 271, 272, 276], "local": [0, 5, 6, 7, 8, 9, 16, 18, 19, 22, 23, 49, 50, 98, 112, 114, 122, 124, 126, 133, 134, 135, 137, 152, 156, 157, 161, 162, 163, 165, 166, 177, 185, 208, 212, 216, 218, 222, 223, 230, 247, 252, 258, 260, 269], "packag": [0, 2, 5, 6, 17, 18, 22, 23, 24, 44, 47, 51, 57, 61, 68, 69, 75, 76, 77, 79, 81, 87, 97, 99, 107, 110, 111, 115, 116, 117, 119, 120, 121, 122, 123, 133, 135, 137, 143, 155, 157, 158, 160, 163, 168, 171, 177, 185, 187, 201, 208, 213, 215, 220, 223, 229, 238, 246, 251, 256, 257], "also": [0, 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 37, 42, 43, 47, 48, 49, 51, 52, 53, 54, 58, 59, 60, 61, 65, 67, 68, 73, 75, 76, 78, 79, 80, 82, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 108, 109, 111, 112, 113, 115, 116, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 139, 141, 142, 143, 144, 145, 149, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 176, 177, 178, 179, 181, 182, 183, 188, 189, 190, 191, 192, 195, 197, 199, 200, 201, 202, 203, 205, 206, 207, 208, 211, 213, 214, 215, 216, 219, 220, 221, 222, 223, 228, 230, 231, 232, 234, 237, 244, 245, 247, 252, 255, 256, 257, 258, 260, 262, 263, 269, 271, 272], "python": [0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 14, 15, 17, 18, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 158, 159, 160, 162, 164, 165, 166, 168, 172, 173, 174, 175, 177, 178, 181, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 199, 203, 204, 205, 208, 211, 213, 215, 216, 220, 221, 222, 223, 226, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 254, 256, 262, 263, 271, 272], "3": [0, 1, 2, 3, 5, 6, 7, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 42, 43, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 87, 89, 90, 92, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 108, 109, 110, 111, 112, 113, 114, 115, 116, 118, 119, 121, 122, 123, 124, 127, 129, 130, 135, 136, 138, 139, 140, 142, 143, 144, 146, 147, 149, 150, 151, 152, 153, 154, 156, 157, 158, 159, 161, 162, 163, 164, 166, 167, 170, 171, 172, 173, 174, 175, 177, 178, 183, 184, 187, 188, 189, 190, 191, 192, 193, 194, 197, 198, 201, 202, 203, 204, 205, 206, 207, 208, 211, 213, 215, 219, 220, 221, 222, 226, 227, 229, 230, 237, 239, 244, 247, 253, 254, 256, 262, 263, 266, 271, 272, 275], "6": [0, 3, 6, 7, 11, 13, 19, 23, 34, 36, 43, 44, 47, 49, 58, 59, 60, 61, 63, 64, 65, 67, 68, 71, 72, 85, 87, 90, 92, 93, 94, 95, 96, 101, 102, 103, 109, 111, 112, 116, 117, 129, 130, 134, 135, 137, 144, 147, 149, 155, 156, 158, 161, 163, 171, 173, 174, 176, 177, 184, 185, 193, 197, 198, 201, 208, 213, 215, 218, 219, 221, 224, 225, 227, 228, 230, 239, 241, 242, 243, 247, 248, 249, 250, 252, 256, 266, 275], "other": [0, 1, 5, 6, 7, 8, 10, 11, 14, 17, 19, 21, 22, 23, 25, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 68, 69, 73, 75, 79, 80, 82, 83, 87, 95, 97, 99, 101, 102, 103, 111, 112, 113, 114, 116, 123, 124, 126, 127, 128, 129, 131, 132, 133, 135, 136, 137, 139, 141, 142, 143, 144, 145, 146, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 169, 172, 173, 174, 176, 177, 178, 179, 182, 183, 184, 185, 189, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 202, 204, 209, 214, 215, 218, 223, 228, 230, 231, 234, 237, 244, 245, 247, 252, 254, 256, 257, 258, 261, 262, 270, 271], "version": [0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 20, 22, 23, 25, 42, 80, 105, 107, 108, 115, 116, 119, 122, 123, 125, 126, 127, 129, 135, 136, 137, 138, 141, 145, 147, 153, 155, 156, 157, 158, 159, 166, 168, 169, 171, 175, 178, 183, 184, 185, 187, 188, 189, 197, 198, 200, 203, 204, 206, 208, 218, 219, 220, 221, 222, 223, 228, 230, 231, 234, 237, 256, 257, 260, 263, 269, 272], "should": [0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 14, 15, 16, 18, 19, 20, 21, 22, 23, 32, 42, 43, 44, 49, 50, 51, 52, 53, 55, 58, 59, 60, 69, 73, 78, 82, 85, 87, 97, 98, 99, 100, 102, 103, 111, 117, 119, 121, 122, 125, 126, 127, 130, 133, 135, 136, 138, 139, 143, 146, 147, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 169, 171, 172, 173, 174, 175, 176, 177, 178, 182, 184, 187, 188, 189, 190, 191, 197, 200, 205, 206, 208, 213, 214, 218, 219, 222, 223, 226, 230, 231, 245, 247, 252, 256, 260, 262, 265, 269, 271, 274], "well": [0, 1, 3, 4, 5, 6, 8, 10, 11, 19, 20, 22, 23, 42, 44, 48, 49, 53, 60, 67, 82, 85, 87, 97, 99, 101, 105, 110, 111, 112, 113, 117, 122, 123, 125, 126, 127, 129, 130, 135, 136, 137, 141, 142, 143, 152, 153, 157, 158, 161, 162, 163, 164, 165, 168, 169, 171, 172, 177, 178, 182, 185, 187, 188, 189, 190, 191, 193, 195, 197, 200, 202, 214, 215, 220, 222, 223, 226, 231, 234, 237, 244, 247, 255, 262, 271], "python3": [0, 5, 18, 22, 23, 168, 187, 219, 246], "m": [0, 4, 5, 6, 7, 8, 10, 14, 15, 19, 22, 23, 32, 43, 49, 52, 89, 93, 96, 101, 104, 110, 113, 116, 117, 118, 122, 123, 127, 128, 134, 137, 142, 144, 145, 146, 147, 149, 155, 156, 157, 161, 163, 165, 173, 174, 183, 185, 192, 197, 198, 199, 202, 208, 219, 226, 231, 237, 244, 246, 247, 263, 272], "venv": 0, "sourc": [0, 1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 124, 125, 126, 127, 128, 129, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 159, 160, 161, 163, 164, 165, 166, 168, 171, 172, 174, 177, 178, 181, 184, 186, 187, 189, 190, 191, 192, 193, 194, 195, 196, 199, 203, 204, 205, 206, 211, 218, 220, 221, 222, 223, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255, 257], "bin": [0, 4, 6, 22, 23, 92, 135, 186, 194, 195, 204, 208, 218, 220, 223, 226], "activ": [0, 5, 6, 9, 10, 12, 14, 15, 17, 19, 47, 52, 82, 93, 97, 99, 104, 122, 124, 131, 135, 137, 144, 145, 152, 156, 158, 164, 168, 177, 179, 182, 185, 186, 187, 195, 199, 200, 201, 205, 207, 208, 219, 220, 221, 226, 228, 229, 234, 238, 247, 256, 262, 271], "need": [0, 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 34, 43, 44, 45, 47, 49, 50, 51, 52, 53, 54, 55, 58, 59, 60, 61, 63, 64, 67, 75, 76, 79, 82, 83, 87, 97, 98, 99, 101, 102, 103, 105, 108, 111, 112, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 171, 172, 173, 174, 175, 177, 178, 179, 182, 184, 185, 187, 188, 189, 193, 194, 195, 197, 198, 199, 200, 201, 202, 204, 206, 208, 209, 212, 213, 214, 215, 216, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230, 231, 244, 245, 247, 252, 256, 262, 271], "instal": [0, 1, 5, 6, 7, 8, 17, 20, 23, 24, 50, 51, 53, 55, 57, 58, 87, 90, 94, 107, 115, 116, 118, 119, 122, 123, 124, 127, 128, 131, 132, 135, 136, 139, 141, 143, 146, 155, 158, 159, 160, 161, 165, 168, 171, 172, 178, 184, 185, 187, 188, 194, 204, 206, 208, 213, 219, 222, 223, 224, 225, 226, 227, 229, 231, 233, 236, 238, 240, 241, 242, 243, 246, 248, 249, 250, 256, 266, 275], "pip": [0, 17, 20, 24, 50, 75, 82, 90, 94, 105, 107, 115, 118, 119, 137, 139, 146, 157, 158, 160, 168, 171, 172, 178, 184, 194, 206, 219, 221, 223, 229, 231, 233, 236, 238, 240, 241, 242, 243, 245, 248, 249, 250], "torchvis": [0, 4, 10, 12, 19, 20, 33, 34, 37, 38, 39, 41, 43, 44, 50, 52, 57, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 110, 117, 119, 121, 122, 123, 129, 134, 137, 139, 142, 143, 146, 148, 149, 152, 157, 158, 161, 162, 166, 168, 169, 171, 172, 176, 177, 182, 184, 187, 188, 194, 195, 197, 198, 199, 200, 204, 206, 213, 220, 221, 223, 224, 225, 227, 228, 229, 233, 236, 238, 245, 247, 250, 253, 256], "xcode": [0, 59, 188, 204, 222, 223, 225, 227], "want": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 19, 21, 22, 23, 24, 32, 43, 44, 47, 49, 51, 52, 58, 59, 60, 63, 64, 67, 73, 76, 78, 79, 85, 87, 97, 98, 99, 100, 101, 102, 103, 108, 111, 112, 116, 124, 125, 126, 127, 135, 136, 137, 138, 141, 143, 145, 147, 148, 150, 153, 156, 157, 158, 159, 162, 164, 165, 166, 171, 173, 174, 175, 178, 181, 182, 183, 189, 191, 195, 196, 197, 198, 200, 205, 208, 221, 222, 223, 226, 228, 230, 231, 234, 237, 240, 244], "iphon": [0, 187, 223], "linux": [0, 5, 6, 18, 20, 22, 23, 105, 124, 133, 135, 158, 168, 176, 177, 178, 194, 206, 208, 220], "howev": [0, 1, 5, 6, 8, 10, 12, 14, 15, 17, 20, 22, 23, 25, 45, 47, 49, 51, 52, 60, 61, 73, 76, 85, 87, 97, 98, 113, 117, 124, 125, 129, 130, 134, 135, 136, 138, 139, 143, 147, 149, 152, 155, 156, 157, 160, 161, 162, 163, 164, 165, 169, 171, 172, 173, 174, 176, 179, 183, 186, 190, 191, 193, 198, 200, 201, 204, 205, 207, 214, 219, 222, 223, 231, 234, 237, 244, 254, 260, 261, 269, 270], "itself": [0, 5, 7, 11, 23, 32, 43, 60, 61, 82, 85, 97, 101, 102, 108, 112, 113, 124, 125, 127, 130, 135, 141, 142, 146, 159, 162, 163, 165, 195, 213, 216, 230], "mac": [0, 20, 137, 206, 225], "For": [0, 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 63, 64, 65, 68, 73, 75, 78, 79, 80, 82, 83, 87, 97, 98, 99, 100, 102, 103, 105, 108, 111, 112, 113, 114, 115, 116, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 142, 143, 144, 146, 147, 149, 153, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 186, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 206, 207, 208, 209, 210, 211, 213, 214, 215, 216, 218, 219, 220, 221, 223, 226, 227, 228, 229, 230, 231, 234, 237, 239, 244, 245, 247, 252, 254, 255, 256, 257, 258, 260, 262, 263, 269, 271, 272], "publish": [0, 208], "http": [0, 4, 6, 7, 18, 19, 20, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 40, 45, 46, 49, 58, 59, 60, 74, 75, 77, 78, 84, 90, 91, 94, 100, 104, 105, 106, 108, 113, 115, 118, 119, 120, 122, 123, 127, 128, 129, 137, 139, 140, 141, 142, 143, 147, 152, 153, 154, 155, 157, 158, 160, 165, 167, 168, 169, 170, 171, 172, 174, 178, 179, 181, 182, 184, 187, 188, 190, 192, 194, 203, 204, 205, 206, 208, 213, 218, 221, 222, 229, 230, 231, 234, 235, 236, 237, 245, 260, 262, 269, 271], "github": [0, 2, 3, 4, 6, 7, 10, 11, 16, 19, 22, 23, 24, 33, 49, 53, 54, 55, 60, 61, 78, 104, 108, 115, 118, 121, 122, 123, 124, 129, 131, 132, 133, 134, 135, 137, 138, 139, 141, 142, 143, 146, 147, 154, 155, 161, 162, 163, 168, 171, 178, 179, 182, 184, 186, 188, 204, 205, 206, 207, 208, 213, 214, 215, 218, 220, 221, 222, 229, 260, 269], "com": [0, 7, 10, 18, 19, 20, 24, 25, 33, 37, 49, 60, 75, 78, 104, 108, 115, 118, 119, 123, 127, 128, 129, 141, 142, 143, 147, 154, 155, 160, 165, 171, 178, 179, 181, 182, 184, 194, 204, 205, 206, 208, 213, 218, 222, 229, 231], "exampl": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 77, 80, 82, 83, 84, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 100, 101, 104, 105, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 213, 214, 215, 216, 219, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 254, 255, 256, 257, 258, 260, 261, 263, 266, 269, 270, 272, 275], "tree": [0, 6, 10, 12, 15, 22, 49, 60, 78, 98, 103, 113, 129, 204, 222, 260, 269], "master": [0, 4, 16, 19, 49, 60, 78, 118, 119, 123, 129, 134, 135, 142, 143, 147, 162, 163, 178, 179, 182, 188, 194, 196, 199, 204, 206, 212, 220, 222], "fast_neural_styl": 0, "If": [0, 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 21, 22, 23, 24, 32, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 60, 61, 63, 73, 75, 76, 78, 82, 87, 95, 97, 98, 99, 100, 101, 102, 103, 112, 113, 114, 117, 118, 122, 123, 124, 125, 127, 128, 129, 133, 135, 136, 138, 139, 141, 142, 143, 144, 145, 147, 149, 152, 153, 154, 155, 158, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 175, 176, 178, 179, 182, 183, 184, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 197, 198, 201, 202, 205, 206, 207, 208, 209, 213, 214, 216, 218, 220, 221, 222, 223, 225, 226, 229, 230, 232, 234, 237, 241, 244, 245, 247, 252, 257, 260, 262, 269, 271], "would": [0, 3, 4, 5, 6, 7, 8, 14, 16, 18, 19, 20, 21, 22, 23, 25, 43, 49, 53, 55, 60, 61, 73, 76, 87, 97, 98, 101, 102, 103, 108, 112, 113, 116, 117, 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 136, 137, 139, 142, 143, 144, 145, 147, 149, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 165, 171, 172, 173, 174, 176, 177, 178, 182, 185, 191, 192, 196, 198, 205, 207, 209, 214, 215, 216, 223, 225, 226, 230, 244, 247], "like": [0, 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 43, 44, 45, 47, 48, 49, 51, 52, 53, 58, 59, 60, 61, 65, 67, 68, 75, 78, 79, 80, 82, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 109, 110, 111, 112, 113, 114, 116, 117, 120, 121, 123, 124, 125, 126, 127, 128, 130, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 147, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 168, 169, 171, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 185, 186, 187, 190, 191, 192, 194, 196, 197, 198, 199, 200, 201, 205, 206, 207, 208, 209, 213, 214, 215, 216, 218, 219, 220, 221, 222, 225, 226, 229, 230, 231, 232, 234, 247, 256, 257, 261, 262, 270, 271], "differ": [0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 32, 47, 48, 49, 51, 52, 58, 59, 60, 61, 73, 80, 81, 82, 83, 85, 87, 92, 97, 98, 99, 103, 105, 115, 116, 119, 121, 122, 123, 124, 126, 127, 128, 129, 132, 133, 134, 135, 137, 138, 139, 141, 143, 144, 145, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 176, 177, 179, 182, 184, 186, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 204, 206, 208, 214, 215, 216, 218, 219, 223, 228, 231, 234, 235, 245, 247, 251, 252, 258, 260, 269], "feel": [0, 6, 10, 19, 43, 49, 78, 97, 103, 105, 107, 108, 112, 122, 142, 143, 144, 146, 147, 152, 168, 173, 174, 187], "free": [0, 6, 10, 19, 22, 23, 25, 43, 49, 60, 73, 78, 85, 97, 105, 107, 108, 112, 122, 126, 129, 135, 141, 142, 143, 146, 147, 152, 159, 161, 165, 168, 173, 174, 175, 187, 216, 229, 234, 246], "skip": [0, 1, 4, 5, 10, 14, 17, 19, 23, 42, 43, 98, 112, 116, 130, 141, 146, 161, 163, 168, 174, 182, 196, 201, 212, 230, 231, 254, 255], "These": [0, 1, 5, 7, 8, 11, 12, 14, 17, 19, 20, 21, 25, 43, 49, 52, 55, 82, 87, 98, 100, 102, 103, 108, 109, 113, 117, 118, 135, 146, 157, 159, 160, 162, 164, 165, 171, 176, 177, 182, 184, 197, 198, 200, 201, 219, 231, 254, 260, 262, 269, 271], "meant": [0, 6, 11, 85, 122, 191, 247, 256], "appli": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 19, 23, 25, 51, 52, 58, 59, 60, 61, 64, 68, 73, 79, 82, 85, 97, 99, 108, 111, 113, 116, 119, 121, 123, 129, 130, 133, 134, 135, 138, 139, 141, 142, 145, 146, 147, 150, 152, 153, 154, 156, 159, 161, 162, 163, 165, 166, 171, 176, 177, 178, 181, 184, 185, 189, 190, 193, 198, 201, 202, 205, 207, 208, 210, 213, 214, 215, 216, 218, 220, 223, 228, 229, 244, 247, 251, 252, 253, 255], "still": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 19, 20, 23, 42, 47, 52, 61, 73, 79, 80, 87, 97, 101, 105, 109, 112, 113, 119, 122, 126, 127, 128, 133, 135, 136, 141, 142, 143, 147, 149, 152, 163, 172, 174, 176, 179, 181, 182, 184, 186, 187, 188, 189, 191, 195, 197, 200, 201, 204, 208, 209, 214, 215, 219, 222, 223, 228, 247, 258], "imag": [0, 1, 19, 23, 34, 43, 47, 49, 51, 52, 57, 60, 73, 75, 82, 87, 90, 92, 94, 96, 97, 121, 124, 126, 138, 146, 147, 149, 152, 154, 156, 158, 160, 166, 168, 169, 178, 182, 184, 193, 197, 198, 199, 204, 206, 207, 208, 215, 222, 223, 224, 225, 229, 245, 251, 256], "realli": [0, 5, 8, 23, 25, 42, 44, 98, 99, 103, 108, 113, 125, 157, 169, 189, 191, 205, 231], "optim": [0, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 35, 37, 38, 43, 47, 49, 53, 55, 58, 59, 60, 61, 65, 66, 67, 73, 75, 79, 82, 85, 87, 89, 92, 94, 96, 97, 98, 102, 103, 112, 115, 117, 118, 121, 122, 123, 124, 127, 129, 131, 133, 134, 135, 136, 138, 142, 143, 144, 146, 147, 148, 149, 153, 154, 156, 157, 158, 159, 160, 161, 162, 165, 166, 168, 169, 171, 172, 174, 175, 176, 178, 182, 184, 185, 188, 189, 193, 194, 195, 196, 198, 199, 201, 203, 204, 206, 207, 214, 218, 220, 221, 222, 227, 228, 230, 231, 237, 240, 241, 242, 243, 244, 245, 248, 249, 250, 251, 253, 254, 256], "fast": [0, 1, 5, 6, 17, 18, 21, 42, 49, 104, 123, 124, 133, 150, 159, 164, 171, 184, 196, 201, 223, 234], "enough": [0, 5, 6, 17, 21, 23, 49, 82, 101, 125, 129, 158, 201, 219, 229, 230], "video": [0, 20, 43, 44, 53, 55, 56, 75, 79, 114, 120, 121, 131, 132, 158, 168, 175, 247], "reduc": [0, 3, 6, 9, 11, 17, 19, 37, 43, 56, 58, 59, 61, 97, 109, 119, 122, 123, 124, 126, 129, 131, 133, 135, 137, 145, 146, 147, 152, 156, 158, 161, 163, 168, 171, 172, 173, 174, 176, 177, 185, 186, 194, 199, 201, 203, 204, 218, 222, 223, 227, 228, 230, 231, 234, 237, 251, 258], "resolut": [0, 20, 171], "low": [0, 1, 4, 5, 6, 7, 14, 24, 25, 49, 52, 68, 82, 99, 113, 121, 127, 146, 159, 168, 177, 220, 221], "thei": [0, 1, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 20, 21, 23, 25, 44, 48, 49, 52, 55, 58, 59, 60, 73, 80, 82, 85, 97, 99, 100, 101, 102, 103, 105, 107, 108, 109, 112, 113, 115, 122, 125, 126, 127, 128, 130, 133, 134, 135, 136, 144, 145, 147, 152, 153, 159, 160, 161, 163, 165, 171, 173, 174, 176, 177, 178, 179, 182, 185, 189, 190, 191, 192, 193, 195, 197, 198, 200, 202, 203, 207, 208, 214, 215, 220, 224, 225, 231, 234, 237, 245, 247, 252, 260, 262, 269, 271], "let": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 43, 44, 45, 47, 49, 51, 52, 58, 59, 60, 68, 73, 75, 76, 78, 79, 80, 85, 87, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 111, 112, 116, 117, 118, 119, 124, 126, 130, 133, 134, 135, 136, 137, 138, 142, 143, 144, 145, 147, 149, 150, 152, 153, 154, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 184, 187, 188, 189, 190, 193, 200, 201, 208, 210, 214, 215, 219, 222, 223, 229, 231, 237, 244, 245, 247, 256, 257, 260, 262, 269, 271], "s": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 57, 58, 59, 61, 68, 73, 76, 78, 79, 80, 85, 87, 92, 93, 95, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 129, 130, 131, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 147, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 178, 179, 181, 182, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 204, 205, 207, 208, 209, 210, 212, 213, 214, 215, 216, 219, 222, 223, 224, 225, 228, 229, 230, 231, 234, 237, 244, 245, 247, 249, 251, 252, 254, 256, 257, 258, 260, 262, 263, 269, 271, 272], "git": [0, 178, 184, 213, 218, 266, 275], "clone": [0, 1, 11, 12, 14, 22, 23, 54, 95, 110, 127, 130, 131, 135, 144, 145, 147, 156, 208, 209, 213, 218], "cd": [0, 4, 6, 22, 23, 168, 178, 181, 188, 194, 206, 208, 218, 225, 226], "yourself": [0, 4, 5, 6, 8, 23, 42, 60, 101, 146, 183], "repositori": [0, 6, 10, 54, 58, 59, 83, 114, 119, 122, 124, 135, 155, 163, 164, 165, 178, 204, 206, 208, 213, 222, 260, 267, 269, 276], "just": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 42, 44, 45, 47, 49, 50, 51, 52, 53, 56, 60, 65, 67, 73, 76, 78, 85, 87, 95, 97, 98, 99, 101, 102, 103, 111, 112, 113, 116, 117, 122, 123, 124, 126, 127, 128, 133, 136, 137, 144, 145, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 169, 171, 176, 178, 182, 184, 186, 188, 191, 194, 197, 198, 200, 201, 204, 208, 213, 215, 216, 220, 228, 231, 232, 247, 262, 264, 271, 273], "inform": [0, 1, 2, 4, 5, 7, 8, 10, 14, 20, 22, 23, 25, 45, 49, 53, 64, 73, 78, 82, 87, 97, 101, 102, 103, 108, 111, 112, 113, 118, 119, 123, 125, 126, 127, 128, 133, 135, 136, 137, 141, 142, 143, 146, 157, 158, 159, 160, 162, 164, 165, 168, 169, 171, 173, 175, 176, 177, 178, 179, 182, 183, 184, 187, 192, 193, 194, 197, 202, 205, 206, 207, 213, 214, 215, 223, 226, 228, 230, 231, 247, 252, 255, 256, 262, 271], "how": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 42, 43, 44, 45, 47, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 61, 73, 75, 78, 80, 82, 85, 86, 87, 97, 99, 100, 101, 102, 103, 104, 105, 108, 109, 112, 113, 115, 116, 117, 118, 119, 120, 121, 125, 126, 127, 128, 130, 131, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 146, 147, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 199, 201, 203, 204, 207, 208, 209, 211, 213, 218, 219, 221, 223, 224, 225, 228, 229, 230, 231, 234, 235, 237, 244, 247, 251, 252, 253, 254, 255, 257, 262, 264, 266, 271, 273, 275], "do": [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 39, 42, 47, 49, 50, 51, 52, 54, 58, 59, 60, 61, 63, 64, 68, 69, 76, 78, 80, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 111, 112, 114, 116, 118, 121, 123, 124, 125, 126, 127, 129, 132, 133, 134, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 148, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 163, 165, 169, 171, 173, 174, 176, 177, 178, 181, 182, 184, 185, 188, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 205, 208, 213, 214, 216, 218, 221, 222, 223, 224, 225, 226, 228, 230, 231, 232, 237, 241, 244, 245, 247, 251, 256, 261, 263, 270, 272], "now": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 42, 43, 44, 45, 47, 49, 50, 51, 52, 55, 58, 59, 60, 63, 73, 76, 78, 80, 85, 87, 96, 97, 98, 99, 101, 103, 105, 107, 108, 111, 116, 117, 118, 119, 122, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 139, 142, 143, 144, 145, 146, 150, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 171, 172, 174, 175, 176, 178, 179, 181, 182, 184, 185, 187, 188, 189, 190, 193, 194, 197, 199, 200, 201, 202, 205, 208, 211, 213, 214, 216, 223, 224, 230, 232, 234, 244, 245, 249, 256, 262, 271], "ll": [0, 1, 4, 5, 6, 8, 9, 10, 17, 19, 20, 22, 23, 48, 49, 50, 60, 87, 98, 105, 127, 128, 135, 136, 138, 139, 141, 145, 150, 152, 154, 158, 159, 160, 162, 165, 169, 176, 181, 182, 183, 184, 185, 187, 188, 189, 191, 195, 197, 198, 200, 201, 210, 211, 213, 223, 231, 255], "pre": [0, 19, 98, 122, 124, 135, 137, 157, 158, 171, 178, 184, 185, 187, 188, 200, 214, 216, 222, 223, 257], "script": [0, 1, 5, 6, 7, 9, 10, 12, 13, 14, 17, 19, 20, 21, 22, 24, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 122, 123, 125, 126, 127, 128, 129, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 158, 159, 160, 162, 164, 165, 166, 168, 171, 172, 173, 174, 176, 177, 178, 181, 182, 184, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 203, 204, 205, 206, 208, 209, 211, 213, 216, 218, 219, 220, 222, 223, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 254, 255, 256], "provid": [0, 1, 4, 5, 6, 8, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 44, 49, 51, 52, 56, 58, 59, 60, 61, 73, 82, 83, 85, 87, 97, 98, 99, 105, 107, 108, 112, 113, 115, 116, 118, 120, 121, 122, 124, 125, 126, 131, 132, 133, 134, 135, 136, 137, 142, 143, 144, 145, 146, 147, 156, 158, 159, 161, 162, 164, 168, 171, 172, 173, 174, 178, 185, 187, 191, 192, 194, 195, 196, 197, 198, 200, 201, 202, 205, 207, 208, 209, 213, 214, 216, 218, 219, 220, 221, 223, 226, 227, 229, 230, 231, 234, 237, 245, 247, 262, 271], "download_saved_model": 0, "py": [0, 1, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 22, 23, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 78, 79, 80, 84, 85, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 131, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 159, 160, 162, 164, 165, 166, 168, 172, 173, 174, 178, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 195, 199, 203, 204, 205, 206, 211, 213, 215, 221, 223, 226, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255, 257, 260, 262, 267, 269, 271, 276], "put": [0, 2, 5, 6, 8, 12, 14, 16, 42, 45, 49, 51, 59, 75, 85, 113, 115, 121, 122, 123, 134, 135, 136, 149, 153, 158, 159, 160, 162, 163, 165, 171, 187, 199, 200, 208, 262, 271], "saved_model": [0, 96], "folder": [0, 4, 6, 19, 23, 50, 52, 82, 83, 122, 137, 169, 178, 181, 182, 185, 188, 197, 198, 204, 206, 208, 213, 218, 224, 225], "There": [0, 4, 6, 8, 10, 14, 15, 17, 22, 23, 25, 47, 73, 76, 79, 85, 97, 98, 99, 102, 103, 113, 117, 120, 128, 132, 136, 138, 143, 145, 147, 149, 150, 152, 154, 157, 158, 159, 162, 163, 165, 173, 174, 178, 179, 181, 191, 194, 197, 200, 201, 213, 228, 231, 234, 247, 252, 255, 263, 272], "file": [0, 2, 5, 6, 7, 8, 9, 10, 15, 19, 20, 21, 22, 23, 50, 51, 52, 55, 58, 59, 60, 75, 82, 83, 87, 101, 109, 110, 114, 116, 118, 119, 122, 125, 126, 127, 128, 133, 135, 137, 139, 144, 152, 155, 158, 168, 171, 173, 174, 178, 181, 182, 185, 186, 188, 192, 193, 197, 198, 204, 206, 207, 209, 214, 215, 218, 220, 221, 222, 223, 224, 225, 230, 231, 235, 237, 245, 256, 257, 260, 261, 263, 267, 269, 270, 272, 276], "candi": 0, "pth": [0, 5, 9, 19, 20, 23, 24, 38, 39, 44, 60, 73, 112, 171, 181, 182, 184, 197, 198, 220, 221, 237, 242, 252], "mosaic": 0, "rain_princess": 0, "udni": 0, "directori": [0, 1, 4, 5, 6, 12, 22, 23, 49, 51, 52, 75, 87, 97, 112, 114, 117, 126, 127, 128, 137, 144, 157, 165, 168, 171, 184, 185, 188, 194, 204, 208, 214, 221, 223, 226, 245, 257], "have": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 34, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 63, 68, 69, 73, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 147, 149, 152, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 203, 205, 206, 207, 208, 209, 211, 213, 214, 215, 216, 219, 220, 222, 223, 224, 225, 226, 228, 230, 231, 232, 234, 240, 241, 244, 245, 247, 249, 252, 254, 256, 257, 258, 262, 271], "The": [0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 67, 68, 69, 73, 75, 76, 78, 79, 80, 82, 83, 85, 91, 93, 95, 97, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 126, 127, 128, 129, 130, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 166, 168, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 228, 230, 231, 234, 237, 244, 245, 247, 252, 253, 255, 256, 257, 258, 260, 263, 269, 272], "definit": [0, 5, 6, 8, 10, 20, 22, 25, 47, 58, 59, 60, 68, 73, 78, 85, 99, 111, 121, 143, 153, 160, 164, 181, 190, 208, 209, 218, 221, 228, 247, 252, 262, 271], "previous": [0, 4, 5, 8, 20, 32, 60, 85, 101, 115, 118, 141, 142, 156, 159, 160, 161, 168, 189, 197, 205, 223, 244], "few": [0, 5, 6, 8, 9, 10, 15, 19, 21, 22, 23, 47, 51, 56, 60, 79, 85, 97, 99, 100, 101, 102, 103, 112, 113, 115, 116, 120, 122, 125, 127, 128, 129, 133, 135, 136, 149, 153, 158, 159, 162, 165, 172, 177, 179, 184, 190, 191, 192, 197, 198, 208, 209, 211, 214, 216, 220, 221, 230, 247], "line": [0, 4, 5, 6, 8, 9, 12, 13, 17, 21, 22, 23, 49, 50, 51, 56, 58, 59, 60, 61, 82, 97, 99, 109, 115, 116, 126, 127, 128, 135, 143, 144, 149, 158, 162, 163, 165, 168, 169, 172, 173, 177, 181, 186, 188, 189, 191, 208, 214, 215, 220, 221, 222, 224, 225, 237, 245, 247, 252, 255, 256, 263, 272], "In": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 42, 43, 45, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 64, 65, 67, 68, 73, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 203, 204, 206, 207, 208, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 226, 229, 230, 231, 234, 237, 244, 245, 247, 254, 255, 256, 257, 258, 262, 263, 265, 271, 272, 274], "instead": [0, 4, 5, 6, 8, 10, 14, 17, 19, 20, 22, 23, 25, 32, 44, 45, 49, 51, 52, 53, 58, 59, 60, 61, 64, 98, 99, 103, 107, 108, 109, 113, 116, 117, 122, 123, 125, 126, 127, 128, 129, 130, 131, 134, 135, 142, 143, 145, 146, 147, 149, 150, 152, 155, 156, 157, 158, 161, 162, 163, 165, 166, 169, 171, 172, 176, 177, 178, 179, 184, 189, 191, 192, 193, 198, 199, 200, 201, 205, 209, 214, 216, 219, 223, 239, 252, 258], "actual": [0, 1, 3, 5, 6, 8, 11, 13, 14, 15, 19, 21, 22, 23, 25, 38, 49, 51, 52, 58, 59, 60, 73, 85, 97, 98, 101, 103, 108, 112, 116, 118, 121, 125, 126, 127, 129, 133, 135, 139, 142, 143, 150, 152, 159, 165, 168, 169, 172, 173, 174, 175, 177, 182, 184, 189, 191, 197, 198, 200, 204, 205, 223, 224, 225, 231, 234, 252], "net": [0, 3, 6, 14, 19, 24, 44, 45, 47, 49, 52, 73, 79, 81, 85, 87, 92, 94, 97, 110, 123, 125, 129, 135, 146, 150, 158, 162, 166, 168, 169, 203, 209, 221, 230, 233, 239, 240, 241, 242, 243, 249, 250, 262, 263, 271, 272], "call": [0, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 32, 42, 43, 44, 45, 47, 49, 51, 52, 53, 55, 58, 59, 60, 61, 63, 67, 68, 69, 73, 75, 76, 78, 80, 85, 95, 97, 98, 99, 101, 102, 103, 109, 111, 112, 113, 116, 118, 120, 121, 123, 124, 125, 126, 128, 133, 134, 135, 136, 137, 141, 142, 143, 144, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 171, 172, 173, 174, 175, 176, 177, 182, 183, 185, 186, 187, 188, 194, 195, 198, 201, 204, 205, 206, 207, 208, 211, 213, 214, 216, 218, 219, 223, 224, 225, 228, 230, 231, 232, 234, 237, 238, 241, 245, 247, 252, 262, 271], "torch": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 78, 79, 85, 87, 89, 90, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 127, 128, 129, 130, 134, 135, 136, 137, 138, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 171, 175, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 196, 199, 200, 201, 202, 203, 204, 206, 207, 208, 209, 211, 212, 214, 215, 216, 218, 219, 220, 221, 222, 224, 225, 226, 228, 232, 233, 234, 236, 238, 239, 241, 242, 243, 245, 246, 247, 248, 249, 250, 251, 252, 253, 256, 257, 258], "_export": [0, 174, 197, 198, 199], "which": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 42, 43, 44, 47, 48, 49, 50, 51, 52, 55, 56, 58, 59, 60, 61, 63, 64, 67, 68, 69, 73, 75, 76, 78, 79, 82, 83, 85, 87, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 187, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 202, 204, 207, 208, 211, 212, 215, 216, 221, 222, 223, 226, 227, 228, 229, 230, 231, 232, 234, 237, 244, 247, 252, 254, 255, 256, 258, 260, 262, 263, 269, 271, 272], "api": [0, 2, 5, 8, 10, 11, 14, 15, 18, 20, 21, 22, 23, 24, 25, 33, 34, 41, 48, 56, 60, 61, 82, 90, 107, 108, 109, 113, 121, 123, 124, 125, 126, 127, 133, 134, 135, 137, 143, 144, 145, 154, 157, 161, 162, 163, 168, 173, 174, 175, 177, 178, 179, 181, 182, 183, 184, 187, 188, 194, 195, 196, 197, 198, 199, 203, 204, 205, 208, 212, 213, 214, 215, 216, 220, 221, 222, 223, 228, 229, 231, 232, 234, 236, 246, 251, 252, 253, 254, 256, 261, 270], "directli": [0, 4, 5, 6, 8, 11, 12, 14, 20, 22, 23, 25, 42, 48, 52, 61, 85, 87, 105, 107, 108, 113, 118, 124, 130, 131, 137, 145, 158, 159, 163, 165, 182, 184, 185, 191, 192, 193, 202, 206, 209, 212, 216, 221, 222, 228], "don": [0, 5, 6, 8, 10, 21, 42, 43, 44, 52, 53, 63, 73, 76, 87, 98, 99, 102, 108, 111, 112, 113, 117, 125, 126, 127, 129, 130, 137, 143, 145, 146, 148, 152, 157, 159, 160, 163, 164, 182, 183, 185, 187, 188, 189, 190, 191, 200, 211, 216, 222, 226, 230, 260, 262, 263, 269, 271, 272], "t": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 25, 32, 34, 37, 38, 40, 42, 43, 44, 47, 48, 49, 50, 52, 53, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 78, 87, 89, 94, 96, 97, 98, 99, 101, 102, 103, 105, 108, 110, 111, 112, 113, 115, 116, 117, 122, 123, 125, 126, 127, 129, 130, 136, 137, 138, 141, 142, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 163, 164, 165, 168, 169, 171, 172, 173, 174, 176, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 193, 195, 197, 198, 200, 201, 205, 206, 208, 209, 210, 211, 216, 219, 222, 226, 228, 230, 231, 234, 236, 237, 239, 247, 249, 252, 254, 255, 260, 262, 263, 269, 271, 272], "even": [0, 1, 4, 5, 6, 8, 10, 14, 16, 21, 23, 25, 43, 44, 51, 73, 76, 78, 95, 103, 108, 112, 113, 115, 122, 123, 124, 130, 133, 139, 142, 143, 145, 153, 159, 161, 164, 171, 173, 174, 176, 184, 189, 191, 192, 195, 200, 203, 213, 219, 228, 231, 247], "becaus": [0, 1, 2, 4, 5, 6, 8, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 32, 34, 42, 43, 44, 47, 48, 49, 51, 52, 55, 56, 58, 59, 60, 61, 63, 69, 73, 78, 79, 85, 87, 97, 98, 99, 101, 105, 108, 111, 112, 116, 117, 119, 125, 127, 129, 130, 133, 134, 136, 137, 141, 143, 145, 146, 147, 149, 150, 154, 156, 157, 161, 163, 165, 166, 168, 172, 173, 174, 176, 178, 181, 183, 184, 185, 188, 189, 191, 194, 195, 198, 200, 201, 203, 205, 208, 210, 211, 213, 219, 228, 230, 231, 234, 244, 247, 252, 254, 255], "alreadi": [0, 1, 2, 4, 5, 6, 10, 11, 15, 22, 23, 79, 97, 98, 108, 113, 124, 126, 129, 133, 139, 147, 149, 152, 157, 158, 159, 164, 169, 173, 174, 176, 177, 191, 194, 200, 212, 216, 219, 220, 223, 228, 231, 247, 258], "exist": [0, 2, 4, 6, 8, 9, 10, 11, 17, 22, 23, 25, 47, 49, 52, 53, 67, 73, 76, 80, 83, 85, 95, 101, 104, 121, 135, 137, 142, 156, 158, 163, 164, 165, 166, 168, 171, 172, 173, 174, 181, 185, 188, 189, 190, 192, 197, 200, 201, 203, 208, 209, 212, 216, 225, 230, 231, 244, 247], "neural_styl": 0, "take": [0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 25, 34, 43, 44, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 68, 73, 75, 78, 82, 85, 95, 97, 99, 101, 102, 103, 108, 110, 112, 113, 116, 117, 118, 124, 125, 126, 127, 128, 130, 133, 134, 135, 137, 139, 143, 145, 146, 149, 152, 153, 154, 157, 158, 159, 160, 161, 162, 163, 165, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 182, 184, 189, 192, 193, 195, 197, 198, 199, 200, 201, 205, 208, 209, 213, 216, 219, 220, 221, 222, 223, 228, 231, 232, 234, 244, 247, 252, 256, 257, 260, 262, 269, 271], "look": [0, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 23, 25, 34, 43, 44, 47, 48, 49, 50, 51, 52, 73, 78, 79, 85, 87, 98, 99, 101, 102, 103, 105, 108, 112, 113, 116, 117, 118, 123, 124, 125, 126, 130, 135, 136, 138, 147, 149, 150, 152, 156, 158, 159, 162, 163, 164, 165, 168, 169, 171, 173, 174, 175, 177, 178, 181, 182, 186, 187, 189, 192, 193, 197, 198, 199, 213, 219, 220, 223, 231, 245, 257], "essenti": [0, 6, 10, 14, 32, 49, 98, 99, 101, 135, 160, 173, 174, 202, 209, 221, 234, 252], "trace": [0, 5, 8, 10, 20, 21, 43, 49, 60, 78, 107, 109, 110, 112, 121, 137, 142, 144, 150, 164, 168, 173, 174, 187, 194, 196, 203, 209, 220, 223, 224, 225, 238, 247, 251, 255], "so": [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 42, 44, 47, 49, 51, 52, 53, 58, 59, 60, 65, 68, 73, 75, 76, 78, 80, 83, 85, 87, 95, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 113, 115, 116, 117, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 134, 135, 136, 137, 139, 142, 143, 144, 145, 146, 148, 149, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 176, 177, 178, 179, 182, 183, 184, 185, 187, 188, 189, 191, 192, 193, 194, 195, 197, 198, 200, 201, 202, 204, 206, 208, 209, 216, 219, 220, 222, 223, 224, 225, 226, 227, 228, 230, 231, 234, 237, 246, 247, 252, 257, 258, 261, 262, 263, 270, 271, 272], "intern": [0, 5, 8, 10, 11, 15, 22, 49, 56, 60, 68, 76, 97, 111, 113, 121, 123, 126, 135, 168, 176, 188, 189, 196, 203, 207, 208, 262, 271], "dummi": [0, 1, 8, 20, 47, 78, 85, 110, 133, 138, 145, 154, 155, 176, 185, 199, 214, 221, 252, 256], "data": [0, 2, 3, 5, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 33, 34, 37, 38, 40, 41, 43, 46, 47, 48, 51, 58, 59, 67, 68, 71, 72, 73, 75, 76, 78, 79, 82, 85, 89, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 111, 112, 113, 116, 118, 119, 120, 121, 125, 126, 129, 131, 134, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 154, 158, 160, 161, 162, 163, 169, 172, 173, 174, 176, 177, 178, 182, 183, 184, 185, 188, 190, 192, 193, 196, 197, 198, 199, 200, 201, 205, 206, 207, 208, 213, 214, 215, 216, 218, 219, 220, 221, 223, 226, 229, 230, 231, 234, 235, 236, 237, 239, 244, 245, 249, 250, 251, 252, 253, 258, 262, 266, 271, 275], "gener": [0, 1, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 53, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 114, 116, 117, 118, 119, 121, 124, 125, 127, 128, 129, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 159, 160, 161, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 181, 184, 186, 188, 189, 190, 191, 192, 193, 195, 198, 199, 200, 201, 203, 204, 205, 207, 208, 209, 211, 213, 214, 219, 220, 221, 222, 223, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 248, 249, 250, 252, 254, 255, 260, 262, 263, 266, 269, 271, 272, 275], "graph": [0, 1, 5, 10, 14, 20, 22, 23, 25, 32, 47, 49, 63, 65, 68, 76, 78, 82, 85, 86, 98, 100, 107, 110, 111, 125, 127, 130, 142, 143, 144, 145, 147, 162, 163, 168, 169, 171, 176, 179, 186, 196, 197, 198, 200, 206, 207, 216, 218, 220, 221, 245, 252, 255, 256], "input": [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 56, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 83, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 120, 122, 123, 124, 126, 128, 129, 131, 133, 134, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 150, 152, 154, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 178, 179, 181, 182, 183, 184, 185, 187, 188, 192, 193, 194, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 210, 211, 212, 213, 214, 219, 220, 221, 223, 229, 230, 233, 234, 238, 239, 250, 255, 256, 263, 272], "simpli": [0, 1, 3, 4, 5, 6, 7, 8, 9, 13, 19, 21, 23, 43, 44, 49, 53, 58, 59, 60, 78, 85, 101, 103, 112, 113, 124, 126, 128, 130, 134, 135, 144, 145, 149, 152, 155, 156, 159, 160, 161, 162, 165, 166, 169, 172, 176, 177, 179, 187, 188, 190, 202, 205, 214, 218, 220, 223, 224, 225, 228, 231, 234, 252], "blank": [0, 262, 271], "pixel": [0, 1, 20, 44, 73, 97, 136, 147, 166, 171, 204, 229], "size": [0, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 20, 21, 23, 25, 32, 33, 34, 37, 38, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 75, 78, 80, 82, 87, 92, 93, 97, 98, 101, 102, 103, 104, 110, 112, 113, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 135, 136, 138, 139, 141, 144, 145, 146, 147, 148, 149, 150, 152, 154, 155, 157, 158, 159, 160, 161, 162, 164, 165, 166, 168, 171, 172, 173, 174, 175, 177, 178, 181, 182, 183, 184, 188, 189, 192, 193, 194, 196, 198, 201, 203, 204, 208, 209, 213, 214, 216, 218, 220, 222, 223, 227, 228, 229, 230, 231, 237, 239, 245, 247, 249, 251, 252, 258, 260, 269], "import": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 53, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 85, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 199, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 252, 253, 254, 255, 257, 258, 260, 262, 269, 271], "To": [0, 1, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 19, 20, 23, 42, 47, 49, 50, 51, 57, 58, 59, 60, 61, 64, 65, 79, 82, 83, 85, 87, 97, 98, 99, 101, 102, 103, 107, 108, 111, 112, 114, 115, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 135, 136, 137, 139, 141, 144, 149, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 168, 169, 171, 174, 175, 176, 177, 182, 184, 185, 186, 187, 188, 189, 191, 192, 196, 197, 198, 199, 200, 201, 202, 204, 206, 208, 209, 215, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 230, 231, 237, 238, 240, 244, 245, 247, 252, 253, 255, 257, 260, 269], "get": [0, 1, 2, 5, 6, 7, 8, 11, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 38, 43, 44, 45, 49, 50, 51, 52, 55, 56, 60, 61, 63, 73, 75, 78, 83, 87, 92, 97, 98, 99, 100, 101, 102, 104, 105, 109, 111, 112, 116, 117, 119, 120, 121, 122, 124, 126, 127, 128, 129, 134, 135, 136, 137, 138, 139, 142, 143, 145, 146, 148, 149, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 165, 166, 168, 169, 171, 173, 174, 175, 176, 177, 178, 181, 182, 184, 185, 189, 191, 194, 195, 197, 198, 199, 200, 201, 204, 206, 207, 208, 209, 212, 216, 218, 219, 222, 223, 226, 228, 229, 231, 234, 238, 247, 251, 256, 257, 258], "good": [0, 1, 2, 4, 5, 6, 20, 21, 44, 50, 52, 59, 97, 99, 103, 105, 113, 116, 123, 126, 135, 136, 144, 150, 158, 159, 160, 164, 169, 171, 176, 177, 178, 195, 200, 226, 228, 231, 247, 262, 271], "perform": [0, 1, 3, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 25, 42, 43, 44, 45, 49, 52, 56, 60, 61, 64, 65, 67, 73, 82, 85, 87, 97, 98, 99, 103, 108, 111, 112, 113, 115, 116, 119, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 135, 136, 137, 139, 141, 142, 145, 146, 149, 150, 155, 157, 158, 159, 160, 161, 163, 166, 169, 171, 172, 178, 182, 184, 185, 186, 189, 190, 193, 194, 195, 198, 199, 201, 202, 207, 210, 212, 213, 215, 216, 218, 220, 226, 227, 228, 230, 231, 232, 234, 235, 237, 251, 252, 253, 254, 255, 256], "250x540": 0, "larger": [0, 3, 8, 12, 73, 82, 97, 112, 119, 122, 123, 124, 126, 131, 142, 149, 157, 160, 163, 165, 168, 171, 184, 193, 203, 213, 214, 219, 231, 260, 269], "care": [0, 1, 5, 14, 21, 61, 73, 87, 97, 113, 118, 130, 135, 149, 159, 163, 189, 197, 231, 232, 234], "less": [0, 3, 5, 6, 8, 19, 56, 60, 82, 97, 98, 113, 116, 117, 119, 122, 126, 136, 141, 152, 159, 160, 161, 168, 169, 172, 173, 174, 176, 184, 197, 215, 231, 234, 237], "fp": [0, 49, 87, 121, 150], "qualiti": [0, 24, 113, 146, 165], "imagemagick": 0, "creat": [0, 1, 2, 4, 5, 6, 7, 9, 10, 12, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 38, 39, 42, 43, 44, 47, 48, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 82, 85, 95, 97, 98, 100, 102, 103, 105, 108, 110, 111, 114, 116, 117, 118, 119, 121, 122, 124, 130, 133, 134, 135, 136, 137, 139, 141, 142, 146, 147, 148, 149, 152, 153, 154, 155, 157, 158, 159, 160, 162, 163, 165, 168, 169, 171, 172, 175, 178, 181, 182, 184, 185, 187, 188, 189, 192, 193, 194, 195, 197, 199, 200, 202, 204, 206, 208, 209, 210, 211, 213, 214, 215, 219, 222, 223, 225, 226, 230, 231, 234, 239, 244, 245, 252, 256, 258, 262, 271], "xc": 0, "white": [0, 12, 17, 73, 113, 169, 171, 201, 262, 271], "png24": 0, "jpg": [0, 12, 20, 34, 51, 52, 58, 59, 90, 117, 139, 146, 204, 213, 229, 257], "eval": [0, 1, 7, 9, 12, 17, 19, 20, 24, 37, 38, 39, 42, 49, 58, 59, 60, 73, 90, 96, 97, 104, 112, 113, 115, 117, 118, 119, 122, 123, 125, 129, 137, 139, 142, 143, 157, 159, 162, 164, 165, 166, 171, 172, 173, 176, 177, 178, 181, 183, 184, 185, 187, 194, 195, 198, 199, 201, 204, 206, 208, 213, 220, 221, 222, 223, 228, 229, 241, 242, 243, 247, 253, 256], "content": [0, 2, 5, 9, 14, 23, 25, 50, 56, 61, 104, 112, 125, 133, 135, 158, 159, 163, 165, 172, 173, 174, 176, 177, 181, 188, 208, 213, 222, 229, 231, 266, 275], "output": [0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 79, 82, 83, 85, 87, 90, 92, 94, 96, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 127, 128, 129, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 184, 185, 187, 193, 194, 195, 197, 198, 199, 200, 201, 203, 204, 206, 207, 208, 209, 210, 211, 212, 213, 218, 219, 220, 222, 223, 228, 229, 230, 231, 233, 234, 238, 239, 245, 247, 250, 252, 253, 254, 255, 256, 257, 258, 260, 262, 263, 269, 271, 272], "out": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 20, 21, 22, 23, 24, 25, 32, 40, 43, 44, 45, 47, 48, 49, 51, 52, 58, 59, 60, 61, 73, 75, 76, 78, 83, 85, 87, 89, 95, 97, 98, 99, 100, 102, 103, 104, 107, 109, 113, 117, 118, 119, 121, 124, 125, 126, 127, 130, 131, 134, 135, 136, 138, 139, 141, 143, 144, 145, 147, 149, 152, 153, 155, 156, 157, 158, 159, 161, 162, 163, 165, 168, 169, 171, 173, 174, 176, 177, 181, 182, 183, 188, 189, 190, 191, 192, 193, 194, 197, 198, 199, 201, 205, 206, 207, 208, 213, 220, 221, 222, 229, 234, 235, 239, 244, 247, 252, 254, 262, 271], "cuda": [0, 1, 4, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 24, 33, 38, 40, 42, 43, 44, 45, 48, 49, 52, 53, 54, 55, 63, 64, 72, 73, 79, 83, 87, 89, 95, 97, 99, 104, 109, 110, 111, 112, 115, 117, 118, 121, 122, 123, 124, 129, 131, 132, 133, 134, 135, 136, 138, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 171, 172, 174, 175, 178, 184, 186, 193, 198, 201, 210, 211, 214, 215, 230, 231, 232, 237, 238, 240, 247, 251, 254, 255, 258], "0": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 55, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 192, 193, 194, 195, 197, 198, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 252, 253, 254, 255, 256, 257, 258, 259, 261, 262, 268, 270, 271], "export_onnx": 0, "end": [0, 4, 5, 6, 7, 8, 14, 17, 19, 22, 23, 25, 32, 43, 49, 52, 54, 58, 59, 60, 75, 82, 85, 89, 97, 102, 113, 115, 116, 121, 122, 124, 126, 127, 128, 129, 134, 135, 136, 137, 144, 146, 148, 152, 157, 158, 160, 161, 163, 165, 166, 168, 169, 172, 173, 174, 175, 176, 183, 184, 185, 189, 193, 198, 200, 201, 203, 208, 213, 220, 221, 222, 228, 230, 231, 234, 239, 244, 247, 258, 262, 271], "up": [0, 1, 3, 4, 5, 6, 7, 8, 10, 14, 17, 18, 19, 21, 22, 42, 49, 52, 55, 60, 61, 70, 76, 78, 82, 85, 97, 98, 99, 101, 102, 103, 105, 109, 113, 119, 121, 122, 123, 124, 127, 128, 129, 131, 132, 133, 135, 136, 138, 143, 144, 150, 152, 154, 157, 158, 159, 160, 161, 162, 165, 166, 168, 169, 172, 175, 176, 177, 182, 185, 186, 187, 193, 196, 197, 198, 200, 201, 203, 204, 207, 212, 213, 215, 216, 220, 223, 224, 225, 231, 247, 251, 255, 258, 262, 271], "correspond": [0, 1, 2, 3, 5, 6, 8, 10, 12, 14, 15, 43, 49, 55, 60, 75, 82, 99, 102, 109, 112, 116, 118, 123, 125, 126, 133, 144, 152, 156, 159, 162, 165, 166, 168, 169, 171, 172, 175, 178, 185, 187, 192, 200, 209, 221, 229, 230, 237, 247, 251], "come": [0, 1, 5, 6, 10, 17, 19, 20, 22, 23, 51, 52, 60, 73, 85, 87, 97, 98, 112, 123, 124, 126, 135, 136, 144, 152, 153, 155, 159, 164, 172, 175, 182, 184, 185, 198, 199, 201, 221, 231, 258, 261, 270], "abov": [0, 1, 3, 4, 5, 6, 8, 10, 11, 14, 15, 16, 19, 20, 22, 23, 43, 44, 49, 51, 52, 58, 59, 61, 65, 67, 68, 73, 82, 95, 97, 98, 99, 101, 102, 103, 108, 110, 111, 113, 116, 122, 124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 139, 141, 144, 145, 146, 147, 149, 150, 152, 153, 154, 156, 157, 159, 161, 162, 163, 164, 168, 171, 172, 173, 174, 175, 176, 177, 178, 179, 184, 187, 188, 189, 190, 191, 192, 195, 197, 198, 200, 215, 216, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 231, 234, 237, 244, 245, 252, 261, 262, 270, 271], "ad": [0, 2, 5, 6, 10, 15, 18, 22, 23, 24, 25, 32, 37, 49, 50, 53, 58, 59, 60, 61, 73, 83, 85, 95, 99, 101, 110, 112, 113, 115, 122, 123, 128, 133, 136, 139, 141, 145, 146, 150, 152, 155, 156, 160, 164, 165, 173, 174, 177, 178, 187, 188, 198, 209, 213, 220, 221, 223, 224, 225, 234, 244, 252], "our": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 17, 19, 20, 21, 22, 23, 25, 40, 43, 44, 45, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 64, 65, 67, 68, 69, 75, 78, 79, 87, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 116, 117, 118, 122, 123, 126, 127, 128, 130, 131, 132, 136, 137, 139, 141, 143, 144, 145, 146, 147, 149, 150, 153, 154, 156, 157, 159, 160, 161, 162, 164, 165, 166, 169, 171, 172, 173, 174, 176, 178, 179, 182, 184, 187, 188, 189, 190, 191, 192, 194, 195, 197, 198, 201, 203, 205, 208, 209, 211, 213, 214, 216, 219, 222, 223, 229, 231, 234, 249, 251, 258], "path": [0, 4, 5, 6, 9, 18, 19, 22, 23, 34, 42, 44, 49, 50, 51, 52, 53, 59, 60, 73, 82, 87, 96, 97, 98, 104, 108, 112, 116, 117, 122, 123, 125, 126, 127, 128, 137, 139, 142, 144, 146, 148, 155, 157, 171, 172, 176, 178, 181, 182, 184, 185, 188, 189, 194, 195, 197, 198, 199, 200, 204, 206, 207, 208, 213, 214, 222, 223, 224, 225, 226, 228, 231, 234, 240, 241, 242, 243, 244, 246, 247, 248, 256, 257], "unfortun": [0, 8, 23, 25, 135], "won": [0, 3, 5, 10, 43, 115, 123, 129, 130, 141, 150, 154, 159, 228, 230, 252], "mark": [0, 49, 58, 59, 75, 124, 146, 147, 160, 161, 176, 177, 182, 183, 191, 226, 260, 269], "while": [0, 1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 16, 17, 19, 21, 23, 49, 52, 55, 60, 78, 82, 89, 105, 108, 109, 113, 116, 119, 120, 122, 125, 126, 131, 133, 135, 136, 137, 139, 144, 145, 146, 147, 149, 152, 156, 157, 158, 159, 162, 163, 164, 165, 166, 172, 173, 174, 176, 177, 179, 182, 184, 185, 189, 190, 191, 192, 193, 197, 200, 201, 208, 223, 228, 230, 231, 237, 244, 247, 254], "onli": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 42, 43, 44, 45, 47, 49, 53, 55, 56, 60, 61, 73, 78, 80, 82, 87, 95, 97, 98, 99, 103, 107, 108, 109, 112, 113, 114, 116, 117, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 146, 147, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 162, 163, 164, 165, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 182, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200, 202, 203, 204, 205, 206, 208, 209, 210, 211, 212, 215, 216, 218, 222, 223, 224, 225, 226, 228, 230, 231, 244, 247, 252, 254, 258, 262, 271], "when": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 25, 32, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 55, 58, 59, 60, 61, 65, 68, 73, 75, 78, 79, 82, 85, 87, 97, 98, 101, 103, 108, 109, 110, 111, 112, 115, 118, 119, 121, 122, 123, 125, 126, 128, 129, 132, 133, 134, 135, 136, 137, 139, 141, 143, 144, 146, 147, 149, 150, 152, 153, 155, 156, 157, 159, 160, 161, 163, 164, 165, 168, 171, 172, 173, 174, 175, 176, 177, 178, 182, 183, 184, 188, 189, 192, 193, 195, 197, 198, 199, 200, 201, 202, 203, 206, 207, 208, 209, 211, 212, 213, 214, 215, 219, 226, 227, 230, 231, 234, 237, 239, 244, 247, 254, 258, 260, 262, 264, 269, 271, 273], "applic": [0, 2, 3, 11, 12, 14, 15, 23, 49, 58, 59, 60, 61, 75, 97, 105, 117, 120, 121, 123, 125, 126, 129, 133, 137, 139, 143, 149, 152, 156, 157, 161, 163, 171, 176, 184, 191, 194, 206, 212, 219, 221, 222, 223, 226, 247, 251], "netron": [0, 108], "see": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 17, 18, 19, 20, 21, 23, 24, 25, 42, 44, 45, 47, 48, 49, 50, 51, 52, 55, 58, 59, 60, 65, 73, 75, 78, 80, 82, 83, 85, 87, 97, 98, 99, 100, 101, 102, 103, 105, 108, 109, 111, 112, 113, 116, 119, 122, 123, 124, 126, 127, 128, 129, 130, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 146, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 162, 163, 164, 165, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 187, 188, 189, 191, 192, 194, 196, 197, 200, 201, 202, 203, 205, 206, 207, 208, 211, 213, 214, 215, 216, 218, 219, 222, 224, 225, 226, 228, 229, 230, 231, 234, 244, 245, 247, 252, 255, 256, 257, 262, 271], "name": [0, 1, 2, 4, 5, 6, 7, 8, 10, 12, 13, 14, 17, 18, 19, 20, 21, 22, 23, 33, 49, 50, 51, 52, 59, 60, 78, 79, 82, 98, 103, 105, 108, 109, 110, 112, 122, 124, 125, 126, 128, 133, 134, 136, 137, 139, 141, 142, 143, 144, 147, 153, 155, 156, 159, 160, 161, 162, 164, 165, 168, 171, 172, 173, 174, 175, 178, 182, 185, 187, 195, 197, 198, 200, 201, 203, 204, 206, 208, 209, 213, 214, 215, 219, 220, 221, 222, 228, 231, 237, 238, 239, 246, 255, 256, 257, 262, 263, 271, 272], "186": [0, 184, 219], "numer": [0, 17, 19, 20, 49, 97, 98, 105, 113, 126, 129, 159, 182, 185, 196, 197, 198, 199, 201, 230, 247, 252, 263, 272], "id": [0, 9, 17, 49, 82, 95, 113, 126, 133, 137, 139, 153, 161, 162, 163, 171, 173, 174, 175, 178, 181, 201, 214, 244, 260, 261, 265, 269, 270, 274], "assign": [0, 6, 22, 45, 47, 53, 65, 67, 97, 98, 99, 102, 103, 111, 135, 153, 159, 176, 215, 226, 230, 244, 247, 261, 270], "small": [0, 1, 3, 5, 6, 9, 12, 17, 18, 20, 21, 23, 24, 25, 42, 43, 44, 47, 57, 73, 78, 79, 80, 97, 99, 100, 102, 103, 105, 116, 117, 122, 123, 126, 128, 129, 143, 149, 152, 153, 157, 158, 159, 160, 163, 165, 166, 171, 178, 184, 189, 201, 209, 219, 230, 231, 247, 255], "onnx_to_coreml": 0, "touch": [0, 2, 4, 6, 14, 22, 23, 207], "command": [0, 4, 5, 6, 14, 23, 50, 75, 107, 114, 119, 126, 127, 132, 133, 134, 137, 139, 155, 159, 161, 162, 163, 165, 168, 169, 171, 176, 178, 188, 208, 213, 215, 218, 219, 220, 222, 223, 245, 247, 255, 256, 262, 263, 271, 272], "edit": [0, 3, 6, 9, 11, 12, 16, 19, 20, 48, 50, 61, 113, 123, 124, 133, 134, 135, 137, 143, 144, 155, 157, 158, 161, 162, 163, 182, 184, 214, 215, 225, 260, 269], "favorit": [0, 42, 59, 135, 143], "editor": [0, 225], "add": [0, 2, 4, 6, 7, 8, 9, 10, 12, 14, 15, 17, 19, 21, 22, 23, 40, 44, 47, 48, 49, 50, 58, 59, 60, 61, 73, 78, 80, 85, 87, 98, 99, 102, 108, 113, 114, 116, 118, 121, 122, 123, 124, 126, 127, 128, 129, 135, 136, 139, 142, 143, 144, 145, 146, 152, 154, 155, 158, 159, 161, 162, 163, 165, 168, 173, 174, 176, 177, 181, 182, 184, 186, 187, 188, 189, 191, 199, 200, 201, 204, 206, 208, 216, 218, 222, 227, 231, 238, 251, 252, 255, 260, 262, 267, 269, 271, 276], "follow": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 42, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 73, 75, 81, 82, 83, 85, 86, 87, 97, 98, 99, 101, 102, 103, 105, 107, 108, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 129, 131, 132, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 147, 149, 152, 153, 155, 156, 157, 158, 159, 160, 161, 162, 164, 165, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 185, 186, 187, 188, 190, 192, 193, 194, 195, 197, 198, 199, 200, 201, 202, 204, 205, 206, 208, 209, 213, 214, 215, 216, 218, 219, 220, 222, 223, 224, 225, 226, 227, 228, 229, 230, 237, 239, 244, 245, 252, 253, 254, 256, 257, 260, 262, 263, 267, 269, 271, 272, 276], "code": [0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 181, 182, 184, 185, 187, 188, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 201, 203, 205, 207, 211, 212, 214, 215, 216, 218, 220, 221, 222, 223, 224, 225, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 258, 261, 263, 270, 272], "sy": [0, 3, 7, 18, 19, 53, 55, 90, 133, 137, 148, 155, 182, 185, 194, 197, 198, 210, 211], "onnx_pb": 0, "onnx_coreml": 0, "model_in": 0, "argv": [0, 4, 22, 23, 53, 55, 220, 256], "1": [0, 1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 47, 48, 49, 51, 52, 53, 55, 60, 61, 63, 64, 68, 69, 73, 75, 76, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 171, 172, 173, 174, 175, 177, 183, 184, 186, 187, 188, 189, 190, 191, 192, 193, 194, 196, 197, 198, 201, 202, 203, 204, 205, 206, 207, 208, 209, 212, 214, 215, 216, 219, 220, 221, 222, 226, 227, 229, 230, 237, 239, 244, 245, 247, 249, 253, 256, 257, 258, 259, 260, 262, 263, 266, 268, 269, 271, 272, 275], "model_out": 0, "2": [0, 1, 2, 3, 5, 6, 7, 11, 12, 14, 15, 16, 18, 20, 21, 23, 24, 32, 33, 34, 36, 40, 42, 43, 47, 48, 49, 51, 52, 53, 55, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 80, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 133, 135, 136, 138, 139, 141, 143, 144, 145, 146, 147, 148, 149, 152, 153, 154, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 171, 172, 173, 174, 175, 183, 184, 186, 189, 190, 191, 192, 193, 196, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 215, 216, 219, 220, 221, 222, 229, 230, 232, 237, 239, 244, 247, 254, 255, 256, 258, 260, 262, 263, 266, 269, 271, 272, 275], "model_fil": [0, 19, 182, 197, 198, 204], "rb": [0, 49, 87, 104, 116, 136, 139, 223], "model_proto": [0, 108], "modelproto": [0, 20], "parsefromstr": 0, "read": [0, 1, 2, 5, 6, 9, 14, 19, 22, 23, 38, 47, 49, 51, 73, 101, 102, 112, 113, 116, 117, 120, 122, 125, 126, 127, 128, 135, 137, 139, 142, 144, 149, 152, 158, 159, 162, 165, 166, 169, 172, 185, 187, 188, 195, 204, 208, 222, 223, 227, 230, 231, 260, 262, 269, 271], "coreml_model": 0, "image_input_nam": 0, "image_output_nam": 0, "save": [0, 2, 4, 6, 7, 9, 11, 12, 19, 20, 23, 35, 38, 39, 44, 48, 49, 50, 52, 58, 59, 73, 87, 96, 97, 108, 115, 117, 119, 121, 123, 124, 126, 127, 129, 137, 139, 144, 145, 148, 156, 157, 160, 161, 162, 163, 165, 168, 171, 181, 182, 185, 187, 188, 194, 195, 204, 206, 208, 218, 220, 221, 222, 223, 224, 225, 228, 234, 235, 237, 241, 242, 243, 245, 247, 248, 251, 252, 256], "mlmodel": [0, 187], "i": [0, 1, 5, 6, 7, 8, 9, 11, 12, 14, 17, 18, 19, 22, 23, 25, 32, 34, 39, 42, 43, 49, 51, 52, 58, 59, 60, 61, 69, 73, 75, 76, 85, 87, 89, 90, 92, 94, 96, 98, 99, 101, 102, 103, 104, 111, 112, 113, 116, 117, 118, 122, 124, 127, 128, 132, 134, 135, 136, 138, 142, 146, 147, 152, 153, 154, 156, 159, 161, 162, 163, 165, 169, 171, 172, 173, 174, 175, 176, 177, 181, 189, 191, 192, 193, 201, 202, 203, 208, 209, 212, 215, 216, 221, 226, 231, 234, 237, 250, 262, 263, 271, 272], "e": [0, 4, 5, 6, 7, 8, 10, 11, 18, 22, 23, 25, 32, 39, 42, 43, 44, 49, 51, 52, 58, 60, 61, 65, 69, 73, 75, 76, 79, 85, 87, 89, 95, 97, 100, 103, 108, 110, 111, 112, 117, 121, 123, 124, 126, 127, 128, 130, 132, 133, 134, 135, 138, 142, 146, 147, 153, 154, 155, 156, 159, 161, 163, 165, 168, 172, 173, 174, 175, 176, 179, 182, 184, 185, 190, 191, 192, 193, 196, 200, 202, 205, 206, 208, 212, 215, 216, 220, 231, 247, 256], "one": [0, 1, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 21, 22, 23, 25, 45, 47, 48, 49, 51, 52, 55, 56, 60, 61, 73, 76, 80, 85, 87, 93, 95, 97, 98, 100, 101, 102, 103, 108, 112, 113, 114, 116, 117, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 149, 152, 153, 154, 156, 158, 159, 160, 161, 162, 163, 164, 165, 168, 169, 171, 173, 174, 175, 177, 178, 179, 183, 184, 189, 190, 191, 193, 194, 195, 198, 200, 201, 205, 208, 213, 214, 215, 216, 224, 228, 231, 234, 235, 237, 247, 252, 254, 258, 262, 271], "re": [0, 1, 4, 5, 6, 7, 9, 10, 14, 16, 19, 21, 22, 23, 24, 44, 48, 49, 50, 60, 73, 78, 97, 98, 117, 125, 127, 128, 136, 138, 139, 141, 143, 145, 150, 152, 154, 158, 159, 160, 161, 162, 165, 173, 174, 175, 176, 178, 182, 184, 187, 189, 194, 197, 198, 202, 205, 208, 213, 214, 223, 230, 231, 234, 237, 246, 247, 262, 271], "current": [0, 1, 5, 6, 8, 10, 11, 12, 14, 15, 19, 22, 23, 37, 38, 49, 52, 60, 82, 107, 113, 117, 122, 123, 125, 126, 127, 128, 135, 136, 141, 142, 146, 147, 149, 154, 156, 157, 159, 160, 161, 162, 163, 164, 165, 168, 173, 174, 179, 182, 185, 187, 188, 189, 191, 192, 193, 194, 195, 197, 198, 214, 216, 218, 219, 224, 228, 247, 254, 260, 269], "readm": [0, 119, 179], "md": [0, 119, 179], "contain": [0, 1, 2, 4, 6, 8, 9, 10, 12, 14, 15, 17, 20, 21, 22, 23, 25, 34, 42, 47, 49, 50, 55, 58, 60, 64, 67, 68, 69, 75, 76, 78, 82, 85, 95, 101, 102, 111, 112, 116, 117, 122, 123, 125, 126, 127, 131, 133, 134, 136, 139, 142, 149, 153, 156, 157, 159, 160, 161, 163, 164, 165, 166, 168, 169, 171, 173, 174, 175, 178, 179, 181, 182, 187, 192, 195, 198, 200, 201, 202, 206, 208, 212, 213, 221, 222, 223, 226, 230, 237, 244, 247, 262, 263, 271, 272], "abl": [0, 1, 3, 4, 5, 6, 14, 15, 17, 23, 49, 60, 85, 97, 98, 100, 103, 112, 117, 126, 129, 130, 131, 132, 135, 136, 138, 139, 144, 146, 147, 152, 154, 157, 159, 162, 169, 172, 173, 174, 178, 182, 185, 188, 191, 197, 200, 201, 207, 208, 223, 234, 244], "phone": [0, 97, 105, 188, 223], "onnxliv": 0, "xcodeproj": [0, 223], "project": [0, 4, 5, 6, 23, 52, 58, 59, 60, 112, 116, 124, 139, 155, 160, 164, 165, 169, 187, 188, 193, 204, 208, 220, 221, 222, 223, 224, 225, 226, 227, 251, 256, 257, 258, 261, 266, 270, 275], "recommend": [0, 4, 6, 8, 10, 15, 18, 19, 20, 23, 61, 82, 108, 115, 116, 119, 121, 128, 133, 137, 157, 158, 165, 168, 172, 175, 176, 177, 178, 181, 182, 185, 191, 196, 199, 207, 219, 220, 226, 227, 228, 230, 237, 245, 247, 256, 262, 271], "9": [0, 1, 3, 5, 6, 17, 18, 19, 23, 34, 43, 44, 49, 65, 87, 92, 94, 95, 96, 103, 104, 109, 111, 112, 115, 116, 117, 118, 144, 146, 153, 157, 158, 160, 161, 168, 169, 171, 172, 173, 176, 177, 178, 201, 204, 206, 208, 219, 220, 221, 222, 229, 231, 238, 241, 242, 243, 249, 250, 253, 266, 275], "x": [0, 1, 2, 5, 6, 7, 12, 14, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 37, 38, 40, 43, 44, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 78, 79, 80, 85, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 101, 104, 105, 108, 110, 111, 112, 113, 114, 115, 116, 117, 123, 124, 125, 127, 128, 129, 130, 133, 134, 135, 138, 139, 141, 142, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 166, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 183, 184, 186, 193, 195, 197, 198, 199, 201, 203, 205, 208, 209, 212, 213, 214, 215, 218, 219, 220, 221, 223, 226, 228, 231, 233, 237, 239, 240, 241, 242, 243, 245, 246, 247, 248, 249, 250, 252, 254, 255, 263, 272], "might": [0, 1, 5, 8, 10, 15, 16, 25, 44, 50, 51, 52, 53, 60, 79, 97, 98, 102, 103, 105, 108, 109, 113, 127, 130, 131, 132, 133, 135, 142, 143, 145, 149, 153, 157, 163, 164, 165, 168, 172, 178, 182, 184, 185, 188, 189, 197, 200, 204, 206, 223, 231, 232, 244, 252, 260, 269], "issu": [0, 2, 4, 5, 6, 8, 9, 19, 20, 22, 23, 51, 58, 113, 118, 122, 132, 137, 138, 142, 143, 144, 147, 154, 158, 168, 174, 184, 185, 186, 187, 188, 189, 191, 193, 195, 199, 204, 205, 207, 213, 222, 226, 230, 232, 244], "older": [0, 56, 109, 138, 154, 160, 175, 184], "some": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 19, 20, 22, 23, 25, 42, 43, 44, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 63, 68, 73, 76, 78, 80, 82, 87, 92, 97, 98, 99, 100, 101, 102, 103, 108, 109, 110, 112, 113, 116, 121, 122, 123, 126, 128, 129, 130, 131, 133, 134, 135, 136, 138, 139, 141, 142, 143, 144, 145, 148, 149, 150, 152, 154, 156, 157, 159, 160, 162, 163, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 182, 183, 184, 187, 188, 189, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 202, 203, 205, 209, 213, 214, 216, 220, 221, 223, 230, 231, 234, 237, 238, 239, 247, 252, 254, 261, 262, 270, 271], "replac": [0, 3, 6, 12, 19, 24, 43, 55, 57, 58, 59, 78, 99, 108, 109, 117, 118, 119, 123, 135, 137, 139, 141, 142, 147, 156, 157, 163, 165, 168, 173, 174, 177, 178, 184, 191, 194, 218, 220, 222, 231, 234, 252], "all": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 34, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 55, 56, 58, 59, 60, 61, 63, 68, 69, 73, 76, 78, 80, 82, 85, 87, 90, 98, 99, 100, 101, 102, 103, 105, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 147, 148, 149, 150, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 181, 184, 185, 187, 188, 189, 190, 192, 193, 196, 197, 199, 200, 201, 202, 204, 205, 206, 208, 212, 213, 220, 221, 223, 226, 228, 229, 231, 234, 237, 239, 244, 245, 246, 251, 255, 256, 258, 262, 263, 271, 272], "set": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 37, 42, 43, 44, 47, 48, 49, 50, 52, 53, 55, 58, 59, 60, 61, 63, 64, 68, 73, 76, 79, 82, 83, 86, 97, 98, 99, 102, 103, 104, 105, 110, 111, 112, 113, 115, 116, 117, 118, 121, 122, 123, 124, 127, 128, 129, 131, 132, 133, 135, 136, 139, 144, 146, 148, 149, 152, 153, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 172, 173, 174, 177, 178, 181, 187, 188, 189, 191, 193, 194, 198, 199, 201, 204, 206, 207, 208, 213, 214, 215, 219, 220, 221, 223, 224, 225, 226, 228, 231, 232, 237, 241, 244, 255, 260, 264, 267, 269, 273, 276], "tap": 0, "screen": [0, 58, 59, 146, 160, 226, 260, 269], "switch": [0, 5, 8, 15, 19, 95, 112, 139, 152, 194, 206, 219, 230, 232], "hope": [0, 5, 25, 49, 146, 152, 165, 172, 219, 263, 272], "gave": [0, 103, 213], "framework": [0, 6, 7, 10, 24, 25, 52, 60, 61, 99, 100, 120, 121, 134, 149, 161, 164, 171, 176, 177, 183, 188, 207, 212, 216, 221, 222, 257], "experi": [0, 6, 10, 97, 98, 122, 135, 137, 146, 149, 155, 157, 159, 160, 164, 165, 166, 171, 172, 175, 176, 177, 184, 185, 189, 196, 205, 212, 228, 230, 255], "test": [0, 3, 8, 13, 19, 20, 22, 23, 24, 37, 38, 42, 49, 58, 59, 60, 83, 85, 92, 97, 99, 100, 105, 108, 113, 114, 119, 122, 123, 135, 136, 138, 139, 141, 144, 147, 158, 159, 162, 165, 166, 169, 172, 173, 174, 181, 182, 183, 184, 196, 197, 199, 204, 205, 213, 219, 220, 221, 222, 223, 231, 234, 256, 262, 263, 271, 272], "own": [0, 5, 6, 7, 8, 10, 11, 14, 16, 17, 18, 23, 25, 49, 52, 58, 59, 64, 73, 87, 103, 108, 109, 111, 113, 121, 122, 123, 128, 129, 133, 139, 144, 149, 152, 153, 156, 158, 159, 162, 163, 165, 171, 172, 176, 178, 179, 184, 194, 195, 197, 198, 200, 201, 209, 216, 231, 244, 262, 271], "pleas": [0, 2, 4, 5, 6, 7, 9, 10, 19, 20, 22, 23, 44, 45, 47, 51, 61, 75, 87, 108, 113, 115, 118, 122, 123, 124, 133, 137, 138, 141, 142, 143, 144, 147, 149, 152, 154, 155, 157, 161, 162, 163, 168, 171, 172, 173, 174, 175, 176, 178, 179, 183, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 200, 204, 205, 209, 214, 215, 219, 220, 221, 222, 226, 230, 232, 234, 247, 252, 257, 262, 271], "know": [0, 1, 5, 6, 8, 11, 18, 19, 22, 23, 43, 49, 73, 95, 99, 101, 103, 108, 113, 125, 127, 128, 130, 135, 136, 138, 144, 146, 147, 149, 150, 154, 159, 160, 161, 165, 169, 173, 174, 176, 177, 178, 179, 182, 190, 195, 221, 231, 260, 262, 269, 271], "hit": [0, 5, 9, 19, 61, 73, 113, 124, 168], "ani": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23, 43, 45, 47, 49, 51, 52, 53, 55, 60, 65, 67, 76, 97, 98, 100, 101, 103, 105, 107, 108, 110, 111, 112, 113, 115, 120, 123, 124, 125, 127, 130, 131, 135, 137, 138, 141, 142, 143, 146, 147, 149, 152, 153, 154, 158, 159, 160, 162, 163, 166, 168, 171, 173, 174, 176, 177, 181, 183, 185, 186, 187, 188, 189, 190, 191, 192, 194, 195, 198, 201, 202, 204, 207, 208, 209, 210, 211, 214, 215, 216, 218, 222, 225, 226, 228, 230, 237, 239, 240, 244, 252, 255, 260, 262, 269, 271], "give": [0, 1, 2, 5, 6, 11, 14, 17, 23, 25, 45, 47, 49, 50, 52, 58, 59, 60, 61, 73, 75, 79, 97, 98, 99, 101, 102, 103, 112, 118, 128, 131, 138, 142, 143, 144, 145, 146, 154, 158, 162, 165, 168, 171, 172, 173, 174, 176, 177, 182, 190, 193, 201, 216, 219, 223, 231, 234, 256, 260, 262, 269, 271], "feedback": [0, 6, 9, 19, 122, 137, 142, 143, 146, 147, 176, 177, 185, 187, 188, 195, 196, 197, 204, 222], "d": [0, 2, 5, 6, 7, 8, 12, 19, 22, 52, 61, 63, 64, 65, 67, 71, 72, 76, 87, 89, 92, 95, 99, 103, 111, 113, 115, 122, 124, 126, 127, 128, 129, 133, 135, 137, 145, 146, 149, 152, 165, 168, 171, 175, 185, 192, 193, 198, 205, 208, 215, 220, 250, 262, 263, 271, 272], "hear": [0, 142, 143], "think": [0, 6, 22, 23, 44, 52, 68, 78, 98, 99, 101, 102, 103, 113, 143, 145, 159, 162, 164, 192, 205, 234, 262, 271], "click": [1, 7, 9, 12, 13, 14, 17, 20, 21, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 169, 172, 174, 178, 181, 184, 188, 189, 190, 191, 192, 193, 195, 203, 204, 205, 208, 211, 225, 226, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "here": [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 159, 160, 162, 163, 164, 165, 166, 168, 169, 172, 173, 174, 175, 176, 178, 179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 203, 204, 205, 208, 209, 211, 214, 216, 218, 219, 220, 221, 222, 223, 225, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 252, 254, 255, 260, 262, 263, 269, 271, 272], "download": [1, 4, 6, 7, 9, 12, 13, 14, 17, 19, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 162, 164, 165, 166, 168, 169, 172, 174, 178, 182, 184, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 203, 204, 205, 206, 208, 211, 220, 221, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 253, 254, 255, 266, 275], "full": [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 19, 20, 22, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 126, 127, 128, 129, 131, 134, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 159, 160, 161, 164, 165, 166, 168, 172, 174, 178, 181, 182, 184, 189, 190, 191, 192, 193, 194, 195, 198, 203, 204, 205, 208, 209, 211, 222, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 254, 255, 256], "author": [1, 5, 7, 9, 11, 12, 13, 14, 16, 17, 19, 24, 36, 42, 45, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 73, 81, 82, 83, 85, 86, 97, 98, 99, 101, 102, 103, 104, 107, 108, 109, 111, 112, 113, 114, 116, 117, 122, 123, 124, 126, 127, 128, 131, 132, 133, 134, 135, 136, 137, 139, 142, 143, 144, 146, 147, 149, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 172, 173, 174, 176, 177, 179, 181, 182, 183, 184, 185, 186, 187, 188, 197, 198, 199, 200, 201, 204, 205, 206, 208, 209, 210, 211, 214, 215, 219, 222, 230, 237, 244, 247, 254, 255, 263, 272], "vincent": [1, 14, 136, 159], "moen": [1, 14, 136, 159], "separ": [1, 5, 6, 7, 8, 20, 22, 23, 25, 49, 52, 85, 97, 109, 124, 126, 138, 144, 146, 153, 157, 162, 165, 171, 178, 179, 181, 182, 189, 193, 197, 200, 216, 231, 247, 255], "rl": [1, 61, 121, 159, 160, 161], "algorithm": [1, 5, 6, 10, 11, 12, 49, 52, 56, 69, 82, 87, 98, 99, 100, 101, 111, 118, 122, 124, 126, 129, 135, 136, 146, 155, 159, 162, 166, 210, 211, 216, 229, 247], "variou": [1, 8, 15, 47, 48, 49, 50, 60, 83, 85, 102, 109, 112, 116, 126, 143, 145, 156, 159, 162, 163, 171, 184, 191, 193, 207, 234], "piec": [1, 5, 8, 14, 59, 85, 158, 159, 163, 171, 175, 177, 178, 179, 188, 213], "assembl": [1, 8, 49, 134], "collect": [1, 4, 6, 11, 14, 15, 17, 18, 19, 21, 42, 43, 44, 45, 49, 55, 60, 61, 73, 75, 79, 97, 99, 103, 121, 122, 123, 124, 133, 134, 136, 143, 146, 149, 155, 160, 163, 175, 177, 201, 214, 215, 226, 230, 247], "final": [1, 6, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 42, 43, 47, 49, 52, 58, 60, 73, 75, 85, 87, 97, 102, 105, 107, 108, 109, 112, 113, 117, 118, 119, 122, 123, 124, 126, 127, 128, 129, 130, 134, 135, 139, 143, 144, 145, 146, 150, 152, 154, 156, 157, 159, 160, 161, 162, 163, 165, 168, 169, 175, 176, 177, 179, 184, 185, 187, 188, 189, 192, 197, 198, 199, 200, 201, 203, 204, 208, 213, 216, 221], "function": [1, 3, 4, 5, 6, 8, 9, 10, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 32, 38, 42, 43, 48, 49, 51, 53, 55, 59, 60, 61, 62, 65, 67, 68, 69, 75, 76, 79, 80, 82, 83, 89, 90, 92, 93, 94, 95, 96, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 134, 135, 136, 138, 142, 143, 144, 146, 147, 148, 149, 152, 153, 155, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 181, 185, 186, 187, 189, 190, 191, 192, 193, 194, 195, 200, 201, 202, 203, 205, 206, 208, 209, 210, 211, 213, 216, 219, 220, 221, 223, 226, 230, 232, 233, 234, 239, 244, 246, 249, 250, 252, 254, 255, 256, 258], "trainabl": [1, 6, 68, 97, 99, 157], "paramet": [1, 4, 5, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 22, 24, 25, 32, 33, 35, 37, 38, 43, 44, 47, 48, 49, 51, 52, 61, 65, 67, 68, 69, 73, 75, 85, 87, 89, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 109, 110, 111, 115, 116, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 157, 160, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 182, 184, 189, 195, 196, 197, 201, 203, 210, 211, 212, 214, 216, 219, 220, 221, 226, 228, 230, 234, 235, 237, 239, 241, 242, 243, 244, 245, 249, 250, 252, 253, 254, 258, 266, 275], "tutori": [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 43, 44, 45, 46, 51, 52, 53, 55, 56, 58, 59, 60, 61, 73, 74, 75, 77, 79, 81, 82, 84, 86, 87, 91, 97, 98, 100, 101, 104, 105, 106, 107, 108, 112, 113, 115, 116, 117, 118, 119, 121, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 149, 150, 151, 152, 154, 155, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 175, 177, 178, 180, 181, 182, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 210, 211, 213, 214, 215, 217, 219, 222, 223, 228, 229, 230, 234, 235, 237, 244, 245, 247, 251, 252, 255, 256, 257, 258], "guid": [1, 17, 58, 59, 61, 82, 85, 123, 135, 147, 158, 168, 173, 174, 176, 184, 196, 201, 213, 226, 229, 231, 235, 251, 261, 270], "ground": [1, 14, 44, 73, 178], "aim": [1, 6, 61, 75, 97, 100, 152, 160, 163, 192, 221], "focus": [1, 3, 20, 97, 100, 149, 155, 165, 221], "rel": [1, 5, 6, 7, 117, 119, 125, 126, 137, 145, 149, 150, 163, 165, 176, 186, 197, 221, 234], "straightforward": [1, 5, 6, 16, 17, 49, 60, 97, 98, 144, 200, 234], "determinist": [1, 11, 14, 136, 148, 160, 247], "gradient": [1, 6, 7, 10, 11, 13, 14, 16, 25, 37, 42, 43, 44, 47, 49, 52, 56, 61, 63, 64, 65, 67, 68, 69, 71, 72, 78, 87, 97, 98, 99, 101, 102, 103, 104, 110, 111, 115, 117, 121, 122, 123, 124, 125, 127, 129, 130, 131, 133, 135, 141, 145, 146, 149, 152, 156, 157, 159, 160, 161, 162, 163, 169, 171, 189, 205, 214, 216, 229, 235, 258], "simpl": [1, 3, 4, 5, 6, 8, 12, 15, 16, 17, 19, 21, 22, 23, 24, 25, 47, 49, 51, 54, 56, 61, 67, 73, 79, 85, 87, 97, 107, 112, 116, 120, 121, 123, 125, 126, 130, 135, 138, 139, 144, 145, 150, 154, 156, 159, 161, 162, 163, 164, 166, 168, 172, 182, 185, 199, 201, 205, 207, 210, 211, 213, 214, 215, 220, 221, 228, 231, 234, 237, 245, 251, 252, 254, 255, 258, 262, 263, 271, 272], "continu": [1, 5, 17, 20, 21, 49, 53, 60, 73, 85, 87, 97, 102, 113, 116, 121, 124, 128, 131, 135, 142, 143, 146, 157, 159, 163, 165, 168, 176, 187, 188, 189, 191, 192, 198, 199, 200, 201, 204, 222, 231, 234, 247, 252, 262, 271], "control": [1, 4, 8, 10, 14, 21, 23, 25, 34, 43, 60, 61, 66, 83, 85, 97, 110, 111, 113, 114, 122, 125, 126, 134, 135, 141, 153, 159, 160, 161, 172, 183, 197, 208, 226, 231, 252], "It": [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 42, 43, 44, 45, 47, 49, 51, 52, 60, 61, 73, 74, 75, 76, 82, 87, 95, 97, 98, 99, 100, 101, 103, 108, 112, 113, 115, 117, 122, 123, 124, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 138, 140, 141, 143, 144, 145, 146, 149, 150, 152, 153, 154, 156, 157, 160, 161, 163, 165, 166, 167, 168, 170, 171, 173, 174, 177, 178, 179, 193, 200, 201, 202, 203, 204, 205, 208, 212, 213, 214, 215, 216, 222, 223, 224, 225, 228, 231, 232, 245, 247, 253, 254, 256, 260, 262, 269, 271], "consist": [1, 3, 6, 7, 14, 15, 16, 22, 24, 25, 43, 75, 97, 99, 118, 124, 131, 142, 143, 146, 150, 152, 159, 164, 165, 168, 173, 174, 177, 179, 191, 192, 199, 200, 208, 211, 231, 247, 262, 271], "parametr": [1, 2, 17, 121, 159, 201], "action": [1, 19, 58, 59, 101, 113, 122, 123, 146, 156, 159, 160, 161, 162, 163, 168, 182, 189, 190, 191, 192, 197, 198, 204, 208, 251, 262, 271], "pair": [1, 6, 14, 47, 49, 52, 116, 118, 128, 129, 137, 150, 154, 159, 160, 165, 168, 178, 179, 194, 199, 211, 226, 262, 271], "maxim": [1, 14, 52, 73, 82, 97, 99, 126, 146, 160, 172, 176, 194, 247], "given": [1, 6, 8, 10, 12, 14, 17, 20, 21, 22, 23, 25, 32, 43, 48, 49, 51, 52, 60, 61, 73, 76, 78, 82, 85, 97, 98, 100, 101, 103, 112, 116, 122, 127, 128, 133, 135, 138, 141, 142, 145, 146, 147, 154, 156, 159, 160, 162, 163, 165, 172, 173, 174, 177, 178, 192, 195, 200, 201, 216, 219, 231, 239, 247, 258], "certain": [1, 4, 5, 6, 10, 11, 15, 49, 55, 60, 101, 113, 120, 122, 124, 125, 129, 141, 145, 147, 159, 164, 188, 189, 192, 193, 194, 198, 229, 244, 254], "what": [1, 2, 3, 5, 8, 14, 18, 19, 20, 21, 22, 23, 25, 43, 45, 46, 53, 54, 55, 58, 59, 61, 73, 78, 86, 87, 98, 99, 101, 102, 103, 114, 121, 124, 125, 126, 128, 131, 132, 135, 136, 142, 146, 150, 152, 156, 159, 160, 161, 164, 169, 171, 173, 178, 187, 191, 195, 197, 200, 210, 222, 230, 231, 232, 235, 237, 249, 252, 262, 271], "write": [1, 4, 8, 9, 10, 21, 22, 23, 44, 49, 58, 59, 60, 61, 64, 75, 98, 99, 100, 101, 104, 116, 117, 121, 125, 126, 130, 131, 133, 136, 137, 139, 141, 142, 144, 146, 147, 149, 150, 153, 155, 159, 162, 163, 165, 168, 171, 172, 185, 188, 192, 196, 197, 198, 205, 206, 208, 223, 224, 225, 230, 231, 232, 239, 257, 262, 271], "custom": [1, 4, 6, 8, 11, 17, 49, 52, 64, 65, 66, 79, 90, 109, 111, 121, 126, 136, 146, 159, 162, 171, 172, 177, 179, 183, 188, 195, 197, 199, 200, 201, 202, 204, 220, 221, 226, 230, 235, 244, 247, 251, 253], "its": [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 25, 43, 47, 49, 51, 52, 53, 55, 60, 61, 68, 69, 73, 75, 80, 82, 95, 97, 99, 101, 102, 103, 105, 107, 109, 111, 112, 113, 115, 122, 123, 124, 125, 126, 127, 128, 135, 136, 137, 138, 139, 141, 143, 144, 146, 147, 149, 152, 153, 156, 159, 160, 161, 162, 163, 165, 168, 169, 172, 173, 174, 175, 176, 184, 188, 191, 192, 193, 197, 200, 201, 202, 204, 206, 207, 208, 209, 214, 215, 218, 220, 222, 226, 228, 230, 231, 237, 244, 247, 258, 262, 271], "includ": [1, 2, 3, 4, 5, 6, 8, 14, 15, 16, 22, 23, 24, 25, 42, 48, 49, 53, 55, 58, 59, 60, 61, 69, 73, 75, 82, 85, 87, 97, 98, 105, 107, 109, 113, 115, 124, 126, 127, 128, 130, 131, 133, 135, 136, 144, 146, 147, 155, 156, 159, 162, 165, 168, 169, 172, 173, 174, 175, 176, 177, 178, 182, 184, 188, 189, 191, 194, 199, 200, 204, 206, 208, 212, 214, 216, 219, 220, 221, 222, 224, 225, 226, 228, 229, 230, 231, 234, 238, 244, 247, 254, 256, 257, 260, 262, 269, 271], "design": [1, 5, 6, 14, 17, 24, 25, 52, 56, 61, 73, 85, 103, 128, 133, 136, 159, 160, 161, 163, 164, 168, 169, 177, 179, 189, 190, 191, 195, 197, 200, 201, 205, 207, 219, 231, 234, 247, 253, 254, 257], "effici": [1, 5, 7, 10, 12, 15, 17, 20, 23, 25, 42, 49, 51, 73, 82, 95, 97, 101, 103, 115, 119, 122, 123, 124, 126, 127, 135, 136, 145, 150, 156, 159, 163, 164, 168, 171, 175, 177, 186, 187, 192, 193, 194, 201, 204, 231, 237, 253, 254], "store": [1, 4, 5, 6, 16, 17, 19, 20, 22, 23, 40, 43, 48, 51, 53, 60, 68, 87, 95, 98, 99, 101, 103, 105, 111, 125, 126, 128, 135, 136, 141, 143, 144, 146, 147, 153, 155, 156, 159, 160, 161, 162, 163, 165, 182, 184, 192, 197, 198, 201, 204, 216, 234, 247, 252, 254, 257], "trajectori": [1, 14, 61, 136, 159], "transit": [1, 14, 60, 85, 86, 98, 136, 160, 200], "assum": [1, 2, 4, 6, 8, 10, 12, 14, 15, 19, 21, 22, 43, 44, 51, 54, 60, 73, 97, 98, 100, 102, 116, 124, 125, 127, 128, 135, 136, 139, 153, 156, 159, 162, 164, 165, 173, 174, 175, 178, 191, 192, 193, 199, 200, 223, 237, 244], "complet": [1, 4, 5, 6, 15, 21, 25, 49, 76, 78, 85, 87, 98, 99, 101, 113, 117, 119, 122, 124, 126, 130, 135, 156, 157, 158, 159, 160, 162, 165, 171, 172, 177, 178, 184, 191, 192, 225, 228, 229, 234, 247, 252, 256], "ppo": [1, 121], "compon": [1, 5, 6, 8, 10, 14, 20, 25, 52, 61, 85, 97, 101, 112, 113, 115, 119, 121, 126, 136, 142, 146, 159, 163, 166, 168, 172, 173, 174, 177, 193, 207, 256], "depend": [1, 5, 6, 7, 8, 11, 14, 21, 22, 23, 42, 47, 50, 52, 60, 73, 82, 85, 97, 98, 102, 110, 118, 119, 121, 124, 126, 129, 130, 135, 136, 137, 139, 141, 142, 143, 145, 146, 149, 155, 158, 159, 162, 168, 172, 173, 174, 181, 182, 183, 184, 188, 191, 196, 197, 198, 204, 206, 207, 208, 210, 213, 219, 222, 224, 225, 231, 232, 234, 239, 244, 247, 252, 256], "tensordict": [1, 14, 136, 146, 159], "nn": [1, 2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 32, 37, 38, 39, 42, 43, 44, 45, 47, 49, 52, 55, 60, 65, 66, 69, 73, 75, 77, 79, 87, 89, 90, 92, 94, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 115, 117, 118, 119, 121, 122, 123, 124, 125, 127, 128, 129, 133, 134, 136, 137, 138, 141, 142, 143, 145, 146, 147, 148, 149, 150, 153, 154, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 177, 179, 181, 182, 183, 185, 190, 193, 194, 195, 197, 198, 199, 200, 201, 202, 203, 209, 210, 211, 212, 214, 215, 218, 219, 220, 221, 223, 226, 228, 230, 232, 233, 234, 235, 238, 239, 241, 242, 243, 245, 247, 248, 249, 250, 251, 252, 253, 256, 258], "tensordictmodul": [1, 14, 136, 159], "although": [1, 12, 16, 43, 49, 60, 61, 98, 99, 103, 105, 108, 115, 119, 125, 146, 149, 153, 157, 162, 172, 173, 174, 176, 182, 203, 219, 247, 262, 271], "suffici": [1, 6, 49, 52, 97, 98, 117, 131, 133, 152], "transpar": [1, 12, 42, 99, 136, 162, 206, 220], "understood": [1, 4, 113], "without": [1, 4, 5, 6, 8, 9, 10, 14, 17, 20, 23, 32, 42, 49, 53, 55, 60, 73, 78, 97, 98, 107, 112, 113, 116, 123, 124, 125, 128, 129, 135, 137, 138, 141, 143, 145, 146, 147, 152, 154, 155, 156, 157, 158, 159, 160, 161, 164, 165, 168, 171, 176, 177, 189, 191, 192, 193, 194, 199, 200, 201, 203, 208, 209, 211, 215, 220, 227, 228, 230, 234, 237, 239, 244, 247, 251, 252, 258, 260, 262, 269, 271], "understand": [1, 2, 4, 6, 15, 23, 43, 44, 52, 57, 58, 59, 82, 85, 91, 98, 99, 101, 108, 117, 121, 125, 126, 127, 128, 130, 135, 137, 141, 143, 144, 149, 157, 165, 171, 173, 174, 176, 190, 195, 199, 200, 208, 215, 226, 229, 245, 249, 254], "class": [1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 19, 20, 21, 23, 24, 25, 33, 34, 37, 38, 42, 44, 45, 47, 49, 52, 53, 58, 59, 60, 64, 65, 67, 73, 75, 76, 78, 79, 83, 85, 87, 89, 90, 92, 93, 94, 96, 98, 99, 100, 102, 103, 104, 105, 108, 109, 110, 111, 112, 115, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 146, 147, 148, 149, 150, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 183, 189, 190, 191, 193, 194, 195, 197, 198, 199, 200, 202, 203, 208, 209, 212, 213, 214, 215, 216, 218, 219, 221, 223, 226, 229, 231, 233, 234, 237, 239, 240, 241, 242, 243, 244, 248, 249, 250, 252, 261, 262, 263, 270, 271, 272], "sota": [1, 75, 113, 119], "implement": [1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 20, 24, 42, 43, 45, 47, 49, 51, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 76, 79, 85, 103, 108, 111, 115, 120, 121, 124, 125, 126, 127, 130, 133, 134, 135, 136, 138, 139, 141, 144, 145, 146, 147, 149, 150, 154, 156, 159, 160, 163, 168, 173, 174, 178, 179, 186, 190, 192, 193, 194, 196, 197, 200, 201, 204, 206, 207, 208, 216, 219, 220, 221, 222, 224, 231, 237, 244, 247, 253, 254, 257, 261, 270], "rather": [1, 13, 23, 25, 49, 52, 69, 73, 85, 97, 103, 112, 121, 128, 129, 143, 144, 149, 153, 154, 159, 171, 184, 188, 189, 207, 223, 231, 234, 247], "high": [1, 2, 5, 6, 14, 15, 19, 23, 25, 42, 44, 49, 52, 53, 55, 57, 60, 82, 85, 99, 103, 105, 109, 112, 121, 122, 123, 124, 126, 127, 129, 135, 139, 146, 149, 159, 168, 169, 171, 176, 177, 186, 192, 195, 196, 197, 199, 212, 216, 234, 247, 252, 254, 256, 258, 260, 269], "level": [1, 2, 5, 6, 17, 19, 20, 23, 25, 44, 49, 53, 55, 57, 68, 79, 100, 105, 115, 122, 123, 124, 126, 127, 128, 131, 133, 135, 137, 141, 142, 143, 144, 147, 149, 164, 165, 168, 171, 173, 174, 176, 177, 182, 185, 195, 196, 197, 199, 201, 209, 212, 215, 216, 221, 223, 227, 234, 258, 266, 275], "illustr": [1, 19, 44, 47, 56, 116, 117, 124, 125, 126, 138, 160, 169, 171, 178, 191, 192, 195, 215, 226, 229, 230, 244, 247], "librari": [1, 3, 4, 5, 6, 8, 12, 14, 18, 20, 22, 23, 25, 42, 44, 50, 51, 57, 61, 75, 87, 107, 108, 113, 115, 118, 121, 126, 129, 130, 137, 139, 143, 155, 158, 159, 163, 168, 173, 174, 177, 194, 204, 206, 207, 215, 219, 220, 222, 223, 226, 227, 228, 249, 251], "featur": [1, 4, 6, 10, 11, 12, 14, 17, 19, 22, 23, 34, 49, 50, 51, 52, 58, 59, 60, 61, 82, 83, 85, 90, 94, 95, 97, 98, 103, 108, 113, 121, 123, 125, 136, 137, 144, 145, 146, 149, 152, 155, 158, 159, 163, 164, 169, 172, 173, 174, 175, 176, 177, 178, 185, 186, 187, 188, 192, 193, 196, 199, 201, 204, 205, 206, 207, 208, 212, 216, 219, 226, 229, 234, 237, 244, 247, 251, 252, 254], "context": [1, 2, 5, 8, 14, 16, 17, 43, 49, 60, 61, 64, 73, 103, 109, 111, 120, 124, 134, 141, 153, 159, 162, 163, 164, 165, 168, 177, 186, 199, 201, 206, 208, 212, 230, 232, 237, 239, 247], "bash": [1, 18, 20, 146, 160, 226], "pip3": [1, 18, 50, 122, 136, 159, 160, 168, 175, 184, 187, 188], "mujoco": [1, 136, 159], "glfw": 1, "tqdm": [1, 14, 17, 122, 136, 137, 159, 185, 201], "avail": [1, 2, 3, 5, 6, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 40, 42, 43, 44, 48, 50, 51, 52, 53, 58, 59, 73, 80, 87, 97, 101, 105, 113, 115, 119, 122, 125, 135, 136, 139, 141, 146, 147, 156, 157, 158, 159, 160, 163, 164, 165, 168, 171, 175, 176, 177, 178, 181, 182, 187, 188, 196, 197, 198, 199, 201, 205, 212, 213, 214, 220, 222, 223, 224, 225, 226, 227, 228, 229, 231, 232, 247, 255, 256, 260, 269], "is_fork": [1, 136, 159], "multiprocess": [1, 6, 7, 11, 14, 34, 51, 53, 55, 56, 110, 122, 123, 133, 134, 135, 136, 159, 162, 163, 212, 214, 216, 258], "get_start_method": [1, 136, 159], "fork": [1, 21, 136, 159, 160], "is_avail": [1, 5, 6, 12, 20, 33, 38, 40, 42, 44, 45, 48, 49, 52, 63, 73, 80, 87, 89, 95, 97, 104, 110, 111, 115, 117, 118, 129, 136, 146, 147, 155, 156, 157, 159, 160, 162, 164, 165, 166, 172, 178, 193, 230], "els": [1, 4, 5, 8, 9, 11, 12, 14, 16, 17, 18, 19, 20, 23, 25, 33, 38, 42, 44, 45, 47, 49, 51, 52, 58, 59, 60, 63, 73, 87, 94, 95, 96, 97, 103, 104, 105, 108, 110, 111, 115, 116, 117, 118, 122, 127, 128, 129, 134, 135, 136, 137, 142, 146, 147, 150, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 178, 181, 182, 185, 186, 193, 195, 197, 198, 201, 208, 209, 212, 215, 216, 218, 222, 230, 231, 244, 246, 252, 254, 255, 256, 258, 262, 263, 271, 272], "cpu": [1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 15, 18, 19, 20, 23, 33, 38, 42, 43, 44, 45, 48, 49, 52, 60, 63, 64, 72, 73, 80, 82, 83, 87, 89, 90, 95, 97, 99, 104, 105, 108, 109, 110, 111, 115, 117, 118, 121, 123, 124, 129, 133, 134, 135, 136, 137, 146, 147, 150, 153, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 171, 175, 178, 181, 182, 185, 186, 187, 188, 193, 194, 195, 197, 198, 199, 202, 206, 212, 216, 219, 223, 226, 229, 230, 231, 232, 234, 237, 238, 240, 244, 251, 252, 253], "collector_devic": 1, "chang": [1, 2, 5, 6, 10, 11, 12, 14, 19, 21, 22, 23, 24, 40, 43, 48, 50, 51, 52, 53, 55, 58, 59, 61, 76, 78, 79, 80, 82, 83, 85, 87, 95, 97, 98, 100, 101, 102, 105, 108, 112, 116, 121, 123, 124, 126, 131, 132, 135, 136, 137, 139, 141, 144, 145, 146, 149, 152, 153, 155, 156, 157, 161, 168, 171, 172, 173, 174, 177, 181, 182, 184, 186, 187, 188, 191, 193, 197, 198, 200, 204, 206, 207, 208, 211, 212, 214, 216, 220, 221, 222, 229, 230, 231, 234, 235, 244, 245, 247, 252, 253, 255, 260, 269], "seri": [1, 6, 15, 23, 52, 53, 54, 55, 56, 82, 91, 120, 121, 127, 128, 131, 132, 139, 143, 156, 159, 191, 219], "reusabl": [1, 6, 25], "swappabl": 1, "signatur": [1, 5, 8, 10, 14, 15, 23, 108, 135, 153, 162, 173, 174, 252], "characterist": [1, 14, 43, 143, 145, 146, 158, 164], "copi": [1, 5, 6, 12, 18, 22, 23, 44, 45, 50, 55, 58, 61, 73, 82, 97, 109, 110, 112, 114, 117, 123, 125, 129, 133, 135, 136, 137, 138, 141, 142, 143, 146, 149, 153, 157, 162, 168, 171, 181, 182, 183, 188, 194, 198, 199, 204, 206, 208, 212, 213, 218, 219, 234, 237, 247, 257, 263, 272], "loss_modul": [1, 159], "whatev": [1, 8, 22, 23, 99, 101, 112, 195, 226], "convent": [1, 14, 52, 60, 112, 126, 136, 171, 216, 231], "receiv": [1, 4, 6, 14, 16, 55, 64, 87, 101, 111, 135, 159, 161, 162, 163, 172, 230, 247], "necessari": [1, 4, 5, 6, 7, 8, 10, 12, 15, 16, 18, 19, 23, 24, 44, 52, 53, 55, 60, 85, 87, 98, 112, 113, 122, 123, 124, 129, 133, 146, 149, 159, 161, 162, 163, 168, 173, 174, 177, 179, 182, 185, 191, 193, 195, 197, 198, 199, 230, 247, 249], "return": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 33, 34, 37, 38, 40, 44, 45, 47, 49, 51, 52, 59, 60, 64, 65, 67, 68, 73, 75, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 108, 109, 110, 111, 112, 113, 115, 116, 117, 118, 122, 123, 124, 126, 127, 128, 129, 130, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 189, 191, 193, 194, 195, 197, 198, 199, 200, 201, 203, 205, 206, 208, 209, 210, 212, 213, 214, 215, 218, 219, 220, 221, 222, 223, 226, 229, 230, 231, 233, 234, 237, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 250, 252, 254, 255, 256, 257], "replay_buff": [1, 159], "sampl": [1, 6, 8, 44, 47, 48, 49, 51, 52, 55, 60, 61, 75, 78, 79, 87, 92, 97, 99, 105, 110, 115, 116, 117, 118, 121, 123, 127, 129, 135, 136, 137, 139, 145, 146, 152, 153, 157, 159, 160, 161, 163, 171, 173, 174, 178, 182, 185, 193, 194, 197, 199, 205, 209, 210, 225, 229, 247, 262, 271], "loss_dict": 1, "instanc": [1, 4, 5, 6, 7, 11, 12, 14, 21, 22, 23, 25, 45, 53, 54, 55, 58, 59, 60, 78, 82, 87, 97, 98, 99, 102, 103, 122, 123, 125, 126, 131, 132, 133, 134, 136, 144, 146, 157, 159, 161, 162, 163, 165, 172, 182, 183, 197, 199, 200, 202, 219, 220, 226, 230, 234, 245, 247, 252, 256, 257, 258], "written": [1, 4, 5, 6, 8, 10, 14, 22, 23, 25, 85, 100, 130, 136, 143, 150, 153, 154, 157, 164, 168, 171, 184, 189, 213, 220, 245, 254], "under": [1, 4, 5, 8, 14, 18, 19, 23, 47, 49, 50, 52, 54, 56, 97, 99, 109, 113, 115, 124, 125, 135, 137, 139, 145, 146, 153, 156, 163, 168, 169, 177, 178, 179, 187, 188, 190, 192, 204, 212, 214, 216, 221, 222, 225, 226, 230, 262, 271], "loss_": 1, "smth": 1, "where": [1, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 32, 47, 49, 51, 60, 61, 64, 68, 75, 78, 79, 83, 85, 87, 97, 98, 99, 101, 102, 103, 110, 113, 122, 124, 126, 127, 128, 130, 132, 133, 134, 135, 137, 138, 139, 141, 144, 147, 149, 150, 152, 153, 154, 158, 159, 160, 161, 162, 163, 164, 165, 169, 172, 174, 175, 177, 178, 179, 182, 184, 187, 189, 192, 193, 194, 195, 200, 201, 204, 208, 213, 215, 216, 226, 228, 230, 231, 244, 245, 263, 272], "string": [1, 8, 15, 22, 23, 49, 51, 58, 59, 60, 65, 67, 105, 111, 115, 116, 118, 126, 127, 128, 136, 139, 156, 159, 165, 171, 182, 208, 209, 226, 231, 257, 260, 269], "describ": [1, 4, 5, 6, 8, 10, 14, 15, 16, 19, 20, 21, 22, 23, 48, 49, 52, 58, 59, 61, 73, 97, 105, 114, 120, 135, 150, 159, 160, 163, 168, 171, 173, 174, 176, 196, 197, 198, 202, 215, 231, 234, 252], "addit": [1, 2, 5, 7, 8, 11, 15, 17, 19, 50, 60, 73, 75, 97, 102, 105, 108, 109, 113, 122, 124, 125, 133, 135, 137, 138, 139, 142, 144, 147, 149, 156, 161, 162, 165, 169, 172, 173, 174, 176, 185, 189, 190, 191, 192, 197, 200, 201, 206, 208, 216, 218, 219, 220, 231, 247, 254], "kei": [1, 6, 8, 11, 14, 15, 17, 49, 58, 75, 82, 90, 100, 103, 105, 109, 112, 114, 115, 116, 119, 122, 126, 136, 137, 139, 143, 146, 156, 158, 159, 160, 161, 164, 165, 168, 169, 171, 173, 174, 175, 177, 185, 193, 194, 195, 201, 209, 210, 211, 220, 234, 237, 245, 254, 262, 271], "mai": [1, 4, 5, 6, 8, 10, 11, 12, 14, 15, 17, 19, 21, 22, 23, 25, 42, 49, 50, 52, 58, 59, 60, 68, 73, 85, 95, 99, 112, 113, 116, 123, 124, 125, 126, 129, 130, 136, 137, 138, 139, 141, 143, 144, 145, 150, 152, 153, 158, 159, 162, 165, 168, 171, 172, 173, 174, 176, 177, 179, 181, 182, 185, 188, 191, 193, 197, 198, 199, 200, 201, 202, 207, 208, 210, 218, 228, 231, 234, 247, 252, 262, 263, 271, 272], "metric": [1, 17, 87, 97, 109, 122, 137, 146, 168, 171, 177, 178, 201, 221, 226, 231, 245], "log": [1, 7, 14, 18, 49, 50, 52, 53, 58, 73, 97, 98, 99, 102, 103, 104, 118, 123, 126, 129, 132, 137, 148, 158, 159, 161, 163, 166, 168, 169, 171, 173, 174, 177, 185, 195, 208, 211, 221, 251, 255], "dure": [1, 3, 7, 8, 12, 14, 16, 18, 19, 25, 32, 37, 49, 52, 60, 61, 63, 64, 76, 78, 85, 97, 99, 103, 108, 111, 112, 113, 118, 121, 122, 123, 124, 125, 128, 129, 130, 131, 133, 136, 142, 143, 144, 149, 150, 153, 157, 158, 159, 160, 161, 163, 168, 172, 176, 177, 178, 185, 196, 198, 202, 206, 214, 216, 220, 223, 224, 225, 226, 228, 234, 244, 245, 252], "reason": [1, 5, 6, 8, 14, 15, 17, 23, 25, 52, 78, 82, 97, 99, 102, 112, 117, 125, 129, 135, 144, 149, 157, 159, 164, 165, 184, 191, 201, 214, 223, 231, 235, 237, 251, 252], "independ": [1, 7, 23, 49, 60, 79, 103, 108, 110, 145, 146, 150, 162, 189], "user": [1, 3, 5, 14, 17, 18, 19, 22, 24, 25, 44, 49, 50, 60, 76, 79, 82, 83, 85, 97, 101, 108, 110, 113, 114, 115, 122, 124, 128, 133, 137, 139, 142, 143, 144, 147, 161, 163, 164, 165, 166, 168, 171, 173, 174, 175, 176, 177, 178, 179, 182, 185, 187, 189, 190, 191, 192, 195, 196, 197, 198, 199, 200, 201, 204, 207, 212, 215, 216, 220, 221, 226, 228, 251, 262, 263, 271, 272], "sum": [1, 2, 4, 5, 7, 11, 13, 14, 16, 18, 19, 21, 25, 37, 38, 40, 43, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 82, 87, 89, 92, 97, 98, 99, 101, 103, 104, 109, 111, 115, 117, 122, 123, 125, 127, 128, 129, 130, 135, 136, 145, 146, 150, 152, 153, 156, 157, 159, 160, 161, 162, 163, 166, 168, 172, 173, 174, 175, 182, 189, 190, 191, 192, 197, 198, 210, 211, 212, 214, 221, 231, 252, 258], "done": [1, 4, 5, 6, 8, 10, 14, 16, 17, 19, 20, 21, 22, 23, 25, 37, 38, 49, 54, 58, 59, 82, 85, 97, 98, 99, 108, 113, 115, 122, 123, 124, 125, 128, 129, 135, 136, 138, 143, 144, 146, 147, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 169, 171, 173, 174, 184, 185, 194, 201, 202, 208, 216, 220, 223, 234, 237, 247, 256, 257], "via": [1, 3, 5, 6, 7, 16, 17, 18, 20, 22, 23, 54, 55, 58, 59, 73, 85, 97, 121, 122, 123, 124, 126, 135, 136, 139, 145, 153, 158, 159, 164, 169, 171, 172, 176, 177, 178, 188, 191, 201, 212, 213, 215, 216, 219, 220, 221, 226, 237, 244, 245, 260, 266, 269, 275], "loss_val": [1, 136, 159], "item": [1, 2, 6, 7, 9, 10, 11, 12, 14, 15, 34, 37, 38, 40, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 72, 73, 87, 90, 92, 94, 95, 96, 97, 98, 101, 103, 104, 109, 111, 112, 114, 115, 117, 118, 119, 122, 123, 127, 128, 129, 135, 136, 137, 139, 141, 143, 146, 147, 157, 158, 159, 160, 161, 162, 163, 165, 166, 169, 171, 178, 179, 181, 193, 209, 213, 218, 221, 230, 234, 247, 250, 261, 263, 270, 272], "startswith": [1, 83, 147, 165, 246], "parent": [1, 14, 104, 115, 142, 146, 183, 185], "As": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 19, 20, 21, 22, 23, 25, 43, 49, 50, 52, 58, 59, 60, 61, 73, 85, 87, 97, 103, 105, 108, 112, 116, 118, 122, 123, 124, 125, 126, 127, 133, 135, 136, 137, 141, 142, 143, 144, 145, 146, 149, 152, 153, 156, 157, 159, 160, 161, 162, 163, 164, 168, 171, 174, 175, 176, 177, 178, 179, 182, 184, 185, 187, 188, 192, 193, 195, 197, 200, 204, 207, 208, 212, 219, 221, 222, 226, 231, 234, 237, 247, 254, 256, 258], "mani": [1, 2, 4, 5, 6, 10, 14, 15, 17, 18, 23, 25, 49, 51, 52, 60, 61, 65, 69, 73, 82, 97, 99, 100, 101, 104, 105, 107, 111, 113, 122, 124, 126, 127, 129, 135, 137, 138, 145, 147, 149, 150, 154, 157, 159, 161, 162, 165, 173, 174, 176, 177, 191, 194, 201, 204, 205, 220, 221, 229, 230, 231, 247, 252, 260, 262, 263, 269, 271, 272], "expect": [1, 4, 5, 6, 10, 11, 14, 20, 22, 23, 32, 45, 47, 49, 51, 58, 59, 60, 61, 73, 85, 87, 97, 101, 102, 103, 112, 113, 117, 119, 126, 129, 133, 134, 136, 145, 146, 152, 153, 156, 158, 159, 160, 161, 162, 164, 171, 172, 173, 174, 176, 178, 179, 182, 187, 188, 194, 195, 197, 199, 200, 204, 205, 213, 220, 223, 226, 229, 230, 231, 234, 244, 247, 258], "similar": [1, 3, 5, 8, 10, 11, 14, 15, 19, 22, 23, 48, 49, 58, 59, 61, 82, 83, 97, 98, 103, 108, 116, 124, 130, 134, 135, 136, 139, 143, 149, 153, 159, 161, 162, 163, 164, 165, 168, 169, 171, 176, 178, 179, 182, 185, 189, 190, 191, 192, 193, 198, 199, 213, 218, 219, 230, 231, 234, 247, 258], "structur": [1, 4, 5, 6, 8, 9, 14, 18, 19, 20, 21, 22, 23, 33, 48, 49, 52, 53, 60, 61, 78, 85, 97, 98, 102, 105, 110, 112, 121, 131, 136, 138, 143, 146, 147, 149, 153, 154, 156, 159, 163, 169, 171, 172, 178, 192, 194, 196, 197, 205, 208, 234, 245, 260, 262, 266, 269, 271, 275], "make": [1, 4, 5, 6, 8, 10, 12, 14, 18, 19, 22, 23, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 61, 68, 69, 73, 87, 97, 99, 100, 101, 102, 103, 108, 111, 112, 113, 114, 115, 117, 118, 121, 122, 123, 124, 126, 127, 128, 129, 133, 135, 136, 137, 139, 142, 143, 144, 145, 146, 149, 152, 153, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 169, 171, 172, 173, 174, 176, 178, 182, 184, 185, 188, 189, 190, 191, 192, 193, 194, 195, 197, 200, 205, 212, 213, 214, 215, 216, 218, 219, 220, 223, 227, 228, 229, 230, 231, 234, 237, 239, 245, 247, 251, 252, 254, 256, 262, 264, 271, 273], "possibl": [1, 2, 4, 5, 6, 8, 10, 14, 15, 17, 22, 23, 52, 60, 61, 75, 98, 101, 108, 119, 125, 129, 130, 136, 138, 141, 143, 145, 146, 149, 157, 158, 159, 161, 162, 165, 178, 182, 185, 187, 193, 197, 198, 199, 200, 201, 202, 204, 207, 216, 220, 221, 223, 230, 234, 237, 247, 252, 254, 262, 271], "across": [1, 5, 7, 8, 9, 11, 14, 16, 18, 20, 24, 49, 52, 54, 55, 56, 61, 82, 97, 105, 115, 120, 122, 123, 124, 131, 132, 133, 134, 135, 138, 146, 149, 156, 162, 163, 175, 176, 181, 211, 214, 215, 229, 235, 245, 247, 258, 260, 269], "modal": [1, 60, 229], "complex": [1, 6, 23, 25, 50, 61, 67, 68, 97, 105, 112, 120, 123, 133, 150, 153, 161, 163, 169, 193, 203, 209, 234, 239, 254], "multipl": [1, 5, 8, 10, 11, 14, 16, 17, 18, 19, 20, 23, 40, 45, 48, 49, 53, 54, 55, 56, 61, 65, 78, 79, 81, 82, 87, 97, 101, 110, 120, 123, 124, 125, 126, 127, 128, 133, 134, 135, 138, 139, 143, 144, 146, 149, 158, 159, 161, 162, 163, 165, 168, 169, 171, 173, 174, 175, 176, 177, 182, 184, 193, 199, 200, 201, 207, 213, 214, 219, 230, 231, 235, 247, 250, 262, 263, 271, 272], "entri": [1, 4, 11, 14, 23, 53, 75, 98, 101, 103, 109, 110, 112, 115, 131, 136, 143, 144, 156, 159, 161, 164, 168, 173, 174, 191, 192, 193, 195, 212], "word": [1, 6, 7, 10, 11, 14, 42, 44, 49, 60, 73, 79, 82, 97, 98, 100, 102, 112, 115, 116, 118, 121, 127, 128, 135, 137, 143, 152, 153, 156, 163, 165, 176, 181, 190, 192, 193, 195, 199, 234, 262, 271], "oblivi": [1, 159], "type": [1, 4, 5, 6, 8, 9, 10, 14, 18, 19, 20, 21, 22, 23, 37, 38, 40, 42, 48, 49, 50, 51, 52, 60, 61, 73, 78, 80, 82, 85, 95, 101, 105, 108, 113, 118, 120, 122, 123, 124, 126, 134, 137, 138, 139, 142, 143, 144, 147, 148, 154, 155, 156, 159, 161, 162, 163, 164, 168, 171, 172, 173, 174, 175, 177, 179, 181, 185, 187, 189, 194, 197, 199, 200, 202, 204, 207, 208, 209, 212, 213, 214, 216, 220, 221, 222, 223, 226, 228, 229, 244, 245, 247, 253, 257, 262, 271], "being": [1, 3, 4, 5, 6, 10, 12, 14, 17, 20, 21, 23, 42, 47, 49, 52, 58, 59, 60, 76, 80, 82, 97, 98, 99, 101, 103, 105, 110, 113, 117, 122, 124, 126, 129, 135, 136, 142, 153, 156, 159, 160, 162, 177, 185, 188, 190, 191, 193, 195, 199, 201, 202, 220, 231, 237, 247], "run": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 51, 52, 56, 57, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 76, 78, 79, 80, 82, 87, 89, 90, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 114, 116, 117, 118, 119, 121, 122, 123, 124, 125, 128, 129, 130, 131, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 175, 176, 177, 178, 181, 182, 183, 184, 186, 187, 188, 189, 190, 191, 192, 193, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 209, 214, 215, 216, 218, 219, 220, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 246, 247, 248, 249, 250, 251, 252, 254, 255, 262, 271], "elementari": [1, 2, 234], "those": [1, 4, 5, 6, 10, 11, 14, 17, 42, 43, 61, 79, 87, 98, 103, 113, 115, 116, 124, 125, 127, 135, 138, 143, 152, 153, 155, 156, 163, 165, 169, 171, 173, 174, 177, 182, 184, 188, 190, 201, 202, 204, 205, 206, 207, 221, 223, 226, 230, 231, 262, 271], "keep": [1, 6, 7, 10, 11, 14, 23, 43, 49, 51, 52, 60, 61, 73, 82, 85, 95, 97, 99, 101, 102, 108, 112, 116, 119, 121, 122, 123, 124, 125, 127, 128, 132, 133, 136, 142, 144, 150, 157, 159, 163, 165, 177, 181, 182, 197, 208, 218, 231, 247, 257, 258], "didact": [1, 135], "displai": [1, 2, 5, 6, 12, 14, 34, 44, 52, 58, 75, 108, 109, 117, 129, 139, 157, 160, 165, 168, 212, 230, 231, 245, 257, 260, 269], "each": [1, 2, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 18, 19, 21, 23, 24, 25, 34, 43, 44, 45, 48, 49, 51, 52, 53, 55, 56, 58, 59, 60, 61, 65, 68, 73, 75, 76, 79, 82, 83, 85, 87, 97, 98, 99, 102, 103, 107, 108, 109, 111, 112, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 126, 127, 128, 130, 131, 132, 133, 134, 135, 136, 138, 141, 142, 143, 145, 146, 147, 149, 150, 152, 153, 154, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 173, 174, 175, 176, 177, 178, 185, 186, 189, 192, 193, 195, 197, 198, 200, 201, 208, 209, 211, 212, 215, 216, 220, 221, 226, 229, 230, 231, 234, 237, 239, 244, 245, 247, 252, 255, 257, 258, 260, 262, 269, 271], "popul": [1, 14, 22, 43, 49, 58, 59, 87, 122, 136, 146, 159, 161, 211, 216], "later": [1, 3, 4, 5, 6, 11, 23, 47, 49, 52, 60, 73, 78, 87, 97, 101, 102, 112, 113, 123, 124, 127, 128, 129, 130, 134, 135, 138, 141, 142, 143, 144, 145, 146, 150, 154, 159, 160, 163, 164, 165, 169, 171, 173, 174, 182, 189, 197, 198, 210, 211, 223, 226, 228, 230, 231, 232, 237, 244, 247, 254, 255], "stage": [1, 7, 14, 16, 148, 186, 188, 206, 212], "start": [1, 4, 5, 6, 9, 11, 14, 16, 17, 18, 19, 23, 24, 25, 43, 44, 49, 50, 52, 53, 54, 55, 59, 60, 61, 73, 87, 97, 98, 100, 101, 105, 113, 116, 120, 121, 122, 124, 125, 126, 127, 128, 129, 134, 135, 137, 139, 143, 144, 145, 146, 148, 149, 152, 153, 157, 158, 160, 161, 162, 165, 168, 169, 171, 172, 173, 176, 177, 178, 182, 184, 185, 187, 191, 195, 197, 198, 199, 200, 201, 203, 208, 212, 213, 216, 219, 223, 226, 231, 234, 239, 245, 247, 251, 254, 258, 263, 272], "solv": [1, 6, 14, 49, 51, 97, 103, 117, 118, 149, 153, 157, 159, 161, 163, 176, 191, 231, 237, 247], "task": [1, 6, 7, 13, 14, 17, 21, 24, 49, 58, 59, 60, 75, 97, 98, 103, 109, 113, 116, 117, 118, 119, 120, 121, 123, 136, 137, 153, 157, 159, 160, 165, 166, 171, 178, 185, 201, 204, 208, 231, 247], "strategi": [1, 5, 17, 18, 24, 52, 82, 113, 121, 128, 135, 144, 145, 149, 154, 161, 162, 201, 207, 215, 216, 221], "predict": [1, 9, 17, 19, 20, 33, 37, 38, 43, 44, 49, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 87, 89, 90, 92, 97, 98, 102, 103, 104, 111, 113, 115, 116, 118, 121, 124, 126, 127, 128, 137, 138, 145, 146, 149, 154, 160, 165, 169, 178, 181, 182, 197, 198, 201, 213, 219, 229, 251, 256, 257], "henc": [1, 14, 17, 43, 48, 61, 78, 80, 82, 113, 123, 125, 133, 134, 147, 149, 150, 155, 159, 161, 163, 176, 201, 219, 220, 231], "two": [1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 40, 42, 43, 48, 49, 50, 52, 57, 58, 59, 60, 73, 75, 83, 85, 87, 92, 95, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 116, 117, 119, 122, 123, 126, 127, 129, 130, 132, 133, 134, 135, 136, 139, 141, 143, 144, 145, 146, 147, 149, 150, 153, 154, 155, 156, 157, 159, 160, 161, 163, 164, 165, 171, 175, 176, 177, 178, 179, 183, 184, 186, 190, 192, 193, 195, 197, 198, 199, 200, 201, 202, 203, 207, 212, 215, 216, 219, 221, 224, 225, 226, 229, 231, 234, 237, 244, 247, 252, 256, 258, 262, 263, 267, 271, 272, 276], "constructor": [1, 6, 10, 11, 12, 21, 22, 23, 25, 60, 65, 67, 69, 78, 85, 111, 116, 122, 123, 133, 134, 143, 155, 156, 159, 161, 163, 192, 202, 230, 231, 252], "both": [1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 19, 20, 21, 22, 23, 24, 25, 42, 49, 51, 52, 58, 59, 60, 61, 73, 82, 85, 97, 103, 109, 113, 116, 118, 122, 124, 126, 127, 129, 132, 133, 134, 135, 141, 142, 144, 145, 147, 149, 150, 156, 157, 159, 161, 162, 163, 164, 165, 173, 174, 175, 176, 177, 178, 179, 182, 184, 185, 186, 189, 192, 194, 195, 197, 199, 200, 209, 212, 215, 219, 220, 221, 223, 226, 228, 229, 230, 231, 244, 256, 260, 262, 269, 271], "compat": [1, 4, 5, 6, 8, 11, 17, 50, 60, 94, 95, 101, 136, 147, 164, 173, 174, 182, 187, 202, 204, 216, 222, 256], "comput": [1, 3, 5, 6, 8, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 32, 37, 38, 40, 44, 47, 48, 49, 52, 53, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 83, 85, 95, 97, 98, 99, 100, 102, 105, 107, 110, 111, 115, 117, 119, 120, 121, 122, 123, 124, 125, 126, 129, 130, 131, 132, 133, 135, 136, 137, 139, 141, 142, 143, 144, 146, 148, 149, 152, 153, 154, 156, 158, 159, 160, 162, 164, 165, 168, 171, 172, 173, 174, 176, 177, 178, 182, 184, 187, 188, 193, 194, 195, 196, 197, 198, 199, 201, 202, 205, 206, 207, 208, 210, 211, 216, 219, 223, 228, 230, 231, 234, 237, 239, 254, 256, 262, 271], "fit": [1, 6, 7, 9, 10, 11, 12, 20, 24, 61, 87, 103, 122, 123, 124, 133, 148, 149, 163, 181, 230, 262, 271], "crucial": [1, 2, 12, 14, 23, 82, 101, 136, 159, 223], "convert_to_funct": 1, "extract": [1, 5, 20, 49, 52, 58, 59, 73, 97, 116, 117, 127, 128, 137, 141, 144, 154, 157, 159, 165, 172, 173, 174, 178, 208, 212, 213, 216], "convert": [1, 5, 9, 10, 12, 14, 19, 20, 22, 23, 44, 49, 51, 52, 55, 73, 75, 95, 97, 105, 107, 110, 112, 113, 115, 116, 118, 119, 121, 127, 128, 137, 139, 157, 158, 159, 160, 161, 162, 166, 169, 177, 178, 181, 183, 184, 185, 188, 189, 190, 192, 193, 196, 199, 200, 209, 213, 216, 218, 220, 223, 224, 225, 227, 228, 229, 234, 244, 247, 251, 252], "strictli": [1, 159], "speak": [1, 8, 43, 125, 135, 149, 247], "perfectli": [1, 14, 65, 78, 111], "encourag": [1, 6, 19, 139, 160, 165, 171], "usag": [1, 3, 4, 11, 13, 15, 21, 23, 37, 60, 82, 109, 116, 121, 123, 125, 135, 136, 144, 145, 159, 161, 163, 164, 168, 177, 184, 185, 188, 193, 194, 195, 199, 207, 220, 226, 230, 245, 247, 251, 256, 262, 271], "doe": [1, 2, 5, 6, 8, 13, 14, 15, 19, 22, 23, 25, 43, 47, 60, 61, 73, 79, 80, 85, 97, 98, 99, 101, 103, 105, 108, 112, 113, 117, 122, 123, 130, 133, 134, 135, 136, 139, 142, 145, 146, 147, 149, 152, 153, 158, 159, 160, 162, 163, 164, 165, 168, 169, 172, 173, 174, 176, 178, 182, 183, 184, 190, 191, 192, 197, 199, 202, 203, 205, 208, 216, 223, 225, 226, 228, 230, 231, 234, 237, 244, 247, 262, 271], "often": [1, 4, 5, 6, 10, 14, 17, 49, 73, 87, 97, 99, 101, 103, 112, 113, 124, 125, 126, 128, 146, 153, 177, 193, 201, 203, 210, 216, 230, 247, 262, 271], "same": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 19, 20, 21, 22, 23, 25, 32, 40, 43, 44, 47, 49, 51, 52, 53, 55, 58, 59, 60, 65, 73, 78, 80, 85, 87, 95, 97, 98, 99, 101, 102, 103, 105, 108, 109, 111, 112, 118, 119, 122, 123, 124, 125, 127, 129, 132, 133, 135, 137, 138, 139, 141, 144, 145, 146, 147, 149, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 179, 181, 182, 185, 186, 189, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 208, 213, 214, 218, 222, 223, 228, 230, 231, 234, 244, 247, 252, 256, 258, 260, 262, 269, 271], "usual": [1, 5, 6, 8, 19, 23, 43, 58, 59, 60, 61, 99, 100, 102, 103, 113, 117, 124, 125, 128, 129, 130, 133, 135, 136, 144, 147, 152, 156, 157, 159, 166, 195, 205, 230, 237, 247, 260, 269], "former": [1, 5, 61, 79, 127, 128, 165], "lag": [1, 159], "absolut": [1, 6, 7, 10, 82, 99, 126, 156, 160, 208, 234], "dilut": 1, "averag": [1, 3, 19, 49, 52, 61, 82, 87, 97, 113, 115, 123, 127, 128, 129, 135, 137, 143, 146, 154, 159, 160, 163, 165, 166, 168, 176, 177, 182, 197, 198, 231, 247], "associ": [1, 5, 6, 8, 10, 17, 50, 82, 130, 141, 142, 156, 164, 171, 190, 201, 202, 244, 247], "One": [1, 2, 4, 5, 6, 7, 10, 11, 15, 21, 23, 49, 51, 60, 61, 73, 79, 82, 97, 98, 99, 101, 122, 123, 124, 125, 128, 133, 135, 137, 138, 142, 143, 149, 152, 153, 166, 169, 172, 177, 178, 191, 195, 200, 205, 209, 221, 223, 231, 239, 244, 247, 262, 263, 271, 272], "advantag": [1, 3, 6, 14, 17, 23, 49, 60, 85, 95, 98, 107, 120, 122, 125, 135, 136, 153, 159, 172, 177, 182, 185, 192, 201, 209, 220, 222, 226, 234, 247, 257], "match": [1, 4, 5, 10, 14, 17, 19, 20, 22, 49, 51, 58, 59, 60, 61, 68, 75, 76, 92, 97, 105, 108, 111, 112, 113, 134, 137, 138, 142, 144, 147, 149, 152, 154, 159, 162, 172, 173, 174, 182, 185, 190, 192, 195, 197, 201, 219, 220, 230, 239], "exactli": [1, 5, 7, 8, 10, 12, 17, 25, 43, 51, 52, 60, 78, 80, 101, 103, 105, 136, 144, 153, 174, 185, 201], "configur": [1, 4, 5, 6, 14, 18, 19, 20, 22, 23, 24, 42, 49, 50, 60, 61, 82, 113, 122, 124, 131, 133, 142, 144, 149, 152, 157, 159, 162, 168, 171, 176, 183, 184, 199, 200, 208, 212, 219, 220, 221, 225, 254, 266, 275], "pessimist": [1, 159], "bound": [1, 23, 49, 112, 126, 144, 159, 160, 168, 173, 174, 176, 178, 184, 230, 231, 247], "pai": [1, 10, 45, 49, 60, 115], "attent": [1, 7, 10, 42, 45, 49, 115, 118, 119, 121, 124, 136, 166, 184, 185, 193, 252, 254], "create_target_param": 1, "keyword": [1, 5, 156, 159, 171, 237, 244], "argument": [1, 2, 4, 5, 6, 8, 14, 21, 22, 23, 32, 43, 44, 48, 51, 55, 60, 69, 76, 78, 82, 89, 97, 99, 102, 103, 109, 111, 112, 115, 122, 123, 126, 127, 128, 132, 133, 135, 136, 138, 144, 145, 154, 155, 156, 159, 161, 162, 163, 164, 168, 171, 172, 173, 174, 179, 188, 191, 194, 199, 205, 206, 208, 209, 212, 222, 223, 230, 231, 237, 244, 245, 247, 254, 262, 263, 271, 272], "below": [1, 2, 4, 6, 10, 11, 12, 14, 16, 17, 18, 19, 20, 23, 24, 34, 43, 45, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 79, 82, 85, 97, 98, 99, 101, 102, 103, 105, 107, 108, 113, 114, 116, 118, 119, 124, 126, 129, 131, 132, 133, 134, 135, 136, 137, 141, 144, 147, 149, 152, 155, 157, 159, 160, 161, 162, 163, 164, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 184, 185, 186, 188, 190, 191, 192, 193, 195, 202, 203, 204, 211, 212, 213, 214, 216, 218, 219, 221, 222, 223, 225, 226, 228, 230, 231, 234, 237, 247, 252, 253, 258, 262, 271], "tell": [1, 18, 23, 42, 69, 87, 103, 111, 126, 127, 136, 138, 141, 152, 160, 161, 163, 165, 175, 187, 188, 209, 231, 262, 271], "fals": [1, 2, 6, 7, 10, 11, 12, 14, 19, 20, 23, 24, 34, 37, 38, 42, 43, 44, 49, 52, 55, 59, 60, 63, 64, 73, 82, 83, 87, 89, 92, 94, 96, 97, 101, 110, 111, 112, 115, 116, 117, 119, 122, 123, 124, 125, 126, 129, 134, 137, 141, 143, 144, 146, 147, 148, 150, 152, 153, 157, 158, 159, 160, 161, 162, 164, 165, 166, 169, 171, 172, 173, 174, 176, 177, 178, 179, 182, 184, 185, 186, 190, 191, 192, 194, 195, 197, 198, 200, 201, 206, 208, 210, 211, 218, 219, 220, 221, 223, 228, 230, 232, 244, 246, 247, 248, 250, 252, 253, 258, 260, 261, 262, 263, 269, 270, 271, 272], "target_actor_network_param": 1, "attribut": [1, 6, 11, 14, 22, 25, 43, 47, 53, 60, 73, 76, 79, 82, 85, 90, 103, 108, 116, 125, 134, 136, 141, 147, 148, 153, 156, 173, 174, 176, 182, 185, 193, 194, 196, 199, 203, 207, 230, 251, 262, 271], "access": [1, 5, 6, 7, 10, 12, 14, 17, 19, 23, 50, 60, 68, 73, 78, 79, 87, 97, 102, 111, 112, 118, 119, 122, 125, 131, 135, 142, 153, 158, 160, 162, 171, 173, 174, 177, 185, 187, 189, 190, 192, 194, 201, 208, 209, 215, 218, 252, 260, 269], "detach": [1, 2, 6, 9, 11, 12, 13, 20, 32, 52, 73, 89, 90, 95, 101, 105, 108, 137, 150, 154, 165, 181, 185, 229, 244], "def": [1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 33, 34, 37, 38, 44, 45, 47, 49, 51, 52, 53, 55, 60, 64, 65, 67, 73, 75, 78, 79, 85, 87, 89, 90, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 112, 113, 115, 116, 117, 118, 122, 123, 124, 125, 126, 127, 128, 129, 130, 133, 134, 135, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 155, 156, 157, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 183, 184, 185, 186, 187, 189, 193, 194, 195, 197, 198, 199, 200, 201, 202, 203, 205, 208, 209, 210, 211, 212, 213, 214, 215, 216, 218, 219, 221, 223, 226, 228, 230, 231, 233, 234, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 252, 254, 255, 258, 262, 271], "_init": 1, "self": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 24, 25, 33, 34, 37, 38, 44, 45, 47, 49, 51, 52, 53, 55, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 111, 112, 115, 118, 123, 124, 125, 127, 128, 129, 133, 134, 135, 138, 142, 143, 144, 146, 148, 149, 150, 153, 154, 156, 160, 161, 162, 163, 165, 166, 168, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 183, 185, 193, 194, 195, 197, 198, 199, 202, 203, 209, 212, 214, 215, 216, 218, 219, 221, 222, 223, 226, 228, 233, 234, 237, 238, 239, 240, 241, 242, 243, 244, 248, 249, 250, 252], "actor_network": [1, 159], "value_network": [1, 159], "none": [1, 7, 11, 12, 14, 15, 17, 18, 19, 20, 24, 34, 49, 51, 60, 63, 64, 76, 79, 87, 89, 90, 97, 104, 105, 108, 111, 113, 115, 117, 118, 119, 122, 123, 129, 134, 135, 137, 138, 141, 142, 144, 145, 146, 147, 148, 150, 152, 154, 157, 160, 162, 164, 165, 171, 173, 174, 175, 178, 179, 182, 185, 194, 201, 202, 207, 209, 213, 215, 216, 230, 244, 245, 252, 260, 262, 269, 271], "super": [1, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 33, 37, 38, 44, 45, 47, 49, 52, 59, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 109, 111, 112, 115, 118, 123, 125, 127, 128, 129, 133, 134, 138, 142, 143, 146, 148, 149, 150, 153, 154, 156, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 177, 179, 181, 193, 194, 195, 197, 198, 199, 202, 203, 208, 209, 212, 214, 215, 218, 219, 221, 222, 223, 226, 233, 234, 237, 239, 240, 241, 242, 243, 248, 249, 250], "true": [1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 32, 34, 37, 38, 41, 42, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 63, 64, 68, 73, 76, 82, 87, 89, 90, 92, 94, 95, 96, 97, 98, 101, 104, 108, 109, 110, 111, 113, 115, 116, 117, 118, 119, 122, 123, 124, 125, 126, 127, 129, 130, 133, 134, 135, 136, 137, 139, 141, 143, 144, 146, 147, 148, 149, 153, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 179, 182, 184, 185, 186, 187, 188, 190, 191, 192, 193, 194, 197, 198, 199, 200, 201, 203, 204, 205, 206, 208, 211, 212, 213, 214, 218, 220, 221, 222, 223, 224, 225, 228, 229, 230, 231, 234, 236, 238, 244, 250, 252, 253, 254, 255, 256, 257, 258, 260, 263, 269, 272], "compare_against": 1, "list": [1, 5, 6, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 44, 47, 48, 49, 50, 52, 60, 61, 68, 73, 87, 90, 101, 102, 103, 105, 107, 108, 110, 111, 113, 115, 116, 118, 119, 125, 127, 128, 134, 135, 137, 142, 143, 147, 153, 154, 156, 157, 158, 159, 161, 162, 163, 165, 168, 169, 171, 172, 173, 174, 178, 183, 185, 186, 191, 193, 198, 200, 201, 204, 206, 208, 209, 212, 215, 216, 218, 222, 223, 227, 228, 229, 231, 234, 237, 251, 252, 266, 275], "actor_in_kei": 1, "in_kei": [1, 14, 136, 159], "sinc": [1, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 19, 20, 21, 23, 44, 49, 51, 52, 53, 60, 65, 73, 78, 85, 97, 98, 99, 101, 102, 103, 105, 111, 113, 115, 116, 117, 118, 119, 124, 126, 127, 128, 130, 131, 135, 136, 139, 142, 143, 148, 150, 152, 153, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 169, 171, 172, 175, 176, 178, 179, 182, 183, 184, 185, 187, 188, 189, 190, 191, 197, 198, 199, 200, 204, 207, 210, 212, 214, 223, 226, 230, 231, 237, 239, 258, 262, 271], "base": [1, 5, 6, 7, 9, 10, 11, 14, 16, 17, 18, 20, 23, 24, 25, 42, 44, 49, 52, 57, 58, 59, 60, 73, 75, 76, 78, 85, 87, 97, 99, 105, 109, 112, 115, 116, 119, 120, 121, 122, 123, 126, 127, 136, 137, 146, 155, 156, 160, 162, 165, 168, 169, 171, 174, 177, 178, 181, 182, 184, 185, 186, 191, 195, 196, 197, 198, 199, 200, 201, 212, 219, 223, 225, 230, 234, 244, 247, 251, 262, 271], "singl": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 18, 20, 21, 22, 23, 43, 47, 51, 53, 54, 55, 56, 58, 59, 60, 61, 78, 85, 87, 97, 99, 113, 115, 121, 122, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 136, 137, 139, 143, 145, 146, 150, 154, 159, 160, 161, 162, 163, 165, 168, 171, 172, 173, 174, 175, 179, 182, 184, 193, 197, 200, 201, 205, 213, 214, 218, 219, 223, 227, 231, 234, 247, 251, 252, 262, 271], "critic": [1, 52, 73, 85, 132, 216, 223, 228], "actor_crit": 1, "actorcriticwrapp": 1, "loss_funct": [1, 99, 102, 103], "l2": [1, 87, 93, 156], "q": [1, 7, 17, 43, 49, 60, 121, 124, 146, 164, 171, 195, 197, 201, 234], "empir": [1, 150, 159], "bootstrap": [1, 136], "td": [1, 14, 52, 136], "varianc": [1, 6, 19, 159], "bia": [1, 2, 5, 6, 7, 9, 13, 19, 43, 47, 52, 68, 69, 93, 99, 104, 109, 111, 112, 115, 123, 129, 134, 136, 142, 145, 156, 159, 163, 164, 166, 173, 179, 181, 185, 193, 195, 198, 200, 201, 203, 218, 223, 244], "mean": [1, 2, 5, 6, 7, 10, 12, 14, 19, 23, 25, 42, 47, 49, 51, 52, 58, 59, 60, 68, 73, 76, 80, 82, 85, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 109, 111, 112, 115, 116, 117, 122, 124, 126, 127, 129, 135, 137, 139, 143, 146, 147, 149, 153, 157, 158, 159, 160, 162, 163, 164, 165, 166, 168, 169, 171, 173, 174, 182, 185, 187, 189, 190, 191, 193, 197, 198, 200, 204, 205, 206, 207, 210, 214, 228, 229, 231, 234, 237, 238, 247, 252], "obtain": [1, 9, 24, 49, 60, 68, 87, 111, 126, 129, 135, 137, 142, 145, 154, 159, 160, 162, 168, 171, 178], "reward": [1, 4, 14, 136, 146, 159, 160, 161, 163], "noth": [1, 16, 23, 42, 73, 113, 130, 149, 159, 163, 168, 179, 256], "mont": 1, "carlo": 1, "whole": [1, 3, 25, 44, 47, 60, 112, 113, 121, 135, 143, 156, 157, 159, 165, 182, 183, 185, 190, 200, 205, 208, 234], "sequenc": [1, 5, 6, 12, 21, 23, 48, 49, 60, 67, 68, 98, 100, 103, 111, 112, 113, 115, 116, 118, 136, 137, 153, 159, 164, 165, 173, 174, 175, 182, 184, 185, 193, 195, 205, 210, 211, 218, 223, 230, 234, 247, 252, 262, 271], "upcom": 1, "intermedi": [1, 17, 25, 74, 108, 112, 120, 121, 131, 134, 141, 144, 145, 146, 149, 152, 200, 201, 231, 239, 256], "lambda": [1, 5, 7, 17, 20, 22, 49, 90, 104, 115, 116, 125, 143, 158, 160, 161, 172, 173, 174, 201, 205, 230, 231, 246, 254, 262, 271], "compromis": 1, "easi": [1, 2, 5, 6, 9, 23, 24, 44, 45, 51, 58, 59, 60, 61, 68, 80, 95, 97, 99, 122, 124, 126, 135, 142, 143, 145, 150, 153, 159, 168, 176, 183, 186, 195, 201, 205, 209, 220, 231, 257], "valueestim": 1, "enum": 1, "pointer": [1, 5, 6, 22, 23, 98, 162], "defin": [1, 2, 5, 12, 14, 15, 16, 17, 18, 20, 21, 23, 25, 38, 43, 45, 52, 58, 59, 62, 65, 67, 68, 69, 73, 78, 79, 85, 87, 98, 99, 103, 105, 111, 112, 113, 116, 118, 121, 122, 123, 125, 127, 131, 135, 136, 138, 139, 142, 143, 146, 150, 152, 154, 160, 161, 162, 164, 166, 168, 169, 172, 173, 174, 183, 187, 189, 195, 199, 200, 201, 208, 209, 210, 216, 219, 220, 221, 228, 234, 235, 237, 244, 251, 258, 260, 269], "default": [1, 3, 5, 6, 8, 9, 10, 11, 12, 15, 19, 20, 21, 24, 43, 45, 49, 51, 52, 55, 60, 63, 64, 69, 75, 76, 78, 82, 95, 99, 101, 108, 111, 115, 116, 117, 118, 119, 121, 122, 123, 124, 129, 134, 135, 136, 138, 141, 142, 144, 147, 149, 152, 155, 157, 158, 159, 161, 162, 163, 164, 168, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 186, 188, 192, 193, 194, 195, 197, 198, 199, 200, 202, 206, 207, 208, 213, 214, 216, 219, 220, 223, 226, 228, 231, 234, 235, 237, 244, 245, 247, 252, 253, 258, 260, 261, 262, 269, 270, 271], "simplest": [1, 6, 23, 47, 99, 136, 159, 165, 213, 247], "util": [1, 3, 5, 7, 10, 14, 15, 17, 19, 20, 22, 23, 24, 25, 33, 34, 37, 38, 44, 45, 49, 51, 52, 53, 55, 60, 73, 75, 82, 87, 92, 94, 96, 104, 109, 112, 113, 115, 116, 117, 118, 119, 121, 122, 123, 124, 126, 129, 134, 135, 137, 138, 141, 142, 144, 145, 147, 148, 153, 154, 155, 157, 158, 159, 162, 164, 165, 166, 168, 169, 171, 172, 176, 177, 178, 182, 184, 185, 188, 193, 194, 197, 198, 199, 200, 201, 202, 204, 206, 208, 209, 210, 216, 218, 220, 221, 222, 224, 225, 226, 229, 230, 236, 240, 245, 246, 250, 252, 253, 254], "default_value_estim": 1, "td0": 1, "instruct": [1, 6, 7, 19, 23, 24, 42, 108, 113, 115, 116, 118, 127, 128, 136, 137, 141, 156, 157, 159, 161, 163, 165, 176, 177, 182, 194, 197, 198, 199, 206, 207, 208, 213, 219, 220, 226, 229, 234, 246, 247, 256], "queri": [1, 14, 22, 49, 60, 112, 118, 162, 164, 165, 178, 185, 193, 197, 200], "default_value_kwarg": 1, "td0estim": 1, "td1estim": 1, "tdlambdaestim": 1, "make_value_estim": 1, "value_typ": 1, "hyperparam": [1, 201], "hp": 1, "dict": [1, 18, 49, 51, 142, 143, 146, 147, 152, 153, 156, 159, 173, 174, 178, 195, 200, 209, 214, 216, 230, 237, 244], "hasattr": 1, "gamma": [1, 7, 115, 117, 122, 123, 129, 146, 157, 159, 160, 161, 163, 178], "value_kei": 1, "state_action_valu": [1, 160], "td1": 1, "_value_estim": 1, "elif": [1, 12, 16, 19, 49, 52, 60, 134, 137, 146, 147, 150, 156, 185, 216], "gae": [1, 159], "rais": [1, 8, 11, 12, 19, 49, 60, 73, 124, 125, 128, 144, 146, 147, 158, 159, 172, 173, 174, 204, 216, 244, 247], "notimplementederror": [1, 244], "f": [1, 5, 7, 8, 9, 11, 12, 14, 17, 18, 19, 22, 32, 33, 34, 37, 38, 40, 42, 43, 44, 47, 48, 49, 53, 55, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 87, 89, 90, 92, 93, 94, 96, 97, 99, 102, 103, 104, 105, 108, 110, 111, 112, 113, 116, 117, 118, 122, 123, 124, 125, 127, 129, 133, 134, 135, 136, 137, 138, 139, 144, 145, 146, 148, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 178, 181, 182, 184, 185, 186, 187, 188, 193, 195, 197, 198, 201, 204, 205, 210, 212, 213, 214, 215, 216, 219, 221, 226, 231, 233, 234, 237, 239, 240, 241, 242, 243, 244, 246, 248, 249, 250, 254, 255, 256, 257, 258, 262, 271], "tdlambda": 1, "unknown": [1, 49, 60, 75, 116, 213], "set_kei": 1, "central": [1, 8, 73, 102, 103, 131, 257], "quit": [1, 6, 17, 23, 49, 60, 73, 125, 135, 139, 149, 152, 159, 163, 189, 201, 208, 215, 231], "weight": [1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 14, 17, 19, 20, 24, 33, 39, 43, 44, 49, 60, 63, 64, 66, 67, 68, 69, 71, 72, 73, 78, 89, 90, 93, 97, 99, 100, 102, 103, 104, 110, 111, 112, 115, 117, 121, 123, 129, 131, 134, 136, 137, 138, 139, 142, 144, 145, 147, 152, 153, 154, 156, 157, 159, 160, 163, 165, 166, 168, 171, 173, 177, 178, 179, 181, 182, 183, 184, 185, 188, 197, 198, 199, 200, 201, 202, 203, 205, 216, 219, 221, 223, 228, 229, 232, 234, 244, 253, 256, 262, 271], "must": [1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 22, 23, 42, 49, 52, 60, 61, 67, 73, 85, 98, 99, 103, 107, 108, 111, 112, 113, 122, 133, 135, 136, 138, 141, 157, 159, 162, 168, 171, 172, 173, 174, 179, 189, 190, 192, 193, 194, 198, 200, 202, 205, 212, 227, 237, 239, 241, 244, 254, 257, 262, 263, 271, 272], "sure": [1, 4, 5, 6, 8, 10, 11, 14, 19, 22, 51, 57, 58, 59, 60, 87, 97, 98, 99, 103, 108, 112, 113, 115, 118, 123, 124, 128, 133, 135, 136, 137, 139, 143, 149, 157, 159, 161, 171, 185, 188, 190, 192, 194, 200, 205, 212, 213, 220, 229, 230, 237, 245, 247, 254], "otherwis": [1, 8, 10, 12, 14, 17, 19, 23, 55, 82, 85, 112, 113, 123, 125, 130, 133, 136, 141, 144, 145, 147, 152, 159, 160, 162, 198, 201, 205, 206, 212, 230], "mix": [1, 8, 15, 60, 61, 109, 113, 147, 182, 199, 220, 221, 235, 251, 252], "hold_out_param": 1, "_loss_actor": 1, "tensor": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 19, 20, 21, 22, 23, 35, 37, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 57, 58, 59, 60, 61, 62, 64, 65, 67, 68, 69, 70, 73, 75, 77, 78, 81, 85, 88, 89, 91, 92, 93, 96, 97, 98, 99, 102, 103, 104, 105, 108, 109, 112, 115, 116, 117, 118, 121, 122, 123, 128, 129, 130, 133, 134, 135, 136, 137, 138, 139, 141, 144, 145, 146, 147, 149, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 165, 166, 168, 169, 171, 172, 173, 174, 175, 176, 178, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 194, 195, 196, 197, 199, 201, 202, 203, 205, 206, 208, 209, 212, 213, 215, 216, 219, 220, 228, 229, 230, 231, 234, 235, 237, 239, 246, 250, 251, 254, 256], "td_copi": 1, "select": [1, 5, 10, 17, 23, 42, 50, 60, 80, 82, 87, 97, 105, 147, 156, 160, 161, 163, 168, 169, 182, 185, 191, 196, 197, 201, 206, 219, 238, 247, 254, 261, 264, 270, 273], "made": [1, 6, 10, 15, 19, 25, 51, 52, 87, 97, 98, 103, 113, 119, 122, 125, 135, 136, 165, 169, 171, 173, 174, 175, 177, 192, 196, 200, 224, 225, 228, 229, 234, 247, 262, 271], "pass": [1, 2, 3, 4, 6, 8, 10, 12, 13, 14, 15, 16, 19, 22, 23, 25, 43, 44, 49, 51, 52, 53, 56, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 82, 85, 87, 97, 98, 99, 101, 102, 103, 111, 112, 113, 115, 116, 118, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 133, 134, 135, 136, 138, 141, 143, 146, 147, 149, 150, 153, 154, 156, 159, 160, 161, 162, 163, 165, 166, 168, 171, 172, 173, 174, 179, 183, 184, 185, 187, 189, 192, 193, 194, 195, 198, 200, 202, 211, 212, 213, 214, 216, 219, 222, 230, 231, 237, 238, 239, 244, 247, 252, 258], "param": [1, 7, 14, 16, 19, 33, 43, 47, 51, 68, 85, 93, 99, 111, 112, 117, 122, 123, 130, 133, 135, 138, 141, 150, 154, 157, 162, 163, 178, 179, 189, 216, 231, 244, 247, 252, 257, 258], "actor_network_param": 1, "value_network_param": 1, "reli": [1, 3, 6, 8, 14, 23, 49, 103, 125, 146, 152, 156, 159, 191, 204, 207, 212, 247], "distance_loss": 1, "_loss_valu": 1, "v": [1, 2, 7, 9, 19, 24, 32, 37, 43, 49, 52, 53, 55, 60, 89, 101, 102, 103, 105, 108, 124, 137, 141, 147, 150, 154, 160, 162, 168, 178, 181, 183, 189, 192, 200, 205, 208, 209, 263, 272], "pred_val": 1, "squeez": [1, 9, 10, 12, 14, 34, 49, 60, 73, 90, 95, 110, 137, 146, 149, 150, 165, 169, 178, 184, 185, 229], "manual": [1, 5, 8, 12, 22, 23, 47, 49, 53, 63, 64, 69, 97, 111, 112, 130, 136, 138, 141, 153, 154, 157, 182, 183, 185, 193, 198, 207, 212, 215, 226, 230, 261, 262, 270, 271], "reconstruct": 1, "first": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32, 40, 42, 44, 45, 49, 50, 51, 52, 53, 55, 58, 59, 60, 61, 68, 69, 73, 76, 78, 79, 80, 82, 83, 85, 87, 97, 99, 101, 102, 103, 109, 111, 112, 113, 115, 116, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 133, 134, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 149, 150, 152, 154, 155, 156, 157, 159, 160, 161, 162, 163, 165, 168, 171, 172, 173, 174, 175, 178, 179, 182, 184, 185, 187, 188, 189, 191, 192, 193, 194, 195, 197, 198, 200, 201, 203, 205, 208, 212, 213, 214, 215, 216, 218, 219, 221, 222, 223, 225, 230, 231, 234, 237, 244, 247, 254, 262, 263, 271, 272], "belong": [1, 7, 127, 137, 213, 262, 271], "second": [1, 4, 5, 6, 7, 8, 9, 12, 13, 14, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 123, 125, 126, 127, 128, 129, 130, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 156, 159, 160, 164, 165, 166, 167, 168, 169, 170, 172, 173, 174, 175, 176, 178, 181, 184, 185, 189, 190, 191, 192, 193, 195, 200, 203, 205, 211, 212, 218, 221, 223, 224, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255, 262, 271], "target_param": 1, "target_value_network_param": 1, "batch_siz": [1, 5, 6, 7, 14, 16, 17, 19, 20, 24, 34, 37, 38, 44, 45, 49, 51, 52, 55, 60, 73, 75, 78, 87, 89, 92, 94, 96, 97, 104, 110, 113, 115, 116, 117, 118, 122, 123, 124, 126, 129, 134, 135, 136, 137, 145, 146, 148, 149, 152, 154, 157, 159, 160, 161, 162, 164, 165, 166, 168, 169, 171, 175, 176, 177, 178, 182, 185, 193, 197, 198, 201, 205, 220, 221, 230, 234, 236, 250, 253], "target_valu": 1, "value_estim": 1, "l1": [1, 17, 87, 156, 177, 201], "smooth": [1, 6, 97, 171], "loss_valu": [1, 159], "td_error": 1, "pow": [1, 2, 5, 32, 63, 64, 68, 69, 72, 89, 111, 125, 189], "miss": [1, 51, 112, 113, 133, 136, 168, 172, 177, 190, 204, 222, 230, 262, 271], "glue": [1, 137, 163], "cost": [1, 5, 14, 49, 52, 97, 99, 109, 122, 123, 124, 125, 150, 168, 194, 223, 232, 247], "deliv": [1, 42, 177, 207, 220, 254], "tensordictbas": [1, 14], "_forward": 1, "input_tensordict": 1, "unsqueez": [1, 2, 7, 12, 14, 47, 49, 58, 59, 60, 68, 69, 78, 90, 94, 95, 104, 110, 111, 117, 118, 129, 136, 139, 146, 150, 154, 158, 160, 161, 163, 165, 169, 204, 206, 229], "ndimens": 1, "inplac": [1, 12, 19, 20, 52, 110, 123, 134, 157, 173, 174, 181, 195, 201, 218, 223, 228], "loss_actor": 1, "pred_valu": 1, "pred_value_max": 1, "max": [1, 10, 11, 17, 19, 44, 49, 52, 58, 59, 60, 73, 75, 82, 87, 92, 95, 97, 98, 104, 117, 118, 123, 126, 129, 135, 136, 137, 139, 146, 157, 159, 160, 164, 166, 169, 171, 173, 174, 178, 182, 184, 185, 193, 197, 198, 200, 201, 213, 230, 247, 258, 260, 269], "target_value_max": 1, "ddpgloss": 1, "most": [1, 2, 4, 5, 11, 14, 17, 22, 23, 25, 42, 43, 49, 51, 52, 58, 59, 60, 73, 75, 87, 99, 101, 102, 109, 112, 117, 120, 123, 124, 125, 126, 128, 129, 130, 135, 137, 142, 143, 144, 146, 147, 152, 157, 158, 159, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 175, 176, 177, 182, 191, 192, 194, 195, 197, 198, 200, 201, 208, 213, 220, 221, 223, 229, 244, 247], "taken": [1, 6, 8, 14, 19, 22, 25, 60, 82, 83, 113, 119, 136, 139, 143, 152, 159, 160, 171, 184, 185, 234, 239, 262, 271], "condit": [1, 14, 49, 55, 65, 102, 111, 113, 115, 123, 135, 137, 153, 172, 173, 174, 202, 216, 262, 271], "remaind": [1, 7, 9, 134, 141, 181], "cheetah": 1, "goal": [1, 6, 14, 15, 44, 49, 52, 58, 61, 73, 85, 97, 125, 126, 135, 136, 143, 159, 161, 163, 176, 189, 221], "half": [1, 7, 8, 17, 95, 117, 147, 176, 177, 201, 230, 258, 262, 271], "dm_control": 1, "gym": [1, 14, 121, 136, 146, 159, 160, 161, 163], "env": [1, 18, 132, 135, 136, 146, 159, 160, 161, 163, 187, 194, 206, 208, 231, 246], "gymenv": [1, 136, 159], "halfcheetah": 1, "v4": [1, 159], "dmcontrolenv": 1, "By": [1, 8, 17, 19, 25, 43, 60, 63, 64, 76, 82, 87, 101, 103, 111, 113, 122, 124, 126, 135, 138, 141, 143, 144, 152, 156, 160, 168, 173, 174, 176, 177, 186, 190, 192, 193, 194, 201, 206, 213, 214, 226, 247, 252, 254, 260, 269], "disabl": [1, 9, 11, 15, 42, 122, 123, 146, 148, 150, 158, 162, 164, 168, 181, 184, 189, 190, 191, 192, 198, 204, 206, 214, 230, 252, 260, 261, 269, 270], "render": [1, 6, 58, 82, 90, 126, 146, 159, 260, 269], "easier": [1, 17, 18, 23, 24, 50, 51, 58, 98, 123, 126, 143, 144, 152, 161, 165, 169, 176, 184, 189, 192, 194, 200, 201, 205, 214, 216, 231, 254], "than": [1, 3, 5, 6, 8, 10, 11, 12, 13, 14, 17, 19, 23, 25, 44, 48, 49, 50, 52, 53, 60, 67, 69, 73, 82, 85, 95, 97, 98, 99, 101, 103, 105, 112, 113, 116, 117, 121, 122, 123, 126, 128, 129, 132, 133, 135, 138, 143, 144, 145, 146, 149, 150, 152, 153, 154, 158, 159, 160, 161, 168, 169, 171, 172, 177, 178, 182, 184, 188, 189, 193, 194, 195, 197, 201, 203, 204, 206, 207, 209, 223, 228, 231, 234, 237, 247, 261, 262, 270, 271], "focu": [1, 6, 7, 10, 18, 58, 59, 97, 99, 107, 122, 124, 125, 137, 139, 159, 161, 163, 165, 177, 184, 190, 221, 234], "from_pixel": [1, 136], "pixels_onli": 1, "make_env": 1, "helper": [1, 5, 8, 9, 14, 16, 17, 23, 47, 51, 55, 59, 97, 98, 110, 118, 122, 123, 126, 127, 128, 129, 134, 135, 136, 160, 161, 162, 163, 165, 166, 169, 171, 178, 201, 208, 210, 211], "either": [1, 2, 4, 5, 6, 8, 17, 19, 23, 42, 44, 49, 60, 65, 87, 97, 105, 111, 112, 113, 117, 122, 124, 133, 136, 137, 147, 156, 160, 161, 162, 168, 172, 182, 185, 192, 193, 198, 199, 201, 203, 209, 213, 216, 220, 221, 224, 225, 226, 230, 244, 247, 254, 256, 260, 262, 269, 271], "backend": [1, 5, 6, 7, 11, 14, 16, 18, 20, 24, 25, 33, 38, 53, 55, 61, 105, 117, 119, 120, 121, 126, 129, 132, 133, 136, 137, 147, 150, 158, 159, 168, 172, 174, 175, 177, 187, 188, 194, 196, 200, 207, 212, 219, 223, 228, 230, 251, 252, 261, 270], "consid": [1, 6, 10, 11, 14, 23, 49, 60, 61, 68, 73, 82, 111, 115, 116, 123, 130, 133, 135, 141, 147, 150, 152, 153, 155, 157, 161, 165, 168, 172, 178, 189, 190, 191, 205, 223, 237, 239, 252], "dm": [1, 127, 128, 165], "lib": [1, 4, 5, 6, 10, 18, 22, 23, 108, 136, 144, 159, 187, 204, 208, 220, 246], "env_librari": 1, "env_nam": [1, 82, 159], "global": [1, 5, 6, 17, 25, 49, 56, 60, 87, 124, 138, 144, 145, 149, 152, 154, 160, 162, 164, 166, 173, 174, 182, 184, 201, 210, 212, 216, 230, 231, 232, 244, 246, 247, 252], "env_task": 1, "env_arg": 1, "env_kwarg": 1, "frame_skip": [1, 159], "modifi": [1, 3, 6, 10, 11, 14, 19, 43, 44, 49, 52, 58, 59, 73, 78, 97, 98, 118, 119, 124, 135, 139, 142, 143, 144, 155, 156, 157, 159, 161, 165, 173, 174, 179, 188, 195, 203, 213, 223, 244, 247, 263, 272], "represent": [1, 4, 10, 14, 23, 25, 43, 52, 60, 85, 97, 99, 102, 103, 105, 108, 110, 112, 121, 126, 137, 142, 143, 146, 165, 168, 169, 173, 174, 175, 193, 196, 197, 200, 203, 209, 216, 231, 234, 244, 256], "friendli": [1, 4, 15, 23, 177, 216, 230], "append": [1, 7, 8, 9, 12, 14, 16, 17, 18, 19, 21, 49, 52, 60, 73, 98, 103, 109, 112, 115, 118, 122, 125, 127, 128, 129, 134, 135, 136, 137, 143, 146, 148, 149, 156, 159, 160, 161, 162, 163, 164, 165, 169, 172, 178, 181, 182, 185, 197, 198, 201, 216, 230, 231], "special": [1, 7, 10, 18, 22, 23, 48, 60, 73, 99, 101, 103, 113, 115, 116, 118, 125, 136, 147, 155, 156, 168, 171, 173, 174, 182, 193, 197, 202, 244, 252], "torchr": 1, "transformedenv": [1, 14, 136, 159], "common": [1, 4, 6, 8, 10, 14, 17, 19, 44, 49, 51, 60, 61, 82, 95, 97, 99, 101, 103, 112, 117, 121, 124, 133, 134, 137, 143, 146, 153, 156, 157, 158, 159, 164, 171, 175, 178, 183, 187, 191, 193, 201, 216, 221, 231, 232, 246, 247, 262, 271], "rescal": [1, 51, 178, 184], "heurist": [1, 82, 200, 219, 254], "multipli": [1, 5, 12, 19, 48, 49, 60, 95, 104, 127, 142, 165, 176, 177, 231, 234], "5": [1, 2, 3, 5, 6, 7, 9, 11, 14, 17, 20, 23, 24, 32, 34, 36, 37, 38, 40, 43, 45, 47, 48, 49, 52, 60, 64, 65, 73, 75, 78, 80, 82, 85, 87, 89, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 109, 110, 111, 112, 113, 114, 115, 116, 118, 122, 123, 125, 126, 127, 129, 133, 135, 137, 138, 141, 142, 143, 144, 146, 147, 149, 150, 153, 154, 156, 157, 158, 161, 162, 163, 164, 165, 166, 171, 172, 173, 174, 176, 177, 178, 181, 187, 189, 190, 191, 192, 193, 194, 195, 197, 198, 201, 202, 203, 205, 207, 208, 210, 211, 213, 215, 218, 219, 220, 221, 224, 226, 227, 233, 239, 243, 244, 245, 247, 248, 249, 253, 256, 257, 262, 263, 266, 271, 272, 275], "interfac": [1, 4, 5, 6, 14, 15, 20, 22, 23, 25, 49, 60, 126, 132, 135, 159, 171, 186, 194, 209, 220, 226], "simul": [1, 17, 18, 19, 59, 119, 159, 160, 201, 204, 215, 222], "doubl": [1, 2, 5, 6, 13, 23, 58, 80, 95, 104, 109, 117, 121, 125, 129, 136, 137, 141, 146, 154, 157, 159, 169, 185, 192, 219, 230, 262, 271], "precis": [1, 4, 8, 10, 15, 20, 61, 125, 129, 130, 137, 147, 159, 169, 177, 182, 185, 188, 199, 219, 220, 221, 234, 235, 251], "number": [1, 5, 6, 7, 9, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 42, 44, 49, 51, 52, 53, 55, 58, 60, 65, 82, 85, 87, 97, 99, 101, 103, 109, 112, 115, 116, 122, 123, 124, 125, 126, 127, 132, 133, 134, 135, 136, 137, 138, 139, 141, 144, 145, 148, 149, 150, 153, 156, 157, 158, 159, 160, 161, 162, 163, 168, 171, 172, 175, 178, 184, 185, 187, 188, 192, 193, 198, 199, 205, 206, 210, 213, 214, 219, 223, 228, 231, 234, 247, 255, 260, 269], "presum": 1, "ones": [1, 2, 4, 6, 11, 12, 14, 19, 21, 32, 40, 48, 49, 60, 76, 80, 85, 89, 92, 95, 97, 110, 113, 118, 125, 135, 138, 143, 153, 154, 155, 157, 159, 160, 168, 173, 174, 177, 178, 179, 190, 191, 198, 202, 209, 216, 220, 231, 246, 255, 262, 271], "goe": [1, 4, 5, 23, 51, 95, 98, 99, 130, 145, 155, 159, 162, 213, 228, 262, 271], "wai": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 20, 21, 22, 25, 32, 43, 44, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 67, 73, 78, 80, 82, 87, 95, 98, 99, 101, 103, 105, 108, 110, 112, 113, 115, 120, 123, 124, 125, 126, 127, 130, 132, 133, 139, 141, 142, 143, 144, 145, 146, 147, 149, 150, 152, 153, 156, 157, 159, 161, 162, 164, 166, 169, 173, 174, 175, 178, 179, 184, 185, 190, 191, 192, 193, 195, 196, 197, 198, 200, 202, 204, 209, 213, 214, 216, 222, 223, 229, 232, 234, 239, 240, 244, 247, 252], "doubletofloat": [1, 159], "refer": [1, 4, 5, 6, 8, 13, 15, 16, 17, 21, 22, 23, 24, 25, 49, 59, 60, 61, 73, 76, 82, 85, 97, 99, 101, 102, 103, 105, 107, 108, 109, 112, 113, 118, 122, 123, 124, 125, 127, 128, 132, 133, 144, 149, 152, 156, 157, 159, 161, 162, 163, 168, 171, 173, 174, 177, 178, 185, 188, 189, 192, 194, 197, 198, 199, 201, 204, 208, 209, 219, 221, 222, 224, 225, 229, 230, 231, 237, 244, 247, 252, 254, 256, 257, 261, 266, 270, 275], "float": [1, 5, 6, 7, 8, 9, 11, 12, 13, 19, 23, 37, 38, 40, 41, 44, 48, 51, 52, 58, 59, 63, 64, 72, 73, 80, 89, 95, 101, 103, 104, 108, 109, 111, 118, 122, 123, 124, 126, 135, 137, 143, 144, 146, 147, 148, 155, 156, 157, 160, 161, 163, 164, 166, 178, 179, 181, 184, 185, 186, 189, 190, 191, 192, 193, 194, 197, 198, 200, 206, 208, 216, 218, 219, 221, 223, 228, 230, 234, 238, 244], "in_keys_inv": [1, 14], "befor": [1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 16, 19, 20, 22, 23, 25, 32, 33, 42, 43, 44, 45, 47, 49, 51, 52, 55, 58, 59, 60, 68, 69, 73, 85, 95, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 111, 112, 113, 115, 117, 119, 122, 124, 126, 127, 129, 133, 135, 136, 137, 139, 141, 144, 146, 149, 152, 153, 156, 157, 158, 159, 161, 162, 163, 165, 168, 169, 172, 173, 174, 176, 177, 178, 179, 182, 183, 185, 187, 189, 190, 192, 195, 197, 198, 200, 215, 218, 224, 225, 227, 228, 230, 231, 237, 241, 244, 245, 247, 251, 252, 254, 258], "concaten": [1, 14, 48, 49, 60, 79, 101, 102, 110, 115, 124, 128, 134, 160, 197], "cattensor": [1, 14], "leav": [1, 8, 17, 43, 49, 51, 53, 60, 61, 85, 113, 126, 152, 153, 158, 201, 204, 219, 222, 244], "constant": [1, 2, 6, 17, 20, 23, 25, 48, 58, 60, 82, 87, 99, 108, 113, 119, 136, 153, 159, 160, 169, 172, 174, 177, 185, 197, 201, 247, 252], "envcreat": 1, "inittrack": [1, 136], "observationnorm": [1, 136, 159], "parallelenv": [1, 159], "rewardsc": [1, 136], "stepcount": [1, 136, 159], "make_transformed_env": 1, "scale": [1, 6, 12, 19, 51, 56, 61, 73, 97, 105, 112, 120, 121, 122, 123, 126, 135, 136, 146, 159, 160, 166, 177, 178, 179, 184, 185, 200, 221, 230, 234, 244, 247, 254, 256, 257], "base_env": [1, 159], "syntax": [1, 3, 23, 25, 48, 60, 84, 86, 99, 112, 121], "append_transform": [1, 14, 136], "loc": [1, 20, 83, 133, 136, 159, 165, 230], "reward_sc": 1, "observation_vector": 1, "renam": [1, 179, 182, 187, 197, 198], "facilit": [1, 11, 14, 49, 60, 97, 112, 121, 124, 136, 193], "downstream": [1, 6, 113, 171], "oper": [1, 4, 6, 13, 14, 15, 17, 18, 19, 20, 21, 25, 42, 43, 45, 47, 49, 51, 60, 61, 63, 64, 65, 67, 68, 76, 80, 82, 83, 85, 92, 97, 98, 99, 103, 105, 107, 109, 110, 111, 116, 118, 121, 123, 124, 125, 127, 130, 135, 136, 137, 138, 141, 142, 144, 145, 147, 149, 150, 154, 155, 158, 159, 161, 165, 168, 169, 171, 172, 173, 174, 176, 182, 183, 184, 185, 187, 188, 189, 190, 194, 196, 197, 198, 199, 201, 203, 204, 205, 206, 214, 216, 219, 220, 222, 226, 228, 229, 230, 231, 234, 237, 238, 239, 246, 251, 252, 258], "vector": [1, 2, 4, 5, 6, 12, 14, 22, 23, 32, 49, 52, 60, 82, 97, 99, 101, 102, 103, 110, 115, 127, 128, 136, 137, 141, 144, 154, 155, 165, 177, 186, 199, 205, 207, 208, 219, 220, 234, 247, 254, 256], "snippet": [1, 10, 21, 58, 59, 122, 123, 135, 144, 155, 164, 176, 185, 189, 197, 198, 208, 215, 222, 228, 230, 237, 246, 247, 252, 257], "selected_kei": 1, "observation_spec": [1, 14, 159], "out_kei": [1, 14, 136, 159], "instanti": [1, 5, 6, 10, 14, 21, 22, 25, 51, 52, 65, 67, 78, 85, 97, 105, 111, 113, 118, 126, 155, 156, 160, 171, 175, 202, 234, 237], "stateless": [1, 14, 22, 138, 141], "standard_norm": [1, 136], "max_frames_per_traj": [1, 159], "marker": [1, 51, 128], "ornstein": 1, "uhlenbeck": 1, "ou": 1, "significantli": [1, 19, 102, 119, 120, 124, 129, 149, 172, 176, 184, 197, 199, 203, 228, 234, 239, 247, 260, 269], "speed": [1, 5, 6, 10, 14, 19, 48, 49, 61, 85, 97, 120, 121, 122, 124, 131, 136, 138, 144, 147, 158, 159, 161, 164, 172, 176, 184, 185, 186, 196, 203, 207, 212, 216, 223, 228, 231, 234, 245, 247, 251], "throughput": [1, 122, 177, 234, 247], "whether": [1, 6, 8, 10, 11, 14, 20, 22, 49, 52, 95, 97, 105, 108, 112, 126, 130, 135, 137, 143, 146, 152, 159, 161, 168, 169, 171, 179, 192, 231, 247, 261, 270], "individu": [1, 5, 6, 12, 21, 25, 49, 78, 85, 110, 115, 124, 126, 129, 143, 149, 154, 156, 162, 165, 169, 179, 213, 226, 230, 231, 247], "approach": [1, 4, 5, 6, 22, 23, 25, 56, 107, 112, 131, 139, 149, 153, 154, 159, 162, 165, 178, 183, 189, 192, 199, 204, 205, 208, 221, 223, 228, 231, 234, 244], "num_work": [1, 24, 44, 51, 52, 87, 92, 94, 97, 117, 122, 123, 129, 157, 166, 168, 169, 176, 178, 247, 250], "leverag": [1, 6, 49, 73, 97, 107, 108, 112, 121, 122, 124, 133, 135, 145, 178, 186, 188, 196, 199, 215, 216, 222, 247, 251, 257], "capabl": [1, 3, 11, 15, 17, 49, 60, 73, 124, 164, 168, 197, 199, 201, 207, 210, 211, 222, 230], "pytorch": [1, 2, 7, 8, 9, 11, 14, 17, 18, 21, 23, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 44, 45, 48, 49, 51, 52, 53, 55, 56, 58, 59, 60, 62, 66, 70, 73, 74, 75, 77, 78, 79, 80, 83, 84, 85, 87, 89, 90, 97, 98, 104, 106, 107, 112, 113, 114, 115, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 136, 138, 139, 140, 141, 142, 143, 144, 145, 146, 148, 149, 150, 152, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 169, 170, 172, 173, 174, 175, 178, 181, 182, 183, 184, 186, 187, 189, 190, 191, 192, 193, 194, 201, 203, 204, 205, 210, 211, 212, 213, 214, 215, 216, 218, 222, 228, 229, 230, 232, 234, 237, 244, 246, 250, 252, 254, 255, 256, 258], "adopt": [1, 20, 24, 61, 152, 155, 162, 221], "parallel_env_constructor": 1, "env_per_collector": 1, "transform_state_dict": 1, "make_t_env": 1, "init_stat": [1, 136, 159], "copy_": [1, 3, 40, 48, 109, 144, 161, 166, 237, 244], "env_creat": 1, "parallel_env": 1, "create_env_fn": 1, "create_env_kwarg": 1, "pin_memori": [1, 122, 123, 125, 129, 247], "limit": [1, 4, 6, 9, 10, 11, 14, 15, 17, 19, 49, 73, 119, 123, 124, 136, 137, 138, 146, 147, 149, 154, 165, 172, 173, 174, 177, 182, 184, 185, 187, 188, 194, 197, 201, 223, 228, 231, 234, 244, 261, 270], "lazi": [1, 59], "cat_dim": [1, 136, 159], "reduce_dim": [1, 136, 159], "load_state_dict": [1, 9, 19, 20, 38, 39, 44, 49, 53, 60, 73, 87, 96, 97, 112, 117, 121, 133, 146, 157, 160, 171, 181, 182, 197, 198, 214, 221, 230, 235, 240, 241, 242, 243, 248], "frame": [1, 6, 107, 136, 146, 158, 159, 168], "count": [1, 6, 11, 19, 22, 42, 44, 49, 60, 61, 82, 99, 103, 135, 136, 148, 159, 160, 163, 165, 168, 171, 177, 182, 197, 198, 246], "frames_per_batch": [1, 136, 159], "total_fram": [1, 136, 159], "adjust": [1, 7, 14, 19, 43, 49, 52, 73, 115, 124, 126, 150, 161, 194, 262, 271], "total": [1, 5, 7, 9, 11, 12, 13, 14, 16, 17, 20, 21, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 122, 125, 126, 127, 128, 129, 135, 136, 137, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 158, 159, 160, 162, 164, 165, 166, 168, 171, 172, 174, 176, 178, 181, 182, 184, 185, 189, 190, 191, 192, 193, 195, 203, 205, 211, 212, 219, 221, 224, 225, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "unchang": [1, 8, 83, 209], "seem": [1, 44, 52, 113, 125, 127, 136, 231], "cheat": [1, 121, 165], "compar": [1, 5, 10, 15, 17, 19, 20, 23, 44, 58, 59, 61, 83, 97, 102, 108, 116, 117, 123, 124, 126, 127, 135, 137, 143, 144, 145, 147, 150, 152, 154, 156, 159, 161, 163, 165, 168, 171, 172, 173, 174, 176, 177, 181, 182, 184, 186, 189, 196, 197, 199, 200, 201, 207, 212, 219, 220, 223, 228, 234, 237, 245, 247, 251], "dataset": [1, 6, 9, 17, 24, 33, 34, 35, 37, 38, 41, 42, 43, 44, 47, 49, 52, 53, 55, 57, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 99, 116, 117, 118, 119, 120, 122, 123, 126, 127, 128, 129, 131, 135, 138, 148, 154, 157, 158, 162, 164, 165, 166, 168, 169, 171, 175, 181, 195, 199, 201, 213, 220, 221, 233, 234, 236, 247, 250, 253], "10m": 1, "element": [1, 5, 6, 7, 9, 12, 17, 19, 40, 48, 49, 58, 59, 73, 76, 95, 99, 101, 102, 103, 116, 125, 135, 144, 150, 153, 159, 160, 171, 173, 174, 178, 181, 190, 191, 192, 193, 201, 223, 231, 262, 263, 266, 271, 272, 275], "anoth": [1, 4, 5, 7, 8, 11, 14, 20, 21, 23, 25, 43, 48, 49, 52, 59, 60, 63, 73, 80, 85, 98, 102, 108, 109, 112, 113, 115, 121, 128, 129, 130, 132, 135, 136, 141, 142, 153, 156, 159, 161, 162, 163, 164, 165, 172, 174, 176, 178, 179, 182, 184, 188, 195, 197, 200, 206, 213, 228, 229, 231, 247, 252, 262, 263, 271, 272], "ratio": [1, 51, 82, 97, 115, 144, 159, 168, 178, 195], "interact": [1, 5, 6, 14, 49, 51, 60, 117, 126, 130, 146, 159, 162, 166, 169, 172, 173, 174, 197, 262, 271], "nutshel": [1, 191], "cautiou": 1, "deal": [1, 5, 44, 49, 51, 52, 60, 97, 110, 112, 122, 145, 159, 221], "lead": [1, 5, 6, 14, 49, 52, 61, 73, 79, 82, 87, 97, 115, 119, 130, 136, 138, 149, 157, 191, 205, 244, 247, 262, 271], "bias": [1, 33, 43, 97, 112, 164, 244], "comparison": [1, 9, 17, 21, 83, 95, 97, 98, 123, 137, 144, 145, 176, 181, 184, 189, 191, 193, 195, 201, 204, 222], "help": [1, 5, 8, 10, 15, 17, 18, 19, 22, 23, 32, 43, 49, 52, 58, 59, 60, 61, 68, 82, 87, 97, 98, 101, 102, 103, 112, 113, 120, 121, 122, 123, 126, 132, 133, 134, 136, 137, 138, 144, 145, 148, 150, 152, 155, 159, 161, 162, 163, 164, 165, 171, 176, 177, 184, 185, 190, 191, 192, 193, 197, 201, 205, 210, 212, 214, 215, 216, 221, 222, 223, 226, 227, 229, 230, 231, 245, 247, 254, 255, 257], "signal": [1, 13, 43, 133, 159, 161, 195, 234], "magnitud": [1, 17, 42, 156, 201, 230], "truncat": [1, 17, 109, 113, 144, 159, 160, 201], "A": [1, 5, 6, 7, 8, 11, 12, 14, 16, 17, 21, 22, 25, 42, 47, 48, 49, 51, 52, 53, 55, 57, 60, 63, 64, 67, 68, 69, 73, 78, 82, 83, 92, 97, 99, 101, 102, 103, 110, 112, 113, 115, 120, 121, 125, 126, 127, 128, 130, 131, 135, 138, 142, 143, 146, 149, 152, 153, 154, 159, 160, 161, 162, 164, 165, 166, 169, 171, 173, 174, 175, 176, 177, 193, 197, 201, 219, 220, 222, 228, 231, 237, 244, 247, 252, 254, 256, 263, 272], "thousand": [1, 103, 120, 124, 127, 136, 165, 171], "500": [1, 6, 17, 24, 49, 52, 60, 75, 109, 115, 128, 145, 147, 160, 163, 166, 178, 231], "statist": [1, 44, 52, 87, 117, 121, 129, 142, 143, 156, 157, 159, 165, 168, 169, 171, 177, 182, 195, 197, 198, 221, 231], "arbitrari": [1, 5, 8, 14, 64, 67, 78, 97, 102, 111, 122, 138, 146, 154, 169, 172, 175, 195, 239], "random": [1, 6, 14, 16, 19, 20, 21, 25, 40, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 71, 72, 73, 76, 78, 80, 92, 95, 101, 102, 105, 109, 110, 111, 116, 117, 122, 123, 126, 127, 128, 133, 134, 135, 137, 138, 146, 149, 150, 152, 153, 156, 157, 159, 160, 161, 163, 164, 165, 169, 172, 182, 185, 193, 197, 198, 209, 212, 231, 234, 239, 247], "standard": [1, 5, 8, 20, 23, 25, 44, 48, 52, 60, 61, 73, 82, 87, 92, 97, 98, 99, 105, 107, 108, 113, 135, 139, 149, 158, 166, 172, 173, 174, 178, 184, 193, 209, 213, 223, 234, 247, 257, 262, 271], "deviat": [1, 73, 82, 92, 97, 139, 149], "purpos": [1, 5, 20, 21, 22, 57, 73, 78, 85, 115, 118, 123, 125, 126, 128, 135, 136, 142, 143, 144, 152, 158, 159, 162, 163, 168, 172, 182, 184, 190, 197, 214, 221, 234, 244, 247], "summari": [1, 82, 103, 126, 136, 143, 159, 168, 173, 176, 197, 245, 246], "over": [1, 4, 5, 6, 7, 10, 11, 14, 17, 18, 19, 20, 22, 23, 34, 44, 47, 48, 49, 50, 51, 52, 53, 60, 61, 73, 75, 78, 79, 87, 97, 98, 99, 101, 102, 103, 109, 113, 117, 121, 122, 123, 124, 127, 129, 132, 133, 135, 138, 142, 143, 144, 145, 146, 147, 150, 154, 156, 157, 159, 160, 161, 162, 163, 164, 165, 168, 169, 171, 172, 174, 176, 178, 182, 184, 185, 187, 194, 197, 198, 201, 205, 219, 230, 234, 247, 250, 252, 262, 271], "get_env_stat": 1, "proof_env": 1, "init_env_step": 1, "state_dict": [1, 9, 19, 38, 39, 44, 49, 53, 55, 87, 96, 97, 117, 122, 123, 133, 137, 146, 156, 157, 160, 181, 182, 195, 197, 198, 214, 220, 228, 230, 233, 234, 235, 237, 240, 241, 243, 244, 248, 251], "close": [1, 4, 6, 9, 14, 17, 19, 23, 52, 61, 94, 97, 98, 115, 122, 126, 137, 149, 152, 169, 181, 185, 201, 245, 247, 252], "5000": [1, 2, 7, 118, 127, 128, 139, 213, 231], "earlier": [1, 4, 5, 6, 22, 23, 73, 98, 99, 102, 116, 123, 124, 136, 152, 159, 165, 173, 174, 177, 223, 230, 231], "compositespec": [1, 14], "turn": [1, 4, 5, 6, 7, 8, 9, 14, 15, 19, 20, 23, 25, 49, 98, 102, 103, 109, 113, 126, 128, 136, 145, 152, 153, 156, 161, 165, 181, 186, 190, 191, 199, 213, 216, 256], "seen": [1, 7, 10, 11, 18, 19, 44, 47, 49, 51, 97, 102, 103, 109, 113, 116, 118, 136, 143, 154, 162, 172, 173, 174, 231, 262, 263, 271, 272], "requir": [1, 2, 4, 5, 6, 8, 10, 12, 14, 15, 18, 19, 20, 22, 23, 24, 25, 43, 49, 50, 51, 52, 55, 60, 61, 75, 83, 85, 87, 103, 107, 108, 113, 115, 116, 119, 123, 124, 126, 128, 129, 130, 132, 133, 134, 135, 136, 137, 138, 139, 141, 142, 145, 148, 149, 150, 152, 153, 154, 157, 158, 159, 161, 162, 163, 164, 165, 171, 172, 173, 174, 175, 176, 177, 178, 181, 182, 183, 184, 185, 186, 190, 191, 192, 194, 200, 202, 205, 207, 208, 209, 210, 211, 214, 215, 219, 220, 221, 222, 224, 230, 232, 237, 238, 244, 247, 255, 257, 260, 269], "recal": [1, 6, 23, 52, 60, 98, 103, 133, 137, 159, 169, 173, 174, 190, 191, 192, 244], "wrap": [1, 5, 6, 7, 9, 10, 16, 22, 25, 45, 60, 63, 76, 79, 87, 98, 99, 101, 102, 103, 105, 109, 110, 111, 123, 125, 129, 133, 136, 142, 146, 157, 159, 162, 163, 171, 173, 174, 175, 181, 183, 194, 199, 210, 211, 213, 214, 226, 230, 234, 258, 262, 265, 271, 274], "flow": [1, 4, 5, 14, 21, 23, 25, 43, 52, 60, 66, 85, 97, 110, 111, 113, 159, 160, 168, 172, 182, 183, 185, 197, 198, 199, 208, 247, 252, 262, 271], "handl": [1, 5, 8, 10, 23, 49, 52, 53, 61, 78, 85, 108, 113, 123, 126, 127, 137, 138, 139, 154, 156, 158, 159, 162, 163, 164, 165, 171, 172, 173, 174, 177, 182, 185, 189, 191, 193, 203, 205, 207, 214, 220, 229, 237, 257], "specifi": [1, 4, 5, 6, 7, 8, 9, 11, 17, 19, 20, 22, 23, 24, 34, 39, 51, 52, 59, 76, 82, 87, 101, 110, 113, 116, 122, 123, 124, 126, 130, 134, 136, 137, 138, 141, 155, 156, 159, 162, 163, 168, 171, 173, 174, 179, 189, 190, 191, 192, 193, 196, 197, 198, 200, 201, 204, 205, 206, 208, 209, 212, 221, 222, 228, 237, 242, 245, 247, 252, 256, 257, 260, 262, 269, 271], "scenario": [1, 4, 6, 14, 61, 105, 107, 108, 112, 117, 125, 160, 163, 199, 219, 244], "tensordictsequenti": [1, 136], "valueoper": [1, 159], "automat": [1, 2, 5, 6, 8, 10, 14, 15, 22, 25, 35, 40, 43, 45, 46, 47, 48, 53, 57, 61, 76, 80, 98, 114, 121, 122, 123, 124, 125, 126, 130, 137, 139, 142, 144, 147, 149, 159, 160, 163, 166, 168, 171, 176, 177, 182, 185, 207, 209, 212, 214, 216, 219, 220, 221, 226, 232, 235, 237, 247, 251, 252, 254, 262, 271], "state_valu": 1, "built": [1, 4, 5, 6, 7, 8, 22, 23, 47, 49, 59, 60, 61, 99, 108, 113, 115, 116, 121, 135, 136, 137, 159, 164, 169, 173, 174, 177, 178, 195, 204, 216, 221, 222, 229, 231, 257], "present": [1, 6, 8, 18, 22, 61, 82, 83, 97, 108, 134, 137, 143, 153, 155, 156, 157, 160, 161, 163, 171, 172, 175, 178, 193, 247, 258], "origin": [1, 5, 6, 7, 8, 12, 14, 17, 19, 23, 32, 49, 52, 58, 59, 60, 73, 87, 90, 97, 102, 105, 113, 115, 118, 119, 124, 125, 127, 128, 137, 142, 150, 153, 154, 156, 157, 160, 171, 172, 173, 174, 176, 177, 179, 181, 182, 183, 184, 186, 192, 197, 200, 201, 218, 220, 221, 226, 228, 234, 252, 257], "paper": [1, 5, 12, 16, 17, 52, 58, 59, 61, 73, 97, 113, 114, 118, 119, 124, 137, 159, 162, 164, 165, 166, 193, 201], "found": [1, 4, 5, 6, 10, 16, 22, 23, 25, 42, 49, 50, 60, 79, 97, 113, 115, 116, 118, 126, 128, 133, 134, 135, 136, 137, 142, 143, 147, 160, 162, 163, 164, 171, 173, 174, 181, 182, 183, 185, 193, 206, 220, 222, 226, 247, 262, 271], "ddpgmlpactor": 1, "ddpgmlpqnet": 1, "materi": [1, 61, 123, 124, 145, 189, 202, 208, 234, 239, 244], "achiev": [1, 3, 6, 14, 17, 19, 24, 32, 44, 49, 56, 82, 87, 97, 108, 119, 121, 125, 129, 135, 136, 137, 144, 149, 152, 153, 156, 157, 159, 160, 168, 176, 179, 182, 184, 185, 198, 199, 201, 203, 212, 219, 222, 247, 251, 254], "practic": [1, 5, 6, 11, 20, 23, 37, 47, 49, 51, 52, 58, 59, 60, 61, 97, 99, 114, 117, 121, 124, 125, 126, 127, 131, 134, 136, 137, 144, 153, 156, 159, 173, 174, 175, 177, 189, 190, 193, 195, 231, 232, 237, 247], "fake": [1, 6, 12, 17, 19, 25, 47, 52, 78, 152, 157, 193, 197, 198, 200, 201, 228], "spec": [1, 108, 126, 136, 159, 163, 179, 200, 231], "ornsteinuhlenbeckprocesswrapp": 1, "probabilisticactor": [1, 159], "tanhdelta": 1, "make_ddpg_actor": 1, "proof_environ": 1, "out_featur": [1, 33, 109, 123, 136, 179, 201], "action_spec": [1, 14, 136, 159], "shape": [1, 4, 12, 17, 23, 34, 38, 40, 42, 43, 47, 48, 49, 51, 52, 58, 59, 60, 63, 68, 76, 85, 90, 92, 95, 97, 98, 101, 103, 104, 109, 111, 118, 122, 124, 127, 128, 136, 137, 138, 141, 142, 145, 146, 147, 150, 152, 154, 156, 159, 168, 171, 178, 184, 185, 187, 192, 193, 195, 197, 201, 202, 209, 213, 219, 226, 231, 234, 235, 238, 244, 247, 251, 254], "actor_net": [1, 159], "action_dim": [1, 146], "distribution_class": [1, 159], "q_net": 1, "qnet": 1, "initi": [1, 6, 8, 11, 14, 16, 18, 19, 20, 21, 22, 23, 25, 37, 43, 49, 55, 60, 64, 71, 72, 73, 80, 97, 98, 99, 102, 103, 109, 111, 112, 117, 122, 123, 124, 127, 128, 129, 136, 138, 142, 144, 147, 148, 152, 156, 157, 158, 160, 161, 162, 163, 165, 166, 168, 173, 174, 175, 189, 192, 196, 198, 203, 206, 213, 214, 219, 223, 226, 229, 231, 234, 237, 244, 256, 262, 271], "reset": [1, 19, 117, 128, 136, 146, 159, 160, 161, 163, 165, 168, 172, 173, 174, 182, 186, 195, 197, 198, 221, 255], "suggest": [1, 4, 12, 52, 86, 97, 128, 137, 144, 145, 146, 147, 150, 157, 168, 171, 173, 174, 175, 234], "nois": [1, 6, 12, 52, 73, 148, 195], "reach": [1, 10, 17, 52, 60, 61, 97, 133, 135, 137, 146, 147, 149, 159, 163, 173, 174, 201, 221, 231], "minimum": [1, 49, 82, 159, 163, 173, 174, 177, 191], "annealing_fram": 1, "1_000_000": [1, 96, 136], "actor_model_explor": 1, "annealing_num_step": [1, 136], "share_memori": 1, "iter": [1, 3, 4, 6, 11, 12, 14, 16, 24, 34, 42, 43, 44, 47, 52, 53, 55, 60, 75, 85, 87, 92, 94, 96, 98, 103, 105, 112, 113, 116, 117, 118, 126, 127, 128, 131, 133, 134, 136, 142, 144, 149, 157, 159, 160, 161, 162, 163, 166, 168, 169, 172, 178, 181, 182, 194, 197, 198, 203, 211, 218, 223, 226, 230, 234, 245, 247, 258], "tight": [1, 105, 107, 108], "per": [1, 5, 6, 8, 11, 19, 61, 87, 97, 103, 121, 122, 126, 127, 128, 129, 133, 135, 136, 137, 145, 147, 152, 156, 159, 163, 164, 165, 168, 169, 171, 175, 176, 177, 178, 185, 189, 194, 205, 207, 212, 214, 216, 218, 221, 223, 231, 237, 246, 258], "sync": [1, 7, 10, 11, 16, 55, 121, 122, 123, 142, 146, 188, 194, 257], "natur": [1, 5, 6, 17, 18, 23, 24, 25, 45, 61, 73, 75, 97, 107, 116, 119, 126, 127, 135, 136, 137, 162, 171, 191, 193, 197, 200, 201, 207, 262, 271], "resourc": [1, 53, 58, 59, 61, 73, 87, 105, 119, 123, 133, 135, 152, 159, 168, 171, 176, 216, 223, 231, 236, 247, 253], "alloc": [1, 6, 18, 21, 22, 23, 48, 55, 59, 129, 135, 152, 168, 175, 176, 193, 202, 214, 223, 237, 258], "gpu": [1, 3, 4, 7, 12, 17, 18, 19, 20, 24, 33, 38, 40, 42, 43, 47, 48, 49, 50, 52, 53, 54, 56, 57, 60, 61, 64, 72, 73, 77, 80, 81, 82, 83, 88, 92, 96, 97, 99, 105, 111, 114, 117, 120, 121, 122, 123, 124, 125, 131, 132, 133, 134, 135, 136, 137, 138, 144, 147, 148, 149, 150, 152, 154, 157, 159, 160, 162, 163, 164, 171, 172, 175, 177, 178, 185, 186, 196, 201, 206, 207, 210, 214, 216, 223, 230, 231, 234, 240, 251, 252, 254, 257], "worker": [1, 6, 7, 11, 16, 51, 52, 61, 115, 120, 122, 123, 134, 135, 147, 159, 162, 163, 168, 212, 216, 247], "syncdatacollector": [1, 136, 159], "process": [1, 4, 5, 6, 11, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 42, 47, 49, 50, 51, 52, 56, 60, 61, 73, 82, 85, 97, 103, 105, 110, 112, 113, 114, 116, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 131, 132, 135, 136, 137, 143, 144, 146, 147, 149, 154, 158, 160, 162, 163, 164, 165, 168, 171, 173, 174, 175, 176, 177, 182, 184, 185, 187, 188, 193, 195, 196, 201, 203, 204, 207, 208, 212, 214, 215, 221, 228, 231, 237, 247, 251, 255, 258, 261, 262, 270, 271], "offer": [1, 11, 14, 18, 42, 43, 53, 61, 99, 122, 124, 138, 141, 144, 145, 197, 214, 216, 229, 231, 247], "multiasyncdatacollector": [1, 159], "rollout": [1, 136, 159], "asynchron": [1, 21, 61, 120, 121, 126, 134, 149, 155, 159, 163], "manner": [1, 5, 8, 14, 19, 61, 159, 171, 216], "therebi": [1, 186, 189, 193], "decoupl": [1, 61, 153, 197], "factori": [1, 6, 101, 115, 190, 191, 232, 237], "empti": [1, 5, 6, 8, 14, 19, 21, 23, 49, 80, 95, 108, 128, 129, 143, 144, 147, 153, 158, 165, 168, 171, 173, 174, 176, 185, 191, 193, 202, 206, 238, 246, 263, 272], "maximum": [1, 11, 49, 60, 82, 102, 113, 126, 128, 136, 137, 144, 159, 164, 165, 173, 174, 185, 194, 195, 213, 247], "non": [1, 2, 3, 5, 8, 11, 14, 19, 22, 49, 51, 53, 54, 56, 60, 82, 85, 97, 98, 100, 103, 112, 113, 119, 122, 126, 129, 130, 134, 135, 136, 137, 139, 141, 145, 147, 150, 156, 157, 160, 161, 164, 165, 168, 172, 173, 176, 182, 184, 185, 189, 199, 202, 214, 228, 231, 244, 252, 263, 265, 272, 274], "termin": [1, 14, 23, 53, 60, 87, 159, 160, 162, 163, 171, 188, 206, 213, 225], "effect": [1, 5, 6, 8, 9, 11, 23, 55, 73, 82, 97, 103, 108, 124, 127, 128, 138, 152, 154, 156, 160, 164, 165, 171, 176, 177, 191, 199, 200, 205, 230, 234, 247, 260, 269], "regist": [1, 22, 43, 47, 78, 108, 109, 112, 121, 122, 124, 133, 141, 152, 153, 159, 173, 174, 177, 207, 208, 216, 220, 226, 230, 239], "new": [1, 2, 4, 5, 6, 8, 9, 12, 13, 14, 22, 23, 24, 25, 31, 42, 43, 45, 48, 49, 50, 52, 55, 60, 62, 73, 75, 79, 80, 82, 85, 97, 99, 102, 103, 108, 109, 110, 112, 113, 117, 121, 122, 123, 125, 126, 127, 136, 137, 141, 142, 144, 146, 149, 152, 153, 154, 155, 156, 157, 159, 160, 161, 164, 165, 168, 171, 173, 174, 178, 179, 181, 186, 187, 188, 189, 193, 195, 196, 197, 198, 199, 200, 204, 205, 206, 207, 208, 213, 216, 222, 223, 224, 225, 226, 234, 244, 247, 251, 257, 262, 271], "infer": [1, 3, 6, 8, 9, 10, 19, 20, 21, 22, 23, 42, 48, 49, 60, 61, 97, 101, 103, 105, 113, 121, 125, 126, 129, 139, 142, 144, 158, 159, 161, 171, 172, 177, 178, 185, 187, 188, 193, 194, 196, 197, 198, 199, 201, 203, 206, 207, 209, 214, 221, 223, 224, 225, 226, 228, 234, 235, 241, 251], "around": [1, 5, 6, 11, 23, 24, 49, 55, 58, 59, 75, 97, 117, 128, 138, 144, 145, 150, 154, 157, 165, 168, 169, 173, 174, 182, 189, 190, 194, 197, 219, 234, 239, 262, 265, 271, 274], "1m": [1, 136, 159], "10_000": [1, 97], "outer": [1, 6, 122, 145], "loop": [1, 3, 4, 5, 7, 8, 11, 16, 17, 19, 21, 25, 44, 47, 49, 51, 52, 59, 60, 65, 73, 75, 78, 85, 87, 97, 111, 118, 123, 126, 127, 137, 138, 144, 145, 146, 152, 154, 162, 163, 165, 169, 177, 183, 185, 201, 219, 231, 247, 250], "equal": [1, 4, 10, 95, 97, 115, 116, 125, 137, 147, 156, 159, 160, 171, 173, 174, 176, 192, 216, 247, 254], "length": [1, 7, 12, 14, 17, 20, 42, 45, 49, 52, 60, 102, 103, 105, 113, 115, 116, 124, 128, 136, 137, 146, 159, 164, 165, 175, 185, 191, 193, 196, 201, 205, 208, 216, 251, 263, 272], "sub": [1, 6, 20, 25, 49, 60, 109, 124, 143, 149, 159, 163, 165, 168, 176, 177, 185, 215, 246, 262, 271], "traj_len": [1, 136], "200": [1, 6, 9, 90, 93, 136, 147, 163, 184, 194, 219], "init_random_fram": 1, "num_collector": 1, "explorationtyp": [1, 136, 159], "reset_at_each_it": 1, "split_traj": [1, 159], "exploration_typ": 1, "assess": 1, "mode": [1, 4, 7, 9, 12, 13, 16, 20, 37, 42, 43, 49, 51, 52, 55, 60, 73, 79, 82, 85, 86, 87, 97, 112, 115, 116, 117, 121, 122, 129, 130, 134, 136, 139, 142, 144, 146, 147, 150, 157, 161, 164, 165, 166, 169, 171, 172, 174, 177, 179, 184, 187, 188, 194, 195, 196, 198, 199, 200, 216, 219, 221, 231, 241, 247], "dedic": [1, 10, 55, 60, 112, 134, 162, 163, 177, 199, 208, 223, 228, 229, 230, 258, 263, 272], "frequenc": [1, 7, 83, 126, 223], "trainer": [1, 16, 17, 24, 55, 126, 131, 148, 161, 162, 163, 201, 214], "make_record": 1, "record_interv": 1, "load": [1, 5, 17, 18, 19, 20, 21, 23, 24, 34, 35, 38, 39, 42, 43, 47, 51, 52, 55, 73, 75, 87, 90, 96, 98, 104, 105, 110, 113, 116, 119, 121, 123, 125, 127, 139, 144, 147, 152, 159, 168, 169, 171, 174, 178, 181, 182, 184, 185, 186, 187, 194, 195, 201, 204, 206, 208, 213, 220, 221, 222, 224, 225, 230, 235, 240, 241, 242, 243, 244, 246, 248, 249, 251, 254], "recorder_obj": 1, "record_fram": 1, "1000": [1, 2, 7, 9, 17, 19, 43, 52, 79, 89, 94, 96, 117, 119, 122, 123, 125, 127, 134, 136, 144, 149, 159, 160, 169, 172, 176, 177, 187, 199, 201, 203, 212, 213, 226, 231, 237, 246], "policy_explor": 1, "everi": [1, 2, 6, 8, 10, 12, 14, 15, 17, 18, 19, 24, 43, 44, 47, 49, 51, 52, 60, 61, 87, 103, 117, 124, 125, 127, 128, 129, 135, 136, 141, 146, 147, 150, 152, 153, 154, 156, 157, 159, 160, 161, 163, 165, 168, 169, 178, 193, 197, 198, 201, 208, 210, 223, 232, 245, 247, 258], "10": [1, 3, 4, 6, 7, 8, 11, 13, 14, 16, 17, 19, 20, 23, 25, 33, 34, 37, 38, 41, 42, 43, 44, 45, 47, 49, 51, 52, 53, 60, 73, 78, 79, 80, 83, 87, 89, 92, 93, 94, 95, 96, 103, 104, 105, 109, 112, 115, 117, 122, 123, 125, 126, 127, 129, 133, 135, 136, 138, 139, 141, 142, 144, 146, 147, 148, 149, 150, 154, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 178, 179, 184, 187, 189, 190, 191, 194, 195, 196, 197, 198, 201, 202, 203, 204, 206, 208, 209, 210, 211, 212, 215, 219, 221, 223, 226, 231, 233, 237, 238, 239, 240, 241, 242, 243, 245, 246, 248, 249, 250, 266, 275], "lazymemmapstorag": [1, 136, 146], "prioritizedsampl": 1, "randomsampl": [1, 19, 137, 165, 182, 185, 197, 198], "tensordictreplaybuff": [1, 136, 146], "flavor": [1, 5, 23, 107], "priorit": [1, 193], "error": [1, 4, 5, 6, 8, 10, 11, 12, 22, 37, 38, 43, 47, 49, 50, 52, 53, 58, 60, 61, 68, 78, 97, 101, 107, 108, 111, 122, 125, 130, 134, 139, 148, 152, 155, 159, 160, 172, 173, 174, 184, 189, 190, 195, 197, 204, 208, 215, 220, 222, 231, 244, 247, 256, 262, 271], "higher": [1, 19, 44, 48, 53, 82, 97, 99, 122, 123, 127, 128, 130, 141, 145, 157, 158, 159, 160, 168, 169, 171, 182, 185, 195, 197, 199, 203, 205, 207, 211, 215, 223, 228, 234, 260, 262, 269, 271], "likelihood": [1, 49, 99, 104, 127, 213], "regular": [1, 4, 5, 6, 8, 10, 19, 23, 24, 97, 114, 127, 128, 134, 145, 153, 154, 164, 165, 166, 189, 191, 193, 199, 220, 247], "circular": 1, "compos": [1, 5, 6, 10, 12, 17, 19, 21, 25, 44, 52, 58, 59, 73, 75, 79, 87, 90, 92, 94, 96, 97, 99, 108, 110, 113, 115, 117, 119, 121, 123, 129, 135, 136, 139, 141, 142, 146, 148, 150, 154, 157, 158, 159, 162, 164, 166, 168, 169, 171, 178, 182, 197, 198, 200, 204, 209, 213, 215, 220, 221, 229, 250, 253], "pick": [1, 6, 19, 44, 98, 127, 160, 165, 216], "physic": [1, 14, 103, 177, 237, 247], "memori": [1, 4, 5, 6, 8, 10, 16, 17, 18, 19, 21, 22, 23, 37, 48, 49, 51, 55, 61, 80, 87, 95, 97, 100, 105, 110, 112, 115, 118, 121, 122, 123, 124, 131, 135, 136, 144, 145, 146, 150, 156, 162, 164, 168, 171, 175, 178, 184, 188, 189, 192, 193, 194, 199, 201, 207, 212, 218, 220, 228, 230, 231, 234, 237, 239, 251, 258], "map": [1, 6, 7, 12, 13, 17, 49, 52, 58, 60, 75, 90, 97, 98, 102, 103, 104, 108, 110, 112, 113, 115, 116, 119, 127, 136, 138, 139, 143, 145, 152, 153, 154, 159, 160, 163, 171, 173, 174, 176, 178, 182, 197, 200, 201, 205, 209, 212, 213, 214, 237, 247], "arrai": [1, 6, 32, 43, 44, 47, 51, 58, 59, 85, 89, 95, 103, 109, 117, 127, 128, 139, 146, 157, 158, 160, 165, 166, 171, 192, 229], "desir": [1, 5, 8, 12, 14, 16, 49, 51, 52, 73, 82, 97, 110, 112, 116, 135, 142, 156, 168, 171, 184, 190, 202, 226, 230, 263, 272], "hyperparamet": [1, 6, 14, 17, 52, 87, 112, 115, 121, 126, 189, 193], "randomcroptensordict": 1, "make_replay_buff": 1, "buffer_s": 1, "random_crop_len": 1, "prefetch": [1, 136, 177], "prb": 1, "sampler": [1, 6, 19, 34, 55, 110, 122, 123, 137, 159, 165, 166, 182, 185, 197, 198], "max_capac": 1, "alpha": [1, 5, 6, 15, 98, 108, 127, 128, 146, 149, 171, 178, 189, 193, 263, 272], "7": [1, 3, 5, 6, 17, 18, 19, 22, 23, 34, 36, 51, 58, 59, 80, 85, 95, 96, 101, 109, 116, 117, 122, 123, 129, 134, 135, 146, 147, 149, 157, 158, 166, 171, 172, 173, 174, 175, 177, 178, 184, 188, 199, 202, 203, 204, 206, 207, 208, 210, 211, 215, 218, 219, 221, 222, 224, 225, 227, 228, 230, 247, 252, 255, 266, 275], "beta": [1, 6, 20, 52, 105, 118, 121, 192, 216, 234, 247, 251], "scratch_dir": 1, "buffer_scratch_dir": 1, "sample_dim": 1, "temporari": [1, 5, 117, 126, 177, 181], "disk": [1, 4, 23, 25, 105, 112, 136, 187, 188, 194, 208, 223, 231, 237, 245], "tempfil": [1, 7, 87, 117, 125, 126, 133], "tmpdir": 1, "temporarydirectori": [1, 87, 117, 125], "along": [1, 4, 5, 6, 7, 8, 14, 17, 21, 23, 43, 48, 49, 53, 54, 55, 56, 60, 83, 97, 101, 102, 110, 116, 117, 119, 122, 123, 127, 128, 131, 132, 136, 152, 156, 160, 162, 169, 171, 175, 191, 201, 202], "dimens": [1, 5, 6, 7, 12, 14, 18, 20, 21, 44, 47, 48, 49, 60, 78, 79, 87, 92, 99, 101, 102, 103, 110, 115, 121, 124, 127, 129, 136, 138, 146, 147, 154, 156, 158, 159, 161, 173, 174, 175, 190, 193, 197, 198, 205, 213, 223, 230, 234, 239, 247], "feed": [1, 6, 12, 19, 44, 47, 49, 60, 97, 100, 102, 105, 112, 124, 127, 128, 133, 134, 146, 160, 165, 169, 176, 195, 214], "adapt": [1, 2, 14, 17, 24, 87, 105, 126, 201, 231], "divid": [1, 7, 8, 9, 10, 11, 12, 14, 15, 19, 85, 97, 99, 127, 134, 135, 149, 153, 163, 176, 177, 181], "yield": [1, 6, 11, 12, 16, 17, 19, 21, 104, 112, 115, 116, 118, 124, 125, 161, 163, 184, 192, 201, 219, 221, 241, 247], "regard": [1, 6, 11, 14, 23, 60, 112, 144, 145, 159, 168, 262, 271], "25": [1, 7, 9, 22, 23, 73, 89, 90, 97, 109, 117, 123, 157, 162, 164, 171, 181, 184, 203, 219, 231, 233, 238], "balanc": [1, 6, 18, 133, 168, 226], "choic": [1, 4, 6, 8, 49, 87, 126, 128, 165, 210, 247], "heterogen": [1, 196], "figur": [1, 8, 12, 14, 22, 34, 49, 51, 52, 73, 82, 97, 117, 121, 124, 126, 127, 128, 136, 144, 149, 159, 160, 161, 165, 168, 169, 171, 176, 178, 182, 195, 197, 236, 263, 265, 272, 274], "dataflow": 1, "8": [1, 3, 5, 6, 7, 9, 13, 14, 16, 17, 19, 23, 34, 49, 52, 58, 59, 65, 73, 87, 90, 93, 101, 102, 109, 111, 115, 116, 118, 119, 122, 124, 127, 128, 129, 133, 134, 137, 142, 144, 146, 147, 149, 153, 157, 158, 164, 165, 166, 168, 171, 172, 173, 174, 176, 178, 184, 185, 187, 188, 189, 193, 199, 201, 206, 207, 208, 212, 214, 215, 216, 219, 221, 223, 224, 225, 228, 230, 234, 238, 247, 254, 257, 258, 262, 263, 266, 271, 272, 275], "ceil_div": 1, "y": [1, 2, 5, 7, 17, 18, 20, 22, 23, 25, 32, 37, 38, 40, 41, 43, 47, 48, 51, 52, 63, 64, 65, 67, 68, 69, 71, 72, 73, 76, 82, 85, 89, 92, 93, 95, 96, 97, 98, 101, 102, 104, 110, 111, 113, 116, 122, 125, 137, 141, 144, 146, 147, 148, 155, 164, 168, 171, 172, 173, 174, 175, 185, 186, 191, 195, 205, 208, 212, 245, 246, 254, 255, 263, 272], "known": [1, 4, 5, 12, 17, 42, 113, 124, 135, 137, 141, 143, 156, 160, 165, 185, 188, 200, 201, 207, 231, 234], "utd": [1, 136], "update_to_data": 1, "64": [1, 5, 6, 14, 15, 17, 18, 19, 20, 23, 34, 37, 38, 43, 49, 52, 60, 73, 87, 95, 97, 102, 104, 115, 119, 122, 123, 124, 126, 129, 134, 136, 138, 145, 146, 154, 158, 159, 161, 162, 164, 166, 173, 174, 175, 178, 184, 201, 203, 205, 207, 208, 219, 221, 231, 233, 238], "reproduc": [1, 12, 25, 52, 73, 97, 137, 144, 159, 163, 172, 185, 219, 231, 234, 247], "realiz": [1, 17, 201], "sever": [1, 2, 3, 10, 11, 15, 16, 19, 22, 25, 45, 47, 52, 53, 54, 61, 73, 78, 97, 99, 113, 122, 127, 132, 135, 142, 146, 149, 152, 153, 155, 157, 159, 161, 162, 168, 169, 172, 173, 174, 176, 177, 191, 200, 208, 219, 220, 223, 231, 252], "ve": [1, 5, 6, 7, 8, 17, 21, 22, 25, 45, 47, 50, 76, 78, 113, 121, 125, 129, 136, 142, 143, 145, 152, 154, 160, 162, 169, 176, 184, 189, 191, 192, 201, 213, 214, 231, 234, 257], "_must_": 1, "99": [1, 63, 64, 67, 68, 69, 71, 72, 111, 159, 160, 163], "lmbda": [1, 159], "tau": [1, 160], "001": [1, 12, 14, 24, 44, 51, 89, 92, 94, 96, 97, 103, 112, 117, 133, 149, 160, 161, 165, 168, 169, 220, 230, 241, 242, 243, 249, 250, 253], "decai": [1, 117, 136, 157, 160, 216], "factor": [1, 18, 20, 117, 129, 157, 160, 161, 172, 183, 184, 234], "off": [1, 7, 8, 9, 12, 16, 19, 21, 24, 34, 43, 49, 51, 52, 98, 112, 113, 117, 119, 123, 126, 127, 144, 152, 157, 159, 161, 162, 163, 171, 181, 187, 189, 213, 234, 256], "dictat": [1, 14], "introduc": [1, 11, 15, 16, 17, 21, 22, 23, 24, 42, 54, 60, 75, 78, 79, 87, 97, 99, 109, 118, 119, 121, 122, 133, 144, 147, 149, 152, 161, 163, 164, 165, 171, 172, 173, 174, 175, 177, 181, 182, 185, 186, 188, 189, 191, 192, 195, 197, 199, 200, 201, 203, 204, 205, 207, 209, 212, 216, 220, 222, 223, 244, 247, 255], "outdat": 1, "trick": [1, 6, 10, 49, 130, 135, 145], "multi": [1, 5, 6, 14, 18, 47, 49, 52, 53, 54, 55, 56, 61, 77, 99, 113, 121, 122, 124, 131, 132, 133, 134, 136, 137, 149, 159, 161, 164, 168, 177, 178, 185, 193, 214, 215, 247], "altern": [1, 6, 10, 23, 48, 49, 102, 113, 117, 123, 138, 143, 147, 155, 157, 159, 165, 168, 171, 172, 182, 184, 192, 199, 209, 244, 247, 255], "hack": [1, 137, 185, 189, 244], "find": [1, 2, 4, 5, 6, 8, 10, 17, 22, 23, 48, 52, 73, 82, 83, 85, 87, 98, 101, 121, 123, 127, 128, 135, 137, 141, 142, 144, 149, 153, 157, 160, 163, 165, 168, 173, 174, 183, 189, 190, 191, 192, 195, 197, 200, 201, 204, 208, 213, 221, 222, 223, 226, 229, 231, 245, 252], "despit": [1, 73, 133], "fact": [1, 3, 5, 6, 8, 12, 14, 19, 22, 23, 60, 73, 80, 97, 99, 103, 113, 125, 153, 159, 160, 169], "part": [1, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 20, 23, 42, 43, 45, 49, 52, 58, 59, 60, 73, 76, 87, 98, 100, 103, 113, 116, 118, 121, 122, 124, 125, 128, 130, 131, 134, 135, 136, 137, 139, 143, 144, 149, 152, 153, 159, 165, 173, 174, 181, 182, 183, 184, 186, 188, 189, 191, 196, 198, 204, 208, 209, 213, 216, 221, 222, 223, 226, 229, 230, 234, 244, 252, 254, 260, 261, 262, 269, 270, 271], "thank": [1, 9, 19, 49, 104, 115, 119, 126, 127, 128, 135, 137, 165, 176, 177, 185, 187, 188, 195, 204, 222], "hardupd": 1, "softupd": [1, 136], "appropri": [1, 6, 7, 8, 42, 49, 60, 126, 127, 133, 153, 157, 162, 169, 175, 182, 197, 198, 199, 213, 219, 220, 230], "locat": [1, 6, 31, 48, 78, 80, 82, 103, 109, 113, 135, 157, 159, 165, 168, 173, 174, 176, 178, 188, 204, 222, 223, 226, 238, 247, 257], "target_net_updat": 1, "ep": [1, 13, 73, 118, 129, 136, 142, 163, 173, 174, 179, 189, 198, 200, 201, 218], "adam": [1, 6, 11, 13, 14, 47, 49, 52, 69, 96, 97, 99, 110, 111, 118, 135, 136, 146, 148, 152, 159, 160, 161, 163, 165, 172, 210, 211, 214, 258], "optimizer_actor": 1, "lr": [1, 7, 11, 14, 16, 19, 24, 37, 38, 43, 44, 47, 49, 52, 65, 67, 69, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 110, 111, 112, 115, 117, 118, 122, 123, 129, 133, 134, 135, 136, 144, 146, 148, 149, 157, 159, 160, 161, 162, 163, 165, 166, 168, 169, 178, 210, 214, 216, 220, 221, 230, 237, 241, 242, 243, 245, 249, 250, 251, 253, 258], "1e": [1, 13, 17, 20, 37, 38, 43, 63, 65, 67, 68, 69, 71, 72, 87, 93, 98, 111, 118, 125, 126, 129, 138, 150, 154, 157, 159, 160, 161, 163, 179, 189, 201, 218, 237], "weight_decai": [1, 98, 112, 157, 178, 216], "optimizer_valu": 1, "total_collection_step": 1, "pretti": [1, 16, 21, 44, 109, 113, 126, 145, 163, 182, 205], "rewards_ev": 1, "collected_fram": 1, "pbar": [1, 14, 136, 159], "r0": [1, 122], "enumer": [1, 7, 17, 19, 37, 38, 44, 49, 51, 52, 75, 87, 92, 94, 96, 98, 103, 115, 117, 123, 124, 127, 129, 136, 157, 158, 159, 162, 165, 166, 168, 169, 193, 201, 220, 221, 250, 253], "update_policy_weights_": 1, "numel": [1, 7, 8, 78, 97, 125, 129, 136, 147, 150, 159, 161, 189, 246, 254], "extend": [1, 4, 5, 6, 8, 19, 24, 52, 58, 59, 61, 87, 105, 106, 107, 113, 121, 123, 128, 134, 136, 158, 159, 162, 163, 171, 175, 177, 179, 186, 199, 208, 220, 221, 247], "current_fram": 1, "_": [1, 5, 11, 12, 14, 15, 16, 19, 21, 33, 34, 35, 36, 37, 40, 44, 48, 49, 52, 60, 75, 80, 87, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 102, 104, 106, 111, 115, 117, 118, 134, 135, 136, 137, 138, 139, 142, 144, 145, 147, 149, 150, 152, 157, 159, 160, 161, 163, 164, 165, 169, 172, 176, 177, 181, 182, 184, 185, 195, 197, 198, 199, 204, 210, 211, 212, 213, 219, 229, 230, 234, 237, 256, 258, 262, 271], "rang": [1, 5, 6, 7, 9, 11, 12, 14, 16, 17, 18, 19, 21, 25, 34, 37, 38, 42, 44, 49, 51, 52, 53, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 82, 85, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 105, 107, 108, 111, 113, 115, 116, 117, 118, 122, 123, 126, 127, 128, 129, 134, 135, 136, 137, 138, 142, 144, 146, 149, 152, 154, 157, 158, 159, 160, 161, 163, 164, 165, 166, 168, 169, 172, 173, 174, 176, 177, 178, 179, 181, 184, 185, 186, 193, 194, 195, 198, 201, 203, 209, 210, 211, 212, 215, 219, 221, 226, 229, 230, 234, 237, 238, 245, 247, 250, 254, 258], "sampled_tensordict": 1, "backward": [1, 2, 3, 6, 7, 8, 11, 12, 13, 14, 15, 16, 19, 25, 32, 37, 38, 43, 44, 45, 47, 49, 52, 61, 63, 64, 65, 67, 68, 69, 73, 75, 76, 87, 89, 92, 94, 96, 97, 98, 99, 101, 102, 103, 104, 111, 115, 117, 118, 121, 123, 124, 125, 127, 128, 131, 133, 134, 135, 136, 141, 145, 146, 149, 150, 154, 157, 159, 160, 161, 162, 163, 165, 166, 168, 169, 172, 173, 174, 191, 198, 210, 211, 212, 214, 216, 220, 221, 230, 238, 245, 247, 250, 253, 258], "gn1": 1, "clip_grad_norm_": [1, 7, 14, 49, 115, 159, 230], "zero_grad": [1, 3, 6, 7, 12, 14, 19, 37, 38, 44, 47, 49, 52, 65, 67, 68, 69, 73, 75, 87, 89, 92, 94, 96, 97, 98, 99, 102, 103, 104, 111, 115, 117, 118, 122, 123, 127, 128, 129, 133, 135, 136, 146, 149, 152, 157, 159, 160, 161, 163, 165, 166, 168, 169, 172, 198, 214, 220, 221, 230, 245, 250, 253], "gn2": 1, "gn": [1, 14], "prioriti": [1, 8, 182], "update_tensordict_prior": 1, "td_record": 1, "r_evalu": 1, "len": [1, 7, 9, 12, 14, 17, 19, 34, 37, 38, 45, 47, 49, 51, 52, 55, 60, 73, 75, 79, 87, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 108, 115, 116, 117, 118, 122, 123, 125, 127, 128, 129, 135, 137, 142, 149, 157, 160, 161, 162, 165, 166, 169, 171, 175, 178, 181, 185, 200, 201, 209, 215, 216, 221], "rn": 1, "rs": [1, 165], "std": [1, 2, 4, 5, 6, 12, 15, 19, 22, 23, 51, 58, 59, 73, 90, 92, 95, 97, 117, 149, 155, 157, 158, 163, 166, 171, 182, 186, 187, 189, 197, 198, 204, 208, 220, 222, 229, 231, 256], "set_descript": [1, 14, 136, 159], "2f": [1, 7, 19, 97, 115, 119, 123, 127, 129, 156, 158, 161, 163, 176, 177, 182, 184, 197, 198, 203, 228, 231, 234], "grad": [1, 2, 6, 12, 13, 16, 32, 43, 47, 63, 64, 68, 73, 76, 78, 89, 101, 104, 111, 123, 125, 127, 128, 129, 130, 133, 135, 141, 145, 150, 152, 159, 161, 162, 163, 189, 205, 211, 216, 230, 250], "norm": [1, 2, 14, 17, 19, 52, 78, 89, 97, 110, 121, 124, 153, 156, 159, 171, 182, 195, 201], "shutdown": [1, 16, 134, 161, 162, 163, 212], "del": [1, 44, 129, 141, 152, 159, 184, 186, 237], "plot": [1, 6, 12, 14, 17, 51, 52, 73, 82, 89, 113, 117, 126, 136, 146, 149, 159, 160, 161, 166, 169, 171, 195, 236], "mention": [1, 5, 6, 10, 11, 15, 16, 52, 60, 73, 85, 95, 97, 98, 112, 123, 124, 135, 136, 160, 162, 168, 171, 185, 197, 226, 237, 244], "greater": [1, 11, 49, 52, 125, 176, 188, 206], "matplotlib": [1, 6, 12, 14, 34, 44, 51, 52, 57, 73, 75, 89, 90, 92, 94, 96, 104, 117, 127, 128, 136, 146, 149, 157, 159, 160, 165, 166, 169, 171, 178, 195, 236], "pyplot": [1, 6, 12, 14, 34, 44, 51, 52, 73, 75, 89, 90, 92, 94, 96, 104, 117, 127, 128, 136, 146, 149, 157, 159, 160, 165, 166, 169, 171, 178, 195, 236], "plt": [1, 6, 12, 14, 34, 44, 51, 52, 73, 75, 89, 90, 92, 94, 96, 117, 127, 128, 136, 146, 149, 157, 159, 160, 165, 166, 169, 171, 178, 195, 236], "zip": [1, 6, 17, 18, 44, 49, 50, 52, 104, 105, 108, 112, 116, 128, 137, 138, 150, 154, 160, 161, 163, 169, 171, 178, 181, 185, 201, 208, 216, 223, 230], "label": [1, 6, 17, 34, 40, 43, 44, 51, 52, 58, 59, 73, 75, 78, 87, 90, 92, 94, 96, 97, 99, 103, 109, 110, 113, 115, 117, 119, 122, 124, 127, 133, 134, 137, 146, 149, 157, 158, 161, 165, 168, 169, 178, 185, 201, 208, 213, 221, 226, 231, 234, 236, 250, 251, 258, 262, 271], "legend": [1, 52, 146, 262, 271], "xlabel": [1, 14, 52, 73, 136, 160, 171], "ylabel": [1, 17, 52, 73, 160, 171], "tight_layout": [1, 51, 73, 149, 157], "concret": [1, 5, 6, 8, 11, 149, 159, 189, 200], "takeawai": [1, 114], "further": [1, 4, 5, 6, 8, 19, 21, 23, 47, 61, 73, 87, 97, 113, 116, 118, 124, 127, 142, 144, 149, 156, 159, 171, 172, 177, 184, 193, 195, 196, 197, 198, 199, 204, 216, 220, 222, 228, 237, 247, 252, 253], "dispatch": [1, 5, 15, 121, 155, 177, 207, 208, 219, 230], "distpatch": 1, "iql": 1, "flexibl": [1, 2, 5, 6, 23, 24, 25, 49, 60, 85, 105, 112, 115, 121, 122, 131, 199, 231, 240, 257], "minut": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 158, 159, 160, 164, 165, 166, 168, 169, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "000": [1, 7, 9, 12, 13, 14, 17, 19, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 169, 171, 172, 174, 176, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "coding_ddpg": 1, "jupyt": [1, 7, 9, 12, 13, 14, 17, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 169, 171, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "notebook": [1, 7, 9, 12, 13, 14, 17, 18, 20, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 50, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 169, 171, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255, 257], "ipynb": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "galleri": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255], "sphinx": [1, 7, 9, 12, 13, 14, 17, 20, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 60, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 112, 113, 114, 115, 116, 117, 118, 119, 125, 126, 127, 128, 129, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 159, 160, 164, 165, 166, 168, 172, 174, 178, 181, 184, 189, 190, 191, 192, 193, 195, 203, 205, 211, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255, 260, 261, 262, 263, 267, 269, 270, 271, 272, 276], "build": [2, 6, 7, 12, 14, 19, 20, 25, 35, 47, 49, 60, 61, 65, 68, 69, 75, 76, 78, 81, 87, 91, 95, 98, 103, 109, 111, 113, 114, 115, 118, 120, 121, 127, 128, 134, 135, 136, 137, 139, 141, 152, 154, 159, 160, 161, 162, 163, 174, 175, 181, 182, 185, 187, 188, 193, 194, 196, 197, 199, 205, 220, 223, 224, 225, 231, 246, 247, 254, 261, 266, 270, 275], "highli": [2, 5, 6, 10, 18, 49, 60, 87, 165, 175, 177, 205, 247], "dynam": [2, 4, 5, 6, 8, 12, 14, 15, 19, 20, 22, 23, 25, 43, 53, 61, 65, 97, 100, 107, 111, 112, 119, 121, 147, 156, 159, 179, 182, 183, 184, 196, 197, 198, 199, 208, 220, 221, 222, 230, 235, 247, 251, 254], "explor": [2, 6, 8, 14, 21, 23, 45, 49, 73, 108, 121, 126, 130, 136, 144, 146, 152, 159, 164, 165, 229, 254], "note": [2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 43, 44, 45, 47, 49, 50, 52, 61, 73, 85, 99, 100, 101, 102, 103, 108, 109, 112, 113, 116, 117, 122, 123, 124, 125, 126, 129, 130, 132, 133, 134, 135, 137, 138, 141, 142, 144, 145, 147, 149, 152, 154, 155, 156, 157, 161, 162, 163, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 183, 185, 187, 188, 189, 190, 191, 192, 193, 197, 198, 199, 201, 202, 203, 204, 205, 207, 212, 214, 215, 216, 222, 238, 247, 252, 257, 258, 260, 262, 269, 271], "differenti": [2, 5, 6, 14, 18, 25, 35, 40, 46, 47, 57, 76, 121, 136, 154, 160, 166, 191], "requires_grad": [2, 6, 7, 8, 12, 13, 20, 32, 37, 43, 47, 63, 64, 68, 73, 76, 89, 95, 101, 104, 105, 108, 110, 111, 117, 125, 129, 130, 141, 146, 147, 157, 178, 191, 201, 205, 237, 244, 250], "track": [2, 5, 7, 8, 9, 14, 43, 52, 63, 82, 99, 101, 110, 111, 117, 122, 127, 128, 132, 136, 142, 157, 163, 165, 168, 208, 245, 257], "auto": [2, 3, 5, 6, 8, 10, 12, 22, 55, 59, 122, 123, 144, 155, 186, 187, 188, 206, 208, 220, 221, 231, 246, 262, 263, 271, 272], "cout": [2, 4, 6, 22, 23, 187, 256], "endl": [2, 6, 22, 23, 187, 208], "cpufloattyp": [2, 4, 6, 23, 208], "wa": [2, 3, 4, 5, 11, 17, 20, 22, 23, 25, 42, 44, 49, 51, 52, 58, 59, 60, 61, 73, 76, 79, 95, 97, 98, 99, 101, 108, 112, 113, 115, 116, 123, 124, 126, 133, 135, 146, 150, 152, 153, 154, 156, 158, 159, 160, 163, 164, 165, 169, 176, 177, 184, 188, 191, 192, 198, 201, 208, 223, 226, 230, 231, 234, 257, 262, 271], "result": [2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 17, 19, 20, 21, 23, 24, 25, 43, 44, 51, 58, 59, 60, 63, 64, 65, 67, 68, 69, 71, 72, 76, 78, 82, 83, 87, 97, 101, 107, 108, 111, 112, 114, 116, 119, 122, 124, 125, 128, 133, 135, 136, 137, 141, 142, 143, 144, 145, 146, 147, 149, 150, 154, 155, 156, 157, 158, 160, 161, 162, 163, 164, 169, 171, 172, 173, 174, 175, 176, 177, 178, 179, 182, 184, 188, 190, 191, 192, 193, 195, 197, 198, 199, 200, 202, 203, 204, 205, 206, 208, 209, 210, 212, 218, 219, 221, 222, 223, 228, 233, 234, 237, 238, 241, 244, 246, 247, 251, 252, 256, 258, 260, 269], "grad_fn": [2, 4, 25, 32, 43, 47, 76, 89, 101, 125, 130, 173, 185], "addbackward1": 2, "z": [2, 5, 7, 23, 32, 43, 49, 52, 60, 76, 80, 85, 89, 92, 95, 101, 147, 165, 174, 191, 203, 208, 255, 263, 272], "27": [2, 7, 51, 144, 163, 176, 184, 219, 228, 231], "mulbackward1": 2, "meanbackward0": 2, "requires_grad_": [2, 12, 32, 76, 101, 104, 145], "flag": [2, 5, 14, 23, 43, 73, 76, 101, 137, 150, 153, 165, 174, 176, 185, 196, 198, 204, 237], "place": [2, 5, 6, 11, 12, 14, 18, 22, 23, 43, 45, 48, 49, 52, 76, 78, 85, 99, 101, 108, 113, 116, 118, 122, 126, 129, 133, 135, 138, 148, 149, 152, 154, 156, 157, 159, 160, 165, 171, 172, 175, 182, 189, 197, 198, 199, 205, 208, 212, 213, 214, 230, 237, 244, 247, 252, 262, 263, 264, 271, 272, 273], "randn": [2, 5, 6, 12, 13, 20, 23, 32, 45, 47, 52, 63, 65, 67, 71, 72, 76, 78, 80, 89, 97, 98, 99, 101, 102, 104, 105, 108, 110, 111, 125, 133, 134, 138, 141, 142, 143, 144, 145, 149, 150, 154, 161, 163, 164, 172, 173, 174, 184, 186, 191, 193, 197, 198, 199, 205, 208, 212, 230, 231, 232, 234, 238, 239, 245, 254, 258], "b": [2, 5, 6, 7, 12, 18, 21, 23, 32, 43, 47, 63, 64, 65, 67, 71, 72, 76, 80, 83, 89, 92, 93, 95, 98, 99, 102, 103, 104, 109, 110, 111, 125, 127, 128, 129, 142, 144, 145, 147, 149, 158, 160, 172, 174, 191, 193, 194, 203, 209, 231, 238, 246, 263, 272], "sumbackward0": 2, "backprop": [2, 43, 71, 72, 76, 98, 101, 111, 127, 146], "scalar": [2, 5, 14, 15, 23, 32, 43, 49, 52, 60, 63, 76, 101, 111, 169, 197, 206], "equival": [2, 4, 5, 11, 13, 17, 22, 23, 32, 43, 99, 137, 141, 154, 160, 162, 171, 173, 174, 185, 186, 189, 191, 193, 198, 199, 200, 201, 247, 255, 256], "print": [2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 33, 34, 37, 38, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 58, 59, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 80, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 123, 125, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 139, 142, 143, 144, 145, 146, 147, 148, 150, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 175, 176, 177, 178, 179, 181, 182, 184, 185, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 201, 203, 206, 208, 209, 210, 211, 212, 214, 215, 218, 219, 220, 221, 223, 228, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 244, 246, 247, 249, 250, 252, 254, 255, 256, 258, 262, 271], "dx": [2, 64, 76, 99, 111, 130, 174], "got": [2, 15, 19, 55, 98, 99, 101, 113, 133, 146, 147, 155, 162, 188, 197, 200, 213, 262, 271], "matrix": [2, 5, 6, 12, 17, 23, 32, 40, 43, 48, 82, 92, 98, 99, 101, 103, 109, 110, 124, 127, 128, 145, 150, 153, 164, 165, 166, 171, 173, 174, 176, 177, 192, 193, 199, 201, 205, 219, 220, 221, 226, 247, 251], "explan": [2, 52, 61, 160, 169, 237], "arriv": [2, 6, 15, 23, 42, 113, 122, 133, 161, 208, 247], "valu": [2, 4, 5, 6, 7, 9, 12, 14, 18, 19, 20, 21, 22, 23, 25, 32, 33, 40, 41, 43, 47, 48, 49, 50, 55, 58, 59, 60, 61, 63, 68, 73, 80, 82, 85, 87, 92, 97, 98, 99, 101, 102, 103, 105, 108, 111, 113, 115, 124, 125, 126, 127, 129, 132, 133, 135, 137, 138, 139, 141, 143, 146, 149, 150, 154, 155, 156, 160, 161, 162, 163, 164, 165, 168, 171, 172, 173, 174, 175, 182, 183, 185, 187, 189, 190, 191, 192, 193, 195, 196, 197, 198, 200, 203, 204, 208, 209, 211, 213, 216, 222, 229, 230, 231, 234, 244, 245, 258, 260, 269], "section": [2, 4, 5, 6, 7, 8, 11, 15, 18, 19, 21, 23, 43, 44, 47, 50, 51, 52, 73, 95, 97, 98, 99, 102, 103, 108, 113, 116, 118, 125, 129, 135, 139, 141, 144, 146, 150, 157, 160, 161, 163, 168, 171, 173, 176, 177, 178, 179, 182, 188, 190, 191, 200, 202, 207, 211, 213, 220, 226, 230, 231, 237, 247, 260, 262, 263, 264, 266, 269, 271, 272, 273, 275], "jacobian": [2, 43, 89, 121, 141, 205], "product": [2, 3, 4, 6, 12, 40, 42, 43, 48, 60, 61, 85, 99, 105, 113, 121, 122, 135, 139, 141, 165, 175, 176, 177, 185, 199, 200, 205, 209, 231, 234, 251, 254, 257], "1021": 2, "4020": 2, "314": 2, "6695": 2, "613": [2, 219], "4944": [2, 208], "0001": [2, 19, 49, 87, 89, 118, 144, 221], "kfloat": [2, 3, 59, 186, 188, 206], "102": 2, "4000": [2, 49, 60, 92, 246], "1024": [2, 5, 18, 21, 42, 82, 97, 129, 147, 164, 184, 199, 208, 210, 211, 231, 239], "0000": [2, 23, 173, 201, 208, 263, 272], "stop": [2, 4, 5, 23, 51, 58, 59, 76, 78, 87, 98, 101, 110, 126, 128, 135, 147, 152, 159, 161, 165, 168], "histori": [2, 9, 47, 48, 101, 110, 113, 117, 128, 146, 156, 157, 165, 181], "nogradguard": [2, 256], "block": [2, 5, 6, 7, 8, 10, 12, 16, 17, 19, 22, 23, 47, 49, 75, 76, 82, 90, 101, 115, 116, 123, 124, 134, 135, 136, 144, 157, 161, 162, 163, 164, 168, 171, 184, 201, 207, 208, 212, 247, 266, 275], "no_grad": [2, 7, 9, 12, 17, 19, 32, 37, 38, 42, 43, 44, 52, 58, 59, 63, 64, 68, 76, 87, 89, 92, 96, 97, 98, 99, 101, 102, 104, 110, 111, 115, 117, 122, 123, 127, 128, 129, 136, 137, 144, 146, 157, 158, 159, 160, 162, 165, 166, 169, 172, 174, 177, 178, 181, 182, 184, 185, 194, 197, 198, 199, 202, 216, 220, 247, 253, 256], "Or": [2, 21, 23, 152, 163, 179, 198, 206, 208, 262, 271], "eq": [2, 19, 23, 49, 60, 95, 123, 129, 162, 166, 173, 182, 197, 198, 221, 238, 262, 271], "bool": [2, 11, 14, 15, 17, 23, 95, 109, 118, 137, 143, 146, 155, 159, 160, 164, 171, 179, 185, 190, 192, 201, 208, 252, 260, 269], "is_leaf": 2, "detach_": [2, 163], "register_hook": 2, "retain_grad": 2, "doc": [2, 4, 6, 32, 33, 34, 37, 38, 40, 60, 69, 94, 104, 109, 111, 132, 135, 142, 143, 161, 163, 171, 174, 181, 193, 205, 226, 230, 245, 260, 261, 262, 267, 269, 270, 271, 276], "calcul": [2, 12, 17, 43, 44, 49, 52, 56, 60, 73, 82, 85, 87, 97, 110, 127, 128, 137, 143, 146, 160, 161, 163, 164, 165, 171, 177, 182, 191, 193, 197, 200, 201, 215, 221], "penalti": [2, 153, 158, 230], "h": [2, 4, 5, 6, 7, 8, 9, 10, 12, 22, 23, 25, 38, 49, 51, 96, 124, 129, 137, 144, 146, 147, 155, 178, 181, 185, 188, 208, 213, 220, 222, 225, 246, 256], "model": [2, 3, 5, 8, 11, 14, 16, 22, 23, 24, 33, 35, 37, 38, 39, 42, 43, 44, 47, 48, 52, 53, 54, 56, 61, 65, 67, 68, 69, 75, 78, 86, 87, 89, 90, 91, 93, 95, 96, 98, 99, 100, 101, 104, 106, 107, 108, 109, 110, 111, 116, 118, 119, 120, 121, 123, 126, 127, 128, 129, 132, 135, 139, 141, 142, 144, 145, 148, 152, 153, 154, 158, 159, 160, 161, 162, 163, 164, 172, 173, 174, 176, 177, 183, 184, 186, 193, 196, 199, 200, 201, 204, 205, 207, 212, 213, 214, 215, 216, 219, 222, 227, 228, 230, 235, 237, 238, 239, 241, 242, 243, 244, 245, 248, 249, 250, 251, 253, 254, 258], "linear": [2, 5, 6, 7, 9, 11, 16, 17, 19, 25, 37, 38, 43, 44, 45, 47, 48, 49, 60, 68, 69, 73, 78, 79, 87, 89, 92, 93, 94, 96, 97, 98, 100, 102, 103, 105, 109, 110, 111, 112, 115, 117, 118, 119, 123, 124, 125, 127, 128, 129, 133, 134, 137, 138, 141, 144, 145, 146, 148, 149, 150, 153, 154, 156, 157, 160, 161, 162, 163, 164, 165, 166, 169, 172, 173, 174, 177, 179, 181, 182, 184, 185, 189, 193, 195, 197, 198, 199, 200, 201, 202, 203, 205, 207, 209, 210, 211, 212, 214, 215, 218, 219, 220, 221, 223, 226, 228, 230, 232, 233, 234, 237, 239, 240, 241, 242, 243, 244, 245, 248, 249, 250, 252, 258], "loss": [2, 3, 5, 6, 7, 9, 11, 14, 16, 17, 19, 32, 38, 43, 48, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 78, 87, 89, 92, 94, 96, 99, 102, 103, 104, 111, 112, 115, 117, 118, 121, 122, 123, 125, 127, 129, 134, 135, 146, 147, 148, 149, 152, 154, 157, 160, 162, 163, 165, 166, 168, 169, 172, 178, 181, 182, 188, 191, 197, 198, 201, 216, 220, 221, 234, 241, 245, 250, 253, 258], "target": [2, 3, 4, 6, 9, 12, 14, 16, 18, 19, 22, 23, 44, 47, 49, 55, 60, 73, 78, 90, 94, 97, 98, 99, 102, 103, 104, 113, 116, 118, 123, 127, 128, 129, 134, 135, 136, 138, 142, 144, 152, 154, 155, 158, 160, 161, 162, 163, 165, 166, 169, 171, 172, 173, 174, 178, 179, 181, 182, 188, 197, 198, 199, 200, 204, 206, 208, 220, 221, 222, 225, 226, 229, 230, 231, 234, 253, 256], "mseloss": [2, 12, 37, 47, 65, 67, 68, 69, 78, 97, 110, 111, 133, 134, 149, 161, 214, 230, 245, 258], "grad_output": [2, 8, 10, 13, 64, 76, 78, 111], "ones_lik": [2, 32, 40, 48, 95, 142, 191], "create_graph": [2, 130], "gradient_penalti": 2, "dim": [2, 4, 5, 11, 14, 21, 33, 40, 41, 45, 48, 49, 60, 73, 90, 92, 93, 94, 96, 97, 99, 102, 103, 104, 110, 115, 118, 123, 127, 128, 129, 134, 144, 147, 148, 149, 154, 156, 158, 159, 161, 162, 163, 164, 165, 166, 169, 171, 173, 174, 190, 191, 192, 193, 203, 206, 219, 221, 233, 256], "combined_loss": 2, "1042": 2, "0638": 2, "0103": 2, "0723": 2, "2543": 2, "1222": 2, "0071": 2, "0814": 2, "1683": 2, "1052": 2, "0355": 2, "document": [2, 4, 5, 6, 20, 47, 52, 60, 61, 79, 82, 85, 87, 101, 112, 113, 117, 121, 133, 135, 136, 139, 141, 143, 144, 157, 162, 163, 164, 168, 171, 172, 173, 174, 176, 177, 178, 179, 191, 197, 199, 205, 206, 209, 213, 214, 218, 220, 221, 228, 247, 252, 254, 255, 256, 257, 260, 262, 263, 267, 269, 271, 272, 276], "link": [2, 4, 5, 6, 10, 12, 22, 23, 52, 58, 59, 82, 105, 108, 114, 116, 118, 135, 139, 141, 191, 204, 206, 208, 220, 260, 261, 266, 269, 270, 275], "subclass": [2, 5, 6, 14, 17, 25, 64, 67, 79, 111, 121, 126, 136, 146, 156, 162, 169, 178, 191, 193, 201, 219, 229, 230, 235, 251, 254, 256], "encod": [2, 7, 9, 14, 17, 42, 47, 48, 75, 76, 100, 104, 113, 118, 122, 126, 127, 128, 136, 153, 159, 163, 171, 178, 181, 184, 185, 195, 200, 201, 208, 230, 252], "method": [2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 16, 17, 19, 21, 23, 25, 44, 47, 49, 51, 55, 58, 59, 60, 64, 65, 67, 73, 79, 83, 85, 90, 95, 97, 99, 101, 111, 112, 113, 115, 120, 121, 126, 130, 133, 136, 137, 139, 141, 142, 143, 144, 145, 146, 149, 153, 154, 155, 156, 157, 159, 160, 161, 162, 169, 171, 172, 173, 174, 176, 182, 183, 189, 197, 198, 200, 201, 203, 208, 209, 213, 221, 223, 224, 225, 228, 229, 230, 245, 247, 262, 271], "forward": [2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 22, 23, 25, 33, 37, 38, 43, 44, 45, 47, 49, 52, 56, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 79, 85, 87, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 105, 108, 111, 112, 115, 117, 118, 121, 122, 123, 124, 125, 127, 128, 129, 130, 131, 133, 134, 135, 138, 139, 142, 146, 148, 149, 150, 152, 153, 154, 156, 157, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 177, 179, 181, 182, 183, 185, 187, 188, 193, 194, 195, 197, 198, 199, 203, 204, 206, 208, 209, 211, 212, 213, 214, 215, 218, 219, 220, 221, 226, 228, 230, 233, 234, 237, 238, 239, 240, 241, 242, 243, 247, 248, 249, 250, 252, 256, 258], "detail": [2, 5, 6, 8, 10, 12, 15, 16, 20, 22, 23, 25, 43, 44, 45, 52, 53, 58, 59, 60, 61, 69, 73, 82, 83, 85, 111, 113, 116, 119, 123, 124, 126, 128, 129, 131, 133, 142, 144, 149, 150, 152, 157, 160, 163, 164, 168, 169, 172, 173, 174, 177, 179, 185, 188, 189, 190, 191, 192, 194, 198, 199, 205, 207, 208, 211, 213, 218, 219, 220, 224, 225, 226, 228, 229, 230, 231, 234, 237, 246, 247, 252, 257], "namespac": [2, 6, 8, 10, 22, 23, 108, 137, 155, 179, 185, 193, 208, 256], "inherit": [2, 11, 15, 22, 51, 60, 85, 99, 143, 146, 149, 159, 171, 178, 191, 193, 195, 199, 216], "linearfunct": 2, "public": [2, 8, 10, 15, 155, 208, 263, 272], "static": [2, 8, 10, 14, 21, 58, 59, 60, 107, 121, 137, 141, 142, 155, 173, 174, 181, 183, 184, 185, 196, 197, 198, 199, 200, 208, 221, 247, 260, 269], "option": [2, 5, 6, 8, 10, 11, 14, 23, 44, 46, 49, 51, 53, 60, 61, 82, 87, 97, 109, 120, 121, 126, 131, 134, 136, 138, 144, 147, 149, 156, 158, 171, 173, 174, 182, 183, 184, 185, 193, 194, 197, 198, 199, 200, 204, 209, 212, 216, 218, 227, 230, 231, 251, 252, 253, 255, 262, 266, 271, 275], "autogradcontext": [2, 8, 10], "ctx": [2, 5, 8, 10, 13, 18, 64, 111, 129, 130, 141, 212], "save_for_backward": [2, 5, 13, 64, 111, 129, 130], "mm": [2, 5, 12, 59, 110, 137, 185, 186, 188, 194, 197, 206, 207, 222, 225], "expand_a": [2, 19, 182, 197, 198], "tensor_list": [2, 8, 10, 135], "get_saved_vari": 2, "grad_input": [2, 13, 78, 129, 130], "grad_weight": 2, "grad_bia": [2, 13], "Then": [2, 12, 15, 17, 20, 22, 24, 25, 44, 45, 52, 58, 59, 61, 73, 85, 98, 99, 102, 103, 114, 121, 123, 133, 134, 149, 152, 155, 156, 159, 160, 161, 163, 165, 168, 173, 174, 188, 195, 200, 201, 212, 215, 222, 224, 225, 228, 244], "5314": 2, "2807": 2, "4864": 2, "7608": 2, "9101": [2, 173], "0073": 2, "mulconst": [2, 78], "object": [2, 4, 5, 6, 7, 9, 10, 11, 14, 19, 20, 22, 23, 43, 49, 51, 52, 60, 61, 64, 68, 69, 75, 95, 97, 101, 110, 111, 112, 116, 117, 118, 121, 125, 129, 135, 136, 141, 142, 143, 145, 154, 155, 159, 160, 161, 162, 163, 164, 168, 169, 171, 173, 174, 177, 181, 182, 193, 197, 198, 200, 216, 220, 221, 223, 225, 229, 231, 244, 246, 247], "stash": [2, 64, 111], "saved_data": 2, "were": [2, 3, 5, 6, 9, 12, 17, 18, 23, 32, 52, 60, 83, 85, 97, 99, 101, 103, 113, 114, 126, 132, 133, 138, 147, 153, 159, 160, 162, 164, 165, 173, 174, 176, 189, 201, 204, 205, 226, 231, 234, 237, 244], "todoubl": 2, "On": [2, 4, 5, 6, 8, 17, 19, 21, 22, 23, 115, 117, 122, 133, 135, 137, 147, 153, 156, 161, 162, 172, 177, 178, 201, 203, 208, 219, 226, 230, 247], "easiest": [2, 5, 9, 23, 121, 139, 145, 157, 159, 228, 247], "tabl": [2, 16, 21, 89, 103, 109, 115, 121, 122, 135, 137, 143, 144, 162, 163, 164, 168, 173, 174, 175, 219, 231, 238, 266, 275], "set_data": 2, "output_nr": 2, "after": [2, 3, 5, 6, 7, 9, 10, 12, 14, 15, 17, 18, 19, 20, 21, 23, 24, 25, 32, 33, 34, 43, 45, 47, 49, 52, 53, 58, 59, 60, 61, 63, 64, 76, 79, 87, 97, 98, 99, 102, 103, 105, 110, 111, 112, 113, 115, 116, 122, 124, 127, 128, 129, 132, 133, 134, 135, 136, 137, 138, 142, 144, 146, 147, 149, 152, 153, 155, 156, 157, 158, 159, 160, 162, 163, 165, 166, 168, 169, 173, 174, 176, 178, 179, 181, 182, 183, 185, 187, 188, 195, 197, 198, 199, 200, 201, 202, 203, 204, 206, 208, 213, 214, 223, 224, 225, 228, 230, 231, 234, 237, 244, 245, 247, 252, 254, 257, 258], "bug": [2, 5, 10, 23, 108, 144, 186], "report": [2, 10, 17, 23, 52, 73, 87, 98, 121, 137, 144, 161, 163, 164, 186, 201], "fix": [2, 14, 17, 20, 23, 24, 49, 50, 51, 52, 97, 108, 113, 125, 157, 161, 173, 174, 184, 201, 226, 247, 262, 271], "soon": [2, 5, 52, 58, 59, 122, 147, 152, 198, 220], "overview": [2, 5, 6, 11, 53, 55, 61, 113, 119, 120, 121, 127, 128, 133, 134, 135, 142, 155, 159, 161, 162, 163, 165, 168, 189, 190, 192, 196, 207, 210, 227, 257], "alwai": [2, 3, 4, 6, 9, 14, 16, 18, 19, 22, 23, 49, 52, 99, 102, 103, 108, 113, 124, 125, 129, 135, 136, 137, 139, 158, 159, 160, 161, 163, 173, 178, 185, 187, 188, 189, 195, 204, 207, 222, 252, 262, 271], "problem": [2, 4, 6, 11, 14, 15, 18, 22, 23, 49, 51, 52, 61, 98, 100, 103, 115, 117, 126, 136, 142, 144, 145, 149, 153, 157, 159, 161, 163, 168, 172, 176, 189, 191, 207, 231, 232, 237, 247, 262, 271], "question": [2, 4, 5, 6, 8, 10, 17, 22, 23, 49, 75, 122, 135, 137, 143, 165, 183, 190, 200, 201, 207, 231], "forum": [2, 4, 5, 6, 22, 23, 44, 79, 110, 142, 143, 183, 207], "view": [3, 7, 9, 10, 11, 12, 14, 15, 16, 19, 25, 47, 49, 50, 52, 53, 55, 56, 61, 73, 78, 82, 92, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 110, 112, 118, 123, 124, 126, 127, 131, 132, 133, 134, 135, 141, 142, 143, 144, 149, 150, 155, 156, 160, 161, 162, 163, 164, 165, 166, 169, 173, 174, 181, 182, 183, 193, 197, 198, 206, 211, 214, 215, 226, 229, 239, 240, 241, 242, 243, 245, 248, 249, 250, 255, 260, 269], "prerequisit": [3, 7, 53, 55, 56, 100, 108, 114, 124, 131, 132, 133, 134, 135, 136, 155, 161, 162, 163, 171, 197, 214, 215], "frontend": [3, 10, 84, 110, 121, 177, 186, 187, 193, 199, 220, 221, 253], "semant": [3, 6, 22, 49, 58, 59, 68, 95, 100, 102, 111, 135, 137, 191, 192, 193, 196, 205, 262, 271], "11": [3, 5, 6, 7, 11, 17, 18, 23, 59, 61, 95, 104, 109, 122, 123, 141, 158, 163, 171, 172, 173, 174, 175, 194, 204, 208, 215, 219, 225, 227, 231, 238, 256, 262, 266, 271, 275], "nvidia": [3, 5, 17, 50, 95, 129, 135, 137, 147, 172, 201, 215, 230, 247, 251, 257], "toolkit": [3, 23, 100, 142, 146, 245], "releas": [3, 4, 6, 10, 17, 20, 23, 24, 42, 50, 105, 108, 109, 112, 122, 123, 125, 139, 142, 152, 162, 164, 168, 199, 201, 204, 208, 212, 219, 220, 221, 247, 262, 271], "greatli": [3, 6, 49, 160], "overhead": [3, 5, 6, 10, 17, 56, 82, 109, 122, 123, 124, 133, 145, 147, 149, 158, 161, 163, 164, 168, 172, 176, 177, 184, 186, 193, 199, 201, 231, 247], "increas": [3, 5, 6, 18, 19, 20, 24, 44, 73, 82, 83, 87, 97, 122, 123, 124, 126, 128, 131, 134, 142, 152, 158, 168, 182, 184, 193, 194, 197, 209, 219, 229, 230, 231, 234, 247], "mostli": [3, 10, 19, 85, 97, 116, 127, 163, 165, 179, 197, 198, 199], "deploy": [3, 4, 25, 42, 60, 97, 112, 126, 177, 186, 199, 204, 220, 227, 228, 234, 251, 252, 257], "appear": [3, 11, 14, 22, 25, 103, 226, 229, 234, 262, 271], "heart": [3, 49, 113, 219, 263, 272], "veri": [3, 4, 5, 6, 8, 12, 14, 15, 18, 19, 21, 22, 23, 24, 25, 45, 47, 48, 49, 58, 59, 60, 61, 65, 73, 75, 76, 85, 99, 101, 113, 115, 117, 123, 124, 125, 127, 134, 135, 149, 152, 153, 157, 160, 161, 163, 164, 165, 166, 168, 169, 176, 178, 182, 189, 191, 195, 198, 205, 226, 234, 247, 263, 264, 272, 273], "time": [3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 83, 85, 87, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130, 133, 134, 135, 136, 138, 139, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 152, 153, 154, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 168, 169, 171, 172, 173, 174, 176, 177, 178, 181, 182, 184, 185, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 201, 203, 204, 205, 206, 211, 212, 214, 219, 226, 228, 229, 230, 231, 232, 233, 234, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 254, 255, 256, 257, 260, 262, 269, 271], "compil": [3, 4, 6, 8, 10, 17, 21, 22, 25, 60, 85, 98, 108, 121, 135, 143, 173, 174, 175, 184, 186, 193, 199, 204, 207, 216, 220, 223, 231, 247, 251, 253, 256, 260, 269], "boost": [3, 97, 99, 144, 145, 176, 184, 199, 207, 216, 220, 221, 247], "demonstr": [3, 7, 9, 14, 16, 17, 20, 21, 22, 25, 42, 43, 50, 57, 61, 75, 82, 85, 108, 113, 120, 121, 122, 123, 124, 125, 127, 129, 130, 133, 134, 137, 138, 141, 142, 143, 144, 150, 155, 159, 161, 162, 163, 164, 168, 171, 173, 174, 177, 179, 184, 185, 186, 187, 188, 191, 193, 195, 198, 201, 202, 203, 204, 211, 214, 215, 218, 219, 221, 222, 224, 225, 228, 230, 231, 234, 237, 252, 254, 255, 258, 262, 263, 264, 271, 272, 273], "mnist": [3, 6, 34, 44, 47, 73, 78, 92, 94, 96, 119, 120, 121, 123, 126, 129, 135, 138, 148, 154, 162, 166, 169, 221, 233], "libtorch": [3, 6, 22, 23, 187, 204, 206, 208, 220, 222, 225, 251, 256], "counterpart": [3, 17, 108, 134, 144, 195, 201, 215, 220, 247, 252], "depict": 3, "chunk": [3, 5, 7, 55, 135, 152, 164], "batch": [3, 5, 6, 9, 12, 16, 17, 19, 21, 34, 37, 38, 39, 42, 44, 45, 47, 49, 51, 52, 53, 55, 56, 60, 61, 73, 75, 78, 79, 82, 87, 90, 92, 94, 97, 102, 104, 110, 112, 113, 117, 118, 120, 121, 122, 123, 124, 125, 126, 127, 131, 134, 135, 136, 137, 138, 139, 146, 147, 148, 149, 150, 152, 154, 157, 158, 159, 160, 162, 163, 164, 166, 168, 169, 171, 172, 173, 174, 175, 177, 178, 181, 182, 184, 185, 191, 193, 196, 198, 201, 204, 205, 213, 221, 223, 230, 231, 239, 241, 242, 243], "data_load": [3, 6, 19, 178, 182, 197, 198, 199, 236], "nll_loss": [3, 73, 123, 129, 135, 148, 154, 162, 166, 221], "updat": [3, 6, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 42, 43, 44, 49, 51, 52, 61, 63, 64, 65, 67, 68, 69, 71, 72, 75, 82, 97, 98, 99, 102, 103, 110, 111, 112, 117, 122, 123, 126, 129, 136, 137, 139, 147, 152, 159, 160, 162, 163, 168, 178, 182, 185, 189, 197, 198, 199, 200, 201, 204, 207, 210, 214, 216, 218, 221, 222, 228, 230, 244, 258], "captur": [3, 4, 6, 22, 23, 25, 52, 60, 107, 123, 141, 148, 158, 171, 172, 173, 174, 186, 194, 197, 198, 200, 231], "But": [3, 6, 8, 10, 20, 42, 44, 45, 52, 73, 78, 101, 103, 116, 125, 147, 152, 153, 154, 160, 173, 174, 176, 178, 182, 185, 189, 192, 200, 205, 218, 221, 223, 228, 231, 252, 262, 271], "slightli": [3, 5, 14, 23, 122, 135, 136, 158, 165, 173, 174, 192, 231, 247], "prealloc": [3, 14], "reus": [3, 10, 65, 78, 111, 130, 137, 141, 153, 160, 176, 177, 185, 187, 247], "tensoropt": [3, 186], "floatcuda": 3, "dtype": [3, 7, 8, 9, 10, 13, 14, 15, 38, 40, 41, 48, 49, 51, 52, 60, 63, 64, 72, 78, 80, 85, 89, 92, 95, 98, 101, 102, 103, 109, 111, 115, 119, 127, 129, 130, 137, 141, 144, 146, 147, 150, 160, 164, 165, 166, 173, 174, 175, 178, 179, 185, 186, 189, 190, 191, 192, 193, 195, 197, 199, 200, 206, 209, 218, 220, 223, 228, 230, 234, 237, 244, 247, 252, 253], "longcuda": 3, "klong": 3, "zero": [3, 6, 7, 11, 16, 17, 19, 25, 32, 40, 41, 44, 47, 48, 49, 60, 63, 64, 65, 67, 68, 69, 73, 78, 87, 92, 95, 98, 99, 103, 104, 110, 111, 117, 118, 122, 123, 127, 128, 134, 135, 136, 141, 144, 149, 150, 153, 155, 156, 157, 160, 161, 163, 165, 169, 178, 181, 185, 189, 191, 192, 194, 200, 201, 209, 221, 223, 230, 235, 246, 247, 252, 255, 258], "ktrainbatchs": 3, "28": [3, 6, 7, 17, 33, 34, 37, 38, 47, 78, 93, 94, 104, 138, 148, 154, 169, 176, 201, 203, 204, 208, 219, 221, 223, 231, 233, 246], "training_step": [3, 148], "void": [3, 5, 6, 15, 22, 23, 59, 144, 155, 186, 188, 208, 231, 238, 246], "cudagraph": 3, "cudastream": 3, "capturestream": 3, "getstreamfrompool": 3, "setcurrentcudastream": 3, "capture_begin": 3, "capture_end": 3, "warm": [3, 21, 70, 103, 109, 168, 172, 176, 177, 193, 203, 219, 231, 247], "side": [3, 20, 51, 52, 82, 103, 138, 147, 152, 154, 155, 160, 161, 166, 168, 188, 226, 260, 269], "prepar": [3, 11, 17, 19, 25, 44, 51, 52, 58, 59, 68, 69, 102, 103, 111, 112, 116, 134, 137, 138, 152, 155, 159, 161, 181, 185, 193, 195, 196, 199, 200, 201, 204, 209, 212, 218, 222, 227, 228, 251], "cach": [3, 64, 111, 137, 144, 168, 176, 177, 184, 185, 247], "cubla": [3, 231], "cudnn": [3, 5, 78, 117, 129, 136, 147, 150, 230], "warmupstream": 3, "int": [3, 4, 5, 6, 9, 11, 14, 18, 19, 22, 23, 24, 51, 53, 55, 58, 59, 60, 75, 85, 87, 98, 109, 115, 118, 122, 123, 126, 135, 137, 144, 146, 148, 155, 156, 161, 162, 163, 164, 168, 172, 173, 174, 178, 181, 185, 188, 193, 206, 208, 209, 213, 215, 220, 223, 252, 256, 260, 269], "num_warmup_it": 3, "success": [3, 6, 14, 23, 73, 101, 103, 126, 144, 165, 188, 204, 206, 226], "replai": [3, 14, 25, 76, 146], "spin": [3, 60, 176], "ordinari": [3, 194], "epoch": [3, 6, 7, 9, 16, 19, 24, 37, 38, 44, 52, 53, 55, 75, 87, 92, 94, 96, 97, 98, 99, 102, 103, 104, 112, 115, 117, 118, 122, 123, 126, 129, 135, 147, 148, 152, 157, 159, 163, 165, 166, 169, 178, 198, 221, 230, 241, 245, 250], "59584": 3, "60000": [3, 135], "3921": 3, "2051": 3, "accuraci": [3, 9, 17, 19, 20, 24, 37, 38, 44, 92, 97, 104, 115, 119, 120, 121, 122, 123, 126, 129, 148, 150, 156, 157, 158, 162, 166, 169, 171, 177, 182, 185, 194, 195, 198, 199, 201, 218, 219, 227, 228, 230, 245, 251], "938": [3, 6, 147], "1826": 3, "1273": 3, "960": 3, "1796": 3, "1012": [3, 147], "968": 3, "1603": 3, "0869": 3, "973": 3, "2315": 3, "0736": 3, "978": 3, "0511": [3, 185], "0704": 3, "977": [3, 147, 219], "0802": 3, "0654": 3, "979": 3, "0774": 3, "0604": 3, "980": [3, 176], "0669": 3, "0544": 3, "984": [3, 219], "0219": 3, "0517": 3, "983": 3, "real": [3, 6, 14, 20, 32, 52, 54, 58, 97, 98, 99, 100, 103, 121, 123, 126, 127, 128, 135, 136, 149, 152, 155, 158, 160, 165, 172, 176, 191, 193, 197, 200, 218, 219, 231, 234], "0m44": 3, "287": [3, 177, 262, 271], "018": 3, "0m1": 3, "116": [3, 185], "produc": [3, 4, 5, 6, 11, 22, 23, 25, 60, 68, 97, 111, 113, 115, 126, 136, 138, 141, 143, 145, 147, 149, 159, 160, 165, 171, 173, 174, 179, 182, 183, 185, 197, 198, 199, 206, 214, 230, 234, 247, 262, 271], "4092": 3, "2037": 3, "2039": 3, "1274": 3, "961": 3, "1779": 3, "1017": 3, "1559": 3, "0871": 3, "972": 3, "2240": 3, "0735": [3, 201], "0520": 3, "0710": 3, "0935": 3, "0666": [3, 23], "0744": 3, "0603": 3, "981": 3, "0762": 3, "0547": 3, "0207": 3, "0525": [3, 208], "0m6": 3, "952": [3, 144], "0m7": 3, "048": [3, 207], "0m0": 3, "619": 3, "gain": [3, 5, 17, 82, 145, 154, 168, 176, 201], "six": [3, 159, 166, 262, 271], "kind": [3, 5, 6, 19, 23, 44, 47, 49, 58, 59, 73, 98, 102, 112, 119, 121, 137, 173, 177, 197, 252], "larg": [3, 5, 6, 7, 12, 16, 17, 18, 23, 42, 49, 87, 97, 102, 103, 105, 117, 120, 121, 122, 123, 126, 129, 133, 135, 138, 139, 149, 150, 159, 160, 162, 163, 164, 171, 172, 176, 177, 178, 191, 199, 201, 202, 210, 219, 223, 230, 239, 247, 257, 260, 262, 269, 271], "improv": [3, 5, 6, 8, 10, 17, 19, 21, 24, 42, 49, 56, 97, 108, 120, 121, 122, 123, 124, 129, 142, 145, 147, 149, 153, 154, 157, 160, 164, 165, 171, 172, 176, 177, 184, 185, 194, 197, 200, 201, 204, 207, 210, 212, 216, 218, 220, 222, 230, 231, 245, 247, 253, 254, 263, 272], "due": [3, 5, 6, 17, 18, 22, 52, 58, 60, 82, 85, 108, 122, 123, 124, 133, 152, 153, 157, 162, 172, 176, 182, 184, 191, 200, 201, 202, 211, 216, 221, 234, 261, 262, 270, 271], "heavi": [3, 6, 49, 97, 101, 223], "impact": [3, 12, 17, 87, 97, 136, 161, 164, 184, 201, 209, 229, 252, 258], "smaller": [3, 9, 51, 79, 97, 103, 123, 124, 157, 159, 161, 171, 203, 208, 223, 229, 231, 234, 237], "nevertheless": [3, 5, 19, 23, 147, 159], "primari": [4, 5, 6, 15, 142, 175, 176, 177, 186, 193, 206, 247], "program": [4, 5, 18, 21, 22, 23, 25, 60, 61, 98, 100, 101, 103, 121, 124, 127, 143, 162, 172, 173, 177, 197, 198, 199, 200, 214, 231, 247, 256], "languag": [4, 5, 6, 7, 21, 23, 24, 25, 44, 49, 58, 59, 60, 78, 79, 98, 100, 102, 116, 118, 119, 121, 124, 126, 127, 128, 137, 163, 165, 173, 174, 181, 186, 195, 207, 219, 234, 246, 247, 252, 254, 256, 261, 262, 263, 270, 271, 272], "suitabl": [4, 8, 131, 135, 139, 171, 199, 223], "prefer": [4, 6, 8, 53, 58, 145, 150, 155, 159, 176, 194, 230, 252], "eas": [4, 5, 85, 122, 177, 220, 237, 251], "situat": [4, 15, 23, 25, 37, 129, 130, 133, 135, 178, 184, 195], "properti": [4, 5, 6, 11, 14, 21, 23, 25, 32, 40, 48, 101, 103, 126, 147, 153, 165, 173, 174, 176, 177, 190, 208, 220, 230, 231, 244, 249, 256, 260, 269], "unfavor": 4, "environ": [4, 5, 6, 7, 11, 17, 18, 22, 25, 42, 55, 61, 82, 85, 105, 112, 114, 115, 121, 122, 123, 124, 132, 133, 134, 135, 144, 148, 149, 155, 160, 161, 162, 163, 172, 173, 174, 175, 176, 204, 206, 207, 208, 212, 213, 214, 215, 216, 219, 222, 223, 226, 229, 231, 247, 252, 255, 256, 258], "latter": [4, 5, 6, 60, 61, 126, 161, 198], "land": [4, 23, 113, 146, 191, 220, 258], "latenc": [4, 6, 17, 121, 124, 126, 132, 144, 158, 172, 176, 177, 187, 194, 201, 219, 223], "strict": [4, 112, 171, 190, 220, 248], "bind": [4, 6, 10, 23, 121, 176, 177, 247, 262, 271], "java": [4, 58, 177, 204, 222, 223], "rust": 4, "paragraph": [4, 6, 23, 263, 266, 272, 275], "outlin": [4, 5, 6, 23, 227], "pure": [4, 5, 6, 10, 23, 47, 121, 127, 130, 138, 154, 178, 186, 199], "journei": [4, 6, 52, 137], "enabl": [4, 5, 6, 8, 11, 14, 15, 16, 18, 19, 23, 24, 42, 47, 55, 56, 58, 59, 60, 61, 75, 82, 97, 107, 112, 122, 123, 124, 126, 129, 130, 133, 135, 137, 144, 147, 152, 156, 158, 159, 168, 169, 171, 175, 176, 177, 179, 183, 184, 189, 191, 193, 195, 196, 199, 204, 207, 214, 216, 219, 220, 224, 225, 226, 228, 230, 240, 244, 251, 258, 260, 269], "vanilla": [4, 5, 6, 23, 49, 65, 99, 111, 127, 171, 189, 258], "eager": [4, 10, 23, 60, 85, 86, 121, 144, 147, 164, 172, 174, 181, 195, 197, 198, 199, 200, 210, 221, 247], "discuss": [4, 5, 6, 8, 10, 15, 16, 23, 44, 73, 79, 101, 102, 116, 122, 123, 134, 142, 143, 144, 149, 150, 172, 176, 177, 183, 189, 190, 191, 192, 228, 237, 254], "littl": [4, 17, 25, 52, 61, 97, 99, 113, 136, 159, 161, 163, 164, 166, 168, 201], "effort": [4, 14, 49, 51, 52, 108, 182, 195, 196], "next": [4, 5, 6, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 22, 23, 34, 42, 43, 49, 51, 53, 55, 56, 58, 59, 60, 75, 78, 80, 82, 85, 92, 94, 96, 97, 98, 99, 102, 103, 105, 112, 113, 115, 117, 121, 122, 123, 124, 125, 127, 128, 129, 130, 132, 136, 137, 138, 139, 143, 144, 146, 149, 150, 152, 154, 157, 160, 161, 162, 163, 165, 166, 168, 169, 177, 178, 181, 182, 184, 187, 188, 191, 192, 195, 197, 198, 199, 201, 203, 208, 216, 219, 220, 222, 223, 226, 230, 234, 237, 260, 262, 263, 269, 271, 272], "mechan": [4, 5, 6, 11, 14, 15, 24, 32, 49, 56, 60, 130, 143, 153, 165, 166, 168, 174, 177, 199, 216, 220, 221, 226], "evalu": [4, 6, 9, 12, 17, 19, 20, 24, 37, 73, 97, 105, 107, 112, 118, 145, 150, 159, 160, 162, 169, 172, 173, 174, 178, 181, 198, 201, 221, 241], "onc": [4, 5, 6, 8, 10, 11, 14, 16, 17, 20, 21, 22, 23, 25, 51, 52, 56, 60, 82, 97, 98, 102, 105, 113, 131, 136, 139, 147, 148, 152, 153, 156, 158, 159, 160, 162, 165, 168, 169, 177, 184, 185, 188, 193, 195, 201, 213, 220, 223, 226, 230, 231, 247, 257], "record": [4, 6, 8, 19, 20, 23, 25, 43, 49, 60, 112, 121, 122, 123, 127, 129, 130, 143, 146, 152, 159, 160, 162, 163, 172, 174, 204, 221, 234, 252], "explicit": [4, 6, 21, 23, 60, 139, 147, 163, 190, 200, 209, 226, 230, 262, 271], "pars": [4, 5, 23, 49, 51, 103, 116, 122, 123, 126, 209, 231, 262, 271], "subject": [4, 11, 14, 23, 42, 108, 113, 123, 141, 165, 173, 174, 187, 188, 193, 198, 204, 205, 206, 207, 212, 216, 222, 231], "constraint": [4, 6, 12, 17, 18, 60, 85, 98, 99, 121, 124, 126, 153, 159, 171, 197, 198, 200, 201, 230, 231, 244, 252], "impos": [4, 223, 232, 244], "guidanc": [4, 8, 176, 177, 195, 230], "offici": [4, 82, 108, 113, 115, 135, 160, 172, 174, 181, 199, 218, 220, 252], "jit": [4, 6, 8, 15, 19, 21, 22, 25, 49, 58, 59, 60, 85, 112, 119, 137, 142, 147, 172, 177, 182, 185, 187, 188, 194, 197, 198, 203, 204, 206, 207, 208, 209, 216, 218, 220, 222, 223, 224, 225, 231, 238, 247, 252, 254, 256], "scriptmodul": [4, 22, 23, 25, 85, 203, 222, 252, 256], "embed": [4, 7, 9, 16, 21, 23, 49, 60, 75, 79, 93, 98, 100, 102, 110, 112, 115, 118, 121, 122, 124, 137, 162, 163, 165, 169, 175, 181, 188, 193, 195, 241, 262, 271], "resnet18": [4, 43, 90, 117, 147, 157, 158, 168, 171, 182, 195, 197, 198, 199, 229, 238, 256], "normal": [4, 6, 8, 11, 12, 19, 20, 21, 37, 39, 49, 51, 52, 58, 59, 60, 65, 73, 80, 85, 87, 90, 92, 94, 96, 97, 98, 99, 102, 103, 111, 112, 117, 119, 123, 127, 128, 129, 135, 136, 139, 146, 148, 153, 157, 158, 161, 162, 164, 165, 166, 168, 169, 171, 172, 177, 182, 184, 190, 197, 198, 204, 209, 213, 216, 220, 221, 223, 224, 225, 228, 229, 241, 242, 243, 247, 250, 252, 253, 262, 271], "rand": [4, 5, 6, 14, 15, 17, 21, 23, 25, 33, 40, 43, 48, 85, 89, 92, 93, 95, 96, 109, 114, 129, 130, 144, 146, 152, 153, 164, 176, 177, 178, 179, 187, 195, 197, 198, 201, 203, 206, 210, 211, 214, 219, 220, 223, 224, 225, 226, 233, 239, 247, 252, 253, 256], "224": [4, 12, 19, 20, 51, 58, 59, 75, 90, 97, 117, 119, 139, 142, 143, 152, 157, 158, 166, 168, 171, 176, 177, 182, 187, 188, 194, 197, 198, 199, 204, 206, 213, 218, 220, 223, 224, 225, 229, 238, 247, 252, 253, 256], "traced_script_modul": [4, 223], "ident": [4, 6, 17, 55, 85, 124, 132, 142, 150, 157, 166, 169, 185, 192, 194, 201, 218, 231], "2698": 4, "0381": 4, "4023": 4, "3010": 4, "0448": 4, "slicebackward": 4, "circumst": [4, 5, 230], "emploi": [4, 97, 165, 168], "particular": [4, 5, 6, 8, 11, 23, 42, 44, 51, 60, 82, 83, 87, 103, 124, 126, 127, 135, 136, 138, 139, 150, 154, 162, 171, 173, 174, 178, 179, 189, 190, 192, 193, 213, 223, 237, 247], "form": [4, 6, 9, 12, 15, 17, 23, 47, 49, 52, 60, 98, 105, 110, 113, 116, 121, 125, 128, 139, 144, 165, 171, 174, 184, 193, 201, 202, 213, 214, 226, 234, 247, 262, 271], "accordingli": [4, 10, 12, 18, 22, 136, 149, 152, 161, 171, 188, 207, 260, 269], "sai": [4, 5, 6, 24, 43, 51, 99, 101, 103, 113, 115, 125, 138, 145, 149, 152, 156, 168, 184, 200, 222, 234, 263, 272], "mymodul": [4, 6, 109, 172, 173, 174, 202, 212], "__init__": [4, 5, 6, 7, 9, 11, 12, 13, 14, 16, 19, 20, 21, 22, 25, 33, 37, 38, 44, 45, 47, 49, 51, 52, 53, 60, 65, 67, 73, 78, 79, 85, 87, 89, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 105, 109, 111, 112, 115, 118, 123, 125, 127, 128, 129, 133, 134, 135, 138, 142, 143, 146, 148, 149, 150, 153, 154, 156, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 177, 178, 179, 181, 182, 183, 193, 194, 195, 197, 198, 199, 202, 203, 209, 212, 214, 215, 216, 218, 219, 221, 223, 226, 228, 233, 234, 237, 239, 240, 241, 242, 243, 244, 248, 249, 250, 252, 262, 271], "n": [4, 5, 6, 7, 9, 12, 17, 19, 22, 23, 32, 33, 37, 38, 40, 43, 47, 48, 49, 51, 59, 60, 75, 82, 85, 89, 90, 93, 94, 95, 97, 104, 110, 113, 115, 118, 122, 123, 127, 129, 133, 135, 136, 137, 143, 145, 146, 147, 150, 153, 156, 160, 161, 162, 163, 165, 166, 169, 178, 182, 184, 185, 189, 190, 191, 192, 193, 197, 198, 200, 201, 205, 208, 213, 220, 230, 231, 236, 244, 247, 254, 256], "mv": [4, 110], "my_modul": 4, "20": [4, 6, 7, 9, 13, 16, 17, 19, 23, 33, 58, 59, 61, 78, 79, 82, 85, 87, 93, 95, 109, 123, 126, 128, 133, 135, 136, 142, 144, 146, 147, 149, 150, 152, 156, 161, 163, 166, 168, 173, 174, 177, 184, 187, 192, 195, 198, 201, 209, 221, 223, 231, 232, 234, 238, 246, 258, 266, 275], "sm": [4, 168], "exclud": [4, 8, 43], "doesn": [4, 7, 8, 10, 12, 13, 17, 25, 58, 99, 101, 103, 113, 125, 143, 145, 147, 156, 171, 172, 176, 179, 183, 184, 189, 195, 198, 200, 201, 205, 208, 210, 211, 228, 247, 255, 262, 271], "yet": [4, 6, 10, 11, 18, 23, 50, 73, 102, 107, 108, 113, 135, 162, 165, 175, 179, 185, 193, 198, 199, 216, 220, 224, 225, 247], "could": [4, 5, 6, 8, 10, 11, 23, 52, 60, 87, 97, 98, 99, 101, 102, 103, 105, 109, 122, 123, 124, 125, 127, 128, 129, 135, 139, 147, 149, 152, 159, 160, 161, 162, 163, 165, 168, 169, 171, 176, 177, 178, 179, 189, 191, 197, 199, 200, 205, 214, 215, 216, 220, 221, 237, 247], "ignor": [4, 19, 49, 51, 97, 102, 103, 112, 142, 148, 155, 159, 171, 178, 179, 182, 187, 189, 190, 191, 192, 193, 197, 198, 218, 230], "readi": [4, 6, 9, 10, 16, 22, 23, 42, 49, 58, 59, 60, 98, 99, 102, 103, 122, 134, 135, 150, 155, 159, 161, 162, 163, 175, 178, 187, 194, 197, 198, 199, 208, 213, 223, 224, 225, 228, 252], "hand": [4, 5, 6, 8, 14, 17, 18, 23, 61, 73, 98, 103, 128, 135, 139, 154, 172, 177, 190, 201, 234], "shown": [4, 6, 8, 17, 19, 20, 21, 52, 58, 59, 113, 116, 124, 126, 137, 144, 146, 157, 160, 161, 163, 164, 168, 171, 172, 176, 177, 183, 188, 190, 191, 192, 195, 198, 200, 201, 213, 214, 219, 220, 226, 228, 234, 252, 255, 257, 258, 260, 262, 269, 271], "filenam": [4, 6, 49, 104, 109, 116, 127, 128, 171, 230], "traced_resnet_model": 4, "pt": [4, 6, 22, 23, 25, 53, 58, 59, 75, 112, 117, 119, 122, 123, 137, 188, 194, 204, 206, 208, 218, 220, 221, 222, 223, 224, 225, 228, 240, 241, 242, 243, 248, 256], "my_module_model": 4, "left": [4, 17, 32, 43, 47, 49, 51, 52, 64, 85, 89, 99, 103, 111, 112, 113, 135, 137, 146, 150, 159, 160, 162, 164, 168, 169, 200, 201, 226, 234, 260, 262, 269, 271], "realm": [4, 6], "cross": [4, 7, 8, 13, 20, 44, 52, 95, 118, 124, 126, 176, 247, 262, 271], "sphere": 4, "distribut": [4, 5, 6, 14, 15, 19, 24, 52, 54, 73, 75, 79, 80, 87, 97, 99, 103, 108, 113, 121, 122, 123, 124, 126, 131, 132, 137, 147, 149, 152, 155, 159, 161, 168, 176, 185, 193, 196, 202, 208, 212, 215, 223, 229, 231, 251, 258], "encompass": 4, "share": [4, 5, 6, 10, 11, 18, 22, 23, 48, 55, 66, 78, 80, 87, 97, 101, 108, 110, 113, 121, 122, 125, 133, 135, 136, 146, 159, 161, 162, 163, 173, 174, 176, 195, 208, 220, 231, 237], "header": [4, 5, 6, 8, 22, 23, 143, 155, 188, 204, 208, 222, 225, 231, 260, 262, 263, 269, 271, 272], "cmake": [4, 6, 188, 206, 220, 256], "futur": [4, 7, 18, 21, 22, 42, 49, 58, 59, 109, 110, 118, 123, 134, 137, 141, 146, 152, 155, 157, 160, 161, 162, 163, 173, 174, 179, 181, 187, 188, 192, 197, 198, 199, 200, 204, 208, 219, 222, 252], "begin": [4, 5, 6, 7, 11, 12, 17, 19, 22, 23, 25, 32, 43, 49, 50, 52, 55, 58, 59, 73, 85, 89, 102, 103, 108, 113, 115, 116, 122, 124, 137, 142, 152, 157, 160, 162, 168, 169, 191, 193, 201, 223, 228, 230, 231, 262, 271], "iostream": [4, 5, 6, 22, 23, 220], "argc": [4, 22, 23, 220, 256], "const": [4, 5, 6, 8, 10, 15, 22, 23, 59, 144, 155, 186, 208, 220, 222, 231, 246, 256], "char": [4, 22, 23, 59, 144, 208, 220, 256], "cerr": [4, 22, 23, 220, 256], "app": [4, 23, 105, 119, 121, 139, 194, 204, 220, 222, 227, 228, 251, 252], "try": [4, 6, 12, 14, 15, 17, 19, 21, 22, 23, 25, 42, 44, 47, 48, 49, 52, 53, 58, 59, 60, 61, 73, 79, 97, 98, 99, 100, 101, 104, 105, 109, 116, 125, 126, 127, 128, 129, 136, 142, 144, 146, 147, 149, 150, 152, 155, 156, 159, 160, 164, 165, 168, 172, 173, 174, 176, 182, 184, 187, 190, 197, 201, 203, 208, 213, 216, 219, 220, 222, 230, 231, 234, 244, 245, 256, 262, 263, 271, 272], "deseri": [4, 6, 23, 112, 182, 197, 198, 256], "catch": [4, 8, 11, 22, 58, 208, 220, 222, 256], "c10": [4, 8, 10, 15, 22, 144, 155, 186, 188, 208, 219, 220, 231, 246, 256], "ok": [4, 103, 161, 262, 271], "relev": [4, 6, 14, 53, 98, 100, 103, 113, 114, 122, 124, 156, 171, 247], "accept": [4, 5, 20, 67, 78, 87, 97, 102, 111, 115, 116, 124, 126, 141, 145, 150, 154, 159, 162, 168, 171, 179, 200, 202, 205, 212, 219, 247, 252], "proce": [4, 11, 25, 97, 99, 144, 157, 165, 234, 247], "examin": [4, 11, 22, 25, 58, 59, 82, 97, 143], "moment": [4, 6, 11, 173, 179, 192, 206, 223], "cpp": [4, 5, 6, 8, 22, 23, 120, 121, 144, 187, 196, 199, 208, 220, 246, 256], "cmakelist": [4, 6, 22, 23, 208, 220, 256], "txt": [4, 5, 6, 9, 22, 23, 49, 75, 116, 127, 128, 137, 144, 158, 165, 185, 208, 220, 256], "cmake_minimum_requir": [4, 6, 22, 23, 208, 220, 256], "fatal_error": [4, 6, 22, 23, 208, 220, 256], "custom_op": [4, 108, 173, 174, 256], "find_packag": [4, 6, 22, 23, 220, 256], "add_execut": [4, 6, 22, 23, 220, 256], "target_link_librari": [4, 6, 22, 23, 208, 220, 256], "torch_librari": [4, 6, 8, 22, 23, 220, 256], "set_properti": [4, 6, 220, 256], "cxx_standard": [4, 6, 220, 256], "14": [4, 6, 22, 23, 24, 47, 73, 92, 123, 144, 171, 176, 208, 219, 220, 221, 228, 231, 238, 266, 275], "last": [4, 6, 11, 12, 14, 19, 23, 40, 43, 49, 52, 53, 59, 60, 73, 83, 85, 87, 99, 102, 105, 113, 117, 121, 124, 125, 127, 128, 135, 136, 142, 144, 148, 149, 152, 157, 159, 160, 161, 163, 164, 165, 169, 176, 178, 188, 189, 192, 193, 218, 220, 222, 228, 230, 247, 252], "thing": [4, 5, 6, 8, 15, 21, 22, 23, 25, 43, 44, 47, 49, 58, 59, 85, 87, 97, 98, 99, 101, 102, 103, 113, 116, 124, 125, 126, 129, 130, 131, 132, 135, 136, 139, 143, 144, 147, 148, 153, 158, 159, 166, 177, 182, 184, 195, 197, 208, 213, 231, 262, 271], "grab": [4, 6, 52, 158, 163], "latest": [4, 6, 10, 14, 20, 87, 107, 108, 112, 121, 137, 157, 158, 159, 162, 165, 166, 171, 172, 208, 257, 260, 269], "stabl": [4, 20, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 94, 98, 113, 140, 158, 167, 168, 170, 181, 221, 223, 230, 233, 251, 260, 269], "page": [4, 6, 10, 22, 23, 50, 54, 61, 109, 127, 139, 163, 168, 175, 199, 204, 207, 208, 209, 217, 220, 222, 247, 264, 266, 273, 275], "websit": [4, 6, 160, 226, 229], "unzip": [4, 6, 19, 50, 171, 178, 181, 182, 197, 198, 208], "archiv": [4, 5, 6, 25, 147, 257], "against": [4, 22, 23, 44, 60, 81, 105, 135, 147, 159, 212, 220, 231, 234], "window": [4, 5, 6, 7, 20, 44, 51, 103, 105, 133, 162, 168, 178, 206, 213, 226, 262, 271], "debug": [4, 6, 8, 19, 25, 58, 59, 60, 78, 98, 121, 125, 173, 174, 186, 195, 196, 231, 255], "abi": [4, 5, 6, 22, 23, 204, 206, 208, 220], "plan": [4, 6, 10, 18, 60, 112, 122, 124, 171, 175, 182, 187, 192, 198, 206, 208, 224], "correct": [4, 5, 6, 8, 10, 11, 12, 13, 19, 37, 38, 43, 44, 47, 49, 60, 64, 73, 85, 87, 92, 97, 98, 99, 102, 111, 122, 123, 125, 127, 129, 133, 136, 144, 147, 153, 156, 159, 161, 162, 165, 166, 168, 169, 182, 193, 197, 198, 215, 221, 230, 244, 260, 269], "laid": 4, "within": [4, 5, 7, 14, 18, 21, 23, 61, 85, 103, 105, 109, 110, 124, 130, 137, 142, 144, 153, 156, 160, 162, 171, 176, 177, 185, 186, 192, 193, 195, 199, 206, 208, 213, 215, 219, 231, 239, 247, 260, 262, 269, 271], "mkdir": [4, 6, 23, 104, 146, 168, 171, 181, 194, 208], "dcmake_prefix_path": [4, 6, 22, 23, 220, 256], "config": [4, 6, 10, 17, 20, 24, 87, 123, 126, 137, 144, 158, 176, 177, 179, 184, 185, 186, 197, 199, 201, 220, 221, 244, 254], "someth": [4, 5, 6, 11, 14, 19, 23, 25, 44, 87, 99, 101, 113, 116, 135, 144, 157, 158, 159, 165, 205, 231, 234, 262, 271], "root": [4, 5, 6, 14, 22, 23, 34, 37, 38, 41, 43, 44, 51, 52, 87, 92, 97, 98, 110, 129, 136, 144, 162, 163, 166, 168, 178, 188, 204, 213, 220, 223, 226, 236, 245, 250, 252, 253, 260, 269], "4b5a67132e81": 4, "identif": [4, 6, 22, 23, 220], "gnu": [4, 5, 6, 22, 23, 220, 247], "cxx": [4, 6, 22, 23, 204, 206, 208, 220], "check": [4, 5, 6, 7, 8, 13, 14, 15, 19, 20, 22, 23, 25, 42, 43, 44, 45, 49, 50, 52, 55, 58, 59, 60, 73, 75, 85, 97, 98, 101, 104, 105, 108, 109, 110, 115, 116, 122, 126, 133, 135, 136, 139, 141, 142, 144, 146, 147, 153, 154, 156, 158, 159, 162, 171, 172, 173, 174, 176, 178, 188, 192, 193, 198, 200, 206, 208, 213, 214, 219, 220, 222, 223, 226, 230, 252, 253, 256], "usr": [4, 6, 18, 22, 23, 135, 194, 220], "cc": [4, 6, 22, 23, 43, 108, 118, 204, 206, 220], "detect": [4, 6, 11, 12, 18, 22, 23, 52, 75, 121, 139, 158, 168, 172, 220, 247], "info": [4, 5, 6, 22, 23, 82, 118, 132, 135, 137, 146, 160, 171, 173, 174, 175, 185, 207, 220, 221, 228], "pthread": [4, 5, 6, 22, 23, 208, 220], "pthread_creat": [4, 6, 22, 23, 220], "thread": [4, 5, 6, 8, 9, 21, 22, 23, 52, 61, 109, 133, 134, 137, 149, 158, 161, 162, 163, 176, 177, 181, 182, 194, 216, 220, 226, 231, 246, 247], "scan": [4, 6, 22, 23, 171], "50": [4, 6, 7, 12, 16, 17, 19, 21, 22, 23, 24, 49, 52, 53, 58, 78, 92, 136, 144, 147, 156, 160, 163, 166, 177, 178, 182, 185, 191, 197, 199, 201, 203, 219, 221, 223, 228, 230, 247], "cmakefil": [4, 6, 22, 23], "dir": [4, 6, 22, 23, 82, 126, 147, 148, 204, 208, 223, 246], "o": [4, 5, 6, 7, 17, 22, 23, 90, 97, 98, 108, 128, 137, 150, 152, 171, 201, 231, 262, 271], "100": [4, 6, 9, 14, 16, 17, 19, 21, 22, 23, 37, 38, 44, 45, 48, 49, 52, 63, 64, 67, 68, 69, 71, 72, 80, 89, 92, 93, 94, 97, 99, 111, 119, 123, 125, 127, 128, 129, 133, 138, 143, 144, 145, 146, 147, 149, 154, 156, 158, 159, 160, 163, 165, 166, 169, 171, 172, 173, 174, 176, 177, 182, 187, 191, 195, 197, 198, 201, 215, 219, 221, 231, 234, 246, 257], "suppli": [4, 6, 101, 147, 158, 262, 271], "binari": [4, 6, 20, 22, 23, 49, 52, 105, 135, 147, 156, 172, 178, 188, 190, 196, 199, 204, 208, 212, 218, 220, 222, 223, 231], "incompat": [4, 173, 174, 197], "1d": [4, 68, 93, 111, 205, 247], "4d": [4, 47, 78, 147, 200], "path_to_model": 4, "successfulli": [4, 6, 22, 50, 58, 59, 60, 105, 119, 126, 135, 144, 162, 191, 194, 206, 219, 225, 227, 241, 256], "coupl": [4, 14, 49, 103, 122, 124, 130, 136, 138, 152, 169, 183, 203, 247], "awai": [4, 5, 6, 23, 47, 60, 98, 99, 101, 113, 143, 149, 159, 160, 161, 192, 234, 262, 271], "ivalu": [4, 23, 58, 144, 155, 206, 208, 220, 223, 256], "push_back": [4, 22, 23, 220, 256], "totensor": [4, 12, 19, 20, 23, 34, 37, 38, 44, 51, 52, 58, 59, 73, 75, 87, 90, 92, 94, 96, 97, 116, 117, 119, 123, 129, 135, 139, 148, 157, 158, 162, 166, 168, 169, 171, 182, 187, 188, 197, 198, 204, 206, 213, 220, 221, 223, 229, 250, 253, 256], "slice": [4, 5, 48, 80, 102, 127, 150, 156, 193, 206], "eras": [4, 25], "org": [4, 6, 26, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 40, 42, 45, 46, 49, 58, 59, 74, 77, 84, 91, 93, 94, 96, 100, 104, 106, 113, 120, 122, 127, 128, 137, 140, 141, 142, 143, 152, 153, 157, 158, 165, 167, 168, 170, 172, 174, 181, 184, 187, 188, 190, 192, 194, 196, 203, 204, 205, 206, 208, 213, 221, 222, 223, 224, 226, 230, 233, 234, 235, 236, 237, 256, 260, 262, 269, 271], "cppdoc": [4, 6], "pariti": 4, "manipul": [4, 60, 103, 143, 152, 182, 185, 213], "five": [4, 9, 65, 95, 111, 113], "ideal": [4, 6, 14, 58, 59, 97, 149, 165, 177, 197, 207], "variabl": [4, 5, 6, 7, 8, 12, 20, 22, 23, 42, 49, 60, 69, 76, 82, 87, 98, 99, 101, 111, 114, 127, 132, 135, 144, 161, 164, 173, 174, 176, 184, 191, 193, 205, 206, 207, 208, 219, 222, 226, 252, 255], "kcuda": [4, 6, 186], "live": [4, 6, 10, 15, 121, 125, 134, 162, 163, 192, 216, 262, 271], "hopefulli": [4, 6, 50, 51, 73, 85, 99, 112], "equip": [4, 5, 130, 136, 189], "concept": [4, 6, 11, 22, 55, 100, 101, 114, 121, 126, 146, 161, 164, 165, 186, 197, 199, 200], "Of": [4, 14, 23, 97, 101, 125, 133, 135, 169, 190, 192, 226], "cours": [4, 6, 14, 17, 19, 23, 53, 97, 100, 101, 103, 104, 125, 133, 135, 169, 201, 213, 226], "did": [4, 6, 8, 19, 23, 25, 44, 52, 60, 68, 105, 111, 113, 135, 141, 153, 159, 162, 165, 176, 182, 231, 262, 271], "cover": [4, 5, 14, 15, 16, 18, 22, 25, 47, 58, 59, 100, 108, 113, 114, 119, 121, 122, 126, 135, 155, 159, 162, 163, 169, 172, 173, 174, 175, 191, 193, 197, 200, 212, 219, 220, 230, 245, 252], "insid": [4, 5, 6, 10, 16, 17, 18, 20, 22, 23, 45, 78, 108, 124, 168, 178, 195, 201, 205, 207, 223, 262, 271], "shortli": [4, 161], "html": [4, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 45, 46, 52, 57, 74, 77, 84, 90, 91, 94, 100, 104, 106, 113, 114, 118, 120, 122, 137, 140, 142, 143, 157, 167, 170, 171, 174, 181, 187, 188, 190, 192, 203, 204, 230, 233, 234, 235, 237, 262, 271], "peter": 5, "goldsborough": 5, "plethora": 5, "relat": [5, 11, 14, 52, 60, 101, 103, 113, 124, 144, 153, 173, 174, 182, 231, 247, 262, 271], "algebra": [5, 14, 48, 99, 219], "wrangl": 5, "novel": 5, "research": [5, 6, 17, 19, 23, 25, 49, 52, 60, 73, 75, 85, 99, 114, 115, 135, 137, 150, 154, 156, 171, 181, 201, 216], "modul": [5, 7, 9, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 33, 37, 38, 39, 42, 44, 45, 47, 49, 52, 53, 55, 58, 59, 65, 66, 68, 73, 78, 79, 87, 89, 92, 94, 95, 96, 97, 98, 99, 102, 103, 105, 107, 108, 109, 110, 112, 115, 116, 117, 118, 121, 122, 123, 124, 125, 127, 128, 129, 133, 135, 138, 142, 143, 144, 146, 147, 150, 152, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 169, 171, 172, 173, 174, 175, 176, 177, 179, 181, 182, 183, 184, 185, 186, 187, 188, 193, 194, 196, 197, 198, 199, 200, 201, 203, 206, 208, 209, 212, 214, 215, 219, 220, 221, 222, 223, 226, 227, 228, 231, 233, 234, 235, 238, 239, 240, 241, 242, 243, 247, 248, 249, 250, 251, 252, 256, 261, 262, 263, 270, 271, 272], "power": [5, 6, 23, 43, 49, 57, 65, 73, 75, 87, 97, 99, 121, 123, 126, 135, 144, 146, 150, 155, 156, 158, 165, 171, 184, 187, 192, 194, 227, 231, 254, 262, 271], "spare": [5, 6], "deriv": [5, 6, 10, 17, 23, 25, 43, 48, 76, 78, 99, 101, 102, 103, 110, 125, 129, 130, 141, 145, 195, 201, 247], "express": [5, 13, 23, 95, 98, 107, 114, 124, 137, 173, 174, 191, 197, 198, 200, 209, 262, 271], "better": [5, 6, 14, 17, 19, 21, 44, 52, 56, 61, 79, 97, 103, 109, 113, 115, 121, 126, 127, 128, 139, 144, 145, 146, 152, 154, 157, 159, 160, 165, 168, 169, 171, 173, 174, 176, 177, 182, 184, 189, 190, 195, 197, 198, 199, 200, 201, 207, 223, 231, 247, 253, 257], "frequent": [5, 22, 23, 75, 82, 103, 123, 175, 176, 177, 191, 220], "expens": [5, 17, 97, 109, 163, 177, 184, 201], "plausibl": 5, "address": [5, 12, 18, 22, 24, 82, 135, 161, 162, 174, 176, 197, 221, 244, 263, 272], "nativ": [5, 6, 8, 15, 23, 42, 55, 87, 107, 108, 119, 121, 122, 124, 136, 137, 163, 176, 177, 179, 184, 189, 192, 197, 216, 219, 220, 223, 238, 246, 247, 251], "intend": [5, 6, 8, 12, 23, 97, 123, 124, 129, 144, 147, 164, 172, 173, 174, 189, 197, 212, 247], "much": [5, 6, 8, 10, 12, 14, 17, 19, 23, 25, 52, 56, 73, 97, 98, 99, 103, 112, 119, 122, 125, 126, 142, 145, 146, 152, 158, 159, 162, 163, 165, 168, 169, 172, 176, 184, 189, 192, 200, 201, 218, 226, 227, 228, 230, 231, 234, 237, 245, 247, 251, 260, 262, 269, 271], "boilerpl": [5, 6, 19, 44, 99, 169, 189], "degre": [5, 64, 126, 165, 168, 192], "matter": [5, 134, 171, 189, 191, 210, 230], "organ": [5, 8, 14, 23, 51, 112, 127, 143, 149, 231, 257, 263, 272], "tackl": [5, 109], "decid": [5, 6, 8, 10, 17, 18, 52, 87, 160, 175, 192, 196, 201], "contribut": [5, 52, 61, 65, 82, 111, 137, 147, 168, 176], "upstream": [5, 220, 247], "rest": [5, 6, 14, 44, 117, 121, 136, 139, 143, 157, 159, 161, 162, 191, 198, 218, 234, 244, 262, 263, 271, 272], "chase": [5, 113], "someon": [5, 165], "fire": [5, 133], "dai": [5, 42, 103, 115, 116, 124, 244], "head": [5, 7, 17, 21, 42, 75, 83, 109, 113, 124, 126, 133, 157, 164, 178, 193, 201], "straight": [5, 6, 23, 139, 165], "recurr": [5, 9, 44, 49, 60, 79, 81, 98, 102, 110, 121, 127, 128, 153, 165, 181, 195, 234], "unit": [5, 6, 25, 49, 110, 122, 123, 145, 150, 156, 159, 160, 165, 171, 176, 177, 187, 247], "superior": 5, "lstm": [5, 44, 49, 78, 79, 93, 100, 110, 119, 121, 127, 128, 163, 181, 183, 195, 228, 234, 251], "lack": [5, 15, 82, 189], "forget": [5, 6, 112, 157, 172, 188], "gate": [5, 49, 244], "exponenti": [5, 49, 99, 101, 153, 160, 184], "elu": [5, 110], "never": [5, 7, 98, 99, 100, 103, 115, 125, 156, 166], "lltm": 5, "long": [5, 6, 7, 9, 10, 20, 23, 49, 50, 60, 78, 80, 82, 87, 98, 99, 100, 101, 103, 113, 118, 122, 125, 127, 128, 136, 137, 143, 144, 149, 153, 160, 163, 165, 168, 178, 185, 186, 195, 197, 208, 223, 231, 234, 238, 246, 247, 262, 263, 271, 272], "term": [5, 6, 15, 52, 73, 99, 100, 101, 109, 122, 124, 150, 156, 159, 174, 184, 192, 197, 198, 199, 200, 202, 234, 239, 262, 263, 271, 272], "signific": [5, 6, 9, 19, 42, 52, 58, 59, 82, 122, 129, 137, 143, 144, 145, 147, 152, 159, 164, 168, 172, 177, 203, 214, 215, 219, 221, 223, 230, 231, 234, 254, 262, 271], "lstmcell": 5, "cell": [5, 21, 23, 25, 50, 60, 75, 80, 109, 159, 160, 164, 171, 184, 234, 247, 263, 272], "plain": [5, 6, 23, 49, 127, 128, 165, 178, 244], "input_featur": 5, "state_s": 5, "candid": [5, 144, 247], "reset_paramet": [5, 129], "stdv": 5, "math": [5, 7, 10, 49, 63, 64, 65, 67, 68, 69, 71, 72, 85, 89, 95, 101, 104, 110, 111, 118, 127, 128, 129, 150, 158, 160, 164, 165, 234, 247, 266, 275], "sqrt": [5, 7, 85, 104, 118, 129, 189, 202], "uniform_": [5, 6, 7, 9, 115, 163, 181, 195, 202], "old_h": 5, "old_cel": 5, "cat": [5, 7, 9, 20, 21, 40, 44, 48, 49, 60, 78, 90, 92, 98, 101, 102, 110, 115, 118, 128, 134, 139, 144, 149, 160, 163, 165, 169, 178, 181, 200, 229, 250], "gate_weight": 5, "split": [5, 7, 8, 9, 18, 19, 20, 21, 45, 49, 52, 60, 79, 85, 87, 98, 99, 102, 103, 113, 118, 121, 127, 128, 133, 134, 137, 142, 149, 159, 162, 163, 165, 178, 181, 182, 185, 193, 197, 198, 212, 226, 246], "input_g": 5, "sigmoid": [5, 6, 52, 93, 110, 179, 200, 247], "output_g": 5, "tanh": [5, 6, 14, 25, 49, 52, 60, 93, 99, 110, 127, 145, 159, 165, 247], "candidate_cel": 5, "new_cel": 5, "hidden": [5, 7, 9, 21, 49, 60, 78, 97, 98, 102, 124, 126, 127, 128, 136, 142, 148, 163, 164, 165, 181, 195, 197, 229, 234, 260, 269], "new_h": [5, 25, 51], "rnn": [5, 9, 21, 25, 45, 49, 60, 61, 78, 79, 93, 110, 118, 121, 134, 136, 153, 162, 165, 181, 195, 199, 247], "new_c": 5, "intel": [5, 121, 135, 144, 147, 199, 206, 251], "mkl": [5, 144, 238], "nnpack": 5, "why": [5, 6, 8, 11, 14, 25, 44, 52, 85, 97, 99, 103, 112, 114, 130, 133, 144, 152, 165, 172, 173, 174, 190, 192, 231, 262, 271], "room": [5, 97, 149, 219, 262, 271], "obviou": [5, 113, 231], "knowledg": [5, 49, 52, 73, 99, 100, 114, 121, 144, 146, 262, 271], "execut": [5, 6, 7, 8, 11, 15, 16, 20, 21, 22, 23, 25, 42, 43, 45, 50, 60, 61, 76, 78, 82, 98, 108, 120, 121, 125, 126, 134, 135, 136, 143, 144, 147, 149, 155, 159, 160, 162, 163, 164, 172, 173, 174, 176, 177, 182, 183, 185, 186, 187, 194, 203, 204, 206, 207, 208, 212, 219, 223, 224, 225, 226, 230, 234, 252, 256], "kernel": [5, 6, 8, 13, 17, 18, 23, 47, 83, 108, 110, 121, 138, 144, 147, 149, 153, 154, 156, 164, 165, 168, 172, 176, 177, 184, 186, 199, 201, 207, 216, 231, 237, 247, 251], "involv": [5, 8, 9, 15, 16, 17, 19, 23, 25, 50, 60, 85, 98, 101, 105, 112, 120, 125, 127, 132, 139, 146, 152, 163, 165, 173, 174, 182, 184, 193, 201, 239, 247, 254], "launch": [5, 6, 21, 53, 61, 115, 126, 132, 133, 149, 161, 162, 163, 164, 168, 176, 206, 219, 221, 231, 247], "amount": [5, 19, 25, 73, 82, 112, 124, 133, 156, 172, 184, 223, 247], "becom": [5, 6, 11, 21, 24, 52, 61, 73, 75, 78, 85, 97, 124, 130, 145, 147, 168, 169, 176, 186, 193, 197, 210, 216, 219, 230, 252], "furthermor": [5, 19, 97, 138, 145, 169, 176, 186, 200, 224, 225, 231], "interpret": [5, 6, 23, 25, 40, 56, 82, 85, 103, 121, 127, 128, 137, 165, 172, 173, 174, 186, 196, 216, 231, 235, 251, 262, 271], "slow": [5, 6, 8, 42, 123, 148, 176, 228, 247], "down": [5, 8, 10, 11, 16, 19, 42, 50, 82, 87, 99, 104, 123, 136, 144, 145, 146, 162, 166, 169, 176, 189, 247, 260, 269], "therefor": [5, 6, 9, 15, 19, 49, 51, 60, 97, 108, 112, 113, 115, 120, 133, 134, 147, 150, 155, 156, 162, 163, 173, 174, 176, 191, 192, 200, 206, 223, 230, 262, 271], "rewrit": [5, 21, 45, 60, 107, 129, 153, 173, 174, 200, 205, 206, 252], "fuse": [5, 17, 19, 121, 144, 157, 158, 176, 177, 179, 181, 182, 184, 194, 198, 201, 206, 227, 251, 252], "group": [5, 7, 11, 16, 18, 19, 24, 49, 61, 83, 109, 113, 120, 121, 122, 123, 128, 129, 131, 133, 134, 135, 144, 168, 175, 178, 214, 215, 216, 231, 258, 262, 263, 271, 272], "profit": 5, "fewer": [5, 11, 129, 145], "visibl": [5, 22, 23, 44, 87, 171, 182], "aten": [5, 8, 10, 15, 23, 42, 109, 144, 168, 173, 174, 177, 182, 185, 186, 188, 197, 198, 199, 219, 220, 226, 238, 244, 246], "translat": [5, 23, 25, 49, 60, 105, 107, 116, 118, 150, 165, 187, 191, 213, 247, 252], "benefit": [5, 6, 9, 17, 18, 42, 43, 85, 87, 119, 122, 141, 147, 152, 157, 164, 176, 184, 197, 201, 216, 219, 220, 230, 234, 247, 257], "massiv": [5, 25, 44, 101, 103, 220], "parallel": [5, 6, 11, 16, 18, 44, 46, 49, 51, 52, 55, 73, 79, 87, 112, 121, 126, 131, 135, 137, 144, 150, 159, 161, 162, 163, 175, 176, 214, 215, 216, 230, 240, 258], "ahead": [5, 22, 152, 169, 173, 174, 179, 188, 214, 234, 247, 256], "cpp_extens": [5, 10, 23, 155, 208, 231], "setup": [5, 6, 7, 10, 16, 19, 22, 42, 52, 53, 55, 122, 123, 126, 133, 148, 149, 152, 155, 158, 163, 184, 188, 191, 192, 204, 205, 206, 214, 215, 246, 251], "lltm_cpp": 5, "ext_modul": [5, 10, 23, 155], "cppextens": [5, 10, 23, 155], "cmdclass": [5, 10, 23, 155], "build_ext": [5, 10, 23, 155], "buildextens": [5, 10, 23, 155], "conveni": [5, 8, 14, 22, 23, 44, 47, 49, 101, 125, 127, 128, 138, 145, 155, 159, 190, 192, 213, 220, 230, 231, 252], "wrapper": [5, 6, 8, 16, 55, 112, 122, 123, 130, 136, 146, 159, 171, 196, 199, 240], "include_dir": [5, 10, 155], "include_path": 5, "manag": [5, 22, 43, 49, 61, 108, 109, 113, 120, 124, 131, 132, 133, 149, 153, 164, 168, 177, 214, 215, 216, 230, 231, 232, 237, 239, 247, 257], "And": [5, 6, 10, 22, 23, 24, 25, 52, 101, 103, 105, 113, 130, 144, 145, 147, 150, 158, 168, 169, 172, 173, 174, 176, 177, 195, 199, 200, 213, 231], "overal": [5, 19, 42, 49, 122, 123, 135, 149, 160, 171, 197, 200, 219, 228, 231, 247], "d_sigmoid": 5, "bit": [5, 12, 15, 23, 25, 51, 68, 95, 109, 113, 117, 136, 148, 158, 159, 160, 165, 184, 189, 197, 199, 207, 221, 228, 231, 234], "pybind11": [5, 8, 22, 23, 155, 231], "datatyp": [5, 23, 40, 48, 109, 220, 230, 234, 247], "Its": [5, 97, 99, 193, 262, 271], "inspect": [5, 23, 78, 97, 108, 122, 126, 143, 164, 166, 172, 173, 174, 182, 185, 216, 231], "notic": [5, 8, 14, 21, 22, 23, 25, 32, 42, 43, 44, 52, 60, 73, 85, 97, 99, 112, 130, 135, 144, 146, 149, 153, 154, 157, 159, 168, 172, 173, 174, 176, 177, 188, 189, 191, 195, 256], "dispos": 5, "nvcc": 5, "workaround": [5, 7, 23, 79, 85, 130, 141], "logic": [5, 6, 11, 17, 23, 85, 98, 123, 126, 132, 134, 156, 162, 163, 171, 177, 183, 201, 202, 214, 216], "sigmoidalphablendforwardcuda": 5, "port": [5, 16, 135, 162, 213], "entir": [5, 6, 14, 16, 18, 19, 25, 47, 49, 53, 60, 78, 97, 99, 102, 117, 121, 122, 123, 127, 129, 134, 142, 149, 152, 154, 156, 157, 159, 163, 165, 176, 182, 189, 190, 191, 194, 197, 198, 208, 214, 230, 237, 239, 247, 262, 271], "lltm_forward": 5, "addmm": [5, 6, 109, 144, 173, 188, 197, 206, 207, 219, 238], "transpos": [5, 6, 7, 12, 40, 44, 48, 49, 51, 52, 60, 90, 92, 94, 96, 110, 117, 118, 129, 144, 146, 153, 157, 160, 164, 166, 169, 173, 174, 193, 206, 229], "respect": [5, 16, 32, 34, 43, 49, 51, 52, 63, 64, 68, 69, 71, 72, 99, 101, 111, 114, 115, 124, 125, 134, 136, 141, 143, 144, 145, 154, 159, 163, 165, 168, 173, 174, 176, 177, 198, 212, 244, 247, 249], "ultim": [5, 19, 49, 52, 60, 85, 189, 207], "plop": [5, 23], "autograd": [5, 12, 13, 15, 16, 21, 25, 32, 40, 42, 46, 47, 57, 59, 61, 62, 68, 69, 77, 78, 81, 91, 93, 98, 100, 101, 104, 109, 110, 119, 121, 127, 128, 129, 130, 133, 134, 144, 145, 150, 154, 160, 161, 162, 165, 177, 191, 200, 205, 208, 212, 213, 216, 226, 230, 247, 254, 256], "nice": [5, 12, 49, 80, 143, 152, 154, 159], "dig": [5, 99, 103, 164], "deeper": [5, 11, 12, 95, 97, 99, 143, 144, 164, 177, 211, 256], "interest": [5, 6, 10, 14, 17, 20, 23, 25, 44, 49, 51, 58, 59, 78, 87, 97, 99, 105, 107, 108, 113, 117, 122, 126, 145, 152, 153, 157, 159, 166, 173, 174, 176, 178, 201, 205, 231, 234, 262, 271], "alex": 5, "grave": 5, "thesi": 5, "d_tanh": 5, "relu": [5, 6, 12, 19, 20, 23, 25, 37, 38, 44, 47, 52, 73, 78, 87, 89, 92, 93, 94, 96, 97, 99, 103, 104, 105, 110, 112, 123, 133, 134, 138, 144, 146, 148, 149, 150, 154, 156, 157, 158, 160, 161, 162, 163, 165, 166, 169, 172, 173, 174, 177, 181, 182, 200, 203, 205, 214, 215, 218, 219, 220, 221, 223, 230, 233, 239, 240, 241, 242, 243, 247, 248, 249, 250, 252], "exp": [5, 7, 9, 65, 89, 98, 99, 104, 111, 118, 125, 130, 141, 160, 191], "d_elu": 5, "mask": [5, 17, 58, 75, 90, 109, 118, 121, 136, 153, 156, 160, 164, 171, 178, 184, 189, 190, 192, 193, 196, 201, 220, 254], "type_a": [5, 118], "lltm_backward": 5, "grad_h": 5, "grad_cel": 5, "d_output_g": 5, "d_tanh_new_cel": 5, "d_new_cel": 5, "d_old_cel": 5, "d_candidate_cel": 5, "d_input_g": 5, "d_gate": 5, "d_weight": 5, "d_bia": 5, "keepdim": [5, 13, 19, 73, 123, 129, 162, 166, 182, 197, 198, 221], "d_x": [5, 52], "d_old_h": 5, "d_input": 5, "span": [5, 17, 75, 98, 133, 149, 168, 201, 226, 263, 272], "four": [5, 7, 14, 18, 22, 61, 67, 85, 94, 95, 108, 111, 115, 119, 122, 134, 135, 149, 169, 223, 228, 257, 262, 263, 271, 272], "pybind11_modul": [5, 155], "torch_extension_nam": [5, 155], "macro": [5, 6, 8, 15, 23], "maintain": [5, 10, 14, 22, 43, 49, 61, 73, 97, 102, 108, 121, 131, 135, 146, 160, 163, 176, 177, 194, 230, 258], "mismatch": [5, 61, 97], "nasti": [5, 244], "hard": [5, 6, 8, 15, 21, 99, 126, 156, 231], "At": [5, 6, 8, 14, 15, 17, 20, 23, 43, 47, 49, 50, 85, 87, 102, 116, 122, 123, 124, 136, 141, 146, 157, 159, 160, 161, 164, 165, 168, 189, 192, 197, 201, 206, 223, 244, 261, 270], "point": [5, 6, 8, 10, 11, 14, 17, 18, 19, 20, 22, 23, 43, 47, 49, 50, 51, 52, 53, 58, 60, 82, 85, 97, 98, 100, 101, 102, 103, 110, 123, 124, 125, 126, 130, 131, 133, 143, 146, 149, 150, 157, 159, 161, 165, 169, 171, 173, 174, 181, 182, 184, 185, 189, 191, 192, 194, 197, 200, 201, 208, 221, 223, 228, 234, 235, 245, 247, 251, 260, 261, 262, 269, 270, 271], "bdist_egg": 5, "egg_info": [5, 23], "egg": [5, 23], "pkg": [5, 23, 257], "dependency_link": [5, 23], "top": [5, 6, 8, 17, 19, 20, 22, 23, 38, 50, 51, 52, 82, 83, 94, 96, 97, 115, 124, 127, 135, 139, 143, 157, 158, 163, 164, 168, 169, 176, 178, 182, 197, 198, 199, 201, 209, 219, 226, 227, 229, 256, 260, 264, 269, 273], "top_level": [5, 23], "manifest": [5, 23, 191, 194], "bdist": 5, "x86_64": [5, 18, 23, 204, 208], "install_lib": 5, "temp": [5, 9, 19, 23, 125, 137, 181, 182, 185, 197, 198, 234], "gcc": [5, 23, 108, 144], "miniconda": [5, 18, 23], "compiler_compat": [5, 23], "wl": [5, 22, 23], "sysroot": [5, 23], "wsign": [5, 23], "dndebug": [5, 23], "g": [5, 6, 7, 8, 10, 11, 12, 14, 18, 23, 25, 42, 43, 49, 51, 52, 60, 61, 79, 87, 89, 97, 99, 100, 103, 108, 110, 117, 121, 123, 126, 127, 128, 133, 135, 137, 138, 144, 152, 154, 155, 159, 161, 163, 165, 168, 173, 174, 176, 179, 182, 185, 186, 192, 196, 200, 205, 206, 215, 231, 247, 257, 262, 271], "fwrapv": [5, 23], "o3": [5, 23, 231], "wall": [5, 23, 98, 143, 231, 246], "wstrict": [5, 23], "prototyp": [5, 10, 11, 15, 23, 61, 113, 173, 174, 186, 193, 194, 200, 205, 206, 212], "fpic": [5, 23, 108], "site": [5, 18, 22, 23, 50, 52, 58, 59, 142, 143, 165, 187, 213, 224, 225, 227, 238, 246, 257, 262, 271], "csrc": [5, 22, 23, 155, 188, 222], "th": [5, 14, 23, 51, 99, 103, 135, 146], "thc": [5, 23], "7m": [5, 23], "dtorch_api_include_extension_h": [5, 23], "dtorch_extension_nam": [5, 23], "d_glibcxx_use_cxx11_abi": [5, 23], "cc1plu": [5, 23], "warn": [5, 19, 23, 42, 51, 137, 144, 148, 159, 164, 171, 172, 173, 174, 182, 185, 187, 189, 190, 191, 192, 197, 198, 216, 231, 252], "valid": [5, 7, 9, 13, 17, 20, 23, 24, 49, 87, 94, 97, 104, 107, 109, 112, 113, 115, 117, 118, 122, 123, 126, 129, 130, 148, 155, 157, 171, 178, 181, 182, 190, 191, 200, 201, 204, 222, 231], "objc": [5, 23], "l": [5, 7, 12, 14, 20, 23, 43, 49, 51, 52, 89, 99, 108, 110, 127, 128, 159, 160, 165, 173, 193, 194, 231], "rpath": [5, 23], "cpython": [5, 23], "37m": [5, 23], "stub": [5, 157, 209, 223, 263, 272], "loader": [5, 6, 12, 24, 38, 44, 79, 159, 162, 178, 222, 231], "byte": [5, 137, 139, 174, 181, 208, 230], "37": [5, 7, 17, 109, 158, 163, 177, 201, 219, 238], "pyc": 5, "native_lib": 5, "zip_saf": 5, "analyz": [5, 19, 23, 60, 82, 121, 152, 159, 172, 174, 185], "__pycache__": 5, "__file__": [5, 155, 231], "dist": [5, 7, 11, 16, 18, 110, 122, 123, 133, 135, 153, 155, 162, 175, 214, 215, 258], "py3": 5, "remov": [5, 9, 12, 17, 19, 49, 52, 53, 59, 60, 83, 109, 110, 114, 116, 125, 133, 137, 142, 144, 152, 158, 164, 165, 171, 172, 173, 174, 178, 181, 182, 183, 184, 185, 189, 190, 193, 194, 197, 198, 201, 204, 216, 228, 231, 234, 246, 252, 260, 269], "everyth": [5, 43, 87, 97, 99, 108, 126, 127, 130, 136, 139, 157, 158, 159, 160, 161, 165, 169, 187, 188, 212, 213, 223, 246], "finish": [5, 6, 16, 23, 44, 45, 58, 87, 92, 94, 115, 133, 134, 135, 143, 149, 161, 163, 169, 188, 199, 204, 212, 218, 223, 226, 247, 250], "ubuntu": [5, 6, 168, 208], "16": [5, 7, 16, 17, 19, 23, 24, 44, 47, 52, 87, 89, 92, 93, 94, 96, 97, 104, 105, 112, 126, 133, 136, 141, 145, 147, 156, 157, 158, 163, 164, 169, 171, 172, 173, 174, 177, 178, 184, 187, 191, 194, 201, 204, 208, 214, 219, 231, 239, 240, 241, 242, 243, 248, 249, 250, 266, 275], "04": [5, 7, 118, 168, 219, 231], "recent": [5, 49, 75, 102, 109, 113, 115, 124, 135, 137, 144, 150, 153, 157, 160, 168, 208], "maco": [5, 6, 105, 135, 171], "clang": [5, 204, 206], "worst": [5, 115, 137], "resolv": [5, 23, 97, 142, 147, 177, 191], "symbol": [5, 25, 115, 118, 142, 173, 174, 182, 200, 231, 246, 262, 271], "linker": [5, 23, 204], "pycapsul": [5, 23], "builtin": [5, 155, 231], "arg0": 5, "arg1": [5, 162], "arg2": [5, 162], "arg3": 5, "arg4": 5, "citizen": [5, 23, 189, 191], "lltmfunction": 5, "staticmethod": [5, 13, 14, 64, 111, 129, 130, 141, 161, 171, 244], "contigu": [5, 7, 8, 9, 14, 147, 181, 194, 199, 209, 218, 223, 247], "saved_tensor": [5, 13, 64, 111, 129, 130], "benchmark": [5, 15, 17, 24, 42, 109, 117, 121, 126, 137, 138, 144, 145, 154, 158, 164, 172, 176, 177, 184, 187, 193, 199, 201, 220, 221, 235, 246, 247, 251], "measur": [5, 12, 21, 82, 97, 103, 123, 137, 143, 145, 149, 159, 160, 164, 166, 172, 176, 177, 184, 195, 199, 203, 212, 219, 223, 230, 231, 246, 251], "durat": [5, 83, 155, 160, 168, 177, 262, 271], "32": [5, 14, 17, 18, 19, 20, 21, 23, 24, 47, 52, 55, 73, 87, 92, 93, 97, 102, 105, 109, 123, 126, 129, 136, 137, 144, 145, 146, 147, 150, 154, 158, 162, 163, 164, 165, 166, 168, 171, 173, 174, 176, 177, 178, 198, 203, 219, 221, 228, 231, 233, 239, 247], "128": [5, 6, 12, 22, 51, 52, 55, 73, 87, 97, 103, 109, 118, 123, 124, 126, 127, 128, 129, 134, 135, 136, 137, 138, 144, 149, 154, 158, 160, 161, 162, 163, 165, 172, 178, 185, 200, 203, 207, 212, 220, 230, 231, 232, 233, 246, 253], "100000": [5, 58, 59, 127, 128, 137, 146, 231], "3f": [5, 9, 17, 19, 44, 87, 92, 115, 118, 146, 164, 178, 181, 193, 198, 201, 230, 250], "wrote": [5, 23, 139, 172, 178, 262, 271], "post": [5, 6, 11, 20, 49, 58, 59, 97, 121, 122, 123, 126, 137, 139, 147, 149, 166, 176, 177, 183, 185, 193, 196, 198, 200, 221, 229], "my": [5, 21, 42, 50, 98, 103, 191, 198, 203, 262, 271], "machin": [5, 6, 18, 20, 21, 25, 44, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 73, 87, 105, 107, 116, 118, 121, 122, 123, 126, 131, 132, 133, 134, 135, 143, 154, 158, 162, 163, 164, 165, 176, 178, 185, 194, 198, 203, 210, 219, 226, 245, 247, 257], "506": 5, "480": [5, 238], "444": 5, "694": 5, "349": [5, 92], "335": [5, 147, 163, 258], "443": [5, 163, 238], "523": 5, "speedup": [5, 17, 21, 42, 44, 121, 138, 144, 149, 154, 177, 181, 182, 184, 193, 201, 219, 223, 247], "30": [5, 6, 7, 14, 17, 19, 45, 82, 99, 115, 121, 122, 147, 156, 161, 163, 182, 192, 197, 201, 231, 232, 238], "albeit": [5, 14, 228], "major": [5, 10, 11, 19, 103, 117, 144, 152, 164, 172, 176, 177, 192, 216, 219, 258], "particularli": [5, 13, 17, 53, 153, 165, 201], "engin": [5, 6, 14, 20, 43, 61, 87, 107, 119, 123, 158, 163, 171, 174, 178, 187, 205, 207, 220, 228, 260, 269], "wonder": [5, 99, 152], "abstract": [5, 11, 14, 51, 87, 95, 100, 103, 110, 113, 124, 126, 135, 142, 155, 159, 215, 263, 272], "correspondingli": 5, "big": [5, 42, 52, 98, 103, 128, 129, 138, 152, 159, 165, 171, 194], "win": [5, 115, 152, 185], "No": [5, 6, 49, 53, 60, 99, 144, 148, 179, 204, 211], "cuda_devic": 5, "creation": [5, 6, 10, 192, 202, 208, 237], "assert": [5, 9, 11, 12, 17, 18, 19, 22, 51, 94, 95, 98, 105, 108, 125, 129, 133, 138, 141, 142, 144, 145, 150, 153, 154, 162, 164, 169, 172, 181, 193, 194, 200, 201, 205, 208, 209, 210, 230, 231, 244], "synchron": [5, 11, 16, 55, 56, 61, 82, 133, 135, 149, 159, 161, 162, 168, 172, 176, 177, 184, 193, 212, 226, 230, 231, 258], "1e6": [5, 9, 19, 137, 164, 181, 182, 185, 197, 198, 210, 228, 231, 258], "1e5": 5, "again": [5, 6, 9, 21, 25, 44, 50, 60, 78, 97, 98, 102, 103, 108, 113, 116, 119, 125, 129, 135, 136, 152, 161, 163, 165, 168, 171, 172, 176, 184, 197, 200, 223, 231, 262, 271], "187": [5, 231], "719": 5, "410": [5, 147], "815": 5, "149": 5, "802": [5, 144], "393": [5, 177], "458": [5, 144], "That": [5, 6, 17, 23, 43, 44, 45, 49, 99, 101, 102, 103, 105, 108, 116, 124, 127, 134, 141, 143, 145, 147, 149, 150, 152, 159, 164, 168, 178, 189, 190, 192, 201, 223, 224, 234, 251, 262, 271], "great": [5, 49, 60, 105, 112, 113, 191, 197, 231, 262, 271], "pull": [5, 7, 21, 143, 173, 174, 213], "dive": [5, 6, 11, 23, 133, 144, 157], "elabor": [5, 6, 124, 144, 161], "fly": [5, 14, 23, 51, 98, 115, 159, 228], "background": [5, 6, 23, 58, 59, 73, 113, 158, 169, 171, 178, 262, 271], "tmp": [5, 23, 126, 129, 144, 171, 186, 218, 223, 228, 238], "torch_extens": 5, "emit": [5, 6, 98], "ninja": 5, "verbos": [5, 23, 132, 171, 177, 207, 208, 263, 272], "complic": [5, 14, 98, 99, 103, 126, 177, 197, 205, 209, 215, 230, 231, 252], "techniqu": [5, 9, 16, 17, 19, 21, 49, 60, 97, 98, 103, 107, 121, 124, 129, 130, 131, 143, 149, 153, 156, 157, 163, 171, 177, 184, 189, 193, 201, 203, 204, 228, 234, 247], "fine": [5, 6, 17, 19, 49, 51, 98, 113, 120, 125, 134, 135, 144, 157, 158, 168, 185, 188, 189, 201, 229, 230, 231, 247], "system": [5, 6, 8, 10, 12, 14, 15, 22, 23, 25, 55, 76, 97, 121, 126, 135, 153, 158, 159, 161, 175, 176, 177, 178, 206, 207, 208, 213, 247], "increment": [5, 11, 12, 60, 85, 101, 135, 146, 160], "thu": [5, 6, 8, 10, 19, 20, 21, 23, 49, 85, 87, 97, 108, 122, 138, 142, 152, 165, 177, 197, 202, 208, 216, 226, 231, 247, 252, 262, 271], "didn": [5, 8, 22, 76, 105, 143, 161, 181, 205, 262, 271], "prospect": 5, "pointwis": [5, 8, 142, 147, 199], "declar": [5, 6, 13, 23, 60, 73, 78, 115, 208, 223, 252], "cu": 5, "ensur": [5, 8, 9, 10, 11, 12, 14, 15, 16, 19, 22, 37, 49, 53, 56, 60, 64, 97, 109, 111, 112, 115, 116, 123, 132, 135, 141, 159, 160, 162, 164, 171, 176, 178, 186, 194, 198, 202, 231, 234, 241, 244, 254, 256], "lltm_cuda": 5, "lltm_cuda_forward": 5, "lltm_cuda_backward": 5, "check_cuda": 5, "torch_check": [5, 8], "is_cuda": [5, 147], "check_contigu": 5, "is_contigu": [5, 147, 231, 246], "check_input": 5, "lltm_cuda_kernel": 5, "cannot": [5, 6, 11, 14, 16, 18, 22, 23, 49, 60, 61, 82, 108, 112, 113, 130, 133, 135, 136, 147, 149, 157, 159, 173, 174, 184, 195, 203, 205, 254, 261, 270], "peek": [5, 211], "cuda_runtim": 5, "templat": [5, 8, 22, 23, 59, 135, 144, 208, 209, 221, 260, 269], "typenam": [5, 208], "scalar_t": [5, 144], "__device__": 5, "__forceinline__": 5, "specif": [5, 6, 8, 9, 10, 11, 12, 17, 18, 19, 22, 23, 25, 44, 55, 58, 59, 73, 82, 87, 99, 100, 101, 105, 107, 108, 110, 112, 114, 122, 123, 124, 127, 128, 129, 133, 135, 136, 137, 143, 144, 148, 149, 156, 157, 159, 161, 162, 163, 164, 165, 168, 169, 173, 174, 176, 177, 178, 179, 185, 187, 190, 193, 199, 200, 201, 204, 206, 207, 212, 214, 219, 220, 226, 229, 234, 244, 251, 252, 254, 258, 262, 271], "fmax": 5, "fmin": 5, "d_relu": 5, "wish": [5, 6, 23, 52, 60, 73, 95, 112, 113, 150, 154, 162, 171, 179, 185, 190, 198, 230, 241, 263, 272], "explicitli": [5, 6, 18, 25, 43, 48, 52, 53, 60, 87, 101, 124, 132, 136, 147, 163, 164, 166, 173, 176, 177, 182, 192, 193, 200, 226, 247], "zeros_lik": [5, 14, 95, 142, 161, 216, 254], "dim3": 5, "at_dispatch_floating_typ": 5, "lltm_forward_cuda": 5, "lltm_cuda_forward_kernel": 5, "indic": [5, 6, 10, 11, 14, 16, 23, 49, 60, 63, 64, 82, 98, 99, 102, 103, 108, 109, 110, 111, 115, 116, 118, 126, 127, 136, 137, 144, 156, 159, 160, 162, 168, 169, 171, 176, 177, 178, 185, 189, 191, 192, 195, 200, 207, 229, 231, 256, 260, 262, 269, 271], "runtim": [5, 8, 14, 18, 21, 23, 25, 40, 50, 60, 82, 85, 107, 109, 121, 124, 129, 143, 152, 168, 172, 176, 177, 181, 184, 185, 197, 206, 207, 210, 219, 230, 231, 234, 251], "back": [5, 6, 8, 10, 14, 15, 19, 20, 22, 23, 44, 47, 51, 58, 59, 60, 73, 80, 87, 97, 98, 101, 105, 109, 113, 125, 127, 139, 143, 147, 149, 152, 154, 159, 161, 162, 163, 165, 171, 176, 188, 189, 193, 194, 213, 234, 244, 247, 262, 271], "determin": [5, 6, 8, 11, 17, 19, 48, 49, 97, 98, 101, 102, 103, 105, 124, 126, 138, 142, 152, 153, 154, 156, 160, 172, 182, 193, 201, 231, 234, 239, 247], "conceptu": [5, 6, 43, 49, 60, 177], "scalartyp": 5, "messag": [5, 49, 108, 135, 137, 171, 173, 174, 185, 207, 208, 222, 225, 252], "alia": [5, 10, 64, 111, 173, 174], "retriev": [5, 6, 7, 14, 16, 21, 49, 125, 126, 146, 159, 161, 162, 177, 209, 226], "at_dispatch_all_typ": 5, "sens": [5, 8, 12, 14, 97, 103, 113, 126, 138, 169, 262, 271], "routin": [5, 6, 23], "convolut": [5, 6, 8, 12, 13, 20, 47, 52, 60, 97, 112, 117, 119, 121, 147, 150, 156, 157, 166, 176, 177, 182, 199, 200, 206, 207, 219, 220, 223, 226, 230, 238, 239, 252], "harder": [5, 97, 184, 185], "ourselv": [5, 6, 49, 76, 129, 159], "grid": [5, 47, 51, 117, 149, 157, 166, 169, 186, 254], "fill": [5, 6, 14, 80, 103, 127, 136, 141, 176, 190, 191, 208, 223], "matric": [5, 12, 17, 23, 25, 48, 101, 145, 153, 201, 207], "2048": [5, 18, 97, 129, 145], "heard": 5, "introductori": [5, 79], "fairli": [5, 97, 113, 135, 152, 160], "ever": [5, 6, 23, 125, 173, 174, 237], "__global__": 5, "__restrict__": 5, "size_t": 5, "column": [5, 7, 18, 23, 40, 80, 99, 101, 109, 119, 124, 127, 144, 145, 150, 160, 168, 171, 190, 191, 192, 193, 231, 238, 263, 272], "blockidx": 5, "blockdim": 5, "threadidx": 5, "index": [5, 6, 15, 34, 38, 41, 44, 45, 48, 49, 51, 58, 59, 60, 73, 83, 98, 99, 101, 102, 103, 109, 115, 116, 118, 119, 123, 125, 126, 127, 128, 129, 135, 139, 153, 160, 161, 165, 166, 168, 171, 172, 176, 184, 193, 205, 213, 229, 260, 266, 269, 275], "gates_row": 5, "primarili": [5, 82, 162, 172, 230], "imagin": [5, 98, 103, 130, 135, 152, 153, 165, 231, 244], "giant": [5, 165], "million": [5, 115, 117, 119, 122, 136, 176], "serial": [5, 6, 10, 23, 25, 60, 112, 121, 173, 174, 176, 182, 197, 198, 226, 231], "faster": [5, 6, 8, 9, 12, 19, 49, 56, 58, 59, 73, 97, 112, 122, 132, 136, 138, 145, 147, 154, 161, 165, 172, 177, 178, 182, 203, 218, 223, 227, 228, 230, 231, 234, 247, 251], "right": [5, 6, 8, 10, 12, 14, 20, 23, 32, 43, 48, 49, 52, 64, 82, 89, 97, 99, 101, 103, 111, 113, 135, 137, 146, 150, 152, 157, 159, 160, 161, 164, 165, 168, 171, 178, 185, 195, 197, 205, 219, 226, 234, 252, 262, 271], "inde": [5, 14, 58, 59, 97, 129, 145, 159, 164, 172, 191, 192, 231, 247], "agnost": [5, 60, 110, 232], "ineffici": [5, 82, 176, 193], "readabl": [5, 25, 51, 98, 110, 128, 139, 168, 213, 231], "especi": [5, 17, 19, 49, 52, 60, 73, 113, 122, 133, 143, 150, 152, 173, 174, 177, 184, 190, 199, 201, 221, 223, 228], "dimension": [5, 47, 48, 49, 52, 60, 97, 100, 101, 102, 103, 113, 124, 147, 156, 164, 165, 169, 171, 192, 207, 215, 223], "stride": [5, 6, 19, 52, 90, 97, 104, 113, 123, 129, 134, 144, 146, 147, 166, 171, 177, 179, 192, 218, 229, 237, 244], "row": [5, 18, 23, 34, 40, 51, 73, 80, 99, 101, 102, 103, 116, 124, 126, 127, 145, 157, 160, 161, 176, 177, 190, 192, 205, 208, 226, 231, 263, 272], "arithmet": [5, 19, 143, 185, 234], "fortun": [5, 6, 10, 15, 23, 87, 135, 136, 231], "expos": [5, 6, 8, 22, 23, 108, 113, 121, 139, 163, 181, 197, 198, 206, 208, 213, 247], "foo": [5, 21, 22, 141, 142, 153, 162, 172, 174, 182, 197, 202, 209, 246, 262, 263, 271, 272], "12": [5, 7, 23, 42, 58, 59, 92, 101, 109, 122, 123, 144, 149, 161, 169, 173, 178, 179, 184, 190, 193, 200, 201, 204, 208, 219, 221, 222, 225, 227, 231, 257, 262, 266, 271, 275], "hold": [5, 14, 16, 18, 47, 60, 63, 64, 65, 67, 68, 69, 76, 78, 87, 98, 111, 122, 123, 132, 134, 139, 152, 160, 161, 163, 237, 244, 247], "foo_a": 5, "packed_accessor64": 5, "packed_accessor32": 5, "pack": [5, 49, 60, 78, 115, 144, 159, 161, 163, 193, 208, 212, 223, 252], "integ": [5, 6, 8, 60, 97, 99, 101, 103, 113, 115, 126, 146, 156, 173, 174, 178, 184, 192, 197, 198, 199, 207, 228, 234, 265, 274], "fundament": [5, 49, 91, 101, 103, 146, 190, 198, 214], "packedtensoraccessor32": 5, "restrictptrtrait": 5, "decompos": [5, 10, 17, 123, 149, 173, 174, 197, 201], "packedaccessor32": 5, "variant": [5, 49, 60, 124, 129, 158, 164], "int32_t": 5, "packedaccessor64": 5, "slower": [5, 17, 56, 133, 145, 149, 158, 160, 172, 176, 178, 184, 186, 193, 201, 229], "host": [5, 7, 16, 18, 54, 82, 98, 122, 123, 124, 133, 134, 135, 149, 162, 163, 168, 215, 216, 247], "reshap": [5, 6, 9, 12, 19, 51, 95, 103, 104, 110, 118, 142, 159, 181, 182, 188, 189, 190, 191, 193, 197, 198, 206, 221, 231], "pattern": [5, 17, 21, 103, 124, 135, 142, 144, 153, 162, 177, 182, 183, 185, 189, 191, 197, 201, 202, 215, 220], "lltm_cuda_backward_kernel": 5, "lltm_backward_cuda": 5, "d_gate_weight": 5, "cudaextens": [5, 155], "hassl": [5, 6], "entail": 5, "simpler": [5, 78, 124, 129, 141, 153, 197, 205, 231], "fastest": [5, 149, 164], "129": [5, 109, 187], "431": 5, "304": [5, 49, 177], "641": [5, 147], "faq": [5, 22, 23], "sit": [6, 42, 105, 107, 108, 149, 153, 261, 263, 265, 270, 272, 274], "atop": 6, "substanti": [6, 126], "codebas": [6, 10, 14], "foundat": [6, 159, 171], "underli": [6, 8, 14, 23, 48, 73, 80, 95, 97, 112, 126, 138, 144, 149, 154, 162, 182, 191, 192, 193, 215, 216], "popular": [6, 68, 73, 75, 97, 111, 126, 136, 137, 177, 184, 220, 221, 261, 270], "stochast": [6, 7, 47, 52, 65, 104, 111, 115, 135, 159, 160], "descent": [6, 7, 43, 47, 63, 64, 65, 68, 72, 104, 110, 111, 115, 135, 184], "digit": [6, 47, 121, 122, 123, 171], "whirlwind": 6, "wet": 6, "appetit": 6, "watch": [6, 37, 113, 131, 135], "lightn": [6, 126], "talk": [6, 8, 49, 52, 55, 101, 115, 135, 159, 162], "cppcon": 6, "2018": [6, 118, 137], "quick": [6, 17, 48, 58, 59, 97, 99, 102, 103, 119, 122, 127, 133, 138, 145, 153, 154, 184, 201, 213, 231, 234, 256], "humor": 6, "sweep": [6, 164], "philosophi": [6, 113], "ecosystem": [6, 108], "descript": [6, 50, 61, 122, 123, 144, 148, 159, 161, 162, 163, 164, 171, 181, 231, 247, 255, 257, 263, 272], "embark": 6, "excit": [6, 22, 23, 143, 152], "team": [6, 108, 115, 126, 137, 160, 171], "job": [6, 45, 52, 53, 54, 82, 97, 126, 131, 132, 133, 135, 223], "reinforc": [6, 14, 61, 121, 146, 159, 160, 161, 162], "game": [6, 44, 52, 79, 146], "tractabl": [6, 98], "multithread": [6, 43, 56, 109, 216, 226, 231], "lock": [6, 14, 25, 56, 134, 135, 161, 162, 177, 216, 261, 270], "gil": [6, 56, 61, 133, 216], "scalabl": [6, 126, 189, 207, 219, 220, 247], "shortcom": [6, 191], "neuroevolut": 6, "owner": [6, 161, 162, 163], "anyth": [6, 13, 44, 98, 101, 102, 103, 139, 148, 158, 181, 182, 184, 226, 234, 244, 245, 262, 263, 271, 272], "serv": [6, 37, 57, 61, 85, 97, 102, 121, 127, 133, 139, 143, 146, 149, 155, 162, 163, 176, 177, 191, 212, 213, 230, 231, 247, 257], "web": [6, 105, 213, 251, 262, 271], "server": [6, 16, 25, 61, 119, 120, 121, 127, 133, 149, 155, 163, 177, 179, 185, 194, 213, 214, 216, 220, 228, 251], "3d": [6, 7, 75, 93, 101, 102, 115, 171, 197, 200, 247], "graphic": [6, 164, 206], "photo": [6, 229], "softwar": [6, 137, 149, 155, 168, 176, 206, 213, 262, 271], "integr": [6, 10, 14, 23, 78, 87, 109, 121, 126, 139, 169, 176, 177, 179, 199, 200, 206, 219, 226, 229, 244, 254], "remain": [6, 7, 87, 97, 119, 135, 142, 152, 156, 165, 179, 184, 191, 193, 195, 199, 209, 247], "forth": [6, 149, 176, 263, 272], "retain": [6, 40, 48, 76, 80, 112], "intuit": [6, 52, 73, 78, 99, 108, 112, 144, 149, 165, 171, 190, 226, 244], "tradit": [6, 42, 52, 97, 99, 107, 145, 162], "compet": [6, 113, 115, 119, 126, 176, 177], "complement": 6, "alik": 6, "love": [6, 113], "simplic": [6, 73, 122, 129, 159, 160, 215, 222, 231], "core": [6, 8, 10, 11, 42, 45, 60, 76, 98, 99, 100, 104, 108, 112, 115, 121, 124, 126, 135, 136, 144, 147, 158, 168, 173, 174, 177, 194, 196, 197, 204, 222, 226, 230, 246, 247], "principl": [6, 8, 102, 103, 121, 126], "curiou": [6, 138, 152, 154, 211], "tri": [6, 18, 52, 98, 103, 113, 160, 206, 230], "experienc": [6, 85], "ask": [6, 17, 22, 23, 60, 103, 128, 136, 159, 201, 209, 231], "rememb": [6, 44, 52, 59, 73, 76, 98, 99, 102, 109, 112, 139, 145, 146, 152, 165, 231], "dot": [6, 14, 32, 49, 52, 60, 102, 103, 121, 145, 165, 176, 177, 205, 231, 254], "colon": [6, 171, 262, 271], "minim": [6, 10, 12, 17, 23, 52, 61, 63, 64, 67, 68, 69, 73, 82, 99, 103, 121, 122, 126, 132, 137, 144, 160, 172, 182, 185, 189, 199, 201, 204, 209, 234], "verifi": [6, 20, 58, 59, 85, 108, 114, 116, 119, 130, 138, 141, 142, 145, 147, 156, 158, 176, 177, 178, 206, 219, 220, 226, 256], "too": [6, 10, 14, 19, 44, 64, 68, 82, 87, 97, 98, 103, 109, 111, 124, 127, 133, 139, 149, 152, 156, 160, 161, 163, 165, 189, 228, 260, 262, 263, 269, 271, 272], "cu90": 6, "url": [6, 19, 104, 118, 168, 172, 184, 208, 222, 236, 245, 260, 269], "wget": [6, 18, 75, 178, 181, 184, 208], "nightli": [6, 18, 75, 122, 137, 141, 172, 175, 178, 184, 187, 188, 196, 197, 199, 204, 205, 208, 221], "dep": 6, "tini": [6, 123, 149, 152], "three": [6, 10, 12, 14, 15, 51, 52, 61, 64, 73, 82, 85, 92, 95, 98, 108, 112, 113, 115, 118, 121, 124, 128, 135, 147, 153, 155, 159, 163, 164, 165, 166, 168, 169, 175, 176, 177, 184, 192, 199, 226, 228, 256, 262, 263, 271, 272], "ey": [6, 20, 23, 32, 103, 145, 150, 153, 205, 208, 262, 271], "fledg": 6, "visual": [6, 14, 25, 43, 52, 73, 75, 82, 83, 90, 116, 121, 122, 125, 126, 130, 143, 153, 159, 168, 169, 171, 176, 177, 186, 191, 245, 251], "studio": [6, 58, 204, 222, 224, 227], "qmake": 6, "makefil": 6, "comfort": 6, "box": [6, 8, 10, 11, 17, 73, 113, 126, 130, 135, 146, 158, 161, 168, 176, 177, 178, 199, 201, 205, 207, 220, 225, 226, 229, 262, 271], "cmake_prefix_path": [6, 22, 23], "invok": [6, 8, 22, 23, 25, 97, 133, 134, 141, 143, 144, 155, 162, 163, 177, 186, 188, 191, 199, 203, 207, 226, 244, 247, 253], "agre": [6, 23, 137, 258], "break": [6, 8, 10, 11, 12, 19, 38, 49, 51, 60, 75, 82, 112, 113, 116, 118, 128, 139, 146, 152, 156, 160, 161, 163, 165, 168, 172, 189, 236, 262, 271], "unexpect": [6, 51, 191, 195, 200, 247], "pwd": [6, 208, 226], "fa350df05ecf": 6, "home": [6, 48, 113, 189, 194, 204, 206, 209, 217, 222], "enter": [6, 49, 60, 122, 133, 135], "ran": [6, 103, 159, 162, 164, 173, 174, 204, 231], "me": [6, 17, 42, 49, 99, 152, 165, 201, 262, 263, 271, 272], "extens": [6, 7, 15, 22, 23, 52, 112, 121, 127, 130, 135, 171, 176, 186, 189, 191, 197, 199, 219, 221, 231, 235, 251], "besid": [6, 23, 103, 153, 161, 221, 229, 247, 262, 271], "encapsul": [6, 47, 152, 161], "buffer": [6, 14, 44, 47, 59, 69, 76, 110, 111, 112, 122, 129, 133, 138, 141, 146, 150, 152, 153, 154, 156, 160, 173, 174, 177, 188, 202, 206, 208, 223, 237], "nest": [6, 14, 43, 110, 142, 159, 161, 163, 164, 196, 262, 263, 271, 272], "similarli": [6, 9, 12, 22, 51, 60, 80, 83, 113, 116, 125, 126, 134, 143, 144, 145, 152, 179, 192, 214], "w": [6, 7, 9, 12, 32, 38, 43, 47, 49, 51, 73, 76, 98, 102, 103, 122, 125, 129, 137, 146, 147, 163, 168, 178, 184, 185, 187, 222], "struct": [6, 15, 22, 208, 252], "int64_t": [6, 8, 23], "register_paramet": [6, 202], "reflect": [6, 8, 23, 48, 95, 136, 159, 195], "magic": [6, 99, 128, 135, 145], "behind": [6, 8, 17, 23, 45, 82, 97, 99, 129, 160, 179, 190, 192, 196, 201, 202, 262, 271], "scene": [6, 23, 58, 59, 113, 202], "another_bia": 6, "recurs": [6, 16, 44, 60, 110, 202, 218, 245], "0808": 6, "8613": 6, "2017": [6, 73, 104, 118], "5206": 6, "5353": 6, "3740": 6, "0976": 6, "4786": 6, "4928": 6, "1434": 6, "4713": 6, "1735": 6, "3293": 6, "3467": 6, "3858": 6, "1980": 6, "1986": 6, "1975": 6, "4278": 6, "1831": 6, "2709": 6, "3730": 6, "4307": 6, "3236": 6, "0629": 6, "2038": 6, "4638": 6, "2023": [6, 171, 173], "1230": 6, "0516": 6, "aptli": [6, 13], "register_modul": 6, "dropout": [6, 7, 9, 12, 19, 20, 37, 39, 49, 60, 73, 93, 96, 97, 104, 110, 112, 118, 123, 124, 126, 128, 129, 136, 148, 157, 161, 163, 164, 165, 166, 181, 193, 194, 195, 198, 201, 221, 241, 242, 243, 252, 256], "conv2d": [6, 12, 19, 20, 44, 47, 52, 73, 78, 87, 92, 93, 94, 96, 97, 104, 105, 112, 123, 129, 134, 142, 146, 147, 150, 153, 154, 156, 158, 162, 166, 169, 177, 179, 182, 197, 198, 199, 200, 203, 207, 218, 220, 221, 223, 226, 228, 233, 238, 239, 240, 241, 242, 243, 247, 248, 249, 250, 252], "subtleti": [6, 192], "bodi": [6, 113, 144, 262, 263, 271, 272], "upon": [6, 14, 49, 56, 79, 117, 135, 141, 165, 169, 172, 229, 247, 260, 269], "p": [6, 7, 9, 18, 19, 49, 68, 69, 93, 97, 98, 103, 104, 110, 111, 118, 122, 123, 127, 128, 129, 134, 135, 137, 138, 141, 142, 144, 146, 147, 150, 152, 157, 161, 162, 163, 165, 178, 181, 182, 185, 197, 198, 201, 206, 207, 208, 212, 216, 234, 238], "0345": [6, 185], "4456": 6, "6313": 6, "3585": 6, "4008": [6, 23], "1647": 6, "2891": 6, "0527": 6, "0354": 6, "3084": 6, "2025": 6, "0343": [6, 208], "1824": 6, "4630": 6, "2862": 6, "2500": 6, "0420": 6, "3679": 6, "1482": 6, "0460": 6, "1967": 6, "2132": 6, "1992": 6, "4257": 6, "0739": 6, "01": [6, 7, 11, 19, 43, 47, 98, 109, 135, 157, 163, 164, 166, 173, 210, 211, 219, 221, 258, 263, 272], "6861": 6, "1166": 6, "45": [6, 7, 126, 144, 163, 176, 204, 219, 229], "0333": 6, "9983": 6, "0705": 6, "named_paramet": [6, 33, 141, 150, 153, 154, 156], "ordereddict": [6, 178], "13": [6, 23, 92, 95, 104, 109, 115, 163, 171, 176, 219, 223, 226, 262, 266, 271, 275], "48": [6, 7, 17, 126, 127, 144, 147, 169, 201, 204, 219, 238], "1863": 6, "8611": 6, "1228": 6, "3269": 6, "9858": 6, "0339": 6, "2484": 6, "2035": 6, "2103": 6, "0715": 6, "2975": 6, "4350": 6, "1878": 6, "3616": 6, "1050": 6, "4982": 6, "0335": [6, 185], "1605": 6, "4963": 6, "4099": 6, "2883": 6, "1818": 6, "3447": 6, "1501": 6, "0215": 6, "0250": 6, "0408": 6, "3756": 6, "2149": 6, "3636": 6, "8559": 6, "1572": 6, "1069": 6, "1247": 6, "8060": 6, "topic": [6, 49, 58, 59, 61, 73, 105, 107, 108, 114, 120, 176, 216], "devour": 6, "menu": [6, 50, 260, 262, 269, 271], "pipelin": [6, 16, 61, 113, 121, 139, 159, 161, 171, 176, 177, 178, 234], "briefli": [6, 61, 121, 124, 159, 172, 207], "who": [6, 42, 49, 60, 73, 79, 97, 100, 113, 135, 152, 226, 231, 262, 271], "heap": 6, "referenc": [6, 134, 163, 234], "lower": [6, 14, 17, 49, 50, 60, 73, 82, 108, 121, 122, 126, 133, 137, 141, 144, 152, 153, 157, 159, 160, 164, 165, 169, 171, 172, 179, 185, 192, 195, 198, 201, 223, 263, 272], "heavili": [6, 113, 165, 176, 184], "influenc": [6, 52], "ergonom": 6, "far": [6, 7, 14, 20, 22, 47, 49, 58, 59, 64, 95, 97, 98, 99, 111, 115, 125, 135, 139, 149, 152, 156, 160, 165, 176, 189, 198, 231, 262, 271], "stack": [6, 8, 14, 15, 21, 22, 40, 48, 78, 92, 109, 121, 124, 138, 145, 146, 150, 154, 155, 161, 165, 168, 169, 171, 205], "shared_ptr": [6, 22], "cognit": 6, "everywher": [6, 103], "make_shar": 6, "though": [6, 10, 23, 47, 73, 97, 98, 113, 117, 129, 130, 138, 139, 143, 154, 159, 169, 173, 174, 184, 189, 220, 231], "stai": [6, 82, 122, 124, 159, 160, 161, 176, 197, 198, 199, 228], "shorten": [6, 23], "wait": [6, 14, 16, 21, 82, 128, 133, 134, 135, 136, 144, 155, 160, 161, 162, 163, 168, 171, 176, 237, 238, 247], "hell": 6, "lot": [6, 8, 10, 15, 19, 21, 51, 79, 98, 113, 119, 123, 135, 150, 162, 165, 168, 172, 176, 184, 189, 230, 231, 234], "came": [6, 52, 190], "scheme": [6, 18, 97, 121, 189, 202, 237, 244], "hide": [6, 118, 129, 159, 205], "reserv": [6, 10, 15, 137, 168], "simplifi": [6, 10, 14, 24, 78, 129, 133, 134, 165, 171, 177, 178, 189, 192, 196, 197, 199, 215], "linearimpl": 6, "torch_modul": 6, "brief": [6, 24, 61, 82, 98, 159, 208], "typedef": 6, "among": [6, 8, 22, 53, 58, 59, 82, 87, 124, 156, 168, 176, 200, 228, 229], "holder": [6, 118, 264, 273], "arrow": [6, 43, 124, 195], "resembl": [6, 12, 23, 58, 59, 98, 131, 160], "extra": [6, 7, 8, 9, 56, 97, 101, 102, 107, 127, 128, 129, 134, 136, 141, 153, 159, 165, 171, 172, 177, 178, 181, 194, 220, 223, 247], "netimpl": 6, "subtl": [6, 230], "deserv": [6, 103, 113], "construct": [6, 14, 20, 21, 22, 25, 47, 52, 60, 61, 65, 67, 85, 97, 111, 117, 121, 128, 130, 134, 136, 138, 145, 149, 154, 159, 160, 162, 165, 178, 183, 193, 196, 197, 200, 202, 205, 219, 221, 230, 249, 258, 262, 263, 271, 272], "null": [6, 58, 208, 223, 226], "tricki": [6, 17, 130, 142, 173, 174, 176, 201], "had": [6, 23, 42, 47, 51, 102, 105, 113, 152, 153, 160, 169, 197, 220, 226, 244], "nullptr": [6, 186, 208], "familiar": [6, 8, 10, 22, 44, 48, 53, 54, 56, 60, 85, 98, 100, 112, 122, 125, 131, 132, 135, 139, 146, 162, 226, 231], "pythonista": 6, "disadvantag": [6, 112], "said": [6, 23, 25, 42, 146, 152, 159, 189, 190, 262, 271], "introduct": [6, 11, 17, 25, 46, 53, 54, 55, 56, 57, 79, 84, 85, 99, 100, 105, 106, 107, 108, 121, 131, 132, 144, 191, 201, 220, 247, 251, 254, 256], "sooner": [6, 122], "technic": [6, 23, 135, 136, 152, 189, 210, 211], "henceforth": 6, "recap": [6, 47, 160, 192, 237], "adversari": [6, 44, 79, 121], "architectur": [6, 9, 17, 25, 52, 56, 60, 73, 85, 95, 97, 98, 110, 121, 122, 124, 126, 131, 138, 150, 156, 164, 169, 171, 172, 175, 176, 177, 197, 199, 201, 220, 226, 228, 230, 247], "distinct": [6, 17, 21, 52, 82, 103, 122, 163, 169, 201], "transform": [6, 12, 17, 19, 20, 23, 24, 25, 32, 33, 34, 35, 36, 37, 38, 39, 40, 44, 49, 52, 58, 59, 60, 73, 75, 87, 90, 92, 93, 94, 96, 97, 109, 110, 113, 116, 117, 120, 121, 123, 129, 135, 136, 138, 139, 141, 142, 144, 146, 148, 150, 152, 153, 157, 158, 162, 165, 168, 169, 171, 178, 182, 184, 185, 193, 195, 197, 198, 199, 201, 204, 213, 216, 219, 220, 221, 229, 231, 244, 246, 247, 250, 253, 254], "probabl": [6, 8, 22, 49, 52, 58, 59, 60, 73, 75, 97, 98, 101, 103, 118, 123, 125, 126, 127, 128, 129, 148, 153, 158, 160, 166, 169, 171, 193, 219], "judg": 6, "closer": [6, 97, 160, 177], "authent": 6, "theori": [6, 49, 52, 60, 97, 125, 262, 271], "delic": 6, "tandem": 6, "indistinguish": 6, "fool": [6, 49, 73], "excel": [6, 51, 169], "realist": [6, 21, 60, 193], "2d": [6, 52, 93, 127, 129, 142, 156, 161, 171, 175, 200, 215, 252], "dcgangeneratorimpl": 6, "knoises": 6, "conv1": [6, 20, 44, 47, 73, 78, 87, 92, 93, 94, 96, 104, 105, 112, 123, 129, 142, 149, 150, 154, 156, 157, 162, 166, 169, 182, 195, 200, 203, 221, 233, 239, 240, 241, 242, 243, 248, 249, 250], "convtranspose2dopt": 6, "256": [6, 9, 17, 19, 51, 87, 90, 97, 117, 119, 124, 125, 126, 134, 144, 146, 159, 164, 165, 176, 178, 181, 182, 195, 197, 198, 200, 201, 207, 219, 229, 230, 238], "batch_norm1": 6, "conv2": [6, 20, 44, 47, 73, 78, 87, 90, 92, 93, 94, 96, 104, 105, 112, 123, 129, 142, 150, 154, 156, 162, 166, 169, 200, 203, 221, 233, 239, 240, 241, 242, 243, 248, 249, 250], "pad": [6, 17, 19, 42, 49, 52, 60, 75, 97, 104, 113, 115, 118, 129, 134, 137, 164, 191, 193, 201, 247], "batch_norm2": 6, "conv3": [6, 20, 104, 150], "batch_norm3": 6, "conv4": [6, 20], "convtranspose2d": [6, 52], "batchnorm2d": [6, 12, 19, 52, 104, 129, 134, 142, 143, 179, 198, 218, 223, 247, 252], "dcgangener": 6, "chosen": [6, 20, 22, 160, 172, 230, 231], "student": [6, 97, 113], "harm": [6, 97], "discoveri": 6, "fed": [6, 12, 49, 52, 61, 113, 118, 134, 139, 149, 171, 177, 200], "soylent": 6, "regularli": [6, 53], "channel": [6, 10, 12, 19, 21, 43, 44, 47, 52, 97, 110, 121, 122, 124, 139, 148, 152, 156, 169, 178, 185, 208, 212, 213, 220, 247, 261, 270], "moduleopt": 6, "linearopt": 6, "leaki": [6, 52], "squash": [6, 136, 146], "sequenti": [6, 7, 12, 14, 19, 37, 38, 49, 52, 68, 69, 97, 103, 110, 111, 116, 118, 125, 134, 136, 142, 146, 148, 149, 153, 157, 159, 166, 185, 193, 194, 202, 205, 210, 211, 219, 230, 247, 258], "orient": [6, 166], "layer": [6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 33, 37, 42, 43, 47, 49, 52, 55, 60, 68, 73, 78, 87, 93, 97, 99, 102, 110, 111, 112, 115, 117, 118, 121, 122, 123, 126, 127, 128, 134, 136, 147, 148, 149, 153, 156, 157, 158, 159, 162, 163, 165, 166, 176, 177, 178, 181, 184, 185, 200, 201, 210, 211, 212, 219, 229, 230, 233, 234, 237, 239, 241, 242, 244, 252, 256], "conv2dopt": 6, "leakyrelu": [6, 52, 110], "leakyreluopt": 6, "negative_slop": 6, "composit": [6, 11, 14, 25, 99, 100, 145, 159], "third": [6, 8, 12, 22, 23, 52, 63, 64, 65, 67, 68, 69, 102, 111, 130, 155, 165, 175, 189, 195, 205, 263, 272], "fourth": [6, 65, 130, 194, 199], "knob": [6, 176, 177], "truli": [6, 49, 146], "collat": [6, 51, 118, 263, 272], "wherev": 6, "make_data_load": 6, "unique_ptr": 6, "spawn": [6, 7, 11, 16, 18, 49, 52, 53, 55, 123, 133, 134, 135, 149, 161, 162, 163, 212, 214, 258], "concurr": [6, 109, 124, 126, 134, 149, 176, 177, 247], "kbatchsiz": 6, "dataloaderopt": 6, "consol": [6, 169, 171, 188, 257], "field": [6, 10, 11, 12, 14, 15, 49, 102, 103, 113, 135, 152, 161, 168, 174, 178, 191, 200, 203, 216, 223], "rebuild": [6, 231], "danc": [6, 12], "generator_optim": 6, "adamopt": 6, "2e": [6, 14, 89, 137], "make_tupl": 6, "discriminator_optim": 6, "5e": [6, 24, 64, 111], "adagrad": [6, 96, 110, 111, 192, 196], "lbfg": [6, 12, 110], "rmsprop": [6, 47, 69, 99, 110, 111], "sgd": [6, 7, 16, 19, 37, 38, 43, 44, 47, 65, 67, 69, 87, 89, 92, 94, 96, 98, 99, 102, 103, 104, 110, 111, 112, 115, 117, 133, 134, 135, 149, 157, 161, 162, 163, 166, 168, 169, 178, 220, 221, 230, 237, 241, 242, 243, 244, 245, 249, 250, 253], "date": [6, 10, 73, 115, 122, 162, 197, 204, 220, 244, 263, 272], "exhaust": [6, 11, 173, 174, 200], "knumberofepoch": 6, "batch_index": 6, "real_imag": 6, "real_label": [6, 52], "real_output": 6, "d_loss_real": 6, "binary_cross_entropi": [6, 230], "fake_imag": [6, 152], "fake_label": [6, 52], "fake_output": 6, "d_loss_fak": 6, "d_loss": [6, 52], "fill_": [6, 9, 52, 80, 118, 136, 165, 168, 191], "g_loss": [6, 52], "printf": 6, "r": [6, 7, 9, 11, 14, 16, 19, 42, 43, 47, 49, 51, 60, 73, 76, 85, 92, 98, 99, 121, 144, 145, 146, 147, 150, 160, 161, 163, 165, 171, 176, 178, 181, 182, 195, 197, 198, 204, 205, 208, 220, 231, 246, 247, 257, 262, 271], "2ld": 6, "3ld": 6, "4f": [6, 12, 14, 49, 52, 60, 117, 122, 123, 127, 128, 129, 136, 145, 154, 157, 159, 165, 166, 203], "batches_per_epoch": 6, "uniformli": [6, 87, 160, 247], "robust": [6, 49, 53, 54, 73, 160, 219], "propag": [6, 10, 16, 32, 43, 45, 47, 52, 78, 97, 101, 102, 127, 130, 141, 147, 154, 159, 177, 197, 199, 247], "repeat": [6, 14, 18, 19, 23, 128, 144, 146, 149, 159, 168, 176, 182, 189, 197, 198, 212, 223, 238], "spiel": 6, "progress": [6, 8, 15, 24, 49, 52, 53, 110, 136, 157, 165, 169, 214, 263, 272], "observ": [6, 14, 19, 47, 51, 61, 82, 116, 117, 122, 123, 126, 136, 137, 146, 147, 152, 159, 160, 161, 163, 164, 165, 172, 176, 179, 181, 182, 185, 192, 197, 198, 199, 200, 203, 210, 219, 230, 231, 234, 239, 244, 247, 251, 255, 258], "meaning": [6, 49, 60, 97, 147], "3c0711f20896": 6, "dcga": 6, "6876": 6, "1304": 6, "3776": 6, "3101": 6, "300": [6, 12, 98, 102, 122, 163, 178, 219, 231, 246], "3652": 6, "6626": 6, "400": [6, 47, 58, 59, 112, 137, 178, 185, 231, 246], "8057": 6, "2795": [6, 231], "3531": 6, "4452": 6, "600": [6, 119, 147, 160, 256], "3501": 6, "0811": 6, "700": 6, "3581": 6, "5623": 6, "800": 6, "6423": 6, "7385": 6, "900": 6, "3592": 6, "7333": 6, "4660": [6, 173], "5242": 6, "6364": 6, "0886": 6, "3717": 6, "8103": 6, "0201": 6, "3544": 6, "4522": 6, "6545": 6, "quickli": [6, 44, 82, 97, 98, 99, 103, 124, 152, 160, 165, 216, 221, 234, 251], "onto": [6, 8, 14, 16, 18, 44, 121, 136, 149, 152, 162, 163, 202, 247], "somewher": [6, 23, 98, 99, 112], "kcpu": [6, 186, 206], "whose": [6, 42, 60, 82, 85, 97, 103, 122, 125, 147, 171, 187, 200, 229, 231], "insert": [6, 12, 17, 19, 49, 118, 137, 157, 163, 179, 181, 182, 197, 198, 199, 200, 201, 228, 252], "op": [6, 10, 11, 15, 21, 22, 23, 48, 82, 121, 122, 123, 124, 129, 133, 135, 137, 142, 143, 144, 147, 158, 168, 176, 177, 178, 179, 181, 182, 184, 185, 186, 187, 188, 190, 191, 193, 197, 198, 199, 200, 202, 207, 208, 212, 221, 222, 223, 230, 237, 244, 247, 252], "previou": [6, 11, 13, 14, 15, 16, 17, 22, 23, 49, 52, 53, 55, 58, 59, 97, 98, 116, 117, 119, 122, 127, 128, 130, 131, 132, 134, 136, 146, 149, 152, 156, 157, 159, 160, 161, 163, 164, 165, 168, 169, 171, 172, 173, 174, 176, 177, 182, 197, 198, 199, 201, 207, 208, 223, 231, 239, 247, 260, 269], "resid": [6, 7, 97, 134], "portabl": 6, "augment": [6, 24, 51, 117, 118, 119, 157, 166, 178], "period": [6, 49, 52, 126, 146, 168, 176], "crash": [6, 61], "middl": [6, 262, 271], "procedur": [6, 23, 47, 120, 157, 160, 166], "restor": [6, 73, 112, 147], "session": [6, 20, 97, 105, 234, 262, 271], "interv": [6, 14, 52, 126, 163, 165, 173, 174], "kcheckpointeveri": 6, "str": [6, 9, 18, 19, 22, 49, 83, 90, 108, 113, 118, 122, 126, 137, 139, 142, 143, 148, 159, 162, 171, 173, 174, 185, 194, 203, 208, 209, 213, 216, 231, 238, 246], "checkpoint_count": 6, "counter": [6, 11, 49, 52, 73, 135], "bump": 6, "beta1": [6, 52], "krestorefromcheckpoint": 6, "intermediari": [6, 125], "xxx": [6, 15, 45, 51], "argpars": [6, 52, 122, 123, 137, 148, 161, 162, 163, 185], "parser": [6, 98, 122, 123, 148, 161, 162, 163, 262, 271], "argumentpars": [6, 122, 123, 148, 161, 162, 163], "add_argu": [6, 122, 123, 148, 161, 162, 163], "png": [6, 51, 119, 121, 149, 178], "parse_arg": [6, 122, 123, 148, 161, 162, 163], "sample_fil": [6, 139], "mul": [6, 40, 48, 108, 144, 192, 197, 206, 231, 246], "255": [6, 12, 20, 59, 97, 139, 146, 171, 178, 179, 200, 213, 238], "uint8": [6, 20, 95, 144, 146, 178, 200], "numpi": [6, 12, 14, 17, 19, 20, 41, 44, 51, 52, 57, 60, 70, 72, 73, 75, 87, 89, 90, 92, 94, 96, 104, 105, 108, 109, 110, 117, 118, 119, 121, 127, 130, 137, 146, 149, 157, 158, 160, 163, 165, 166, 169, 171, 172, 182, 185, 189, 193, 195, 196, 197, 198, 201, 204, 229, 236, 246], "axi": [6, 13, 21, 34, 51, 52, 82, 101, 102, 109, 110, 117, 119, 127, 137, 146, 156, 157, 171, 185, 254], "subplot": [6, 14, 51, 52, 73, 117, 149, 157, 159, 165, 166, 178], "imshow": [6, 12, 34, 44, 51, 52, 73, 75, 90, 92, 94, 96, 104, 117, 157, 166, 169, 171, 178], "cmap": [6, 34, 73, 90, 94, 96, 104, 165, 169], "grai": [6, 34, 73, 104, 119, 146, 188, 229], "get_xaxi": 6, "set_vis": 6, "get_yaxi": 6, "savefig": [6, 146, 149], "out_fil": 6, "17": [6, 21, 23, 58, 59, 92, 95, 109, 113, 144, 173, 174, 187, 203, 219, 231, 266, 275], "57": [6, 7, 17, 109, 127, 144, 238], "4953": 6, "0195": [6, 185], "3610": 6, "8148": 6, "4072": 6, "36760": 6, "4444": 6, "3761": 6, "8790": 6, "3977": 6, "3315": 6, "120": [6, 44, 47, 87, 92, 93, 94, 96, 105, 112, 117, 134, 149, 156, 157, 163, 169, 238, 239, 240, 241, 242, 243, 248, 249, 250], "8084": 6, "hoorai": [6, 25], "ball": 6, "court": 6, "digest": 6, "necess": [6, 49], "broad": [6, 57], "space": [6, 14, 22, 49, 52, 60, 73, 97, 98, 102, 103, 113, 115, 126, 136, 146, 152, 159, 160, 163, 165, 168, 169, 171, 194, 262, 263, 271, 272], "consult": [6, 152, 197, 229, 261, 270], "stuck": 6, "whenev": [6, 22, 53, 67, 69, 98, 99, 111, 207], "rate": [6, 7, 43, 52, 87, 97, 99, 104, 115, 117, 122, 123, 126, 127, 146, 148, 157, 159, 160, 162, 178, 216, 236, 245, 247], "pritam": [7, 16], "damania": [7, 16], "torchtext": [7, 38, 42, 50, 92, 96, 113, 118, 121, 127, 165, 236], "positionalencod": [7, 118], "inject": 7, "posit": [7, 14, 17, 90, 99, 113, 118, 121, 137, 153, 159, 160, 164, 165, 171, 201, 229, 260, 269], "token": [7, 9, 17, 42, 49, 60, 75, 103, 113, 115, 116, 118, 122, 124, 128, 164, 165, 181, 185, 201, 247], "sine": [7, 14, 92, 95], "cosin": [7, 14, 219], "os": [7, 9, 11, 17, 18, 19, 33, 34, 49, 50, 51, 52, 53, 55, 60, 87, 90, 117, 122, 123, 125, 127, 128, 133, 134, 135, 137, 146, 148, 155, 157, 158, 161, 162, 163, 175, 178, 181, 182, 185, 194, 195, 197, 198, 208, 212, 213, 214, 215, 228, 231, 234, 237, 246, 258], "transformerencod": [7, 42, 93], "transformerencoderlay": [7, 42, 93, 164], "d_model": [7, 118], "max_len": [7, 118], "pe": 7, "arang": [7, 73, 118, 146, 149, 169, 189, 190, 191, 193, 244, 245, 254], "div_term": 7, "10000": [7, 44, 52, 92, 98, 118, 127, 136, 160, 163, 231, 246], "sin": [7, 14, 63, 64, 65, 67, 68, 69, 71, 72, 89, 95, 111, 118, 145, 172, 173, 174, 192, 247, 262, 271], "co": [7, 14, 89, 103, 118, 172, 173, 174, 238, 247, 263, 272], "replica": [7, 55, 56, 61, 79, 123, 133, 135, 149, 258], "drive": [7, 16, 25, 52, 58, 59, 60, 121, 146, 189, 212], "largest": [7, 60, 83, 160, 171, 185], "nlayer": [7, 9, 93, 163, 181, 195], "decod": [7, 9, 98, 113, 118, 122, 163, 164, 177, 181, 184, 195, 230, 252], "platform": [7, 20, 23, 105, 133, 135, 168, 194, 207, 219, 222, 226, 247, 253, 256, 257], "win32": 7, "exit": [7, 16, 141, 161, 162, 163, 210, 211, 230, 255], "device_count": [7, 11, 45, 53, 55, 87, 95, 123, 133, 150, 214, 215], "least": [7, 47, 58, 59, 73, 112, 113, 126, 128, 133, 146, 158, 165, 194, 214, 216, 223, 231, 234, 258, 262, 263, 271, 272], "ntoken": [7, 9, 163, 181, 195], "ninp": [7, 9, 163, 181, 195], "pos_encod": 7, "init_weight": [7, 9, 115, 181, 195], "initrang": [7, 9, 115, 181, 195], "src": [7, 10, 11, 108, 118, 135, 155, 206, 208, 222, 244, 246], "zero_": [7, 9, 32, 104, 115, 155, 163, 166, 181, 195], "inp": [7, 19, 32, 49, 117, 142, 157, 162, 165, 166, 172, 174, 232, 239], "permut": [7, 90, 97, 110, 146, 147, 158, 165, 171, 173, 174, 178, 183], "run_work": [7, 16, 134, 161, 162, 163, 212], "rank": [7, 11, 16, 18, 42, 45, 53, 55, 82, 121, 122, 123, 133, 134, 135, 155, 161, 162, 163, 175, 193, 212, 214, 215, 258, 260, 269], "world_siz": [7, 11, 16, 18, 24, 53, 55, 122, 123, 133, 134, 135, 155, 161, 162, 163, 175, 212, 214, 215, 258], "wikitext": [7, 9, 181, 193], "torchdata": [7, 50, 113, 115, 116, 118], "vocab": [7, 75, 99, 102, 103, 115, 116, 118, 124, 137, 185], "numeric": [7, 118], "batchifi": [7, 9, 181], "arrang": [7, 17, 201], "trim": [7, 9, 12, 60, 165, 181, 246], "alphabet": 7, "26": [7, 23, 144, 146, 147, 158, 163, 219], "bmatrix": [7, 17, 102, 201], "text": [7, 17, 34, 38, 40, 44, 52, 73, 75, 85, 98, 99, 101, 102, 103, 113, 115, 116, 118, 120, 121, 122, 127, 128, 135, 137, 159, 160, 165, 168, 171, 181, 196, 201, 226, 229, 251, 263, 265, 272, 274], "c": [7, 12, 15, 18, 19, 21, 25, 38, 43, 49, 51, 63, 64, 65, 67, 71, 72, 85, 89, 90, 94, 95, 97, 103, 104, 108, 110, 111, 112, 115, 121, 127, 128, 129, 130, 135, 137, 139, 142, 144, 146, 147, 158, 163, 164, 165, 171, 173, 174, 175, 188, 191, 199, 209, 221, 223, 225, 226, 230, 231, 244, 245, 251, 252, 263, 272], "ldot": 7, "rightarrow": [7, 98, 135, 160], "j": [7, 22, 23, 32, 43, 44, 58, 59, 73, 89, 92, 94, 96, 97, 98, 102, 103, 117, 127, 137, 150, 165, 194], "k": [7, 12, 17, 19, 49, 58, 59, 60, 82, 90, 98, 105, 108, 124, 137, 147, 150, 154, 161, 162, 164, 178, 182, 197, 198, 201, 209], "u": [7, 14, 115, 118, 194], "treat": [7, 60, 75, 103, 113, 154, 161, 172, 203, 252], "print_with_rank": 7, "msg": [7, 187, 213], "wikitext2": 7, "get_token": [7, 115, 118], "build_vocab_from_iter": [7, 115, 116, 118], "train_it": [7, 115, 118], "basic_english": [7, 115], "unk": [7, 115, 116, 118], "set_default_index": [7, 115, 116, 118], "data_process": 7, "raw_text_it": 7, "tupl": [7, 9, 20, 48, 51, 58, 59, 60, 78, 80, 82, 97, 102, 103, 110, 115, 116, 137, 141, 142, 146, 147, 160, 173, 174, 178, 181, 182, 185, 192, 200, 209, 230, 234, 256], "filter": [7, 13, 24, 49, 83, 97, 125, 137, 157, 165, 185, 208, 246], "val_it": [7, 118], "test_it": [7, 115], "train_data": [7, 55, 165], "val_data": 7, "test_data": [7, 9, 20, 34, 37, 38, 99, 181], "bsz": [7, 9, 135, 181, 195], "is_train": 7, "nbatch": [7, 9, 181], "wouldn": [7, 9, 17, 103, 123, 136, 181, 201], "cleanli": [7, 9, 181, 210, 211, 255], "narrow": [7, 9, 80, 144, 181, 193], "evenli": [7, 9, 18, 181], "data_per_rank": 7, "eval_batch_s": [7, 9, 19, 24, 137, 181, 182, 185, 197, 198], "get_batch": [7, 9, 181], "subdivid": [7, 8], "bptt": [7, 9, 181], "35": [7, 17, 73, 124, 147, 203, 219, 221], "seq_len": [7, 9, 164, 181], "min": [7, 9, 19, 52, 82, 87, 97, 104, 117, 135, 146, 155, 157, 159, 161, 163, 171, 173, 174, 176, 177, 178, 181, 197, 200], "4096": [7, 18, 175, 219, 230], "billion": [7, 122, 124], "rpc": [7, 109, 121, 133, 149, 216, 251], "rref": [7, 16, 61, 134, 161, 162, 212, 216], "expans": [7, 134], "replic": [7, 16, 18, 56, 60, 61, 79, 121, 123, 124, 131, 133, 135, 149, 162, 163, 215], "distributeddataparallel": [7, 16, 55, 56, 120, 122, 123, 135, 155, 163, 175, 230, 258], "vocabulari": [7, 49, 60, 103, 115, 118, 124, 137, 193, 247], "emsiz": [7, 115], "nhid": [7, 9, 163, 181, 195], "feedforward": [7, 124], "nhead": [7, 118, 193], "multihead": [7, 42], "tmpfile": 7, "namedtemporaryfil": 7, "init_rpc": [7, 16, 134, 161, 162, 163, 212], "rpc_backend_opt": [7, 16, 134, 212], "tensorpiperpcbackendopt": [7, 16, 134, 212], "init_method": [7, 16, 133, 135], "_transport": 7, "_channel": 7, "longer": [7, 12, 42, 52, 78, 99, 113, 125, 129, 144, 149, 152, 156, 160, 161, 172, 176, 177, 193, 197, 198, 211, 231, 247, 260, 269], "ibv": 7, "uv": 7, "cuda_ipc": 7, "cuda_bas": 7, "num_gpu": [7, 162], "partition_len": 7, "tmp_list": 7, "module_list": 7, "transformer_block": [7, 124], "checkpoint": [7, 39, 49, 60, 61, 75, 87, 117, 131, 152, 184, 220, 230, 235, 241, 243, 251], "ddp": [7, 11, 16, 53, 54, 61, 121, 122, 123, 124, 132, 168, 215, 258], "master_addr": [7, 11, 18, 53, 55, 123, 133, 134, 135, 155, 161, 162, 163, 175, 212, 214, 258], "localhost": [7, 11, 16, 18, 53, 55, 94, 123, 127, 133, 134, 139, 155, 161, 162, 163, 168, 169, 175, 212, 213, 214, 215, 245, 258], "master_port": [7, 11, 18, 53, 55, 123, 133, 134, 135, 155, 161, 162, 163, 175, 212, 214, 258], "29500": [7, 11, 16, 18, 134, 135, 155, 161, 162, 163, 175, 212, 258], "init_process_group": [7, 11, 16, 18, 53, 55, 61, 122, 123, 133, 135, 155, 175, 214, 215, 258], "nccl": [7, 11, 18, 53, 55, 82, 122, 123, 124, 133, 135, 168, 175, 214, 215], "get_total_param": 7, "total_param": 7, "crossentropyloss": [7, 9, 16, 19, 37, 38, 44, 78, 87, 92, 94, 96, 97, 99, 110, 115, 117, 118, 124, 157, 163, 168, 169, 172, 181, 182, 197, 198, 220, 250, 253], "steplr": [7, 110, 115, 117, 122, 123, 129, 157, 178], "togeth": [7, 11, 17, 21, 25, 49, 51, 59, 60, 75, 85, 97, 101, 113, 118, 123, 129, 136, 138, 158, 161, 163, 165, 171, 188, 197, 199, 200, 201, 216, 252, 254], "prevent": [7, 49, 55, 76, 109, 118, 125, 128, 133, 144, 146, 230, 231], "explod": [7, 49, 127], "criterion": [7, 9, 12, 16, 19, 44, 47, 52, 65, 67, 87, 92, 94, 97, 111, 115, 117, 127, 128, 157, 160, 163, 165, 168, 169, 181, 182, 197, 198, 220, 245, 250, 253], "schedul": [7, 11, 14, 82, 87, 115, 117, 122, 123, 129, 133, 144, 157, 159, 160, 168, 176, 178, 238, 247, 251], "lr_schedul": [7, 14, 110, 115, 117, 122, 123, 129, 157, 159, 178, 211], "95": [7, 115, 126, 136, 159, 163, 177, 179, 219], "total_loss": [7, 9, 103, 128, 165, 181], "start_tim": [7, 19, 115, 118, 198, 230, 237], "node": [7, 8, 18, 20, 23, 32, 43, 47, 53, 54, 55, 56, 63, 98, 108, 110, 120, 122, 131, 132, 133, 142, 143, 144, 162, 165, 176, 186, 198, 199, 200, 215, 247, 252], "local_valu": [7, 161, 162], "log_interv": [7, 115, 163], "cur_loss": 7, "elaps": [7, 9, 19, 115, 123, 143, 165, 181, 185], "5d": [7, 37, 38, 44, 87, 92, 115, 250], "02": [7, 52, 144, 149, 163, 219], "ms": [7, 17, 19, 119, 144, 158, 176, 177, 184, 201], "ppl": 7, "get_last_lr": 7, "eval_model": 7, "data_sourc": [7, 9, 181], "output_flat": [7, 9, 181], "best_val_loss": [7, 122], "inf": [7, 118, 122, 191, 193, 195], "best_model": 7, "epoch_start_tim": [7, 115], "val_loss": [7, 87, 104, 118, 122], "89": [7, 144, 163, 176], "test_loss": [7, 37, 38, 123, 129, 166], "mp": [7, 11, 15, 16, 33, 38, 53, 55, 121, 122, 123, 133, 134, 135, 161, 162, 163, 212, 214, 258], "__name__": [7, 11, 12, 16, 51, 52, 53, 55, 78, 87, 122, 123, 133, 134, 135, 137, 139, 147, 148, 161, 162, 163, 185, 187, 194, 212, 213, 214, 226, 258], "__main__": [7, 11, 16, 51, 53, 55, 87, 122, 123, 133, 134, 135, 139, 148, 161, 162, 163, 187, 194, 212, 213, 214, 226, 231, 258], "arg": [7, 16, 18, 19, 21, 51, 53, 55, 73, 101, 110, 112, 122, 123, 125, 133, 134, 135, 137, 142, 143, 147, 148, 149, 156, 157, 160, 161, 162, 163, 164, 171, 172, 173, 174, 184, 185, 186, 193, 194, 198, 200, 210, 212, 214, 216, 220, 244, 258, 266, 275], "nproc": [7, 11, 16, 53, 55, 123, 133, 134, 161, 163, 212, 214, 258], "join": [7, 9, 10, 16, 18, 34, 44, 48, 49, 50, 51, 53, 60, 61, 92, 96, 117, 118, 120, 123, 125, 127, 128, 133, 134, 135, 137, 157, 159, 161, 162, 163, 165, 178, 181, 185, 212, 214, 231, 246, 258], "00": [7, 92, 109, 144, 163, 171, 184, 187, 219], "778": 7, "97": [7, 144, 163, 219], "43": [7, 119, 149, 219, 231], "31": [7, 122, 144, 145, 200, 219, 231, 238, 246], "6432469059895903232": 7, "90": [7, 127, 137, 163, 165, 191, 219], "44": [7, 17, 144, 163, 201], "21245447128217366528": 7, "699": 7, "21176949187407757312": 7, "87": [7, 24, 109, 163, 219, 231], "62": [7, 115, 163, 201], "23975861229620961280": 7, "698": 7, "86": [7, 17, 144, 158, 163, 201, 219, 231], "41": [7, 17, 123, 158, 176, 231, 238], "1193312915629888256": 7, "40": [7, 113, 123, 146, 147, 149, 156, 163, 165, 176, 186, 192, 195, 201, 219, 231], "69": [7, 90, 173, 185, 231], "471605759847546240": 7, "34": [7, 109, 158, 219, 223, 231, 238, 246], "42812308420836458496": 7, "33": [7, 145, 158, 163, 176, 177, 187, 219, 231], "68": [7, 17, 51, 127, 137, 144, 177, 231], "68839569686012223488": 7, "08": [7, 122, 144, 163, 219, 221, 231], "80": [7, 87, 115, 126, 147, 163, 165, 191, 234], "22": [7, 17, 144, 147, 163, 204, 219, 231], "09": [7, 17, 49, 144, 163, 176, 201, 219], "75": [7, 22, 23, 97, 115, 117, 123, 149, 157, 234], "768": [7, 137, 147, 185, 201], "51": [7, 119, 127, 147, 149, 163, 176, 219], "36": [7, 17, 115, 158, 219], "6063529544668166": 7, "769": 7, "23": [7, 17, 95, 144, 163, 176, 184, 219, 231, 238, 246, 263, 272], "17651211266236086": 7, "3798441739584": 7, "56": [7, 19, 147, 158, 176, 201, 231, 238], "29": [7, 137, 158, 163, 208, 231], "5203636967575": 7, "47": [7, 17, 87, 127, 147, 219, 231, 238], "2212498693571": 7, "05": [7, 14, 16, 20, 21, 73, 115, 122, 134, 160, 163, 179, 218, 219], "2015144761281": 7, "13121380184": 7, "92": [7, 17, 201, 219, 231], "14653799192": 7, "39": [7, 123, 127, 163, 219, 231], "24": [7, 17, 19, 113, 144, 158, 173, 184, 191, 201, 219, 231], "98": [7, 51, 118, 144, 163, 187, 219], "361681": 7, "287876": 7, "61": [7, 19, 109, 147, 201, 219], "164364": 7, "60": [7, 34, 105, 110, 117, 122, 127, 128, 147, 149, 157, 158, 163, 165, 169, 191, 219, 238], "159095": 7, "697": [7, 219], "54261": 7, "91": [7, 17, 163, 201, 219, 231], "72": [7, 17, 158, 231], "53372": 7, "49": [7, 17, 147, 149, 163, 185, 201, 231], "78": [7, 17, 201, 231], "47948": 7, "79": [7, 17, 144, 197, 201, 231, 238], "48664": 7, "42": [7, 23, 73, 97, 127, 137, 163, 176, 185, 208, 231], "96": [7, 19, 144, 147, 163, 219], "38": [7, 109, 163, 177, 219, 246], "46": [7, 17, 137, 144, 147, 158, 176], "ddp_pipelin": 7, "respons": [8, 11, 16, 18, 49, 60, 108, 121, 124, 129, 133, 135, 139, 161, 162, 165, 172, 177, 208, 210, 212, 213, 229, 257, 262, 271], "nontrivi": [8, 209], "cut": [8, 113, 119, 262, 271], "concern": [8, 21, 61, 99, 189, 197, 216, 221], "rule": [8, 22, 43, 47, 60, 102, 103, 125, 129, 138, 145, 153, 154, 159, 160, 182, 230], "vmap": [8, 121, 141, 145, 150, 154, 196], "statement": [8, 21, 25, 43, 45, 60, 65, 98, 111, 165, 173, 174, 183, 230, 232, 262, 271], "convers": [8, 49, 95, 112, 147, 165, 177, 189, 194, 216, 223, 228, 234, 244], "basic": [8, 11, 15, 16, 23, 24, 49, 54, 56, 57, 61, 75, 86, 97, 100, 103, 105, 107, 108, 113, 115, 121, 124, 127, 129, 144, 159, 164, 190, 193, 214, 231, 245, 251, 252, 263, 272], "registr": [8, 10, 15, 22, 23, 208, 220, 221, 226], "highest": [8, 19, 44, 49, 58, 59, 60, 128, 160, 171], "transfer": [8, 22, 44, 58, 59, 79, 80, 97, 98, 112, 117, 121, 135, 158, 162, 168, 178, 206, 228, 232, 252, 261, 270], "redispatch": 8, "happen": [8, 21, 23, 25, 32, 43, 52, 97, 99, 105, 122, 124, 130, 135, 141, 156, 161, 168, 169, 184, 185, 197, 199, 208, 209, 231, 237, 247], "unlik": [8, 12, 17, 60, 97, 125, 141, 142, 147, 157, 165, 201], "style": [8, 60, 113, 115, 124, 178, 208, 214, 234, 260, 262, 263, 269, 271, 272], "abid": [8, 52], "myop": 8, "myadd": [8, 10], "myadd_cpu": 8, "self_": 8, "other_": 8, "torch_internal_assert": 8, "devicetyp": [8, 15], "self_ptr": 8, "data_ptr": [8, 23, 59, 186, 208], "other_ptr": 8, "result_ptr": 8, "torch_library_impl": [8, 10, 15], "impl": [8, 10, 15, 108, 173, 174, 246], "myadd_cuda": 8, "boundari": [8, 61, 134, 159, 168], "myops_cpu": 8, "myops_cuda": 8, "xla": [8, 10, 15, 244], "torch_xla": [8, 10], "useabl": 8, "behav": [8, 12, 20, 60, 80, 147, 153, 161, 198, 226, 264, 273], "autogradnotimplementedfallback": 8, "notimpl": 8, "preserv": [8, 17, 22, 25, 49, 107, 121, 134, 147, 156, 177, 183, 190, 201, 203, 223, 234, 244, 249, 262, 271], "require_grad": 8, "ness": 8, "pin": [8, 125, 247, 261, 270], "lost": [8, 17, 99, 147, 201], "mutat": [8, 10, 138, 154, 173, 174, 205, 211], "alias": [8, 10], "adinplaceorview": 8, "bookkeep": [8, 231], "autogradnotimplementedinplaceorviewfallback": 8, "logi": 8, "properli": [8, 9, 10, 14, 23, 50, 55, 97, 118, 130, 133, 135, 147, 149, 152, 153, 159, 161, 162, 163, 165, 176, 188, 189, 191, 194, 202, 209, 224, 225, 234, 244], "annot": [8, 10, 18, 21, 22, 23, 51, 60, 99, 108, 118, 137, 171, 172, 177, 216, 231], "guess": [8, 43, 49, 52, 113, 127, 165], "twist": [8, 113], "constitut": [8, 14], "hood": [8, 14, 19, 49, 52, 54, 56, 124, 125, 145, 146, 163, 192, 212, 216], "singleton": [8, 162], "findschemaorthrow": 8, "decltyp": [8, 144], "qualifi": [8, 22, 108, 214], "overload": [8, 22, 108], "typic": [8, 11, 14, 19, 21, 43, 47, 48, 54, 55, 58, 59, 82, 98, 99, 103, 115, 119, 124, 126, 129, 131, 144, 152, 159, 162, 171, 172, 173, 174, 176, 177, 200, 213, 219, 220, 221, 228, 230, 232, 234, 247], "cast": [8, 13, 17, 18, 108, 109, 122, 201, 230], "lookup": [8, 16, 103, 115, 163, 175], "typo": 8, "myaddfunct": [8, 10], "autononvariabletypemod": [8, 10, 59, 208], "myadd_autograd": [8, 10], "except": [8, 11, 17, 23, 43, 44, 48, 49, 52, 58, 59, 60, 61, 76, 79, 80, 87, 95, 99, 102, 104, 117, 125, 127, 134, 137, 138, 139, 141, 142, 145, 147, 149, 154, 155, 157, 164, 165, 172, 173, 174, 184, 190, 193, 196, 200, 201, 202, 203, 205, 206, 220, 222, 239, 246], "raii": 8, "guard": [8, 59, 133, 173, 199, 208, 211], "infinit": 8, "overflow": [8, 49, 184, 230, 234], "send": [8, 10, 11, 12, 44, 45, 61, 73, 78, 87, 115, 135, 139, 146, 155, 157, 161, 162, 163, 173, 174, 212], "consider": [8, 10, 20, 123, 173, 174], "handler": [8, 171, 177, 244], "autogradcpu": 8, "autogradcuda": 8, "pythondispatch": 8, "_python_dispatch": 8, "isn": [8, 98, 141, 142, 158, 169, 191, 231, 260, 262, 269, 271], "glorifi": 8, "add_cpu": 8, "add_cuda": 8, "unsupport": [8, 172, 173, 174, 177, 244], "decentr": 8, "importantli": [8, 19, 23, 42, 130, 152, 189, 231], "parti": [8, 22, 23, 155], "aspect": [8, 15, 51, 73, 135, 178, 231], "patch": [8, 10, 160], "dispatchkei": [8, 10], "varieti": [8, 24, 49, 112, 128, 192], "fallback": [8, 10, 15, 185], "behavior": [8, 10, 11, 12, 14, 22, 25, 49, 51, 102, 108, 136, 143, 144, 147, 149, 152, 173, 174, 190, 191, 197, 198, 202, 223, 237, 247], "opt": [8, 16, 22, 104, 110, 126, 134, 147, 152, 155, 162, 163, 168, 172, 184, 202, 210, 211, 230, 237], "amp": [8, 15, 61, 147, 207, 220, 251, 253], "incom": [8, 168, 213], "float16": [8, 15, 122, 137, 147, 164, 207, 230], "float32": [8, 14, 23, 85, 122, 144, 147, 158, 160, 163, 172, 186, 189, 199, 200, 230, 244, 247], "matmul": [8, 17, 23, 32, 40, 48, 95, 124, 144, 184, 193, 201, 205, 207, 208, 219, 230, 247], "impair": 8, "converg": [8, 49, 52, 64, 97, 111, 112, 124, 135, 153, 160, 165, 211, 230, 234], "hypothet": 8, "autocast_mod": 8, "mymatmul_autocast": 8, "excludedispatchkeyguard": 8, "no_autocast": 8, "mymatmul": 8, "cached_cast": 8, "khalf": 8, "elig": 8, "polici": [8, 15, 121, 123, 146, 160, 161, 163], "mixtur": 8, "meanwhil": [8, 125, 144, 190, 220], "float64": [8, 95], "unaffect": [8, 97], "forc": [8, 14, 17, 23, 49, 60, 127, 165, 172, 189, 191, 201, 230, 247, 260, 269], "fallthrough": 8, "occur": [8, 11, 19, 23, 25, 53, 75, 78, 82, 97, 116, 144, 147, 161, 162, 168, 171, 173, 174, 177, 184, 185], "fall": [8, 15, 153, 160], "aren": [8, 130, 136, 191, 247], "dri": [8, 168], "reduct": [8, 9, 58, 59, 65, 67, 68, 69, 111, 119, 122, 123, 125, 129, 137, 152, 155, 168, 171, 181, 189, 191, 196, 223, 230, 234], "gemm": [8, 144, 176, 177, 199, 219], "unless": [8, 20, 48, 99, 129, 137, 159, 182, 184, 185, 205, 237], "categori": [8, 10, 19, 49, 73, 82, 117, 127, 128, 165, 168, 173, 174, 182, 189, 190, 191, 192, 197, 198, 208], "promote_typ": 8, "widest": 8, "safest": 8, "my_multiple_input_op_autocast": 8, "t0": [8, 122, 164, 184, 190, 210, 231], "t1": [8, 40, 48, 190, 231, 244], "optimist": 8, "exec_typ": 8, "my_multiple_input_op": 8, "myadd_autocast": 8, "gymnast": 8, "invoc": [8, 25, 143, 161, 177, 226], "stabil": [8, 97, 160, 257], "41478": 8, "jame": [9, 25, 113, 143], "reed": [9, 25, 143], "seth": [9, 19, 36], "weidman": [9, 19], "io": [9, 34, 49, 51, 58, 60, 94, 119, 121, 127, 128, 139, 148, 161, 164, 165, 171, 178, 181, 196, 208, 213, 227, 228, 229, 251, 252], "lstmmodel": [9, 181, 195], "drop": [9, 23, 50, 105, 131, 152, 163, 176, 181, 184, 219, 224, 225, 260, 269], "emb": [9, 23, 93, 98, 102, 103, 136, 163, 181, 195, 263, 272], "init_hidden": [9, 98, 181, 195], "new_zero": [9, 195], "corpu": [9, 49, 50, 60, 137, 181, 193], "preprocess": [9, 20, 42, 51, 58, 59, 60, 97, 104, 113, 116, 127, 158, 165, 171, 187, 204, 234], "dictionari": [9, 14, 49, 58, 59, 60, 82, 103, 105, 112, 127, 128, 139, 152, 154, 159, 161, 162, 165, 171, 181, 185, 195, 237], "word2idx": [9, 181], "idx2word": [9, 181], "add_word": [9, 181], "__len__": [9, 45, 51, 104, 135, 160, 178, 181], "train": [9, 10, 12, 16, 17, 18, 20, 23, 32, 34, 37, 38, 41, 42, 43, 46, 47, 51, 54, 56, 57, 58, 59, 60, 63, 64, 65, 67, 68, 69, 73, 75, 79, 82, 85, 91, 92, 94, 96, 97, 98, 100, 102, 103, 104, 105, 111, 113, 116, 118, 119, 121, 123, 126, 129, 133, 137, 142, 146, 147, 148, 149, 150, 153, 154, 155, 158, 161, 162, 163, 164, 168, 171, 172, 175, 176, 178, 183, 185, 187, 191, 194, 196, 200, 201, 207, 210, 211, 213, 214, 215, 216, 224, 225, 227, 230, 234, 241, 243, 245, 250, 251, 252, 256, 257, 258], "utf8": [9, 181], "eo": [9, 49, 60, 113, 116, 118, 128, 165, 181], "idss": [9, 181], "int64": [9, 14, 60, 85, 95, 115, 144, 175, 178, 181, 192], "model_data_filepath": [9, 181], "512": [9, 12, 18, 33, 37, 38, 43, 75, 97, 113, 118, 122, 134, 144, 145, 146, 164, 178, 181, 193, 195, 201, 207, 220, 230, 231, 238], "word_language_model_quant": [9, 181], "map_loc": [9, 20, 49, 60, 73, 112, 133, 171, 181, 230, 237, 240], "input_": [9, 195], "randint": [9, 16, 34, 51, 52, 65, 111, 127, 128, 137, 138, 144, 146, 147, 154, 164, 172, 185, 190, 195, 220], "temperatur": [9, 97, 115], "num_word": [9, 49, 60], "outf": 9, "word_weight": 9, "div": [9, 12, 144, 189, 191, 192, 197], "word_idx": 9, "multinomi": 9, "utf": [9, 49, 111, 127, 128, 137, 165, 208, 262, 263, 271, 272], "19": [9, 12, 17, 23, 60, 95, 127, 144, 160, 174, 184, 186, 201, 219, 238, 263, 266, 272, 275], "all_output": 9, "gpt": [9, 54, 123, 131, 132], "almost": [9, 12, 19, 80, 102, 103, 123, 124, 136, 158, 176, 184], "repackage_hidden": [9, 181], "isinst": [9, 12, 14, 17, 19, 49, 51, 73, 125, 134, 142, 146, 147, 156, 181, 182, 185, 186, 197, 198, 200, 201, 244], "model_": [9, 96, 181], "quantize_dynam": [9, 119, 137, 195, 228, 234], "int8": [9, 19, 95, 137, 158, 177, 184, 185, 197, 199, 200, 207, 221, 223, 228, 234], "quantized_model": [9, 19, 119, 137, 181, 182, 185, 197, 198], "qint8": [9, 119, 137, 179, 195, 228, 234], "print_size_of_model": [9, 19, 137, 181, 182, 185, 197, 198, 234], "mb": [9, 19, 109, 123, 137, 175, 181, 182, 185, 197, 198, 228, 238, 258], "getsiz": [9, 19, 137, 181, 182, 185, 197, 198, 228, 234], "set_num_thread": [9, 137, 158, 181, 185], "time_model_evalu": [9, 137, 181, 185], "nelaps": [9, 181], "1f": [9, 37, 38, 44, 49, 137, 169, 181, 185, 231], "macbook": [9, 19, 137, 165], "pro": [9, 19, 137], "welcom": [9, 19, 137, 185, 187, 188, 195, 204, 222], "dynamic_quantization_tutori": [9, 234], "outsid": [10, 14, 15, 23, 45, 60, 121, 124, 129, 168, 171, 173, 189, 244, 262, 271], "repo": [10, 15, 18, 19, 54, 58, 59, 82, 119, 121, 127, 131, 135, 137, 161, 162, 184, 194, 221], "solut": [10, 17, 52, 60, 112, 121, 134, 144, 149, 154, 171, 172, 176, 191, 193, 201, 215, 231, 247], "pr": [10, 169, 220], "propos": [10, 24, 124, 136, 153, 189, 191], "request": [10, 25, 43, 87, 104, 119, 122, 139, 153, 158, 161, 162, 166, 173, 174, 176, 177, 186, 191, 192, 212, 213, 216, 229, 257], "hardwar": [10, 15, 17, 20, 48, 50, 60, 97, 105, 135, 138, 145, 147, 149, 154, 155, 156, 177, 184, 201, 207, 219, 220, 221, 223, 232, 234, 247, 253, 254], "googl": [10, 17, 21, 24, 25, 42, 49, 52, 75, 104, 119, 121, 136, 137, 159, 160, 168, 204, 208, 260, 269], "tpu": [10, 148, 155], "chip": [10, 177, 188], "layout": [10, 17, 124, 141, 177, 189, 192, 193, 196, 201, 215, 244, 247], "spars": [10, 16, 99, 103, 115, 121, 136, 156, 191, 196, 244], "quantiz": [10, 58, 59, 97, 117, 121, 152, 158, 177, 194, 196, 207, 218, 227, 235, 244, 251, 252], "enforc": [10, 14, 22, 60, 98, 126, 149, 153, 173, 174, 189, 190], "mainli": [10, 14, 15, 18, 137, 144, 168, 172, 199, 200, 221], "haven": [10, 23, 87, 98, 102, 103, 138, 143, 154, 216], "addtion": 10, "identifi": [10, 17, 53, 55, 73, 82, 83, 109, 113, 132, 146, 147, 156, 162, 177, 178, 182, 185, 192, 200, 201, 247], "carri": [10, 14, 49, 52, 97, 101, 131, 136, 147, 165, 237], "privateuse1": [10, 121], "autogradprivateuse1": [10, 15], "privateuse2": [10, 15], "autogradprivateuse2": [10, 15], "privateuse3": [10, 15], "autogradprivateuse3": [10, 15], "tensorimpl": [10, 15, 231, 246], "storag": [10, 15, 20, 101, 112, 125, 136, 138, 146, 147, 159, 168, 189, 191, 192, 202, 209, 214, 223, 230, 237, 244], "dispatchkeyset": [10, 15], "ks": 10, "caffe2": [10, 85, 187], "typemeta": 10, "data_typ": [10, 101], "opaquetensorimpl": 10, "tweak": [10, 49], "overrid": [10, 15, 40, 48, 51, 59, 68, 99, 108, 111, 143, 147, 149, 155, 171, 185, 188, 208], "vulkan": [10, 196, 252], "submit": [10, 220], "dispath": 10, "registrationdeclar": 10, "ab": [10, 13, 85, 92, 95, 172, 182, 193, 207, 234, 238], "schema": [10, 20, 23, 208], "abs_": 10, "abs_out": 10, "absolute_": 10, "absolute_out": 10, "angl": [10, 14, 95, 103], "angle_out": 10, "sgn": 10, "uniqu": [10, 17, 49, 53, 55, 95, 98, 99, 100, 102, 103, 116, 122, 132, 162, 165, 178, 189, 201, 234, 257], "boolean": [10, 73, 136, 173, 174, 252], "impli": [10, 97, 102, 137, 237, 254], "schema_my_op1": 10, "my_op1": 10, "schema_my_op2": 10, "my_op2": 10, "schema_my_op2_backward": 10, "my_op2_backward": 10, "zoom": [10, 82, 126, 168, 171], "1600": [10, 231, 246], "grow": [10, 49, 61, 99, 125, 131, 175], "unrealist": 10, "classifi": [10, 12, 19, 24, 43, 46, 47, 52, 57, 73, 82, 87, 97, 112, 117, 127, 128, 137, 146, 178, 194, 229, 251, 263, 272], "metadata": [10, 17, 22, 94, 141, 159, 169, 173, 174, 201, 237, 260, 269], "accompani": 10, "comment": [10, 135, 152, 165, 188, 189, 205, 220, 221, 222, 232, 262, 271], "sacrif": [10, 156], "max_pool2d": [10, 47, 73, 92, 93, 105, 123, 129, 154, 156, 162, 166, 203, 206, 221, 233, 238], "formula": [10, 97, 141, 159], "mathemat": [10, 13, 43, 48, 64, 101, 135, 159], "worri": [10, 52, 99, 129, 130, 133, 143, 152, 163, 215], "my_op": [10, 23, 208], "op_backward": 10, "proper": [10, 32, 122, 124, 133, 147, 149, 159, 163, 171, 176, 189, 247], "rare": [10, 15, 49, 117, 165, 247], "assumpt": [10, 14, 60, 73, 97, 103, 150], "myadd_schema": 10, "my_add": 10, "setuptool": [10, 155, 168], "_xlac": 10, "torch_xla_sourc": 10, "extra_compile_arg": 10, "library_dir": 10, "extra_link_arg": 10, "make_relative_rpath": 10, "seamlessli": [10, 14, 53, 78, 124, 199, 231], "nm": [10, 150, 220], "torchvsion": 10, "adhoc": 10, "unbox": 10, "potenti": [10, 14, 25, 73, 98, 122, 162, 178, 196, 197, 199, 216, 254, 265, 274], "wiki": [10, 33, 141, 147, 153, 181], "suit": [10, 109, 159, 182, 196, 197, 199, 219, 234], "ship": [10, 44, 61, 92, 113, 250], "guarante": [10, 97, 132, 135, 147, 156, 162, 163, 174, 176, 190], "delet": [10, 17, 83, 125, 129, 133, 152, 163, 171, 184, 188, 203, 252], "old": [10, 19, 103, 112, 113, 119, 156, 168, 181, 182, 193, 223, 228], "until": [10, 16, 49, 60, 82, 113, 122, 128, 134, 135, 136, 144, 152, 159, 161, 162, 163, 168, 189, 212, 231], "interrupt": [10, 53, 87, 165], "quarterli": 10, "cadenc": 10, "announc": [10, 115], "slack": [10, 44, 79], "Not": [10, 16, 58, 59, 113, 133, 158, 173, 234, 258], "search": [10, 18, 49, 75, 113, 121, 126, 144, 156, 173, 174, 184, 204, 260, 269], "instantiate_device_type_test": 10, "testtorchdevicetyp": 10, "testviewop": 10, "testtensordeviceop": 10, "testtypepromot": 10, "etc": [10, 44, 45, 47, 49, 51, 61, 69, 79, 98, 99, 100, 101, 102, 110, 112, 124, 156, 159, 160, 165, 173, 174, 176, 177, 181, 182, 191, 200, 212, 216, 219, 220, 231, 247, 260, 262, 269, 271], "__reduce_ex__": 10, "monkei": 10, "direct": [10, 23, 25, 43, 47, 52, 73, 103, 113, 126, 135, 137, 141, 146, 150, 153, 165, 184, 192, 213, 216, 251, 266, 275], "suppos": [10, 12, 22, 97, 98, 99, 103, 123, 139, 178, 179, 216, 220], "vice": [10, 23, 48, 80, 228], "versa": [10, 23, 48, 80, 228], "Such": [10, 11, 234], "seamless": [10, 78, 199], "coverag": [10, 141, 145, 147, 193, 197, 199, 230], "comprehens": [10, 21, 24, 48, 79, 108, 144, 199], "bahavior": 10, "refactor": [10, 112, 131], "codegen": [10, 144], "dev": [10, 99, 104, 137, 158, 168, 171, 185, 196, 208, 226, 230, 257], "andrew": [11, 179, 198], "gu": 11, "shard": [11, 61, 120, 121, 131, 154, 175, 212, 214, 215, 251], "saw": [11, 14, 21, 23, 49, 59, 60, 99, 101, 141, 142, 145, 146], "skeleton": [11, 14, 244], "implicitli": [11, 43, 49, 123, 130, 164, 200, 226], "particip": [11, 61, 113, 132, 134, 162, 230, 247], "hang": [11, 55, 61, 113, 128], "persist": [11, 22, 230, 262, 271], "earli": [11, 23, 52, 87, 113, 126, 133, 135, 179, 191], "shadow": [11, 195], "hook": [11, 107, 124, 133, 156, 239], "num_input": 11, "device_id": [11, 16, 55, 79, 112, 122, 133, 240, 258], "arbitrarili": [11, 49, 97, 239], "prior": [11, 15, 19, 42, 50, 52, 97, 115, 133, 146, 156, 169, 176, 177, 197, 212, 214], "notabl": [11, 19, 87, 194, 244], "addition": [11, 12, 82, 115, 125, 126, 133, 176, 177, 178, 199, 214], "divide_by_initial_world_s": 11, "world": [11, 14, 18, 23, 42, 54, 58, 59, 99, 103, 115, 124, 126, 135, 139, 143, 146, 149, 155, 160, 161, 162, 193, 214, 215, 219, 262, 271], "nonetheless": [11, 97, 262, 271], "mind": [11, 49, 52, 85, 97, 108, 132, 150, 176, 218, 257, 262, 271], "preliminari": [11, 137], "delv": [11, 144, 254], "insight": [11, 73, 82, 90, 135, 164, 231], "join_hook": 11, "kwarg": [11, 16, 21, 112, 125, 134, 143, 147, 149, 159, 162, 164, 173, 174, 184, 193, 202, 210, 216, 244], "join_devic": 11, "join_process_group": 11, "processgroup": [11, 16, 18, 61, 120, 121, 124, 163, 215, 247], "throw_on_early_termin": 11, "explain": [11, 12, 17, 20, 23, 43, 47, 52, 61, 73, 99, 124, 144, 149, 172, 176, 186, 199, 201, 234, 257], "joinconfig": 11, "_join_config": 11, "main_hook": 11, "repeatedli": [11, 159, 163], "post_hook": 11, "is_last_join": 11, "broadcast": [11, 61, 68, 95, 98, 111, 133, 135, 155, 258], "vacuou": 11, "contextlib": [11, 171], "nullcontext": 11, "conform": [11, 171], "interleav": 11, "syncbatchnorm": [11, 55], "__exit__": 11, "heartbeat": 11, "notify_join_context": 11, "serializ": 11, "fulli": [11, 12, 14, 15, 17, 20, 21, 22, 47, 78, 82, 87, 108, 110, 117, 120, 121, 126, 131, 147, 150, 157, 160, 162, 164, 168, 176, 182, 191, 194, 197, 201, 207, 214, 220, 257], "proceed": [11, 47, 97, 108], "overlap": [11, 21, 56, 61, 122, 123, 127, 131, 133, 149, 168, 171, 176, 247], "moreov": [11, 61, 189, 220, 231], "permit": [11, 230, 262, 271], "customiz": [11, 136, 195], "idea": [11, 23, 24, 60, 73, 85, 97, 99, 100, 101, 103, 124, 129, 136, 144, 149, 153, 160, 161, 163, 165, 176, 189, 205, 212, 216, 226, 231, 234, 247, 258, 262, 271], "counterjoinhook": 11, "sync_max_count": 11, "all_reduc": [11, 61, 122, 123, 135, 155], "get_rank": [11, 133, 135], "process_group": [11, 215], "common_rank": 11, "find_common_rank": 11, "max_count": 11, "__call__": [11, 51, 68, 111, 147, 156], "meth": [11, 14, 262, 271], "to_consid": 11, "reduceop": [11, 122, 123, 135], "highlight": [11, 49, 60, 85, 90, 94, 114, 120, 122, 164, 168, 172, 212, 220, 221, 254, 262, 271], "alexi": 12, "jacq": 12, "winston": 12, "her": [12, 42, 113, 155], "leon": [12, 113], "gati": 12, "alexand": 12, "ecker": 12, "matthia": 12, "bethg": 12, "artist": 12, "distanc": [12, 63, 64, 67, 68, 69, 97, 111], "d_c": 12, "d_": [12, 96], "indispens": [12, 159], "pil": [12, 20, 41, 51, 58, 59, 90, 117, 119, 139, 146, 158, 171, 178, 204, 213, 229], "pretrain": [12, 20, 24, 42, 43, 58, 59, 73, 75, 103, 113, 117, 119, 121, 137, 139, 157, 158, 165, 171, 176, 177, 181, 182, 185, 187, 188, 194, 195, 197, 198, 199, 204, 206, 213, 220, 221, 222, 223, 256], "vgg19": [12, 147], "vgg19_weight": 12, "throughout": [12, 25, 52, 102, 135, 149, 152, 159, 169, 176, 177, 191, 244], "set_default_devic": [12, 63, 111, 230, 232], "resiz": [12, 19, 20, 47, 51, 52, 75, 90, 117, 119, 136, 139, 146, 157, 168, 182, 197, 198, 213, 220, 229, 253], "unabl": [12, 23, 138, 154, 184, 191], "caff": 12, "picasso": 12, "imsiz": 12, "image_load": 12, "image_nam": [12, 51], "style_img": 12, "content_img": 12, "reconvert": 12, "correctli": [12, 49, 52, 58, 59, 60, 73, 78, 114, 127, 141, 147, 152, 156, 158, 171, 172, 174, 191, 198, 213, 215, 224, 225, 252], "unload": [12, 237], "topilimag": 12, "ion": [12, 14, 51, 117, 157, 160, 166], "titl": [12, 14, 17, 34, 51, 52, 73, 90, 117, 127, 136, 157, 159, 160, 165, 171, 178, 195, 225], "paus": [12, 51, 117, 160, 161, 198], "f_": [12, 159], "xl": [12, 219], "w_": [12, 103], "cl": [12, 75, 126, 137, 183, 244], "squar": [12, 47, 51, 63, 64, 67, 68, 69, 71, 97, 111, 129, 130, 146, 153, 156, 160, 164, 179], "contentloss": 12, "throw": [12, 23, 61, 118, 139, 161, 173, 174], "mse_loss": [12, 97, 230], "recomput": [12, 97, 129, 131, 153, 247], "act": [12, 22, 43, 49, 113, 126, 136, 156, 160, 162], "gram": 12, "g_": [12, 262, 271], "hat": [12, 102, 113], "counteract": 12, "caus": [12, 15, 21, 22, 61, 73, 82, 119, 125, 144, 158, 161, 165, 168, 171, 174, 176, 177, 189, 195, 226, 228, 232, 247, 252, 260, 269], "pool": [12, 18, 44, 52, 61, 87, 92, 94, 96, 97, 110, 112, 116, 169, 175, 177, 194, 239, 240, 241, 242, 243, 248, 249, 250], "tend": [12, 17, 97, 184, 201], "gram_matrix": 12, "f_xl": 12, "sl": 12, "styleloss": 12, "target_featur": 12, "vgg": 12, "child": [12, 60, 103, 109, 168, 185, 263, 272], "connect": [12, 47, 59, 87, 103, 110, 117, 124, 135, 141, 143, 150, 156, 157, 158, 160, 176, 200, 208, 215, 218, 223, 262, 271], "cnn": [12, 45, 97, 119, 121, 146, 150, 153, 154, 166, 171, 177, 178, 199, 220, 228, 247], "485": [12, 19, 51, 58, 59, 90, 97, 117, 139, 157, 158, 166, 182, 197, 198, 204, 213, 229], "456": [12, 19, 51, 58, 59, 90, 97, 117, 139, 157, 158, 166, 182, 197, 198, 204, 213, 229], "406": [12, 19, 51, 58, 59, 90, 97, 117, 139, 157, 158, 166, 182, 197, 198, 204, 213, 229], "229": [12, 19, 51, 58, 59, 90, 97, 117, 139, 157, 158, 166, 182, 197, 198, 204, 213, 229], "225": [12, 19, 51, 58, 59, 90, 97, 109, 117, 139, 157, 158, 166, 182, 197, 198, 204, 213, 229], "cnn_normalization_mean": 12, "cnn_normalization_std": 12, "height": [12, 43, 47, 58, 59, 78, 95, 146, 148, 152, 171, 177, 178, 226, 262, 271], "width": [12, 19, 43, 44, 47, 58, 59, 78, 95, 126, 146, 148, 149, 150, 152, 171, 177, 178, 262, 271], "img": [12, 20, 34, 44, 51, 90, 92, 94, 96, 117, 119, 121, 139, 157, 169, 171, 178, 229, 257], "maxpool2d": [12, 44, 47, 78, 87, 92, 93, 94, 96, 97, 112, 134, 143, 166, 169, 239, 240, 241, 242, 243, 248, 249, 250], "align": [12, 149, 164, 165, 178, 190, 195, 226, 262, 271], "depth": [12, 43, 52, 56, 61, 101, 125, 144, 199, 210, 234, 247, 260, 269], "immedi": [12, 18, 21, 48, 52, 102, 134, 135, 152, 161, 162, 165, 168, 184], "content_layers_default": 12, "conv_4": 12, "style_layers_default": 12, "conv_1": 12, "conv_2": 12, "conv_3": 12, "conv_5": 12, "get_style_model_and_loss": 12, "normalization_mean": 12, "normalization_std": 12, "content_lay": 12, "style_lay": 12, "content_loss": 12, "style_loss": 12, "conv": [12, 19, 52, 90, 110, 129, 142, 143, 147, 156, 157, 162, 177, 181, 182, 200, 218, 223, 226, 238, 239, 247, 252], "children": [12, 168], "conv_": 12, "relu_": [12, 129, 200, 206], "plai": [12, 44, 49, 52, 79, 97, 99, 115, 121, 159, 177, 199], "pool_": 12, "bn_": 12, "runtimeerror": [12, 22, 118, 128, 155, 158, 164, 173, 174, 203], "unrecogn": 12, "__class__": [12, 52, 78, 147, 244], "add_modul": 12, "content_loss_": 12, "style_loss_": 12, "input_img": [12, 90, 229], "bfg": 12, "get_input_optim": 12, "closur": [12, 173, 174, 216], "reevalu": 12, "exce": [12, 73, 129, 175, 228], "run_style_transf": 12, "num_step": [12, 161], "style_weight": 12, "1000000": 12, "content_weight": 12, "clamp_": 12, "style_scor": 12, "content_scor": 12, "sphinx_gallery_thumbnail_numb": [12, 127], "ioff": [12, 51, 117, 157, 160, 166], "neural_style_tutori": 12, "paszk": [13, 135, 160], "dziedzic": 13, "shall": [13, 47, 52, 103], "learnabl": [13, 47, 67, 68, 69, 111, 112, 121, 202], "badfftfunct": 13, "fft": [13, 172], "rfft2": 13, "irfft2": 13, "numpy_input": 13, "numpy_go": 13, "incorrect_fft": 13, "literatur": [13, 160], "confusingli": 13, "correl": [13, 82, 144], "flip": [13, 21, 145], "wrt": [13, 129, 130], "np": [13, 14, 17, 19, 20, 40, 44, 48, 51, 52, 60, 71, 73, 75, 80, 90, 92, 94, 95, 96, 98, 104, 109, 111, 117, 119, 137, 146, 149, 157, 158, 163, 165, 166, 169, 171, 172, 182, 185, 190, 193, 195, 197, 198, 201, 204, 229, 246], "convolve2d": 13, "correlate2d": 13, "scipyconv2dfunct": 13, "as_tensor": [13, 75, 191], "grad_filt": 13, "from_numpi": [13, 40, 48, 51, 80, 95, 109, 161, 163, 172], "scipyconv2d": 13, "filter_width": 13, "filter_height": 13, "gradcheck": [13, 129, 130, 141, 247], "moduleconv": 13, "atol": [13, 17, 20, 138, 150, 154, 201], "numpy_extensions_tutori": 13, "freeli": 14, "inspir": [14, 60, 116, 135, 145, 150, 164, 205, 234], "v1": [14, 17, 61, 95, 134, 136, 160, 161, 163, 181, 192, 201, 212, 231, 257], "openai": [14, 121, 146, 159, 160, 161, 163], "farama": [14, 159], "gymnasium": [14, 159, 160], "encount": [14, 49, 60, 110, 122, 144, 172, 247, 252], "undertaken": 14, "broader": [14, 25], "challeng": [14, 101, 102, 123, 124, 135, 142, 153, 160, 171, 214, 215, 231, 257], "wider": [14, 145], "acquaint": 14, "set_se": [14, 137, 185], "avenu": [14, 85], "backpropag": [14, 37, 38, 43, 47, 49, 73, 98, 99, 100, 102, 103, 125, 146], "defaultdict": [14, 17, 75, 159, 201], "boundedtensorspec": 14, "unboundedcontinuoustensorspec": 14, "unsqueezetransform": 14, "_apply_to_composit": 14, "check_env_spec": [14, 159], "step_mdp": [14, 136], "default_x": 14, "pi": [14, 63, 64, 65, 67, 68, 69, 71, 72, 89, 95, 111, 121, 160, 262, 271], "default_i": 14, "_set_se": 14, "torqu": 14, "upward": 14, "angular": 14, "stand": [14, 85, 113, 146, 192, 262, 271], "equat": [14, 52, 137, 159, 160, 239, 262, 271], "motion": [14, 262, 271], "veloc": [14, 160], "theta": [14, 73, 99, 159, 166, 262, 271], "_t": [14, 146], "theta_t": 14, "dt": [14, 146, 262, 271], "rad": 14, "sec": [14, 123, 137, 230], "gravit": 14, "mass": 14, "accord": [14, 15, 24, 112, 115, 119, 144, 146, 156, 160, 164, 171, 192, 202, 207], "theta_": [14, 146], "deleg": [14, 21, 121, 143, 187, 197], "privat": [14, 15, 23, 58, 59, 115, 155, 156, 189, 208], "merg": [14, 20, 22, 45, 158, 160, 171, 220], "is_shar": 14, "modif": [14, 15, 19, 20, 21, 87, 98, 129, 135, 156, 159, 162, 166, 169, 173, 174, 182, 194], "new_th": 14, "plu": [14, 98, 99, 115, 128], "new_thdot": 14, "neg": [14, 21, 49, 90, 98, 99, 104, 113, 137, 144, 156, 159, 229, 252], "discourag": [14, 48, 159], "thdot": 14, "g_forc": 14, "clamp": [14, 73, 95, 197, 206], "max_torqu": 14, "angle_norm": 14, "max_spe": 14, "omit": [14, 23, 109, 144, 159, 177, 181, 194, 197, 198, 199, 238, 244], "agent": [14, 61, 121, 160, 161, 163, 166], "mandatori": [14, 141, 159], "is_empti": 14, "gen_param": 14, "high_th": 14, "high_thdot": 14, "low_th": 14, "low_thdot": 14, "simultan": [14, 15, 22, 25, 43, 56, 121, 126, 135, 158, 247], "rng": [14, 135], "domain": [14, 24, 49, 50, 73, 108, 121, 159, 193, 247, 263, 272], "accur": [14, 19, 73, 87, 109, 126, 143, 163, 172, 191], "lazili": [14, 152], "costli": [14, 125, 247], "reward_spec": [14, 159], "done_spec": 14, "input_spec": [14, 159, 173], "state_spec": 14, "output_spec": [14, 173], "trivial": [14, 51, 56, 125, 139, 202, 209, 252], "neither": [14, 149, 179], "shortcut": 14, "tensorspec": [14, 187], "irrelev": [14, 155], "_make_spec": 14, "td_param": 14, "make_composite_from_td": 14, "unbound": 14, "incorpor": [14, 97, 136, 164, 263, 272], "pseudo": [14, 24], "manual_se": [14, 17, 19, 25, 52, 73, 92, 95, 97, 98, 99, 101, 102, 103, 118, 122, 123, 129, 135, 137, 138, 145, 154, 161, 182, 185, 193, 197, 198, 201, 234, 258], "pendulumenv": 14, "expand": [14, 15, 49, 60, 98, 101, 105, 113, 144, 169, 177, 187, 193, 194, 209], "batch_lock": 14, "homonym": 14, "render_mod": [14, 146], "human": [14, 20, 49, 73, 110, 115, 128, 137, 139, 146, 165, 171, 213, 262, 271], "rgb_arrai": 14, "render_fp": 14, "random_": [14, 16, 60, 134, 149, 161], "_make_step": 14, "rand_step": 14, "randomli": [14, 44, 51, 52, 65, 71, 72, 87, 111, 128, 137, 146, 160, 165, 185, 234], "invers": [14, 95, 190, 212], "showcas": [14, 23, 65, 122, 150, 152, 176, 177, 186, 196], "unsqueeze_dim": 14, "summar": [14, 49, 51, 114, 119, 120, 122, 126, 137, 143, 168, 177], "_apply_transform": 14, "_call": 14, "inv": 14, "_inv_apply_transform": 14, "eventu": [14, 129, 136], "out_keys_inv": 14, "subset": [14, 21, 23, 58, 59, 60, 85, 87, 97, 107, 117, 135, 155, 157, 171, 173, 174, 178, 191, 192, 219, 231, 252, 256], "unitari": 14, "raw": [14, 23, 44, 49, 61, 68, 82, 104, 113, 118, 119, 173, 174, 178, 260, 269], "sintransform": 14, "ob": [14, 146, 163, 200], "tensordict_reset": 14, "transform_observation_spec": 14, "costransform": 14, "t_sin": 14, "t_co": 14, "del_kei": 14, "cat_transform": 14, "met": [14, 123], "mdp": 14, "gather": [14, 49, 55, 79, 123, 124, 133, 135, 136, 143, 159, 160, 196, 205, 230], "simple_rollout": 14, "_data": [14, 73], "keep_oth": 14, "unexplor": 14, "abil": [14, 23, 60, 61, 112, 124, 125, 135, 166, 169, 172, 191, 206], "recreat": [14, 43, 175, 208], "auto_reset": 14, "lazylinear": [14, 159], "clip": [14, 20, 49, 73, 117, 157, 159, 160, 166], "20_000": [14, 136], "cosineannealinglr": [14, 110, 159], "init_td": 14, "traj_return": 14, "last_reward": [14, 161, 163], "is_ipython": [14, 160], "inlin": [14, 25, 52, 60, 89, 92, 142, 144, 160, 189, 196, 203, 263, 266, 272, 275], "get_backend": [14, 160], "ipython": [14, 18, 52, 104, 109, 148, 160], "figsiz": [14, 34, 52, 73, 157, 159, 169, 178], "gcf": [14, 160], "clear_output": [14, 160], "scratch": [14, 43, 49, 53, 97, 98, 112, 114, 117, 118, 127, 128, 165, 251, 252], "advanc": [15, 17, 19, 23, 43, 58, 59, 87, 100, 105, 107, 108, 120, 121, 133, 171, 176, 189, 192, 196, 199, 201, 205, 216, 220, 221, 234, 247, 251, 263, 272], "verif": [15, 162], "rapid": [15, 192], "manufactur": [15, 60], "imposs": [15, 98, 152, 205], "began": 15, "enhanc": [15, 115, 139, 166, 199, 207, 216, 228, 262, 271], "rapidli": 15, "wrapper_custom_tensor_add": 15, "torch_fn": 15, "custom_cpu_fallback": 15, "operatorhandl": 15, "hint": [15, 18, 97, 98, 102, 108, 125, 135, 161, 168], "cpu_fallback": 15, "cppfunction": 15, "makefromboxedfunct": 15, "cumtomselufunct": 15, "selu": [15, 110], "wrapper_autogradcumstom__selu": 15, "wrapper_autogradcustom__selu": 15, "autocastprivateuse1": 15, "autocast": [15, 17, 199, 201, 207, 220, 247, 253], "kernel_privateuseon": 15, "makefallthrough": 15, "backendmodul": 15, "_register_device_modul": 15, "backend_nam": 15, "get_amp_supported_dtyp": 15, "is_autocast_en": 15, "get_autocast_dtyp": 15, "set_autocast_dtyp": 15, "set_autocast_en": 15, "generatorimpl": 15, "builder": 15, "register_generator_privateuse1": 15, "customgeneratorimpl": 15, "make_custom_gener": 15, "deviceindex": 15, "device_index": 15, "make_gener": 15, "make_cumstom_gener": 15, "event": [15, 22, 82, 109, 113, 122, 123, 161, 172, 177, 245], "deviceguard": 15, "deviceguardimplinterfac": 15, "c10_register_guard_impl": 15, "customguardimpl": 15, "backend_meta_": 15, "extrameta": 15, "backendmeta": 15, "custombackendmetadata": 15, "unordered_map": 15, "tensorbackendmetaregistri": 15, "for_seri": 15, "for_deseri": 15, "timer": [15, 17, 52, 118, 138, 145, 154, 164, 165, 184, 187, 201, 210, 251], "ascend": [15, 52, 83], "npu": [15, 187, 223], "meet": [15, 50, 52, 202, 221, 231], "usabl": [15, 112, 136, 142], "compli": [15, 60], "habit": [15, 265, 274], "torch_npu": 15, "exclus": [15, 23, 156], "strongli": [15, 136, 153, 262, 271], "rename_privateuse1_backend": 15, "register_privateuse1_backend": 15, "unsupported_dtyp": 15, "quint8": [15, 179], "generate_methods_for_privateuse1_backend": 15, "for_tensor": 15, "for_modul": 15, "for_storag": 15, "is_npu": 15, "yi": [16, 173, 174], "wang": [16, 24, 108, 144, 146], "paradigm": [16, 17, 61, 97, 120, 133, 134, 162, 163, 201], "dens": [16, 17, 146, 189, 193, 201], "fc": [16, 43, 45, 115, 117, 134, 146, 149, 150, 157, 202], "hybrid": [16, 84, 110, 215], "pipedream": 16, "embeddingbag": [16, 18, 115], "respond": [16, 146, 162], "amongst": [16, 190], "themselv": [16, 191, 197], "remotemodul": 16, "kick": [16, 43, 113, 152, 161, 162, 163], "remot": [16, 61, 120, 126, 134, 161, 162, 163, 168, 212, 216], "hybridmodel": 16, "allreduc": [16, 61, 82, 123, 124, 133, 155, 247], "firstli": [16, 108, 144, 160], "tcp": [16, 55, 131, 132, 135, 212], "_run_train": [16, 163], "rpc_async": [16, 134, 161, 163], "shut": [16, 162], "29501": 16, "ps": [16, 61, 161, 162, 163, 195], "remote_emb_modul": 16, "num_embed": [16, 18, 110, 175], "embedding_dim": [16, 18, 93, 98, 102, 103, 110, 175], "fut": [16, 21, 161, 163], "trainer_rank": 16, "trainer_nam": 16, "gloo": [16, 133, 135, 155, 168, 175, 258], "offset": [16, 17, 115, 201, 254], "emb_lookup": 16, "distributedoptim": [16, 134, 162, 163, 212, 216], "remote_paramet": 16, "cannnot": 16, "aggreg": [16, 43, 109, 146, 171, 190, 238], "model_parameter_rref": 16, "get_next_batch": [16, 161, 163], "num_indic": 16, "longtensor": [16, 49, 60, 80, 99, 103, 128, 134, 149, 161, 163, 165], "offsets_tensor": 16, "dist_autograd": [16, 134, 162, 163], "context_id": [16, 134, 162, 163], "tun": 16, "jess": [17, 201], "cai": [17, 201], "seek": [17, 85, 201], "grain": [17, 34, 61, 122, 135, 168, 201, 229, 230, 231], "2n": [17, 201], "degrad": [17, 73, 201, 228], "sparsifi": [17, 121, 156, 201], "answer": [17, 49, 75, 99, 103, 135, 137, 143, 152, 165, 201, 252], "tune": [17, 19, 82, 97, 113, 120, 121, 123, 126, 157, 158, 176, 184, 185, 201, 221, 234, 235, 251], "recov": [17, 61, 122, 123, 133, 147, 198, 201], "nearli": [17, 169, 201, 231], "f1": [17, 137, 172, 185, 201], "vs": [17, 18, 52, 78, 94, 122, 154, 168, 169, 176, 177, 184, 191, 194, 196, 197, 200, 201, 219], "3x": [17, 64, 111, 177, 201, 207, 223, 230, 247], "beginn": [17, 35, 45, 46, 77, 84, 91, 100, 106, 120, 201, 203, 204, 234], "to_sparse_semi_structur": [17, 201], "sparsesemistructuredtensor": [17, 201], "_force_cutlass": [17, 201], "tile": [17, 171, 201, 207], "3072": [17, 97, 147, 201], "2560": [17, 201], "10240": [17, 201], "inference_mod": [17, 129, 171, 201], "dense_output": [17, 201], "dense_t": [17, 201], "stmt": [17, 138, 145, 149, 154, 164, 184, 201, 210, 231, 246], "blocked_autorang": [17, 164, 201, 210, 231], "median": [17, 172, 184, 201, 231, 246], "1e3": [17, 184, 201, 234], "sparse_output": [17, 201], "sparse_t": [17, 201], "a100": [17, 122, 125, 154, 172, 175, 184, 201], "80gb": [17, 201], "870m": [17, 201], "630m": [17, 201], "382x": [17, 201], "allclos": [17, 125, 138, 141, 144, 145, 150, 153, 154, 164, 172, 201, 205, 231], "motiv": [17, 73, 144, 162, 179, 186, 190, 191, 193, 201], "affect": [17, 97, 113, 130, 149, 176, 201, 247], "swap": [17, 51, 99, 110, 124, 137, 159, 182, 184, 185, 193, 195, 198, 201, 244], "compress": [17, 90, 156, 189, 192, 201, 209, 221], "drawback": [17, 103, 201], "2020": [17, 201], "amper": [17, 122, 150, 154, 201, 230], "cutlass": [17, 201], "cusparselt": [17, 201], "milder": [17, 201], "account": [17, 50, 136, 152, 165, 169, 185, 201], "retrain": [17, 201, 227], "sweet": [17, 201], "spot": [17, 127, 201], "2x": [17, 85, 121, 130, 152, 176, 177, 181, 201, 219], "theoret": [17, 52, 189, 201], "granular": [17, 122, 144, 177, 185, 201, 238, 247], "fp16": [17, 122, 147, 184, 188, 201], "resnet": [17, 43, 44, 79, 125, 134, 149, 157, 168, 182, 195, 197, 198, 199, 201, 223, 228, 247], "imagenet": [17, 44, 51, 79, 117, 119, 139, 157, 158, 182, 197, 198, 201, 213, 229], "76": [17, 147, 163, 201, 231], "resnext": [17, 201], "101_32x8d": [17, 201], "xception": [17, 201], "ssd": [17, 201, 247], "rn50": [17, 201], "coco2017": [17, 201], "bbap": [17, 201], "maskrcnn": [17, 201], "fairseq": [17, 201], "en": [17, 21, 33, 49, 60, 99, 113, 118, 141, 153, 165, 171, 201, 260, 269], "de": [17, 18, 22, 49, 60, 113, 116, 118, 165, 201], "wmt14": [17, 201], "bleu": [17, 201], "squad": [17, 144, 201], "workflow": [17, 19, 58, 59, 82, 86, 87, 123, 173, 192, 196, 200, 201, 234, 251], "perspect": [17, 23, 101, 159, 177, 201], "subproblem": [17, 201], "handoff": [17, 201], "anticip": [17, 201], "area": [17, 113, 169, 178, 184, 192, 201, 229, 264, 273], "colab": [17, 18, 24, 25, 42, 48, 75, 94, 104, 115, 119, 121, 136, 137, 145, 157, 159, 160, 171, 175], "panda": [17, 34, 51, 73, 119, 171], "wandb_dis": 17, "ao": [17, 19, 179, 181, 182, 184, 197, 198, 199, 201], "weightnormsparsifi": [17, 201], "hug": [17, 75, 144], "face": [17, 44, 51, 52, 60, 73, 75, 79, 113, 144, 197], "preprocess_validation_funct": [17, 201], "strip": [17, 49, 75, 127, 128, 165, 201], "max_length": [17, 49, 60, 75, 128, 137, 165, 185, 201, 252], "384": [17, 187, 201], "only_second": [17, 201], "return_overflowing_token": [17, 201], "return_offsets_map": [17, 201], "sample_map": [17, 201], "pop": [17, 22, 98, 137, 185, 201], "overflow_to_sample_map": [17, 201], "example_id": [17, 201], "input_id": [17, 75, 122, 124, 137, 144, 165, 185, 201], "sample_idx": [17, 34, 201], "sequence_id": [17, 201], "offset_map": [17, 201], "preprocess_train_funct": [17, 201], "start_posit": [17, 201], "end_posit": [17, 201], "start_char": [17, 201], "answer_start": [17, 201], "end_char": [17, 201], "idx": [17, 19, 34, 51, 75, 98, 102, 103, 109, 115, 157, 158, 165, 169, 178, 201, 238], "context_start": [17, 201], "context_end": [17, 201], "compute_metr": [17, 137, 185, 201], "start_logit": [17, 201], "end_logit": [17, 201], "n_best": [17, 201], "max_answer_length": [17, 201], "example_to_featur": [17, 201], "predicted_answ": [17, 201], "feature_index": [17, 201], "start_index": [17, 201], "argsort": [17, 201], "tolist": [17, 51, 113, 178, 201], "end_index": [17, 201], "logit_scor": [17, 201], "score": [17, 49, 60, 98, 102, 103, 109, 137, 148, 164, 165, 178, 185, 201, 229], "best_answ": [17, 201], "prediction_text": [17, 201], "theoretical_answ": [17, 201], "ex": [17, 73, 201, 263, 265, 272, 274], "measure_execution_tim": [17, 201], "dataset_for_model": [17, 201], "remove_column": [17, 201], "set_format": [17, 201], "batch_size_to_time_sec": [17, 201], "column_nam": [17, 201], "baseline_predict": 17, "p50": [17, 201], "model_c": [17, 184], "fullgraph": [17, 164, 172, 210, 211, 254], "_compil": 17, "new_predict": 17, "model_nam": [17, 49, 60, 122, 184, 199, 201, 220], "autotoken": [17, 122, 201], "from_pretrain": [17, 75, 122, 137, 144, 185, 201, 220], "automodelforquestionansw": [17, 201], "val": [17, 19, 22, 117, 118, 122, 148, 157, 158, 182, 197, 198, 201], "squad_dataset": [17, 201], "load_dataset": [17, 75, 122, 201], "tokenized_squad_dataset": [17, 201], "data_col": [17, 201], "datacollatorwithpad": [17, 201], "segment": [17, 121, 184, 201, 204, 222], "wikipedia": [17, 33, 141, 153, 201], "articl": [17, 113, 116, 201], "training_arg": [17, 201], "trainingargu": [17, 201], "num_train_epoch": [17, 137, 201], "lr_scheduler_typ": [17, 201], "per_device_train_batch_s": [17, 201], "per_device_eval_batch_s": [17, 201], "logging_step": 17, "runner": 17, "max_step": [17, 75], "report_to": 17, "train_dataset": [17, 55, 97, 115, 122, 201, 220, 253], "eval_dataset": [17, 137, 185, 201], "fair": [17, 97, 103, 113, 193, 194, 201], "fp16_baselin": [17, 201], "fp16_time": [17, 201], "cuda_fp16": [17, 201], "pd": [17, 34, 51, 119, 171], "df": [17, 83, 119, 126], "datafram": [17, 82, 119, 126, 171], "log_histori": 17, "lowest": [17, 61, 123, 156, 201], "satisfi": [17, 126, 173, 174, 195, 201, 202, 247], "sparsity_level": [17, 201], "sparse_block_shap": [17, 201], "zeros_per_block": [17, 201], "sparse_config": [17, 201], "tensor_fqn": [17, 201], "fqn": [17, 201, 214], "named_modul": [17, 142, 156, 201, 239], "anytim": [17, 201], "pruner": [17, 201], "update_mask": [17, 201], "shot": [17, 113, 161, 201], "squash_mask": [17, 201], "set_printopt": [17, 201, 231], "edgeitem": [17, 201], "sparse_loss": 17, "quickstart": [17, 35, 201, 224], "metrics_spars": [17, 201], "sparse_perf": [17, 201], "perf": [17, 177, 188, 201], "28x": [17, 201], "bs": [17, 104, 144, 201], "amen": [17, 201], "spent": [17, 82, 113, 164, 168, 176, 177, 201, 231, 234], "delta": [17, 125, 144, 145, 146, 154, 160, 201, 231, 246], "exact": [17, 97, 112, 129, 139, 164, 173, 174, 185, 197, 198, 201, 210], "53": [17, 147, 201, 219, 238, 263, 272], "93": [17, 109, 163, 201, 219, 231], "15": [17, 23, 24, 45, 52, 58, 59, 73, 90, 92, 93, 116, 117, 146, 157, 169, 171, 178, 187, 201, 203, 219, 231, 246, 262, 266, 271, 275], "54": [17, 147, 149, 177, 231], "71x": [17, 177], "74": [17, 119, 163, 185, 219, 231], "23x": 17, "71": [17, 19, 21, 51, 144, 163], "59": [17, 115, 158, 171, 231, 238], "22x": 17, "286": [17, 147, 171, 201], "65": [17, 51, 163, 178, 218, 231], "247": [17, 163], "63": [17, 228, 238], "14x": 17, "02x": 17, "ye": [17, 50, 78, 99, 137, 152, 187], "18x": [17, 201], "13x": 17, "159": 17, "142": [17, 219], "12x": 17, "semi_structured_spars": 17, "embeddingplann": [18, 121], "conda": [18, 23, 82, 90, 94, 135, 144, 175, 184, 187, 188, 196, 221, 223, 229, 245, 246], "cudatoolkit": [18, 175], "sudo": [18, 168, 206], "rm": [18, 212, 223], "miniconda3": [18, 22, 246], "py37_4": 18, "sh": [18, 133, 188, 194, 204, 206, 218, 222, 223, 226], "anaconda": [18, 82, 135, 245], "chmod": 18, "fbgemm": [18, 19, 119, 175, 179, 181, 182, 228], "cp": [18, 206, 208, 213, 257], "restart": [18, 23, 58, 59, 132, 160], "newli": [18, 49, 117, 135, 216], "python37": 18, "dynload": 18, "enviro": 18, "spmd": [18, 124, 214], "mimic": [18, 19, 97, 149, 157, 184, 185, 189], "launcher": [18, 208], "embeddingbagcollect": 18, "bag": [18, 34, 38, 94, 96, 115, 169, 175], "ebc": [18, 175], "parameterconstraint": 18, "placement": [18, 176], "intra": [18, 21, 122, 124, 137, 215], "interconnect": [18, 76, 176], "nvlink": [18, 124, 212], "data_parallel": [18, 79], "meta": [18, 49, 124, 126, 138, 154, 159, 173, 174, 175, 176, 177, 200, 202, 239, 244, 251, 254, 266, 275], "planner": 18, "embedding_typ": 18, "embeddingcomputekernel": 18, "shardingtyp": 18, "large_table_cnt": 18, "small_table_cnt": 18, "large_t": 18, "embeddingbagconfig": [18, 175], "large_table_": 18, "feature_nam": [18, 175], "large_table_feature_": 18, "poolingtyp": [18, 175], "small_tabl": 18, "small_table_": 18, "small_table_feature_": 18, "gen_constraint": 18, "sharding_typ": 18, "table_wis": 18, "large_table_constraint": 18, "small_table_constraint": 18, "mimick": 18, "single_rank_execut": 18, "embeddingbagcollectionshard": 18, "model_parallel": 18, "embeddingshardingplann": 18, "topolog": [18, 137, 185, 214, 215, 220, 226], "moduleshard": 18, "shardingenv": 18, "init_distributed_single_host": 18, "pyre": 18, "fixm": 18, "set_devic": [18, 53, 55, 122, 123, 186, 214, 215], "compute_devic": 18, "pg": 18, "sharder": [18, 175], "shardingplan": 18, "collective_plan": 18, "sharded_model": 18, "from_process_group": 18, "spmd_sharing_simul": 18, "get_context": 18, "exitcod": 18, "medium": [18, 122, 178, 262, 271], "large_table_0": 18, "parametershard": 18, "compute_kernel": 18, "batched_fus": 18, "sharding_spec": 18, "enumerableshardingspec": 18, "shardmetadata": 18, "shard_offset": 18, "shard_siz": 18, "large_table_1": 18, "small_table_0": 18, "small_table_1": 18, "finer": [18, 34, 61, 177, 238], "halv": [18, 109], "row_wis": 18, "imbal": [18, 176, 247], "vertic": [18, 21, 260, 262, 269, 271], "column_wis": 18, "unfortu": 18, "batched_dens": 18, "raghuraman": [19, 137, 157], "krishnamoorthi": [19, 137, 157], "jerri": [19, 181, 182, 183, 197, 199, 200], "zhang": [19, 181, 182, 183, 197, 199, 200, 214, 215], "decreas": [19, 49, 73, 83, 97, 103, 124, 146, 176, 177, 192, 223, 252], "mobilenetv2": [19, 188, 196, 198, 223], "dataload": [19, 33, 35, 37, 38, 44, 45, 52, 55, 73, 75, 87, 92, 94, 96, 97, 113, 115, 117, 118, 122, 123, 129, 135, 137, 148, 157, 162, 165, 166, 168, 169, 171, 178, 182, 185, 197, 198, 220, 221, 235, 236, 247, 250, 253], "filterwarn": [19, 51, 148, 159, 171, 182, 189, 190, 191, 192, 197, 198], "deprecationwarn": [19, 182, 197, 198], "seed": [19, 25, 52, 73, 97, 122, 123, 135, 137, 161, 163, 182, 185, 193, 197, 198, 231, 234], "191009": [19, 25, 182, 197, 198], "floatfunct": 19, "quantstub": [19, 182, 218, 223, 228], "dequantstub": [19, 182, 218, 223, 228], "relu6": [19, 110], "_make_divis": 19, "divisor": 19, "min_valu": 19, "tf": [19, 94], "divis": [19, 165, 193], "tensorflow": [19, 94, 98, 100, 111], "blob": [19, 23, 33, 108, 123, 142, 168, 179, 182, 206, 260, 269], "slim": [19, 111], "mobilenet": [19, 58, 59, 121, 158, 194], "new_v": 19, "round": [19, 108, 115, 122, 146, 161, 231, 234], "convbnrelu": 19, "in_plan": [19, 134], "out_plan": [19, 134], "kernel_s": [19, 97, 104, 123, 129, 134, 146, 153, 166, 179, 218, 221], "momentum": [19, 43, 44, 65, 69, 87, 92, 94, 96, 104, 111, 112, 117, 129, 135, 157, 161, 168, 169, 178, 179, 198, 216, 218, 220, 221, 241, 242, 243, 249, 250, 253], "invertedresidu": 19, "oup": 19, "expand_ratio": 19, "hidden_dim": [19, 93, 98, 102], "use_res_connect": 19, "pw": 19, "dw": 19, "skip_add": 19, "num_class": [19, 24, 42, 75, 97, 115, 134, 148, 149, 161, 169, 171, 178], "width_mult": 19, "inverted_residual_set": 19, "round_nearest": 19, "v2": [19, 58, 59, 95, 97, 114, 136, 144, 158, 178, 192, 207], "input_channel": 19, "last_channel": 19, "1280": [19, 178, 184], "160": [19, 137, 163, 171, 218, 231, 238], "320": [19, 78, 166, 221], "valueerror": [19, 49, 60, 146, 190, 216], "invert": [19, 121, 159, 190], "residu": [19, 124], "output_channel": 19, "quant": [19, 157, 179, 185, 194, 197, 200, 218, 223, 228], "dequant": [19, 157, 179, 182, 184, 185, 194, 195, 197, 199, 200, 218, 221, 223, 228], "init": [19, 20, 22, 23, 52, 59, 99, 118, 129, 134, 153, 159, 194, 202, 218, 222, 225, 257], "kaiming_normal_": [19, 134], "fan_out": [19, 134], "zeros_": 19, "ones_": 19, "normal_": [19, 52], "bn": [19, 129, 142, 143, 157, 179, 181, 198, 218, 223], "fuse_model": [19, 157, 194, 195], "is_qat": [19, 179, 198, 199], "fuse_modul": [19, 157], "fuse_modules_qat": 19, "averagemet": [19, 182, 197, 198], "fmt": [19, 149, 182, 197, 198, 209], "avg": [19, 37, 38, 127, 182, 197, 198, 219, 238], "__str__": [19, 182, 197, 198], "fmtstr": [19, 182, 197, 198], "__dict__": [19, 49, 60, 182, 197, 198, 199, 244], "topk": [19, 49, 90, 127, 128, 165, 182, 197, 198, 221, 256], "maxk": [19, 58, 59, 182, 197, 198], "pred": [19, 37, 38, 104, 117, 123, 124, 129, 137, 148, 157, 162, 166, 169, 172, 173, 174, 178, 182, 185, 197, 198, 221], "correct_k": [19, 182, 197, 198], "mul_": [19, 95, 182, 197, 198, 216], "neval_batch": [19, 198], "top1": [19, 182, 197, 198, 221], "acc": [19, 73, 117, 148, 157, 171, 182, 197, 198], "top5": [19, 182, 197, 198, 256], "cnt": [19, 73, 182, 197, 198], "acc1": [19, 182, 197, 198], "acc5": [19, 182, 197, 198], "load_model": [19, 182, 197, 198], "data_path": [19, 87, 104, 182, 197, 198], "prepare_data_load": [19, 182, 197, 198], "randomresizedcrop": [19, 117, 182, 197, 198], "randomhorizontalflip": [19, 51, 117, 157, 178, 182, 197, 198], "dataset_test": [19, 178, 182, 197, 198], "centercrop": [19, 52, 90, 117, 119, 139, 157, 182, 197, 198, 213, 229], "train_sampl": [19, 165, 182, 197, 198], "test_sampl": [19, 182, 197, 198], "sequentialsampl": [19, 137, 182, 185, 197, 198], "train_batch_s": [19, 182, 197, 198], "data_loader_test": [19, 178, 182, 197, 198, 199], "saved_model_dir": [19, 182, 197, 198], "float_model_fil": [19, 182, 197, 198], "mobilenet_pretrained_float": 19, "scripted_float_model_fil": [19, 182, 197], "mobilenet_quantization_script": 19, "scripted_quantized_model_fil": 19, "mobilenet_quantization_scripted_quant": 19, "float_model": [19, 181, 182, 185, 195, 197, 198, 199], "fusion": [19, 82, 143, 144, 177, 182, 184, 198, 216, 218, 220, 247, 252, 255], "baselin": [19, 21, 24, 90, 97, 171, 184, 197, 201, 229, 231, 246], "un": [19, 165], "num_eval_batch": [19, 198], "sophist": [19, 159], "num_calibration_batch": 19, "mymodel": [19, 105, 179], "estim": [19, 47, 51, 52, 126, 159, 160, 165, 184, 213, 231], "qconfig": [19, 119, 157, 179, 181, 182, 183, 185, 195, 197, 200, 218, 223, 228], "default_qconfig": [19, 182, 195], "calibr": [19, 179, 181, 183, 198, 199, 221, 223], "safe": [19, 23, 65, 97, 111, 142, 187, 209], "4x": [19, 122, 177, 181, 182, 234], "exercis": [19, 44, 135, 157, 176, 230], "x86": [19, 119, 179, 181, 182, 194, 196, 204, 207, 222, 228], "basi": [19, 122, 137, 150, 262, 271], "histogram": [19, 195, 197, 245], "per_channel_quantized_model": 19, "get_default_qconfig": [19, 119, 181, 182, 218, 223, 228], "67": [19, 109, 144, 177, 179, 185, 219], "wors": [19, 119, 209], "qat": [19, 157, 179, 199], "train_one_epoch": [19, 96, 178, 198], "ntrain_batch": [19, 198], "avgloss": [19, 198], "5f": [19, 198, 234], "global_avg": [19, 198], "qat_model": 19, "get_default_qat_qconfig": [19, 228], "prepare_qat": [19, 157, 228], "toward": [19, 49, 60, 97, 128, 160, 182, 234], "freez": [19, 43, 117, 157, 177, 196, 198, 199, 220, 247], "num_train_batch": [19, 198], "nepoch": [19, 198], "disable_observ": [19, 198], "intrins": [19, 179], "freeze_bn_stat": 19, "confirm": [19, 20, 58, 59, 87, 122, 145, 161, 256], "allud": [19, 73], "run_benchmark": 19, "img_load": 19, "num_batch": [19, 37, 38, 134, 135, 149, 230], "num_imag": [19, 117], "0f": [19, 117, 129, 157, 166, 221], "dynamo_export": [20, 105, 107, 108], "newest": [20, 105], "torchdynamo": [20, 105, 107, 121, 173, 174, 199, 200], "technolog": [20, 61, 97, 105, 121, 135, 216, 251], "torchscript": [20, 58, 59, 105, 119, 121, 139, 142, 147, 177, 185, 187, 188, 194, 196, 209, 223, 224, 225, 228, 238, 251], "prove": [20, 103, 176], "onnxruntim": [20, 105, 107, 108], "model_zoo": 20, "wide": [20, 61, 124, 127, 128, 135, 137, 149, 155, 165, 184, 208, 216, 229, 247, 266, 275], "superresolut": 20, "shi": 20, "et": [20, 24, 49, 52, 60, 73, 135, 156, 165, 265, 274], "al": [20, 24, 49, 52, 60, 73, 156, 165], "upscal": 20, "ycbcr": 20, "superresolutionnet": 20, "upscale_factor": 20, "pixel_shuffl": 20, "pixelshuffl": 20, "_initialize_weight": 20, "orthogonal_": [20, 153, 202], "calculate_gain": 20, "torch_model": [20, 105], "ordinarili": [20, 230], "batchnorm": [20, 52, 55, 112, 142, 147, 182, 194, 197, 198, 199, 247, 249, 252], "model_url": 20, "s3": [20, 173, 181], "amazonaw": [20, 181], "superres_epoch100": 20, "44c6958e": 20, "load_url": 20, "ax": [20, 51, 99, 102, 117, 121, 127, 149, 157, 165, 169], "dynamic_ax": 20, "torch_out": 20, "super_resolut": 20, "export_param": 20, "opset_vers": 20, "do_constant_fold": 20, "fold": [20, 142, 177, 182, 197, 199, 247, 252, 263, 272], "input_nam": [20, 173], "output_nam": [20, 128], "bundl": [20, 59, 194, 204, 208, 222], "ml": [20, 73, 95, 97, 120, 121, 126, 196, 219, 223, 257], "proto": [20, 110], "checker": [20, 105, 110], "check_model": [20, 105, 110], "onnx_model": [20, 105], "ort_sess": [20, 105, 108], "inferencesess": [20, 105, 108], "cpuexecutionprovid": [20, 105, 108], "to_numpi": [20, 105, 108], "ort_input": 20, "get_input": [20, 105, 108], "ort_out": 20, "assert_allclos": [20, 142], "rtol": [20, 138, 154], "03": [20, 92, 118, 119, 162, 163, 171, 184, 219, 246, 263, 272], "contact": [20, 122, 205, 263, 272], "famou": [20, 24, 73], "224x224": [20, 158, 213], "cb": 20, "cr": 20, "grayscal": [20, 136, 146], "blue": [20, 43, 58, 59, 90, 122, 124, 178, 226, 262, 271], "red": [20, 58, 59, 60, 124, 149, 169, 178, 195, 226], "chroma": 20, "sensit": [20, 97, 131, 141, 182], "_static": [20, 104, 121, 139], "img_ycbcr": 20, "img_i": 20, "img_cb": 20, "img_cr": 20, "to_tensor": [20, 42, 190, 191], "unsqueeze_": [20, 95, 128, 213], "img_out_i": 20, "fromarrai": [20, 171], "final_img": 20, "bicub": 20, "rgb": [20, 52, 58, 59, 75, 92, 97, 139, 146, 158, 171, 178, 213, 229], "mobil": [20, 58, 59, 97, 119, 179, 187, 188, 194, 196, 206, 208, 209, 218, 228, 235, 251], "cat_superres_with_ort": 20, "deploi": [20, 54, 58, 59, 105, 121, 126, 132, 139, 156, 158, 209, 251, 252], "cloud": [20, 54, 105], "inferenc": 20, "azur": [20, 168], "servic": [20, 49, 126, 139, 158, 208, 220, 262, 271], "super_resolution_with_onnxruntim": 20, "inter": [21, 121, 124, 132, 150, 215], "workload": [21, 23, 61, 97, 109, 120, 121, 132, 133, 168, 176, 177, 182, 197, 215, 216, 219, 220, 251], "fragment": [21, 177, 247], "fn": [21, 85, 135, 141, 144, 147, 172, 186, 210, 211, 244, 246, 255], "callabl": [21, 51, 168, 172, 173, 174, 182, 209, 229], "x_normal": 21, "x_parallel": 21, "async": [21, 161, 163], "sort": [21, 25, 49, 98, 102, 109, 116, 137, 143, 158, 178, 185, 209, 247], "parlanc": 21, "revers": [21, 43, 49, 60, 98, 141, 143, 150, 153, 158, 165], "bidirectionalrecurrentlstm": 21, "cell_f": 21, "input_s": [21, 45, 49, 60, 78, 127, 128, 136, 165], "hidden_s": [21, 49, 60, 78, 89, 127, 128, 136, 148, 165, 181, 252], "cell_b": 21, "output_f": 21, "x_rev": 21, "output_b": 21, "output_b_rev": 21, "lstmensembl": 21, "n_model": 21, "modulelist": [21, 153, 237], "demo": [21, 25, 45, 58, 59, 113, 119, 121, 139, 155, 168, 204, 208, 219, 222, 228, 262, 271], "took": [21, 119, 135, 143, 152, 164, 172, 176, 177, 187], "future_f": 21, "stuff": [21, 262, 271], "worth": [21, 23, 52, 103, 113, 152, 162, 234], "profil": [21, 42, 82, 89, 119, 121, 123, 164, 176, 195, 219, 231, 235, 247, 251], "chrome": [21, 89, 164, 168, 238], "prof": [21, 42, 109, 164, 168, 219, 238], "export_chrome_trac": [21, 144, 164, 238], "json": [21, 49, 90, 109, 127, 139, 144, 164, 168, 213, 238], "navig": [21, 61, 168, 169, 204, 226, 260, 269], "button": [21, 50, 52, 58, 59, 105, 168, 188, 225, 226, 260, 262, 269, 271], "timelin": [21, 152, 168, 177, 226], "horizont": 21, "opportun": [21, 85, 105, 136, 149, 216, 247], "breviti": [21, 23, 189, 234, 244], "intro": [21, 35, 36, 55, 99, 100, 120, 136, 139, 159, 169, 211], "tracer": [21, 204], "member": [22, 65, 67, 79, 111, 157, 196, 223], "portion": [22, 82, 152, 156, 219, 226, 262, 271], "custom_class": 22, "mystackclass": 22, "customclasshold": 22, "stack_": 22, "push": [22, 52, 73, 97, 145, 160, 184, 205, 218, 223], "pop_back": 22, "intrusive_ptr": [22, 155, 231, 246], "make_intrus": [22, 155], "elem": [22, 244], "smart": 22, "oppos": [22, 49, 52, 117, 135, 145, 150, 162, 231], "class_": 22, "my_class": 22, "contructor": 22, "yourclass": 22, "ref": [22, 40, 197, 262, 271], "unari": 22, "add_librari": [22, 23, 208], "cmake_cxx_standard": [22, 208], "custom_class_project": 22, "rh": 22, "devtoolset": 22, "torchbind_tutori": 22, "libcustom_class": 22, "load_librari": [22, 23], "loaded_librari": 22, "bar": [22, 49, 82, 142, 149, 153, 162, 171, 172, 182, 197, 202, 226, 260, 262, 269, 271], "manipulate_inst": 22, "s2": [22, 47, 92, 173, 192], "do_stack": 22, "hi": [22, 103, 113, 115, 146, 193, 262, 263, 271, 272], "mom": 22, "wow": 22, "scripted_foo": 22, "filesystem": [22, 135], "treatment": [22, 113, 171, 191, 192, 234], "cpp_inference_exampl": 22, "foobarbaz": 22, "tostr": 22, "add_subdirectori": [22, 23], "drill": 22, "momfoobarbaz": 22, "incred": 22, "make_custom_class": 22, "tocustomclass": 22, "iscustomclass": 22, "export_attr": 22, "__torch__": [22, 203], "def_pickl": 22, "pushivalueimpl": 22, "pickler": 22, "__getstate__": 22, "__setstate__": 22, "pickl": [22, 87, 104, 112, 152, 223, 231, 242, 246], "salient": 22, "wherea": [22, 149, 169, 171, 184, 190, 191], "confus": [22, 23, 98, 99, 127, 141, 171, 184, 190, 191, 192, 197, 223], "trycustomop": 22, "relax": [22, 153, 173, 174], "standalon": [22, 53, 124, 230, 254, 262, 271], "blend": [22, 23], "smoothli": [22, 23], "subsequ": [23, 73, 97, 112, 118, 123, 136, 141, 161, 163, 165, 172, 177, 184, 199, 247], "resort": 23, "opencv": [23, 44, 208], "vision": [23, 24, 34, 38, 44, 58, 59, 117, 119, 121, 152, 178, 187, 194, 196, 204, 222, 223, 229, 233, 256], "mat": [23, 208], "warpperspect": [23, 208], "warp_perspect": [23, 208], "warp": [23, 208], "image_mat": [23, 208], "cv": [23, 24, 126, 193, 208], "col": [23, 34, 157, 208], "cv_32fc1": [23, 208], "warp_mat": [23, 208], "output_mat": [23, 208], "dsize": [23, 208], "output_tensor": 23, "from_blob": [23, 59, 188, 208], "ptr": [23, 208], "short": [23, 25, 49, 60, 82, 98, 100, 115, 120, 128, 135, 153, 159, 165, 166, 197, 198, 199, 234, 247, 262, 263, 271, 272], "opencv2": [23, 208], "hpp": [23, 155, 208], "alongsid": [23, 141, 169, 171, 230], "goodi": 23, "hardcod": [23, 129, 148, 200], "strikingli": 23, "opaqu": 23, "flat": 23, "scope": [23, 60, 101, 109, 125, 173, 174, 177, 226], "dealloc": [23, 168, 177, 247], "invalid": [23, 134, 190, 191, 192, 216, 247], "quot": [23, 117, 263, 272], "metaprogram": 23, "experiment": [23, 60, 123, 126, 142, 163, 173, 174, 179, 186, 221, 245, 247], "target_compile_featur": 23, "cxx_std_14": 23, "opencv_cor": 23, "opencv_imgproc": 23, "libwarp_perspect": 23, "sensat": 23, "0x7f618fc6fa50": 23, "3218": 23, "4611": 23, "4636": 23, "3746": 23, "0978": 23, "5005": 23, "3245": 23, "0169": 23, "4458": 23, "1862": 23, "1692": 23, "noteworthi": [23, 219], "frozen": [23, 43, 146, 157, 185, 203], "prim": [23, 185], "revel": 23, "restrict": [23, 25, 49, 85, 135, 168, 172, 174, 179, 204, 205], "script_method": [23, 85], "tensortobool": 23, "block0": 23, "block1": [23, 79], "21": [23, 58, 59, 109, 115, 158, 208, 219, 231, 238, 246], "sent": [23, 99, 102, 135, 161, 212], "wire": 23, "dlopen": 23, "example_app": 23, "cxx_range_for": 23, "errorreport": 23, "mayb": [23, 101, 103, 138, 196, 262, 271], "subdirectori": [23, 52, 178], "prefix": [23, 113, 122, 125, 136, 137, 168, 184, 185, 231, 246, 258, 262, 271], "inconveni": [23, 189], "altogeth": [23, 150, 191, 260, 269], "nb": [23, 89, 95, 205, 213], "impress": [23, 115, 144], "opencv_photo": 23, "happi": [23, 142, 143], "4125": 23, "8262": 23, "5345": 23, "6111": [23, 231], "3997": [23, 75], "4683": 23, "5969": 23, "0850": 23, "0698": 23, "4597": 23, "0926": 23, "5727": 23, "9319": 23, "4834": 23, "1747": 23, "0162": 23, "9521": 23, "6269": 23, "lastli": [23, 87, 121, 152, 222], "driver": [23, 168], "infrastructur": [23, 257], "vener": 23, "beforehand": [23, 150, 200, 228], "is_python_modul": [23, 208], "extra_ldflag": [23, 208], "lopencv_cor": [23, 208], "lopencv_imgproc": [23, 208], "approxim": [23, 49, 108, 122, 129, 143, 146, 150, 156, 160, 176, 185, 219, 247], "0x7f3e0f840b10": 23, "load_inlin": [23, 208, 231], "op_sourc": [23, 208], "cpp_sourc": [23, 208, 231], "rout": [23, 60, 139, 144, 213], "quirki": 23, "with_opt": 23, "no_python_abi_suffix": 23, "bottom": [23, 98, 168, 171, 226, 260, 269], "suffix": [23, 48, 82, 144], "tag": [23, 51, 100, 103, 116, 173, 174, 208, 237, 245, 262, 271], "0x7ff51c5b7bd0": 23, "hao": 24, "chen": [24, 173, 174, 204, 222], "unifi": [24, 95, 121, 129, 195, 229], "ssl": 24, "modular": [24, 110, 112], "fixmatch": 24, "defixmatch": 24, "speech": [24, 73, 98, 100, 103, 128, 247], "light": [24, 25, 52, 129, 208, 229, 262, 271], "vit": 24, "strong": [24, 98, 176, 192, 262, 271], "unlabel": 24, "confid": [24, 52, 99, 126, 159, 160, 169, 230], "threshold": [24, 49, 60, 82, 109, 110, 126, 159, 163, 171, 219, 247], "statu": [24, 126, 163, 173, 174, 263, 272], "absorb": 24, "gaussian": [24, 47, 52, 126, 159], "overcom": [24, 113], "quantiti": [24, 97, 121, 124, 145, 150, 154], "trade": [24, 126, 152, 234], "afford": 24, "nlp": [24, 42, 92, 93, 99, 102, 103, 113, 114, 115, 116, 118, 127, 128, 137, 165, 177, 185, 193, 199, 230, 234, 247, 252], "audio": [24, 26, 27, 28, 29, 30, 34, 38, 44, 121, 140, 167, 170], "semilearn": 24, "get_dataset": 24, "get_data_load": 24, "weak": [24, 262, 271], "get_net_build": 24, "get_algorithm": 24, "get_config": 24, "hyper": [24, 164], "vit_tiny_patch2_32": 24, "use_pretrain": 24, "pretrain_path": 24, "microsoft": [24, 107, 108, 137, 168], "vit_tiny_patch2_32_mlp_im_1k_32": 24, "num_train_it": 24, "num_eval_it": 24, "num_log_it": 24, "adamw": [24, 75, 110, 122, 160], "layer_decai": 24, "cifar10": [24, 57, 87, 92, 97, 168, 220, 250, 253], "num_label": [24, 99], "img_siz": 24, "crop_ratio": 24, "875": 24, "data_dir": [24, 87, 117, 122, 137, 148, 157, 185], "ulb_samples_per_class": 24, "hard_label": 24, "ema_p": 24, "999": [24, 52, 94, 96, 169], "ent_loss_ratio": 24, "uratio": 24, "ulb_loss_ratio": 24, "dataset_dict": 24, "include_lb_to_ulb": 24, "train_lb_load": 24, "train_lb": 24, "train_ulb_load": 24, "train_ulb": 24, "eval_load": 24, "from_nam": 24, "tb_log": 24, "logger": [24, 137, 146, 148, 171, 185, 195], "lb_imb_ratio": 24, "ulb_imb_ratio": 24, "1500": [24, 122, 231], "ulb_num_label": 24, "3000": [24, 169], "kihyuk": 24, "sohn": 24, "yidong": 24, "usb_semisup_learn": 24, "jamesre": 25, "fb": 25, "michael": [25, 42, 98, 210, 211, 230, 255], "suo": 25, "rev2": 25, "hierarchi": [25, 60, 177], "__version__": [25, 42, 107, 119, 137, 146, 158, 185, 188, 206, 208, 222], "mycel": 25, "my_cel": 25, "3x4": 25, "redefin": 25, "succinctli": [25, 153], "mydecisiong": [25, 252], "dg": 25, "tape": [25, 42, 76], "traced_cel": [25, 252], "rewind": 25, "tracedmodul": [25, 60, 85, 252], "ir": [25, 110, 142, 144, 183, 216], "commonli": [25, 49, 69, 87, 97, 158, 165, 168, 179, 216, 220, 239, 247, 263, 272], "acquir": [25, 112, 134, 156, 159, 163], "laden": 25, "submodul": [25, 49, 60, 85, 153, 164, 202, 218, 222, 228, 234], "branch": [25, 173, 174, 177, 178, 199, 206, 220, 224, 225], "nowher": 25, "faithfulli": [25, 189], "analysi": [25, 87, 107, 115, 121, 123, 143, 144, 164, 168, 171, 174, 176, 184, 226, 234], "scripted_g": 25, "scripted_cel": [25, 252], "decis": [25, 100, 136, 189, 190, 192, 207, 224, 225, 247, 255], "myrnnloop": 25, "xs": [25, 134, 166], "rnn_loop": 25, "wraprnn": 25, "freestand": 25, "wrapped_rnn": 25, "neurip": 25, "1hiicg6jrkbnr5hvk2": 25, "vnmi88vi9puzej": 25, "intro_to_torchscript_tutori": [25, 203], "audio_data_augmentation_tutori": [26, 28], "redirect": [26, 27, 28, 29, 30, 31, 74, 140, 151, 167, 170, 180, 217], "audio_datasets_tutori": 27, "audio_feature_extractions_tutori": 29, "audio_io_tutori": 30, "\u57fa\u7840\u77e5\u8bc6": [32, 33, 34, 35, 37, 38, 39, 40, 41, 121], "\u5feb\u901f\u5165\u95e8": [32, 33, 34, 36, 37, 39, 40, 41, 251], "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668": [32, 33, 36, 37, 38, 39, 40, 41], "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": [32, 34, 36, 37, 38, 39, 40, 41], "\u4f18\u5316\u6a21\u578b\u53c2\u6570": [32, 33, 34, 36, 39, 40, 41], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [32, 33, 34, 36, 37, 38, 40, 41, 235, 251], "\u5728\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6": [32, 250], "\u6700\u5e38\u7528\u7684\u7b97\u6cd5\u662f": 32, "\u53cd\u5411\u4f20\u64ad": [32, 37], "\u5728\u8fd9\u4e2a\u7b97\u6cd5\u4e2d": 32, "\u53c2\u6570": [32, 95, 238, 240], "\u6a21\u578b\u6743\u91cd": 32, "\u6839\u636e\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u7ed9\u5b9a\u53c2\u6570\u7684": 32, "\u68af\u5ea6": [32, 89], "\u8fdb\u884c\u8c03\u6574": 32, "\u4e3a\u4e86\u8ba1\u7b97\u8fd9\u4e9b\u68af\u5ea6": 32, "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5185\u7f6e\u7684\u5fae\u5206\u5f15\u64ce": 32, "\u79f0\u4e3a": [32, 39, 89], "\u5b83\u652f\u6301\u5bf9\u4efb\u4f55\u8ba1\u7b97\u56fe\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 32, "\u8003\u8651\u6700\u7b80\u5355\u7684\u5355\u5c42\u795e\u7ecf\u7f51\u7edc": 32, "\u5177\u6709\u8f93\u5165": 32, "\u548c": [32, 34, 36, 37, 38, 39, 41, 89, 90, 92, 95, 96, 111, 118, 121, 233, 236, 238, 240, 241, 242, 243, 246, 249, 250], "\u4ee5\u53ca\u4e00\u4e9b\u635f\u5931\u51fd\u6570": 32, "\u53ef\u4ee5\u5728": [32, 104], "\u4e2d\u6309\u4ee5\u4e0b\u65b9\u5f0f\u5b9a\u4e49\u5b83": 32, "binary_cross_entropy_with_logit": [32, 230], "\u8fd9\u6bb5\u4ee3\u7801\u5b9a\u4e49\u4e86\u4ee5\u4e0b": 32, "\u8ba1\u7b97\u56fe": [32, 111], "\u5728\u8fd9\u4e2a\u7f51\u7edc\u4e2d": 32, "\u662f": [32, 34, 92, 93, 104, 236], "\u6211\u4eec\u9700\u8981\u5bf9\u5b83\u4eec\u8fdb\u884c\u4f18\u5316": 32, "\u56e0\u6b64": [32, 89, 111, 238, 240, 242], "\u6211\u4eec\u9700\u8981\u80fd\u591f\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u8fd9\u4e9b\u53d8\u91cf\u7684\u68af\u5ea6": 32, "\u4e3a\u4e86\u505a\u5230\u8fd9\u4e00\u70b9": 32, "\u6211\u4eec\u8bbe\u7f6e\u4e86\u8fd9\u4e9b\u5f20\u91cf\u7684": 32, "\u5c5e\u6027": [32, 89, 95], "\u6216\u5728\u521b\u5efa\u540e\u4f7f\u7528": 32, "\u65b9\u6cd5\u6765\u8bbe\u7f6e": 32, "\u6211\u4eec\u5e94\u7528\u4e8e\u5f20\u91cf\u4ee5\u6784\u5efa\u8ba1\u7b97\u56fe\u7684\u51fd\u6570\u5b9e\u9645\u4e0a\u662f": 32, "\u7c7b\u7684\u5bf9\u8c61": 32, "\u8fd9\u4e2a\u5bf9\u8c61\u77e5\u9053\u5982\u4f55\u5728": 32, "\u524d\u5411": [32, 92, 111, 250], "\u65b9\u5411\u8ba1\u7b97\u51fd\u6570": 32, "\u4e5f\u77e5\u9053\u5982\u4f55\u5728": 32, "\u6b65\u9aa4\u4e2d\u8ba1\u7b97\u5176\u5bfc\u6570": 32, "\u5bf9\u4e8e\u53cd\u5411\u4f20\u64ad\u51fd\u6570\u7684\u5f15\u7528\u5b58\u50a8\u5728\u5f20\u91cf\u7684": 32, "\u5c5e\u6027\u4e2d": [32, 250], "\u60a8\u53ef\u4ee5\u5728": 32, "\u6587\u6863": [32, 89, 93, 95], "__": [32, 37, 40, 90, 94, 171, 234], "\u4e2d\u627e\u5230\u6709\u5173": 32, "\u7684\u66f4\u591a\u4fe1\u606f": 32, "\u4e3a\u4e86\u4f18\u5316\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u53c2\u6570\u6743\u91cd": 32, "\u6211\u4eec\u9700\u8981\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u76f8\u5bf9\u4e8e\u53c2\u6570\u7684\u5bfc\u6570": 32, "\u5373\u5728\u67d0\u4e9b\u56fa\u5b9a\u7684": 32, "\u503c\u4e0b": 32, "\u6211\u4eec\u9700\u8981": 32, "frac": [32, 43, 64, 85, 89, 98, 99, 101, 103, 111, 125, 130, 135, 159, 160, 262, 271], "partial": [32, 43, 75, 87, 89, 101, 112, 113, 122, 123, 124, 125, 136, 141, 145, 216, 220, 262, 271], "\u8981\u8ba1\u7b97\u8fd9\u4e9b\u5bfc\u6570": 32, "\u6211\u4eec\u8c03\u7528": [32, 95], "\u7136\u540e\u4ece": 32, "\u4e2d\u68c0\u7d22\u503c": 32, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b": [32, 37, 95, 238], "\u6240\u6709\u5177\u6709": 32, "\u7684\u5f20\u91cf\u90fd\u5728\u8ddf\u8e2a\u5b83\u4eec\u7684\u8ba1\u7b97\u5386\u53f2\u5e76\u652f\u6301\u68af\u5ea6\u8ba1\u7b97": 32, "\u7136\u800c": [32, 111, 246], "\u6709\u4e9b\u60c5\u51b5\u4e0b\u6211\u4eec\u4e0d\u9700\u8981\u8fd9\u6837\u505a": 32, "\u4f8b\u5982": [32, 33, 34, 38, 40, 89, 92, 93, 95, 104, 238, 246, 250], "\u5f53\u6211\u4eec\u5df2\u7ecf\u8bad\u7ec3\u597d\u6a21\u578b\u5e76\u53ea\u60f3\u5c06\u5176\u5e94\u7528\u4e8e\u4e00\u4e9b\u8f93\u5165\u6570\u636e\u65f6": 32, "\u5373\u6211\u4eec\u53ea\u60f3\u901a\u8fc7\u7f51\u7edc\u8fdb\u884c": 32, "\u8ba1\u7b97": [32, 95], "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5c06\u6211\u4eec\u7684\u8ba1\u7b97\u4ee3\u7801\u5305\u88f9\u5728": 32, "\u5757\u4e2d\u6765\u505c\u6b62\u8ddf\u8e2a\u8ba1\u7b97": 32, "\u53e6\u4e00\u79cd\u5b9e\u73b0\u76f8\u540c\u7ed3\u679c\u7684\u65b9\u6cd5\u662f\u5bf9\u5f20\u91cf\u4f7f\u7528": 32, "\u65b9\u6cd5": [32, 33, 39, 89, 94, 95, 104, 233], "z_det": 32, "\u5e0c\u671b\u7981\u7528\u68af\u5ea6\u8ddf\u8e2a\u7684\u539f\u56e0\u53ef\u80fd\u5982\u4e0b": 32, "\u5c06\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u67d0\u4e9b\u53c2\u6570\u6807\u8bb0\u4e3a": 32, "\u51bb\u7ed3\u53c2\u6570": 32, "\u5728\u4ec5\u8fdb\u884c\u524d\u5411\u4f20\u9012\u65f6": 32, "\u52a0\u901f\u8ba1\u7b97": 32, "\u56e0\u4e3a\u4e0d\u8ddf\u8e2a\u68af\u5ea6\u7684\u5f20\u91cf\u4e0a\u7684\u8ba1\u7b97\u4f1a\u66f4\u9ad8\u6548": 32, "\u6982\u5ff5\u4e0a": 32, "\u5728\u4e00\u4e2a\u7531": 32, "\u5bf9\u8c61": [32, 92, 104, 246], "\u7ec4\u6210\u7684\u6709\u5411\u65e0\u73af\u56fe": 32, "dag": 32, "\u4e2d\u8bb0\u5f55\u6570\u636e": 32, "\u548c\u6240\u6709\u6267\u884c\u7684\u64cd\u4f5c": 32, "\u4ee5\u53ca\u4ea7\u751f\u7684\u65b0\u5f20\u91cf": 32, "\u5728\u8fd9\u4e2a": 32, "\u4e2d": [32, 34, 92, 104, 121, 233, 235, 236, 238, 246, 248, 251], "\u53f6\u5b50\u8282\u70b9\u662f\u8f93\u5165\u5f20\u91cf": 32, "\u6839\u8282\u70b9\u662f\u8f93\u51fa\u5f20\u91cf": 32, "\u901a\u8fc7\u4ece\u6839\u5230\u53f6\u8ddf\u8e2a\u8fd9\u4e2a\u56fe": 32, "\u53ef\u4ee5\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 32, "\u5728\u524d\u5411\u4f20\u9012\u4e2d": 32, "\u540c\u65f6\u505a\u4e24\u4ef6\u4e8b": 32, "\u6267\u884c\u8bf7\u6c42\u7684\u64cd\u4f5c\u4ee5\u8ba1\u7b97\u7ed3\u679c\u5f20\u91cf": 32, "\u5728": [32, 33, 89, 92, 93, 94, 96, 104, 121, 139, 246, 249], "\u4e2d\u7ef4\u62a4\u64cd\u4f5c\u7684": 32, "\u68af\u5ea6\u51fd\u6570": 32, "\u5f53\u5728": 32, "\u6839\u8282\u70b9\u4e0a\u8c03\u7528": 32, "\u65f6": [32, 89, 90, 95], "\u53cd\u5411\u4f20\u9012\u5f00\u59cb": 32, "\u7136\u540e": [32, 93, 104, 111], "\u4ece\u6bcf\u4e2a": 32, "\u5c06\u5b83\u4eec\u7d2f\u79ef\u5230\u5404\u81ea\u5f20\u91cf\u7684": 32, "\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219": 32, "\u4e00\u76f4\u4f20\u64ad\u5230\u53f6\u5b50\u5f20\u91cf": 32, "\u5728\u5f88\u591a\u60c5\u51b5\u4e0b": 32, "\u6211\u4eec\u6709\u4e00\u4e2a\u6807\u91cf\u635f\u5931\u51fd\u6570": 32, "\u9700\u8981\u8ba1\u7b97\u76f8\u5bf9\u4e8e\u67d0\u4e9b\u53c2\u6570\u7684\u68af\u5ea6": 32, "\u4e5f\u6709\u4e00\u4e9b\u60c5\u51b5\u4e0b": 32, "\u8f93\u51fa\u51fd\u6570\u662f\u4e00\u4e2a\u4efb\u610f\u7684\u5f20\u91cf": 32, "\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b": [32, 39, 95, 104, 240], "\u5141\u8bb8\u60a8\u8ba1\u7b97\u6240\u8c13\u7684": 32, "\u96c5\u53ef\u6bd4\u4e58\u79ef": 32, "\u800c\u4e0d\u662f\u5b9e\u9645\u7684\u68af\u5ea6": 32, "vec": [32, 43, 89, 98, 99, 144, 145, 150], "langl": 32, "x_1": [32, 101, 116, 150, 262, 271], "x_n": [32, 52], "rangl": 32, "y_1": [32, 101, 116], "y_m": 32, "ccc": [32, 43, 89], "y_": [32, 43, 89, 98], "x_": [32, 43, 89, 262, 271], "cdot": [32, 43, 52, 89, 103, 125], "vdot": [32, 43, 89], "ddot": [32, 43, 89], "v_1": 32, "v_m": 32, "retain_graph": [32, 76, 191, 205], "nsecond": 32, "ncall": 32, "accumul": [32, 43, 47, 49, 52, 69, 76, 98, 99, 101, 102, 103, 111, 115, 129, 130, 146, 152, 160, 161, 162, 163, 230, 234], "leaf": [32, 43, 183], "life": [32, 97, 113, 127, 128], "autogradqs_tutori": [32, 35, 40], "\u5f20\u91cf": [33, 34, 36, 37, 38, 39, 41, 70, 88, 89, 90, 93, 94, 95, 96, 104], "\u81ea\u52a8\u5fae\u5206": [33, 34, 36, 37, 38, 39, 40, 41, 88, 89, 90, 92, 93, 94, 95, 96, 111], "\u795e\u7ecf\u7f51\u7edc\u7531\u6267\u884c\u6570\u636e\u64cd\u4f5c\u7684": 33, "\u5c42": [33, 92, 93, 104, 111], "\u6a21\u5757": [33, 90, 238], "\u7ec4\u6210": 33, "\u547d\u540d\u7a7a\u95f4\u63d0\u4f9b\u4e86\u6784\u5efa\u4f60\u81ea\u5df1\u7684\u795e\u7ecf\u7f51\u7edc\u6240\u9700\u7684\u6240\u6709\u6784\u5efa\u5757": 33, "\u4e2d\u7684\u6bcf\u4e2a\u6a21\u5757\u90fd\u662f": 33, "\u7684\u5b50\u7c7b": [33, 34, 92, 93], "\u795e\u7ecf\u7f51\u7edc\u672c\u8eab\u5c31\u662f\u4e00\u4e2a\u7531\u5176\u4ed6\u6a21\u5757": 33, "\u7ec4\u6210\u7684\u6a21\u5757": 33, "\u8fd9\u79cd\u5d4c\u5957\u7ed3\u6784\u5141\u8bb8\u8f7b\u677e\u6784\u5efa\u548c\u7ba1\u7406\u590d\u6742\u7684\u67b6\u6784": 33, "\u5728\u63a5\u4e0b\u6765\u7684\u90e8\u5206\u4e2d": 33, "\u6211\u4eec\u5c06\u6784\u5efa\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 33, "\u7528\u4e8e\u5bf9": 33, "fashionmnist": [33, 34, 37, 38, 41, 94, 96, 169], "\u6570\u636e\u96c6\u4e2d\u7684\u56fe\u50cf\u8fdb\u884c\u5206\u7c7b": 33, "\u6211\u4eec\u5e0c\u671b\u80fd\u591f\u5728\u786c\u4ef6\u52a0\u901f\u5668": 33, "\u5982": [33, 93, 104], "\u6216": [33, 38, 72, 93, 95, 96, 104, 236, 242], "\u4e0a\u8bad\u7ec3\u6211\u4eec\u7684\u6a21\u578b": 33, "\u5982\u679c\u53ef\u7528": [33, 38], "\u8ba9\u6211\u4eec\u68c0\u67e5\u4e00\u4e0b": 33, "\u662f\u5426\u53ef\u7528": 33, "\u5426\u5219\u6211\u4eec\u4f7f\u7528": 33, "\u6211\u4eec\u901a\u8fc7\u7ee7\u627f": 33, "\u6765\u5b9a\u4e49\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 33, "\u5e76\u5728": [33, 38], "\u65b9\u6cd5\u4e2d\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc\u5c42": 33, "\u6bcf\u4e2a": 33, "\u5b50\u7c7b\u90fd\u5728": 33, "\u65b9\u6cd5\u4e2d\u5b9e\u73b0\u5bf9\u8f93\u5165\u6570\u636e\u7684\u64cd\u4f5c": 33, "neuralnetwork": [33, 37, 38, 187], "linear_relu_stack": [33, 37, 38, 219], "logit": [33, 37, 38, 97, 118, 137, 148, 185, 219], "\u6211\u4eec\u521b\u5efa\u4e00\u4e2a": 33, "\u7684\u5b9e\u4f8b": [33, 93], "\u5e76\u5c06\u5176\u79fb\u52a8\u5230": 33, "\u4e0a": [33, 38, 89, 95, 104, 238], "\u7136\u540e\u6253\u5370\u5176\u7ed3\u6784": 33, "\u8981\u4f7f\u7528\u6a21\u578b": 33, "\u6211\u4eec\u5c06\u8f93\u5165\u6570\u636e\u4f20\u9012\u7ed9\u5b83": 33, "\u8fd9\u5c06\u6267\u884c\u6a21\u578b\u7684": 33, "\u4ee5\u53ca\u4e00\u4e9b": 33, "\u540e\u53f0\u64cd\u4f5c": 33, "270111b7b611d174967ed204776985cefca9c144": 33, "l866": 33, "\u4e0d\u8981\u76f4\u63a5\u8c03\u7528": 33, "\u5c06\u8f93\u5165\u4f20\u9012\u7ed9\u6a21\u578b\u4f1a\u8fd4\u56de\u4e00\u4e2a\u4e8c\u7ef4\u5f20\u91cf": 33, "\u5176\u4e2d": [33, 93, 95, 111], "\u5bf9\u5e94\u6bcf\u4e2a\u7c7b\u522b\u7684": 33, "\u4e2a\u539f\u59cb\u9884\u6d4b\u503c\u7684\u8f93\u51fa": 33, "\u5bf9\u5e94\u6bcf\u4e2a\u8f93\u51fa\u7684\u5404\u4e2a\u503c": 33, "\u6211\u4eec\u901a\u8fc7\u5c06\u5176\u4f20\u9012\u7ed9": 33, "\u6a21\u5757\u7684\u5b9e\u4f8b\u6765\u83b7\u5f97\u9884\u6d4b\u6982\u7387": 33, "pred_probab": [33, 219], "y_pred": [33, 63, 64, 65, 67, 68, 69, 71, 72, 111, 219], "argmax": [33, 37, 38, 98, 102, 104, 115, 119, 123, 129, 137, 146, 148, 162, 185, 219, 221], "\u8ba9\u6211\u4eec\u5206\u89e3\u4e00\u4e0b": 33, "\u6a21\u578b\u4e2d\u7684\u5404\u5c42": 33, "\u4e3a\u4e86\u89e3\u91ca\u5b83": 33, "\u6211\u4eec\u5c06\u53d6\u4e00\u4e2a\u5305\u542b": 33, "\u5f20": 33, "28x28": [33, 104, 169], "\u5c3a\u5bf8\u56fe\u50cf\u7684\u5c0f\u6279\u91cf\u6837\u672c": 33, "\u5e76\u89c2\u5bdf\u5b83\u5728\u901a\u8fc7\u7f51\u7edc\u65f6\u53d1\u751f\u4e86\u4ec0\u4e48": 33, "input_imag": [33, 58, 59], "\u6211\u4eec\u521d\u59cb\u5316": 33, "\u5c06\u6bcf\u4e2a\u4e8c\u7ef4": 33, "\u56fe\u50cf\u8f6c\u6362\u4e3a\u5305\u542b": 33, "784": [33, 94, 104, 138, 169], "\u4e2a\u50cf\u7d20\u503c\u7684\u8fde\u7eed\u6570\u7ec4": 33, "\u4fdd\u7559\u5c0f\u6279\u91cf\u7ef4\u5ea6": 33, "flat_imag": 33, "\u7ebf\u6027\u5c42": 33, "\u662f\u4e00\u4e2a\u6a21\u5757": 33, "\u5b83\u4f7f\u7528\u5b58\u50a8\u7684\u6743\u91cd": 33, "\u548c\u504f\u7f6e": [33, 104], "\u5bf9\u8f93\u5165\u5e94\u7528\u7ebf\u6027\u53d8\u6362": 33, "layer1": [33, 89, 149, 157, 160, 195], "in_featur": [33, 109, 117, 123, 157, 178, 179, 201, 202, 239], "hidden1": [33, 234], "\u975e\u7ebf\u6027\u6fc0\u6d3b\u51fd\u6570\u521b\u5efa\u4e86\u6a21\u578b\u8f93\u5165\u548c\u8f93\u51fa\u4e4b\u95f4\u7684\u590d\u6742\u6620\u5c04": 33, "\u5b83\u4eec\u5728\u7ebf\u6027\u53d8\u6362\u4e4b\u540e\u5e94\u7528": 33, "\u4ee5\u5f15\u5165": 33, "\u975e\u7ebf\u6027": [33, 93], "\u5e2e\u52a9\u795e\u7ecf\u7f51\u7edc\u5b66\u4e60\u5404\u79cd\u73b0\u8c61": 33, "\u5728\u8fd9\u4e2a\u6a21\u578b\u4e2d": 33, "\u6211\u4eec\u5728\u7ebf\u6027\u5c42\u4e4b\u95f4\u4f7f\u7528": 33, "\u4f46\u8fd8\u6709\u5176\u4ed6\u6fc0\u6d3b\u51fd\u6570\u53ef\u4ee5\u5728\u4f60\u7684\u6a21\u578b\u4e2d\u5f15\u5165\u975e\u7ebf\u6027": 33, "\u662f\u4e00\u4e2a\u6709\u5e8f\u7684\u6a21\u5757\u5bb9\u5668": 33, "\u6570\u636e\u6309\u7167\u5b9a\u4e49\u7684\u987a\u5e8f\u4f9d\u6b21\u901a\u8fc7\u6240\u6709\u6a21\u5757": 33, "\u60a8\u53ef\u4ee5\u4f7f\u7528\u5e8f\u5217\u5bb9\u5668\u6765\u5feb\u901f\u7ec4\u5408\u4e00\u4e2a\u7f51\u7edc": 33, "seq_modul": 33, "\u795e\u7ecf\u7f51\u7edc\u7684\u6700\u540e\u4e00\u4e2a\u7ebf\u6027\u5c42\u8fd4\u56de\u7684\u662f": 33, "\u5bf9\u6570\u51e0\u7387": 33, "infti": [33, 160], "\u8303\u56f4\u5185\u7684\u539f\u59cb\u503c": 33, "\u8fd9\u4e9b\u503c\u4f1a\u88ab\u4f20\u9012\u5230": 33, "\u5bf9\u6570\u51e0\u7387\u88ab\u7f29\u653e\u5230\u503c\u4e3a": 33, "\u7684\u8303\u56f4": 33, "\u8868\u793a\u6a21\u578b\u5bf9\u6bcf\u4e2a\u7c7b\u522b\u7684\u9884\u6d4b\u6982\u7387": 33, "\u53c2\u6570\u6307\u793a\u503c\u5fc5\u987b\u5728\u5176\u6cbf\u7740\u7684\u7ef4\u5ea6\u4e0a\u6c42\u548c\u4e3a": 33, "\u795e\u7ecf\u7f51\u7edc\u5185\u90e8\u7684\u8bb8\u591a\u5c42\u90fd\u662f": 33, "\u53c2\u6570\u5316": 33, "\u7684": [33, 34, 71, 72, 89, 90, 95, 104, 121, 233, 238], "\u5373\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u4f1a\u4f18\u5316\u7684\u76f8\u5173\u6743\u91cd\u548c\u504f\u7f6e": 33, "\u901a\u8fc7\u5b50\u7c7b\u5316": 33, "\u53ef\u4ee5\u81ea\u52a8\u8ddf\u8e2a\u6a21\u578b\u5bf9\u8c61\u5185\u5b9a\u4e49\u7684\u6240\u6709\u5b57\u6bb5": 33, "\u5e76\u4f7f\u7528\u6a21\u578b\u7684": 33, "\u65b9\u6cd5\u8bbf\u95ee\u6240\u6709\u53c2\u6570": 33, "\u5728\u8fd9\u4e2a\u793a\u4f8b\u4e2d": [33, 111, 241, 251], "\u6211\u4eec\u904d\u5386\u6bcf\u4e2a\u53c2\u6570": 33, "\u5e76\u6253\u5370\u5176\u5927\u5c0f\u4ee5\u53ca\u503c\u7684\u9884\u89c8": 33, "buildmodel_tutori": [33, 35, 37, 38], "\u5904\u7406\u6570\u636e\u6837\u672c\u7684\u4ee3\u7801\u53ef\u80fd\u4f1a\u53d8\u5f97\u6df7\u4e71\u4e14\u96be\u4ee5\u7ef4\u62a4": 34, "\u7406\u60f3\u60c5\u51b5\u4e0b": 34, "\u6211\u4eec\u5e0c\u671b\u6570\u636e\u96c6\u4ee3\u7801\u4e0e\u6a21\u578b\u8bad\u7ec3\u4ee3\u7801\u89e3\u8026": 34, "\u4ee5\u63d0\u9ad8\u53ef\u8bfb\u6027\u548c\u6a21\u5757\u5316": 34, "\u63d0\u4f9b\u4e86\u4e24\u4e2a\u6570\u636e\u5904\u7406\u7684\u57fa\u672c\u5de5\u5177": 34, "\u5b83\u4eec\u5141\u8bb8\u60a8\u4f7f\u7528\u9884\u52a0\u8f7d\u7684\u6570\u636e\u96c6\u4ee5\u53ca\u60a8\u81ea\u5df1\u7684\u6570\u636e": 34, "\u5b58\u50a8\u6837\u672c\u53ca\u5176\u5bf9\u5e94\u7684\u6807\u7b7e": [34, 38], "\u800c": [34, 38, 89], "\u5219\u4e3a": 34, "\u5305\u88c5\u4e86\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 34, "\u4ee5\u4fbf\u4e8e\u8bbf\u95ee\u6837\u672c": 34, "\u57df\u5e93\u63d0\u4f9b\u4e86\u8bb8\u591a\u9884\u52a0\u8f7d\u7684\u6570\u636e\u96c6": 34, "\u8fd9\u4e9b\u6570\u636e\u96c6\u662f": 34, "\u5e76\u5b9e\u73b0\u4e86\u7279\u5b9a\u4e8e\u8be5\u6570\u636e\u7684\u51fd\u6570": 34, "\u5b83\u4eec\u53ef\u4ee5\u7528\u4e8e\u6a21\u578b\u7684\u539f\u578b\u8bbe\u8ba1\u548c\u57fa\u51c6\u6d4b\u8bd5": 34, "\u60a8\u53ef\u4ee5\u5728\u4ee5\u4e0b\u94fe\u63a5\u627e\u5230\u8fd9\u4e9b\u6570\u636e\u96c6": 34, "\u56fe\u50cf\u6570\u636e\u96c6": 34, "\u6587\u672c\u6570\u636e\u96c6": 34, "\u97f3\u9891\u6570\u636e\u96c6": 34, "\u4e0b\u9762\u662f\u4e00\u4e2a\u4ece": 34, "\u52a0\u8f7d": [34, 39, 240, 242], "fashion": [34, 49, 60, 94, 96, 107, 122, 124, 126, 134, 162, 166, 169, 171, 220], "\u6570\u636e\u96c6\u7684\u793a\u4f8b": 34, "zalando": 34, "\u7684\u5546\u54c1\u56fe\u7247\u6570\u636e\u96c6": 34, "\u5305\u62ec": [34, 89, 90, 93, 96, 233], "\u4e2a\u8bad\u7ec3\u6837\u672c\u548c": 34, "\u4e2a\u6d4b\u8bd5\u6837\u672c": 34, "\u6bcf\u4e2a\u6837\u672c\u5305\u542b\u4e00\u4e2a": 34, "\u7684\u7070\u5ea6\u56fe\u50cf\u548c\u4e00\u4e2a\u6765\u81ea": 34, "\u4e2a\u7c7b\u522b\u4e4b\u4e00\u7684\u6807\u7b7e": 34, "\u6211\u4eec\u4f7f\u7528\u4ee5\u4e0b\u53c2\u6570\u52a0\u8f7d": 34, "\u6570\u636e\u96c6": [34, 38, 92, 96, 104, 121, 233, 236], "\u662f\u5b58\u50a8\u8bad\u7ec3": 34, "\u6d4b\u8bd5\u6570\u636e\u7684\u8def\u5f84": 34, "\u6307\u5b9a\u662f\u8bad\u7ec3\u96c6\u8fd8\u662f\u6d4b\u8bd5\u96c6": 34, "\u8868\u793a\u5982\u679c\u6570\u636e\u5728": 34, "\u8def\u5f84\u4e2d\u4e0d\u53ef\u7528": 34, "\u5219\u4ece\u4e92\u8054\u7f51\u4e0b\u8f7d\u6570\u636e": 34, "target_transform": [34, 38, 41], "\u6307\u5b9a\u7279\u5f81\u548c\u6807\u7b7e\u7684\u8f6c\u6362": 34, "read_imag": [34, 178], "training_data": [34, 37, 38, 98, 102], "\u6211\u4eec\u53ef\u4ee5\u50cf\u5217\u8868\u4e00\u6837\u624b\u52a8\u7d22\u5f15": 34, "\u4f7f\u7528": [34, 88, 94, 95, 121, 139, 236, 242, 250], "\u6765\u53ef\u89c6\u5316\u8bad\u7ec3\u6570\u636e\u4e2d\u7684\u4e00\u4e9b\u6837\u672c": 34, "labels_map": 34, "shirt": [34, 38, 94, 96, 169], "trouser": [34, 38, 94, 96, 169], "pullov": [34, 38, 94, 96, 169], "dress": [34, 38, 94, 96, 169], "coat": [34, 38, 94, 96, 169], "sandal": [34, 38, 94, 96, 169], "sneaker": [34, 38, 94, 96, 169], "ankl": [34, 38, 94, 96, 169], "boot": [34, 38, 94, 96, 158, 169], "add_subplot": [34, 127, 165, 169], "\u81ea\u5b9a\u4e49\u6570\u636e\u96c6\u7c7b\u5fc5\u987b\u5b9e\u73b0\u4e09\u4e2a\u51fd\u6570": 34, "\u8bf7\u770b\u8fd9\u4e2a\u5b9e\u73b0\u793a\u4f8b": 34, "\u56fe\u50cf\u5b58\u50a8\u5728\u76ee\u5f55": 34, "img_dir": 34, "\u5b83\u4eec\u7684\u6807\u7b7e\u5355\u72ec\u5b58\u50a8\u5728": 34, "csv": [34, 49, 51, 122], "\u6587\u4ef6": [34, 90, 104], "annotations_fil": 34, "\u5177\u4f53\u4ee3\u7801\u5b9e\u73b0\u5982\u4e0b": 34, "customimagedataset": 34, "img_label": 34, "read_csv": [34, 51], "img_path": [34, 117, 178], "iloc": [34, 51], "\u51fd\u6570\u5728\u5b9e\u4f8b\u5316\u6570\u636e\u96c6\u5bf9\u8c61\u65f6\u8fd0\u884c\u4e00\u6b21": 34, "\u6211\u4eec\u521d\u59cb\u5316\u5305\u542b\u56fe\u50cf\u7684\u76ee\u5f55": 34, "\u6ce8\u91ca\u6587\u4ef6\u548c\u4e24\u79cd\u8f6c\u6362": 34, "\u5728\u4e0b\u4e00\u90e8\u5206\u4e2d\u5c06\u66f4\u8be6\u7ec6\u5730\u4ecb\u7ecd": 34, "\u6587\u4ef6\u7684\u5185\u5bb9\u5982\u4e0b": 34, "tshirt1": 34, "tshirt2": 34, "ankleboot999": 34, "\u51fd\u6570\u8fd4\u56de\u6570\u636e\u96c6\u4e2d\u7684\u6837\u672c\u6570\u91cf": 34, "\u51fd\u6570\u52a0\u8f7d\u5e76\u8fd4\u56de\u6570\u636e\u96c6\u4e2d\u7ed9\u5b9a\u7d22\u5f15": 34, "\u7684\u6837\u672c": 34, "\u6839\u636e\u7d22\u5f15": 34, "\u5b83\u786e\u5b9a\u56fe\u50cf\u5728\u78c1\u76d8\u4e0a\u7684\u4f4d\u7f6e": 34, "\u5c06\u5176\u8f6c\u6362\u4e3a\u5f20\u91cf": 34, "\u4ece": [34, 39, 71, 90, 92, 93, 96], "\u4e2d\u7684": [34, 92, 104, 236], "\u6570\u636e\u4e2d\u68c0\u7d22\u76f8\u5e94\u7684\u6807\u7b7e": 34, "\u5bf9\u5b83\u4eec\u8c03\u7528\u8f6c\u6362\u51fd\u6570": 34, "\u5982\u679c\u9002\u7528": 34, "\u5e76\u4ee5\u5143\u7ec4\u5f62\u5f0f\u8fd4\u56de\u5f20\u91cf\u56fe\u50cf\u548c\u76f8\u5e94\u7684\u6807\u7b7e": 34, "\u4e00\u6b21\u68c0\u7d22\u6211\u4eec\u6570\u636e\u96c6\u7684\u4e00\u4e2a\u6837\u672c\u7684\u7279\u5f81\u548c\u6807\u7b7e": 34, "\u5728\u8bad\u7ec3\u6a21\u578b\u65f6": [34, 89], "\u6211\u4eec\u901a\u5e38\u5e0c\u671b\u4ee5": 34, "\u5c0f\u6279\u91cf": 34, "\u7684\u65b9\u5f0f\u4f20\u9012\u6837\u672c": 34, "\u5728\u6bcf\u4e2a\u5468\u671f\u91cd\u65b0\u968f\u673a\u6392\u5217\u6570\u636e\u4ee5\u51cf\u5c11\u6a21\u578b\u8fc7\u62df\u5408": 34, "\u5e76\u4f7f\u7528": [34, 104, 121, 241, 246], "\u52a0\u901f\u6570\u636e\u68c0\u7d22": 34, "\u662f\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 34, "\u5b83\u901a\u8fc7\u7b80\u5355\u7684": 34, "\u4e3a\u6211\u4eec\u62bd\u8c61\u4e86\u8fd9\u4e9b\u590d\u6742\u6027": 34, "train_dataload": [34, 37, 38, 75, 115, 118, 148, 165], "shuffl": [34, 44, 45, 51, 52, 55, 73, 87, 92, 94, 96, 97, 104, 113, 115, 116, 117, 122, 123, 129, 135, 157, 158, 162, 166, 168, 169, 178, 221, 236, 250], "test_dataload": [34, 37, 38, 115], "train_featur": 34, "train_label": 34, "\u6211\u4eec\u5df2\u7ecf\u5c06\u6570\u636e\u96c6\u52a0\u8f7d\u5230": 34, "\u5e76\u53ef\u4ee5\u6839\u636e\u9700\u8981\u5bf9\u6570\u636e\u96c6\u8fdb\u884c\u8fed\u4ee3": 34, "\u4e0b\u9762\u7684\u6bcf\u6b21\u8fed\u4ee3\u90fd\u4f1a\u8fd4\u56de\u4e00\u4e2a\u6279\u6b21\u7684": 34, "\u5206\u522b\u5305\u542b": 34, "\u4e2a\u7279\u5f81\u548c\u6807\u7b7e": 34, "\u56e0\u4e3a\u6211\u4eec\u6307\u5b9a\u4e86": 34, "\u6240\u4ee5\u5728\u8fed\u4ee3\u5b8c\u6240\u6709\u6279\u6b21\u540e\u6570\u636e\u4f1a\u88ab\u91cd\u65b0\u6d17\u724c": 34, "\u5982\u679c\u60f3\u5bf9\u6570\u636e\u52a0\u8f7d\u987a\u5e8f\u8fdb\u884c\u66f4\u7cbe\u7ec6\u7684\u63a7\u5236": 34, "\u8bf7\u67e5\u770b": [34, 37, 94, 95], "data_tutori": [34, 35, 37, 38], "quickstart_tutori": [35, 36, 38], "tensorqs_tutori": [35, 40], "tensor_tutori": [35, 46, 48, 57], "dataquickstart_tutori": 35, "transforms_tutori": [35, 41], "autograd_tutori": [35, 37, 43, 46, 57], "optimization_tutori": [35, 37, 38], "saveloadrun_tutori": [35, 38, 39], "sphx_glr_beginner_basics_intro": 35, "sphx_glr_beginner_basics_saveloadrun_tutori": 35, "sphx_glr_beginner_basics_transforms_tutori": 35, "sphx_glr_beginner_basics_autogradqs_tutori": 35, "sphx_glr_beginner_basics_buildmodel_tutori": 35, "sphx_glr_beginner_basics_tensorqs_tutori": 35, "sphx_glr_beginner_basics_optimization_tutori": 35, "sphx_glr_beginner_basics_data_tutori": 35, "sphx_glr_beginner_basics_quickstart_tutori": 35, "suraj": [36, 53, 54, 55, 56, 109, 131, 132, 146, 176], "subramanian": [36, 53, 54, 55, 56, 109, 131, 132, 146, 176], "juarez": 36, "cassi": 36, "breviu": 36, "dmitri": 36, "soshnikov": 36, "ari": 36, "bornstein": 36, "\u5927\u591a\u6570\u673a\u5668\u5b66\u4e60\u5de5\u4f5c\u6d41\u6d89\u53ca\u5904\u7406\u6570\u636e": 36, "\u521b\u5efa\u6a21\u578b": 36, "\u4f18\u5316\u6a21\u578b\u53c2\u6570\u548c\u4fdd\u5b58\u8bad\u7ec3\u597d\u7684\u6a21\u578b": 36, "\u672c\u6559\u7a0b\u5c06\u5411\u60a8\u4ecb\u7ecd\u5728pytorch\u4e2d\u5b9e\u73b0\u7684\u5b8c\u6574ml\u5de5\u4f5c\u6d41": 36, "\u5e76\u63d0\u4f9b\u94fe\u63a5\u4ee5\u4e86\u89e3\u6709\u5173\u8fd9\u4e9b\u6982\u5ff5\u7684\u66f4\u591a\u4fe1\u606f": 36, "\u6211\u4eec\u5c06\u4f7f\u7528fashionmnist\u6570\u636e\u96c6\u6765\u8bad\u7ec3\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 36, "\u8be5\u7f51\u7edc\u53ef\u4ee5\u9884\u6d4b\u8f93\u5165\u56fe\u50cf\u662f\u5426\u5c5e\u4e8e\u4ee5\u4e0b\u7c7b\u522b\u4e4b\u4e00": 36, "t\u6064": 36, "\u4e0a\u8863": 36, "\u957f\u88e4": 36, "\u5957\u5934\u886b": 36, "\u8fde\u8863\u88d9": 36, "\u5916\u5957": 36, "\u51c9\u978b": 36, "\u886c\u886b": 36, "\u8fd0\u52a8\u978b": 36, "\u5305\u6216\u8e1d\u9774": 36, "\u672c\u6559\u7a0b\u5047\u8bbe\u60a8\u5bf9python\u548c\u6df1\u5ea6\u5b66\u4e60\u6982\u5ff5\u6709\u57fa\u672c\u7684\u4e86\u89e3": [36, 88], "\u60a8\u53ef\u4ee5\u901a\u8fc7\u4ee5\u4e0b\u51e0\u79cd\u65b9\u5f0f\u8fd0\u884c\u672c\u6559\u7a0b": [36, 88], "\u5728\u4e91\u7aef": [36, 88], "\u8fd9\u662f\u5f00\u59cb\u7684\u6700\u7b80\u5355\u65b9\u5f0f": [36, 88], "\u6bcf\u4e2a\u90e8\u5206\u7684\u9876\u90e8\u90fd\u6709\u4e00\u4e2a": 36, "\u5728microsoft": 36, "learn\u4e2d\u8fd0\u884c": 36, "\u5728googl": 36, "colab\u4e2d\u8fd0\u884c": [36, 236], "\u7684\u94fe\u63a5": 36, "\u5206\u522b\u4f1a\u5728microsoft": 36, "learn\u6216googl": 36, "colab\u4e2d\u6253\u5f00\u4e00\u4e2a\u96c6\u6210\u7684\u7b14\u8bb0\u672c": 36, "\u63d0\u4f9b\u5e26\u6709\u4ee3\u7801\u7684\u5b8c\u5168\u6258\u7ba1\u73af\u5883": 36, "\u672c\u5730\u8fd0\u884c": 36, "\u6b64\u9009\u9879\u9700\u8981\u60a8\u9996\u5148\u5728\u672c\u5730\u673a\u5668\u4e0a\u8bbe\u7f6epytorch\u548ctorchvis": [36, 88], "\u5b89\u88c5\u8bf4\u660e": [36, 88], "\u4e0b\u8f7d\u7b14\u8bb0\u672c\u6216\u5c06\u4ee3\u7801\u590d\u5236\u5230\u60a8\u559c\u6b22\u7684ide\u4e2d": 36, "\u5982\u679c\u60a8\u719f\u6089\u5176\u4ed6\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6": 36, "\u8bf7\u5148\u67e5\u770b": 36, "\u4ee5\u5feb\u901f\u719f\u6089pytorch\u7684api": 36, "\u5982\u679c\u60a8\u662f\u6df1\u5ea6\u5b66\u4e60\u6846\u67b6\u7684\u65b0\u624b": 36, "\u8bf7\u76f4\u63a5\u8fdb\u5165\u6211\u4eec\u9010\u6b65\u6307\u5357\u7684\u7b2c\u4e00\u90e8\u5206": 36, "\u4f18\u5316\u6a21\u578b": 36, "\u4fdd\u5b58": [36, 240, 242], "\u52a0\u8f7d\u548c\u4f7f\u7528\u6a21\u578b": 36, "\u73b0\u5728\u6211\u4eec\u6709\u4e86\u6a21\u578b\u548c\u6570\u636e": 37, "\u662f\u65f6\u5019\u901a\u8fc7\u5728\u6570\u636e\u4e0a\u4f18\u5316\u6a21\u578b\u53c2\u6570\u6765\u8bad\u7ec3": 37, "\u9a8c\u8bc1\u548c\u6d4b\u8bd5\u6211\u4eec\u7684\u6a21\u578b\u4e86": 37, "\u8bad\u7ec3\u6a21\u578b\u662f\u4e00\u4e2a\u8fed\u4ee3\u8fc7\u7a0b": 37, "\u5728\u6bcf\u6b21\u8fed\u4ee3\u4e2d": 37, "\u6a21\u578b\u4f1a\u5bf9\u8f93\u51fa\u8fdb\u884c\u731c\u6d4b": 37, "\u8ba1\u7b97\u5176\u731c\u6d4b\u7684\u8bef\u5dee": 37, "\u635f\u5931": [37, 89, 96], "\u6536\u96c6\u8bef\u5dee\u76f8\u5bf9\u4e8e\u5176\u53c2\u6570\u7684\u5bfc\u6570": 37, "\u5982\u6211\u4eec\u5728": 37, "\u524d\u4e00\u8282": 37, "_\u4e2d\u6240\u89c1": 37, "\u5e76\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6cd5": 37, "\u4f18\u5316": [37, 92, 250], "\u8fd9\u4e9b\u53c2\u6570": 37, "\u6709\u5173\u6b64\u8fc7\u7a0b\u7684\u66f4\u8be6\u7ec6\u8bb2\u89e3": 37, "3blue1brown": [37, 43], "\u7684\u8fd9\u4e2a\u89c6\u9891": 37, "www": [37, 49, 94, 104, 137, 165, 178, 236, 260, 262, 269, 271], "youtub": [37, 53, 54, 55, 56, 89, 90, 92, 93, 94, 95, 96, 121, 131, 132, 175], "tiehlnjs5u8": 37, "\u6211\u4eec\u52a0\u8f7d\u524d\u51e0\u8282\u4e2d\u7684": 37, "\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668": 37, "_\u548c": 37, "\u6784\u5efa\u6a21\u578b": [37, 88, 89, 90, 92, 94, 95, 96], "_\u7684\u4ee3\u7801": 37, "flatten": [37, 38, 44, 47, 68, 69, 73, 87, 97, 105, 111, 118, 123, 124, 129, 134, 136, 138, 146, 148, 150, 154, 157, 162, 193, 195, 203, 209, 219, 231, 233, 239], "\u8d85\u53c2\u6570\u662f\u53ef\u8c03\u53c2\u6570": 37, "\u5b83\u4eec\u53ef\u4ee5\u8ba9\u60a8\u63a7\u5236\u6a21\u578b\u7684\u4f18\u5316\u8fc7\u7a0b": 37, "\u4e0d\u540c\u7684\u8d85\u53c2\u6570\u503c\u4f1a\u5f71\u54cd\u6a21\u578b\u7684\u8bad\u7ec3\u548c\u6536\u655b\u901f\u5ea6": 37, "\u9605\u8bfb\u66f4\u591a": 37, "\u5173\u4e8e\u8d85\u53c2\u6570\u8c03\u6574\u7684\u5185\u5bb9": 37, "\u6211\u4eec\u4e3a\u8bad\u7ec3\u5b9a\u4e49\u4ee5\u4e0b\u8d85\u53c2\u6570": 37, "epoch\u6570\u91cf": 37, "\u8fed\u4ee3\u6574\u4e2a\u6570\u636e\u96c6\u7684\u6b21\u6570": 37, "\u6279\u91cf\u5927\u5c0f": 37, "\u5728\u66f4\u65b0\u53c2\u6570\u4e4b\u524d": 37, "\u901a\u8fc7\u7f51\u7edc\u4f20\u64ad\u7684\u6570\u636e\u6837\u672c\u6570\u91cf": 37, "\u5b66\u4e60\u7387": 37, "\u5728\u6bcf\u4e2a\u6279\u6b21": 37, "epoch\u4e2d\u66f4\u65b0\u6a21\u578b\u53c2\u6570\u7684\u5e45\u5ea6": 37, "\u8f83\u5c0f\u7684\u503c\u4f1a\u5bfc\u81f4\u5b66\u4e60\u901f\u5ea6\u7f13\u6162": 37, "\u800c\u8f83\u5927\u7684\u503c\u53ef\u80fd\u4f1a\u5bfc\u81f4\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u51fa\u73b0\u4e0d\u53ef\u9884\u6d4b\u7684\u884c\u4e3a": 37, "learning_r": [37, 47, 49, 63, 64, 68, 69, 71, 72, 97, 111, 126, 127, 128, 137, 148, 165], "\u4e00\u65e6\u8bbe\u7f6e\u597d\u8d85\u53c2\u6570": 37, "\u6211\u4eec\u5c31\u53ef\u4ee5\u7528\u4f18\u5316\u5faa\u73af\u6765\u8bad\u7ec3\u548c\u4f18\u5316\u6211\u4eec\u7684\u6a21\u578b": 37, "\u4f18\u5316\u5faa\u73af\u7684\u6bcf\u6b21\u8fed\u4ee3\u79f0\u4e3a\u4e00\u4e2a": 37, "\u6bcf\u4e2aepoch\u7531\u4e24\u4e2a\u4e3b\u8981\u90e8\u5206\u7ec4\u6210": 37, "\u8bad\u7ec3\u5faa\u73af": 37, "\u8fed\u4ee3\u8bad\u7ec3\u6570\u636e\u96c6\u5e76\u5c1d\u8bd5\u6536\u655b\u5230\u6700\u4f73\u53c2\u6570": 37, "\u9a8c\u8bc1": [37, 96], "\u6d4b\u8bd5\u5faa\u73af": 37, "\u8fed\u4ee3\u6d4b\u8bd5\u6570\u636e\u96c6\u4ee5\u68c0\u67e5\u6a21\u578b\u6027\u80fd\u662f\u5426\u6709\u63d0\u9ad8": 37, "\u8ba9\u6211\u4eec\u7b80\u8981\u4e86\u89e3\u8bad\u7ec3\u5faa\u73af\u4e2d\u4f7f\u7528\u7684\u4e00\u4e9b\u6982\u5ff5": 37, "\u8df3\u5230\u524d\u9762\u67e5\u770b\u4f18\u5316\u5faa\u73af\u7684": 37, "\u5f53\u9762\u5bf9\u4e00\u4e9b\u8bad\u7ec3\u6570\u636e\u65f6": 37, "\u6211\u4eec\u672a\u8bad\u7ec3\u7684\u7f51\u7edc\u53ef\u80fd\u4e0d\u4f1a\u7ed9\u51fa\u6b63\u786e\u7684\u7b54\u6848": 37, "\u8861\u91cf\u83b7\u5f97\u7684\u7ed3\u679c\u4e0e\u76ee\u6807\u503c\u7684\u5dee\u5f02\u7a0b\u5ea6": 37, "\u8fd9\u662f\u6211\u4eec\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u5e0c\u671b\u6700\u5c0f\u5316\u7684": 37, "\u8981\u8ba1\u7b97\u635f\u5931": 37, "\u6211\u4eec\u4f7f\u7528\u7ed9\u5b9a\u6570\u636e\u6837\u672c\u7684\u8f93\u5165\u8fdb\u884c\u9884\u6d4b": 37, "\u5e76\u5c06\u5176\u4e0e\u771f\u5b9e\u7684\u6570\u636e\u6807\u7b7e\u503c\u8fdb\u884c\u6bd4\u8f83": 37, "\u5e38\u89c1\u7684\u635f\u5931\u51fd\u6570\u5305\u62ec\u7528\u4e8e\u56de\u5f52\u4efb\u52a1\u7684": 37, "\u5747\u65b9\u8bef\u5dee": [37, 93], "\u4ee5\u53ca\u7528\u4e8e\u5206\u7c7b\u7684": 37, "nllloss": [37, 99, 102, 103, 110, 115, 127, 128, 165], "\u8d1f\u5bf9\u6570\u4f3c\u7136": 37, "_\u7ed3\u5408\u4e86": 37, "logsoftmax": [37, 78, 110, 115, 127, 128], "\u6211\u4eec\u5c06\u6a21\u578b\u7684\u8f93\u51falogits\u4f20\u9012\u7ed9": 37, "\u5b83\u5c06\u6807\u51c6\u5316logits\u5e76\u8ba1\u7b97\u9884\u6d4b\u8bef\u5dee": 37, "loss_fn": [37, 38, 68, 69, 78, 96, 111, 118, 133, 134, 136, 146, 149, 154, 161, 214, 230, 258], "\u4f18\u5316\u662f\u8c03\u6574\u6a21\u578b\u53c2\u6570\u4ee5\u51cf\u5c11\u6bcf\u6b21\u8bad\u7ec3\u6b65\u9aa4\u4e2d\u7684\u6a21\u578b\u8bef\u5dee\u7684\u8fc7\u7a0b": 37, "\u4f18\u5316\u7b97\u6cd5": 37, "\u5b9a\u4e49\u4e86\u8fd9\u4e2a\u8fc7\u7a0b\u5982\u4f55\u8fdb\u884c": 37, "\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d\u6211\u4eec\u4f7f\u7528\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u6cd5": 37, "\u6240\u6709\u4f18\u5316\u903b\u8f91\u90fd\u5c01\u88c5\u5728": 37, "\u5bf9\u8c61\u4e2d": 37, "\u5728\u8fd9\u91cc": [37, 90, 92, 96, 111, 242], "\u6211\u4eec\u4f7f\u7528sgd\u4f18\u5316\u5668": 37, "\u6b64\u5916": [37, 93], "pytorch\u4e2d\u8fd8\u6709\u8bb8\u591a": 37, "\u4e0d\u540c\u7684\u4f18\u5316\u5668": 37, "\u5982adam\u548crmsprop": 37, "\u5b83\u4eec\u5bf9\u4e0d\u540c\u7c7b\u578b\u7684\u6a21\u578b\u548c\u6570\u636e\u6548\u679c\u66f4\u597d": 37, "\u6211\u4eec\u901a\u8fc7\u6ce8\u518c\u9700\u8981\u8bad\u7ec3\u7684\u6a21\u578b\u53c2\u6570\u5e76\u4f20\u5165\u5b66\u4e60\u7387\u8d85\u53c2\u6570\u6765\u521d\u59cb\u5316\u4f18\u5316\u5668": 37, "\u5728\u8bad\u7ec3\u5faa\u73af\u4e2d": 37, "\u4f18\u5316\u5206\u4e3a\u4e09\u4e2a\u6b65\u9aa4": 37, "\u8c03\u7528": [37, 95, 104, 240, 241, 246], "\u6765\u91cd\u7f6e\u6a21\u578b\u53c2\u6570\u7684\u68af\u5ea6": 37, "\u68af\u5ea6\u4f1a\u7d2f\u52a0": 37, "\u4e3a\u9632\u6b62\u91cd\u590d\u8ba1\u7b97": 37, "\u6211\u4eec\u5728\u6bcf\u6b21\u8fed\u4ee3\u65f6\u663e\u5f0f\u5c06\u5176\u5f52\u96f6": 37, "\u53cd\u5411\u4f20\u64ad\u9884\u6d4b\u635f\u5931": 37, "pytorch\u4f1a\u5c06\u635f\u5931\u76f8\u5bf9\u4e8e\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u5b58\u50a8\u4e0b\u6765": 37, "\u4e00\u65e6\u6211\u4eec\u6709\u4e86\u68af\u5ea6": 37, "\u5c31\u8c03\u7528": 37, "\u901a\u8fc7\u53cd\u5411\u4f20\u64ad\u4e2d\u6536\u96c6\u7684\u68af\u5ea6\u6765\u8c03\u6574\u53c2\u6570": 37, "\u6211\u4eec\u5b9a\u4e49\u4e86": 37, "train_loop": 37, "\u6765\u5faa\u73af\u6267\u884c\u4f18\u5316\u4ee3\u7801": 37, "\u5e76\u5b9a\u4e49\u4e86": 37, "test_loop": 37, "\u6765\u8bc4\u4f30\u6a21\u578b\u5728\u6d4b\u8bd5\u6570\u636e\u4e0a\u7684\u6027\u80fd": 37, "unnecessari": [37, 171, 177, 212], "7f": [37, 38], "8f": [37, 38], "\u6211\u4eec\u521d\u59cb\u5316\u635f\u5931\u51fd\u6570\u548c\u4f18\u5316\u5668": 37, "\u5e76\u5c06\u5b83\u4eec\u4f20\u9012\u7ed9": 37, "\u60a8\u53ef\u4ee5\u5c1d\u8bd5\u589e\u52a0epoch\u7684\u6570\u91cf\u4ee5\u89c2\u5bdf\u6a21\u578b\u6027\u80fd\u7684\u63d0\u5347": 37, "warmstart": [37, 235], "\u672c\u8282\u5c06\u4ecb\u7ecd\u673a\u5668\u5b66\u4e60\u4efb\u52a1\u4e2d\u5e38\u7528\u7684api": 38, "\u60f3\u66f4\u6df1\u5165\u4e86\u89e3\u5404\u6a21\u5757\u5185\u5bb9": 38, "\u53ef\u53c2\u8003\u6bcf\u8282\u6587\u672b\u5904\u7684\u94fe\u63a5": 38, "\u63d0\u4f9b\u4e86\u4e24\u4e2a\u7528\u4e8e": 38, "\u5904\u7406\u6570\u636e\u7684\u539f\u8bed": 38, "\u5219\u5728": 38, "\u5916\u90e8\u5c01\u88c5\u4e00\u5c42": 38, "\u53d8\u4e3a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 38, "\u63d0\u4f9b\u4e86\u7279\u5b9a\u9886\u57df\u7684\u5e93": 38, "torchaudio": [38, 50, 92, 96, 121, 122, 158, 168, 184, 187, 236], "\u6240\u6709\u8fd9\u4e9b\u5e93\u90fd\u5305\u542b\u4e86\u5bf9\u5e94\u6570\u636e\u96c6": 38, "\u5728\u672c\u6559\u7a0b\u4e2d": [38, 233, 238, 240, 242, 243, 246, 248, 249, 250], "\u6211\u4eec\u5c06\u4f7f\u7528": [38, 89, 90, 96, 104, 233, 236, 238, 240, 241, 242, 243, 248, 249], "\u6a21\u5757\u5305\u542b\u8bb8\u591a\u73b0\u5b9e\u4e16\u754c\u89c6\u89c9\u6570\u636e": 38, "cifar": [38, 44, 92, 169], "coco": [38, 178], "\u6570\u636e\u96c6\u5217\u8868": 38, "\u6211\u4eec\u4f7f\u7528": [38, 41, 96, 104, 111, 249], "\u6bcf\u4e2atorchvis": 38, "\u5305\u62ec\u4e24\u4e2a\u53c2\u6570": 38, "\u5206\u522b\u7528\u4e8e\u4fee\u6539\u6837\u672c\u6570\u636e\u548c\u6807\u7b7e": 38, "\u6211\u4eec\u5c06": [38, 90, 95], "\u4f5c\u4e3a\u53c2\u6570\u4f20\u9012\u7ed9": 38, "\u5728\u6570\u636e\u96c6\u4e0a\u5c01\u88c5\u4e86\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 38, "\u652f\u6301\u81ea\u52a8\u6279\u5904\u7406": 38, "\u91c7\u6837": 38, "\u6253\u4e71\u548c\u591a\u8fdb\u7a0b\u6570\u636e\u52a0\u8f7d": 38, "\u8fd9\u91cc\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u6279\u5904\u7406\u5927\u5c0f\u4e3a": 38, "\u5373": [38, 89, 104], "\u6bcf\u6279\u5c06\u8fd4\u56de\u5927\u5c0f\u4e3a": 38, "\u7684\u7279\u5f81\u6570\u636e\u548c\u6807\u7b7e": 38, "\u83b7\u53d6\u66f4\u591a\u5173\u4e8e": 38, "pytorch\u6570\u636e\u52a0\u8f7d": 38, "\u7684\u4fe1\u606f": 38, "\u8981\u5728": [38, 72], "\u4e2d\u5b9a\u4e49\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 38, "\u6211\u4eec\u9700\u8981\u521b\u5efa\u4e00\u4e2a\u7ee7\u627f\u81ea": 38, "\u7684\u7c7b": [38, 93], "\u6211\u4eec\u5728": [38, 94, 104], "\u51fd\u6570\u4e2d\u5b9a\u4e49\u7f51\u7edc\u7684\u5c42": 38, "\u51fd\u6570\u4e2d\u6307\u5b9a\u6570\u636e\u5982\u4f55\u7ecf\u8fc7\u7f51\u7edc": 38, "\u4e3a\u4e86\u52a0\u901f\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u8fd0\u7b97": 38, "\u6211\u4eec\u5c06\u5176\u79fb\u5230": 38, "pytorch\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": 38, "\u7684\u5185\u5bb9": 38, "\u7ec3\u4e00\u4e2a\u6a21\u578b": 38, "\u6211\u4eec\u9700\u8981\u4e00\u4e2a": 38, "\u635f\u5931\u51fd\u6570": [38, 89, 92, 104], "\u548c\u4e00\u4e2a": 38, "\u4f18\u5316\u5668": [38, 92, 241, 242, 249], "\u5728\u5355\u4e2a\u8bad\u7ec3\u5faa\u73af\u4e2d": 38, "\u6a21\u578b\u5bf9\u8bad\u7ec3\u6570\u636e\u96c6": 38, "\u5206\u6279\u8f93\u5165": 38, "\u8fdb\u884c\u9884\u6d4b": 38, "\u5e76\u901a\u8fc7\u53cd\u5411\u4f20\u64ad\u9884\u6d4b\u8bef\u5dee\u6765\u8c03\u6574\u6a21\u578b\u7684\u53c2\u6570": 38, "\u6211\u4eec\u8fd8\u9700\u68c0\u67e5\u6a21\u578b\u5728\u6d4b\u8bd5\u6570\u636e\u96c6\u4e0a\u7684\u6548\u679c": 38, "\u4ee5\u786e\u4fdd\u5b83\u5728\u6301\u7eed\u5b66\u4e60": 38, "\u901a\u8fc7\u591a\u6b21\u8fed\u4ee3": 38, "\u8fdb\u884c\u8bad\u7ec3": 38, "\u5728\u6bcf\u4e2a\u8fed\u4ee3\u8fc7\u7a0b\u4e2d": 38, "\u6a21\u578b\u901a\u8fc7\u5bf9\u53c2\u6570\u7684\u5b66\u4e60\u4ee5\u63d0\u9ad8\u9884\u6d4b\u51c6\u786e\u6027": 38, "\u6211\u4eec\u5728\u6bcf\u4e2a": [38, 104], "\u6253\u5370\u6a21\u578b\u7684\u51c6\u786e\u7387\u548c\u635f\u5931": 38, "\u6211\u4eec\u5e0c\u671b\u770b\u5230\u968f\u7740\u6bcf\u4e2a": 38, "\u8bad\u7ec3": [38, 96, 236], "\u6a21\u578b\u9884\u6d4b\u51c6\u786e\u7387\u4e0d\u65ad\u63d0\u9ad8": 38, "\u635f\u5931\u9010\u6e10\u51cf\u5c11": 38, "\u8bad\u7ec3\u6a21\u578b": [38, 88, 89, 90, 92, 93, 94, 95], "\u4fdd\u5b58\u6a21\u578b\u7684\u5e38\u89c1\u65b9\u6cd5\u662f\u5c06\u5185\u90e8\u72b6\u6001\u5b57\u5178": 38, "\u5305\u542b\u6a21\u578b\u53c2\u6570": 38, "\u5e8f\u5217\u5316": 38, "\u52a0\u8f7d\u6a21\u578b\u7684\u8fc7\u7a0b\u5305\u62ec\u91cd\u65b0\u521b\u5efa\u6a21\u578b\u7ed3\u6784\u5e76\u52a0\u8f7d\u5176\u5185\u90e8\u72b6\u6001\u5b57\u5178": 38, "\u8fd9\u4e2a\u6a21\u578b\u73b0\u5728\u53ef\u4ee5\u7528\u6765\u8fdb\u884c\u9884\u6d4b\u4e86": 38, "\u83b7\u53d6\u66f4\u591a\u6709\u5173": 38, "\u5728\u672c\u8282\u4e2d": 39, "\u6211\u4eec\u5c06\u5b66\u4e60\u5982\u4f55\u901a\u8fc7\u4fdd\u5b58": 39, "\u52a0\u8f7d\u4ee5\u53ca\u8fd0\u884c\u6a21\u578b\u9884\u6d4b": 39, "\u6765\u6301\u4e45\u5316\u6a21\u578b": 39, "pytorch\u6a21\u578b\u5c06\u5b66\u4e60\u5230\u7684\u53c2\u6570\u5b58\u50a8\u5728\u4e00\u4e2a\u5185\u90e8\u72b6\u6001\u5b57\u5178\u4e2d": 39, "\u8fd9\u4e9b\u53c2\u6570\u53ef\u4ee5\u901a\u8fc7": 39, "\u8fdb\u884c\u6301\u4e45\u5316": 39, "vgg16": [39, 147], "imagenet1k_v1": [39, 90, 117, 139, 168, 195, 229], "model_weight": 39, "\u8981\u52a0\u8f7d\u6a21\u578b\u6743\u91cd": 39, "\u60a8\u9700\u8981\u5148\u521b\u5efa\u4e00\u4e2a\u76f8\u540c\u6a21\u578b\u7684\u5b9e\u4f8b": 39, "\u7136\u540e\u4f7f\u7528": [39, 241, 243], "\u65b9\u6cd5\u52a0\u8f7d\u53c2\u6570": 39, "untrain": 39, "\u6ce8\u610f": [39, 89, 90, 95, 96, 104, 238, 240, 242, 250], "\u5728\u8fdb\u884c\u63a8\u7406\u4e4b\u524d": 39, "\u8bf7\u786e\u4fdd\u8c03\u7528": [39, 240], "\u65b9\u6cd5\u4ee5\u5c06": 39, "layers\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": [39, 242], "\u5982\u679c\u4e0d\u8fd9\u6837\u505a": [39, 241], "\u5c06\u5bfc\u81f4\u4e0d\u4e00\u81f4\u7684\u63a8\u7406\u7ed3\u679c": 39, "\u5728\u52a0\u8f7d\u6a21\u578b\u6743\u91cd\u65f6": 39, "\u6211\u4eec\u9700\u8981\u5148\u5b9e\u4f8b\u5316\u6a21\u578b\u7c7b": 39, "\u56e0\u4e3a\u7c7b\u5b9a\u4e49\u4e86\u7f51\u7edc\u7684\u7ed3\u6784": 39, "\u6211\u4eec\u53ef\u80fd\u5e0c\u671b\u5c06\u8fd9\u4e2a\u7c7b\u7684\u7ed3\u6784\u4e0e\u6a21\u578b\u4e00\u8d77\u4fdd\u5b58": 39, "\u6211\u4eec\u53ef\u4ee5\u5c06": 39, "\u800c\u4e0d\u662f": [39, 89, 95, 96, 104, 111], "\u4f20\u9012\u7ed9": [39, 238, 240], "\u51fd\u6570": [39, 41, 89, 92, 104, 111, 233, 238, 240, 242], "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u5982\u4e0b\u65b9\u5f0f\u52a0\u8f7d\u6a21\u578b": 39, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528checkpoint": 39, "\u7684\u5b9e\u7528\u6280\u5de7": 39, "\u7c7b\u4f3c\u4e8e\u6570\u7ec4\u548c\u77e9\u9635": 40, "\u5f20\u91cf\u4e5f\u662f\u4e00\u79cd\u7279\u5b9a\u7684\u6570\u636e\u7ed3\u6784": 40, "\u5728pytorch\u4e2d": [40, 111, 233, 242], "\u6211\u4eec\u4f7f\u7528\u5f20\u91cf\u5bf9\u4e00\u4e2a\u6a21\u578b\u7684\u53c2\u6570": 40, "\u8f93\u5165\u548c\u8f93\u51fa\u8fdb\u884c\u7f16\u7801": 40, "\u5f20\u91cf\u7684\u7ed3\u6784\u7c7b\u4f3c\u4e8e": 40, "\u4e2d\u7684ndarrai": 40, "\u800c\u5f20\u91cf\u53ef\u4ee5\u8fd0\u884c\u5728gpu\u53ca\u5176\u4ed6\u76f8\u4f3c\u7684\u786c\u4ef6\u52a0\u901f\u5668\u4e0a": 40, "\u4e8b\u5b9e\u4e0a": [40, 92, 93], "\u4e3a\u4e86\u51cf\u5c11\u6570\u636e\u7684\u62f7\u8d1d": 40, "\u5f20\u91cf\u548cnumpi": 40, "arrays\u5728\u5e95\u5c42\u5e38\u5e38\u5171\u4eab\u540c\u4e00\u5757\u5185\u5b58": 40, "bridg": [40, 85, 225], "role": [40, 103, 156, 163, 177, 262, 271], "\u5728\u81ea\u52a8\u5fae\u5206": 40, "\u7684\u8fc7\u7a0b\u4e2d\u4e5f\u4f7f\u7528\u5f20\u91cf\u8fdb\u884c\u4f18\u5316": 40, "\u5728\u540e\u7eed": 40, "\u7ae0\u8282\u53ef\u4ee5\u770b\u5230\u66f4\u591a\u6709\u5173\u5185\u5bb9": 40, "\u5982\u679c\u5df2\u7ecf\u5bf9ndarrays\u5341\u5206\u719f\u6089\u4e86": 40, "\u90a3\u5bf9\u5f20\u91cf\u7684api\u4e5f\u53ef\u4ee5\u8fd0\u7528\u81ea\u5982": 40, "\u5982\u679c\u8fd8\u4e0d\u719f\u6089": 40, "\u4e0b\u9762\u7684\u6559\u7a0b\u4f1a\u5e2e\u52a9\u4f60\u4e0a\u624b": 40, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u591a\u79cd\u65b9\u5f0f\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf": 40, "\u4f7f\u7528\u6570\u636e\u521b\u5efa": 40, "\u901a\u8fc7\u5df2\u5b9a\u4e49\u7684\u6570\u636e\u53ef\u4ee5\u76f4\u63a5\u521b\u5efa\u51fa\u6765\u5f20\u91cf": 40, "\u521b\u5efa\u65f6\u4f1a\u81ea\u52a8\u63a8\u65ad\u6570\u636e\u7c7b\u578b": 40, "x_data": [40, 48], "\u4f7f\u7528numpi": 40, "array\u521b\u5efa": 40, "\u53ef\u4ee5\u4f7f\u7528numpi": 40, "array\u521b\u5efa\u5f20\u91cf": 40, "\u53cd\u4e4b\u4ea6\u53ef": 40, "np_arrai": [40, 48], "x_np": [40, 48], "\u4f7f\u7528\u5df2\u6709\u5f20\u91cf\u521b\u5efa": 40, "\u65b0\u7684\u5f20\u91cf\u4f1a\u4fdd\u7559\u539f\u5f20\u91cf\u7684\u5c5e\u6027": 40, "\u5f62\u72b6": [40, 95], "\u6570\u636e\u7c7b\u578b": [40, 72], "\u9664\u975e\u521b\u5efa\u65f6\u663e\u793a\u58f0\u660e": 40, "x_one": [40, 48], "Ones": [40, 48], "x_rand": [40, 48], "rand_lik": [40, 48, 95, 141, 153], "\u901a\u8fc7\u968f\u673a\u6216\u5e38\u91cf\u521b\u5efa": 40, "\u63cf\u8ff0\u4e86\u5f20\u91cf\u7684\u7ef4\u5ea6": 40, "\u5728\u4e0b\u9762\u7684\u65b9\u6cd5\u8c03\u7528\u65f6": 40, "\u901a\u8fc7\u5b83\u6765\u58f0\u660e\u521b\u5efa\u5f20\u91cf\u7684\u7ef4\u5ea6": 40, "rand_tensor": [40, 48], "ones_tensor": [40, 48], "zeros_tensor": [40, 48], "\u5f20\u91cf\u7684\u5c5e\u6027\u4fdd\u5b58\u4e86\u5176\u5f62\u72b6": 40, "\u4ee5\u53ca\u5176\u5b58\u50a8\u8bbe\u5907\u7c7b\u578b": 40, "\u5f20\u91cf\u6709\u8d85\u8fc7100\u4e2a\u64cd\u4f5c\u65b9\u6cd5": 40, "\u5305\u62ec\u7b97\u6570": 40, "\u7ebf\u6027\u4ee3\u6570": 40, "\u77e9\u9635\u64cd\u4f5c": 40, "\u8f6c\u7f6e": 40, "\u7d22\u5f15": 40, "\u5207\u7247": 40, "\u91c7\u6837\u7b49": 40, "\u90fd\u5728": 40, "\u8fd9\u91cc": [40, 41, 90, 93, 95, 96, 104], "\u6709\u8be6\u7ec6\u7684\u63cf\u8ff0": 40, "\u6bcf\u4e2a\u64cd\u4f5c\u90fd\u53ef\u4ee5\u5728gpu\u4e0a\u8fd0\u884c": 40, "\u901a\u5e38\u6bd4\u5728cpu\u4e0a\u901f\u5ea6\u66f4\u5feb": 40, "\u5982\u679c\u4f60\u5728\u4f7f\u7528colab": 40, "\u53ef\u4ee5\u901a\u8fc7\u4fee\u6539runtim": 40, "gpu\u6765\u5206\u914d\u4e00\u4e2agpu": 40, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u5f20\u91cf\u662f\u5728cpu\u4e0a\u521b\u5efa\u7684": 40, "\u53ef\u4ee5\u901a\u8fc7": [40, 93], "\u65b9\u6cd5\u5c06\u5f20\u91cf\u663e\u793a\u7684\u8f6c\u79fb\u5230gpu\u4e0a": 40, "\u5982\u679cgpu\u5728\u4f60\u7684\u73af\u5883\u91cc\u53ef\u7528\u7684\u8bdd": 40, "\u9700\u8981\u6ce8\u610f\u7684\u662f": 40, "\u5728\u4e0d\u540c\u8bbe\u5907\u95f4\u590d\u5236\u5927\u578b\u5f20\u91cf\u9700\u8981\u6d88\u8017\u5927\u91cf\u5185\u5b58": 40, "\u5e76\u4e14\u8017\u65f6\u8f83\u957f": 40, "\u5c1d\u8bd5\u4e0b\u5217\u64cd\u4f5c": 40, "\u5982\u679c\u4f60\u5df2\u7ecf\u5bf9numpi": 40, "api\u5341\u5206\u719f\u6089": 40, "\u4e0a\u624b\u5f20\u91cfapi\u5c06\u4f1a\u5f88\u7b80\u5355": 40, "\u7c7b\u4f3cnumpy\u7684\u7d22\u5f15\u548c\u5207\u7247\u64cd\u4f5c": 40, "\u8fde\u63a5\u5f20\u91cf": 40, "\u4f60\u53ef\u4ee5\u4f7f\u7528": [40, 95], "\u6cbf\u7740\u7ed9\u5b9a\u7684\u7ef4\u5ea6\u8fde\u63a5\u4e00\u7cfb\u5217\u5f20\u91cf": 40, "\u53e6\u4e00\u4e2a\u5f20\u91cf\u8fde\u63a5\u64cd\u4f5c\u7b26": 40, "\u4e0e": [40, 92, 93, 95, 111], "\u7a0d\u6709\u4e0d\u540c": 40, "\u8bf7\u53c2\u9605": [40, 89, 94, 95, 246], "\u8fd0\u7b97\u64cd\u4f5c": 40, "y1": [40, 178, 245], "y2": 40, "y3": 40, "wise": [40, 48, 73, 95, 99, 110, 124, 135, 144, 147, 150], "z1": [40, 144], "z2": 40, "z3": 40, "\u5355\u4e2a\u5143\u7d20\u7684\u5f20\u91cf": 40, "\u5728\u805a\u5408\u8fd0\u7b97\u573a\u666f\u4e2d": 40, "\u4f60\u53ef\u80fd\u4f1a\u5f97\u5230\u4e00\u4e2a\u5355\u5143\u7d20\u7684\u5f20\u91cf": 40, "\u53ef\u4f7f\u7528": 40, "\u5c06\u5176\u4f20\u5524\u4e3apython\u6570\u503c": 40, "agg": [40, 149, 165], "agg_item": 40, "\u539f\u5730\u64cd\u4f5c": 40, "\u4fee\u6539\u5f20\u91cf\u4e2d\u7684\u539f\u503c\u64cd\u4f5c\u79f0\u4e3a\u539f\u5730\u64cd\u4f5c": 40, "\u5b83\u4eec\u4ee5": 40, "\u540e\u7f00\u8868\u793a": 40, "t_": [40, 48, 262, 271], "\u4f1a\u6539\u53d8": 40, "add_": [40, 48, 80, 95, 127, 128, 173, 174, 189, 206, 216], "\u5f20\u91cf\u5728\u4f7f\u7528cpu\u65f6": 40, "\u53ef\u4e0enumpi": 40, "arrays\u5171\u4eab\u5185\u5b58\u7a7a\u95f4": 40, "\u4fee\u6539\u5176\u4e2d\u4e00\u4e2a\u4f1a\u540c\u6b65\u6620\u5c04\u5230\u53e6\u4e00\u4e2a\u4e0a": 40, "\u5bf9\u4e8e\u5f20\u91cf\u7684\u4fee\u6539\u4f53\u73b0\u5230\u4e86numpi": 40, "array\u4e0a": 40, "\u6570\u636e\u5e76\u4e0d\u603b\u662f\u4ee5\u8bad\u7ec3\u673a\u5668\u5b66\u4e60\u7b97\u6cd5\u6240\u9700\u7684\u6700\u7ec8\u5904\u7406\u5f62\u5f0f\u5448\u73b0": 41, "\u6765\u5bf9\u6570\u636e\u8fdb\u884c\u4e00\u4e9b\u5904\u7406": 41, "\u4f7f\u5176\u9002\u7528\u4e8e\u8bad\u7ec3": 41, "\u6240\u6709": [41, 95], "\u6570\u636e\u96c6\u90fd\u6709\u4e24\u4e2a\u53c2\u6570": 41, "\u7528\u4e8e\u4fee\u6539\u7279\u5f81": 41, "\u7528\u4e8e\u4fee\u6539\u6807\u7b7e": 41, "\u5b83\u4eec\u63a5\u53d7\u5305\u542b\u8f6c\u6362\u903b\u8f91\u7684\u53ef\u8c03\u7528\u5bf9\u8c61": 41, "\u6a21\u5757\u63d0\u4f9b\u4e86\u51e0\u79cd\u5e38\u7528\u7684\u8f6c\u6362": 41, "\u7684\u7279\u5f81\u662f\u4ee5": 41, "\u56fe\u50cf\u683c\u5f0f\u5448\u73b0\u7684": 41, "\u6807\u7b7e\u662f\u6574\u6570": 41, "\u5bf9\u4e8e\u8bad\u7ec3": 41, "\u6211\u4eec\u9700\u8981\u5c06\u7279\u5f81\u8f6c\u6362\u4e3a\u5f52\u4e00\u5316\u7684\u5f20\u91cf": 41, "\u5c06\u6807\u7b7e\u8f6c\u6362\u4e3a\u7f16\u7801\u7684\u5f20\u91cf": 41, "\u4e3a\u4e86\u8fdb\u884c\u8fd9\u4e9b\u8f6c\u6362": 41, "\u6211\u4eec\u4f7f\u7528\u4e86": 41, "ds": [41, 127, 128, 165], "scatter_": [41, 134, 149, 161], "\u5c06": [41, 92, 121, 242, 243], "\u56fe\u50cf\u6216": 41, "ndarrai": [41, 48, 51, 95, 110, 171], "\u8f6c\u6362\u4e3a": 41, "floattensor": [41, 49, 60, 95], "\u5e76\u5c06\u56fe\u50cf\u7684\u50cf\u7d20\u5f3a\u5ea6\u503c\u7f29\u653e\u5230\u8303\u56f4": 41, "\u5e94\u7528\u4efb\u4f55\u7528\u6237\u5b9a\u4e49\u7684": 41, "\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u51fd\u6570\u5c06\u6574\u6570\u8f6c\u6362\u4e3a\u72ec\u70ed\u7f16\u7801\u7684\u5f20\u91cf": 41, "\u5b83\u9996\u5148\u521b\u5efa\u4e00\u4e2a\u5927\u5c0f\u4e3a": 41, "\u6211\u4eec\u6570\u636e\u96c6\u4e2d\u6807\u7b7e\u7684\u6570\u91cf": 41, "\u7684\u96f6\u5f20\u91cf": 41, "\u7136\u540e\u8c03\u7528": 41, "\u5728\u7531\u6807\u7b7e": 41, "\u6307\u5b9a\u7684\u7d22\u5f15\u4e0a\u8d4b\u503c\u4e3a": 41, "gschwind": 42, "bt": 42, "fastpath": 42, "acceler": [42, 48, 50, 57, 75, 95, 121, 149, 177, 188, 194, 196, 207, 211, 219, 220, 234, 247, 257], "multiheadattent": [42, 164, 193], "mha": [42, 190, 193], "exploit": [42, 97, 146, 165], "sparsiti": [42, 103, 121, 156, 189, 191, 196], "criteria": [42, 52], "blog": [42, 122, 123, 127, 131, 176, 219, 229], "xlm": [42, 137, 185], "predefin": [42, 49, 97, 136, 200, 221, 247], "robertaclassificationhead": 42, "xlmr_larg": 42, "xlmr_large_encod": 42, "classifier_head": 42, "input_dim": [42, 146, 218, 223], "get_model": [42, 104, 113, 161], "small_input_batch": 42, "hello": [42, 49, 58, 59, 60, 99, 103, 139, 152], "big_input_batch": 42, "princ": 42, "genoa": 42, "lucca": 42, "famili": [42, 219], "estat": 42, "buonapart": 42, "war": 42, "defend": [42, 73], "infami": 42, "horror": 42, "perpetr": 42, "antichrist": 42, "believ": [42, 190], "he": [42, 113, 115, 142, 146, 165], "friend": [42, 49, 152], "faith": 42, "slave": 42, "frighten": 42, "juli": 42, "1805": 42, "speaker": [42, 49], "anna": 42, "pavlovna": 42, "scherer": 42, "maid": 42, "honor": 42, "empress": 42, "marya": 42, "fedorovna": 42, "she": [42, 113, 165], "greet": 42, "vasili": 42, "kuragin": 42, "man": [42, 113, 115, 262, 263, 271, 272], "recept": 42, "cough": 42, "suffer": [42, 61, 113, 168, 216], "la": [42, 99], "gripp": 42, "st": [42, 103, 115], "petersburg": 42, "elit": [42, 261, 263, 265, 270, 272, 274], "input_batch": [42, 49, 58, 59, 60, 158], "model_input": [42, 113], "padding_valu": [42, 118], "_transformer_encoder_layer_fwd": 42, "use_cuda": [42, 49, 73, 89, 119, 129, 146, 232, 238], "enable_nested_tensor": 42, "prop": 43, "proportion": [43, 152], "travers": [43, 163, 221], "walkthrough": [43, 48, 82, 109, 225], "resnet18_weight": [43, 195, 229], "3a": [43, 158], "9a": 43, "2b": 43, "dq": [43, 197], "external_grad": 43, "deposit": 43, "bf": 43, "chain": [43, 99, 100, 115, 129, 144, 161, 191, 200], "acycl": [43, 76], "finetun": [43, 75, 125, 152], "unfrozen": 43, "exclusionari": 43, "autodiff": [43, 121, 145], "pillow": [44, 92, 213], "scipi": [44, 121, 130, 172], "librosa": 44, "cython": 44, "nltk": 44, "spaci": [44, 116, 118], "viz": [44, 90, 229], "huge": [44, 99, 103, 124, 133, 136, 149], "airplan": [44, 97], "automobil": [44, 97], "bird": [44, 92, 250], "deer": [44, 92, 250], "dog": [44, 58, 59, 92, 97, 102, 113, 178, 188, 204, 229, 250, 257], "frog": [44, 92, 250], "hors": [44, 92, 250], "truck": [44, 92, 97, 250], "3x32x32": 44, "color": [44, 51, 52, 58, 59, 90, 94, 126, 146, 147, 158, 169, 171, 178, 213, 231, 262, 271], "32x32": [44, 47, 92, 97, 105, 169], "extrem": [44, 103, 147, 262, 271], "pilimag": 44, "brokenpipeerror": 44, "trainset": [44, 87, 92, 169, 250], "trainload": [44, 87, 92, 169, 250], "testset": [44, 87, 92, 169, 250], "testload": [44, 87, 92, 169, 250], "plane": [44, 92, 134, 250], "car": [44, 58, 59, 92, 113, 250], "fun": [44, 49, 105, 107, 108, 159, 234], "unnorm": [44, 92, 118, 169], "npimg": [44, 92, 94, 96, 169], "datait": [44, 92, 94, 96, 169], "make_grid": [44, 51, 52, 92, 94, 96, 117, 157, 166, 169], "5s": [44, 92], "fc1": [44, 47, 73, 78, 87, 92, 93, 94, 96, 105, 112, 123, 129, 138, 154, 156, 162, 166, 169, 185, 203, 221, 233, 239, 240, 241, 242, 243, 248, 249, 250], "fc2": [44, 47, 73, 78, 87, 92, 93, 94, 96, 105, 112, 123, 129, 138, 154, 156, 162, 166, 169, 185, 203, 221, 233, 239, 240, 241, 242, 243, 248, 249, 250], "84": [44, 47, 51, 87, 92, 93, 94, 96, 105, 109, 112, 136, 146, 156, 169, 176, 187, 239, 240, 241, 242, 243, 248, 249, 250], "fc3": [44, 47, 87, 92, 93, 94, 96, 105, 112, 138, 156, 169, 239, 240, 241, 242, 243, 248, 249, 250], "classif": [44, 52, 58, 59, 73, 75, 87, 97, 99, 115, 117, 119, 123, 128, 137, 148, 158, 166, 171, 178, 185, 206, 224, 225], "entropi": [44, 52, 118, 124], "running_loss": [44, 87, 92, 94, 96, 97, 117, 157, 169, 250], "2000": [44, 63, 64, 65, 67, 68, 69, 71, 72, 87, 92, 97, 111, 169, 171, 173, 174, 231, 250, 258], "1999": [44, 65, 87, 92, 111, 250], "mini": [44, 47, 49, 52, 78, 79, 87, 102, 104, 139, 146, 154, 158, 169, 204, 221], "cifar_net": 44, "learnt": 44, "truth": [44, 73, 105, 178, 196], "okai": 44, "groundtruth": 44, "wasn": [44, 98, 101], "energi": [44, 49, 60, 262, 271], "chanc": [44, 49, 97, 146, 252], "hmmm": 44, "correct_pr": 44, "classnam": [44, 52], "total_pr": 44, "correct_count": 44, "chat": [44, 49, 60, 79, 165], "cifar10_tutori": [44, 46, 57], "sung": 45, "kim": 45, "jenni": 45, "kang": 45, "mytensor": 45, "my_tensor": [45, 93, 112, 240], "parallelli": 45, "output_s": [45, 49, 51, 60, 78, 127, 128, 136, 165, 178], "data_s": [45, 78], "getitem": [45, 115], "randomdataset": 45, "__getitem__": [45, 51, 104, 135, 178], "rand_load": 45, "capsul": 45, "monitor": [45, 113, 135, 177], "tin": 45, "former_torchi": [45, 77], "parallelism_tutori": [45, 77, 79], "data_parallel_tutori": [45, 46], "neural_networks_tutori": [46, 47, 57], "gentl": [46, 56, 57, 120], "glimps": 47, "convnet": [47, 81, 136, 146, 157, 162], "5x5": [47, 92, 93, 156], "affin": [47, 92, 102, 129, 166, 176, 179, 218, 247], "wx": [47, 92, 93], "c1": [47, 89, 92, 144, 191], "subsampl": 47, "2x2": [47, 93], "c3": [47, 89, 92], "s4": [47, 92], "f5": [47, 92], "f6": [47, 92], "lenet": [47, 73, 92, 93, 96, 156, 221], "nsampl": [47, 49, 78, 236], "nchannel": [47, 78], "next_funct": [47, 89], "clear": [47, 51, 73, 98, 99, 102, 103, 125, 144, 163, 171, 186, 191, 213, 231], "sub_": 47, "nesterov": [47, 112], "overridden": [48, 136, 237], "breez": [48, 80], "subtli": 48, "problemat": [48, 144, 153, 247, 262, 271], "matthew": [49, 60, 86, 112], "inkawhich": [49, 52, 60, 73, 85, 86, 112], "movi": [49, 50, 60, 113], "cornel": [49, 50, 60], "dialog": [49, 50, 60], "hot": [49, 73, 103, 127, 128, 136, 165], "artifici": [49, 60, 97], "intellig": 49, "onlin": [49, 136, 137, 146, 159, 162, 257], "helpdesk": 49, "bot": [49, 60], "compani": [49, 115], "IT": 49, "teach": [49, 52, 97, 165], "boom": 49, "am": [49, 60, 101, 113, 128, 165, 208], "hospit": [49, 113], "lawyer": 49, "arrest": 49, "kid": 49, "sorri": [49, 95], "san": [49, 113], "francisco": [49, 104, 113], "goodby": [49, 193], "luong": [49, 60, 165], "jointli": [49, 165], "acknowledg": [49, 135], "borrow": [49, 61, 123, 134, 163], "yuan": [49, 60, 222], "kuei": [49, 60], "wu": [49, 60, 186], "ywk991112": [49, 60], "sean": [49, 60, 127, 128, 165], "robertson": [49, 60, 127, 128, 165], "spro": [49, 60], "floydhub": [49, 60], "textutil": [49, 60], "unicodedata": [49, 60, 127, 128, 165], "codec": 49, "itertool": [49, 160, 163, 200, 231], "reformat": 49, "rich": [49, 226], "charact": [49, 60, 103, 113, 127, 128, 131, 159, 165, 262, 271], "220": [49, 163], "579": [49, 147], "292": [49, 87], "035": 49, "617": 49, "713": [49, 92], "utter": [49, 50], "divers": 49, "variat": [49, 130, 189, 203, 231], "formal": [49, 189], "sentiment": 49, "datafil": 49, "corpus_nam": [49, 50, 60], "printlin": 49, "readlin": [49, 75, 127, 128], "jsonl": [49, 50], "tab": [49, 116, 165, 169, 188, 226], "sentenc": [49, 60, 93, 98, 99, 102, 103, 113, 118, 128, 135, 137, 165, 193, 262, 271], "loadlinesandconvers": 49, "lineid": 49, "characterid": 49, "conversationid": 49, "movieid": 49, "extractsentencepair": 49, "iso": 49, "8859": 49, "linejson": 49, "lineobj": 49, "conversation_id": 49, "convobj": 49, "movie_id": 49, "qa_pair": 49, "inputlin": 49, "targetlin": 49, "wrong": [49, 52, 73, 99, 127, 144, 172, 195], "formatted_movie_lin": 49, "delimit": [49, 115, 116], "unescap": 49, "unicode_escap": 49, "nprocess": 49, "nwrite": 49, "outputfil": 49, "writer": [49, 94, 96, 127, 137, 142, 158, 159, 169, 185, 245], "linetermin": 49, "writerow": 49, "busi": [49, 115, 128, 176], "implicit": [49, 226, 247, 262, 271], "discret": [49, 220, 262, 271], "voc": [49, 60], "addword": [49, 60, 165], "addsent": [49, 60, 165], "infrequ": 49, "pad_token": [49, 60, 137], "sos_token": [49, 60, 165, 252], "eos_token": [49, 60, 165], "word2index": [49, 60, 165], "word2count": [49, 60, 165], "index2word": [49, 60, 165], "min_count": [49, 60], "keep_word": [49, 60], "reiniti": [49, 52, 60], "unicod": [49, 127, 128, 165], "ascii": [49, 103, 127, 128, 165], "unicodetoascii": [49, 127, 128, 165], "letter": [49, 60, 127, 128, 165, 263, 272], "lowercas": [49, 60, 165], "punctuat": [49, 165], "normalizestr": [49, 60, 165], "aid": [49, 112, 113, 237], "filterpair": [49, 165], "stackoverflow": [49, 127, 128, 160, 165, 231], "518232": [49, 127, 128, 165], "2809427": [49, 127, 128, 165], "nfd": [49, 127, 128, 165], "mn": [49, 127, 128, 165], "za": [49, 60, 165], "readvoc": 49, "loadpreparedata": 49, "save_dir": [49, 60, 146, 171], "npair": 49, "tactic": 49, "benefici": [49, 60, 120], "soften": [49, 97], "difficulti": [49, 159], "trimrareword": 49, "keep_pair": 49, "input_sent": [49, 60, 165], "output_sent": [49, 165], "keep_input": 49, "keep_output": 49, "massag": 49, "accommod": 49, "shorter": [49, 51, 116, 165, 168, 189], "english": [49, 99, 102, 113, 116, 118, 127, 165], "indexesfromsent": [49, 60, 165], "zeropad": 49, "inputvar": 49, "outputvar": 49, "batch2traindata": 49, "bunch": [49, 127, 128, 226], "aforement": [49, 82, 97, 221], "fillvalu": 49, "zip_longest": 49, "binarymatrix": 49, "seq": [49, 98, 102, 124, 134, 136], "indexes_batch": [49, 60], "padlist": 49, "padvar": 49, "max_target_len": 49, "booltensor": 49, "pair_batch": 49, "output_batch": 49, "small_batch_s": 49, "input_vari": 49, "target_vari": 49, "brain": 49, "sutskev": 49, "discov": [49, 108, 113, 135, 162], "accomplish": [49, 52, 150, 202, 215, 231], "jeddy92": [49, 60], "ts_seq2seq_intro": [49, 60], "invent": [49, 52, 159], "cho": [49, 176, 177], "2014": [49, 52], "bidirect": [49, 60, 98, 121, 136, 137], "gru": [49, 60, 93, 110, 127, 128, 165], "past": [49, 50, 101, 194, 213, 262, 271], "colah": 49, "2015": [49, 97], "unpack": [49, 60, 137, 141, 183, 185, 206, 208], "pack_padded_sequ": [49, 60], "pad_packed_sequ": [49, 60], "input_seq": [49, 60, 252], "input_length": [49, 60, 122, 252], "n_layer": [49, 60, 252], "num_direct": 49, "encoderrnn": [49, 60, 165, 252], "sole": [49, 168], "combat": [49, 103], "bahdanau": [49, 165], "groundwork": 49, "h_t": [49, 102], "_s": 49, "attn": [49, 60, 165], "softmax": [49, 60, 90, 93, 97, 102, 103, 104, 110, 127, 128, 158, 161, 163, 165, 169, 193, 219, 256], "concat": [49, 60, 101, 110, 119, 182, 200], "dot_scor": [49, 60], "encoder_output": [49, 60, 165], "general_scor": [49, 60], "concat_scor": [49, 60], "attn_energi": [49, 60], "unidirect": [49, 60], "input_step": [49, 60], "last_hidden": [49, 60, 78], "luongattndecoderrnn": [49, 60, 252], "attn_model": [49, 60], "embedding_dropout": [49, 60], "rnn_output": [49, 60], "attn_weight": [49, 60, 165], "bmm": [49, 60, 144, 165, 193, 207, 231], "concat_input": [49, 60], "concat_output": [49, 60], "masknllloss": 49, "ntotal": 49, "crossentropi": 49, "masked_select": [49, 238], "clever": [49, 99, 113], "teacher": [49, 97, 121, 165], "teacher_forcing_ratio": [49, 165], "wheel": [49, 97, 159, 168, 196], "instabl": [49, 165], "craft": [49, 73, 103, 128], "essenc": [49, 101, 262, 271], "nan": [49, 190], "overshoot": 49, "steep": 49, "cliff": 49, "goodfellow": [49, 52, 73], "2016": 49, "deeplearningbook": 49, "realiti": [49, 52, 60, 73, 101, 157, 164], "encoder_optim": [49, 165], "decoder_optim": [49, 165], "print_loss": 49, "n_total": 49, "encoder_hidden": [49, 60, 165, 252], "decoder_input": [49, 60, 165], "decoder_hidden": [49, 60, 165], "use_teacher_forc": 49, "decoder_output": [49, 60, 165], "mask_loss": 49, "topi": [49, 127, 128, 165], "tie": 49, "trainit": [49, 165], "n_iter": [49, 127, 128, 172], "explanatori": 49, "lift": [49, 58, 59, 113, 205, 223], "tarbal": 49, "encoder_n_lay": [49, 60], "decoder_n_lay": [49, 60, 252], "print_everi": [49, 127, 128, 165], "save_everi": [49, 53, 55, 146], "loadfilenam": [49, 60], "training_batch": 49, "start_iter": 49, "print_loss_avg": [49, 165], "percent": [49, 103, 143, 145, 154, 165, 234], "makedir": [49, 137, 185], "en_opt": [49, 60], "de_opt": [49, 60], "voc_dict": [49, 60], "tar": [49, 60, 75, 112, 118, 236, 241, 262, 271], "NOT": [49, 60, 80, 85, 98, 102, 112, 130, 131, 133, 152, 208], "greedysearchdecod": [49, 252], "all_token": [49, 60], "all_scor": [49, 60], "decoder_scor": [49, 60], "searcher": [49, 60], "evaluateinput": [49, 60], "press": [49, 52, 262, 271], "gracefulli": [49, 53, 162, 214], "prompt": [49, 50, 60, 184, 213, 257], "decoded_word": [49, 60, 165], "output_word": [49, 60, 165], "keyerror": [49, 60], "regardless": [49, 98, 145, 162, 263, 272], "cb_model": [49, 60], "checkpoint_it": [49, 60], "_checkpoint": [49, 60, 122], "encoder_sd": [49, 60], "decoder_sd": [49, 60], "encoder_optimizer_sd": [49, 60], "decoder_optimizer_sd": [49, 60], "embedding_sd": [49, 60], "decoder_learning_ratio": 49, "uncom": [49, 51, 60, 64, 72, 101, 111], "folk": 49, "congratul": [49, 108, 125, 241], "tailor": [49, 135], "cool": [49, 52, 152, 154, 188, 205], "chatbot_tutori": 49, "uninstal": [50, 137], "reinstal": 50, "chatbot": [50, 60, 252], "browser": [50, 105, 168, 262, 271], "subfold": 50, "visit": [50, 112, 113, 127, 184, 221], "in_": 50, "_colab": 50, "_name": 50, "mount": 50, "gdrive": 50, "upload": 50, "rerun": [50, 152], "evolv": [50, 103, 144, 150], "t4": 50, "sasank": [51, 117, 157], "chilamkurthi": [51, 117, 157], "scikit": [51, 137], "skimag": 51, "facial": 51, "pose": [51, 215], "landmark": 51, "dlib": 51, "part_0_x": 51, "part_0_i": 51, "part_1_x": 51, "part_1_i": 51, "part_2_x": 51, "part_67_x": 51, "part_67_i": 51, "0805personali01": 51, "83": [51, 176, 219, 246], "134": [51, 204], "1084239450_e76e00b7e7": 51, "70": [51, 147, 163, 177, 191, 201, 231], "236": 51, "257": [51, 231], "312": [51, 147], "person": [51, 58, 59, 113, 178], "img_nam": 51, "landmarks_fram": 51, "face_landmark": 51, "asarrai": [51, 75, 90], "show_landmark": 51, "scatter": [51, 79, 123, 133, 135, 171], "imread": 51, "facelandmarksdataset": 51, "csv_file": 51, "root_dir": 51, "is_tensor": 51, "face_dataset": 51, "fig": [51, 52, 117, 127, 149, 157, 165, 169], "set_titl": [51, 117, 157, 166, 169], "randomcrop": [51, 157], "crop": [51, 126, 166, 178, 213], "tsfm": 51, "transformed_sampl": 51, "edg": [51, 98, 105, 119, 121, 143, 168, 179, 197, 200, 262, 271], "new_w": 51, "extern": [51, 97, 112, 126, 143, 144, 186, 199, 209, 247, 260, 262, 269, 271], "safer": [51, 231], "stick": [51, 113, 135, 147, 260, 269], "tsfrm": 51, "transformed_dataset": 51, "lose": [51, 53, 97, 146, 227, 234, 251, 260, 269], "collate_fn": [51, 115, 118, 178], "show_landmarks_batch": 51, "sample_batch": 51, "images_batch": 51, "landmarks_batch": 51, "im_siz": 51, "grid_border_s": 51, "indent": [51, 147, 231, 262, 271], "i_batch": 51, "4th": [51, 80, 207], "imagefold": [51, 52, 92, 117, 157], "ant": [51, 117, 157, 265, 274], "xxy": 51, "jpeg": [51, 139, 213], "xxz": 51, "bee": [51, 117, 157, 262, 271], "123": [51, 163, 219, 263, 272], "nsdf3": 51, "asd932_": 51, "data_transform": [51, 117, 157], "randomsizedcrop": 51, "hymenoptera_dataset": 51, "hymenoptera_data": [51, 117, 157], "dataset_load": 51, "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b": [51, 121], "data_loading_tutori": 51, "nathan": [52, 73, 85, 86], "celebr": [52, 121], "pictur": [52, 73, 124, 165], "thorough": [52, 176, 177], "shed": [52, 229], "spend": [52, 82, 152, 231], "sake": [52, 127, 136, 156, 160], "ian": 52, "constantli": [52, 73, 160], "outsmart": 52, "equilibrium": 52, "perfect": [52, 191], "notat": [52, 73, 110], "chw": [52, 158], "3x64x64": 52, "thought": [52, 83, 113, 116, 190, 262, 271], "latent": [52, 103], "p_": 52, "p_g": 52, "minimax": 52, "logd": 52, "underset": 52, "mathbb": [52, 85, 150, 160], "sim": 52, "radford": 52, "unsupervis": 52, "compris": [52, 60, 112], "drawn": [52, 159], "volum": [52, 123], "tip": [52, 58, 59, 103, 169, 235, 251], "dset": 52, "vutil": 52, "anim": 52, "manualse": 52, "use_deterministic_algorithm": 52, "dataroot": 52, "image_s": [52, 152], "spatial": [52, 121, 178], "64x64": 52, "nc": [52, 89], "nz": 52, "ngf": 52, "ndf": 52, "num_epoch": [52, 117, 118, 157, 159, 178, 198], "0002": 52, "ngpu": 52, "celeba": 52, "celeb": 52, "img_align_celeba": 52, "188242": 52, "173822": 52, "284702": 52, "537394": 52, "real_batch": 52, "stdev": 52, "weights_init": 52, "netg": 52, "netd": 52, "constant_": [52, 134], "dataparallel": [52, 120, 121, 125, 137, 149, 185, 230, 247], "downsampl": [52, 134, 146], "promot": 52, "healthi": 52, "bceloss": [52, 110], "ell": [52, 165], "l_1": 52, "l_n": 52, "quad": [52, 160], "y_n": 52, "bce": 52, "gt": [52, 78, 109, 252], "fixed_nois": 52, "establish": [52, 60, 234], "optimizerd": 52, "optimizerg": 52, "Be": 52, "somewhat": 52, "incorrect": [52, 125, 130, 172, 252], "collaps": 52, "went": [52, 144, 197], "ganhack": 52, "secondli": [52, 187], "loss_d": 52, "loss_g": 52, "img_list": 52, "real_cpu": 52, "b_size": 52, "errd_real": 52, "errd_fak": 52, "d_g_z1": 52, "errd": 52, "errg": 52, "d_g_z2": 52, "stat": [52, 55, 122, 159, 168, 195, 198, 238, 246], "tloss_d": 52, "tloss_g": 52, "versu": [52, 73, 121, 207], "im": [52, 75, 113], "artistanim": 52, "repeat_delai": 52, "blit": 52, "to_jshtml": 52, "music": 52, "dcgan_faces_tutori": 52, "mingpt": [53, 54, 55, 56, 131, 132], "aw": [53, 55, 123, 131, 132, 176, 177, 251], "p3": [53, 54, 55, 64, 111, 131, 132], "8xlarg": [53, 55], "failur": [53, 61, 132, 133, 144, 173, 174, 211], "disrupt": 53, "suscept": [53, 215], "elast": [53, 122, 133, 215], "attempt": [53, 99, 122, 173, 174, 207, 237], "minutia": 53, "multinod": [53, 131, 175], "load_snapshot": 53, "snapshot_path": 53, "train_step": 53, "should_checkpoint": 53, "save_snapshot": 53, "membership": [53, 132], "intervent": [53, 97, 185], "diff": [53, 55, 60, 82, 121, 197, 231], "multigpu": [53, 55, 132], "multigpu_torchrun": 53, "envvari": 53, "ddp_setup": [53, 55], "12355": [53, 55, 123, 133, 214], "local_rank": [53, 122, 132, 137, 185], "gpu_id": [53, 55, 132], "_save_snapshot": 53, "model_st": 53, "epochs_run": 53, "_load_snapshot": 53, "max_epoch": [53, 148], "_run_epoch": [53, 55], "total_epoch": [53, 55], "nproc_per_nod": [53, 122, 124, 133, 215], "migrat": [53, 55, 176], "fault": [54, 55, 56, 60, 61, 87, 131, 132], "toler": [54, 55, 56, 61, 87, 131, 132], "cluster": [54, 122, 126, 131, 132, 133, 135, 214, 215], "torchrun": [54, 122, 124, 131, 132, 215], "amazon": 54, "ec2": [54, 123], "gentli": 54, "convert_sync_batchnorm": 55, "single_gpu": 55, "mytraindataset": 55, "distributedsampl": [55, 56, 122, 123, 137, 185], "destroy_process_group": [55, 122, 123, 133, 214], "excess": [55, 82, 124, 220, 230], "set_epoch": [55, 122, 123], "b_sz": 55, "_run_batch": 55, "ckp": 55, "_save_checkpoint": 55, "load_train_obj": 55, "prepare_dataload": 55, "shorthand": [55, 262, 271], "ring": [56, 124], "destroi": [56, 141, 263, 272], "soumith": [57, 81, 135], "chintala": [57, 81, 135], "scientif": [57, 95], "blitz": [57, 105, 110, 169], "jeff": [58, 59, 119], "tang": [58, 59, 119], "review": [58, 59, 78, 113, 131, 137, 157, 173, 174, 176, 177, 189, 190, 192, 220], "jeremiah": [58, 59], "chung": [58, 59, 126], "region": [58, 59, 126, 143, 166, 171, 176, 177, 178, 226, 230, 247], "bicycl": [58, 59], "bu": [58, 59], "autonom": [58, 59], "favor": [58, 126, 150, 159], "pitfal": [58, 59], "beyond": [58, 59, 61, 101, 155, 156, 209], "ndk": [58, 208, 224, 227], "recip": [58, 59, 61, 109, 119, 120, 177, 188, 194, 204, 206, 208, 210, 212, 213, 216, 222, 226, 229, 230, 231, 232, 234, 237, 244, 251, 254, 256, 257, 258], "deeplabv3_script": [58, 59, 204, 222], "deeplabv3_resnet50": [58, 59, 204, 222, 223], "resnet101": [58, 147], "hub": [58, 59, 119, 168, 204, 222, 223], "v0": [58, 59, 121, 146, 160, 178, 204, 222, 223, 259, 268], "scriptedm": [58, 59], "168mb": [58, 59], "deeplab": [58, 59, 121, 204], "input_tensor": [58, 59, 158, 165, 166, 194, 213], "400x400": [58, 59], "oncreat": [58, 208], "mainact": [58, 206, 208, 222], "assetfilepath": [58, 208, 222], "ioexcept": [58, 208], "imagesegment": [58, 204, 222], "breakpoint": [58, 59], "73": [58, 144, 163, 176, 201, 231], "inputtensor": [58, 128, 155, 206], "tensorimageutil": [58, 223], "bitmaptofloat32tensor": 58, "bitmap": 58, "torchvision_norm_mean_rgb": [58, 223], "torchvision_norm_std_rgb": [58, 223], "getdataasfloatarrai": 58, "outtensor": 58, "todictstringkei": 58, "pytorch_vision_deeplabv3_resnet101": [58, 59], "outputtensor": [58, 59, 155, 187, 188, 206, 223], "getwidth": 58, "getheight": 58, "emul": [58, 146, 185, 204], "consum": [58, 59, 75, 107, 109, 125, 144, 149, 159, 161, 163, 164, 182, 188, 195, 200, 213, 247, 256, 257], "bulk": [58, 59, 129], "heaviest": [58, 59], "intvalu": 58, "classnum": [58, 59], "maxi": [58, 59], "maxj": [58, 59], "maxnum": [58, 59], "green": [58, 59, 60, 98, 113, 122, 124, 169], "sheep": [58, 59], "black": [58, 59, 73, 82, 124, 126, 161, 165], "0xffff0000": 58, "0xff00ff00": 58, "0xff0000ff": 58, "0xff000000": 58, "outputbitmap": 58, "imageview": 58, "bmpsegment": 58, "createscaledbitmap": 58, "getconfig": 58, "setpixel": 58, "setimagebitmap": 58, "textview": 58, "helloworld": [59, 119, 187, 188, 224, 225], "deeplabv3_resnet101": 59, "viewcontrol": [59, 222], "swift": [59, 222, 225], "uiviewcontrol": 59, "var": [59, 80, 129, 187, 208], "uiimag": 59, "func": [59, 104, 118, 121, 138, 141, 144, 145, 150, 154, 193, 205, 244], "viewdidload": 59, "torchmodul": [59, 188, 222, 225], "filepath": [59, 222], "forresourc": [59, 222], "oftyp": [59, 222], "fileatpath": [59, 222], "fatalerror": [59, 222], "predictimag": [59, 188], "unsign": [59, 144, 231], "imagebuff": [59, 188], "autogradmod": [59, 208], "non_var_type_mod": 59, "nsmutablearrai": 59, "floatinput": 59, "nil": [59, 222], "addobject": 59, "outputdict": 59, "_impl": [59, 187, 188, 222], "togenericdict": 59, "floatbuff": [59, 206, 223], "temporarili": 59, "nsmutabledata": 59, "datawithlength": 59, "sizeof": [59, 208], "mutablebyt": 59, "floatvalu": 59, "uiimageview": 59, "convertrgbbuffertouiimag": 59, "uiimagehelp": 59, "uitextview": 59, "segmentimag": 59, "phase": [60, 76, 78, 117, 135, 157, 163, 187, 194, 200, 204, 255], "imper": 60, "idiomat": 60, "defer": 60, "optimiz": 60, "decor": [60, 61, 85, 110, 120, 146, 161, 172, 247], "caveat": [60, 113, 133, 161, 200, 231, 237], "remind": [60, 113, 176], "necessarili": [60, 105, 107, 108, 130], "cooper": [60, 220], "chronolog": 60, "attend": 60, "greedili": 60, "_length": 60, "adher": [60, 202], "stem": 60, "surround": 60, "freedom": [60, 165], "__constants__": [60, 252], "liter": [60, 263, 272], "_devic": [60, 252], "_sos_token": [60, 252], "pep": [60, 262, 271], "3107": 60, "mypi": 60, "_decoder_n_lay": [60, 252], "evaluateexampl": 60, "stdin": 60, "4000_checkpoint": 60, "test_seq": 60, "num": [60, 104, 129, 137, 161, 185], "_word": 60, "test_seq_length": 60, "traced_encod": [60, 252], "presenc": [60, 172, 199, 229], "unscript": [60, 256], "test_encoder_output": 60, "test_encoder_hidden": 60, "test_decoder_hidden": 60, "test_decoder_input": 60, "traced_decod": [60, 252], "scripted_search": 60, "script_modul": [60, 85], "scripted_chatbot": 60, "deploy_seq2seq_hybrid_frontend_tutori": 60, "shen": [61, 123, 133, 134, 149, 155, 161, 163], "li": [61, 103, 123, 127, 128, 133, 134, 135, 149, 155, 161, 163, 172, 176, 177], "categor": [61, 82, 136, 161, 163, 177], "lifetim": [61, 163], "c10d": [61, 133, 155, 247], "all_gath": [61, 122, 123, 135, 155], "p2p": 61, "isend": [61, 135], "gradual": [61, 85, 152], "willing": [61, 113], "hurdl": 61, "vldb": 61, "starter": 61, "unbalanc": 61, "zeroredundancyoptim": [61, 155, 251], "footprint": [61, 109, 122, 123, 131, 152, 218, 219, 228, 230, 258], "uneven": [61, 120], "fsdp": [61, 121, 124, 131, 214, 215], "growth": [61, 171, 192], "recoveri": [61, 133], "sometim": [61, 125, 130, 132, 133, 136, 145, 160, 163, 165, 184, 191, 192, 247], "inevit": [61, 133], "oom": [61, 122, 152, 230], "desynchron": 61, "pillar": 61, "protocol": [61, 115], "spirit": [61, 103, 137, 262, 271], "hogwild": 61, "async_execut": [61, 120, 121, 161], "polynomi": [63, 64, 65, 67, 68, 69, 111], "euclidean": [63, 64, 67, 68, 69, 97, 111], "linspac": [63, 64, 65, 67, 68, 69, 71, 72, 89, 111], "held": [63, 78, 97, 103, 111, 127, 162], "polynomial_autograd": 63, "bx": [64, 111], "cx": [64, 99, 111], "p_3": [64, 111], "5x": [64, 111], "legendr": 64, "legendrepolynomial3": [64, 111], "polynomial_custom_funct": 64, "strang": [65, 85, 111, 262, 271], "fifth": [65, 263, 272], "dynamicnet": [65, 111], "tough": [65, 111, 113], "30000": [65, 111, 135], "dynamic_net": 65, "polynomial3": [67, 111], "polynomial_modul": 67, "xx": [68, 69, 111, 144], "flaten": [68, 111], "mse": [68, 93, 97, 111], "linear_lay": [68, 69, 111], "polynomial_nn": 68, "overwritten": [69, 111, 185, 237], "checkout": [69, 111, 117, 188, 206], "polynomial_optim": 69, "\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f": [71, 72], "\u5230": [71, 72, 89, 95], "\u901a\u8fc7\u6700\u5c0f\u5316\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9\u6765\u8bad\u7ec3\u9884\u6d4b": 71, "\u8be5\u5b9e\u73b0\u4f7f\u7528": [71, 72], "\u624b\u52a8\u8ba1\u7b97\u524d\u5411\u4f20\u9012": 71, "\u635f\u5931\u548c\u53cd\u5411\u4f20\u9012": [71, 72], "numpy\u6570\u7ec4\u662f\u4e00\u4e2a\u901a\u7528\u7684n\u7ef4\u6570\u7ec4": 71, "\u5b83\u4e0d\u4e86\u89e3\u6df1\u5ea6\u5b66\u4e60": [71, 72], "\u68af\u5ea6\u6216\u8ba1\u7b97\u56fe": 71, "\u53ea\u662f\u7528\u4e8e\u6267\u884c\u901a\u7528\u6570\u503c\u8ba1\u7b97\u7684\u4e00\u4e2a\u5e93": 71, "grad_y_pr": [71, 72, 111], "grad_a": [71, 72, 111], "grad_b": [71, 72, 111], "grad_c": [71, 72, 111], "grad_d": [71, 72, 111], "polynomial_numpi": 71, "\u901a\u8fc7\u6700\u5c0f\u5316\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9\u6765\u8bad\u7ec3\u9884\u6d4b\u4ece": 72, "\u5f20\u91cf\u624b\u52a8\u8ba1\u7b97\u524d\u5411\u4f20\u9012": 72, "\u5f20\u91cf\u57fa\u672c\u4e0a\u4e0e": 72, "\u6570\u7ec4\u76f8\u540c": 72, "\u8ba1\u7b97\u56fe\u6216\u68af\u5ea6": 72, "\u53ea\u662f\u7528\u4e8e\u4efb\u610f\u6570\u503c\u8ba1\u7b97\u7684\u901a\u7528n\u7ef4\u6570\u7ec4": 72, "\u6570\u7ec4\u548c": 72, "\u5f20\u91cf\u4e4b\u95f4\u6700\u5927\u7684\u533a\u522b\u662f": 72, "\u5f20\u91cf\u53ef\u4ee5\u5728": 72, "\u4e0a\u8fd0\u884c": 72, "\u4e0a\u8fd0\u884c\u64cd\u4f5c": 72, "\u53ea\u9700\u5c06\u5f20\u91cf\u8f6c\u6362\u4e3a": 72, "polynomial_tensor": 72, "appreci": [73, 98, 113], "overlook": [73, 231], "secur": [73, 168], "awar": [73, 124, 126, 135, 136, 137, 147, 164, 173, 174, 176, 183, 187, 188, 189, 196, 254], "vulner": 73, "surpris": [73, 153], "impercept": 73, "perturb": 73, "drastic": 73, "overarch": 73, "misclassif": 73, "alter": [73, 112, 184, 234, 239], "har": 73, "remark": [73, 172], "jump": [73, 102, 105, 107, 108, 139, 146], "mathbf": 73, "nabla_": [73, 99], "007": 73, "misclassifi": 73, "gibbon": 73, "clearli": [73, 126, 189, 190], "pretrained_model": [73, 171], "lenet_mnist_model": [73, 221], "dropout1": [73, 123, 162, 203, 233], "dropout2": [73, 123, 162, 203, 233], "9216": [73, 123, 129, 154, 162, 203, 233], "log_softmax": [73, 93, 97, 99, 102, 103, 104, 123, 129, 148, 154, 162, 165, 166, 203, 221, 233], "test_load": [73, 97, 123, 129, 162, 166, 221], "1307": [73, 123, 129, 135, 148, 162, 166, 221], "3081": [73, 123, 129, 135, 148, 162, 166, 221], "fgsm_attack": 73, "clean": [73, 102, 122, 123, 133, 152, 187, 189, 195, 262, 271], "data_grad": 73, "_imag": 73, "_grad": 73, "sign_data_grad": 73, "perturbed_imag": 73, "denorm": 73, "strength": [73, 169, 195], "adv_exampl": 73, "init_pr": 73, "bother": 73, "datagrad": 73, "data_denorm": 73, "perturbed_data": 73, "reappli": 73, "perturbed_data_norm": 73, "final_pr": 73, "adv_ex": 73, "adv": 73, "final_acc": 73, "ttest": 73, "trend": [73, 83, 168], "curv": [73, 149, 168, 169], "linearli": 73, "ytick": [73, 169], "xtick": [73, 169], "lunch": [73, 194], "BUT": [73, 101], "percept": 73, "tradeoff": [73, 121, 125, 126, 135, 159], "evid": 73, "fontsiz": 73, "orig": [73, 142], "nip": [73, 118], "defens": 73, "competit": [73, 138, 154], "defenc": 73, "perhap": [73, 127, 156, 214, 252], "dirti": 73, "fgsm_tutori": 73, "torchvision_tutori": [74, 178], "multimod": [75, 121], "ow": 75, "ubiquit": 75, "caption": [75, 262, 265, 271, 274], "vqa": 75, "unimod": 75, "contrast": [75, 128, 149, 154, 177, 189], "textvqa": 75, "bert": [75, 93, 121, 123, 177, 196, 199, 228, 234], "dl": [75, 104, 177, 184, 207, 208, 221, 262, 271], "fbaipublicfil": [75, 184], "pythia": 75, "gz": [75, 104, 118, 236, 262, 263, 271, 272], "xf": 75, "prepend": [75, 154], "exclam": 75, "34602": 75, "answers_textvqa_more_than_1": 75, "answer_to_idx": 75, "uniform": [75, 113, 176, 202], "berttoken": [75, 137, 185], "functool": [75, 87, 113, 122, 123, 141, 145], "image_transform": 75, "return_tensor": 75, "ans_to_count": 75, "max_valu": 75, "ans_idx": 75, "uncas": [75, 137, 144, 177, 185], "set_transform": 75, "flava_model_for_classif": 75, "mlp": [75, 124, 138, 176], "toi": [75, 98, 102, 123, 133, 142, 149, 163, 175, 199, 214, 244], "mdetr": 75, "omnivor": 75, "multitask": 75, "flava_finetuning_tutori": 75, "flush": [76, 94, 96, 188, 203, 208, 230, 245, 262, 271], "twice": [76, 130, 184, 219, 231, 258], "retain_vari": 76, "freed": [76, 122, 152, 197], "fail": [76, 112, 125, 144, 147, 158, 160, 164, 172, 190, 196, 198, 200, 208, 220, 222, 230, 241], "autograd_tutorial_old": [76, 77], "tensor_tutorial_old": [77, 80], "nnft_tutori": [77, 78], "redesign": 78, "concatt": 78, "caddtabl": 78, "nngraph": 78, "input1": 78, "input2": 78, "pdb": 78, "debugg": [78, 104], "mnistconvnet": 78, "pool1": 78, "pool2": 78, "crazi": 78, "legal": [78, 193], "ephemer": [78, 152], "classnll": 78, "err": 78, "printnorm": 78, "register_forward_hook": [78, 239], "printgradnorm": 78, "register_backward_hook": 78, "i2h": [78, 127, 128], "h2o": [78, 127], "penn": [78, 178], "bank": 78, "timestep": [78, 98, 102, 127, 128, 160], "dataparallelmodel": 79, "block2": 79, "block3": 79, "becam": [79, 208], "inaccess": 79, "clash": 79, "mydataparallel": 79, "__getattr__": [79, 85], "attributeerror": 79, "getattr": [79, 146, 147, 185, 209, 247], "primit": [79, 121, 124, 145, 177, 197, 207], "mpi": [79, 135], "parallel_appli": 79, "clariti": [79, 142, 234], "output_devic": [79, 133], "distributedmodel": 79, "\u6df1\u5ea6\u5b66\u4e60": [79, 127, 128, 165], "60\u5206\u949f\u5165\u95e8": [79, 127, 128, 165], "uniniti": [80, 136, 202], "postfix": 80, "narrow_": 80, "lua": [80, 81, 127, 128, 165], "1st": [80, 97, 102, 123], "5th": 80, "camelcas": 80, "anymor": [80, 245], "indexadd": 80, "index_add_": 80, "chartensor": 80, "anupam": [82, 83, 116], "bhatnagar": [82, 83], "holistictraceanalysi": 82, "deactiv": 82, "trace_dir": 82, "trace_analysi": 82, "traceanalysi": 82, "engag": [82, 196], "time_spent_df": 82, "get_temporal_breakdown": 82, "enqueu": 82, "slowdown": [82, 122, 125], "consecut": [82, 128, 136, 146, 149, 158, 171, 177], "insuffici": [82, 160, 176], "delai": [82, 133, 161, 176], "stall": [82, 176, 177], "gap": [82, 85], "nanosecond": 82, "consecutive_kernel_delai": 82, "get_idle_time_breakdown": 82, "idle_time_df": 82, "show_idle_interval_stat": 82, "percentag": [82, 119, 143, 156, 176, 193], "visualize_pctg": 82, "comm": 82, "comp": 82, "mem": [82, 109, 238], "proport": [82, 152], "pie": [82, 152], "chart": 82, "kernel_type_metrics_df": 82, "kernel_metrics_df": 82, "get_gpu_kernel_breakdown": 82, "bottleneck": [82, 109, 122, 124, 132, 134, 149, 152, 161, 168, 172, 176, 177, 210, 226], "plotli": [82, 126], "hover": [82, 126, 158], "pan": 82, "num_kernel": 82, "duration_ratio": 82, "preced": [82, 129, 136, 142, 177, 182, 197, 199, 262, 271], "lab": [82, 169, 184], "image_render": 82, "jupyterlab": 82, "gpu_kernel_breakdown": 82, "tflop": 82, "oversubscrib": 82, "unresolv": [82, 191], "extent": 82, "overlap_df": 82, "get_comm_comp_overlap": 82, "h2d": [82, 212], "d2h": [82, 212], "d2d": 82, "memcpi": 82, "memset": 82, "outstand": [82, 199], "generate_trace_with_count": 82, "_with_count": 82, "screenshot": [82, 226], "get_memory_bw_summari": 82, "get_queue_length_summari": 82, "get_memory_bw_time_seri": 82, "get_queue_length_time_seri": 82, "mem_bw_summari": 82, "queue_len_summari": 82, "mem_bw_seri": 82, "queue_len_seri": 82, "get_queue_length_seri": 82, "25th": 82, "50th": 82, "75th": 82, "percentil": 82, "cudalaunchkernel": 82, "cudamemcpyasync": 82, "cudamemsetasync": 82, "kernel_info_df": 82, "get_cuda_kernel_launch_stat": 82, "outlier": [82, 160], "microsecond": [82, 145, 164, 218, 223, 231], "cutoff": 82, "runtime_cutoff": 82, "launch_delay_cutoff": 82, "occasion": [83, 162, 165], "hta": [83, 168], "tracediff": 83, "cumul": [83, 159, 160, 175], "compare_trac": 83, "ops_diff": 83, "absent": 83, "visualize_counts_diff": 83, "visualize_duration_diff": 83, "ten": [83, 97], "compare_traces_output": 83, "sort_valu": [83, 126], "diff_count": 83, "diff_dur": 83, "differer": 83, "overshadow": 83, "profilerstep": [83, 144], "trace_diff_demo": 83, "learning_hybrid_frontend_through_example_tutori": [84, 85], "hybrid_frontend": 84, "introduction_to_hybrid_frontend_tutori": 84, "intens": [85, 144, 177, 207, 247], "shini": 85, "enjoi": [85, 146], "aquaint": 85, "refin": 85, "proven": [85, 192, 199], "resouc": 85, "consumpt": [85, 109, 122, 124, 126, 144, 156, 168, 213, 251, 258], "discrep": 85, "interwork": 85, "intrus": [85, 152], "broken": [85, 101, 118, 177], "epsilon": [85, 129, 136, 146, 159, 160], "biggl": 85, "lfloor": 85, "prod_": 85, "biggr": 85, "rfloor": 85, "hline": 85, "190": [85, 163, 171, 231], "4377": 85, "59051": 85, "traced_fn": 85, "script_fn": 85, "floor": [85, 95, 127, 128, 165], "accomod": [85, 131], "fmod": [85, 191], "traced_modul": 85, "n_trace": 85, "onnx": [85, 121], "dramat": 87, "industri": 87, "tensorboard": [87, 88, 91, 96, 121, 126, 148, 235, 238, 251], "slight": [87, 130, 219, 232], "pathlib": [87, 104, 122, 126, 146, 171, 194], "random_split": [87, 115], "get_checkpoint": 87, "ashaschedul": 87, "cloudpickl": 87, "trial": [87, 126, 148, 230], "load_data": 87, "train_cifar": 87, "as_directori": 87, "checkpoint_dir": [87, 214], "pkl": [87, 104, 222], "checkpoint_st": 87, "start_epoch": 87, "net_state_dict": 87, "optimizer_state_dict": [87, 112, 214, 220, 241], "luckili": [87, 144, 191, 231], "fraction": [87, 231], "checkpoint_data": 87, "wb": [87, 104, 152, 257], "dump": [87, 144, 152, 188, 207, 222, 231, 246], "from_directori": 87, "val_step": 87, "bad": [87, 113, 125, 139, 173, 174, 177, 184], "wast": [87, 168, 193, 196, 202, 231, 237, 239], "test_ab": 87, "train_subset": 87, "val_subset": 87, "valload": 87, "epoch_step": 87, "test_accuraci": 87, "loguniform": [87, 231], "gpus_per_tri": 87, "resources_per_tri": 87, "num_sampl": [87, 122], "checkpoint_at_end": 87, "max_num_epoch": 87, "abspath": [87, 155], "max_t": 87, "grace_period": 87, "reduction_factor": 87, "best_trial": 87, "get_best_tri": 87, "last_result": 87, "best_trained_model": 87, "best_checkpoint": 87, "get_best_checkpoint": 87, "best_checkpoint_data": 87, "test_acc": 87, "000668163": 87, "31479": 87, "0977": 87, "0331514": 87, "31605": 87, "0983": 87, "000150295": 87, "30755": 87, "1023": 87, "0128248": 87, "66912": 87, "4391": 87, "00464561": 87, "7316": 87, "3463": 87, "00031556": 87, "19409": 87, "1736": 87, "00574329": 87, "85679": 87, "3368": 87, "00325652": 87, "30272": 87, "0984": 87, "000342987": 87, "76044": 87, "003734": 87, "53101": 87, "4761": 87, "0037339984519545164": 87, "5310075663924216": 87, "4737": 87, "hyperparameter_tuning_tutori": 87, "\u7b80\u4ecb": [88, 89, 90, 91, 93, 94], "tensorboard\u652f\u6301": [88, 89, 90, 92, 93, 94, 95, 96], "\u6a21\u578b\u7406\u89e3": [88, 89, 90, 92, 93, 94, 95, 96], "\u4f5c\u8005": 88, "brad": 88, "heintz": 88, "\u672c\u6559\u7a0b\u4e0eyoutube\u4e0a\u7684": 88, "\u521d\u5b66\u8005\u7cfb\u5217": 88, "\u540c\u6b65": 88, "\u6bcf\u4e2a\u90e8\u5206\u7684\u9876\u90e8\u90fd\u6709\u4e00\u4e2acolab\u94fe\u63a5": 88, "\u5b83\u4f1a\u5728\u5b8c\u5168\u6258\u7ba1\u7684\u73af\u5883\u4e2d\u6253\u5f00\u4e00\u4e2a\u5305\u542b\u4ee3\u7801\u7684\u7b14\u8bb0\u672c": 88, "\u4e13\u4e1a\u63d0\u793a": 88, "\u4f7f\u7528gpu\u8fd0\u884c\u65f6\u7684colab\u53ef\u4ee5\u52a0\u901f\u64cd\u4f5c": 88, "\u8fd0\u884c\u65f6": 88, "\u66f4\u6539\u8fd0\u884c\u65f6\u7c7b\u578b": 88, "\u672c\u5730": 88, "\u4e0b\u8f7dnotebook\u6216\u5c06\u4ee3\u7801\u590d\u5236\u5230\u60a8\u559c\u6b22\u7684ide\u4e2d": 88, "\u81ea\u52a8\u5fae\u5206\u57fa\u7840": 88, "\u652f\u6301": [88, 96], "captum": [88, 91, 235, 251], "\u8fdb\u884c\u6a21\u578b\u7406\u89e3": 88, "\u8ddf\u968f\u4e0b\u9762\u7684\u89c6\u9891\u6216\u5728": [89, 90, 92, 93, 94, 95, 96], "\u4e0a\u89c2\u770b": [89, 90, 92, 93, 94, 95, 96], "\u529f\u80fd\u662f\u4f7f": 89, "\u5728\u6784\u5efa\u673a\u5668\u5b66\u4e60\u9879\u76ee\u65f6\u7075\u6d3b\u4e14\u5feb\u901f\u7684\u90e8\u5206\u539f\u56e0": 89, "\u5b83\u5141\u8bb8\u5bf9\u590d\u6742\u8ba1\u7b97\u5feb\u901f\u8f7b\u677e\u5730\u8ba1\u7b97\u591a\u4e2a\u504f\u5bfc\u6570": 89, "\u4e5f\u79f0\u4e3a": 89, "\u8fd9\u4e2a\u64cd\u4f5c\u662f\u57fa\u4e8e\u53cd\u5411\u4f20\u64ad\u7684\u795e\u7ecf\u7f51\u7edc\u5b66\u4e60\u7684\u6838\u5fc3": 89, "\u7684\u5f3a\u5927\u4e4b\u5904\u5728\u4e8e\u5b83\u5728\u8fd0\u884c\u65f6\u52a8\u6001\u5730": 89, "\u8ddf\u8e2a\u4f60\u7684\u8ba1\u7b97": 89, "\u8fd9\u610f\u5473\u7740\u5982\u679c\u4f60\u7684\u6a21\u578b\u6709\u51b3\u7b56\u5206\u652f\u6216\u957f\u5ea6\u5728\u8fd0\u884c\u65f6\u624d\u77e5\u9053\u7684\u5faa\u73af": 89, "\u8ba1\u7b97\u4ecd\u7136\u4f1a\u88ab\u6b63\u786e\u8ddf\u8e2a": 89, "\u4f60\u4f1a\u5f97\u5230\u6b63\u786e\u7684\u68af\u5ea6\u6765\u9a71\u52a8\u5b66\u4e60": 89, "\u7ed3\u5408\u4f60\u7684\u6a21\u578b\u662f\u7528": 89, "\u6784\u5efa\u7684\u4e8b\u5b9e": 89, "\u8fd9\u6bd4\u4f9d\u8d56\u4e8e\u5bf9\u66f4\u52a0\u4e25\u683c\u7ed3\u6784\u5316\u7684\u6a21\u578b\u8fdb\u884c\u9759\u6001\u5206\u6790\u6765\u8ba1\u7b97\u68af\u5ea6\u7684\u6846\u67b6\u63d0\u4f9b\u4e86\u66f4\u5927\u7684\u7075\u6d3b\u6027": 89, "\u673a\u5668\u5b66\u4e60\u6a21\u578b\u662f\u4e00\u4e2a": 89, "\u6709\u8f93\u5165\u548c\u8f93\u51fa": 89, "\u5728\u672c\u8ba8\u8bba\u4e2d": 89, "\u6211\u4eec\u5c06\u628a\u8f93\u5165\u89c6\u4e3a\u4e00\u4e2a": 89, "\u7ef4\u5411\u91cf": 89, "\u5176\u5143\u7d20\u4e3a": 89, "\u7136\u540e\u6211\u4eec\u53ef\u4ee5\u5c06\u6a21\u578b": 89, "\u8868\u793a\u4e3a\u8f93\u5165\u7684\u5411\u91cf\u503c\u51fd\u6570": 89, "\u6211\u4eec\u5c06\u6a21\u578b": 89, "\u7684\u8f93\u51fa\u503c\u89c6\u4e3a\u5411\u91cf": 89, "\u56e0\u4e3a\u4e00\u822c\u6765\u8bf4": 89, "\u4e00\u4e2a\u6a21\u578b\u53ef\u80fd\u6709\u4efb\u610f\u6570\u91cf\u7684\u8f93\u51fa": 89, "\u7531\u4e8e\u6211\u4eec\u4e3b\u8981\u5728\u8bad\u7ec3\u7684\u80cc\u666f\u4e0b\u8ba8\u8bba\u81ea\u52a8\u5fae\u5206": 89, "\u6211\u4eec\u611f\u5174\u8da3\u7684\u8f93\u51fa\u5c06\u662f\u6a21\u578b\u7684\u635f\u5931": 89, "\u662f\u6a21\u578b\u8f93\u51fa\u7684\u5355\u503c\u6807\u91cf\u51fd\u6570": 89, "\u8be5\u51fd\u6570\u8868\u793a\u6211\u4eec\u6a21\u578b\u5bf9\u7279\u5b9a\u8f93\u5165\u7684": 89, "\u7406\u60f3": 89, "\u8f93\u51fa\u7684\u9884\u6d4b\u504f\u5dee\u6709\u591a\u5927": 89, "\u4ece\u8fd9\u4e00\u70b9\u5f00\u59cb": 89, "\u6211\u4eec\u901a\u5e38\u4f1a\u7701\u7565\u5411\u91cf\u7b26\u53f7": 89, "\u4f8b\u5982\u4f7f\u7528": 89, "\u6211\u4eec\u5e0c\u671b\u6700\u5c0f\u5316\u635f\u5931": 89, "\u5728\u7406\u60f3\u60c5\u51b5\u4e0b": [89, 95], "\u5373\u5b8c\u7f8e\u6a21\u578b\u7684\u60c5\u51b5\u4e0b": 89, "\u8fd9\u610f\u5473\u7740\u8c03\u6574\u5176\u5b66\u4e60\u6743\u91cd": 89, "\u4e5f\u5c31\u662f\u8be5\u51fd\u6570\u7684\u53ef\u8c03\u53c2\u6570": 89, "\u4f7f\u5f97\u5bf9\u4e8e\u6240\u6709\u8f93\u5165": 89, "\u635f\u5931\u4e3a\u96f6": 89, "\u5728\u73b0\u5b9e\u4e16\u754c\u4e2d": 89, "\u8fd9\u610f\u5473\u7740\u4e00\u4e2a\u8fed\u4ee3\u8fc7\u7a0b": 89, "\u4e0d\u65ad\u5fae\u8c03\u5b66\u4e60\u6743\u91cd": 89, "\u76f4\u5230\u6211\u4eec\u770b\u5230\u5bf9\u4e8e\u5e7f\u6cdb\u7684\u8f93\u5165": 89, "\u5f97\u5230\u53ef\u63a5\u53d7\u7684\u635f\u5931": 89, "\u6211\u4eec\u5982\u4f55\u51b3\u5b9a\u6743\u91cd\u5e94\u8be5\u671d\u54ea\u4e2a\u65b9\u5411\u5fae\u8c03\u591a\u8fdc\u5462": 89, "\u6211\u4eec\u5e0c\u671b": 89, "\u6700\u5c0f\u5316": 89, "\u8fd9\u610f\u5473\u7740\u4f7f\u5176\u5173\u4e8e\u8f93\u5165\u7684\u4e00\u9636\u5bfc\u6570\u7b49\u4e8e0": 89, "\u4f46\u662f\u8bf7\u8bb0\u4f4f": 89, "\u635f\u5931\u4e0d\u662f": 89, "\u76f4\u63a5": 89, "\u7531\u8f93\u5165\u5bfc\u51fa\u7684": 89, "\u800c\u662f\u7531\u6a21\u578b\u8f93\u51fa\u7684\u51fd\u6570\u5bfc\u51fa\u7684": 89, "\u800c\u6a21\u578b\u8f93\u51fa\u53c8\u662f\u8f93\u5165\u7684\u76f4\u63a5\u51fd\u6570": 89, "\u6839\u636e\u5fae\u79ef\u5206\u7684\u94fe\u5f0f\u6cd5\u5219": 89, "\u6211\u4eec\u6709": [89, 95], "\u662f\u590d\u6742\u7684\u5730\u65b9": 89, "\u5982\u679c\u6211\u4eec\u518d\u6b21\u4f7f\u7528\u94fe\u5f0f\u6cd5\u5219\u5c55\u5f00\u6a21\u578b\u8f93\u51fa\u5173\u4e8e\u8f93\u5165\u7684\u504f\u5bfc\u6570\u7684\u8868\u8fbe\u5f0f": 89, "\u5b83\u5c06\u6d89\u53ca\u6bcf\u4e2a\u4e58\u4ee5\u7684\u5b66\u4e60\u6743\u91cd": 89, "\u6bcf\u4e2a\u6fc0\u6d3b\u51fd\u6570\u4ee5\u53ca\u6a21\u578b\u4e2d\u7684\u6bcf\u4e2a\u5176\u4ed6\u6570\u5b66\u53d8\u6362\u7684\u8bb8\u591a\u5c40\u90e8\u504f\u5bfc\u6570": 89, "\u6211\u4eec\u8bd5\u56fe\u6d4b\u91cf\u5176\u68af\u5ea6\u7684\u6bcf\u4e2a\u53d8\u91cf\u7684\u5b8c\u6574\u8868\u8fbe\u5f0f": 89, "\u90fd\u662f\u901a\u8fc7\u8ba1\u7b97\u56fe\u4e2d\u6240\u6709\u53ef\u80fd\u8def\u5f84\u7684\u5c40\u90e8\u68af\u5ea6\u4e4b\u548c\u7684\u4e58\u79ef": 89, "\u7279\u522b\u611f\u5174\u8da3\u7684\u662f\u5b66\u4e60\u6743\u91cd\u4e0a\u7684\u68af\u5ea6": 89, "\u5b83\u4eec\u544a\u8bc9\u6211\u4eec": 89, "\u5e94\u8be5\u671d\u54ea\u4e2a\u65b9\u5411\u6539\u53d8\u6bcf\u4e2a\u6743\u91cd": 89, "\u4ee5\u4f7f\u635f\u5931\u51fd\u6570\u66f4\u63a5\u8fd1\u4e8e\u96f6": 89, "\u7531\u4e8e\u8fd9\u4e9b\u5c40\u90e8\u5bfc\u6570\u7684\u6570\u91cf": 89, "\u6bcf\u4e2a\u5bf9\u5e94\u4e8e\u8ba1\u7b97\u56fe\u4e2d\u7684\u5355\u72ec\u8def\u5f84": 89, "\u5f80\u5f80\u4f1a\u968f\u7740\u795e\u7ecf\u7f51\u7edc\u7684\u6df1\u5ea6\u5448\u6307\u6570\u589e\u957f": 89, "\u56e0\u6b64\u8ba1\u7b97\u5b83\u4eec\u7684\u590d\u6742\u5ea6\u4e5f\u4f1a\u589e\u52a0": 89, "\u8fd9\u5c31\u662f\u81ea\u52a8\u5fae\u5206\u53d1\u6325\u4f5c\u7528\u7684\u5730\u65b9": 89, "\u5b83\u8ddf\u8e2a\u6bcf\u4e00\u6b65\u8ba1\u7b97\u7684\u5386\u53f2": 89, "\u4f60\u5728pytorch\u6a21\u578b\u4e2d\u8ba1\u7b97\u7684\u6bcf\u4e2a\u5f20\u91cf\u90fd\u4fdd\u7559\u4e86\u5176\u8f93\u5165\u5f20\u91cf\u548c\u521b\u5efa\u5b83\u7684\u51fd\u6570\u7684\u5386\u53f2\u8bb0\u5f55": 89, "\u7ed3\u5408pytorch\u4e2d\u7528\u4e8e\u5bf9\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c\u7684\u6bcf\u4e2a\u51fd\u6570\u90fd\u5185\u7f6e\u4e86\u8ba1\u7b97\u81ea\u8eab\u5bfc\u6570\u7684\u5b9e\u73b0\u8fd9\u4e00\u4e8b\u5b9e": 89, "\u8fd9\u6781\u5927\u5730\u52a0\u5feb\u4e86\u5b66\u4e60\u6240\u9700\u7684\u5c40\u90e8\u5bfc\u6570\u7684\u8ba1\u7b97\u901f\u5ea6": 89, "\u8fd9\u662f\u5f88\u591a\u7406\u8bba": 89, "\u4f46\u5728\u5b9e\u8df5\u4e2d\u4f7f\u7528\u81ea\u52a8\u5fae\u5206\u662f\u4ec0\u4e48\u6837\u7684\u5462": 89, "\u8ba9\u6211\u4eec\u4ece\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u5f00\u59cb": 89, "\u9996\u5148": [89, 90, 92, 95, 104], "\u6211\u4eec\u5c06\u5bfc\u5165\u4e00\u4e9b\u5185\u5bb9": 89, "\u4ee5\u4fbf\u53ef\u4ee5\u7ed8\u5236\u7ed3\u679c": 89, "ticker": [89, 127, 165], "\u63a5\u4e0b\u6765": [89, 92, 95, 104], "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a\u8f93\u5165\u5f20\u91cf": 89, "\u5176\u503c\u5747\u5300\u5206\u5e03\u5728\u533a\u95f4": 89, "2\u03c0": 89, "\u5e76\u6307\u5b9a": 89, "\u4e0e\u5927\u591a\u6570\u521b\u5efa\u5f20\u91cf\u7684\u51fd\u6570\u4e00\u6837": 89, "\u63a5\u53d7\u4e00\u4e2a\u53ef\u9009\u7684": 89, "\u9009\u9879": 89, "\u8bbe\u7f6e\u6b64\u6807\u5fd7\u610f\u5473\u7740\u5728\u968f\u540e\u7684\u6bcf\u4e2a\u8ba1\u7b97\u4e2d": 89, "\u90fd\u4f1a\u5728\u8be5\u8ba1\u7b97\u7684\u8f93\u51fa\u5f20\u91cf\u4e2d\u7d2f\u79ef\u8ba1\u7b97\u5386\u53f2": 89, "\u6211\u4eec\u5c06\u6267\u884c\u4e00\u4e2a\u8ba1\u7b97": 89, "\u5e76\u7ed8\u5236\u5176\u8f93\u51fa\u4e0e\u8f93\u5165\u7684\u5173\u7cfb\u56fe": 89, "\u8ba9\u6211\u4eec\u4ed4\u7ec6\u770b\u770b\u5f20\u91cf": 89, "\u5f53\u6211\u4eec\u6253\u5370\u5b83\u65f6": 89, "\u6211\u4eec\u770b\u5230\u4e00\u4e2a\u6307\u793a\u5b83\u6b63\u5728\u8ddf\u8e2a\u5176\u8ba1\u7b97\u5386\u53f2\u7684\u6307\u793a\u7b26": 89, "\u8fd9\u4e2a": [89, 92], "\u7ed9\u4e86\u6211\u4eec\u4e00\u4e2a\u63d0\u793a": 89, "\u5f53\u6211\u4eec\u6267\u884c\u53cd\u5411\u4f20\u64ad\u6b65\u9aa4\u5e76\u8ba1\u7b97\u68af\u5ea6\u65f6": 89, "\u6211\u4eec\u9700\u8981\u8ba1\u7b97\u6240\u6709\u8fd9\u4e2a\u5f20\u91cf\u8f93\u5165\u7684": 89, "\u7684\u5bfc\u6570": 89, "\u8ba9\u6211\u4eec\u6267\u884c\u66f4\u591a\u8ba1\u7b97": 89, "\u6700\u540e": [89, 92, 96, 104, 240], "\u8ba9\u6211\u4eec\u8ba1\u7b97\u4e00\u4e2a\u5355\u5143\u7d20\u8f93\u51fa": 89, "\u5f53\u4f60\u5728\u4e0d\u5e26\u53c2\u6570\u7684\u60c5\u51b5\u4e0b\u5bf9\u4e00\u4e2a\u5f20\u91cf\u8c03\u7528": 89, "\u5b83\u671f\u671b\u8c03\u7528\u5f20\u91cf\u53ea\u5305\u542b\u4e00\u4e2a\u5143\u7d20": 89, "\u5c31\u50cf\u5728\u8ba1\u7b97\u635f\u5931\u51fd\u6570\u65f6\u4e00\u6837": 89, "\u6bcf\u4e2a\u5b58\u50a8\u5728\u6211\u4eec\u5f20\u91cf\u4e2d\u7684": 89, "\u5141\u8bb8\u4f60\u4f7f\u7528\u5176": 89, "\u6cbf\u7740\u8ba1\u7b97\u8def\u5f84\u4e00\u76f4\u56de\u6eaf\u5230\u5176\u8f93\u5165": 89, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230": 89, "\u4e0a\u6df1\u5165\u94bb\u7814\u8fd9\u4e2a\u5c5e\u6027\u4f1a\u663e\u793a\u6211\u4eec\u4e4b\u524d\u6240\u6709\u5f20\u91cf\u7684\u68af\u5ea6\u51fd\u6570": 89, "\u88ab\u62a5\u544a\u4e3a": 89, "\u8868\u793a\u8fd9\u662f\u4e00\u4e2a\u6ca1\u6709\u81ea\u8eab\u5386\u53f2\u7684\u51fd\u6570\u8f93\u5165": 89, "na": [89, 92], "\u6709\u4e86\u8fd9\u4e9b\u673a\u5236": 89, "\u6211\u4eec\u5982\u4f55\u83b7\u53d6\u5bfc\u6570\u5462": 89, "\u60a8\u5728\u8f93\u51fa\u4e0a\u8c03\u7528": 89, "\u5e76\u68c0\u67e5\u8f93\u5165\u7684": 89, "\u5c5e\u6027\u6765\u68c0\u67e5\u68af\u5ea6": 89, "\u56de\u987e\u4e00\u4e0b\u6211\u4eec\u4e3a\u4e86\u8fbe\u5230\u8fd9\u4e00\u6b65\u6240\u91c7\u53d6\u7684\u8ba1\u7b97\u6b65\u9aa4": 89, "\u6dfb\u52a0\u4e00\u4e2a\u5e38\u6570": 89, "\u5c31\u50cf\u6211\u4eec\u8ba1\u7b97": 89, "\u65f6\u6240\u505a\u7684\u90a3\u6837": 89, "\u4e0d\u4f1a\u6539\u53d8\u5bfc\u6570": 89, "\u5269\u4e0b\u7684\u5c31\u662f": 89, "\u5b83\u7684\u5bfc\u6570\u5e94\u8be5\u662f": 89, "\u4ece\u4e0a\u9762\u7684\u56fe\u4e2d\u53ef\u4ee5\u770b\u51fa": 89, "\u8fd9\u6b63\u662f\u6211\u4eec\u6240\u770b\u5230\u7684": 89, "\u8bf7\u6ce8\u610f": [89, 96, 104, 249], "\u53ea\u6709\u8ba1\u7b97\u56fe\u7684": 89, "\u53f6\u5b50\u8282\u70b9": 89, "\u624d\u4f1a\u8ba1\u7b97\u5b83\u4eec\u7684\u68af\u5ea6": 89, "\u5982\u679c\u4f60\u5c1d\u8bd5": 89, "\u4f60\u4f1a\u5f97\u5230": 89, "\u5728\u8fd9\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50\u4e2d": 89, "\u53ea\u6709\u8f93\u5165\u662f\u53f6\u5b50\u8282\u70b9": 89, "\u6240\u4ee5\u53ea\u6709\u5b83\u6709\u8ba1\u7b97\u68af\u5ea6": 89, "\u6211\u4eec\u5df2\u7ecf\u7b80\u5355\u5730\u770b\u4e86\u4e00\u4e0b\u81ea\u52a8\u6c42\u5bfc\u662f\u5982\u4f55\u5de5\u4f5c\u7684": 89, "\u4f46\u662f\u5f53\u5b83\u5728\u5b9e\u9645\u5e94\u7528\u4e2d": 89, "\u770b\u8d77\u6765\u4f1a\u662f\u4ec0\u4e48\u6837\u5b50\u5462": 89, "\u8ba9\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u5c0f\u6a21\u578b\u5e76\u68c0\u67e5\u5b83\u5728\u5355\u4e2a\u8bad\u7ec3\u6279\u6b21\u540e\u662f\u5982\u4f55\u53d8\u5316\u7684": 89, "\u5b9a\u4e49\u4e00\u4e9b\u5e38\u91cf": 89, "\u6211\u4eec\u7684\u6a21\u578b": 89, "\u4ee5\u53ca\u4e00\u4e9b\u8f93\u5165\u548c\u8f93\u51fa": 89, "dim_in": 89, "dim_out": 89, "tinymodel": [89, 93], "layer2": [89, 149, 157, 160], "some_input": 89, "ideal_output": 89, "\u4f60\u53ef\u80fd\u4f1a\u6ce8\u610f\u5230": 89, "\u6211\u4eec\u4ece\u672a\u4e3a\u6a21\u578b\u7684\u5c42\u8bbe\u7f6e": 89, "\u7684\u5b50\u7c7b\u4e2d": 89, "\u5047\u5b9a\u6211\u4eec\u5e0c\u671b\u8ddf\u8e2a\u5c42\u6743\u91cd\u7684\u68af\u5ea6\u4ee5\u8fdb\u884c\u5b66\u4e60": 89, "\u5982\u679c\u6211\u4eec\u67e5\u770b\u6a21\u578b\u7684\u5c42": 89, "\u6211\u4eec\u53ef\u4ee5\u68c0\u67e5\u6743\u91cd\u7684\u503c": 89, "\u5e76\u9a8c\u8bc1\u5c1a\u672a\u8ba1\u7b97\u4efb\u4f55\u68af\u5ea6": 89, "\u53ea\u6253\u5370\u4e00\u5c0f\u90e8\u5206": 89, "\u8ba9\u6211\u4eec\u770b\u770b\u5f53\u6211\u4eec\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u6279\u6b21\u65f6\u4f1a\u53d1\u751f\u4ec0\u4e48\u53d8\u5316": 89, "\u4f5c\u4e3a\u635f\u5931\u51fd\u6570": [89, 104], "\u4e4b\u95f4\u7684\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb\u7684\u5e73\u65b9": 89, "\u5e76\u4f7f\u7528\u57fa\u672c\u7684\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u4f18\u5316\u5668": 89, "\u73b0\u5728": [89, 90, 94, 104, 236], "\u8ba9\u6211\u4eec\u8c03\u7528": 89, "\u5e76\u770b\u770b\u4f1a\u53d1\u751f\u4ec0\u4e48": 89, "\u6bcf\u4e2a\u5b66\u4e60\u6743\u91cd\u7684\u68af\u5ea6\u90fd\u5df2\u7ecf\u8ba1\u7b97\u51fa\u6765\u4e86": 89, "\u4f46\u6743\u91cd\u4fdd\u6301\u4e0d\u53d8": 89, "\u56e0\u4e3a\u6211\u4eec\u8fd8\u6ca1\u6709\u8fd0\u884c\u4f18\u5316\u5668": 89, "\u4f18\u5316\u5668\u8d1f\u8d23\u6839\u636e\u8ba1\u7b97\u51fa\u7684\u68af\u5ea6\u66f4\u65b0\u6a21\u578b\u6743\u91cd": 89, "\u4f60\u5e94\u8be5\u770b\u5230": 89, "\u7684\u6743\u91cd\u5df2\u7ecf\u6539\u53d8": 89, "\u5173\u4e8e\u8fd9\u4e2a\u8fc7\u7a0b\u7684\u4e00\u4e2a\u91cd\u8981\u4e8b\u9879": 89, "\u5728\u8c03\u7528": 89, "\u4e4b\u540e": [89, 104], "\u4f60\u9700\u8981\u8c03\u7528": 89, "\u5426\u5219\u6bcf\u6b21\u4f60\u8fd0\u884c": 89, "\u5b66\u4e60\u6743\u91cd\u4e0a\u7684\u68af\u5ea6\u5c06\u4f1a\u7d2f\u79ef": 89, "set_to_non": [89, 230, 247], "\u5728\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u540e": 89, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u5728\u591a\u6b21\u8fd0\u884c": 89, "\u5927\u591a\u6570\u68af\u5ea6\u7684\u5e45\u5ea6\u4f1a\u53d8\u5f97\u66f4\u5927": 89, "\u5982\u679c\u5728\u8fd0\u884c\u4e0b\u4e00\u4e2a\u8bad\u7ec3\u6279\u6b21\u4e4b\u524d": 89, "\u6ca1\u6709\u5c06\u68af\u5ea6\u6e05\u96f6": 89, "\u68af\u5ea6\u5c31\u4f1a\u4ee5\u8fd9\u79cd\u65b9\u5f0f\u81a8\u80c0": 89, "\u4ece\u800c\u5bfc\u81f4\u4e0d\u6b63\u786e\u548c": 89, "\u4e0d\u53ef\u9884\u6d4b\u7684\u5b66\u4e60\u7ed3\u679c": 89, "\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b": [89, 240, 250], "\u4f60\u9700\u8981\u5bf9\u662f\u5426\u542f\u7528\u81ea\u52a8\u6c42\u5bfc\u8fdb\u884c\u7ec6\u7c92\u5ea6\u63a7\u5236": 89, "\u6709\u591a\u79cd\u65b9\u6cd5\u53ef\u4ee5\u505a\u5230\u8fd9\u4e00\u70b9": 89, "\u5177\u4f53\u53d6\u51b3\u4e8e\u60c5\u51b5": 89, "\u6700\u7b80\u5355\u7684\u65b9\u6cd5\u662f\u76f4\u63a5\u66f4\u6539\u5f20\u91cf\u4e0a\u7684": 89, "\u6807\u5fd7": 89, "b1": 89, "b2": 89, "\u5728\u4e0a\u9762\u7684\u5355\u5143\u683c\u4e2d": [89, 95], "\u6709\u4e00\u4e2a": [89, 93], "\u4e00\u4e2a": [89, 92, 233, 249], "\u8ba1\u7b97\u5386\u53f2\u7684\u8ddf\u8e2a\u8bb0\u5f55": 89, "\u8fd9\u662f\u6211\u4eec\u6240\u671f\u671b\u7684": 89, "\u56e0\u4e3a\u5b83\u662f\u4ece\u4e00\u4e2a\u542f\u7528\u4e86": 89, "\u7684\u5f20\u91cf": [89, 92, 95, 111], "\u6d3e\u751f\u51fa\u6765\u7684": 89, "\u5f53\u6211\u4eec\u4f7f\u7528": 89, "\u663e\u5f0f\u5730\u5173\u95ed": 89, "\u8ba1\u7b97\u5386\u53f2\u5c31\u4e0d\u518d\u88ab\u8ddf\u8e2a\u4e86": 89, "\u6b63\u5982\u6211\u4eec\u5728\u8ba1\u7b97": 89, "\u6240\u770b\u5230\u7684\u90a3\u6837": 89, "\u5982\u679c\u4f60\u53ea\u9700\u8981\u4e34\u65f6\u5173\u95ed": 89, "\u4e00\u4e2a\u66f4\u597d\u7684\u65b9\u6cd5\u662f\u4f7f\u7528": 89, "c2": 89, "\u4e5f\u53ef\u4ee5\u7528\u4f5c\u51fd\u6570\u6216\u65b9\u6cd5\u88c5\u9970\u5668": 89, "add_tensors1": 89, "add_tensors2": 89, "\u6709\u4e00\u4e2a\u5bf9\u5e94\u7684\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668": 89, "enable_grad": 89, "\u7528\u4e8e\u5728\u5c1a\u672a\u542f\u7528\u65f6": 89, "\u6253\u5f00": [89, 95, 121], "\u5b83\u4e5f\u53ef\u4ee5\u7528\u4f5c\u88c5\u9970\u5668": 89, "\u4f60\u53ef\u80fd\u6709\u4e00\u4e2a\u9700\u8981\u68af\u5ea6\u8ddf\u8e2a\u7684\u5f20\u91cf": 89, "\u4f46\u4f60\u60f3\u8981\u4e00\u4e2a\u4e0d\u9700\u8981\u7684\u526f\u672c": 89, "\u4e3a\u6b64": [89, 90, 94, 95, 104], "\u6211\u4eec\u6709\u5f20\u91cf\u5bf9\u8c61\u7684": 89, "\u5b83\u521b\u5efa\u4e00\u4e2a\u4e0e\u8ba1\u7b97\u5386\u53f2": 89, "\u5206\u79bb": 89, "\u7684\u5f20\u91cf\u526f\u672c": 89, "\u6211\u4eec\u4e4b\u524d\u8fd9\u6837\u505a\u662f\u56e0\u4e3a\u6211\u4eec\u60f3\u8981\u7ed8\u5236\u4e00\u4e9b\u5f20\u91cf\u7684\u56fe\u50cf": 89, "\u8fd9\u662f\u56e0\u4e3a": [89, 90], "\u671f\u671b\u8f93\u5165\u662f\u4e00\u4e2a": 89, "\u6570\u7ec4": [89, 104], "\u800c\u4ece\u5177\u6709": 89, "\u6570\u7ec4\u7684\u9690\u5f0f\u8f6c\u6362\u662f\u4e0d\u5141\u8bb8\u7684": 89, "\u5236\u4f5c\u4e00\u4e2a\u5206\u79bb\u7684\u526f\u672c\u8ba9\u6211\u4eec\u53ef\u4ee5\u7ee7\u7eed\u524d\u8fdb": 89, "\u5728\u672c\u7ec3\u4e60\u4e2d\u5230\u76ee\u524d\u4e3a\u6b62\u7684\u6bcf\u4e2a\u793a\u4f8b\u4e2d": 89, "\u6211\u4eec\u90fd\u4f7f\u7528\u4e86\u53d8\u91cf\u6765\u6355\u83b7\u8ba1\u7b97\u7684\u4e2d\u95f4\u503c": 89, "\u9700\u8981\u8fd9\u4e9b\u4e2d\u95f4\u503c\u6765\u6267\u884c\u68af\u5ea6\u8ba1\u7b97": 89, "\u5728\u4f7f\u7528": 89, "\u4f60\u5fc5\u987b": 89, "\u5c0f\u5fc3\u4f7f\u7528\u539f\u4f4d\u64cd\u4f5c": 89, "\u8fd9\u6837\u505a\u53ef\u80fd\u4f1a\u7834\u574f\u8ba1\u7b97\u5bfc\u6570\u6240\u9700\u7684\u4fe1\u606f": 89, "\u8c03\u7528\u65f6\u9700\u8981\u8fd9\u4e9b\u4fe1\u606f": 89, "\u5982\u679c\u4f60\u5c1d\u8bd5\u5bf9\u9700\u8981": 89, "\u7684\u53f6\u53d8\u91cf\u8fdb\u884c\u539f\u4f4d\u64cd\u4f5c": 89, "\u751a\u81f3\u4f1a\u963b\u6b62\u4f60": 89, "\u5982\u4e0b\u6240\u793a": [89, 104], "\u4f1a\u8be6\u7ec6\u8ddf\u8e2a\u4f60\u7684\u6bcf\u4e00\u6b65\u8ba1\u7b97": 89, "\u8fd9\u79cd\u8ba1\u7b97\u5386\u53f2": 89, "\u7ed3\u5408\u65f6\u95f4\u4fe1\u606f": 89, "\u5c06\u6784\u6210\u4e00\u4e2a\u65b9\u4fbf\u7684\u5206\u6790\u5668": 89, "\u5c31\u5185\u7f6e\u4e86\u8fd9\u4e2a\u529f\u80fd": 89, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u5feb\u901f\u4f7f\u7528\u793a\u4f8b": 89, "run_on_gpu": 89, "prf": 89, "key_averag": [89, 109, 144, 164, 219, 238], "sort_bi": [89, 109, 144, 164, 219, 238], "self_cpu_time_tot": [89, 109, 119, 144, 219, 238], "\u5206\u6790\u5668\u53ef\u4ee5\u6807\u8bb0\u4ee3\u7801\u7684\u5355\u4e2a\u5b50\u5757": 89, "\u6309\u8f93\u5165\u5f20\u91cf\u5f62\u72b6\u5206\u89e3\u6570\u636e": 89, "\u5e76\u5c06\u6570\u636e\u5bfc\u51fa\u4e3a": 89, "\u8ddf\u8e2a\u5de5\u5177\u6587\u4ef6": 89, "\u6709\u5173": 89, "\u7684\u5b8c\u6574\u8be6\u7ec6\u4fe1\u606f": 89, "\u5982\u679c\u4f60\u6709\u4e00\u4e2a\u5177\u6709": 89, "\u7ef4\u8f93\u5165\u548c": 89, "\u7ef4\u8f93\u51fa\u7684\u51fd\u6570": 89, "\u5b8c\u6574\u7684\u68af\u5ea6\u662f\u6bcf\u4e2a\u8f93\u51fa\u76f8\u5bf9\u4e8e\u6bcf\u4e2a\u8f93\u5165\u7684": 89, "\u5bfc\u6570\u7684\u77e9\u9635": 89, "\u5982\u679c\u4f60\u6709\u7b2c\u4e8c\u4e2a\u51fd\u6570": 89, "\u5b83": [89, 95, 96], "\u63a5\u53d7": 89, "\u7ef4\u8f93\u5165": 89, "\u4e5f\u5c31\u662f\u4e0e\u4e0a\u9762\u7684\u8f93\u51fa\u5177\u6709\u76f8\u540c\u7684\u7ef4\u5ea6": 89, "\u5e76\u8fd4\u56de\u4e00\u4e2a": 89, "\u6807\u91cf\u8f93\u51fa": 89, "\u4f60\u53ef\u4ee5\u7528\u4e00\u4e2a\u5217\u5411\u91cf\u6765\u8868\u793a\u5b83\u76f8\u5bf9\u4e8e": 89, "\u7684\u68af\u5ea6": 89, "\u8fd9\u5b9e\u9645\u4e0a\u53ea\u662f\u4e00\u4e2a\u4e00\u5217\u7684": 89, "\u66f4\u5177\u4f53\u5730\u8bf4": 89, "\u60f3\u8c61\u7b2c\u4e00\u4e2a\u51fd\u6570\u662f\u4f60\u7684": 89, "\u6a21\u578b": [89, 93, 121, 139, 233, 240], "\u53ef\u80fd\u6709\u8bb8\u591a\u8f93\u5165\u548c\u8bb8\u591a\u8f93\u51fa": 89, "\u7b2c\u4e8c\u4e2a\u51fd\u6570\u662f\u4e00\u4e2a\u635f\u5931\u51fd\u6570": 89, "\u4ee5\u6a21\u578b\u7684\u8f93\u51fa\u4f5c\u4e3a\u8f93\u5165": 89, "\u635f\u5931\u503c\u4f5c\u4e3a\u6807\u91cf\u8f93\u51fa": 89, "\u5982\u679c\u6211\u4eec\u5c06\u7b2c\u4e00\u4e2a\u51fd\u6570\u7684": 89, "\u4e0e\u7b2c\u4e8c\u4e2a\u51fd\u6570\u7684\u68af\u5ea6\u76f8\u4e58": 89, "\u5e76\u5e94\u7528\u94fe\u5f0f\u6cd5\u5219": 89, "\u6211\u4eec\u5f97\u5230": 89, "\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528\u7b49\u4ef7\u7684\u64cd\u4f5c": 89, "\u5e76\u5f97\u5230\u4e00\u4e2a\u884c\u5411\u91cf": 89, "\u6240\u5f97\u5230\u7684\u5217\u5411\u91cf\u5c31\u662f": 89, "\u7b2c\u4e8c\u4e2a\u51fd\u6570\u76f8\u5bf9\u4e8e\u7b2c\u4e00\u4e2a\u51fd\u6570\u7684\u8f93\u5165\u7684\u68af\u5ea6": 89, "\u6216\u8005\u5728\u6211\u4eec\u7684": 89, "\u6a21\u578b\u548c\u635f\u5931\u51fd\u6570\u7684\u60c5\u51b5\u4e0b": 89, "\u5c31\u662f\u635f\u5931\u76f8\u5bf9\u4e8e\u6a21\u578b\u8f93\u5165\u7684\u68af\u5ea6": 89, "\u662f\u4e00\u4e2a\u7528\u4e8e\u8ba1\u7b97\u8fd9\u4e9b\u4e58\u79ef\u7684\u5f15\u64ce": 89, "\u8fd9\u5c31\u662f\u6211\u4eec\u5728": 89, "\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u5982\u4f55\u7d2f\u79ef\u5b66\u4e60\u6743\u91cd\u7684\u68af\u5ea6": 89, "\u8c03\u7528\u4e5f\u53ef\u4ee5": 89, "\u63a5\u53d7\u4e00\u4e2a\u53ef\u9009\u7684\u5411\u91cf\u8f93\u5165": 89, "\u8be5\u5411\u91cf\u8868\u793a": 89, "\u5f20\u91cf\u4e0a\u7684\u4e00\u7ec4\u68af\u5ea6": 89, "\u8fd9\u4e9b\u68af\u5ea6\u5c06\u4e58\u4ee5\u524d\u9762\u7684": 89, "\u8ddf\u8e2a\u5f20\u91cf\u7684": 89, "\u8ba9\u6211\u4eec\u7528\u4e00\u4e2a\u5c0f\u5411\u91cf\u5c1d\u8bd5\u4e00\u4e2a\u5177\u4f53\u7684\u4f8b\u5b50": 89, "\u5982\u679c\u6211\u4eec\u5c1d\u8bd5\u73b0\u5728\u8c03\u7528": 89, "\u6211\u4eec\u4f1a\u5f97\u5230\u4e00\u4e2a\u8fd0\u884c\u65f6\u9519\u8bef\u548c\u4e00\u6761": 89, "\u6d88\u606f": 89, "\u8bf4\u660e\u53ea\u80fd": 89, "\u9690\u5f0f\u5730": 89, "\u4e3a\u6807\u91cf\u8f93\u51fa\u8ba1\u7b97\u68af\u5ea6": 89, "\u5bf9\u4e8e\u591a\u7ef4\u8f93\u51fa": 89, "\u671f\u671b\u6211\u4eec": 89, "\u63d0\u4f9b\u8fd9\u4e09\u4e2a\u8f93\u51fa\u7684\u68af\u5ea6": 89, "\u5b83\u53ef\u4ee5\u5c06\u8fd9\u4e9b\u68af\u5ea6\u4e58\u4ee5jacobian\u77e9\u9635": 89, "\u4ee3\u66ff\u68af\u5ea6": 89, "\u8f93\u51fa\u68af\u5ea6\u90fd\u4e0e2\u7684\u5e42\u6709\u5173": 89, "\u8fd9\u6b63\u662f\u6211\u4eec\u4ece\u91cd\u590d\u7684\u53cc\u500d\u64cd\u4f5c\u4e2d\u6240\u671f\u671b\u7684": 89, "\u53ef\u4ee5\u76f4\u63a5\u8bbf\u95ee\u91cd\u8981\u7684\u5dee\u5206\u77e9\u9635\u548c\u5411\u91cf\u8fd0\u7b97": 89, "\u7279\u522b\u662f": 89, "\u5b83\u5141\u8bb8\u4f60\u8ba1\u7b97\u7279\u5b9a\u51fd\u6570\u5728\u7279\u5b9a\u8f93\u5165\u4e0b\u7684jacobian\u77e9\u9635\u548c": 89, "hessian\u77e9\u9635": 89, "\u7c7b\u4f3c\u4e8ejacobian\u77e9\u9635": 89, "\u4f46\u8868\u793a\u6240\u6709\u504f\u5bfc\u6570\u7684": 89, "\u7b2c\u4e8c\u9636": 89, "\u5bfc\u6570": 89, "\u5b83\u8fd8\u63d0\u4f9b\u4e86\u4e0e\u8fd9\u4e9b\u77e9\u9635": 89, "\u8fdb\u884c\u5411\u91cf\u4e58\u79ef\u7684\u65b9\u6cd5": 89, "\u8ba9\u6211\u4eec\u8ba1\u7b97\u4e00\u4e2a\u7b80\u5355\u51fd\u6570\u7684jacobian\u77e9\u9635": 89, "\u5bf9\u4e8e\u4e24\u4e2a\u5355\u5143\u7d20\u8f93\u5165\u8fdb\u884c\u8bc4\u4f30": 89, "exp_add": 89, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf": 89, "\u7b2c\u4e00\u4e2a\u8f93\u51fa\u5e94\u8be5\u7b49\u4e8e": 89, "\u56e0\u4e3a": [89, 104, 246], "\u5bfc\u6570\u662f": 89, "\u7b2c\u4e8c\u4e2a\u503c\u5e94\u8be5\u662f3": 89, "\u4f60\u5f53\u7136\u4e5f\u53ef\u4ee5\u5bf9\u66f4\u9ad8\u9636\u7684\u5f20\u91cf\u8fd9\u6837\u505a": 89, "hessian": [89, 121, 205], "\u65b9\u6cd5\u7684\u5de5\u4f5c\u65b9\u5f0f\u5b8c\u5168\u76f8\u540c": 89, "\u5047\u8bbe\u4f60\u7684": 89, "\u51fd\u6570\u662f\u4e24\u6b21\u53ef\u5fae\u7684": 89, "\u4f46\u8fd4\u56de\u6240\u6709\u4e8c\u9636\u5bfc\u6570\u7684\u77e9\u9635": 89, "\u5982\u679c\u4f60\u63d0\u4f9b\u4e86\u5411\u91cf": 89, "\u8fd8\u6709\u4e00\u4e2a\u76f4\u63a5\u8ba1\u7b97\u5411\u91cf": 89, "\u96c5\u53ef\u6bd4\u4e58\u79ef\u7684\u51fd\u6570": 89, "do_some_doubl": 89, "my_gradi": 89, "vjp": [89, 145, 150, 205], "jvp": [89, 141, 145, 150], "\u65b9\u6cd5\u6267\u884c\u4e0e": 89, "\u76f8\u540c\u7684\u77e9\u9635\u4e58\u6cd5": 89, "\u4f46\u64cd\u4f5c\u6570\u987a\u5e8f\u76f8\u53cd": 89, "vhp": [89, 121], "hvp": [89, 121], "\u65b9\u6cd5\u5bf9\u4e8e\u5411\u91cf": 89, "\u6d77\u68ee\u77e9\u9635\u4e58\u79ef\u4e5f\u662f\u5982\u6b64": 89, "\u6709\u5173\u66f4\u591a\u4fe1\u606f": [89, 94, 95, 250], "\u529f\u80fd": 89, "\u4e2d\u7684\u6027\u80fd\u8bf4\u660e": 89, "autogradyt_tutori": [89, 91], "\u4e0b\u8f7d\u7b14\u8bb0\u672c\u548c\u76f8\u5e94\u6587\u4ef6": 90, "\u62c9\u4e01\u8bed\u4e2d\u7684": 90, "\u7406\u89e3": 90, "\u662f\u4e00\u4e2a\u5f00\u6e90\u7684": 90, "\u53ef\u6269\u5c55\u7684\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u5e93": 90, "\u5efa\u7acb\u5728pytorch\u4e4b\u4e0a": 90, "\u968f\u7740\u6a21\u578b\u590d\u6742\u6027\u7684\u589e\u52a0\u548c\u7531\u6b64\u5e26\u6765\u7684\u900f\u660e\u5ea6\u7684\u7f3a\u4e4f": 90, "\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u65b9\u6cd5\u53d8\u5f97\u8d8a\u6765\u8d8a\u91cd\u8981": 90, "\u6a21\u578b\u7406\u89e3\u662f\u4e00\u4e2a\u6d3b\u8dc3\u7684\u7814\u7a76\u9886\u57df": 90, "\u4e5f\u662f\u8de8\u884c\u4e1a\u4f7f\u7528\u673a\u5668\u5b66\u4e60\u7684\u5b9e\u9645\u5e94\u7528\u7684\u4e00\u4e2a\u5173\u6ce8\u9886\u57df": 90, "captum\u63d0\u4f9b\u4e86\u6700\u5148\u8fdb\u7684\u7b97\u6cd5": 90, "\u5305\u62ec\u96c6\u6210\u68af\u5ea6": 90, "\u4e3a\u7814\u7a76\u4eba\u5458\u548c\u5f00\u53d1\u4eba\u5458\u63d0\u4f9b\u4e86\u4e00\u79cd\u7b80\u5355\u7684\u65b9\u5f0f\u6765\u7406\u89e3\u54ea\u4e9b\u7279\u5f81\u5bf9\u6a21\u578b\u7684\u8f93\u51fa\u505a\u51fa\u4e86\u8d21\u732e": 90, "\u5b8c\u6574\u7684\u6587\u6863": 90, "api\u53c2\u8003\u548c\u4e00\u5957\u5173\u4e8e\u7279\u5b9a\u4e3b\u9898\u7684\u6559\u7a0b\u53ef\u5728": 90, "\u7f51\u7ad9\u4e0a\u627e\u5230": 90, "captum\u5bf9\u6a21\u578b\u53ef\u89e3\u91ca\u6027\u7684\u65b9\u6cd5\u662f\u57fa\u4e8e": 90, "\u5f52\u56e0": 90, "captum\u4e2d\u6709\u4e09\u79cd\u7c7b\u578b\u7684\u5f52\u56e0": 90, "\u7279\u5f81\u5f52\u56e0": 90, "\u8bd5\u56fe\u89e3\u91ca\u7279\u5b9a\u8f93\u51fa\u662f\u7531\u751f\u6210\u5b83\u7684\u8f93\u5165\u7684\u54ea\u4e9b\u7279\u5f81\u4ea7\u751f\u7684": 90, "\u7528\u67d0\u4e9b\u8bcd\u6765\u89e3\u91ca\u4e00\u7bc7\u7535\u5f71\u8bc4\u8bba\u662f\u6b63\u9762\u8fd8\u662f\u8d1f\u9762\u7684": 90, "\u5c31\u662f\u7279\u5f81\u5f52\u56e0\u7684\u4e00\u4e2a\u4f8b\u5b50": 90, "\u5c42\u5f52\u56e0": 90, "\u68c0\u67e5\u6a21\u578b\u7684\u9690\u85cf\u5c42\u5728\u7279\u5b9a\u8f93\u5165\u4e0b\u7684\u6d3b\u52a8": 90, "\u68c0\u67e5\u5377\u79ef\u5c42\u5bf9\u8f93\u5165\u56fe\u50cf\u7684\u7a7a\u95f4\u6620\u5c04\u8f93\u51fa\u5c31\u662f\u5c42\u5f52\u56e0\u7684\u4e00\u4e2a\u4f8b\u5b50": 90, "\u795e\u7ecf\u5143\u5f52\u56e0": 90, "\u7c7b\u4f3c\u4e8e\u5c42\u5f52\u56e0": 90, "\u4f46\u5173\u6ce8\u5355\u4e2a\u795e\u7ecf\u5143\u7684\u6d3b\u52a8": 90, "\u5728\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u4e2d": 90, "\u6211\u4eec\u5c06\u770b\u770b\u7279\u5f81\u5f52\u56e0\u548c\u5c42\u5f52\u56e0": 90, "\u6bcf\u79cd\u5f52\u56e0\u7c7b\u578b\u90fd\u6709\u591a\u79cd": 90, "\u5f52\u56e0\u7b97\u6cd5": 90, "\u4e0e\u4e4b\u76f8\u5173\u8054": 90, "\u8bb8\u591a\u5f52\u56e0\u7b97\u6cd5\u53ef\u5206\u4e3a\u4e24\u5927\u7c7b": 90, "\u57fa\u4e8e\u68af\u5ea6\u7684\u7b97\u6cd5": 90, "\u8ba1\u7b97\u6a21\u578b\u8f93\u51fa": 90, "\u5c42\u8f93\u51fa\u6216\u795e\u7ecf\u5143\u6fc0\u6d3b\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u53cd\u5411\u68af\u5ea6": 90, "\u96c6\u6210\u68af\u5ea6": 90, "\u7528\u4e8e\u7279\u5f81": 90, "\u5c42\u68af\u5ea6": 90, "\u6fc0\u6d3b": 90, "\u795e\u7ecf\u5143\u4f20\u5bfc": 90, "\u90fd\u662f\u57fa\u4e8e\u68af\u5ea6\u7684\u7b97\u6cd5": 90, "\u57fa\u4e8e\u6270\u52a8\u7684\u7b97\u6cd5": 90, "\u68c0\u67e5\u6a21\u578b": 90, "\u5c42\u6216\u795e\u7ecf\u5143\u7684\u8f93\u51fa\u5728\u8f93\u5165\u53d1\u751f\u53d8\u5316\u65f6\u7684\u53d8\u5316\u60c5\u51b5": 90, "\u8f93\u5165\u6270\u52a8\u53ef\u80fd\u662f\u6709\u9488\u5bf9\u6027\u7684\u6216\u968f\u673a\u7684": 90, "\u906e\u6321": 90, "\u7279\u5f81\u6d88\u878d": 90, "\u7279\u5f81\u7f6e\u6362": 90, "\u90fd\u662f\u57fa\u4e8e\u6270\u52a8\u7684\u7b97\u6cd5": 90, "\u6211\u4eec\u5c06\u5728\u4e0b\u9762\u68c0\u67e5\u8fd9\u4e24\u79cd\u7c7b\u578b\u7684\u7b97\u6cd5": 90, "\u7279\u522b\u662f\u5bf9\u4e8e\u5927\u578b\u6a21\u578b": 90, "\u4ee5\u4e0e\u88ab\u68c0\u67e5\u7684\u8f93\u5165\u7279\u5f81\u76f4\u63a5\u76f8\u5173\u7684\u65b9\u5f0f\u53ef\u89c6\u5316\u5f52\u56e0\u6570\u636e\u662f\u5f88\u6709\u4ef7\u503c\u7684": 90, "\u867d\u7136\u5f53\u7136\u53ef\u4ee5\u4f7f\u7528matplotlib": 90, "plotly\u6216\u7c7b\u4f3c\u5de5\u5177\u521b\u5efa\u81ea\u5df1\u7684\u53ef\u89c6\u5316": 90, "\u4f46captum\u63d0\u4f9b\u4e86\u4e13\u95e8\u7528\u4e8e\u5176\u5f52\u56e0\u7684\u589e\u5f3a\u5de5\u5177": 90, "attr": [90, 147, 155, 207, 229], "\u4e0b\u9762\u5bfc\u5165\u4e3a": 90, "\u63d0\u4f9b\u4e86\u6709\u52a9\u4e8e\u53ef\u89c6\u5316\u4e0e\u56fe\u50cf\u76f8\u5173\u7684\u5f52\u56e0\u7684\u51fd\u6570": 90, "\u662f\u5efa\u7acb\u5728captum\u4e4b\u4e0a\u7684\u4e00\u4e2a\u6613\u4e8e\u4f7f\u7528\u7684\u53ef\u89e3\u91ca\u6027\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6": 90, "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u5e26\u6709\u73b0\u6210\u53ef\u89c6\u5316\u5de5\u5177\u7684\u5c0f\u90e8\u4ef6": 90, "\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u4efb\u610f\u6a21\u578b\u7c7b\u578b": 90, "\u8fd9\u4e24\u79cd\u53ef\u89c6\u5316\u5de5\u5177\u96c6\u90fd\u5c06\u5728\u672c\u7b14\u8bb0\u672c\u4e2d\u8fdb\u884c\u6f14\u793a": 90, "\u524d\u51e0\u4e2a\u793a\u4f8b\u5c06\u96c6\u4e2d\u5728\u8ba1\u7b97\u673a\u89c6\u89c9\u7528\u4f8b\u4e0a": 90, "\u4f46\u6700\u540e\u7684captum": 90, "insights\u90e8\u5206\u5c06\u6f14\u793a\u89c6\u89c9\u95ee\u7b54\u6a21\u578b\u4e2d\u7684\u5f52\u56e0\u53ef\u89c6\u5316": 90, "\u5728\u5f00\u59cb\u4e4b\u524d": [90, 233, 236, 241, 242, 243, 248, 249, 250], "\u4f60\u9700\u8981\u6709\u4e00\u4e2apython\u73af\u5883": 90, "6\u6216\u66f4\u9ad8\u7248\u672c": 90, "\u5bf9\u4e8ecaptum": 90, "insights\u793a\u4f8b": 90, "\u9700\u8981flask": 90, "1\u6216\u66f4\u9ad8\u7248\u672c\u548cflask": 90, "\u63a8\u8350\u4f7f\u7528\u6700\u65b0\u7248\u672c": 90, "2\u6216\u66f4\u9ad8\u7248\u672c": 90, "4\u7248\u672c": 90, "\u56e0\u4e3acaptum\u76ee\u524d\u4f7f\u7528\u4e86\u4e00\u4e2a\u5728\u66f4\u9ad8\u7248\u672c\u4e2d\u53c2\u6570\u5df2\u88ab\u91cd\u547d\u540d\u7684matplotlib\u51fd\u6570": 90, "\u8981\u5728anaconda\u6216pip\u865a\u62df\u73af\u5883\u4e2d\u5b89\u88c5captum": 90, "\u8bf7\u4f7f\u7528\u4e0b\u9762\u9002\u7528\u4e8e\u60a8\u73af\u5883\u7684\u547d\u4ee4": 90, "flask": [90, 113, 121, 139, 251], "\u5728\u60a8\u8bbe\u7f6e\u7684\u73af\u5883\u4e2d\u91cd\u65b0\u542f\u52a8\u6b64\u7b14\u8bb0\u672c": 90, "\u60a8\u5c31\u53ef\u4ee5\u5f00\u59cb\u4e86": 90, "\u8ba9\u6211\u4eec\u770b\u4e00\u4e2a\u7b80\u5355\u7684\u89c6\u89c9\u793a\u4f8b": 90, "\u6211\u4eec\u5c06\u4ece\u4e00\u4e2a\u5728imagenet\u6570\u636e\u96c6\u4e0a\u9884\u8bad\u7ec3\u7684resnet\u6a21\u578b\u5f00\u59cb": 90, "\u6211\u4eec\u5c06\u83b7\u53d6\u4e00\u4e2a\u6d4b\u8bd5\u8f93\u5165": 90, "\u5e76\u4f7f\u7528\u4e0d\u540c\u7684": 90, "\u7b97\u6cd5\u6765\u68c0\u67e5\u8f93\u5165\u56fe\u50cf\u5982\u4f55\u5f71\u54cd\u8f93\u51fa": 90, "\u5e76\u67e5\u770b\u4e00\u4e9b\u6d4b\u8bd5\u56fe\u50cf\u7684\u8f93\u5165\u5f52\u56e0\u6620\u5c04\u7684\u6709\u7528\u53ef\u89c6\u5316": 90, "\u5bfc\u5165\u4e00\u4e9b\u5305": 90, "integratedgradi": 90, "occlus": [90, 229], "layergradcam": 90, "layerattribut": 90, "linearsegmentedcolormap": 90, "\u73b0\u5728\u6211\u4eec\u5c06\u4f7f\u7528torchvision\u6a21\u578b\u5e93\u4e0b\u8f7d\u4e00\u4e2a\u9884\u8bad\u7ec3\u7684resnet": 90, "\u7531\u4e8e\u6211\u4eec\u4e0d\u8fdb\u884c\u8bad\u7ec3": 90, "\u6211\u4eec\u5c06\u6682\u65f6\u5c06\u5176\u7f6e\u4e8e\u8bc4\u4f30\u6a21\u5f0f": 90, "\u4f60\u4ece\u4e2d\u83b7\u53d6\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u7684\u5730\u65b9\u5e94\u8be5\u4e5f\u6709\u4e00\u4e2a": 90, "\u6587\u4ef6\u5939": 90, "\u5176\u4e2d\u5305\u542b\u4e00\u4e2a": 90, "test_img": 90, "test_img_data": 90, "\u6211\u4eec\u7684resnet\u6a21\u578b\u662f\u5728imagenet\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u7684": 90, "\u5b83\u671f\u671b\u56fe\u50cf\u5177\u6709\u4e00\u5b9a\u7684\u5927\u5c0f": 90, "\u5e76\u4e14\u901a\u9053\u6570\u636e\u88ab\u5f52\u4e00\u5316\u5230\u7279\u5b9a\u7684\u503c\u8303\u56f4": 90, "\u6211\u4eec\u8fd8\u5c06\u83b7\u53d6\u6a21\u578b\u8bc6\u522b\u7684\u7c7b\u522b\u7684\u4eba\u7c7b\u53ef\u8bfb\u6807\u7b7e\u5217\u8868": 90, "\u5b83\u5e94\u8be5\u4e5f\u5728": 90, "\u6587\u4ef6\u5939\u4e2d": 90, "\u6a21\u578b\u671f\u671b224x224": 90, "3\u8272\u5f69\u56fe\u50cf": 90, "\u6807\u51c6imagenet\u5f52\u4e00\u5316": 90, "transform_norm": 90, "transformed_img": 90, "\u6a21\u578b\u9700\u8981\u4e00\u4e2a\u865a\u62df\u7684\u6279\u6b21\u7ef4\u5ea6": 90, "labels_path": 90, "imagenet_class_index": [90, 139], "json_data": 90, "idx_to_label": 90, "\u6211\u4eec\u53ef\u4ee5\u95ee": 90, "\u8fd9\u4e2a\u6a21\u578b\u8ba4\u4e3a\u8fd9\u5f20\u56fe\u50cf\u4ee3\u8868\u4ec0\u4e48": 90, "prediction_scor": 90, "pred_label_idx": 90, "squeeze_": [90, 95], "predicted_label": [90, 115], "\u9884\u6d4b": 90, "\u6211\u4eec\u5df2\u7ecf\u786e\u8ba4resnet\u8ba4\u4e3a\u6211\u4eec\u7684\u732b\u7684\u56fe\u50cf\u786e\u5b9e\u662f\u4e00\u53ea\u732b": 90, "\u4f46\u662f": [90, 93, 95], "\u4e3a\u4ec0\u4e48": 90, "\u6a21\u578b\u8ba4\u4e3a\u8fd9\u662f\u4e00\u5f20\u732b\u7684\u56fe\u50cf\u5462": 90, "\u8981\u56de\u7b54\u8fd9\u4e2a\u95ee\u9898": 90, "\u6211\u4eec\u5c31\u8981\u6c42\u52a9\u4e8ecaptum": 90, "\u8bd5\u56fe\u7528\u751f\u6210\u7279\u5b9a\u8f93\u51fa\u7684\u8f93\u5165\u7684\u7279\u5f81\u6765\u89e3\u91ca\u8be5\u8f93\u51fa": 90, "\u5b83\u4f7f\u7528\u7279\u5b9a\u7684\u8f93\u5165": 90, "\u5728\u8fd9\u91cc\u662f\u6211\u4eec\u7684\u6d4b\u8bd5\u56fe\u50cf": 90, "\u6765\u751f\u6210\u4e00\u4e2a\u8f93\u5165\u7279\u5f81\u5bf9\u7279\u5b9a\u8f93\u51fa\u7279\u5f81\u7684\u76f8\u5bf9\u91cd\u8981\u6027\u7684\u6620\u5c04": 90, "\u662fcaptum\u4e2d\u53ef\u7528\u7684\u7279\u5f81\u5f52\u56e0\u7b97\u6cd5\u4e4b\u4e00": 90, "\u96c6\u6210\u68af\u5ea6\u901a\u8fc7\u8fd1\u4f3c\u6a21\u578b\u8f93\u51fa\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u68af\u5ea6\u7684\u79ef\u5206": 90, "\u4e3a\u6bcf\u4e2a\u8f93\u5165\u7279\u5f81\u5206\u914d\u4e00\u4e2a\u91cd\u8981\u6027\u5206\u6570": 90, "\u5728\u6211\u4eec\u7684\u4f8b\u5b50\u4e2d": [90, 95], "\u6211\u4eec\u5c06\u4f7f\u7528\u8f93\u51fa\u5411\u91cf\u7684\u4e00\u4e2a\u7279\u5b9a\u5143\u7d20": 90, "\u4e5f\u5c31\u662f\u8868\u793a\u6a21\u578b\u5bf9\u6240\u9009\u7c7b\u522b\u7684\u7f6e\u4fe1\u5ea6\u7684\u90a3\u4e2a\u5143\u7d20": 90, "\u5e76\u4f7f\u7528\u96c6\u6210\u68af\u5ea6\u6765\u7406\u89e3\u54ea\u4e9b\u8f93\u5165\u56fe\u50cf\u90e8\u5206\u5bf9\u8fd9\u4e2a\u8f93\u51fa\u505a\u51fa\u4e86\u8d21\u732e": 90, "\u4e00\u65e6\u6211\u4eec\u4ece\u96c6\u6210\u68af\u5ea6\u83b7\u5f97\u4e86\u91cd\u8981\u6027\u6620\u5c04": 90, "\u6211\u4eec\u5c06\u4f7f\u7528captum\u4e2d\u7684\u53ef\u89c6\u5316\u5de5\u5177\u6765\u63d0\u4f9b\u4e0e\u88ab\u68c0\u67e5\u7684\u8f93\u5165\u7279\u5f81\u76f4\u63a5\u76f8\u5173\u7684\u91cd\u8981\u6027\u6620\u5c04\u7684\u6709\u7528\u8868\u793a": 90, "captum\u7684": 90, "visualize_image_attr": 90, "\u51fd\u6570\u63d0\u4f9b\u4e86\u5404\u79cd\u81ea\u5b9a\u4e49\u663e\u793a\u5f52\u56e0\u6570\u636e\u7684\u9009\u9879": 90, "\u6211\u4eec\u4f20\u5165\u4e00\u4e2a\u81ea\u5b9a\u4e49\u7684matplotlib\u989c\u8272\u6620\u5c04": 90, "\u8fd0\u884c\u5e26\u6709": 90, "integrated_gradi": 90, "\u8c03\u7528\u7684\u5355\u5143\u683c\u901a\u5e38\u9700\u8981\u4e00\u4e24\u5206\u949f": 90, "\u7528\u6a21\u578b\u521d\u59cb\u5316\u5f52\u56e0\u7b97\u6cd5": 90, "\u8981\u6c42\u7b97\u6cd5\u5c06\u6211\u4eec\u7684\u8f93\u51fa\u76ee\u6807\u5f52\u56e0\u4e8e": 90, "attributions_ig": 90, "n_step": [90, 159, 161, 163], "\u663e\u793a\u539f\u59cb\u56fe\u50cf\u4ee5\u4f9b\u6bd4\u8f83": 90, "original_imag": [90, 229], "default_cmap": 90, "from_list": 90, "ffffff": 90, "0000ff": 90, "heat_map": [90, 229], "show_colorbar": [90, 229], "sign": [90, 153, 204], "\u5728\u4e0a\u9762\u7684\u56fe\u50cf\u4e2d": 90, "\u4f60\u5e94\u8be5\u53ef\u4ee5\u770b\u5230\u96c6\u6210\u68af\u5ea6\u5728\u56fe\u50cf\u4e2d\u732b\u7684\u4f4d\u7f6e\u7ed9\u51fa\u4e86\u6700\u5f3a\u7684\u4fe1\u53f7": 90, "\u57fa\u4e8e\u68af\u5ea6\u7684\u5f52\u56e0\u65b9\u6cd5\u6709\u52a9\u4e8e\u901a\u8fc7\u76f4\u63a5\u8ba1\u7b97\u8f93\u51fa\u76f8\u5bf9\u4e8e\u8f93\u5165\u7684\u53d8\u5316\u6765\u7406\u89e3\u6a21\u578b": 90, "\u57fa\u4e8e\u6270\u52a8\u7684\u5f52\u56e0": 90, "\u65b9\u6cd5\u5219\u66f4\u76f4\u63a5\u5730\u89e3\u51b3\u8fd9\u4e2a\u95ee\u9898": 90, "\u901a\u8fc7\u5bf9\u8f93\u5165\u8fdb\u884c\u53d8\u5316\u6765\u6d4b\u91cf\u5bf9\u8f93\u51fa\u7684\u5f71\u54cd": 90, "\u5c31\u662f\u8fd9\u6837\u4e00\u79cd\u65b9\u6cd5": 90, "\u5b83\u6d89\u53ca\u66ff\u6362\u8f93\u5165\u56fe\u50cf\u7684\u90e8\u5206\u533a\u57df": 90, "\u5e76\u68c0\u67e5\u5bf9\u8f93\u51fa\u4fe1\u53f7\u7684\u5f71\u54cd": 90, "\u4e0b\u9762": [90, 92, 94, 95, 96], "\u6211\u4eec\u8bbe\u7f6e\u906e\u6321\u5f52\u56e0": 90, "\u4e0e\u914d\u7f6e\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u7c7b\u4f3c": 90, "\u4f60\u53ef\u4ee5\u6307\u5b9a\u76ee\u6807\u533a\u57df\u7684\u5927\u5c0f": 90, "\u4ee5\u53ca\u786e\u5b9a\u5355\u4e2a\u6d4b\u91cf\u95f4\u8ddd\u7684\u6b65\u957f\u957f\u5ea6": 90, "visualize_image_attr_multipl": [90, 229], "\u6765\u53ef\u89c6\u5316\u6211\u4eec\u7684\u906e\u6321\u5f52\u56e0\u8f93\u51fa": 90, "\u663e\u793a\u6bcf\u4e2a\u533a\u57df\u7684\u6b63\u9762\u548c\u8d1f\u9762\u5f52\u56e0\u7684\u70ed\u56fe": 90, "\u5e76\u7528\u6b63\u9762\u5f52\u56e0\u533a\u57df\u63a9\u7801\u539f\u59cb\u56fe\u50cf": 90, "\u63a9\u7801\u53ef\u4ee5\u7ed9\u51fa\u4e00\u4e2a\u975e\u5e38\u6709\u542f\u53d1\u6027\u7684\u89c6\u56fe": 90, "\u663e\u793a\u6a21\u578b\u53d1\u73b0\u54ea\u4e9b\u533a\u57df\u6700": 90, "\u50cf\u732b": 90, "attributions_occ": 90, "sliding_window_shap": [90, 229], "masked_imag": 90, "fig_siz": 90, "18": [90, 107, 108, 109, 118, 127, 144, 157, 158, 163, 173, 174, 184, 193, 219, 228, 231, 266, 275], "\u540c\u6837": [90, 95, 104], "\u6211\u4eec\u770b\u5230\u56fe\u50cf\u4e2d\u5305\u542b\u732b\u7684\u533a\u57df\u88ab\u8d4b\u4e88\u4e86\u66f4\u5927\u7684\u91cd\u8981\u6027": 90, "\u5141\u8bb8\u4f60\u5c06\u6a21\u578b\u4e2d\u9690\u85cf\u5c42\u7684\u6d3b\u52a8\u5f52\u56e0\u4e8e\u8f93\u5165\u7684\u7279\u5f81": 90, "\u5c42\u5f52\u56e0\u7b97\u6cd5\u6765\u68c0\u67e5\u6a21\u578b\u4e2d\u4e00\u4e2a\u5377\u79ef\u5c42\u7684\u6d3b\u52a8": 90, "gradcam\u8ba1\u7b97\u76ee\u6807\u8f93\u51fa\u76f8\u5bf9\u4e8e\u7ed9\u5b9a\u5c42\u7684\u68af\u5ea6": 90, "\u5bf9\u6bcf\u4e2a\u8f93\u51fa\u901a\u9053": 90, "\u8f93\u51fa\u7684\u7b2c2\u7ef4": 90, "\u8fdb\u884c\u5e73\u5747": 90, "\u5e76\u5c06\u6bcf\u4e2a\u901a\u9053\u7684\u5e73\u5747\u68af\u5ea6\u4e58\u4ee5\u5c42\u6fc0\u6d3b": 90, "\u7ed3\u679c\u5728\u6240\u6709\u901a\u9053\u4e0a\u6c42\u548c": 90, "gradcam\u4e13\u4e3a\u5377\u79ef\u7f51\u7edc": 90, "\u8bbe\u8ba1": 90, "\u7531\u4e8e\u5377\u79ef\u5c42\u7684\u6d3b\u52a8\u901a\u5e38\u5728\u7a7a\u95f4\u4e0a\u6620\u5c04\u5230\u8f93\u5165": 90, "\u56e0\u6b64gradcam\u5f52\u56e0\u901a\u5e38\u4f1a\u88ab\u4e0a\u91c7\u6837": 90, "\u5e76\u7528\u4e8e\u63a9\u76d6\u8f93\u5165": 90, "\u5c42\u5f52\u56e0\u7684\u8bbe\u7f6e\u7c7b\u4f3c\u4e8e\u8f93\u5165\u5f52\u56e0": 90, "\u9664\u4e86\u9664\u4e86\u6a21\u578b\u4e4b\u5916": 90, "\u4f60\u8fd8\u5fc5\u987b\u6307\u5b9a\u6a21\u578b\u4e2d\u4f60\u5e0c\u671b\u68c0\u67e5\u7684": 90, "\u9690\u85cf\u5c42": 90, "\u4e0e\u4e0a\u9762\u4e00\u6837": 90, "\u5f53\u6211\u4eec\u8c03\u7528": 90, "\u6211\u4eec\u6307\u5b9a\u611f\u5174\u8da3\u7684\u76ee\u6807\u7c7b": 90, "layer_gradcam": 90, "layer3": [90, 149, 157, 160], "attributions_lgc": 90, "base_class": 90, "\u57fa\u7c7b\u4e2d\u7684\u4fbf\u5229\u65b9\u6cd5": 90, "interpol": [90, 119, 262, 271], "\u6765\u4e0a\u91c7\u6837\u8fd9\u4e9b\u5f52\u56e0\u6570\u636e": 90, "\u4ee5\u4fbf\u4e0e\u8f93\u5165\u56fe\u50cf\u8fdb\u884c\u6bd4\u8f83": 90, "upsamp_attr_lgc": 90, "blended_heat_map": 90, "\u8fd9\u6837\u7684\u53ef\u89c6\u5316\u53ef\u4ee5\u8ba9\u4f60\u6df1\u5165\u4e86\u89e3\u9690\u85cf\u5c42\u5982\u4f55\u54cd\u5e94\u4f60\u7684\u8f93\u5165": 90, "insights\u662f\u4e00\u4e2a\u5efa\u7acb\u5728captum\u4e4b\u4e0a\u7684\u53ef\u89e3\u91ca\u6027\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6": 90, "\u65e8\u5728\u4fc3\u8fdb\u6a21\u578b\u7406\u89e3": 90, "insights\u53ef\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u5176\u4ed6\u7279\u5f81": 90, "\u5e2e\u52a9\u7528\u6237\u7406\u89e3\u7279\u5f81\u5f52\u56e0": 90, "\u5b83\u5141\u8bb8\u4f60\u53ef\u89c6\u5316": 90, "\u591a\u4e2a\u8f93\u5165": 90, "\u8f93\u51fa\u5bf9\u7684\u5f52\u56e0": 90, "\u5e76\u63d0\u4f9b\u7528\u4e8e\u56fe\u50cf": 90, "\u6587\u672c\u548c\u4efb\u610f\u6570\u636e\u7684\u53ef\u89c6\u5316\u5de5\u5177": 90, "\u5728\u672c\u7b14\u8bb0\u672c\u7684\u8fd9\u4e00\u90e8\u5206": 90, "\u6211\u4eec\u5c06\u4f7f\u7528captum": 90, "insights\u53ef\u89c6\u5316\u591a\u4e2a\u56fe\u50cf\u5206\u7c7b\u63a8\u7406": 90, "\u8ba9\u6211\u4eec\u6536\u96c6\u4e00\u4e9b\u56fe\u50cf": 90, "\u770b\u770b\u6a21\u578b\u5bf9\u5b83\u4eec\u7684\u770b\u6cd5": 90, "\u4e3a\u4e86\u589e\u52a0\u591a\u6837\u6027": 90, "\u6211\u4eec\u5c06\u4f7f\u7528\u732b": 90, "\u8336\u58f6\u548c\u4e09\u53f6\u866b\u5316\u77f3": 90, "teapot": 90, "trilobit": 90, "\u770b\u8d77\u6765\u6211\u4eec\u7684\u6a21\u578b\u90fd\u6b63\u786e\u8bc6\u522b\u4e86\u5b83\u4eec": 90, "\u6211\u4eec\u5f53\u7136\u5e0c\u671b\u6df1\u5165\u6316\u6398": 90, "insights\u5c0f\u90e8\u4ef6": 90, "\u6211\u4eec\u7528\u4e0b\u9762\u5bfc\u5165\u7684": 90, "attributionvisu": 90, "\u5bf9\u8c61\u5bf9\u5176\u8fdb\u884c\u914d\u7f6e": 90, "\u671f\u671b\u6279\u91cf\u6570\u636e": 90, "\u6240\u4ee5\u6211\u4eec\u5c06\u5f15\u5165captum\u7684": 90, "\u8f85\u52a9\u7c7b": 90, "\u6211\u4eec\u5c06\u67e5\u770b\u56fe\u50cf": 90, "\u56e0\u6b64\u6211\u4eec\u8fd8\u5c06\u5bfc\u5165": 90, "imagefeatur": 90, "\u6211\u4eec\u4f7f\u7528\u4ee5\u4e0b\u53c2\u6570\u914d\u7f6e": 90, "\u8981\u68c0\u67e5\u7684\u6a21\u578b\u6570\u7ec4": 90, "\u53ea\u6709\u4e00\u4e2a": 90, "\u4e00\u4e2a\u8bc4\u5206\u51fd\u6570": 90, "\u5141\u8bb8captum": 90, "insights\u4ece\u6a21\u578b\u4e2d\u63d0\u53d6\u524dk\u4e2a\u9884\u6d4b": 90, "\u6211\u4eec\u6a21\u578b\u8bad\u7ec3\u7684\u7c7b\u522b\u7684\u6709\u5e8f": 90, "\u4eba\u7c7b\u53ef\u8bfb\u5217\u8868": 90, "\u8981\u67e5\u627e\u7684\u7279\u5f81\u5217\u8868": 90, "\u662f\u4e00\u4e2a": 90, "\u4e00\u4e2a\u6570\u636e\u96c6": 90, "\u5b83\u662f\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 90, "\u8fd4\u56de\u8f93\u5165\u548c\u6807\u7b7e\u7684\u6279\u6b21": 90, "\u5c31\u50cf\u4f60\u7528\u4e8e\u8bad\u7ec3\u4e00\u6837": 90, "attr_vi": 90, "\u57fa\u7ebf\u662f\u5168\u96f6\u8f93\u5165": 90, "\u8fd9\u53ef\u80fd\u4f1a\u56e0\u4f60\u7684\u6570\u636e\u800c\u6709\u6240\u4e0d\u540c": 90, "baseline_func": 90, "\u5408\u5e76\u4e0a\u9762\u7684\u56fe\u50cf\u53d8\u6362": 90, "full_img_transform": 90, "score_func": 90, "\u7167\u7247": 90, "baseline_transform": 90, "input_transform": [90, 213], "282": 90, "849": [90, 219, 231], "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u5e76\u6ca1\u6709\u82b1\u8d39\u592a\u591a\u65f6\u95f4": 90, "\u4e0d\u50cf\u6211\u4eec\u4e4b\u524d\u7684\u5f52\u56e0\u90a3\u6837": 90, "insights\u5141\u8bb8\u4f60\u5728\u53ef\u89c6\u5316\u5c0f\u90e8\u4ef6\u4e2d\u914d\u7f6e\u4e0d\u540c\u7684\u5f52\u56e0\u7b97\u6cd5": 90, "\u4e4b\u540e\u5b83\u5c06\u8ba1\u7b97\u5e76\u663e\u793a": 90, "\u90a3\u4e2a": 90, "\u8fc7\u7a0b\u5c06\u9700\u8981\u51e0\u5206\u949f\u65f6\u95f4": 90, "\u8fd0\u884c\u4e0b\u9762\u7684\u5355\u5143\u683c\u5c06\u6e32\u67d3captum": 90, "\u7136\u540e\u4f60\u53ef\u4ee5\u9009\u62e9\u5f52\u56e0\u65b9\u6cd5\u53ca\u5176\u53c2\u6570": 90, "\u6839\u636e\u9884\u6d4b\u7684\u7c7b\u6216\u9884\u6d4b\u7684\u6b63\u786e\u6027\u8fc7\u6ee4\u6a21\u578b\u54cd\u5e94": 90, "\u67e5\u770b\u6a21\u578b\u7684\u9884\u6d4b\u53ca\u76f8\u5173\u6982\u7387": 90, "\u67e5\u770b\u5f52\u56e0\u4e0e": 90, "\u539f\u59cb\u56fe\u50cf\u7684\u70ed\u529b\u56fe": 90, "captumyt": 90, "introyt": 91, "rst": [91, 260, 262, 269, 271], "introyt1_tutori": [91, 92], "tensors_deeper_tutori": [91, 95], "modelsyt_tutori": [91, 93], "tensorboardyt_tutori": [91, 94], "trainingyt_tutori": 91, "captumyt_tutori": 91, "sphx_glr_beginner_introyt_modelsyt_tutori": 91, "sphx_glr_beginner_introyt_autogradyt_tutori": 91, "sphx_glr_beginner_introyt_trainingyt": 91, "sphx_glr_beginner_introyt_tensorboardyt_tutori": 91, "sphx_glr_beginner_introyt_captumyt": 91, "sphx_glr_beginner_introyt_tensors_deeper_tutori": 91, "sphx_glr_beginner_introyt_introyt1_tutori": 91, "\u4ece\u89c6\u9891\u7684": 92, "\u5f00\u59cb": [92, 93], "\u6211\u4eec\u5c06\u5bfc\u5165": 92, "\u8ba9\u6211\u4eec\u770b\u4e00\u4e9b\u57fa\u672c\u7684\u5f20\u91cf\u64cd\u4f5c": 92, "\u521b\u5efa\u5f20\u91cf\u7684\u51e0\u79cd\u65b9\u5f0f": 92, "\u4e0a\u9762": [92, 93, 94], "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a": 92, "5x3": 92, "\u7684\u96f6\u77e9\u9635": 92, "\u5e76\u67e5\u8be2\u5176\u6570\u636e\u7c7b\u578b": 92, "\u53d1\u73b0\u96f6\u662f": 92, "\u4f4d\u6d6e\u70b9\u6570": 92, "\u8fd9\u662f": [92, 93, 95], "\u7684\u9ed8\u8ba4\u8bbe\u7f6e": 92, "\u5982\u679c\u4f60\u60f3\u8981\u6574\u6570\u5462": 92, "\u53ef\u4ee5\u8986\u76d6\u9ed8\u8ba4\u8bbe\u7f6e": 92, "int16": [92, 95, 197, 234], "\u4f60\u53ef\u4ee5\u770b\u5230": [92, 93, 95], "\u5f53\u6211\u4eec\u6539\u53d8\u9ed8\u8ba4\u8bbe\u7f6e\u65f6": 92, "\u5728\u6253\u5370\u5f20\u91cf\u65f6\u4f1a\u6709\u6240\u63d0\u793a": 92, "\u901a\u5e38\u60c5\u51b5\u4e0b": 92, "\u4f1a\u4f7f\u7528\u7279\u5b9a\u7684\u79cd\u5b50\u521d\u59cb\u5316\u5b66\u4e60\u6743\u91cd": 92, "\u4ee5\u786e\u4fdd\u7ed3\u679c\u7684\u53ef\u91cd\u590d\u6027": 92, "1729": [92, 95], "r1": 92, "r2": 92, "\u65b0\u7684\u503c": 92, "r3": 92, "nshould": 92, "\u7531\u4e8e\u91cd\u65b0\u8bbe\u7f6e\u79cd\u5b50": 92, "\u6240\u4ee5\u4e0e": 92, "\u7684\u503c\u76f8\u540c": 92, "\u5f20\u91cf\u6267\u884c\u7b97\u672f\u8fd0\u7b97\u5f88\u76f4\u89c2": 92, "\u5f62\u72b6\u76f8\u4f3c\u7684\u5f20\u91cf\u53ef\u4ee5\u76f8\u52a0": 92, "\u76f8\u4e58\u7b49": 92, "\u4e0e\u6807\u91cf\u7684\u8fd0\u7b97\u4f1a\u5728\u6574\u4e2a\u5f20\u91cf\u4e0a\u5206\u5e03\u5f0f\u8fdb\u884c": 92, "\u6bcf\u4e2a\u5143\u7d20\u90fd\u4e58\u4ee5": 92, "\u5f62\u72b6\u76f8\u4f3c": 92, "\u56e0\u6b64\u5141\u8bb8\u76f8\u52a0": 92, "\u5f20\u91cf\u6309\u5143\u7d20\u76f8\u52a0": 92, "\u8fd9\u4e0e\u8f93\u5165\u5f20\u91cf\u5177\u6709\u76f8\u540c\u7684\u7ef4\u5ea6": 92, "\u53d6\u6d88\u6ce8\u91ca\u8fd9\u4e00\u884c\u4f1a\u5bfc\u81f4\u8fd0\u884c\u65f6\u9519\u8bef": 92, "\u8fd9\u91cc\u662f\u4e00\u4e9b\u53ef\u7528\u7684\u6570\u5b66\u8fd0\u7b97\u793a\u4f8b": 92, "\u503c\u5728": 92, "\u4e4b\u95f4": 92, "\u652f\u6301\u5e38\u89c1\u7684\u6570\u5b66\u8fd0\u7b97": 92, "nabsolut": 92, "\u4ee5\u53ca\u4e09\u89d2\u51fd\u6570": 92, "ninvers": 92, "asin": [92, 95], "\u548c\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97": 92, "\u5982\u884c\u5217\u5f0f\u548c\u5947\u5f02\u503c\u5206\u89e3": 92, "ndetermin": 92, "det": [92, 102, 153], "nsingular": 92, "decomposit": [92, 144], "svd": [92, 95], "\u4ee5\u53ca\u7edf\u8ba1\u548c\u805a\u5408\u8fd0\u7b97": 92, "naverag": 92, "std_mean": 92, "nmaximum": 92, "\u5173\u4e8e": 92, "\u5f20\u91cf\u7684\u5f3a\u5927\u529f\u80fd\u8fd8\u6709\u5f88\u591a\u9700\u8981\u4e86\u89e3": 92, "\u5305\u62ec\u5982\u4f55\u4e3a": 92, "\u4e0a\u7684\u5e76\u884c\u8ba1\u7b97\u8bbe\u7f6e\u5b83\u4eec": 92, "\u6211\u4eec\u5c06\u5728\u53e6\u4e00\u4e2a\u89c6\u9891\u4e2d\u6df1\u5165\u63a2\u8ba8": 92, "\u8ba9\u6211\u4eec\u8ba8\u8bba\u4e00\u4e0b\u5982\u4f55\u5728": 92, "\u4e2d\u8868\u793a\u6a21\u578b": 92, "\u6a21\u578b\u7684\u7236\u5bf9\u8c61": 92, "\u7528\u4e8e\u6fc0\u6d3b\u51fd\u6570": 92, "\u56fe": 92, "\u4e0a\u56fe\u662f": 92, "\u7684\u793a\u610f\u56fe": 92, "\u5b83\u662f\u6700\u65e9\u7684\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u4e4b\u4e00": 92, "\u4e5f\u662f\u6df1\u5ea6\u5b66\u4e60\u7206\u53d1\u5f0f\u53d1\u5c55\u7684\u9a71\u52a8\u529b\u4e4b\u4e00": 92, "\u5b83\u88ab\u6784\u5efa\u7528\u4e8e\u8bfb\u53d6\u624b\u5199\u6570\u5b57\u7684\u5c0f\u56fe\u50cf": 92, "\u5e76\u6b63\u786e\u5206\u7c7b\u56fe\u50cf\u4e2d\u8868\u793a\u7684\u6570\u5b57": 92, "\u5b83\u5de5\u4f5c\u539f\u7406\u7684\u7b80\u8ff0\u4e3a": 92, "\u662f\u4e00\u4e2a\u5377\u79ef\u5c42": 92, "\u5b83\u5728\u8f93\u5165\u56fe\u50cf\u4e2d\u626b\u63cf\u5b83\u5728\u8bad\u7ec3\u671f\u95f4\u5b66\u4e60\u5230\u7684\u7279\u5f81": 92, "\u5b83\u8f93\u51fa\u4e00\u4e2a\u7279\u5f81\u6fc0\u6d3b\u56fe": 92, "\u63cf\u8ff0\u5b83\u5728\u56fe\u50cf\u4e2d\u770b\u5230\u6bcf\u4e2a\u5b66\u4e60\u5230\u7684\u7279\u5f81\u7684\u4f4d\u7f6e": 92, "\u6fc0\u6d3b\u56fe": 92, "\u5728\u5c42": 92, "\u4e2d\u88ab\u4e0b\u91c7\u6837": 92, "\u662f\u53e6\u4e00\u4e2a\u5377\u79ef\u5c42": 92, "\u8fd9\u6b21\u626b\u63cf": 92, "\u7684\u6fc0\u6d3b\u56fe\u4ee5\u67e5\u627e\u7279\u5f81\u7ec4\u5408": 92, "\u5b83\u4e5f\u8f93\u51fa\u4e00\u4e2a\u6fc0\u6d3b\u56fe": 92, "\u63cf\u8ff0\u8fd9\u4e9b\u7279\u5f81\u7ec4\u5408\u7684\u7a7a\u95f4\u4f4d\u7f6e": 92, "\u8be5\u6fc0\u6d3b\u56fe\u5728\u5c42": 92, "\u6700\u540e\u7684\u5168\u8fde\u63a5\u5c42": 92, "\u662f\u4e00\u4e2a\u5206\u7c7b\u5668": 92, "\u5b83\u5c06\u6700\u7ec8\u7684\u6fc0\u6d3b\u56fe\u5206\u7c7b\u4e3a": 92, "\u4e2a": 92, "\u4e2d\u7684\u4e00\u4e2a": 92, "\u8868\u793a": 92, "\u4e2a\u6570\u5b57": 92, "\u6211\u4eec\u5982\u4f55\u5728\u4ee3\u7801\u4e2d\u8868\u793a\u8fd9\u4e2a\u7b80\u5355\u7684\u795e\u7ecf\u7f51\u7edc\u5462": 92, "\u4e2a\u8f93\u5165\u56fe\u50cf\u901a\u9053": 92, "\u9ed1\u767d": [92, 93], "\u4e2a\u8f93\u51fa\u901a\u9053": [92, 93], "\u7684\u6b63\u65b9\u5f62\u5377\u79ef\u6838": 92, "\u4e00\u4e2a\u4eff\u5c04\u64cd\u4f5c": [92, 93], "\u7a97\u53e3\u4e0a\u8fdb\u884c\u6700\u5927\u6c60\u5316": [92, 93], "\u5982\u679c\u5c3a\u5bf8\u662f\u6b63\u65b9\u5f62": [92, 93], "\u4f60\u53ea\u9700\u6307\u5b9a\u4e00\u4e2a\u6570\u5b57": [92, 93], "num_flat_featur": [92, 93], "\u9664\u6279\u6b21\u7ef4\u5ea6\u5916\u7684\u6240\u6709\u7ef4\u5ea6": [92, 93], "num_featur": [92, 93, 129], "\u67e5\u770b\u8fd9\u6bb5\u4ee3\u7801": 92, "\u4f60\u5e94\u8be5\u80fd\u591f\u53d1\u73b0\u4e00\u4e9b\u4e0e\u4e0a\u56fe\u7ed3\u6784\u76f8\u4f3c\u7684\u5730\u65b9": 92, "\u8fd9\u6f14\u793a\u4e86\u5178\u578b": 92, "\u6a21\u578b\u7684\u7ed3\u6784": 92, "\u5b83\u7ee7\u627f\u81ea": 92, "\u6a21\u5757\u53ef\u4ee5\u5d4c\u5957": 92, "\u5373\u4f7f": 92, "\u5c42\u7c7b\u4e5f\u7ee7\u627f\u81ea": 92, "\u4e00\u4e2a\u6a21\u578b\u5c06\u6709\u4e00\u4e2a": 92, "\u5728\u8fd9\u91cc\u5b83\u5b9e\u4f8b\u5316\u5176\u5c42": 92, "\u5e76\u52a0\u8f7d\u4efb\u4f55\u5b83\u53ef\u80fd\u9700\u8981\u7684\u6570\u636e\u7ec4\u4ef6": 92, "\u6a21\u578b\u53ef\u80fd\u52a0\u8f7d\u8bcd\u6c47\u8868": 92, "\u8fd9\u662f\u5b9e\u9645\u8ba1\u7b97\u53d1\u751f\u7684\u5730\u65b9": 92, "\u8f93\u5165\u901a\u8fc7\u7f51\u7edc\u5c42\u548c\u5404\u79cd\u51fd\u6570\u751f\u6210\u8f93\u51fa": 92, "\u9664\u6b64\u4e4b\u5916": 92, "\u4f60\u53ef\u4ee5\u50cf\u6784\u5efa\u4efb\u4f55\u5176\u4ed6": 92, "\u7c7b\u4e00\u6837\u6784\u5efa\u4f60\u7684\u6a21\u578b\u7c7b": 92, "\u6dfb\u52a0\u4efb\u4f55\u4f60\u9700\u8981\u652f\u6301\u6a21\u578b\u8ba1\u7b97\u7684\u5c5e\u6027\u548c\u65b9\u6cd5": 92, "\u8ba9\u6211\u4eec\u5b9e\u4f8b\u5316\u8fd9\u4e2a\u5bf9\u8c61\u5e76\u8fd0\u884c\u4e00\u4e2a\u793a\u4f8b\u8f93\u5165": 92, "\u5bf9\u8c61\u6253\u5370\u4e86\u4ec0\u4e48\u4fe1\u606f": 92, "\u7684\u9ed1\u767d\u56fe\u50cf": [92, 93, 104], "nimag": 92, "\u4e0d\u76f4\u63a5\u8c03\u7528": 92, "nraw": 92, "\u5982\u4e0a\u4ee3\u7801\u5b58\u5728\u4e00\u4e9b\u8981\u70b9": 92, "\u6211\u4eec\u5b9e\u4f8b\u5316": 92, "\u7c7b": [92, 93, 104, 246], "\u5e76\u6253\u5370": 92, "\u7684\u5b50\u7c7b\u5c06\u62a5\u544a\u5b83\u521b\u5efa\u7684\u5c42\u53ca\u5176\u5f62\u72b6\u548c\u53c2\u6570": 92, "\u8fd9\u53ef\u4ee5\u63d0\u4f9b\u4e00\u4e2a\u6a21\u578b\u7684\u6982\u89c8": 92, "\u5982\u679c\u4f60\u60f3\u4e86\u89e3\u5b83\u7684\u5904\u7406\u8fc7\u7a0b": 92, "\u5728\u4e0b\u9762": [92, 95], "\u6211\u4eec\u521b\u5efa\u4e00\u4e2a\u865a\u62df\u8f93\u5165": 92, "\u8868\u793a\u4e00\u4e2a": 92, "\u7684\u5355\u901a\u9053\u56fe\u50cf": 92, "\u4f60\u4f1a\u52a0\u8f7d\u4e00\u4e2a\u56fe\u50cf\u5207\u7247\u5e76\u5c06\u5176\u8f6c\u6362\u4e3a\u8fd9\u79cd\u5f62\u72b6\u7684\u5f20\u91cf": 92, "\u4f60\u53ef\u80fd\u5df2\u7ecf\u6ce8\u610f\u5230\u6211\u4eec\u7684\u5f20\u91cf\u6709\u4e00\u4e2a\u989d\u5916\u7684\u7ef4\u5ea6": 92, "\u6279\u6b21\u7ef4\u5ea6": 92, "\u6a21\u578b\u5047\u8bbe\u5b83\u4eec\u6b63\u5728\u5904\u7406\u6570\u636e": 92, "\u6279\u6b21": [92, 95, 96], "\u5305\u542b": [92, 104], "\u4e2a\u56fe\u50cf\u5207\u7247\u7684\u6279\u6b21\u5c06\u5177\u6709\u5f62\u72b6": 92, "\u7531\u4e8e\u6211\u4eec\u53ea\u4f7f\u7528\u4e00\u4e2a\u56fe\u50cf": 92, "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a\u5f62\u72b6\u4e3a": 92, "\u7684\u6279\u6b21": 92, "\u6211\u4eec\u901a\u8fc7\u50cf\u51fd\u6570\u4e00\u6837\u8c03\u7528\u5b83\u6765\u8981\u6c42\u6a21\u578b\u8fdb\u884c\u63a8\u7406": 92, "\u8fd9\u4e2a\u8c03\u7528\u7684\u8f93\u51fa\u8868\u793a\u6a21\u578b\u5bf9\u8f93\u5165\u8868\u793a\u7279\u5b9a\u6570\u5b57\u7684\u7f6e\u4fe1\u5ea6": 92, "\u7531\u4e8e\u8fd9\u4e2a\u6a21\u578b\u5b9e\u4f8b\u8fd8\u6ca1\u6709\u5b66\u4e60\u4efb\u4f55\u4e1c\u897f": 92, "\u6211\u4eec\u4e0d\u5e94\u8be5\u671f\u671b\u5728\u8f93\u51fa\u4e2d\u770b\u5230\u4efb\u4f55\u4fe1\u53f7": 92, "\u67e5\u770b": [92, 236], "\u7684\u5f62\u72b6": 92, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u4e5f\u6709\u4e00\u4e2a\u6279\u6b21\u7ef4\u5ea6": 92, "\u5176\u5927\u5c0f\u5e94\u8be5\u59cb\u7ec8\u4e0e\u8f93\u5165\u6279\u6b21\u7ef4\u5ea6\u76f8\u5339\u914d": 92, "\u5982\u679c\u6211\u4eec\u4f20\u5165\u4e86\u4e00\u4e2a\u5305\u542b": 92, "\u4e2a\u5b9e\u4f8b\u7684\u8f93\u5165\u6279\u6b21": 92, "\u5c06\u5177\u6709": 92, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u4f7f\u7528": 92, "\u4e2d\u7684\u4e00\u4e2a\u53ef\u4e0b\u8f7d\u7684\u5f00\u653e\u8bbf\u95ee\u6570\u636e\u96c6": 92, "\u5982\u4f55\u8f6c\u6362\u56fe\u50cf\u4ee5\u4f9b\u4f60\u7684\u6a21\u578b\u4f7f\u7528": 92, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528": 92, "\u5c06\u6570\u636e\u6279\u6b21\u63d0\u4f9b\u7ed9\u4f60\u7684\u6a21\u578b": 92, "\u6211\u4eec\u9700\u8981\u505a\u7684\u7b2c\u4e00\u4ef6\u4e8b\u662f\u5c06\u4f20\u5165\u7684\u56fe\u50cf\u8f6c\u6362\u4e3a": 92, "4914": 92, "4822": 92, "4465": 92, "2470": 92, "2435": 92, "2616": 92, "\u6211\u4eec\u4e3a\u8f93\u5165\u6307\u5b9a\u4e86\u4e24\u79cd\u8f6c\u6362": 92, "\u52a0\u8f7d\u7684\u56fe\u50cf\u8f6c\u6362\u4e3a": 92, "\u8c03\u6574\u5f20\u91cf\u7684\u503c": 92, "\u4f7f\u5176\u5e73\u5747\u503c\u4e3a\u96f6": 92, "\u6807\u51c6\u5dee\u4e3a": 92, "\u5927\u591a\u6570\u6fc0\u6d3b\u51fd\u6570\u5728": 92, "\u9644\u8fd1\u5177\u6709\u6700\u5f3a\u68af\u5ea6": [92, 93], "\u56e0\u6b64\u5c06\u6211\u4eec\u7684\u6570\u636e\u5c45\u4e2d\u53ef\u4ee5\u52a0\u5feb\u5b66\u4e60\u901f\u5ea6": 92, "\u4f20\u9012\u7ed9\u8f6c\u6362\u7684\u503c\u662f\u6570\u636e\u96c6\u4e2d\u56fe\u50cf\u7684": 92, "\u503c\u7684\u5747\u503c": 92, "\u7b2c\u4e00\u4e2a\u5143\u7ec4": 92, "\u548c\u6807\u51c6\u5dee": 92, "\u7b2c\u4e8c\u4e2a\u5143\u7ec4": 92, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u8fd0\u884c\u4ee5\u4e0b\u51e0\u884c\u4ee3\u7801\u81ea\u5df1\u8ba1\u7b97\u8fd9\u4e9b\u503c": 92, "concatdataset": 92, "\u5c06\u6240\u6709\u8bad\u7ec3\u56fe\u50cf\u5806\u53e0\u6210\u5f62\u72b6\u4e3a": 92, "50000": 92, "\u83b7\u53d6\u6bcf\u4e2a\u901a\u9053\u7684\u5747\u503c": 92, "\u8fd8\u6709\u8bb8\u591a\u5176\u4ed6\u53ef\u7528\u7684\u8f6c\u6362": 92, "\u5305\u62ec\u88c1\u526a": 92, "\u5c45\u4e2d": 92, "\u65cb\u8f6c\u548c\u53cd\u5c04": 92, "\u6211\u4eec\u5c06\u521b\u5efa": 92, "\u6570\u636e\u96c6\u7684\u4e00\u4e2a\u5b9e\u4f8b": 92, "\u8fd9\u662f\u4e00\u7ec4": 92, "\u7684\u5f69\u8272\u56fe\u50cf\u5207\u7247": 92, "\u4ee3\u8868": [92, 95], "\u7c7b\u7269\u4f53": 92, "\u79cd\u52a8\u7269": 92, "\u9e1f": 92, "\u732b": 92, "\u9e7f": 92, "\u72d7": 92, "\u9752\u86d9": 92, "\u9a6c": 92, "\u79cd\u8f66\u8f86": 92, "\u98de\u673a": 92, "\u6c7d\u8f66": 92, "\u8239": 92, "\u5361\u8f66": 92, "\u5f53\u4f60\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u65f6": 92, "\u5b83\u53ef\u80fd\u9700\u8981\u4e00\u4e9b\u65f6\u95f4\u6765\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u8fd9\u662f\u5728": 92, "\u4e2d\u521b\u5efa\u6570\u636e\u96c6\u5bf9\u8c61\u7684\u4e00\u4e2a\u793a\u4f8b": 92, "\u53ef\u4e0b\u8f7d\u7684\u6570\u636e\u96c6": 92, "\u5982\u4e0a\u9762\u7684": 92, "\u7c7b\u5305\u62ec": 92, "\u4e2d\u7684\u53ef\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u4ee5\u53ca\u8bf8\u5982": 92, "\u4e4b\u7c7b\u7684\u5b9e\u7528\u7a0b\u5e8f\u6570\u636e\u96c6\u7c7b": 92, "\u5b83\u5c06\u8bfb\u53d6\u4e00\u4e2a\u6807\u8bb0\u8fc7\u7684\u56fe\u50cf\u6587\u4ef6\u5939": 92, "\u4f60\u4e5f\u53ef\u4ee5\u521b\u5efa": 92, "\u7684\u81ea\u5df1\u7684\u5b50\u7c7b": 92, "\u5f53\u6211\u4eec\u5b9e\u4f8b\u5316\u6211\u4eec\u7684\u6570\u636e\u96c6\u65f6": 92, "\u6211\u4eec\u9700\u8981\u544a\u8bc9\u5b83\u4e00\u4e9b\u4e8b\u60c5": 92, "\u6211\u4eec\u5e0c\u671b\u6570\u636e\u5b58\u653e\u7684\u6587\u4ef6\u7cfb\u7edf\u8def\u5f84": 92, "\u6211\u4eec\u662f\u5426\u4f7f\u7528\u8fd9\u4e2a\u96c6\u5408\u8fdb\u884c\u8bad\u7ec3": 92, "\u5927\u591a\u6570\u6570\u636e\u96c6\u5c06\u88ab\u5206\u4e3a\u8bad\u7ec3\u548c\u6d4b\u8bd5\u5b50\u96c6": 92, "\u5982\u679c\u6211\u4eec\u8fd8\u6ca1\u6709\u4e0b\u8f7d\u6570\u636e\u96c6": 92, "\u6211\u4eec\u662f\u5426\u5e0c\u671b\u4e0b\u8f7d\u5b83": 92, "\u6211\u4eec\u60f3\u5bf9\u6570\u636e\u5e94\u7528\u54ea\u4e9b\u8f6c\u6362": 92, "\u4e00\u65e6\u4f60\u7684\u6570\u636e\u96c6\u51c6\u5907\u5c31\u7eea": 92, "\u4f60\u5c31\u53ef\u4ee5\u5c06\u5b83\u4ea4\u7ed9": 92, "\u7684\u5b50\u7c7b\u5305\u88c5\u4e86\u5bf9\u6570\u636e\u7684\u8bbf\u95ee": 92, "\u5e76\u4e13\u95e8\u9488\u5bf9\u5b83\u6b63\u5728\u670d\u52a1\u7684\u6570\u636e\u7c7b\u578b": 92, "\u5bf9\u5b83\u6b63\u5728\u670d\u52a1\u7684\u6570\u636e\u4e00\u65e0\u6240\u77e5": 92, "\u4f46\u4f1a\u6839\u636e\u4f60\u6307\u5b9a\u7684\u53c2\u6570\u5c06": 92, "\u63d0\u4f9b\u7684\u8f93\u5165\u5f20\u91cf\u7ec4\u7ec7\u6210\u6279\u6b21": 92, "\u5728\u4e0a\u9762\u7684\u793a\u4f8b\u4e2d": [92, 111, 238], "\u6211\u4eec\u8981\u6c42\u4e00\u4e2a": 92, "\u4e2d\u7ed9\u6211\u4eec\u6279\u6b21\u5927\u5c0f\u4e3a": 92, "\u968f\u673a\u6253\u4e71\u5b83\u4eec\u7684\u987a\u5e8f": 92, "\u5e76\u544a\u8bc9\u5b83\u542f\u52a8\u4e24\u4e2a\u5de5\u4f5c\u8fdb\u7a0b\u4ece\u78c1\u76d8\u52a0\u8f7d\u6570\u636e": 92, "\u53ef\u89c6\u5316\u4f60\u7684": 92, "\u63d0\u4f9b\u7684\u6279\u6b21\u662f\u4e00\u4e2a\u5f88\u597d\u7684\u505a\u6cd5": 92, "\u83b7\u53d6\u4e00\u4e9b\u968f\u673a\u8bad\u7ec3\u56fe\u50cf": 92, "\u663e\u793a\u56fe\u50cf": 92, "\u6253\u5370\u6807\u7b7e": 92, "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c\u5e94\u8be5\u4f1a\u663e\u793a\u4f60\u4e00\u6761\u56db\u5f20\u56fe\u50cf\u7684\u6761\u5e26": 92, "\u4ee5\u53ca\u6bcf\u5f20\u56fe\u50cf\u7684\u6b63\u786e\u6807\u7b7e": 92, "\u8ba9\u6211\u4eec\u628a\u6240\u6709\u7684\u90e8\u5206\u653e\u5728\u4e00\u8d77": 92, "\u8bad\u7ec3\u4e00\u4e2a\u6a21\u578b": 92, "\u6211\u4eec\u9700\u8981\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u636e\u96c6": 92, "\u5982\u679c\u4f60\u8fd8\u6ca1\u6709": 92, "\u8fd0\u884c\u4e0b\u9762\u7684\u5355\u5143\u683c\u6765\u786e\u4fdd\u6570\u636e\u96c6\u5df2\u4e0b\u8f7d": 92, "\u53ef\u80fd\u9700\u8981\u4e00\u5206\u949f": 92, "\u8fd0\u884c\u5bf9": 92, "\u8f93\u51fa\u7684\u68c0\u67e5": 92, "\u8fd9\u662f\u6211\u4eec\u5c06\u8981\u8bad\u7ec3\u7684\u6a21\u578b": 92, "\u5982\u679c\u5b83\u770b\u8d77\u6765\u5f88\u719f\u6089": 92, "\u90a3\u662f\u56e0\u4e3a\u5b83\u662f": 92, "\u7684\u4e00\u4e2a\u53d8\u4f53": 92, "\u5728\u672c\u89c6\u9891\u524d\u9762\u8ba8\u8bba\u8fc7": 92, "\u9002\u7528\u4e8e": 92, "\u8272\u56fe\u50cf": 92, "\u6211\u4eec\u6700\u540e\u9700\u8981\u7684\u662f\u4e00\u4e2a\u635f\u5931\u51fd\u6570\u548c\u4e00\u4e2a\u4f18\u5316\u5668": 92, "\u5982\u672c\u89c6\u9891\u524d\u9762\u6240\u8ba8\u8bba\u7684": 92, "\u662f\u8861\u91cf\u6a21\u578b\u9884\u6d4b\u4e0e\u7406\u60f3\u8f93\u51fa\u4e4b\u95f4\u5dee\u8ddd\u7684\u6307\u6807": 92, "\u4ea4\u53c9\u71b5\u635f\u5931\u662f\u50cf\u6211\u4eec\u8fd9\u6837\u7684\u5206\u7c7b\u6a21\u578b\u7684\u5178\u578b\u635f\u5931\u51fd\u6570": 92, "\u662f\u9a71\u52a8\u5b66\u4e60\u7684\u5173\u952e": 92, "\u6211\u4eec\u521b\u5efa\u4e86\u4e00\u4e2a\u5b9e\u73b0": 92, "\u968f\u673a\u68af\u5ea6\u4e0b\u964d": 92, "\u7684\u4f18\u5316\u5668": 92, "\u8fd9\u662f\u6700\u76f4\u63a5\u7684\u4f18\u5316\u7b97\u6cd5\u4e4b\u4e00": 92, "\u9664\u4e86\u7b97\u6cd5\u7684\u53c2\u6570": 92, "\u5982\u5b66\u4e60\u7387": 92, "\u548c\u52a8\u91cf": 92, "\u4e4b\u5916": [92, 93], "\u6211\u4eec\u8fd8\u4f20\u5165\u4e86": 92, "\u5b83\u662f\u6a21\u578b\u4e2d\u6240\u6709\u5b66\u4e60\u6743\u91cd\u7684\u96c6\u5408": 92, "\u8fd9\u662f\u4f18\u5316\u5668\u8981\u8c03\u6574\u7684\u5bf9\u8c61": 92, "\u6240\u6709\u8fd9\u4e9b\u90fd\u88ab\u7ec4\u88c5\u5230\u8bad\u7ec3\u5faa\u73af\u4e2d": 92, "\u7ee7\u7eed\u8fd0\u884c\u8fd9\u4e2a\u5355\u5143\u683c": 92, "\u5b83\u53ef\u80fd\u9700\u8981\u51e0\u5206\u949f\u624d\u80fd\u6267\u884c": 92, "\u5728\u6570\u636e\u96c6\u4e0a\u5faa\u73af\u591a\u6b21": [92, 94], "\u83b7\u53d6\u8f93\u5165": [92, 250], "\u5c06\u53c2\u6570\u68af\u5ea6\u5f52\u96f6": 92, "\u53cd\u5411": [92, 250], "\u6253\u5370\u7edf\u8ba1\u4fe1\u606f": [92, 250], "\u6bcf": 92, "\u4e2a\u5c0f\u6279\u6b21\u6253\u5370\u4e00\u6b21": 92, "\u6211\u4eec\u53ea\u8fdb\u884c\u4e86": 92, "\u4e2a\u8bad\u7ec3\u8f6e\u6b21": 92, "\u7b2c": 92, "\u884c": 92, "\u4e5f\u5c31\u662f\u5728\u8bad\u7ec3\u6570\u636e\u96c6\u4e0a\u8fdb\u884c\u4e86\u4e24\u6b21\u5b8c\u6574\u904d\u5386": 92, "\u6bcf\u6b21\u904d\u5386\u90fd\u6709\u4e00\u4e2a\u5185\u90e8\u5faa\u73af": 92, "\u904d\u5386\u8bad\u7ec3\u6570\u636e": 92, "\u63d0\u4f9b\u7ecf\u8fc7\u8f6c\u6362\u7684\u8f93\u5165\u56fe\u50cf\u6279\u6b21\u53ca\u5176\u6b63\u786e\u6807\u7b7e": 92, "\u5c06\u68af\u5ea6\u5f52\u96f6": [92, 96], "\u662f\u4e00\u4e2a\u91cd\u8981\u6b65\u9aa4": 92, "\u68af\u5ea6\u4f1a\u5728\u4e00\u4e2a\u6279\u6b21\u4e0a\u7d2f\u79ef": 92, "\u5982\u679c\u6211\u4eec\u4e0d\u4e3a\u6bcf\u4e2a\u6279\u6b21\u91cd\u7f6e\u5b83\u4eec": 92, "\u5b83\u4eec\u5c06\u7ee7\u7eed\u7d2f\u79ef": 92, "\u4ece\u800c\u63d0\u4f9b\u9519\u8bef\u7684\u68af\u5ea6\u503c": 92, "\u4f7f\u5b66\u4e60\u53d8\u5f97\u4e0d\u53ef\u80fd": 92, "\u5728\u7b2c": 92, "\u6211\u4eec": 92, "\u8981\u6c42\u6a21\u578b\u5bf9\u8fd9\u4e2a\u6279\u6b21\u8fdb\u884c\u9884\u6d4b": 92, "\u5728\u4e0b\u4e00\u884c": 92, "\u6211\u4eec\u8ba1\u7b97\u635f\u5931": 92, "\u6a21\u578b\u9884\u6d4b": 92, "\u6b63\u786e\u8f93\u51fa": 92, "\u4e4b\u95f4\u7684\u5dee\u5f02": 92, "\u6211\u4eec\u8fdb\u884c": 92, "\u4f20\u64ad": 92, "\u8ba1\u7b97\u5c06\u6307\u5bfc\u5b66\u4e60\u7684\u68af\u5ea6": 92, "\u4f18\u5316\u5668\u6267\u884c\u4e00\u6b65\u5b66\u4e60": 92, "\u5b83\u4f7f\u7528": 92, "\u8c03\u7528\u5f97\u5230\u7684\u68af\u5ea6\u6765\u8c03\u6574\u5b66\u4e60\u6743\u91cd": 92, "\u4ee5\u51cf\u5c0f\u635f\u5931": 92, "\u5faa\u73af\u7684\u5176\u4f59\u90e8\u5206\u5bf9\u8f6e\u6b21\u53f7": 92, "\u5df2\u5b8c\u6210\u7684\u8bad\u7ec3\u5b9e\u4f8b\u6570\u4ee5\u53ca\u8bad\u7ec3\u5faa\u73af\u4e2d\u6536\u96c6\u7684\u635f\u5931\u8fdb\u884c\u4e86\u4e00\u4e9b\u8f7b\u91cf\u7ea7\u62a5\u544a": 92, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u7c7b\u4f3c\u8fd9\u6837\u7684\u8f93\u51fa": 92, "235": [92, 109], "940": 92, "6000": 92, "8000": [92, 246], "573": 92, "507": 92, "12000": 92, "442": 92, "378": 92, "364": 92, "319": [92, 219, 238], "284": [92, 163], "267": 92, "\u6ce8\u610f\u635f\u5931\u503c\u662f\u5355\u8c03\u4e0b\u964d\u7684": 92, "\u8868\u660e\u6211\u4eec\u7684\u6a21\u578b\u5728\u7ee7\u7eed\u63d0\u9ad8\u5176\u5728\u8bad\u7ec3\u6570\u636e\u96c6\u4e0a\u7684\u6027\u80fd": 92, "\u4f5c\u4e3a\u6700\u540e\u4e00\u6b65": 92, "\u6211\u4eec\u5e94\u8be5\u68c0\u67e5\u6a21\u578b\u662f\u5426\u771f\u6b63\u505a\u5230\u4e86": 92, "\u6cdb\u5316": 92, "\u5b66\u4e60": [92, 104], "\u800c\u4e0d\u662f\u7b80\u5355\u5730": 92, "\u8bb0\u4f4f": 92, "\u4e86\u6570\u636e\u96c6": 92, "\u8fd9\u88ab\u79f0\u4e3a": 92, "\u8fc7\u62df\u5408": 92, "\u901a\u5e38\u8868\u660e\u6570\u636e\u96c6\u592a\u5c0f": 92, "\u6ca1\u6709\u8db3\u591f\u7684\u6837\u672c\u8fdb\u884c\u6cdb\u5316\u5b66\u4e60": 92, "\u6216\u8005\u6a21\u578b\u7684\u5b66\u4e60\u53c2\u6570\u6bd4\u6b63\u786e\u5efa\u6a21\u6570\u636e\u96c6\u6240\u9700\u7684\u66f4\u591a": 92, "\u8fd9\u5c31\u662f\u4e3a\u4ec0\u4e48\u6570\u636e\u96c6\u88ab\u5206\u4e3a\u8bad\u7ec3\u548c\u6d4b\u8bd5\u5b50\u96c6\u7684\u539f\u56e0": 92, "\u4e3a\u4e86\u6d4b\u8bd5\u6a21\u578b\u7684\u6cdb\u5316\u80fd\u529b": 92, "\u6211\u4eec\u8981\u6c42\u5b83\u5bf9\u4ece\u672a\u8bad\u7ec3\u8fc7\u7684\u6570\u636e\u8fdb\u884c\u9884\u6d4b": 92, "\u5982\u679c\u4f60\u4e00\u76f4\u8ddf\u968f\u4e0b\u6765": 92, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u6a21\u578b\u5728\u8fd9\u4e00\u70b9\u4e0a\u7684\u51c6\u786e\u7387\u5927\u7ea6\u4e3a": 92, "\u8fd9\u5e76\u4e0d\u662f\u6700\u5148\u8fdb\u7684\u6c34\u5e73": 92, "\u4f46\u6bd4\u968f\u673a\u8f93\u51fa\u7684": 92, "\u51c6\u786e\u7387\u8981\u597d\u5f97\u591a": 92, "\u8fd9\u8bc1\u660e\u4e86\u6a21\u578b\u786e\u5b9e\u53d1\u751f\u4e86\u4e00\u4e9b\u6cdb\u5316\u5b66\u4e60": 92, "\u5728\u8fd9\u4e2a\u89c6\u9891\u4e2d": 93, "\u6211\u4eec\u5c06\u8ba8\u8bba": 93, "\u63d0\u4f9b\u7684\u4e00\u4e9b\u7528\u4e8e\u6784\u5efa\u6df1\u5ea6\u5b66\u4e60\u7f51\u7edc\u7684\u5de5\u5177": 93, "\u9664\u4e86": 93, "\u6211\u4eec\u5728\u672c\u89c6\u9891\u4e2d\u8ba8\u8bba\u7684\u6240\u6709\u7c7b\u90fd\u662f": 93, "\u7684\u57fa\u7c7b": 93, "\u65e8\u5728\u5c01\u88c5\u7279\u5b9a\u4e8e": 93, "\u6a21\u578b\u53ca\u5176\u7ec4\u4ef6\u7684\u884c\u4e3a": 93, "\u7684\u4e00\u4e2a\u91cd\u8981\u884c\u4e3a\u662f\u6ce8\u518c\u53c2\u6570": 93, "\u5982\u679c\u7279\u5b9a\u7684": 93, "\u5b50\u7c7b\u5177\u6709\u5b66\u4e60\u6743\u91cd": 93, "\u8fd9\u4e9b\u6743\u91cd\u5c06\u8868\u793a\u4e3a": 93, "\u7c7b\u662f": 93, "\u5177\u6709\u7279\u6b8a\u884c\u4e3a": 93, "\u5373\u5f53\u5b83\u4eec\u88ab\u5206\u914d\u4e3a": 93, "\u7684\u5c5e\u6027\u65f6": 93, "\u5b83\u4eec\u5c06\u88ab\u6dfb\u52a0\u5230\u8be5\u6a21\u5757\u7684\u53c2\u6570\u5217\u8868\u4e2d": 93, "\u7c7b\u4e0a\u7684": 93, "\u65b9\u6cd5\u8bbf\u95ee\u8fd9\u4e9b\u53c2\u6570": 93, "\u4f5c\u4e3a\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50": 93, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684\u6a21\u578b": 93, "\u5305\u542b\u4e24\u4e2a\u7ebf\u6027\u5c42\u548c\u4e00\u4e2a\u6fc0\u6d3b\u51fd\u6570": 93, "\u6211\u4eec\u5c06\u521b\u5efa\u5b83\u7684\u4e00\u4e2a\u5b9e\u4f8b": 93, "\u5e76\u8981\u6c42\u5b83\u62a5\u544a\u5176\u53c2\u6570": 93, "linear1": [93, 103], "linear2": [93, 103], "njust": 93, "nmodel": 93, "\u8fd9\u663e\u793a\u4e86": 93, "\u6a21\u578b\u7684\u57fa\u672c\u7ed3\u6784": 93, "\u65b9\u6cd5\u5b9a\u4e49\u6a21\u578b\u7684\u5c42\u548c\u5176\u4ed6\u7ec4\u4ef6": 93, "\u8fd8\u6709\u4e00\u4e2a": 93, "\u65b9\u6cd5\u6267\u884c\u8ba1\u7b97": 93, "\u6ce8\u610f\u6211\u4eec\u53ef\u4ee5\u6253\u5370\u6a21\u578b\u6216\u4efb\u4f55\u5b50\u6a21\u5757": 93, "\u4ee5\u4e86\u89e3\u5176\u7ed3\u6784": 93, "\u6700\u57fa\u672c\u7684\u795e\u7ecf\u7f51\u7edc\u5c42\u7c7b\u578b\u662f": 93, "\u7ebf\u6027": 93, "\u5168\u8fde\u63a5": 93, "\u8fd9\u662f\u4e00\u79cd\u6bcf\u4e2a\u8f93\u5165\u90fd\u4f1a\u5f71\u54cd\u8be5\u5c42\u6bcf\u4e2a\u8f93\u51fa\u7684\u5c42": 93, "\u5176\u5f71\u54cd\u7a0b\u5ea6\u7531\u5c42\u7684\u6743\u91cd\u6307\u5b9a": 93, "\u5982\u679c\u4e00\u4e2a\u6a21\u578b\u6709": 93, "\u4e2a\u8f93\u5165\u548c": 93, "\u4e2a\u8f93\u51fa": 93, "\u6743\u91cd\u5c06\u662f\u4e00\u4e2a": 93, "\u77e9\u9635": [93, 95], "lin": [93, 99, 104, 137, 157, 172, 173, 174, 209], "nweight": 93, "noutput": 93, "\u5982\u679c\u4f60\u5c06": 93, "\u4e0e\u7ebf\u6027\u5c42\u7684\u6743\u91cd\u76f8\u4e58": 93, "\u5e76\u52a0\u4e0a\u504f\u7f6e": 93, "\u4f60\u4f1a\u53d1\u73b0\u5f97\u5230\u7684\u662f\u8f93\u51fa\u5411\u91cf": 93, "\u53e6\u4e00\u4e2a\u9700\u8981\u6ce8\u610f\u7684\u91cd\u8981\u7279\u6027\u662f": 93, "\u5f53\u6211\u4eec\u7528": 93, "\u68c0\u67e5\u5c42\u7684\u6743\u91cd\u65f6": 93, "\u5b83\u5c06\u81ea\u5df1\u62a5\u544a\u4e3a\u4e00\u4e2a": 93, "\u5e76\u8ba9\u6211\u4eec\u77e5\u9053\u5b83\u6b63\u5728\u4f7f\u7528": 93, "\u8ddf\u8e2a\u68af\u5ea6": 93, "\u4e0d\u540c\u7684\u9ed8\u8ba4\u884c\u4e3a": 93, "\u7ebf\u6027\u5c42\u5728\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u4e2d\u88ab\u5e7f\u6cdb\u4f7f\u7528": 93, "\u4f60\u4f1a\u7ecf\u5e38\u5728\u5206\u7c7b\u5668\u6a21\u578b\u7684\u672b\u7aef\u770b\u5230\u5b83\u4eec": 93, "\u5176\u4e2d\u6700\u540e\u4e00\u5c42\u5c06\u6709": 93, "\u662f\u5206\u7c7b\u5668\u6240\u5904\u7406\u7684\u7c7b\u522b\u6570": 93, "\u5377\u79ef": 93, "\u5c42\u88ab\u8bbe\u8ba1\u7528\u4e8e\u5904\u7406\u5177\u6709\u9ad8\u5ea6\u7a7a\u95f4\u76f8\u5173\u6027\u7684\u6570\u636e": 93, "\u5b83\u4eec\u5728\u8ba1\u7b97\u673a\u89c6\u89c9\u9886\u57df\u975e\u5e38\u5e38\u7528": 93, "\u7528\u4e8e\u68c0\u6d4b\u7ec4\u6210\u66f4\u9ad8\u7ea7\u7279\u5f81\u7684\u7d27\u5bc6\u7279\u5f81\u7ec4": 93, "\u5b83\u4eec\u4e5f\u51fa\u73b0\u5728\u5176\u4ed6\u4e0a\u4e0b\u6587\u4e2d": 93, "\u5e94\u7528\u7a0b\u5e8f\u4e2d": 93, "\u4e00\u4e2a\u5355\u8bcd\u7684\u76f4\u63a5\u4e0a\u4e0b\u6587": 93, "\u5373\u5e8f\u5217\u4e2d\u9644\u8fd1\u7684\u5176\u4ed6\u5355\u8bcd": 93, "\u53ef\u80fd\u4f1a\u5f71\u54cd\u53e5\u5b50\u7684\u542b\u4e49": 93, "\u6211\u4eec\u5728\u4e4b\u524d\u7684\u89c6\u9891\u4e2d\u770b\u5230\u4e86": 93, "lenet5": 93, "\u4e2d\u7684\u5377\u79ef\u5c42": 93, "\u8f93\u5165\u56fe\u50cf\u901a\u9053": 93, "\u8f93\u51fa\u901a\u9053": 93, "\u5e73\u65b9\u5377\u79ef\u6838": 93, "\u6765\u81ea\u56fe\u50cf\u7ef4\u5ea6": 93, "\u8ba9\u6211\u4eec\u5206\u89e3\u4e00\u4e0b\u8fd9\u4e2a\u6a21\u578b\u4e2d\u5377\u79ef\u5c42\u7684\u5de5\u4f5c\u539f\u7406": 93, "\u65e8\u5728\u63a5\u53d7": 93, "1x32x32": 93, "\u5377\u79ef\u5c42\u6784\u9020\u51fd\u6570\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570\u662f\u8f93\u5165\u901a\u9053\u6570": 93, "\u8fd9\u91cc\u662f": 93, "\u5982\u679c\u6211\u4eec\u6784\u5efa\u8fd9\u4e2a\u6a21\u578b\u6765\u67e5\u770b": 93, "\u8272\u5f69\u901a\u9053": 93, "\u5b83\u5c06\u662f": 93, "\u5377\u79ef\u5c42\u5c31\u50cf\u4e00\u4e2a\u626b\u63cf\u56fe\u50cf\u7684\u7a97\u53e3": 93, "\u5bfb\u627e\u5b83\u80fd\u8bc6\u522b\u7684\u6a21\u5f0f": 93, "\u8fd9\u4e9b\u6a21\u5f0f\u88ab\u79f0\u4e3a": 93, "\u7279\u5f81": 93, "\u5377\u79ef\u5c42\u7684\u4e00\u4e2a\u53c2\u6570\u662f\u6211\u4eec\u5e0c\u671b\u5b83\u5b66\u4e60\u7684\u7279\u5f81\u6570\u91cf": 93, "\u6784\u9020\u51fd\u6570\u7684\u7b2c\u4e8c\u4e2a\u53c2\u6570\u662f\u8f93\u51fa\u7279\u5f81\u7684\u6570\u91cf": 93, "\u6211\u4eec\u8981\u6c42\u6211\u4eec\u7684\u5c42\u5b66\u4e60": 93, "\u4e2a\u7279\u5f81": 93, "\u5c31\u5728\u4e0a\u9762": 93, "\u6211\u5c06\u5377\u79ef\u5c42\u6bd4\u4f5c\u4e00\u4e2a\u7a97\u53e3": 93, "\u4f46\u662f\u7a97\u53e3\u6709\u591a\u5927": 93, "\u7b2c\u4e09\u4e2a\u53c2\u6570\u662f\u7a97\u53e3\u6216\u5185\u6838\u5927\u5c0f": 93, "\u6570\u5b57": 93, "\u610f\u5473\u7740\u6211\u4eec\u9009\u62e9\u4e86\u4e00\u4e2a": 93, "\u7684\u5185\u6838": 93, "\u5982\u679c\u4f60\u5e0c\u671b\u5185\u6838\u7684\u9ad8\u5ea6\u4e0e\u5bbd\u5ea6\u4e0d\u540c": 93, "\u4f60\u53ef\u4ee5\u4e3a\u6b64\u53c2\u6570\u6307\u5b9a\u4e00\u4e2a\u5143\u7ec4": 93, "\u6765\u83b7\u5f97\u4e00\u4e2a": 93, "3x5": 93, "\u7684\u5377\u79ef\u6838": 93, "\u5377\u79ef\u5c42\u7684\u8f93\u51fa\u662f\u4e00\u4e2a": 93, "\u6fc0\u6d3b\u6620\u5c04": 93, "\u8f93\u5165\u5f20\u91cf\u4e2d\u7279\u5f81\u5b58\u5728\u7684\u7a7a\u95f4\u8868\u793a": 93, "\u5c06\u7ed9\u6211\u4eec\u4e00\u4e2a": 93, "6x28x28": 93, "\u7684\u8f93\u51fa\u5f20\u91cf": [93, 95], "\u662f\u7279\u5f81\u6570": 93, "\u662f\u6620\u5c04\u7684\u9ad8\u5ea6\u548c\u5bbd\u5ea6": 93, "\u6765\u81ea\u4e8e\u5f53\u5728": 93, "\u50cf\u7d20\u884c\u4e0a\u626b\u63cf": 93, "\u50cf\u7d20\u7a97\u53e3\u65f6": 93, "\u53ea\u6709": 93, "\u4e2a\u6709\u6548\u4f4d\u7f6e\u7684\u4e8b\u5b9e": 93, "\u6211\u4eec\u5c06\u5377\u79ef\u7684\u8f93\u51fa\u901a\u8fc7": 93, "\u7a0d\u540e\u5c06\u8ba8\u8bba\u6fc0\u6d3b\u51fd\u6570": 93, "\u7136\u540e\u901a\u8fc7\u6700\u5927\u6c60\u5316\u5c42": 93, "\u6700\u5927\u6c60\u5316\u5c42\u5c06\u6fc0\u6d3b\u6620\u5c04\u4e2d\u5f7c\u6b64\u9760\u8fd1\u7684\u7279\u5f81\u7ec4\u5408\u5728\u4e00\u8d77": 93, "\u5b83\u901a\u8fc7\u51cf\u5c0f\u5f20\u91cf\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 93, "\u5c06\u8f93\u51fa\u4e2d\u6bcf\u4e2a": 93, "\u7ec4\u7684\u5355\u5143\u683c\u5408\u5e76\u4e3a\u4e00\u4e2a\u5355\u5143\u683c": 93, "\u5e76\u5c06\u8be5\u5355\u5143\u683c\u7684\u503c\u5206\u914d\u4e3a\u7ec4\u6210\u5b83\u7684": 93, "\u4e2a\u5355\u5143\u683c\u4e2d\u7684\u6700\u5927\u503c": 93, "\u8fd9\u7ed9\u4e86\u6211\u4eec\u4e00\u4e2a\u8f83\u4f4e\u5206\u8fa8\u7387\u7684\u6fc0\u6d3b\u6620\u5c04": 93, "\u5c3a\u5bf8\u4e3a": 93, "6x14x14": 93, "\u6211\u4eec\u7684\u4e0b\u4e00\u4e2a\u5377\u79ef\u5c42": 93, "\u671f\u671b": 93, "\u4e2a\u8f93\u5165\u901a\u9053": 93, "\u5bf9\u5e94\u4e8e\u7b2c\u4e00\u5c42\u5bfb\u627e\u7684": 93, "\u6709": 93, "\u5e76\u4e14\u5185\u6838\u5927\u5c0f\u4e3a": 93, "3x3": 93, "\u5b83\u8f93\u51fa\u4e00\u4e2a": 93, "16x12x12": 93, "\u7684\u6fc0\u6d3b\u6620\u5c04": 93, "\u518d\u6b21\u901a\u8fc7\u6700\u5927\u6c60\u5316\u5c42\u51cf\u5c0f\u5230": 93, "16x6x6": 93, "\u5728\u5c06\u6b64\u8f93\u51fa\u4f20\u9012\u7ed9\u7ebf\u6027\u5c42\u4e4b\u524d": 93, "\u5b83\u88ab\u91cd\u65b0\u6574\u5f62\u4e3a\u4e00\u4e2a": 93, "576": 93, "\u5143\u7d20\u5411\u91cf": 93, "\u4f9b\u4e0b\u4e00\u5c42\u4f7f\u7528": 93, "\u6709\u9488\u5bf9": 93, "\u5f20\u91cf\u7684\u5377\u79ef\u5c42": 93, "\u5377\u79ef\u5c42\u6784\u9020\u51fd\u6570\u8fd8\u6709\u8bb8\u591a\u5176\u4ed6\u53ef\u9009\u53c2\u6570": 93, "\u5305\u62ec\u6b65\u957f\u957f\u5ea6": 93, "\u53ea\u626b\u63cf\u6bcf\u7b2c\u4e8c\u4e2a\u6216\u6bcf\u7b2c\u4e09\u4e2a\u4f4d\u7f6e": 93, "\u586b\u5145": 93, "\u56e0\u6b64\u4f60\u53ef\u4ee5\u626b\u63cf\u5230\u8f93\u5165\u7684\u8fb9\u7f18": 93, "\u7b49\u7b49": 93, "\u66f4\u591a\u4fe1\u606f\u8bf7\u53c2\u89c1": 93, "\u5faa\u73af\u795e\u7ecf\u7f51\u7edc": 93, "\u7528\u4e8e\u5e8f\u5217\u6570\u636e": 93, "\u4ece\u79d1\u5b66\u4eea\u5668\u7684\u65f6\u95f4\u5e8f\u5217\u6d4b\u91cf\u5230\u81ea\u7136\u8bed\u8a00\u53e5\u5b50\u518d\u5230": 93, "dna": 93, "\u6838\u82f7\u9178": 93, "\u901a\u8fc7\u7ef4\u62a4\u4e00\u4e2a": 93, "\u9690\u85cf\u72b6\u6001": 93, "\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 93, "\u8be5\u9690\u85cf\u72b6\u6001\u5145\u5f53\u4e00\u79cd\u8bb0\u5fc6": 93, "\u8bb0\u5f55\u5230\u76ee\u524d\u4e3a\u6b62\u5b83\u5728\u5e8f\u5217\u4e2d\u770b\u5230\u7684\u5185\u5bb9": 93, "\u5c42\u7684\u5185\u90e8\u7ed3\u6784": 93, "\u6216\u5176\u53d8\u4f53": 93, "\u957f\u77ed\u671f\u8bb0\u5fc6": 93, "\u95e8\u63a7\u5faa\u73af\u5355\u5143": 93, "\u76f8\u5f53\u590d\u6742": 93, "\u8d85\u51fa\u4e86\u672c\u89c6\u9891\u7684\u8303\u56f4": 93, "\u4f46\u6211\u4eec\u5c06\u5411\u4f60\u5c55\u793a\u57fa\u4e8e": 93, "\u7684\u8bcd\u6027\u6807\u6ce8\u5668": 93, "\u4e00\u79cd\u5206\u7c7b\u5668": 93, "\u7528\u4e8e\u544a\u8bc9\u4f60\u4e00\u4e2a\u5355\u8bcd\u662f\u540d\u8bcd": 93, "\u52a8\u8bcd\u7b49": 93, "\u7684\u6837\u5b50": 93, "lstmtagger": [93, 102], "vocab_s": [93, 98, 99, 102, 103, 115, 118, 137, 144, 185, 220], "tagset_s": [93, 98, 102], "word_embed": [93, 102], "\u63a5\u53d7\u8bcd\u5d4c\u5165\u4f5c\u4e3a\u8f93\u5165": 93, "\u5e76\u8f93\u51fa\u7ef4\u5ea6\u4e3a": 93, "\u7684\u9690\u85cf\u72b6\u6001": 93, "\u5c06\u4ece\u9690\u85cf\u72b6\u6001\u7a7a\u95f4\u6620\u5c04\u5230\u6807\u8bb0\u7a7a\u95f4\u7684\u7ebf\u6027\u5c42": 93, "hidden2tag": [93, 98, 102], "lstm_out": [93, 98, 102], "tag_spac": [93, 102], "tag_scor": [93, 102], "\u6784\u9020\u51fd\u6570\u6709\u56db\u4e2a\u53c2\u6570": 93, "\u662f\u8f93\u5165\u8bcd\u6c47\u8868\u4e2d\u5355\u8bcd\u7684\u6570\u91cf": 93, "\u6bcf\u4e2a\u5355\u8bcd\u662f\u4e00\u4e2a": 93, "\u7ef4\u7684\u4e00\u70ed\u5411\u91cf": 93, "\u6216\u5355\u4f4d\u5411\u91cf": 93, "\u662f\u8f93\u51fa\u6807\u7b7e\u96c6\u7684\u5927\u5c0f": 93, "\u662f\u8bcd\u6c47\u7684": 93, "\u5d4c\u5165": 93, "\u7a7a\u95f4\u7684\u5927\u5c0f": 93, "\u5d4c\u5165\u5c06\u8bcd\u6c47\u6620\u5c04\u5230\u4e00\u4e2a\u4f4e\u7ef4\u7a7a\u95f4": 93, "\u5728\u8be5\u7a7a\u95f4\u4e2d": 93, "\u610f\u4e49\u76f8\u4f3c\u7684\u5355\u8bcd\u5f7c\u6b64\u63a5\u8fd1": 93, "\u7684\u8bb0\u5fc6\u5927\u5c0f": 93, "\u8f93\u5165\u5c06\u662f\u4e00\u4e2a\u53e5\u5b50": 93, "\u5355\u8bcd\u8868\u793a\u4e3a\u4e00\u70ed\u5411\u91cf\u7684\u7d22\u5f15": 93, "\u5d4c\u5165\u5c42\u5c06\u628a\u8fd9\u4e9b\u6620\u5c04\u5230\u4e00\u4e2a": 93, "\u7ef4\u7684\u7a7a\u95f4": 93, "\u63a5\u6536\u8fd9\u4e2a\u5d4c\u5165\u5e8f\u5217\u5e76\u5bf9\u5176\u8fdb\u884c\u8fed\u4ee3": 93, "\u4ea7\u751f\u4e00\u4e2a\u957f\u5ea6\u4e3a": 93, "\u7684\u8f93\u51fa\u5411\u91cf": 93, "\u6700\u540e\u7684\u7ebf\u6027\u5c42\u5145\u5f53\u5206\u7c7b\u5668": 93, "\u5c06\u6700\u540e\u4e00\u5c42\u7684\u8f93\u51fa\u901a\u8fc7": 93, "\u8f6c\u6362\u4e3a\u4e00\u7ec4\u5f52\u4e00\u5316\u7684\u4f30\u8ba1\u6982\u7387": 93, "\u8868\u793a\u7ed9\u5b9a\u5355\u8bcd\u6620\u5c04\u5230\u7ed9\u5b9a\u6807\u7b7e\u7684\u6982\u7387": 93, "\u5982\u679c\u4f60\u60f3\u770b\u770b\u8fd9\u4e2a\u7f51\u7edc\u7684\u5b9e\u9645\u8fd0\u884c\u60c5\u51b5": 93, "\u53ef\u4ee5\u67e5\u770b": 93, "\u4e0a\u7684": [93, 121], "\u5e8f\u5217\u6a21\u578b\u548c": 93, "\u7f51\u7edc": 93, "\u6559\u7a0b": [93, 104, 238], "\u662f\u591a\u7528\u9014\u7f51\u7edc": 93, "\u9886\u57df\u53d6\u5f97\u4e86\u6700\u5148\u8fdb\u7684\u6210\u679c": 93, "\u8ba8\u8bba\u8f6c\u6362\u5668\u67b6\u6784\u8d85\u51fa\u4e86\u672c\u89c6\u9891\u7684\u8303\u56f4": 93, "\u5141\u8bb8\u4f60\u5b9a\u4e49\u8f6c\u6362\u5668\u6a21\u578b\u7684\u6574\u4f53\u53c2\u6570": 93, "\u6ce8\u610f\u529b\u5934\u7684\u6570\u91cf": 93, "\u7f16\u7801\u5668\u548c\u89e3\u7801\u5668\u5c42\u7684\u6570\u91cf": 93, "\u548c\u6fc0\u6d3b\u51fd\u6570\u7b49": 93, "\u4f60\u751a\u81f3\u53ef\u4ee5\u7528\u6b63\u786e\u7684\u53c2\u6570\u4ece\u8fd9\u4e2a\u5355\u4e00\u7c7b\u6784\u5efa": 93, "\u7c7b\u8fd8\u5305\u542b\u5c01\u88c5\u5355\u4e2a\u7ec4\u4ef6": 93, "transformerdecod": 93, "\u548c\u5b50\u7ec4\u4ef6": 93, "transformerdecoderlay": 93, "\u8be6\u60c5\u8bf7\u67e5\u770b": 93, "\u4e2d\u5173\u4e8e\u8f6c\u6362\u5668\u7c7b\u7684\u5185\u5bb9": 93, "\u4ee5\u53ca": [93, 104], "\u4e0a\u76f8\u5173\u7684": 93, "\u8fd8\u6709\u5176\u4ed6\u7c7b\u578b\u7684\u5c42\u6267\u884c\u6a21\u578b\u4e2d\u7684\u91cd\u8981\u529f\u80fd": 93, "\u4f46\u5b83\u4eec\u81ea\u8eab\u4e0d\u53c2\u4e0e\u5b66\u4e60\u8fc7\u7a0b": 93, "\u6700\u5927\u6c60\u5316": 93, "\u53ca\u5176\u5b6a\u751f\u5c42\u6700\u5c0f\u6c60\u5316": 93, "\u901a\u8fc7\u7ec4\u5408\u5355\u5143\u5e76\u5c06\u8f93\u5165\u5355\u5143\u7684\u6700\u5927\u503c\u5206\u914d\u7ed9\u8f93\u51fa\u5355\u5143\u6765\u51cf\u5c0f\u5f20\u91cf": 93, "\u6211\u4eec\u4e4b\u524d\u770b\u5230\u8fc7\u8fd9\u4e00\u70b9": 93, "maxpool_lay": 93, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u7684\u503c": 93, "\u4f60\u4f1a\u53d1\u73b0\u6700\u5927\u6c60\u5316\u8f93\u51fa\u4e2d\u7684\u6bcf\u4e2a\u503c\u90fd\u662f": 93, "6x6": 93, "\u8f93\u5165\u7684\u6bcf\u4e2a\u8c61\u9650\u7684\u6700\u5927\u503c": 93, "\u5f52\u4e00\u5316\u5c42": 93, "\u5728\u5c06\u4e00\u5c42\u7684\u8f93\u51fa\u9988\u9001\u5230\u53e6\u4e00\u5c42\u4e4b\u524d": 93, "\u91cd\u65b0\u5c45\u4e2d\u5e76\u5f52\u4e00\u5316\u8f93\u51fa": 93, "\u5c45\u4e2d\u548c\u7f29\u653e\u4e2d\u95f4\u5f20\u91cf\u6709\u8bb8\u591a\u6709\u76ca\u7684\u6548\u679c": 93, "\u4f8b\u5982\u8ba9\u4f60\u53ef\u4ee5\u4f7f\u7528\u66f4\u9ad8\u7684\u5b66\u4e60\u7387\u800c\u4e0d\u4f1a\u51fa\u73b0\u68af\u5ea6\u7206\u70b8": 93, "\u6d88\u5931": 93, "norm_lay": [93, 134], "batchnorm1d": 93, "normed_tensor": 93, "\u8fd0\u884c\u4e0a\u9762\u7684\u5355\u5143\u683c": 93, "\u6211\u4eec\u4e3a\u8f93\u5165\u5f20\u91cf\u6dfb\u52a0\u4e86\u4e00\u4e2a\u5927\u7684\u7f29\u653e\u56e0\u5b50\u548c\u504f\u79fb\u91cf": 93, "\u4f60\u5e94\u8be5\u4f1a\u770b\u5230\u8f93\u5165\u5f20\u91cf\u7684": 93, "\u5de6\u53f3": 93, "\u7ecf\u8fc7\u5f52\u4e00\u5316\u5c42\u5904\u7406\u540e": 93, "\u4f60\u53ef\u4ee5\u770b\u5230\u503c\u53d8\u5c0f\u4e86": 93, "\u5e76\u4e14\u56f4\u7ed5\u7740": 93, "\u5206\u5e03": 93, "\u5e73\u5747\u503c\u5e94\u8be5\u975e\u5e38\u5c0f": 93, "\u8fd9\u662f\u6709\u76ca\u7684": 93, "\u56e0\u4e3a\u8bb8\u591a\u6fc0\u6d3b\u51fd\u6570": 93, "\u4e0b\u9762\u5c06\u8ba8\u8bba": 93, "\u4f46\u6709\u65f6\u5bf9\u4e8e\u5c06\u5b83\u4eec\u63a8\u79bb": 93, "\u5f88\u8fdc\u7684\u8f93\u5165\u4f1a\u9047\u5230\u68af\u5ea6\u6d88\u5931\u6216\u7206\u70b8\u7684\u95ee\u9898": 93, "\u5c06\u6570\u636e\u4fdd\u6301\u5728\u6700\u9661\u68af\u5ea6\u533a\u57df\u5468\u56f4\u5c06\u503e\u5411\u4e8e\u610f\u5473\u7740\u66f4\u5feb": 93, "\u66f4\u597d\u7684\u5b66\u4e60\u548c\u66f4\u9ad8\u7684\u53ef\u884c\u5b66\u4e60\u7387": 93, "\u662f\u4e00\u79cd\u9f13\u52b1\u6a21\u578b": 93, "\u7a00\u758f\u8868\u793a": 93, "\u7684\u5de5\u5177": 93, "\u4e5f\u5c31\u662f\u8bf4": [93, 95], "\u63a8\u52a8\u5b83\u5728\u63a8\u7406\u65f6\u4f7f\u7528\u8f83\u5c11\u7684\u6570\u636e": 93, "\u5c42\u7684\u5de5\u4f5c\u539f\u7406\u662f\u5728": 93, "\u8bad\u7ec3\u671f\u95f4": 93, "\u968f\u673a\u8bbe\u7f6e\u8f93\u5165\u5f20\u91cf\u7684\u4e00\u90e8\u5206": 93, "\u5c42\u5728\u63a8\u7406\u65f6\u603b\u662f\u5173\u95ed\u7684": 93, "\u8fd9\u8feb\u4f7f\u6a21\u578b\u9488\u5bf9\u8fd9\u79cd\u63a9\u7801\u6216\u51cf\u5c11\u7684\u6570\u636e\u96c6\u8fdb\u884c\u5b66\u4e60": 93, "\u5bf9\u793a\u4f8b\u5f20\u91cf\u7684\u5f71\u54cd": 93, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u53ef\u9009\u7684": 93, "\u53c2\u6570\u8bbe\u7f6e\u5355\u4e2a\u6743\u91cd\u4e22\u5f03\u7684\u6982\u7387": 93, "\u5982\u679c\u4e0d\u8bbe\u7f6e": 93, "\u9ed8\u8ba4\u4e3a": 93, "\u6fc0\u6d3b\u51fd\u6570\u4f7f\u6df1\u5ea6\u5b66\u4e60\u6210\u4e3a\u53ef\u80fd": 93, "\u795e\u7ecf\u7f51\u7edc\u5b9e\u9645\u4e0a\u662f\u4e00\u4e2a\u7a0b\u5e8f": 93, "\u6709\u8bb8\u591a\u53c2\u6570": 93, "\u7528\u4e8e": 93, "\u6a21\u62df\u4e00\u4e2a\u6570\u5b66\u51fd\u6570": 93, "\u5982\u679c\u6211\u4eec\u53ea\u662f\u91cd\u590d\u5730\u5c06\u5f20\u91cf\u4e0e\u5c42\u6743\u91cd\u76f8\u4e58": 93, "\u6211\u4eec\u53ea\u80fd\u6a21\u62df": 93, "\u7ebf\u6027\u51fd\u6570": 93, "\u6709\u591a\u5c42\u4e5f\u6ca1\u6709\u610f\u4e49": 93, "\u56e0\u4e3a\u6574\u4e2a\u7f51\u7edc\u53ef\u4ee5\u7b80\u5316\u4e3a\u5355\u4e2a\u77e9\u9635\u4e58\u6cd5": 93, "\u5728\u5c42\u4e4b\u95f4\u63d2\u5165": 93, "\u6fc0\u6d3b\u51fd\u6570\u4f7f\u5f97\u6df1\u5ea6\u5b66\u4e60\u6a21\u578b\u80fd\u591f\u6a21\u62df\u4efb\u4f55\u51fd\u6570": 93, "\u800c\u4e0d\u4ec5\u4ec5\u662f\u7ebf\u6027\u51fd\u6570": 93, "\u6709\u5c01\u88c5\u6240\u6709\u4e3b\u8981\u6fc0\u6d3b\u51fd\u6570\u7684\u5bf9\u8c61": 93, "\u53ca\u5176\u8bb8\u591a\u53d8\u4f53": 93, "hardtanh": [93, 110, 252], "\u7b49": [93, 95, 104, 111], "\u5b83\u8fd8\u5305\u62ec\u5176\u4ed6\u51fd\u6570": 93, "\u8fd9\u4e9b\u51fd\u6570\u5728\u6a21\u578b\u7684\u8f93\u51fa\u9636\u6bb5\u6700\u6709\u7528": 93, "\u635f\u5931\u51fd\u6570\u544a\u8bc9\u6211\u4eec\u6a21\u578b\u7684\u9884\u6d4b\u4e0e\u6b63\u786e\u7b54\u6848\u76f8\u5dee\u591a\u8fdc": 93, "\u5305\u542b\u5404\u79cd\u635f\u5931\u51fd\u6570": 93, "\u5305\u62ec\u5e38\u89c1\u7684": 93, "\u8303\u6570": 93, "\u4ea4\u53c9\u71b5\u635f\u5931\u548c\u8d1f\u5bf9\u6570\u4f3c\u7136\u635f\u5931": 93, "\u5bf9\u4e8e\u5206\u7c7b\u5668\u5f88\u6709\u7528": 93, "\u8981\u8fd0\u884c\u6b64\u6559\u7a0b": 94, "\u60a8\u9700\u8981\u5b89\u88c5pytorch": 94, "matplotlib\u548ctensorboard": 94, "\u5b89\u88c5\u5b8c\u4f9d\u8d56\u9879\u540e": 94, "\u8bf7\u5728\u5b89\u88c5\u5b83\u4eec\u7684python\u73af\u5883\u4e2d\u91cd\u65b0\u542f\u52a8\u6b64\u7b14\u8bb0\u672c": 94, "\u5728\u672c\u7b14\u8bb0\u672c\u4e2d": 94, "\u6211\u4eec\u5c06\u8bad\u7ec3lenet": 94, "5\u7684\u53d8\u4f53": 94, "\u9488\u5bf9fashion": 94, "mnist\u6570\u636e\u96c6": 94, "mnist\u662f\u4e00\u7ec4\u63cf\u7ed8\u5404\u79cd\u670d\u88c5\u7684\u56fe\u50cf\u74e6\u7247": 94, "\u6709\u5341\u4e2a\u7c7b\u6807\u7b7e\u6307\u793a\u6240\u63cf\u7ed8\u7684\u670d\u88c5\u7c7b\u578b": 94, "pytorch\u6a21\u578b\u548c\u8bad\u7ec3\u5fc5\u9700\u54c1": 94, "\u56fe\u50cf\u6570\u636e\u96c6\u548c\u56fe\u50cf\u64cd\u4f5c": 94, "\u56fe\u50cf\u663e\u793a": 94, "summarywrit": [94, 96, 169, 245], "\u5982\u679c\u60a8\u4f7f\u7528\u7684\u73af\u5883\u5b89\u88c5\u4e86tensorflow": 94, "\u5982googl": 94, "\u8bf7\u53d6\u6d88\u6ce8\u91ca\u4ee5\u4e0b\u4ee3\u7801\u4ee5\u907f\u514d\u5c06\u5d4c\u5165\u4fdd\u5b58\u5230tensorboard\u76ee\u5f55\u65f6\u51fa\u73b0\u9519\u8bef": 94, "tb": [94, 172, 173, 174], "gfile": 94, "tensorflow_stub": 94, "\u8ba9\u6211\u4eec\u4ece\u5c06\u6570\u636e\u96c6\u4e2d\u7684\u793a\u4f8b\u56fe\u50cf\u6dfb\u52a0\u5230tensorboard\u5f00\u59cb": 94, "\u6536\u96c6\u6570\u636e\u96c6\u5e76\u51c6\u5907\u6d88\u8d39": 94, "data\u4e2d\u5b58\u50a8\u5355\u72ec\u7684\u8bad\u7ec3\u548c\u9a8c\u8bc1\u5206\u5272": 94, "training_set": [94, 96], "validation_set": [94, 96], "training_load": [94, 96], "validation_load": [94, 96], "\u7c7b\u6807\u7b7e": 94, "\u5185\u8054\u56fe\u50cf\u663e\u793a\u7684\u8f85\u52a9\u51fd\u6570": [94, 96], "matplotlib_imshow": [94, 96, 169], "one_channel": [94, 96, 169], "\u53cd\u5f52\u4e00\u5316": 94, "grei": [94, 96, 119, 169, 188], "\u63d0\u53d6\u4e00\u62794\u5f20\u56fe\u50cf": 94, "\u4ece\u56fe\u50cf\u521b\u5efa\u7f51\u683c\u5e76\u663e\u793a\u5b83\u4eec": [94, 96], "img_grid": [94, 96, 169], "\u6211\u4eec\u4f7f\u7528torchvision\u548cmatplotlib\u521b\u5efa\u4e86\u4e00\u4e2a\u8f93\u5165\u6570\u636e\u5c0f\u6279\u91cf\u7684\u53ef\u89c6\u7f51\u683c": 94, "\u4e0a\u4f7f\u7528": 94, "add_imag": [94, 169], "\u8c03\u7528\u6765\u8bb0\u5f55\u56fe\u50cf": 94, "\u4ee5\u4f9btensorboard\u4f7f\u7528": 94, "\u6211\u4eec\u8fd8\u8c03\u7528": 94, "\u4ee5\u786e\u4fdd\u5b83\u7acb\u5373\u5199\u5165\u78c1\u76d8": 94, "\u9ed8\u8ba4log_dir\u53c2\u6570\u4e3a": 94, "\u4f46\u6700\u597d\u660e\u786e\u6307\u5b9a": 94, "summarywriter\u5728\u4e0a\u9762\u5bfc\u5165": 94, "fashion_mnist_experiment_1": [94, 169], "\u5c06\u56fe\u50cf\u6570\u636e\u5199\u5165tensorboard\u65e5\u5fd7\u76ee\u5f55": 94, "\u8981\u67e5\u770b": 94, "\u8bf7\u5728\u547d\u4ee4\u884c\u4e0a\u542f\u52a8tensorboard": 94, "logdir": [94, 168, 169, 245], "\u5e76\u5728\u65b0\u7684\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00http": 94, "6006": [94, 168, 169, 245], "\u5982\u679c\u60a8\u5728\u547d\u4ee4\u884c\u542f\u52a8tensorboard\u5e76\u5728\u65b0\u7684\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00\u5b83": 94, "\u901a\u5e38\u5728": 94, "\u60a8\u5e94\u8be5\u5728images\u9009\u9879\u5361\u4e0b\u770b\u5230\u56fe\u50cf\u7f51\u683c": 94, "tensorboard\u5bf9\u4e8e\u8ddf\u8e2a\u8bad\u7ec3\u7684\u8fdb\u5ea6\u548c\u6548\u679c\u5f88\u6709\u7528": 94, "\u6211\u4eec\u5c06\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u5faa\u73af": 94, "\u8ddf\u8e2a\u4e00\u4e9b\u6307\u6807": 94, "\u5e76\u4fdd\u5b58\u6570\u636e\u4ee5\u4f9btensorboard\u4f7f\u7528": 94, "\u8ba9\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u6a21\u578b\u6765\u5bf9\u6211\u4eec\u7684\u56fe\u50cf\u74e6\u7247\u8fdb\u884c\u5206\u7c7b": 94, "\u4ee5\u53ca\u7528\u4e8e\u8bad\u7ec3\u7684\u4f18\u5316\u5668\u548c\u635f\u5931\u51fd\u6570": 94, "\u73b0\u5728\u8ba9\u6211\u4eec\u8bad\u7ec3\u4e00\u4e2aepoch": 94, "\u5e76\u6bcf1000\u6279\u6b21\u8bc4\u4f30\u4e00\u6b21\u8bad\u7ec3\u4e0e\u9a8c\u8bc1\u96c6\u7684\u635f\u5931": 94, "\u57fa\u672c\u8bad\u7ec3\u5faa\u73af": 94, "\u6bcf1000\u4e2a\u5c0f\u6279\u91cf": 94, "\u5bf9\u7167\u9a8c\u8bc1\u96c6": 94, "running_vloss": [94, 96], "\u5728\u8bc4\u4f30\u6a21\u5f0f\u4e0b": 94, "\u53ef\u4ee5\u7701\u7565\u4e00\u4e9b\u7279\u5b9a\u4e8e\u6a21\u578b\u7684\u64cd\u4f5c": 94, "\u4f8b\u5982dropout\u5c42": 94, "\u5207\u6362\u5230\u8bc4\u4f30\u6a21\u5f0f": 94, "\u4f8b\u5982\u5173\u95ed\u6b63\u5219\u5316": 94, "vdata": [94, 96], "vinput": [94, 96], "vlabel": [94, 96], "voutput": [94, 96], "vloss": [94, 96], "\u5207\u6362\u56de\u8bad\u7ec3\u6a21\u5f0f": 94, "\u4f8b\u5982\u6253\u5f00\u6b63\u5219\u5316": 94, "avg_loss": [94, 96], "avg_vloss": [94, 96], "\u8bb0\u5f55\u6bcf\u6279\u6b21\u5e73\u5747\u7684\u8fd0\u884c\u635f\u5931": [94, 96], "add_scalar": [94, 96, 169, 245], "\u5207\u6362\u5230\u60a8\u6253\u5f00\u7684tensorboard": 94, "\u67e5\u770bscalars\u9009\u9879\u5361": 94, "tensorboard\u8fd8\u53ef\u7528\u4e8e\u68c0\u67e5\u6a21\u578b\u5185\u7684\u6570\u636e\u6d41": 94, "\u8bf7\u4f7f\u7528\u6a21\u578b\u548c\u793a\u4f8b\u8f93\u5165\u8c03\u7528": 94, "add_graph": [94, 169], "\u518d\u6b21\u83b7\u53d6\u4e00\u4e2a\u5c0f\u6279\u91cf\u7684\u56fe\u50cf": 94, "\u5c06\u901a\u8fc7\u60a8\u7684\u6a21\u578b\u8ddf\u8e2a\u793a\u4f8b\u8f93\u5165": 94, "\u5e76\u5c06\u5176\u6e32\u67d3\u4e3a\u56fe\u5f62": 94, "\u5f53\u60a8\u5207\u6362\u5230tensorboard\u65f6": 94, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u4e00\u4e2agraphs\u9009\u9879\u5361": 94, "\u53cc\u51fb": 94, "\u8282\u70b9\u53ef\u67e5\u770b\u6a21\u578b\u5185\u7684\u5c42\u548c\u6570\u636e\u6d41": 94, "\u6211\u4eec\u4f7f\u7528\u768428x28\u56fe\u50cf\u74e6\u7247\u53ef\u4ee5\u5efa\u6a21\u4e3a784\u7ef4\u5411\u91cf": 94, "\u5c06\u5176\u6295\u5f71\u5230\u8f83\u4f4e\u7ef4\u5ea6\u7684\u8868\u793a\u5f62\u5f0f\u53ef\u80fd\u4f1a\u5f88\u6709\u542f\u53d1\u6027": 94, "add_embed": [94, 169], "\u65b9\u6cd5\u5c06\u4e00\u7ec4\u6570\u636e\u6295\u5f71\u5230\u5177\u6709\u6700\u9ad8\u65b9\u5dee\u7684\u4e09\u4e2a\u7ef4\u5ea6\u4e0a": 94, "\u5e76\u5c06\u5b83\u4eec\u663e\u793a\u4e3a\u4ea4\u4e92\u5f0f3d\u56fe\u8868": 94, "\u65b9\u6cd5\u901a\u8fc7\u6295\u5f71\u5230\u5177\u6709\u6700\u9ad8\u65b9\u5dee\u7684\u4e09\u4e2a\u7ef4\u5ea6\u6765\u81ea\u52a8\u6267\u884c\u6b64\u64cd\u4f5c": 94, "\u6211\u4eec\u5c06\u91c7\u6837\u6570\u636e": 94, "\u5e76\u751f\u6210\u8fd9\u6837\u4e00\u4e2a\u5d4c\u5165": 94, "\u9009\u62e9\u968f\u673a\u5b50\u96c6\u7684\u6570\u636e\u548c\u76f8\u5e94\u7684\u6807\u7b7e": 94, "select_n_random": [94, 169], "perm": [94, 169], "randperm": [94, 169, 178], "\u63d0\u53d6\u968f\u673a\u5b50\u96c6\u7684\u6570\u636e": 94, "\u83b7\u53d6\u6bcf\u4e2a\u56fe\u50cf\u7684\u7c7b\u6807\u7b7e": 94, "class_label": [94, 169, 171], "\u8bb0\u5f55\u5d4c\u5165": 94, "label_img": [94, 169], "\u5982\u679c\u60a8\u5207\u6362\u5230tensorboard\u5e76\u9009\u62e9projector\u9009\u9879\u5361": 94, "\u60a8\u5e94\u8be5\u4f1a\u770b\u5230\u6295\u5f71\u76843d\u8868\u793a": 94, "\u60a8\u53ef\u4ee5\u65cb\u8f6c\u548c\u7f29\u653e\u6a21\u578b": 94, "\u5728\u5927\u5c0f\u4e0d\u540c\u7684\u5c3a\u5ea6\u4e0a\u68c0\u67e5\u5b83": 94, "\u770b\u770b\u60a8\u662f\u5426\u53ef\u4ee5\u53d1\u73b0\u6295\u5f71\u6570\u636e\u548c\u6807\u7b7e\u805a\u7c7b\u4e2d\u7684\u6a21\u5f0f": 94, "\u4e3a\u4e86\u66f4\u597d\u7684\u53ef\u89c1\u6027": 94, "\u5efa\u8bae": 94, "\u4ece\u5de6\u4fa7\u7684": 94, "\u4e0b\u62c9\u83dc\u5355\u4e2d\u9009\u62e9": 94, "\u5207\u6362\u9876\u90e8\u7684night": 94, "mode\u56fe\u6807": 94, "\u5c06\u6d45\u8272\u56fe\u50cf\u7f6e\u4e8e\u6df1\u8272\u80cc\u666f\u4e0a": 94, "pytorch\u5173\u4e8e": 94, "__\u7684\u6587\u6863": 94, "org\u6559\u7a0b": 94, "\u4e2d\u7684tensorboard\u6559\u7a0b\u5185\u5bb9": 94, "\u6709\u5173tensorboard\u7684\u66f4\u591a\u4fe1\u606f": 94, "tensorboard\u6587\u6863": 94, "\u5f20\u91cf\u662fpytorch\u4e2d\u7684\u4e2d\u5fc3\u6570\u636e\u62bd\u8c61": 95, "\u8fd9\u4e2a\u4ea4\u4e92\u5f0f\u7b14\u8bb0\u672c\u63d0\u4f9b\u4e86\u5bf9": 95, "\u7c7b\u7684\u6df1\u5165\u4ecb\u7ecd": 95, "\u8ba9\u6211\u4eec\u5bfc\u5165pytorch\u6a21\u5757": 95, "\u6211\u4eec\u8fd8\u5c06\u6dfb\u52a0python\u7684\u6570\u5b66\u6a21\u5757": 95, "\u4ee5\u4fbf\u4e8e\u4e00\u4e9b\u793a\u4f8b": 95, "\u521b\u5efa\u5f20\u91cf\u6700\u7b80\u5355\u7684\u65b9\u6cd5\u662f\u4f7f\u7528": 95, "\u8ba9\u6211\u4eec\u89e3\u91ca\u4e0b\u521a\u624d\u53d1\u751f\u7684\u4e8b\u60c5": 95, "\u6211\u4eec\u4f7f\u7528\u9644\u52a0\u5230": 95, "\u6a21\u5757\u7684\u4f17\u591a\u5de5\u5382\u65b9\u6cd5\u4e4b\u4e00\u521b\u5efa\u4e86\u4e00\u4e2a\u5f20\u91cf": 95, "\u8be5\u5f20\u91cf\u662f\u4e8c\u7ef4\u7684": 95, "\u67093\u884c4\u5217": 95, "\u8fd4\u56de\u5bf9\u8c61\u7684\u7c7b\u578b\u662f": 95, "\u7684\u522b\u540d": 95, "pytorch\u5f20\u91cf\u752832\u4f4d\u6d6e\u70b9\u6570\u586b\u5145": 95, "\u66f4\u591a\u5173\u4e8e\u6570\u636e\u7c7b\u578b\u7684\u5185\u5bb9\u89c1\u4e0b\u6587": 95, "\u5f53\u6253\u5370\u4f60\u7684\u5f20\u91cf\u65f6": 95, "\u4f60\u53ef\u80fd\u4f1a\u770b\u5230\u4e00\u4e9b\u968f\u673a\u7684\u503c": 95, "\u8c03\u7528\u4e3a\u5f20\u91cf\u5206\u914d\u5185\u5b58": 95, "\u4f46\u4e0d\u4f1a\u7528\u4efb\u4f55\u503c\u521d\u59cb\u5316\u5b83": 95, "\u6240\u4ee5\u4f60\u770b\u5230\u7684\u662f\u5206\u914d\u65f6\u5185\u5b58\u4e2d\u7684\u4efb\u4f55\u503c": 95, "\u5173\u4e8e\u5f20\u91cf\u53ca\u5176\u7ef4\u6570\u548c\u672f\u8bed\u7684\u7b80\u8981\u8bf4\u660e": 95, "\u4f60\u6709\u65f6\u4f1a\u770b\u5230\u4e00\u7ef4\u5f20\u91cf\u88ab\u79f0\u4e3a": 95, "\u5411\u91cf": 95, "\u4e8c\u7ef4\u5f20\u91cf\u901a\u5e38\u88ab\u79f0\u4e3a": 95, "\u4efb\u4f55\u8d85\u8fc7\u4e24\u4e2a\u7ef4\u5ea6\u7684\u5f20\u91cf\u901a\u5e38\u90fd\u88ab\u79f0\u4e3a\u5f20\u91cf": 95, "\u5927\u591a\u6570\u60c5\u51b5\u4e0b": 95, "\u4f60\u4f1a\u5e0c\u671b\u7528\u4e00\u4e9b\u503c\u521d\u59cb\u5316\u4f60\u7684\u5f20\u91cf": 95, "\u5e38\u89c1\u7684\u60c5\u51b5\u662f\u5168\u96f6": 95, "\u5168\u4e00\u6216\u968f\u673a\u503c": 95, "\u6a21\u5757\u4e3a\u6240\u6709\u8fd9\u4e9b\u60c5\u51b5\u63d0\u4f9b\u4e86\u5de5\u5382\u65b9\u6cd5": 95, "\u5de5\u5382\u65b9\u6cd5\u90fd\u505a\u4e86\u4f60\u671f\u671b\u7684\u4e8b\u60c5": 95, "\u6211\u4eec\u6709\u4e00\u4e2a\u5168\u96f6\u5f20\u91cf": 95, "\u4e00\u4e2a\u5168\u4e00\u5f20\u91cf\u548c\u4e00\u4e2a\u968f\u673a\u503c\u57280\u52301\u4e4b\u95f4\u7684\u5f20\u91cf": 95, "\u8bf4\u5230\u968f\u673a\u5f20\u91cf": 95, "\u4f60\u662f\u5426\u6ce8\u610f\u5230\u5728\u5b83\u4e4b\u524d\u7acb\u5373\u8c03\u7528\u4e86": 95, "\u7528\u968f\u673a\u503c\u521d\u59cb\u5316\u5f20\u91cf": 95, "\u5982\u6a21\u578b\u7684\u5b66\u4e60\u6743\u91cd": 95, "\u662f\u5f88\u5e38\u89c1\u7684": 95, "\u4f46\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b": 95, "\u7279\u522b\u662f\u5728\u7814\u7a76\u73af\u5883\u4e2d": 95, "\u4f60\u53ef\u80fd\u5e0c\u671b\u5bf9\u7ed3\u679c\u7684\u53ef\u91cd\u590d\u6027\u6709\u4e00\u4e9b\u4fdd\u8bc1": 95, "\u624b\u52a8\u8bbe\u7f6e\u968f\u673a\u6570\u751f\u6210\u5668\u7684\u79cd\u5b50\u5c31\u662f\u8fd9\u6837\u505a\u7684\u65b9\u6cd5": 95, "\u8ba9\u6211\u4eec\u4ed4\u7ec6\u770b\u770b": 95, "random1": 95, "random2": 95, "random3": 95, "random4": 95, "\u4f60\u5e94\u8be5\u770b\u5230\u4e0a\u9762": 95, "\u5305\u542b\u76f8\u540c\u7684\u503c": 95, "\u4e5f\u662f\u5982\u6b64": 95, "\u624b\u52a8\u8bbe\u7f6erng\u7684\u79cd\u5b50\u4f1a\u91cd\u7f6e\u5b83": 95, "\u56e0\u6b64\u76f8\u540c\u7684\u968f\u673a\u6570\u8ba1\u7b97\u5728\u5927\u591a\u6570\u8bbe\u7f6e\u4e0b\u5e94\u8be5\u63d0\u4f9b\u76f8\u540c\u7684\u7ed3\u679c": 95, "\u8bf7\u53c2\u9605pytorch\u5173\u4e8e\u53ef\u91cd\u590d\u6027\u7684": 95, "\u5f53\u4f60\u5728\u4e24\u4e2a\u6216\u591a\u4e2a\u5f20\u91cf\u4e0a\u6267\u884c\u64cd\u4f5c\u65f6": 95, "\u5b83\u4eec\u901a\u5e38\u9700\u8981\u5177\u6709\u76f8\u540c\u7684": 95, "\u5177\u6709\u76f8\u540c\u7684\u7ef4\u6570\u548c\u6bcf\u4e2a\u7ef4\u5ea6\u4e2d\u7684\u76f8\u540c\u6570\u91cf\u7684\u5355\u5143": 95, "_like": [95, 147], "empty_like_x": 95, "empty_lik": [95, 108, 147, 173, 174, 189, 209], "zeros_like_x": 95, "ones_like_x": 95, "rand_like_x": 95, "\u4e0a\u9762\u4ee3\u7801\u5355\u5143\u4e2d\u7684\u7b2c\u4e00\u4e2a\u65b0\u4e8b\u7269\u662f\u5728\u5f20\u91cf\u4e0a\u4f7f\u7528": 95, "\u8fd9\u4e2a\u5c5e\u6027\u5305\u542b\u4e86\u6bcf\u4e2a\u7ef4\u5ea6\u5f20\u91cf\u7684\u8303\u56f4\u7684\u5217\u8868": 95, "\u662f\u4e00\u4e2a\u4e09\u7ef4\u5f20\u91cf": 95, "\u5f62\u72b6\u4e3a": 95, "\u6211\u4eec\u53ef\u4ee5\u9a8c\u8bc1\u6bcf\u4e2a\u8fd9\u4e9b\u65b9\u6cd5\u90fd\u8fd4\u56de\u4e00\u4e2a\u5177\u6709\u76f8\u540c\u7ef4\u6570\u548c\u8303\u56f4\u7684\u5f20\u91cf": 95, "\u521b\u5efa\u5f20\u91cf\u7684\u6700\u540e\u4e00\u79cd\u65b9\u5f0f\u662f\u76f4\u63a5\u4ecepytorch\u96c6\u5408\u4e2d\u6307\u5b9a\u5176\u6570\u636e": 95, "some_const": 95, "1415926": 95, "71828": 95, "61803": 95, "0072897": 95, "some_integ": 95, "more_integ": 95, "\u662f\u5728\u4f60\u5df2\u7ecf\u6709python\u5143\u7ec4\u6216\u5217\u8868\u6570\u636e\u7684\u60c5\u51b5\u4e0b\u521b\u5efa\u5f20\u91cf\u7684\u6700\u76f4\u63a5\u65b9\u5f0f": 95, "\u5982\u4e0a\u6240\u793a": 95, "\u5d4c\u5957\u96c6\u5408\u4f1a\u751f\u6210\u591a\u7ef4\u5f20\u91cf": 95, "\u521b\u5efa\u6570\u636e\u7684\u526f\u672c": 95, "\u8bbe\u7f6e\u5f20\u91cf\u7684\u6570\u636e\u7c7b\u578b\u6709\u4e24\u79cd\u65b9\u5f0f": 95, "int32": [95, 137, 165, 184, 185, 197, 200, 234], "\u8bbe\u7f6e\u5f20\u91cf\u5e95\u5c42\u6570\u636e\u7c7b\u578b\u7684\u6700\u7b80\u5355\u65b9\u5f0f\u662f\u5728\u521b\u5efa\u65f6\u4f7f\u7528\u53ef\u9009\u53c2\u6570": 95, "\u5728\u4e0a\u9762\u5355\u5143\u683c\u7684\u7b2c\u4e00\u884c\u4e2d": 95, "\u8bbe\u7f6e\u4e3a\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u6253\u5370": 95, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u662f\u7531": 95, "\u586b\u5145\u7684": 95, "python\u7684\u4e00\u4e2a\u5fae\u5999\u63d0\u793a": 95, "\u8fd9\u662f\u4e00\u4e2a\u6574\u6570\u7c7b\u578b\u800c\u4e0d\u662f\u6d6e\u70b9\u6570": 95, "\u4f60\u53ef\u80fd\u8fd8\u6ce8\u610f\u5230": 95, "\u6253\u5370": 95, "\u4e0e\u6211\u4eec\u5c06": 95, "\u4fdd\u7559\u4e3a\u9ed8\u8ba4\u503c": 95, "32\u4f4d\u6d6e\u70b9\u6570": 95, "\u65f6\u4e0d\u540c": 95, "\u6253\u5370\u5f20\u91cf\u65f6\u4e5f\u6307\u5b9a\u4e86\u5176": 95, "\u6211\u4eec\u4ece\u6307\u5b9a\u5f20\u91cf\u5f62\u72b6\u4e3a\u4e00\u7cfb\u5217\u6574\u6570\u53c2\u6570": 95, "\u8f6c\u4e3a\u5c06\u8fd9\u4e9b\u53c2\u6570\u5206\u7ec4\u5230\u4e00\u4e2a\u5143\u7ec4\u4e2d": 95, "\u8fd9\u4e0d\u662f\u7edd\u5bf9\u5fc5\u8981\u7684": 95, "pytorch\u4f1a\u5c06\u4e00\u7cfb\u5217\u521d\u59cb\u7684": 95, "\u672a\u6807\u8bb0\u7684\u6574\u6570\u53c2\u6570\u89c6\u4e3a\u5f20\u91cf\u5f62\u72b6": 95, "\u4f46\u662f\u5f53\u6dfb\u52a0\u53ef\u9009\u53c2\u6570\u65f6": 95, "\u5b83\u53ef\u4ee5\u4f7f\u4f60\u7684\u610f\u56fe\u66f4\u52a0\u53ef\u8bfb": 95, "\u8bbe\u7f6e\u6570\u636e\u7c7b\u578b\u7684\u53e6\u4e00\u79cd\u65b9\u5f0f\u662f\u4f7f\u7528": 95, "\u6211\u4eec\u4ee5\u901a\u5e38\u7684\u65b9\u5f0f\u521b\u5efa\u4e86\u4e00\u4e2a\u968f\u673a\u6d6e\u70b9\u5f20\u91cf": 95, "\u6211\u4eec\u901a\u8fc7\u5c06": 95, "\u8f6c\u6362\u4e3a32\u4f4d\u6574\u6570\u6765\u521b\u5efa": 95, "\u5305\u542b\u4e0e": 95, "\u76f8\u540c\u7684\u503c": 95, "\u4f46\u88ab\u622a\u65ad\u4e3a\u6574\u6570": 95, "\u53ef\u7528\u7684\u6570\u636e\u7c7b\u578b\u5305\u62ec": 95, "bfloat": 95, "\u73b0\u5728\u4f60\u77e5\u9053\u4e86\u4e00\u4e9b\u521b\u5efa\u5f20\u91cf\u7684\u65b9\u6cd5": 95, "\u90a3\u4f60\u80fd\u5bf9\u5b83\u4eec\u505a\u4ec0\u4e48\u5462": 95, "\u8ba9\u6211\u4eec\u9996\u5148\u770b\u57fa\u672c\u7b97\u672f\u8fd0\u7b97": 95, "\u4ee5\u53ca\u5f20\u91cf\u5982\u4f55\u4e0e\u7b80\u5355\u7684\u6807\u91cf\u4ea4\u4e92": 95, "sqrt2": 95, "\u5982\u4f60\u6240\u89c1": [95, 104], "\u5f20\u91cf\u548c\u6807\u91cf\u4e4b\u95f4\u7684\u52a0\u6cd5": 95, "\u51cf\u6cd5": 95, "\u4e58\u6cd5": 95, "\u9664\u6cd5\u548c\u6307\u6570\u8fd0\u7b97\u90fd\u662f\u5728\u5f20\u91cf\u7684\u6bcf\u4e2a\u5143\u7d20\u4e0a\u5206\u5e03\u5f0f\u8fdb\u884c\u7684": 95, "\u7531\u4e8e\u8fd9\u79cd\u64cd\u4f5c\u7684\u8f93\u51fa\u5c06\u662f\u4e00\u4e2a\u5f20\u91cf": 95, "\u4f60\u53ef\u4ee5\u50cf\u901a\u5e38\u7684\u8fd0\u7b97\u7b26\u4f18\u5148\u7ea7\u89c4\u5219\u4e00\u6837\u5c06\u5b83\u4eec\u94fe\u63a5\u5728\u4e00\u8d77": 95, "\u5c31\u50cf\u6211\u4eec\u5728\u521b\u5efa": 95, "\u7684\u90a3\u4e00\u884c\u4e2d\u6240\u505a\u7684\u90a3\u6837": 95, "\u4e24\u4e2a\u5f20\u91cf\u4e4b\u95f4\u7684\u7c7b\u4f3c\u8fd0\u7b97\u4e5f\u50cf\u4f60\u76f4\u89c9\u4e0a\u671f\u671b\u7684\u90a3\u6837": 95, "powers2": 95, "dozen": [95, 165], "\u8fd9\u91cc\u9700\u8981\u6ce8\u610f\u7684\u662f": 95, "\u524d\u9762\u4ee3\u7801\u5355\u5143\u4e2d\u7684\u6240\u6709\u5f20\u91cf\u90fd\u5177\u6709\u76f8\u540c\u7684\u5f62\u72b6": 95, "\u5982\u679c\u6211\u4eec\u5c1d\u8bd5\u5728\u4e0d\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u4e0a\u6267\u884c\u4e8c\u5143\u8fd0\u7b97\u4f1a\u600e\u6837": 95, "\u4e0b\u9762\u7684\u5355\u5143\u683c\u4f1a\u629b\u51fa\u4e00\u4e2a\u8fd0\u884c\u65f6\u9519\u8bef": 95, "\u8fd9\u662f\u6709\u610f\u7684": 95, "\u4e00\u822c\u60c5\u51b5\u4e0b": 95, "\u4f60\u4e0d\u80fd\u4ee5\u8fd9\u79cd\u65b9\u5f0f\u5bf9\u4e0d\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c": 95, "\u5373\u4f7f\u5728\u4e0a\u9762\u7684\u5355\u5143\u683c\u4e2d": 95, "\u5f20\u91cf\u5177\u6709\u76f8\u540c\u6570\u91cf\u7684\u5143\u7d20": 95, "\u5982\u679c\u4f60\u719f\u6089numpi": 95, "ndarrays\u4e2d\u7684\u5e7f\u64ad\u8bed\u4e49": 95, "\u4f60\u4f1a\u53d1\u73b0\u8fd9\u91cc\u5e94\u7528\u7684\u662f\u76f8\u540c\u7684\u89c4\u5219": 95, "\u540c\u5f62\u89c4\u5219\u7684\u4f8b\u5916\u662f": 95, "\u8fd9\u91cc\u6709\u4e00\u4e2a\u4f8b\u5b50": 95, "\u8fd9\u91cc\u7684\u6280\u5de7\u662f\u4ec0\u4e48": 95, "\u6211\u4eec\u662f\u5982\u4f55\u5c06": 95, "\u5f20\u91cf\u4e0e": 95, "\u5f20\u91cf\u76f8\u4e58\u7684": 95, "\u5e7f\u64ad\u662f\u4e00\u79cd\u5728\u5177\u6709\u76f8\u4f3c\u5f62\u72b6\u7684\u5f20\u91cf\u4e4b\u95f4\u6267\u884c\u64cd\u4f5c\u7684\u65b9\u5f0f": 95, "\u5728\u4e0a\u9762\u7684\u4f8b\u5b50\u4e2d": 95, "\u4e00\u884c\u56db\u5217\u7684\u5f20\u91cf\u4e0e\u4e24\u884c\u56db\u5217\u5f20\u91cf\u7684": 95, "\u4e24\u884c": 95, "\u76f8\u4e58": 95, "\u8fd9\u662f\u6df1\u5ea6\u5b66\u4e60\u4e2d\u4e00\u4e2a\u91cd\u8981\u7684\u64cd\u4f5c": 95, "\u5e38\u89c1\u7684\u4f8b\u5b50\u662f\u5c06\u4e00\u6279\u8f93\u5165\u5f20\u91cf\u7684\u5b66\u4e60\u6743\u91cd\u5f20\u91cf\u76f8\u4e58": 95, "\u5206\u522b\u5bf9\u6279\u6b21\u4e2d\u7684\u6bcf\u4e2a\u5b9e\u4f8b\u5e94\u7528\u8be5\u64cd\u4f5c": 95, "\u5e76\u8fd4\u56de\u4e00\u4e2a\u5f62\u72b6\u76f8\u540c\u7684\u5f20\u91cf": 95, "\u5c31\u50cf\u6211\u4eec\u4e0a\u9762\u7684": 95, "\u793a\u4f8b\u4e00\u6837": 95, "\u8fd4\u56de\u4e86\u4e00\u4e2a\u5f62\u72b6\u4e3a": 95, "\u5e7f\u64ad\u7684\u89c4\u5219\u662f": 95, "\u6bcf\u4e2a\u5f20\u91cf\u5fc5\u987b\u81f3\u5c11\u6709\u4e00\u4e2a\u7ef4\u5ea6": 95, "\u4e0d\u5141\u8bb8\u7a7a\u5f20\u91cf": 95, "\u6bd4\u8f83\u4e24\u4e2a\u5f20\u91cf\u7684\u7ef4\u5ea6\u5927\u5c0f": 95, "\u4ece\u6700\u540e\u4e00\u4e2a\u5230\u7b2c\u4e00\u4e2a": 95, "\u6bcf\u4e2a\u7ef4\u5ea6\u5fc5\u987b\u76f8\u7b49": 95, "\u5176\u4e2d\u4e00\u4e2a\u7ef4\u5ea6\u5fc5\u987b\u4e3a1": 95, "\u8be5\u7ef4\u5ea6\u5728\u5176\u4e2d\u4e00\u4e2a\u5f20\u91cf\u4e2d\u4e0d\u5b58\u5728": 95, "\u5f53\u7136": 95, "\u76f8\u540c\u5f62\u72b6\u7684\u5f20\u91cf\u662f": 95, "\u53ef\u5e7f\u64ad": 95, "\u6b63\u5982\u4f60\u4e4b\u524d\u770b\u5230\u7684\u90a3\u6837": 95, "\u8fd9\u91cc\u6709\u4e00\u4e9b\u7b26\u5408\u4e0a\u8ff0\u89c4\u5219\u5e76\u5141\u8bb8\u5e7f\u64ad\u7684\u60c5\u51b5\u793a\u4f8b": 95, "\u7b2c3\u548c\u7b2c2\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c1\u7ef4\u4e0d\u5b58\u5728": 95, "\u7b2c3\u7ef4\u4e3a1": 95, "\u7b2c2\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c3\u7ef4\u4e0ea\u76f8\u540c": 95, "\u7b2c2\u7ef4\u4e3a1": 95, "\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u6bcf\u4e2a\u5f20\u91cf\u7684\u503c": 95, "\u521b\u5efa": 95, "\u7684\u4e58\u6cd5\u8fd0\u7b97\u662f\u5728": 95, "\u7684\u6bcf\u4e00\u5c42\u4e0a\u5e7f\u64ad\u7684": 95, "\u5bf9\u4e8e": 95, "\u8be5\u8fd0\u7b97\u5728": 95, "\u7684\u6bcf\u4e00\u5c42\u548c\u6bcf\u4e00\u884c\u4e0a\u90fd\u8fdb\u884c\u4e86\u5e7f\u64ad": 95, "\u6bcf\u4e00\u52173\u4e2a\u5143\u7d20\u90fd\u662f\u76f8\u540c\u7684": 95, "\u6211\u4eec\u98a0\u5012\u4e86\u4e00\u4e0b": 95, "\u73b0\u5728\u6bcf\u4e00\u884c\u5728\u5c42\u4e0e\u5217\u4e4b\u95f4\u90fd\u662f\u76f8\u540c\u7684": 95, "\u6709\u5173\u5e7f\u64ad\u7684\u66f4\u591a\u4fe1\u606f": 95, "\u8bf7\u53c2\u9605pytorch\u5173\u4e8e\u6b64\u7684": 95, "\u8fd9\u91cc\u6709\u4e00\u4e9b\u5c1d\u8bd5\u5e7f\u64ad\u4f46\u4f1a\u5931\u8d25\u7684\u4f8b\u5b50": 95, "\u7ef4\u5ea6\u5fc5\u987b\u4ece\u6700\u540e\u5230\u7b2c\u4e00\u4e2a\u5339\u914d": 95, "\u7b2c3\u548c\u7b2c2\u7ef4\u90fd\u4e0d\u540c": 95, "\u4e0d\u80fd\u4e0e\u7a7a\u5f20\u91cf\u8fdb\u884c\u5e7f\u64ad": 95, "\u5f20\u91cf\u6709\u8d85\u8fc7\u4e09\u767e\u79cd\u53ef\u4ee5\u6267\u884c\u7684\u64cd\u4f5c": 95, "\u8fd9\u91cc\u662f\u4e00\u4e9b\u4e3b\u8981\u64cd\u4f5c\u7c7b\u522b\u7684\u793a\u4f8b": 95, "\u5e38\u7528\u65b9\u6cd5": 95, "ceil": [95, 135], "\u4e09\u89d2\u51fd\u6570\u53ca\u5176\u53cd\u51fd\u6570": 95, "nsine": 95, "arcsin": 95, "\u4f4d\u8fd0\u7b97": 95, "nbitwis": 95, "xor": 95, "bitwise_xor": 95, "\u6bd4\u8f83\u64cd\u4f5c": 95, "nbroadcast": 95, "\u8fd4\u56de\u5e03\u5c14\u7c7b\u578b\u5f20\u91cf": 95, "\u5f52\u7ea6\u64cd\u4f5c": 95, "n\u5f52\u7ea6\u64cd\u4f5c": 95, "\u8fd4\u56de\u5355\u5143\u7d20\u5f20\u91cf": 95, "\u4ece\u8fd4\u56de\u7684\u5f20\u91cf\u4e2d\u63d0\u53d6\u503c": 95, "\u5e73\u5747\u503c": 95, "\u6807\u51c6\u5dee": 95, "prod": [95, 190], "\u6240\u6709\u6570\u5b57\u7684\u4e58\u79ef": 95, "\u8fc7\u6ee4\u552f\u4e00\u5143\u7d20": 95, "\u5411\u91cf\u548c\u7ebf\u6027\u4ee3\u6570\u8fd0\u7b97": 95, "\u5355\u4f4d\u5411\u91cf": 95, "m1": [95, 231], "\u968f\u673a\u77e9\u9635": 95, "m2": 95, "\u4e09\u500d\u5355\u4f4d\u77e9\u9635": 95, "n\u5411\u91cf\u548c\u77e9\u9635": 95, "\u5355\u4f4d\u5411\u91cf\u7684\u8d1f\u503c": 95, "m3": 95, "\u7684\u4e09\u500d": 95, "\u5947\u5f02\u503c\u5206\u89e3": 95, "\u6709\u5173\u66f4\u591a\u8be6\u7ec6\u4fe1\u606f\u548c\u5b8c\u6574\u7684\u6570\u5b66\u51fd\u6570\u6e05\u5355": 95, "\u5927\u591a\u6570\u5f20\u91cf\u7684\u4e8c\u5143\u8fd0\u7b97\u5c06\u8fd4\u56de\u7b2c\u4e09\u4e2a\u65b0\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u8bf4": 95, "\u662f\u5f20\u91cf": 95, "\u65b0\u5f20\u91cf": 95, "\u5c06\u5360\u7528\u4e0e\u5176\u4ed6\u5f20\u91cf\u4e0d\u540c\u7684\u5185\u5b58\u533a\u57df": 95, "\u6709\u65f6\u60a8\u53ef\u80fd\u5e0c\u671b\u5c31\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u5982\u679c\u60a8\u6b63\u5728\u6267\u884c\u5143\u7d20wise\u8ba1\u7b97": 95, "\u53ef\u4ee5\u4e22\u5f03\u4e2d\u95f4\u503c": 95, "\u5927\u591a\u6570\u6570\u5b66\u51fd\u6570\u90fd\u6709\u4e00\u4e2a\u5e26\u6709\u9644\u52a0\u4e0b\u5212\u7ebf": 95, "\u7684\u7248\u672c": 95, "\u5b83\u5c06\u5c31\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u6b64\u64cd\u4f5c\u5728\u5185\u5b58\u4e2d\u521b\u5efa\u65b0\u5f20\u91cf": 95, "\u672a\u66f4\u6539": 95, "sin_": 95, "\u6ce8\u610f\u4e0b\u5212\u7ebf": 95, "\u88ab\u4fee\u6539": 95, "\u5bf9\u4e8e\u7b97\u672f\u8fd0\u7b97": 95, "\u6709\u4e00\u4e9b\u51fd\u6570\u7684\u884c\u4e3a\u7c7b\u4f3c": 95, "nafter": [95, 153], "\u8fd9\u4e9b\u5c31\u5730\u7b97\u672f\u51fd\u6570\u662f": 95, "\u5bf9\u8c61\u4e0a\u7684\u65b9\u6cd5": 95, "\u800c\u4e0d\u662f\u50cf\u8bb8\u591a\u5176\u4ed6\u51fd\u6570": 95, "\u90a3\u6837\u9644\u52a0\u5230": 95, "\u6a21\u5757\u4e0a": 95, "\u6b63\u5982\u4f60\u4ece": 95, "\u4e2d\u770b\u5230\u7684": 95, "\u88ab\u8c03\u7528\u7684\u5f20\u91cf\u662f\u5c31\u5730\u6539\u53d8\u7684\u90a3\u4e2a": 95, "\u8fd8\u6709\u53e6\u4e00\u79cd\u9009\u62e9": 95, "\u53ef\u4ee5\u5c06\u8ba1\u7b97\u7ed3\u679c\u653e\u5728\u4e00\u4e2a\u5df2\u7ecf\u5206\u914d\u7684\u5f20\u91cf\u4e2d": 95, "\u6211\u4eec\u5230\u76ee\u524d\u4e3a\u6b62\u770b\u5230\u7684\u8bb8\u591a\u65b9\u6cd5\u548c\u51fd\u6570": 95, "\u5305\u62ec\u521b\u5efa\u65b9\u6cd5": 95, "\u90fd\u6709\u4e00\u4e2a": 95, "\u8ba9\u4f60\u6307\u5b9a\u4e00\u4e2a\u5f20\u91cf\u6765\u63a5\u6536\u8f93\u51fa": 95, "\u5982\u679c": [95, 111, 246], "\u5f20\u91cf\u7684\u5f62\u72b6\u548c": 95, "\u6b63\u786e": 95, "\u8fd9\u53ef\u4ee5\u5728\u4e0d\u5206\u914d\u65b0\u5185\u5b58\u7684\u60c5\u51b5\u4e0b\u53d1\u751f": 95, "old_id": 95, "\u7684\u5185\u5bb9\u5df2\u7ecf\u6539\u53d8": 95, "\u6d4b\u8bd5": [95, 236], "\u662f\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u800c\u4e0d\u53ea\u662f\u5305\u542b\u76f8\u7b49\u7684\u503c": 95, "\u786e\u4fdd\u6211\u4eec\u7684\u65b0": 95, "\u662f\u65e7": 95, "\u7684\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u5bf9\u4e8e\u521b\u5efa\u4e5f\u53ef\u4ee5": 95, "\u53c8\u4e00\u6b21\u6539\u53d8": 95, "\u4ecd\u7136\u662f\u540c\u4e00\u4e2a\u5bf9\u8c61": 95, "\u4e2d\u7684\u4efb\u4f55\u5bf9\u8c61\u4e00\u6837": 95, "\u5c06\u5f20\u91cf\u8d4b\u503c\u7ed9\u53d8\u91cf\u4f1a\u4f7f\u8be5\u53d8\u91cf\u6210\u4e3a\u5f20\u91cf\u7684": 95, "\u6807\u7b7e": [95, 236, 250], "\u800c\u4e0d\u4f1a\u590d\u5236\u5b83": 95, "561": [95, 177], "\u6211\u4eec\u6539\u53d8": 95, "\u4e5f\u88ab\u6539\u53d8\u4e86": 95, "\u5982\u679c\u4f60\u60f3\u8981\u4e00\u4e2a\u5355\u72ec\u7684\u6570\u636e\u526f\u672c\u6765\u5904\u7406\u5462": 95, "\u8fd9\u65f6\u5c31\u53ef\u4ee5\u4f7f\u7528": 95, "\u5185\u5b58\u4e2d\u7684\u4e0d\u540c\u5bf9\u8c61": 95, "\u4f46\u4ecd\u7136\u5177\u6709\u76f8\u540c\u7684\u5185\u5bb9": 95, "\u6539\u53d8\u4e86": 95, "\u4f46": 95, "\u4ecd\u7136\u662f\u5168": 95, "\u6709\u4e00\u4e2a\u91cd\u8981\u7684\u4e8b\u60c5\u9700\u8981\u6ce8\u610f": 95, "\u5982\u679c\u4f60\u7684\u6e90\u5f20\u91cf\u542f\u7528\u4e86\u81ea\u52a8\u6c42\u5bfc": 95, "\u90a3\u4e48\u514b\u9686\u5f20\u91cf\u4e5f\u4f1a\u542f\u7528\u81ea\u52a8\u6c42\u5bfc": 95, "\u8fd9\u5c06\u5728\u5173\u4e8e\u81ea\u52a8\u6c42\u5bfc\u7684\u89c6\u9891\u4e2d\u66f4\u6df1\u5165\u5730\u4ecb\u7ecd": 95, "\u4f46\u5982\u679c\u4f60\u60f3\u4e86\u89e3\u7ec6\u8282\u7684\u7b80\u5355\u7248\u672c": 95, "\u8bf7\u7ee7\u7eed\u9605\u8bfb": 95, "\u5728\u8bb8\u591a\u60c5\u51b5\u4e0b": 95, "\u8fd9\u6b63\u662f\u4f60\u6240\u9700\u8981\u7684": 95, "\u5982\u679c\u4f60\u7684\u6a21\u578b\u5728\u5176": 95, "\u65b9\u6cd5\u4e2d\u6709\u591a\u4e2a\u8ba1\u7b97\u8def\u5f84": 95, "\u5e76\u4e14": 95, "\u539f\u59cb\u5f20\u91cf\u548c\u5b83\u7684\u514b\u9686": 95, "\u90fd\u4f1a\u5f71\u54cd\u6a21\u578b\u7684\u8f93\u51fa": 95, "\u90a3\u4e48\u4e3a\u4e86\u542f\u7528\u6a21\u578b\u5b66\u4e60": 95, "\u4f60\u5e0c\u671b\u4e24\u4e2a\u5f20\u91cf\u90fd\u542f\u7528\u81ea\u52a8\u6c42\u5bfc": 95, "\u901a\u5e38\u5982\u679c\u5b83\u662f\u4e00\u7ec4\u5b66\u4e60\u6743\u91cd\u6216\u6e90\u81ea\u6d89\u53ca\u6743\u91cd\u7684\u8ba1\u7b97": 95, "\u90a3\u4e48\u4f60\u5c31\u4f1a\u5f97\u5230\u6240\u9700\u7684\u7ed3\u679c": 95, "\u53e6\u4e00\u65b9\u9762": 95, "\u5982\u679c\u4f60\u6b63\u5728\u8fdb\u884c\u4e00\u4e2a\u8ba1\u7b97": 95, "\u90fd\u4e0d\u9700\u8981\u8ddf\u8e2a\u68af\u5ea6": 95, "\u90a3\u4e48\u53ea\u8981\u6e90\u5f20\u91cf\u5173\u95ed\u4e86\u81ea\u52a8\u6c42\u5bfc": 95, "\u4f60\u5c31\u53ef\u4ee5\u7ee7\u7eed\u4e86": 95, "\u8fd8\u6709\u7b2c\u4e09\u79cd\u60c5\u51b5": 95, "\u5047\u8bbe\u4f60\u5728\u6a21\u578b\u7684": 95, "\u51fd\u6570\u4e2d\u6267\u884c\u4e00\u4e2a\u8ba1\u7b97": 95, "\u9ed8\u8ba4\u60c5\u51b5\u4e0b\u6240\u6709\u5185\u5bb9\u7684\u68af\u5ea6\u90fd\u6253\u5f00": 95, "\u4f46\u4f60\u60f3\u5728\u4e2d\u95f4\u63d0\u53d6\u4e00\u4e9b\u503c\u6765\u751f\u6210\u4e00\u4e9b\u6307\u6807": 95, "\u4f60": 95, "\u4e0d\u5e0c\u671b": 95, "\u514b\u9686\u7684\u6e90\u5f20\u91cf\u526f\u672c\u8ddf\u8e2a\u68af\u5ea6": 95, "\u5173\u95ed\u81ea\u52a8\u6c42\u5bfc\u7684\u5386\u53f2\u8bb0\u5f55\u8ddf\u8e2a\u53ef\u4ee5\u63d0\u9ad8\u6027\u80fd": 95, "\u4f60\u53ef\u4ee5\u5728\u6e90\u5f20\u91cf\u4e0a\u4f7f\u7528": 95, "\u6253\u5f00\u81ea\u52a8\u6c42\u5bfc": 95, "\u6b64\u5904\u53d1\u751f\u4e86\u4ec0\u4e48": 95, "\u6211\u4eec\u521b\u5efa\u4e86": 95, "\u5e76\u5c06": 95, "\u6211\u4eec\u8fd8\u6ca1\u6709\u4ecb\u7ecd\u8fd9\u4e2a\u53ef\u9009\u53c2\u6570": 95, "\u4f46\u5c06\u5728\u5173\u4e8e\u81ea\u52a8\u6c42\u5bfc\u7684\u5355\u5143\u4e2d\u4ecb\u7ecd": 95, "\u5b83\u544a\u8bc9\u6211\u4eec\u5c5e\u6027": 95, "\u8fd9\u610f\u5473\u7740\u81ea\u52a8\u6c42\u5bfc\u548c\u8ba1\u7b97\u5386\u53f2\u8ddf\u8e2a\u5df2\u6253\u5f00": 95, "\u6211\u4eec\u514b\u9686": 95, "\u5e76\u5c06\u5176\u6807\u8bb0\u4e3a": 95, "\u6211\u4eec\u53ef\u4ee5\u770b\u5230\u5b83\u6b63\u5728\u8ddf\u8e2a\u5176\u8ba1\u7b97\u5386\u53f2": 95, "\u5b83\u7ee7\u627f\u4e86": 95, "\u7684\u81ea\u52a8\u6c42\u5bfc\u8bbe\u7f6e": 95, "\u5e76\u6dfb\u52a0\u5230\u4e86\u8ba1\u7b97\u5386\u53f2\u4e2d": 95, "\u4f46\u9996\u5148\u8c03\u7528": 95, "\u6211\u4eec\u770b\u4e0d\u5230\u4efb\u4f55\u8ba1\u7b97\u5386\u53f2": 95, "\u4e5f\u6ca1\u6709": 95, "\u5c06\u5f20\u91cf\u4e0e\u5176\u8ba1\u7b97\u5386\u53f2\u5206\u79bb": 95, "\u5b83\u8bf4": 95, "\u65e0\u8bba\u63a5\u4e0b\u6765\u53d1\u751f\u4ec0\u4e48": 95, "\u90fd\u50cf\u81ea\u52a8\u6c42\u5bfc\u5173\u95ed\u65f6\u90a3\u6837\u8fdb\u884c": 95, "\u5b83\u8fd9\u6837\u505a": 95, "\u5e76\u4e0d\u4f1a\u6539\u53d8": 95, "\u5f53\u6211\u4eec\u5728\u6700\u540e\u518d\u6b21\u6253\u5370": 95, "\u5b83\u4fdd\u7559\u4e86\u5176": 95, "\u7684\u4e3b\u8981\u4f18\u52bf\u4e4b\u4e00\u662f\u5728": 95, "\u517c\u5bb9\u7684": 95, "\u4e0a\u6709\u5f3a\u5927\u7684\u52a0\u901f\u80fd\u529b": 95, "\u7684\u5e76\u884c\u8ba1\u7b97\u5e73\u53f0": 95, "\u5230\u76ee\u524d\u4e3a\u6b62": 95, "\u6211\u4eec\u6240\u505a\u7684\u4e00\u5207\u90fd\u662f\u5728": 95, "\u6211\u4eec\u5982\u4f55\u79fb\u52a8\u5230\u66f4\u5feb\u7684\u786c\u4ef6\u4e0a\u5462": 95, "\u6211\u4eec\u5e94\u8be5\u4f7f\u7528": 95, "\u65b9\u6cd5\u68c0\u67e5\u662f\u5426\u6709": 95, "\u53ef\u7528": 95, "\u5982\u679c\u4f60\u6ca1\u6709\u5b89\u88c5": 95, "\u9a71\u52a8\u7a0b\u5e8f": 95, "\u672c\u8282\u4e2d\u7684\u53ef\u6267\u884c\u5355\u5143\u683c\u5c06\u4e0d\u4f1a\u6267\u884c\u4efb\u4f55": 95, "\u76f8\u5173\u7684\u4ee3\u7801": 95, "\u4e00\u65e6\u6211\u4eec\u786e\u5b9a\u6709\u4e00\u4e2a\u6216\u591a\u4e2agpu\u53ef\u7528": 95, "\u6211\u4eec\u9700\u8981\u5c06\u6570\u636e\u653e\u5728gpu\u53ef\u4ee5\u8bbf\u95ee\u7684\u5730\u65b9": 95, "\u4f60\u7684cpu\u5728\u8ba1\u7b97\u673a\u7684ram\u4e0a\u5bf9\u6570\u636e\u8fdb\u884c\u8ba1\u7b97": 95, "\u4f60\u7684gpu\u6709\u4e13\u7528\u7684\u5185\u5b58\u8fde\u63a5\u5230\u5b83": 95, "\u6bcf\u5f53\u4f60\u60f3\u5728\u4e00\u4e2a\u8bbe\u5907\u4e0a\u6267\u884c\u8ba1\u7b97\u65f6": 95, "\u4f60\u5fc5\u987b\u5c06\u8be5\u8ba1\u7b97\u6240\u9700\u7684": 95, "\u6570\u636e\u79fb\u52a8\u5230\u8be5\u8bbe\u5907\u53ef\u8bbf\u95ee\u7684\u5185\u5b58\u4e2d": 95, "\u4fd7\u79f0": 95, "\u5c06\u6570\u636e\u79fb\u52a8\u5230gpu\u53ef\u8bbf\u95ee\u7684\u5185\u5b58": 95, "\u88ab\u7b80\u79f0\u4e3a": 95, "\u5c06\u6570\u636e\u79fb\u52a8\u5230gpu": 95, "\u6709\u591a\u79cd\u65b9\u5f0f\u53ef\u4ee5\u5c06\u6570\u636e\u79fb\u52a8\u5230\u76ee\u6807\u8bbe\u5907": 95, "\u4f60\u53ef\u4ee5\u5728\u521b\u5efa\u65f6\u8fd9\u6837\u505a": 95, "gpu_rand": 95, "\u65b0\u7684\u5f20\u91cf\u662f\u5728cpu\u4e0a\u521b\u5efa\u7684": 95, "\u6240\u4ee5\u6211\u4eec\u5fc5\u987b\u4f7f\u7528\u53ef\u9009\u7684": 95, "\u53c2\u6570\u6765\u6307\u5b9a\u6211\u4eec\u60f3\u5728gpu\u4e0a\u521b\u5efa\u5f20\u91cf": 95, "\u5f53\u6211\u4eec\u6253\u5370\u65b0\u7684\u5f20\u91cf\u65f6": 95, "\u4f60\u53ef\u4ee5\u770b\u5230pytorch\u4f1a\u544a\u8bc9\u6211\u4eec\u5b83\u5728\u54ea\u4e2a\u8bbe\u5907\u4e0a": 95, "\u5982\u679c\u4e0d\u5728cpu\u4e0a": 95, "\u67e5\u8be2gpu\u7684\u6570\u91cf": 95, "\u5982\u679c\u4f60\u6709\u591a\u4e2agpu": 95, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7d22\u5f15\u6307\u5b9a\u5b83\u4eec": 95, "\u4f5c\u4e3a\u7f16\u7801\u5b9e\u8df5": 95, "\u5728\u4efb\u4f55\u5730\u65b9\u90fd\u4f7f\u7528\u5b57\u7b26\u4e32\u5e38\u91cf\u6765\u6307\u5b9a\u8bbe\u5907\u662f\u76f8\u5f53\u8106\u5f31\u7684": 95, "\u65e0\u8bba\u4f60\u5728cpu\u8fd8\u662fgpu\u786c\u4ef6\u4e0a": 95, "\u4f60\u7684\u4ee3\u7801\u90fd\u5e94\u8be5\u7a33\u5065\u5730\u6267\u884c": 95, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u521b\u5efa\u4e00\u4e2a\u8bbe\u5907\u53e5\u67c4\u6765\u5b9e\u73b0\u8fd9\u4e00\u70b9": 95, "\u800c\u4e0d\u662f\u4f7f\u7528\u5b57\u7b26\u4e32\u4f20\u9012\u7ed9\u4f60\u7684\u5f20\u91cf": 95, "my_devic": 95, "\u5982\u679c\u4f60\u6709\u4e00\u4e2a\u5df2\u7ecf\u5b58\u5728\u4e8e\u4e00\u4e2a\u8bbe\u5907\u4e0a\u7684\u5f20\u91cf": 95, "\u65b9\u6cd5\u5c06\u5b83\u79fb\u52a8\u5230\u53e6\u4e00\u4e2a\u8bbe\u5907": 95, "\u4e0b\u9762\u4e00\u884c\u4ee3\u7801\u5728cpu\u4e0a\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf": 95, "\u5e76\u5c06\u5b83\u79fb\u52a8\u5230\u4f60\u5728\u4e0a\u4e00\u4e2a\u5355\u5143\u683c\u4e2d\u83b7\u53d6\u7684\u4efb\u4f55\u8bbe\u5907\u53e5\u67c4\u4e0a": 95, "\u91cd\u8981\u7684\u662f\u8981\u77e5\u9053": 95, "\u4e3a\u4e86\u8fdb\u884c\u6d89\u53ca\u4e24\u4e2a\u6216\u591a\u4e2a\u5f20\u91cf\u7684\u8ba1\u7b97": 95, "\u6240\u6709\u5f20\u91cf\u5fc5\u987b\u5728\u540c\u4e00\u8bbe\u5907\u4e0a": 95, "\u65e0\u8bba\u4f60\u662f\u5426\u6709gpu\u8bbe\u5907\u53ef\u7528": 95, "\u4ee5\u4e0b\u4ee3\u7801\u90fd\u4f1a\u629b\u51fa\u8fd0\u884c\u65f6\u9519\u8bef": 95, "thrown": [95, 192, 206], "\u6709\u65f6": 95, "\u4f60\u9700\u8981\u6539\u53d8\u5f20\u91cf\u7684\u5f62\u72b6": 95, "\u6211\u4eec\u5c06\u770b\u4e00\u4e9b\u5e38\u89c1\u7684\u60c5\u51b5": 95, "\u4ee5\u53ca\u5982\u4f55\u5904\u7406\u5b83\u4eec": 95, "\u4f60\u53ef\u80fd\u9700\u8981\u6539\u53d8\u7ef4\u5ea6\u6570\u91cf\u7684\u4e00\u79cd\u60c5\u51b5\u662f\u5c06\u5355\u4e2a\u5b9e\u4f8b\u8f93\u5165\u5230\u4f60\u7684\u6a21\u578b\u4e2d": 95, "pytorch\u6a21\u578b": 95, "\u901a\u5e38\u671f\u671b\u8f93\u5165": 95, "\u6570\u636e": [95, 236], "\u5047\u8bbe\u6709\u4e00\u4e2a\u6a21\u578b\u53ef\u4ee5\u5904\u74063x226x226\u7684\u56fe\u50cf": 95, "\u4e00\u4e2a226\u50cf\u7d20\u7684\u6b63\u65b9\u5f62": 95, "\u67093\u4e2a\u989c\u8272\u901a\u9053": 95, "\u5f53\u4f60\u52a0\u8f7d\u548c\u8f6c\u6362\u5b83\u65f6": 95, "\u4f60\u4f1a\u5f97\u5230\u4e00\u4e2a\u5f62\u72b6\u4e3a": 95, "226": 95, "\u4f46\u662f\u4f60\u7684\u6a21\u578b": 95, "\u671f\u671b\u8f93\u5165\u5f62\u72b6\u4e3a": 95, "\u662f\u6279\u6b21\u4e2d\u56fe\u50cf\u7684\u6570\u91cf": 95, "\u90a3\u4e48\u5982\u4f55\u521b\u5efa\u4e00\u4e2a\u6279\u6b21\u5927\u5c0f\u4e3a1\u7684\u8f93\u5165\u5462": 95, "\u65b9\u6cd5\u6dfb\u52a0\u4e86\u4e00\u4e2a\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u5728\u6700\u524d\u9762\u6dfb\u52a0\u4e86\u4e00\u4e2a\u65b0\u76840\u7ef4\u5ea6": 95, "\u73b0\u5728\u4f60\u6709\u4e86\u4e00\u4e2a\u6279\u6b21\u5927\u5c0f\u4e3a1\u7684\u8f93\u5165": 95, "\u90a3\u4e48\u5982\u679c\u662f": 95, "\u53bb\u9664": 95, "\u591a\u4f59\u76841\u7ef4\u5ea6\u5462": 95, "\u6211\u4eec\u6240\u8bf4\u7684\u6324\u538b": 95, "\u5c31\u662f\u5229\u7528\u4e86": 95, "\u4efb\u4f55\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u4e0d\u4f1a": 95, "\u6539\u53d8\u5f20\u91cf\u4e2d\u5143\u7d20\u7684\u6570\u91cf\u8fd9\u4e00\u4e8b\u5b9e": 95, "\u7ee7\u7eed\u4e0a\u9762\u7684\u4f8b\u5b50": 95, "\u5047\u8bbe\u6a21\u578b\u7684\u8f93\u51fa\u662f\u4e00\u4e2a20\u5143\u7d20\u7684\u5411\u91cf": 95, "\u5bf9\u4e8e\u6bcf\u4e2a\u8f93\u5165": 95, "\u90a3\u4e48\u4f60\u4f1a\u671f\u671b\u8f93\u51fa\u7684\u5f62\u72b6\u4e3a": 95, "\u662f\u8f93\u5165\u6279\u6b21\u4e2d\u7684\u5b9e\u4f8b\u6570\u91cf": 95, "\u8fd9\u610f\u5473\u7740\u5bf9\u4e8e\u6211\u4eec\u7684\u5355\u8f93\u5165\u6279\u6b21": 95, "\u6211\u4eec\u4f1a\u5f97\u5230\u5f62\u72b6\u4e3a": 95, "\u7684\u8f93\u51fa": [95, 236], "\u5982\u679c\u4f60\u60f3\u5bf9\u8be5\u8f93\u51fa\u8fdb\u884c\u4e00\u4e9b": 95, "\u975e\u6279\u6b21": 95, "\u4e00\u4e9b\u53ea\u671f\u671b20\u5143\u7d20\u5411\u91cf\u7684\u8ba1\u7b97": 95, "\u8be5\u600e\u4e48\u529e": 95, "\u4f60\u53ef\u4ee5\u4ece\u5f62\u72b6\u770b\u51fa": 95, "\u6211\u4eec\u7684\u4e8c\u7ef4\u5f20\u91cf\u73b0\u5728\u53d8\u6210\u4e86\u4e00\u7ef4\u7684": 95, "\u5982\u679c\u4f60\u4ed4\u7ec6\u89c2\u5bdf\u4e0a\u9762\u5355\u5143\u683c\u7684\u8f93\u51fa": 95, "\u4f60\u4f1a\u53d1\u73b0\u6253\u5370": 95, "\u65f6\u4f1a\u663e\u793a\u4e00\u7ec4": 95, "\u989d\u5916": 95, "\u7684\u65b9\u62ec\u53f7": 95, "\u8fd9\u662f\u56e0\u4e3a\u591a\u4e86\u4e00\u4e2a\u7ef4\u5ea6": 95, "\u4f60\u53ea\u80fd\u5bf9\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6\u6267\u884c": 95, "\u770b\u4e0a\u9762\u6211\u4eec\u5c1d\u8bd5\u5bf9\u5927\u5c0f\u4e3a2\u7684\u7ef4\u5ea6": 95, "\u8fdb\u884c\u6324\u538b": 95, "\u5f97\u5230\u7684\u5f62\u72b6\u4e0e\u5f00\u59cb\u65f6\u76f8\u540c": 95, "\u7684\u8c03\u7528\u53ea\u80fd\u4f5c\u7528\u4e8e\u5927\u5c0f\u4e3a1\u7684\u7ef4\u5ea6": 95, "\u56e0\u4e3a\u5bf9\u5176\u4ed6\u7ef4\u5ea6\u64cd\u4f5c\u4f1a\u6539\u53d8\u5f20\u91cf\u4e2d\u5143\u7d20\u7684\u6570\u91cf": 95, "\u4f60\u53ef\u80fd\u4f1a\u4f7f\u7528": 95, "\u7684\u53e6\u4e00\u4e2a\u573a\u666f\u662f\u4e3a\u4e86\u65b9\u4fbf\u5e7f\u64ad\u64cd\u4f5c": 95, "\u56de\u60f3\u4e00\u4e0b\u4e0a\u9762\u7684\u4f8b\u5b50": 95, "\u6211\u4eec\u6709\u4ee5\u4e0b\u4ee3\u7801": 95, "\u5176\u51c0\u6548\u679c\u662f\u5728\u7ef4\u5ea60\u548c2\u4e0a\u8fdb\u884c\u5e7f\u64ad\u64cd\u4f5c": 95, "\u5bfc\u81f4\u5f62\u72b6\u4e3a3x1\u7684\u968f\u673a\u5f20\u91cf\u4e0e": 95, "\u4e2d\u7684\u6bcf\u4e00\u52173\u5143\u7d20\u9010\u5143\u7d20\u76f8\u4e58": 95, "\u5982\u679c\u968f\u673a\u5411\u91cf\u53ea\u662f\u4e00\u4e2a3\u5143\u7d20\u5411\u91cf\u5462": 95, "\u6211\u4eec\u5c31\u5931\u53bb\u4e86\u5e7f\u64ad\u7684\u80fd\u529b": 95, "\u56e0\u4e3a\u6700\u540e\u7684\u7ef4\u5ea6\u4e0d\u4f1a\u6839\u636e\u5e7f\u64ad\u89c4\u5219\u5339\u914d": 95, "\u53ef\u4ee5\u89e3\u6551\u6211\u4eec": 95, "\u8bd5\u56fe\u5c06": 95, "\u4f1a\u5bfc\u81f4\u8fd0\u884c\u65f6\u9519\u8bef": 95, "\u53d8\u6210\u4e8c\u7ef4\u5f20\u91cf": 95, "\u5728\u672b\u5c3e\u6dfb\u52a0\u65b0\u7ef4\u5ea6": 95, "\u5e7f\u64ad\u518d\u6b21\u751f\u6548": 95, "\u65b9\u6cd5\u4e5f\u6709\u672c\u5730\u7248\u672c": 95, "batch_m": 95, "\u6709\u65f6\u4f60\u9700\u8981\u66f4\u5f7b\u5e95\u5730\u6539\u53d8\u5f20\u91cf\u7684\u5f62\u72b6": 95, "\u540c\u65f6\u4fdd\u7559\u5143\u7d20\u6570\u91cf\u548c\u5185\u5bb9\u4e0d\u53d8": 95, "\u4e00\u79cd\u60c5\u51b5\u662f\u5728\u6a21\u578b\u7684\u5377\u79ef\u5c42\u548c\u7ebf\u6027\u5c42\u4e4b\u95f4\u7684\u63a5\u53e3": 95, "\u8fd9\u5728\u56fe\u50cf\u5206\u7c7b\u6a21\u578b\u4e2d\u5f88\u5e38\u89c1": 95, "\u5377\u79ef\u6838\u4f1a\u4ea7\u751f\u5f62\u72b6\u4e3a": 95, "\u4f46\u63a5\u4e0b\u6765\u7684\u7ebf\u6027\u5c42\u671f\u671b\u4e00\u7ef4\u8f93\u5165": 95, "\u53ef\u4ee5\u4e3a\u4f60\u505a\u8fd9\u4ef6\u4e8b": 95, "\u53ea\u8981\u4f60\u8bf7\u6c42\u7684\u7ef4\u5ea6\u4e0e\u8f93\u5165\u5f20\u91cf\u5177\u6709\u76f8\u540c\u6570\u91cf\u7684\u5143\u7d20\u5373\u53ef": 95, "output3d": 95, "input1d": 95, "\u4e0a\u9762\u6700\u540e\u4e00\u884c\u5355\u5143\u683c\u4e2d\u7684": 95, "\u53c2\u6570\u662f\u56e0\u4e3apytorch\u5728\u6307\u5b9a\u5f20\u91cf\u5f62\u72b6\u65f6": 95, "\u671f\u671b\u4e00\u4e2a": 95, "\u5143\u7ec4": 95, "\u4f46\u5f53\u5f62\u72b6\u662f\u65b9\u6cd5\u7684\u7b2c\u4e00\u4e2a\u53c2\u6570\u65f6": 95, "\u5b83\u5141\u8bb8\u6211\u4eec\u53ea\u4f7f\u7528\u4e00\u7cfb\u5217\u6574\u6570": 95, "\u6211\u4eec\u5fc5\u987b\u6dfb\u52a0\u62ec\u53f7\u548c\u9017\u53f7\u6765\u8bf4\u670d\u8be5\u65b9\u6cd5\u8fd9\u786e\u5b9e\u662f\u4e00\u4e2a\u5355\u5143\u7d20\u5143\u7ec4": 95, "\u5f53\u53ef\u80fd\u65f6": 95, "\u4f1a\u8fd4\u56de\u8be5\u5f20\u91cf\u7684": 95, "\u89c6\u56fe": 95, "\u4e5f\u5c31\u662f\u4e00\u4e2a\u5355\u72ec\u7684\u5f20\u91cf\u5bf9\u8c61": 95, "\u67e5\u770b\u76f8\u540c\u7684\u5e95\u5c42\u5185\u5b58\u533a\u57df": 95, "\u8fd9\u4e00\u70b9\u5f88\u91cd\u8981": 95, "\u8fd9\u610f\u5473\u7740\u5bf9\u6e90\u5f20\u91cf\u6240\u505a\u7684\u4efb\u4f55\u66f4\u6539\u90fd\u4f1a\u53cd\u6620\u5728\u8be5\u5f20\u91cf\u7684\u89c6\u56fe\u4e0a": 95, "\u9664\u975e\u4f60": 95, "\u786e\u5b9e\u6709\u4e00\u4e9b\u6761\u4ef6": 95, "\u8d85\u51fa\u4e86\u672c\u4ecb\u7ecd\u7684\u8303\u56f4": 95, "\u5fc5\u987b\u8fd4\u56de\u6570\u636e\u7684\u526f\u672c": 95, "kinship": 95, "numpy_arrai": 95, "pytorch_tensor": 95, "pytorch_rand": 95, "numpy_rand": 95, "\u5728\u8fc7\u53bb\u7684\u89c6\u9891\u4e2d": 96, "\u6211\u4eec\u8ba8\u8bba\u5e76\u6f14\u793a\u4e86": 96, "\u6a21\u5757\u4e2d\u7684\u795e\u7ecf\u7f51\u7edc\u5c42\u548c\u51fd\u6570\u6784\u5efa\u6a21\u578b": 96, "\u81ea\u52a8\u68af\u5ea6\u8ba1\u7b97\u7684\u673a\u5236": 96, "\u8fd9\u662f\u57fa\u4e8e\u68af\u5ea6\u7684\u6a21\u578b\u8bad\u7ec3\u7684\u6838\u5fc3": 96, "\u53ef\u89c6\u5316\u8bad\u7ec3\u8fdb\u5ea6\u548c\u5176\u4ed6\u6d3b\u52a8": 96, "\u5728\u672c\u89c6\u9891\u4e2d": 96, "\u6211\u4eec\u5c06\u4e3a\u60a8\u7684\u5e93\u5b58\u6dfb\u52a0\u4e00\u4e9b\u65b0\u5de5\u5177": 96, "\u6211\u4eec\u5c06\u719f\u6089\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668\u62bd\u8c61": 96, "\u4ee5\u53ca\u5b83\u4eec\u5982\u4f55\u7b80\u5316\u5411\u6a21\u578b\u8bad\u7ec3\u5faa\u73af\u63d0\u4f9b\u6570\u636e\u7684\u8fc7\u7a0b": 96, "\u6211\u4eec\u5c06\u8ba8\u8bba\u7279\u5b9a\u7684\u635f\u5931\u51fd\u6570\u4ee5\u53ca\u4f55\u65f6\u4f7f\u7528\u5b83\u4eec": 96, "\u6211\u4eec\u5c06\u4e86\u89e3": 96, "\u5b83\u4eec\u5b9e\u73b0\u4e86\u6839\u636e\u635f\u5931\u51fd\u6570\u7684\u7ed3\u679c\u8c03\u6574\u6a21\u578b\u6743\u91cd\u7684\u7b97\u6cd5": 96, "\u6211\u4eec\u5c06\u628a\u6240\u6709\u8fd9\u4e9b\u7ed3\u5408\u8d77\u6765": 96, "\u770b\u4e00\u4e2a\u5b8c\u6574\u7684": 96, "\u8bad\u7ec3\u5faa\u73af\u7684\u5b9e\u9645\u8fd0\u884c": 96, "\u7c7b\u5c01\u88c5\u4e86\u4ece\u5b58\u50a8\u4e2d\u63d0\u53d6\u6570\u636e\u5e76\u4ee5\u6279\u6b21\u5f62\u5f0f\u66b4\u9732\u7ed9\u8bad\u7ec3\u5faa\u73af\u7684\u8fc7\u7a0b": 96, "\u8d1f\u8d23\u8bbf\u95ee\u548c\u5904\u7406\u5355\u4e2a\u6570\u636e\u5b9e\u4f8b": 96, "\u4e2d\u63d0\u53d6\u6570\u636e\u5b9e\u4f8b": 96, "\u65e0\u8bba\u662f\u81ea\u52a8\u63d0\u53d6\u8fd8\u662f\u4f7f\u7528\u60a8\u5b9a\u4e49\u7684\u91c7\u6837\u5668": 96, "\u5c06\u5b83\u4eec\u6536\u96c6\u5230\u6279\u6b21\u4e2d": 96, "\u5e76\u8fd4\u56de\u7ed9\u60a8\u7684\u8bad\u7ec3\u5faa\u73af\u8fdb\u884c\u6d88\u8d39": 96, "\u53ef\u4ee5\u4e0e\u6240\u6709\u7c7b\u578b\u7684\u6570\u636e\u96c6\u4e00\u8d77\u4f7f\u7528": 96, "\u65e0\u8bba\u5b83\u4eec\u5305\u542b\u4ec0\u4e48\u7c7b\u578b\u7684\u6570\u636e": 96, "\u5bf9\u4e8e\u672c\u6559\u7a0b": [96, 233, 242, 243, 248, 249, 250], "\u63d0\u4f9b\u7684": 96, "\u6765\u96f6\u4e2d\u5fc3\u548c\u6807\u51c6\u5316\u56fe\u50cf\u74e6\u7247\u5185\u5bb9\u7684\u5206\u5e03": 96, "\u5e76\u4e0b\u8f7d\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u5206\u5272": 96, "datetim": [96, 122, 146], "\u521b\u5efa\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u96c6": 96, "\u5982\u679c\u9700\u8981\u5219\u4e0b\u8f7d": 96, "\u4e3a\u6211\u4eec\u7684\u6570\u636e\u96c6\u521b\u5efa\u6570\u636e\u52a0\u8f7d\u5668": 96, "\u8bad\u7ec3\u65f6\u6253\u4e71": 96, "\u9a8c\u8bc1\u65f6\u4e0d\u6253\u4e71": 96, "\u7c7b\u522b\u6807\u7b7e": 96, "\u62a5\u544a\u5206\u5272\u5927\u5c0f": 96, "\u8bad\u7ec3\u96c6\u6709": 96, "\u4e2a\u5b9e\u4f8b": 96, "\u9a8c\u8bc1\u96c6\u6709": 96, "\u50cf\u5f80\u5e38\u4e00\u6837": 96, "\u8ba9\u6211\u4eec\u53ef\u89c6\u5316\u6570\u636e\u4f5c\u4e3a\u5065\u5168\u6027\u68c0\u67e5": 96, "\u53cd\u6807\u51c6\u5316": 96, "\u6211\u4eec\u5728\u672c\u4f8b\u4e2d\u4f7f\u7528\u7684\u6a21\u578b\u662f": 96, "\u7684\u53d8\u4f53": 96, "\u5982\u679c\u60a8\u89c2\u770b\u4e86\u672c\u7cfb\u5217\u7684\u524d\u51e0\u4e2a\u89c6\u9891": 96, "\u5e94\u8be5\u4f1a\u5f88\u719f\u6089": 96, "\u6a21\u578b\u7ee7\u627f\u81ea": 96, "garmentclassifi": 96, "\u5bf9\u4e8e\u672c\u4f8b": [96, 236], "\u6211\u4eec\u5c06\u4f7f\u7528\u4ea4\u53c9\u71b5\u635f\u5931": 96, "\u4e3a\u4e86\u6f14\u793a\u76ee\u7684": 96, "\u6211\u4eec\u5c06\u521b\u5efa\u865a\u62df\u8f93\u51fa\u548c\u6807\u7b7e\u503c\u7684\u6279\u6b21": 96, "\u5c06\u5b83\u4eec\u901a\u8fc7\u635f\u5931\u51fd\u6570": 96, "\u5e76\u68c0\u67e5\u7ed3\u679c": 96, "\u635f\u5931\u51fd\u6570\u671f\u671b\u6570\u636e\u4ee5\u6279\u6b21\u5f62\u5f0f": 96, "\u6240\u4ee5\u6211\u4eec\u521b\u5efa\u4e86": 96, "\u4e2a\u6279\u6b21": 96, "\u8868\u793a\u6a21\u578b\u5bf9\u7ed9\u5b9a\u8f93\u5165\u7684": 96, "\u4e2a\u7c7b\u522b\u4e2d\u6bcf\u4e00\u4e2a\u7684\u7f6e\u4fe1\u5ea6": 96, "dummy_output": 96, "\u8868\u793a\u6b63\u786e\u7684\u7c7b\u522b\u5728\u6d4b\u8bd5\u7684": 96, "\u4e2a\u7c7b\u522b\u4e2d": 96, "dummy_label": 96, "\u6b64\u6279\u6b21\u7684\u603b\u635f\u5931": 96, "\u6211\u4eec\u5c06\u4f7f\u7528\u5e26\u52a8\u91cf\u7684\u7b80\u5355\u968f\u673a\u68af\u5ea6\u4e0b\u964d": 96, "\u5c1d\u8bd5\u4e00\u4e9b\u4f18\u5316\u65b9\u6848\u7684\u53d8\u4f53\u4f1a\u5f88\u6709\u542f\u53d1\u6027": 96, "\u5b66\u4e60\u7387\u51b3\u5b9a\u4e86\u4f18\u5316\u5668\u91c7\u53d6\u7684\u6b65\u957f\u5927\u5c0f": 96, "\u4e0d\u540c\u7684\u5b66\u4e60\u7387\u5bf9\u60a8\u7684\u8bad\u7ec3\u7ed3\u679c\u6709\u4f55\u5f71\u54cd": 96, "\u5728\u51c6\u786e\u6027\u548c\u6536\u655b\u65f6\u95f4\u65b9\u9762": 96, "\u52a8\u91cf\u5728\u591a\u4e2a\u6b65\u9aa4\u4e2d\u5c06\u4f18\u5316\u5668\u63a8\u5411\u6700\u5f3a\u68af\u5ea6\u7684\u65b9\u5411": 96, "\u6539\u53d8\u8fd9\u4e2a\u503c\u4f1a\u5bf9\u7ed3\u679c\u4ea7\u751f\u4ec0\u4e48\u5f71\u54cd": 96, "\u5c1d\u8bd5\u4e00\u4e9b\u4e0d\u540c\u7684\u4f18\u5316\u7b97\u6cd5": 96, "\u5982\u5e73\u5747": 96, "\u60a8\u7684\u7ed3\u679c\u6709\u4f55\u4e0d\u540c": 96, "\u5305\u4e2d\u6307\u5b9a\u4f18\u5316\u5668": 96, "\u6211\u4eec\u6709\u4e00\u4e2a\u6267\u884c\u4e00\u4e2a\u8bad\u7ec3\u5468\u671f\u7684\u51fd\u6570": 96, "\u679a\u4e3e\u6570\u636e": 96, "\u5e76\u5728\u5faa\u73af\u7684\u6bcf\u4e00\u6b21\u901a\u8fc7\u65f6\u6267\u884c\u4ee5\u4e0b\u64cd\u4f5c": 96, "\u83b7\u53d6\u4e00\u6279\u8bad\u7ec3\u6570\u636e": 96, "\u5c06\u4f18\u5316\u5668\u7684\u68af\u5ea6\u5f52\u96f6": 96, "\u6267\u884c\u63a8\u7406": 96, "\u4e5f\u5c31\u662f\u4ece\u6a21\u578b\u83b7\u53d6\u8f93\u5165\u6279\u6b21\u7684\u9884\u6d4b": 96, "\u8ba1\u7b97\u8be5\u7ec4\u9884\u6d4b\u4e0e\u6570\u636e\u96c6\u4e0a\u7684\u6807\u7b7e\u4e4b\u95f4\u7684\u635f\u5931": 96, "\u8ba1\u7b97\u5b66\u4e60\u6743\u91cd\u7684\u53cd\u5411\u68af\u5ea6": 96, "\u544a\u8bc9\u4f18\u5316\u5668\u6267\u884c\u4e00\u4e2a\u5b66\u4e60\u6b65\u9aa4": 96, "\u4e5f\u5c31\u662f\u6839\u636e\u6211\u4eec\u9009\u62e9\u7684\u4f18\u5316\u7b97\u6cd5": 96, "\u57fa\u4e8e\u8be5\u6279\u6b21\u89c2\u5bdf\u5230\u7684\u68af\u5ea6\u6765\u8c03\u6574\u6a21\u578b\u7684\u5b66\u4e60\u6743\u91cd": 96, "\u5b83\u6bcf": 96, "\u4e2a\u6279\u6b21\u62a5\u544a\u4e00\u6b21\u635f\u5931": 96, "\u5b83\u62a5\u544a\u6700\u540e": 96, "\u4e2a\u6279\u6b21\u7684\u5e73\u5747\u6bcf\u6279\u6b21\u635f\u5931": 96, "\u4ee5\u4fbf\u4e0e\u9a8c\u8bc1\u8fd0\u884c\u8fdb\u884c\u6bd4\u8f83": 96, "epoch_index": 96, "tb_writer": 96, "last_loss": 96, "\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u8ddf\u8e2a\u6279\u6b21\u7d22\u5f15\u5e76\u8fdb\u884c\u4e00\u4e9b\u5468\u671f\u5185\u62a5\u544a": 96, "\u6bcf\u4e2a\u6570\u636e\u5b9e\u4f8b\u90fd\u662f\u4e00\u4e2a\u8f93\u5165": 96, "\u6807\u7b7e\u5bf9": 96, "\u5bf9\u4e8e\u6bcf\u4e2a\u6279\u6b21": 96, "\u5bf9\u8be5\u6279\u6b21\u8fdb\u884c\u9884\u6d4b": 96, "\u8ba1\u7b97\u635f\u5931\u53ca\u5176\u68af\u5ea6": 96, "\u8c03\u6574\u5b66\u4e60\u6743\u91cd": 96, "\u6536\u96c6\u6570\u636e\u5e76\u62a5\u544a": 96, "\u6bcf\u6279\u6b21\u635f\u5931": 96, "tb_x": 96, "\u6211\u4eec\u6bcf\u4e2a\u5468\u671f\u9700\u8981\u505a\u7684\u4e8b\u60c5\u6709": 96, "\u901a\u8fc7\u68c0\u67e5\u672a\u7528\u4e8e\u8bad\u7ec3\u7684\u4e00\u7ec4\u6570\u636e\u4e0a\u7684\u76f8\u5bf9\u635f\u5931\u6765\u6267\u884c\u9a8c\u8bc1": 96, "\u5e76\u62a5\u544a\u8fd9\u4e00\u70b9": 96, "\u4fdd\u5b58\u6a21\u578b\u7684\u526f\u672c": 96, "\u6211\u4eec\u5c06\u5728": 96, "\u4e2d\u8fdb\u884c\u62a5\u544a": 96, "\u8fd9\u9700\u8981\u8f6c\u5230\u547d\u4ee4\u884c\u542f\u52a8": 96, "\u5e76\u5728\u53e6\u4e00\u4e2a\u6d4f\u89c8\u5668\u9009\u9879\u5361\u4e2d\u6253\u5f00\u5b83": 96, "\u5728\u5355\u72ec\u7684\u5355\u5143\u683c\u4e2d\u521d\u59cb\u5316": 96, "\u4ee5\u4fbf\u6211\u4eec\u53ef\u4ee5\u8f7b\u677e\u5730\u5c06\u66f4\u591a\u5468\u671f\u6dfb\u52a0\u5230\u540c\u4e00\u8fd0\u884c\u4e2d": 96, "timestamp": [96, 128, 143, 226], "strftime": [96, 122, 146], "fashion_trainer_": 96, "epoch_numb": 96, "best_vloss": 96, "\u5468\u671f": 96, "\u786e\u4fdd\u68af\u5ea6\u8ddf\u8e2a\u5df2\u6253\u5f00": 96, "\u5e76\u5bf9\u6570\u636e\u8fdb\u884c\u4e00\u6b21\u4f20\u9012": 96, "\u5c06\u6a21\u578b\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 96, "\u7981\u7528": 96, "\u5e76\u4f7f\u7528\u6279\u91cf\u89c4\u8303\u5316\u7684\u7fa4\u4f53\u7edf\u8ba1\u6570\u636e": 96, "\u7981\u7528\u68af\u5ea6\u8ba1\u7b97\u5e76\u51cf\u5c11\u5185\u5b58\u6d88\u8017": 96, "\u6709\u6548": 96, "\u5bf9\u4e8e\u8bad\u7ec3\u548c\u9a8c\u8bc1": 96, "\u8bad\u7ec3\u4e0e\u9a8c\u8bc1\u635f\u5931": 96, "\u8ddf\u8e2a\u6700\u4f73\u6027\u80fd": 96, "\u5e76\u4fdd\u5b58\u6a21\u578b\u7684\u72b6\u6001": 96, "model_path": [96, 222], "\u8981\u52a0\u8f7d\u4fdd\u5b58\u7684\u6a21\u578b\u7248\u672c": 96, "\u4e00\u65e6\u52a0\u8f7d\u4e86\u6a21\u578b": 96, "\u5b83\u5c31\u53ef\u4ee5\u7528\u4e8e\u60a8\u9700\u8981\u7684\u4efb\u4f55\u4e8b\u60c5": 96, "\u66f4\u591a\u8bad\u7ec3": 96, "\u63a8\u7406\u6216\u5206\u6790": 96, "\u5982\u679c\u60a8\u7684\u6a21\u578b\u6709\u5f71\u54cd\u6a21\u578b\u7ed3\u6784\u7684\u6784\u9020\u51fd\u6570\u53c2\u6570": 96, "\u60a8\u9700\u8981\u63d0\u4f9b\u5b83\u4eec\u5e76\u4ee5\u4e0e\u4fdd\u5b58\u65f6\u76f8\u540c\u7684\u65b9\u5f0f\u914d\u7f6e\u6a21\u578b": 96, "\u4e0a\u7684\u6570\u636e\u5de5\u5177\u6587\u6863": 96, "\u5173\u4e8e\u4f7f\u7528\u56fa\u5b9a\u5185\u5b58\u8fdb\u884c": 96, "\u8bad\u7ec3\u7684\u8bf4\u660e": 96, "\u4e2d\u53ef\u7528\u6570\u636e\u96c6\u7684\u6587\u6863": 96, "\u4e2d\u53ef\u7528\u635f\u5931": 96, "trainingyt": 96, "alexandro": 97, "chariton": 97, "computation": [97, 171], "lightweight": [97, 121, 156, 213, 230, 251], "drone": 97, "4gb": [97, 152, 158, 223], "satur": [97, 199, 230], "subtract": [97, 247], "greedi": [97, 113, 118, 136, 146, 160], "transforms_cifar": 97, "test_dataset": [97, 115], "num_images_to_keep": 97, "50_000": [97, 159], "train_load": [97, 122, 123, 129, 162, 166, 168, 220, 221, 253], "extractor": [97, 171], "neuron": [97, 229], "deepnn": 97, "lightnn": 97, "detriment": 97, "denot": [97, 99, 102, 189, 190, 193, 262, 271], "nn_deep": 97, "test_accuracy_deep": 97, "nn_light": 97, "new_nn_light": 97, "conclud": [97, 130, 149, 200], "total_params_deep": 97, "total_params_light": 97, "test_accuracy_light_c": 97, "interven": 97, "soft": [97, 160], "mistaken": 97, "valuabl": [97, 165, 193], "alon": [97, 112, 124, 165, 169], "meaningfulli": 97, "smoother": 97, "soft_target_loss_weight": 97, "ce_loss_weight": 97, "train_knowledge_distil": 97, "ce_loss": 97, "teacher_logit": 97, "student_logit": 97, "soft_target": 97, "soft_prob": 97, "soft_targets_loss": 97, "label_loss": 97, "ce": [97, 165], "test_accuracy_light_ce_and_kd": 97, "kd": 97, "coeffici": 97, "convei": [97, 200], "naiv": [97, 125, 145, 154, 164, 193], "rational": 97, "capac": [97, 131, 159, 160, 171, 247], "cosineembeddingloss": [97, 110], "obvious": [97, 101, 163], "somehow": [97, 103], "modifieddeepnncosin": 97, "flattened_conv_output": 97, "flattened_conv_output_after_pool": 97, "avg_pool1d": 97, "modifiedlightnncosin": 97, "modified_nn_deep": 97, "deep_nn": 97, "modified_deep_nn": 97, "modified_nn_light": 97, "hidden_represent": 97, "sample_input": [97, 209, 247], "total_class": 97, "hidden_representation_s": 97, "train_cosine_loss": 97, "hidden_rep_loss_weight": 97, "cosine_loss": 97, "teacher_hidden_represent": 97, "student_hidden_represent": 97, "hidden_rep_loss": 97, "test_multiple_output": 97, "disregard": 97, "test_accuracy_light_ce_and_cosine_loss": 97, "convolutional_fe_output_stud": 97, "convolutional_fe_output_teach": 97, "modifieddeepnnregressor": 97, "conv_feature_map": 97, "modifiedlightnnregressor": 97, "regressor_output": 97, "train_mse_loss": 97, "feature_map_weight": 97, "teacher_feature_map": 97, "regressor_feature_map": 97, "modified_nn_light_reg": 97, "modified_nn_deep_reg": 97, "test_accuracy_light_ce_and_mse_loss": 97, "cosineloss": 97, "wiggl": 97, "regressorms": 97, "hinton": [97, 127], "vinyal": 97, "dean": 97, "workshop": 97, "romero": 97, "balla": 97, "kahou": 97, "chassang": 97, "gatta": 97, "bengio": 97, "fitnet": 97, "thin": [97, 262, 271], "confer": 97, "knowledge_distillation_tutori": 97, "kit": 98, "dynet": [98, 100], "opposit": [98, 190], "theano": [98, 100], "kera": [98, 100, 111], "difficult": [98, 113, 145, 153, 165, 191, 195, 205], "constitu": 98, "roughli": [98, 122, 133, 144, 149, 181, 247], "fat": [98, 113], "exception": 98, "entiti": [98, 103, 175, 262, 271], "recognit": [98, 207, 247], "tagger": 98, "ner": 98, "sound": [98, 101, 173, 174], "scari": 98, "viterbi": [98, 102], "sum_": [98, 103, 160], "psi_i": 98, "sum_i": 98, "partit": [98, 121, 124, 135, 149, 214, 247], "emiss": 98, "textbf": 98, "psi_": 98, "y_i": [98, 102], "x_i": [98, 99], "tran": [98, 171], "h_i": [98, 102], "collin": 98, "robert": [98, 99, 101, 102, 103, 234], "guthri": [98, 99, 101, 102, 103, 234], "prepare_sequ": [98, 102], "to_ix": [98, 102], "log_sum_exp": 98, "max_scor": 98, "max_score_broadcast": 98, "bilstm_crf": 98, "tag_to_ix": [98, 102], "word_emb": 98, "num_lay": [98, 181, 230], "start_tag": 98, "stop_tag": 98, "_forward_alg": 98, "feat": [98, 171], "init_alpha": 98, "forward_var": 98, "alphas_t": 98, "next_tag": 98, "emit_scor": 98, "ith": [98, 103, 193], "trans_scor": 98, "next_tag_var": 98, "terminal_var": 98, "_get_lstm_featur": 98, "lstm_feat": 98, "_score_sent": 98, "_viterbi_decod": 98, "backpoint": 98, "init_vvar": 98, "bptrs_t": 98, "viterbivars_t": 98, "best_tag_id": 98, "path_scor": 98, "best_path": 98, "dont": [98, 99], "caller": [98, 134, 162, 212], "saniti": [98, 126, 159, 171, 256], "neg_log_likelihood": 98, "forward_scor": 98, "gold_scor": 98, "bilstm": 98, "tag_seq": 98, "street": [98, 263, 272], "journal": 98, "todai": [98, 117, 157, 191, 223], "corpor": [98, 137], "monei": 98, "georgia": 98, "tech": 98, "univers": [98, 113, 115, 160, 171, 176, 262, 271], "word_to_ix": [98, 99, 102, 103], "precheck_s": 98, "precheck_tag": 98, "sentence_in": [98, 102], "anywai": [98, 101], "gold": [98, 165], "perceptron": [98, 176], "score_sent": 98, "advanced_tutori": [98, 100], "workhors": 99, "2x5": 99, "acx": 99, "ac": [99, 171, 265, 274], "sigma": [99, 159], "plenti": 99, "peopl": [99, 100, 103, 113, 117, 185, 200, 262, 271], "shy": 99, "vanish": 99, "linearit": 99, "sum_j": 99, "x_j": 99, "theres": 99, "unseen": [99, 103], "supervis": [99, 166, 171], "eta": 99, "vari": [99, 113, 129, 146, 165, 172, 181, 182, 191, 193, 199, 210, 223, 230, 234], "spanish": [99, 127, 128], "bow": 99, "gusta": 99, "comer": 99, "cafeteria": 99, "creo": 99, "que": [99, 165], "sea": [99, 118], "una": 99, "buena": 99, "yo": 99, "si": [99, 155, 165], "bowclassifi": 99, "bow_vec": 99, "make_bow_vector": 99, "make_target": 99, "label_to_ix": 99, "bow_vector": 99, "log_prob": [99, 103, 161, 163], "bigger": [99, 127, 128, 158, 171, 262, 271], "0th": [99, 154, 156, 164, 193], "deep_learning_tutori": [99, 100], "russel": 100, "norvig": 100, "book": [100, 102], "rip": 100, "pytorch_tutori": [100, 101], "word_embeddings_tutori": [100, 103], "lexic": 100, "sequence_models_tutori": [100, 102, 234], "bi": [100, 137], "crf": 100, "v_data": 101, "m_data": 101, "2x2x2": 101, "t_data": 101, "terminolog": 101, "z_1": 101, "x_2": [101, 116, 150, 262, 271], "y_2": [101, 116], "z_2": 101, "complain": 101, "vagu": 101, "programm": [101, 103, 197, 199, 262, 271], "x_0": [101, 262, 271], "overbrac": [101, 102, 103], "y_0": 101, "z_0": 101, "gloss": 101, "new_z": 101, "NO": 101, "forgotten": 101, "classic": [102, 113, 147, 153, 166, 244], "markov": 102, "myriad": 102, "cow": 102, "q_": [102, 103, 146], "2nd": [102, 162, 193], "reader": [102, 135, 149, 176, 262, 271], "unfamiliar": 102, "w_1": 102, "w_m": 102, "w_i": [102, 103], "_i": [102, 185], "_1": [102, 252], "_m": 102, "_j": 102, "ah_i": 102, "noun": 102, "verb": 102, "ate": 102, "everybodi": [102, 135], "affix": [102, 103], "bear": 102, "ly": 102, "adverb": 102, "c_w": 102, "x_w": 102, "po": [102, 118, 171], "capit": [103, 262, 271], "enorm": [103, 171], "notion": [103, 118], "mathematician": 103, "physicist": 103, "orthograph": 103, "linguist": 103, "hypothesi": 103, "coffe": 103, "phi": [103, 262, 271], "dissimilar": 103, "pain": [103, 113], "earth": [103, 113], "herself": 103, "lookup_tensor": 103, "hello_emb": 103, "context_s": 103, "shakespear": [103, 164], "sonnet": 103, "test_sent": 103, "forti": 103, "winter": [103, 113], "besieg": 103, "thy": 103, "brow": 103, "trench": 103, "beauti": [103, 229], "youth": 103, "proud": 103, "liveri": 103, "gaze": 103, "Will": [103, 257], "totter": 103, "weed": [103, 189], "treasur": 103, "lusti": 103, "thine": 103, "sunken": 103, "eat": [103, 152], "shame": 103, "thriftless": 103, "prais": 103, "thou": 103, "couldst": 103, "mine": [103, 164, 262, 271], "excus": 103, "blood": 103, "cold": [103, 113, 165], "word_i": 103, "ngram": 103, "ngramlanguagemodel": 103, "context_idx": 103, "cbow": 103, "probabilist": [103, 159], "q_w": 103, "raw_text": 103, "studi": [103, 115, 121, 126, 156, 171, 176], "beings": 103, "inhabit": 103, "evolut": 103, "conjur": 103, "spell": [103, 127], "dedupl": 103, "make_context_vector": 103, "jeremi": 104, "howard": [104, 146, 155], "rachel": 104, "thoma": 104, "ingham": 104, "\u6211\u4eec\u5efa\u8bae\u5c06\u672c\u6559\u7a0b\u4f5c\u4e3a\u7b14\u8bb0\u672c": 104, "\u8fd0\u884c": 104, "\u8bf7\u70b9\u51fb\u9875\u9762\u9876\u90e8\u7684\u94fe\u63a5": 104, "\u4e0b\u8f7d\u7b14\u8bb0\u672c": 104, "\u63d0\u4f9b\u4e86\u4f18\u96c5\u8bbe\u8ba1\u7684\u6a21\u5757\u548c\u7c7b": 104, "\u4ee5\u5e2e\u52a9\u4f60\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 104, "\u4e3a\u4e86\u5145\u5206\u5229\u7528\u5b83\u4eec\u7684\u529f\u80fd": 104, "\u5e76\u901a\u8fc7\u81ea\u5b9a\u4e49\u5bf9\u5e94\u6a21\u5757\u6216\u7c7b": 104, "\u6765\u89e3\u51b3\u7279\u5b9a\u95ee\u9898": 104, "\u9700\u8981\u7406\u89e3\u5b83\u4eec\u7684\u5177\u4f53\u529f\u80fd": 104, "\u6211\u4eec\u5c06\u9996\u5148\u5728": 104, "\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u4e00\u4e2a\u57fa\u672c\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u800c\u4e0d\u4f7f\u7528\u8fd9\u4e9b\u6a21\u578b\u7684\u4efb\u4f55\u7279\u6027": 104, "\u6211\u4eec\u6700\u521d\u53ea\u4f7f\u7528\u6700\u57fa\u672c\u7684": 104, "\u5f20\u91cf\u529f\u80fd": 104, "\u6211\u4eec\u5c06\u9010\u6b65\u6dfb\u52a0": 104, "\u4e2d\u7684\u4e00\u4e2a\u7279\u6027": 104, "\u5c55\u793a\u6bcf\u4e2a\u90e8\u5206\u7684\u4f5c\u7528": 104, "\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u5b83\u4eec\u8ba9\u4ee3\u7801\u66f4\u7b80\u6d01\u6216\u66f4\u7075\u6d3b": 104, "\u672c\u6559\u7a0b\u5047\u5b9a\u4f60\u5df2\u7ecf\u5b89\u88c5\u4e86": 104, "\u5e76\u4e14\u719f\u6089\u5f20\u91cf\u64cd\u4f5c\u7684\u57fa\u7840\u77e5\u8bc6": 104, "\u5982\u679c\u4f60\u719f\u6089": 104, "\u6570\u7ec4\u64cd\u4f5c": 104, "\u4f60\u4f1a\u53d1\u73b0\u8fd9\u91cc\u4f7f\u7528\u7684": 104, "\u5f20\u91cf\u64cd\u4f5c\u51e0\u4e4e\u76f8\u540c": 104, "\u6211\u4eec\u5c06\u4f7f\u7528\u7ecf\u5178\u7684": 104, "\u8be5\u6570\u636e\u96c6\u5305\u542b\u624b\u7ed8\u6570\u5b57": 104, "0\u52309\u4e4b\u95f4": 104, "\u6765\u5904\u7406\u8def\u5f84": 104, "\u6807\u51c6\u5e93\u7684\u4e00\u90e8\u5206": 104, "\u4e0b\u8f7d\u6570\u636e\u96c6": 104, "\u6211\u4eec\u53ea\u4f1a\u5728\u4f7f\u7528\u6a21\u5757\u65f6\u624d\u5bfc\u5165\u5b83\u4eec": 104, "\u56e0\u6b64\u4f60\u53ef\u4ee5\u6e05\u695a\u5730\u770b\u5230\u6bcf\u4e2a\u6b65\u9aa4\u4e2d\u6b63\u5728\u4f7f\u7528\u7684\u5185\u5bb9": 104, "exist_ok": 104, "\u8fd9\u4e2a\u6570\u636e\u96c6\u662f": 104, "\u6570\u7ec4\u683c\u5f0f\u7684": 104, "\u5e76\u4e14\u4f7f\u7528": 104, "\u5b58\u50a8": 104, "\u8fd9\u662f\u4e00\u4e2a": 104, "\u7279\u6709\u7684\u7528\u4e8e\u5e8f\u5217\u5316\u6570\u636e\u7684\u683c\u5f0f": 104, "gzip": 104, "as_posix": [104, 126], "x_train": [104, 150], "y_train": 104, "x_valid": 104, "y_valid": 104, "latin": 104, "\u6bcf\u5f20\u56fe\u50cf\u7684\u5c3a\u5bf8\u4e3a": 104, "\u5e76\u4ee5\u957f\u5ea6\u4e3a": 104, "\u7684\u5c55\u5e73\u884c\u5b58\u50a8": 104, "\u8ba9\u6211\u4eec\u6765\u770b\u770b\u5176\u4e2d\u4e00\u5f20": 104, "\u6211\u4eec\u9700\u8981\u5148\u5c06\u5176\u91cd\u5851\u4e3a\u4e8c\u7ef4": 104, "\u5728\u4e0d\u4f7f\u7528": 104, "\u65f6\u4f7f\u7528": 104, "importerror": 104, "\u6240\u4ee5\u6211\u4eec\u9700\u8981\u8f6c\u6362\u6211\u4eec\u7684\u6570\u636e": 104, "\u6211\u4eec\u53ea\u4f7f\u7528": [104, 250], "\u5f20\u91cf\u64cd\u4f5c\u521b\u5efa\u4e00\u4e2a\u6a21\u578b": 104, "\u6211\u4eec\u5047\u8bbe\u4f60\u5df2\u7ecf\u719f\u6089\u795e\u7ecf\u7f51\u7edc\u7684\u57fa\u7840\u77e5\u8bc6": 104, "\u5982\u679c\u4e0d\u719f\u6089": 104, "\u63d0\u4f9b\u65b9\u6cd5\u6765\u521b\u5efa": 104, "\u968f\u673a": 104, "\u96f6": 104, "\u586b\u5145\u7684\u5f20\u91cf": 104, "\u6211\u4eec\u5c06\u4f7f\u7528\u8fd9\u4e9b\u65b9\u6cd5\u4e3a\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u6a21\u578b\u521b\u5efa\u6743\u91cd\u548c\u504f\u7f6e": 104, "\u8fd9\u4e9b\u53ea\u662f\u5e38\u89c4\u7684\u5f20\u91cf": 104, "\u6709\u4e00\u4e2a\u975e\u5e38\u7279\u522b\u7684\u9644\u52a0\u529f\u80fd": 104, "\u6211\u4eec\u544a\u8bc9": 104, "\u5b83\u4eec\u9700\u8981\u68af\u5ea6": 104, "\u4f1a\u8bb0\u5f55\u5728\u5f20\u91cf\u4e0a\u5b8c\u6210\u7684\u6240\u6709\u64cd\u4f5c": 104, "\u4ee5\u4fbf\u5728\u53cd\u5411\u4f20\u64ad\u671f\u95f4": 104, "\u81ea\u52a8": 104, "\u8ba1\u7b97\u68af\u5ea6": 104, "\u5bf9\u4e8e\u6743\u91cd": 104, "\u6211\u4eec\u5728\u521d\u59cb\u5316": 104, "\u8bbe\u7f6e": 104, "\u56e0\u4e3a\u6211\u4eec\u4e0d\u5e0c\u671b\u521d\u59cb\u5316\u6b65\u9aa4\u5305\u62ec\u5728\u68af\u5ea6\u4e2d": 104, "\u4e2d\u7684\u5c3e\u968f": 104, "\u8868\u793a\u64cd\u4f5c\u662f\u5728\u539f\u5730\u6267\u884c": 104, "\u7531\u4e8e": [104, 249], "\u80fd\u591f\u81ea\u52a8\u8ba1\u7b97\u68af\u5ea6": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4efb\u4f55\u6807\u51c6\u7684": 104, "\u6216\u53ef\u8c03\u7528\u5bf9\u8c61": 104, "\u4f5c\u4e3a\u6a21\u578b": 104, "\u8ba9\u6211\u4eec\u7f16\u5199\u4e00\u4e2a\u7b80\u5355\u7684\u77e9\u9635\u4e58\u6cd5\u548c\u5e7f\u64ad\u52a0\u6cd5": 104, "\u6765\u521b\u5efa\u4e00\u4e2a\u7b80\u5355\u7684\u7ebf\u6027\u6a21\u578b": 104, "\u6211\u4eec\u8fd8\u9700\u8981\u7f16\u5199\u4e00\u4e2a\u6fc0\u6d3b\u51fd\u6570": 104, "\u63d0\u4f9b\u4e86\u8bb8\u591a\u9884\u5148\u7f16\u5199\u7684\u635f\u5931\u51fd\u6570": 104, "\u6fc0\u6d3b\u51fd\u6570\u7b49": 104, "\u4f60\u4ecd\u53ef\u4ee5\u4f7f\u7528\u666e\u901a\u7684": 104, "\u7f16\u5199\u81ea\u5df1\u7684\u51fd\u6570": 104, "\u4f1a\u4e3a\u4f60\u7684\u51fd\u6570\u81ea\u52a8\u521b\u5efa": 104, "\u6216\u77e2\u91cf\u5316": 104, "\u4ee3\u7801": 104, "xb": 104, "\u5728\u4e0a\u9762\u7684\u4ee3\u7801\u4e2d": 104, "\u8868\u793a\u77e9\u9635\u4e58\u6cd5\u64cd\u4f5c": 104, "\u5728\u4e00\u4e2a\u6570\u636e\u6279\u6b21\u4e0a\u8c03\u7528\u6211\u4eec\u7684\u51fd\u6570": 104, "\u5728\u672c\u4f8b\u4e2d\u4e3a64\u5f20\u56fe\u50cf": 104, "\u8fd9\u5c31\u662f\u4e00\u6b21": 104, "\u524d\u5411\u4f20\u9012": 104, "\u7531\u4e8e\u6211\u4eec\u5728\u5f00\u59cb\u65f6\u8bbe\u7f6e\u6743\u91cd\u4e3a\u968f\u673a\u6570\u503c": 104, "\u6b64\u65f6\u9884\u6d4b\u7ed3\u679c\u51c6\u786e\u6027\u8f83\u4f4e": 104, "\u5f20\u91cf\u4e0d\u4ec5\u5305\u542b\u5f20\u91cf\u503c": 104, "\u8fd8\u5305\u542b\u68af\u5ea6\u51fd\u6570": 104, "\u5728\u7a0d\u540e\u7684\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f1a\u7528\u5230\u5b83": 104, "\u8ba9\u6211\u4eec\u5b9e\u73b0": 104, "\u6211\u4eec\u53ef\u4ee5\u53ea\u4f7f\u7528\u6807\u51c6\u7684": 104, "nll": 104, "loss_func": 104, "\u8ba9\u6211\u4eec\u4f7f\u7528\u6211\u4eec\u7684\u968f\u673a\u6a21\u578b\u6765\u68c0\u67e5\u635f\u5931": 104, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u770b\u5230\u5728\u4e4b\u540e\u8fdb\u884c\u53cd\u5411\u4f20\u64ad\u540e": 104, "\u9884\u6d4b\u7ed3\u679c\u51c6\u786e\u7387\u662f\u5426\u6709\u6240\u63d0\u5347": 104, "yb": 104, "\u6211\u4eec\u8fd8\u8981\u5b9e\u73b0\u4e00\u4e2a\u51fd\u6570\u6765\u8ba1\u7b97\u6211\u4eec\u6a21\u578b\u7684\u51c6\u786e\u7387": 104, "\u5bf9\u4e8e\u6bcf\u4e2a\u9884\u6d4b\u7ed3\u679c": 104, "\u5982\u679c\u5177\u6709\u6700\u5927\u503c\u7684\u7d22\u5f15\u4e0e\u76ee\u6807\u503c\u5339\u914d": 104, "\u5219\u9884\u6d4b\u662f\u6b63\u786e\u7684": 104, "\u68c0\u67e5\u6211\u4eec\u968f\u673a\u6a21\u578b\u7684\u51c6\u786e\u7387": 104, "\u8fd9\u6837\u6211\u4eec\u5c31\u53ef\u4ee5\u770b\u5230\u968f\u7740\u635f\u5931\u7684\u6539\u5584": 104, "\u51c6\u786e\u7387\u662f\u5426\u6709\u6240\u63d0\u9ad8": 104, "\u73b0\u5728\u53ef\u4ee5\u8fd0\u884c\u4e00\u4e2a\u8bad\u7ec3\u5faa\u73af": 104, "\u5bf9\u4e8e\u6bcf\u6b21\u8fed\u4ee3": 104, "\u9009\u62e9\u4e00\u4e2a\u5927\u5c0f\u4e3a": 104, "\u7684\u6279\u91cf\u6570\u636e": 104, "\u4f7f\u7528\u6a21\u578b\u8fdb\u884c\u9884\u6d4b": 104, "\u8ba1\u7b97\u635f\u5931": 104, "\u66f4\u65b0\u6a21\u578b\u7684\u68af\u5ea6": 104, "\u5373\u66f4\u65b0": 104, "\u6211\u4eec\u73b0\u5728\u4f7f\u7528\u8fd9\u4e9b\u68af\u5ea6\u6765\u66f4\u65b0\u6743\u91cd": 104, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u4e2d\u6267\u884c\u6b64\u64cd\u4f5c": 104, "\u56e0\u4e3a\u6211\u4eec\u4e0d\u5e0c\u671b\u8fd9\u4e9b\u64cd\u4f5c\u8bb0\u5f55\u4e3a\u4e0b\u4e00\u6b21\u68af\u5ea6\u8ba1\u7b97\u7684\u4e00\u90e8\u5206": 104, "\u4f60\u53ef\u4ee5\u5728": [104, 233], "\u9605\u8bfb\u6709\u5173": 104, "\u5982\u4f55\u8bb0\u5f55\u64cd\u4f5c\u7684\u66f4\u591a\u4fe1\u606f": 104, "\u6211\u4eec\u5c06\u68af\u5ea6\u8bbe\u7f6e\u4e3a\u96f6": 104, "\u4ee5\u4fbf\u6211\u4eec\u51c6\u5907\u8fdb\u884c\u4e0b\u4e00\u6b21\u5faa\u73af": 104, "\u5426\u5219": 104, "\u6211\u4eec\u7684\u68af\u5ea6\u5c06\u8bb0\u5f55\u6240\u6709\u5df2\u53d1\u751f\u7684\u64cd\u4f5c": 104, "\u6dfb\u52a0": 104, "\u68af\u5ea6\u5230\u5df2\u6709\u7684\u68af\u5ea6\u4e2d": 104, "\u800c\u4e0d\u662f\u66ff\u6362\u5b83\u4eec": 104, "set_trac": 104, "start_i": 104, "end_i": 104, "\u6211\u4eec\u5df2\u7ecf\u4ece\u96f6\u5f00\u59cb\u521b\u5efa\u5e76\u8bad\u7ec3\u4e86\u4e00\u4e2a\u6700\u5c0f\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u4f7f\u7528\u903b\u8f91\u56de\u5f52": 104, "\u6ca1\u6709\u9690\u85cf\u5c42": 104, "\u8ba9\u6211\u4eec\u68c0\u67e5\u4e00\u4e0b\u635f\u5931\u548c\u51c6\u786e\u7387": 104, "\u5e76\u5c06\u5b83\u4eec\u4e0e\u4e4b\u524d\u5f97\u5230\u7684\u7ed3\u679c\u8fdb\u884c\u6bd4\u8f83": 104, "\u9884\u8ba1\u635f\u5931\u4f1a\u51cf\u5c11": 104, "\u51c6\u786e\u7387\u4f1a\u63d0\u9ad8": 104, "\u73b0\u5728\u6211\u4eec\u5c06\u91cd\u6784\u4ee3\u7801": 104, "\u4f7f\u5176\u4e0e\u4e4b\u524d\u505a\u7684\u4e8b\u60c5\u76f8\u540c": 104, "\u53ea\u662f\u6211\u4eec\u5c06\u5f00\u59cb\u5229\u7528": 104, "\u4f7f\u5176\u66f4\u7b80\u6d01\u548c\u7075\u6d3b": 104, "\u4ece\u8fd9\u91cc\u5f00\u59cb\u7684\u6bcf\u4e00\u6b65": 104, "\u90fd\u8ba9\u6211\u4eec\u7684\u4ee3\u7801\u53d8\u5f97\u66f4\u77ed": 104, "\u66f4\u6613\u7406\u89e3\u548c\u66f4\u7075\u6d3b": 104, "\u7b2c\u4e00\u6b65\u4e5f\u662f\u6700\u7b80\u5355\u7684\u4e00\u6b65\u662f\u901a\u8fc7\u7528": 104, "\u901a\u5e38\u6309\u60ef\u4f8b\u5bfc\u5165\u4e3a\u547d\u540d\u7a7a\u95f4": 104, "\u4e2d\u7684\u6fc0\u6d3b\u548c\u635f\u5931\u51fd\u6570\u66ff\u6362\u6211\u4eec\u624b\u5199\u7684\u6fc0\u6d3b\u548c\u635f\u5931\u51fd\u6570": 104, "\u4ece\u800c\u4f7f\u6211\u4eec\u7684\u4ee3\u7801\u66f4\u7b80\u77ed": 104, "\u8be5\u6a21\u5757\u5305\u542b": 104, "\u5e93\u4e2d\u7684\u6240\u6709\u51fd\u6570": 104, "\u9664\u4e86\u5404\u79cd\u635f\u5931\u548c\u6fc0\u6d3b\u51fd\u6570": 104, "\u4f60\u8fd8\u4f1a\u770b\u5230\u4e00\u4e9b\u521b\u5efa\u795e\u7ecf\u7f51\u7edc\u7684\u4fbf\u6377\u51fd\u6570": 104, "\u6bd4\u5982\u6c60\u5316\u51fd\u6570": 104, "\u8fd8\u6709\u7528\u4e8e\u5377\u79ef": 104, "\u7ebf\u6027\u5c42\u7b49\u7684\u51fd\u6570": 104, "\u4f46\u6b63\u5982\u6211\u4eec\u5c06\u770b\u5230\u7684": 104, "\u8fd9\u4e9b\u901a\u5e38\u66f4\u9002\u5408\u4f7f\u7528\u5e93\u7684\u5176\u4ed6\u6a21\u5757\u6765\u5904\u7406": 104, "\u5982\u679c\u4f60\u4f7f\u7528neg": 104, "\u90a3\u4e48": [104, 111], "\u63d0\u4f9b\u4e86\u4e00\u4e2a\u7ed3\u5408\u4e86\u4e24\u8005\u7684\u5355\u4e00\u51fd\u6570": 104, "cross_entropi": [104, 124], "\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u4ece\u6a21\u578b\u4e2d\u79fb\u9664\u6fc0\u6d3b\u51fd\u6570": 104, "\u6211\u4eec\u4e0d\u518d\u5728": 104, "\u51fd\u6570\u4e2d\u8c03\u7528": 104, "\u67e5\u770b\u4e0b\u635f\u5931\u548c\u51c6\u786e\u7387\u662f\u5426\u4e0e\u4e4b\u524d\u7ed3\u679c\u4e00\u81f4": 104, "\u4ee5\u5b9e\u73b0\u66f4\u6e05\u6670\u548c\u7b80\u6d01\u7684\u8bad\u7ec3\u5faa\u73af": 104, "\u6211\u4eec\u5c06\u7ee7\u627f": 104, "\u5b83\u672c\u8eab\u662f\u4e00\u4e2a\u7c7b": 104, "\u80fd\u591f\u8ddf\u8e2a\u72b6\u6001": 104, "\u6211\u4eec\u60f3\u521b\u5efa\u4e00\u4e2a\u7c7b\u6765\u4fdd\u5b58\u6211\u4eec\u7684\u6743\u91cd": 104, "\u504f\u7f6e\u548cforward\u65b9\u6cd5": 104, "\u6211\u4eec\u5c06\u4f1a\u4f7f\u7528": 104, "\u7684\u5c5e\u6027\u548c\u65b9\u6cd5": 104, "\u5927\u5199": 104, "\u7279\u6709\u7684\u6982\u5ff5": 104, "\u662f\u4f7f\u7528pytorch\u8fc7\u7a0b\u4e2d\u5927\u91cf\u4f7f\u7528\u7684\u7c7b": 104, "\u4e0d\u8981\u4e0e": 104, "\u6982\u5ff5\u7684": 104, "\u5c0f\u5199": 104, "\u6df7\u6dc6": 104, "mnist_logist": 104, "\u7531\u4e8e\u6211\u4eec\u73b0\u5728\u4f7f\u7528\u7684\u662f\u5bf9\u8c61\u800c\u4e0d\u662f\u4ec5\u4ec5\u4f7f\u7528\u51fd\u6570": 104, "\u6211\u4eec\u9996\u5148\u8981\u521b\u5efa\u6a21\u578b\u5bf9\u8c61": 104, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u50cf\u4e4b\u524d\u4e00\u6837\u8ba1\u7b97\u635f\u5931": 104, "\u5bf9\u8c61\u53ef\u4ee5\u50cf\u51fd\u6570\u4e00\u6837\u4f7f\u7528": 104, "\u5373\u5b83\u4eec\u662f": 104, "\u53ef\u8c03\u7528\u7684": 104, "\u4f1a\u81ea\u52a8\u8c03\u7528\u6211\u4eec\u7684": 104, "\u5728\u4e4b\u524d\u7684\u8bad\u7ec3\u5faa\u73af\u4e2d": 104, "\u6211\u4eec\u5fc5\u987b\u6309\u540d\u79f0\u66f4\u65b0\u6bcf\u4e2a\u53c2\u6570\u7684\u503c": 104, "\u5e76\u624b\u52a8\u5c06\u6bcf\u4e2a\u53c2\u6570\u7684\u68af\u5ea6\u5206\u522b\u6e05\u96f6": 104, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u5229\u7528": 104, "\u5b9a\u4e49\u7684\u65b9\u6cd5": 104, "\u6765\u4f7f\u8fd9\u4e9b\u6b65\u9aa4\u66f4\u7b80\u6d01": 104, "\u9632\u6b62\u5fd8\u8bb0\u5904\u7406\u67d0\u4e9b\u53c2\u6570\u5bfc\u81f4\u9519\u8bef": 104, "\u5c24\u5176\u662f\u5f53\u6211\u4eec\u5b9e\u73b0\u4e00\u4e2a\u66f4\u590d\u6742\u7684\u6a21\u578b\u65f6": 104, "\u5c06\u8bad\u7ec3\u5faa\u73af\u5305\u88c5\u5728\u4e00\u4e2a": 104, "\u51fd\u6570\u4e2d": 104, "\u8fd9\u6837\u53ef\u4ee5\u591a\u6b21\u8fd0\u884c\u5b83": 104, "gone": [104, 113, 125], "\u8ba9\u6211\u4eec\u67e5\u770b\u4e0b\u8bad\u7ec3\u540e": 104, "\u635f\u5931\u662f\u5426\u4e0b\u964d\u4e86": 104, "\u6211\u4eec\u7ee7\u7eed\u91cd\u6784\u4ee3\u7801": 104, "\u6765\u5b9e\u73b0\u7ebf\u6027\u5c42": 104, "\u4e0d\u518d\u624b\u52a8\u5b9a\u4e49\u548c\u521d\u59cb\u5316": 104, "\u4ee5\u53ca\u8ba1\u7b97": 104, "\u5177\u6709\u591a\u79cd\u9884\u5b9a\u4e49\u7684\u5c42": 104, "\u53ef\u4ee5\u5927\u5927\u7b80\u5316\u6211\u4eec\u7684\u4ee3\u7801": 104, "\u5e76\u4e14\u63d0\u9ad8\u6267\u884c\u901f\u5ea6": 104, "\u521d\u59cb\u5316\u6a21\u578b\u5bf9\u8c61": 104, "\u5e76\u8ba1\u7b97\u635f\u5931\u6570\u503c": 104, "\u65b9\u6cd5\u8fdb\u884c\u8bad\u7ec3\u6a21\u578b": 104, "\u67e5\u770b\u8bad\u7ec3\u7ed3\u679c": 104, "\u5305\u542b\u591a\u79cd\u4f18\u5316\u7b97\u6cd5": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4f18\u5316\u5668\u7684": 104, "\u65b9\u6cd5\u8fdb\u884c\u4f18\u5316\u6b65\u9aa4": 104, "\u65e0\u9700\u624b\u52a8\u66f4\u65b0\u6bcf\u4e2a\u53c2\u6570": 104, "\u4e4b\u524d\u7684\u4f18\u5316\u6b65\u9aa4": 104, "\u91cd\u6784\u4e3a": 104, "\u5728\u4e0b\u4e2a\u8bad\u7ec3\u5faa\u73af\u5f00\u59cb\u524d": 104, "\u6211\u4eec\u9700\u8c03\u7528": 104, "\u5c06\u53c2\u6570\u7684\u68af\u5ea6\u91cd\u7f6e\u4e3a0": 104, "\u5b9a\u4e49\u521b\u5efa\u6a21\u578b\u548c\u4f18\u5316\u5668\u7684\u65b9\u6cd5\u5982\u4e0b": 104, "\u6709\u4e00\u4e2a\u62bd\u8c61\u7684": 104, "\u53ef\u4ee5\u662f\u4efb\u4f55\u5177\u6709": 104, "\u7531": 104, "\u7684\u6807\u51c6": 104, "\u51fd\u6570\u8c03\u7528": 104, "\u4f5c\u4e3a\u7d22\u5f15\u65b9\u5f0f": 104, "\u7684\u5bf9\u8c61": 104, "\u8be6\u7ec6\u4ecb\u7ecd\u4e86\u521b\u5efa\u4e00\u4e2a\u81ea\u5b9a\u4e49": 104, "faciallandmarkdataset": 104, "\u7c7b\u4f5c\u4e3a": 104, "\u5b50\u7c7b\u7684\u4f8b\u5b50": 104, "tensordataset": [104, 110, 137, 165, 185], "\u662f\u4e00\u4e2a\u5305\u88c5\u5f20\u91cf\u7684": 104, "\u4e3a\u6211\u4eec\u63d0\u4f9b\u4e86\u4e00\u79cd\u8fed\u4ee3": 104, "\u7d22\u5f15\u548c\u6cbf\u5f20\u91cf\u7684\u7b2c\u4e00\u4e2a\u7ef4\u5ea6\u5207\u7247\u7684\u65b9\u5f0f": 104, "\u4f7f\u6211\u4eec\u5728\u8bad\u7ec3\u65f6\u66f4\u5bb9\u6613\u540c\u65f6\u8bbf\u95ee\u81ea\u53d8\u91cf\u548c\u56e0\u53d8\u91cf": 104, "\u5bf9": 104, "\u8fdb\u884c\u5305\u88c5": 104, "\u8ba9\u6211\u4eec\u66f4\u5bb9\u6613\u5bf9\u6570\u636e\u8fdb\u884c\u904d\u5386\u548c\u5207\u7247\u64cd\u4f5c": 104, "train_d": 104, "\u4e4b\u524d\u6211\u4eec\u9700\u8981\u5355\u72ec\u5904\u7406": 104, "\u4e24\u7ec4\u6570\u503c": 104, "\u73b0\u5728\u53ef\u4ee5\u5408\u5e76\u5904\u7406": 104, "\u4f60\u53ef\u4ee5\u4ece\u4efb\u4f55": 104, "\u521b\u5efa\u4e00\u4e2a": 104, "\u800c\u540e\u7531": 104, "\u8d1f\u8d23\u5bf9\u6570\u636e\u5206\u6279": 104, "\u6211\u4eec\u4e0d\u5fc5\u518d\u53bb\u5b9e\u73b0\u5206\u6279\u4ee3\u7801": 104, "\u4f1a\u81ea\u52a8\u4e3a\u6211\u4eec\u63d0\u4f9b\u6bcf\u6279\u6570\u636e": 104, "train_dl": 104, "\u4e4b\u524d\u6211\u4eec\u7f16\u5199\u5206\u6279\u4ee3\u7801\u5982\u4e0b": 104, "\u6211\u4eec\u7684\u5faa\u73af\u53d8\u5f97\u66f4\u52a0\u7b80\u6d01": 104, "\u81ea\u52a8\u4ecedataloader\u4e2d\u52a0\u8f7d": 104, "\u901a\u8fc7\u4f7f\u7528": [104, 236], "\u6211\u4eec\u5b9e\u73b0\u7684\u8bad\u7ec3\u5faa\u4ee3\u7801\u91cf\u5e76\u4e14\u66f4\u5bb9\u6613\u7406\u89e3": 104, "\u73b0\u5728\u8ba9\u6211\u4eec\u5c1d\u8bd5\u589e\u52a0\u4e00\u4e9b\u521b\u5efa\u5b9e\u9645\u6709\u6548\u6a21\u578b\u6240\u9700\u7684\u57fa\u672c\u529f\u80fd": 104, "\u5728\u7b2c\u4e00\u90e8\u5206\u4e2d": 104, "\u6211\u4eec\u53ea\u662f\u5b9e\u73b0\u4e86\u4f7f\u7528\u6570\u636e\u8fdb\u884c\u8bad\u7ec3\u7684\u903b\u8f91": 104, "\u5b9e\u9645\u5e94\u7528\u4e2d": 104, "\u8fd8\u9700\u8981": 104, "\u9a8c\u8bc1\u96c6": 104, "\u4ee5\u786e\u5b9a\u6211\u4eec\u7684\u6a21\u578b\u662f\u5426\u5b58\u5728\u8fc7\u62df\u5408\u95ee\u9898": 104, "\u6253\u4e71\u8bad\u7ec3\u6570\u636e\u662f": 104, "\u5341\u5206\u5fc5\u8981\u7684": 104, "\u4ee5\u9632\u6b62\u6279\u6b21\u4e4b\u95f4\u7684\u76f8\u5173\u6027\u548c\u8fc7\u62df\u5408": 104, "\u800c\u9a8c\u8bc1\u6570\u636e\u96c6\u5219\u65e0\u9700\u8fdb\u6b64\u64cd\u4f5c": 104, "\u65e0\u8bba\u6253\u4e71\u4e0e\u5426": 104, "\u9a8c\u8bc1\u635f\u5931\u503c\u662f\u76f8\u540c\u7684": 104, "\u800c\u4e14\u6253\u4e71\u64cd\u4f5c\u9700\u8981\u6d88\u8017\u989d\u5916\u7684\u65f6\u95f4": 104, "\u6ca1\u6709\u5b9e\u9645\u610f\u4e49": 104, "\u6211\u4eec\u5c06\u4e3a\u9a8c\u8bc1\u96c6\u4f7f\u7528\u7684\u6279\u91cf\u5927\u5c0f\u8bbe\u4e3a\u8bad\u7ec3\u96c6\u7684\u4e24\u500d": 104, "\u56e0\u4e3a\u9a8c\u8bc1\u96c6\u4e0d\u9700\u8981\u8fdb\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u56e0\u6b64\u9700\u8981\u7684\u5185\u5b58\u8f83\u5c11": 104, "\u4e0d\u9700\u8981\u5b58\u50a8\u68af\u5ea6": 104, "\u56e0\u6b64\u6211\u6211\u4eec\u53ef\u4ee5\u914d\u7f6e\u8f83\u5927\u5355\u6279\u6570\u91cf": 104, "\u63d0\u9ad8\u8ba1\u7b97\u901f\u5ea6": 104, "valid_d": 104, "valid_dl": 104, "\u7ed3\u675f\u65f6\u8ba1\u7b97\u5e76\u6253\u5370\u635f\u5931\u503c": 104, "\u6211\u4eec\u5728\u8bad\u7ec3\u4e4b\u524d\u603b\u662f\u8c03\u7528": 104, "\u5728\u63a8\u65ad\u4e4b\u524d\u8c03\u7528": 104, "\u5c42\u4f1a\u4f7f\u7528": 104, "\u6765\u786e\u4fdd\u5176\u7ed3\u679c\u6b63\u786e": 104, "valid_loss": 104, "\u6211\u4eec\u5728\u8ba1\u7b97\u8bad\u7ec3\u96c6\u548c\u9a8c\u8bc1\u96c6\u7684\u635f\u5931\u7c7b\u4f3c\u7684\u4ee3\u7801": 104, "\u62bd\u53d6\u4e00\u4e2a\u72ec\u7acb\u7684\u51fd\u6570": 104, "loss_batch": 104, "\u7528\u4e8e\u8ba1\u7b97\u4e00\u4e2a\u6279\u6b21\u7684\u635f\u5931": 104, "\u8bad\u7ec3\u96c6\u4f20\u5165\u4e00\u4e2a\u4f18\u5316\u5668": 104, "\u5e76\u4f7f\u7528\u5b83\u6267\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u5bf9\u4e8e\u9a8c\u8bc1\u96c6": 104, "\u5219\u4e0d\u4f20\u5165\u4f18\u5316\u5668": 104, "\u4e0d\u6267\u884c\u53cd\u5411\u4f20\u64ad": 104, "\u5728\u6bcf\u4e2a\u8bad\u7ec3\u5faa\u73af\u4e2d\u8ba1\u7b97\u8bad\u7ec3\u548c\u9a8c\u8bc1\u635f\u5931": 104, "\u8fd4\u56de\u8bad\u7ec3\u548c\u9a8c\u8bc1\u6570\u636e\u96c6\u7684dataload": 104, "\u6211\u4eec\u83b7\u53d6\u6570\u636e\u52a0\u8f7d\u5668\u548c\u62df\u5408\u6a21\u578b\u7684\u6574\u4e2a\u8fc7\u7a0b\u53ef\u4ee5\u7528": 104, "\u884c\u4ee3\u7801\u6765\u5b9e\u73b0": 104, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u8fd9\u4e09\u884c\u57fa\u672c\u4ee3\u7801\u6765\u8bad\u7ec3\u5404\u79cd\u5404\u6837\u7684\u6a21\u578b": 104, "\u8ba9\u6211\u4eec\u770b\u770b\u662f\u5426\u53ef\u4ee5\u7528\u6765\u8bad\u7ec3\u4e00\u4e2a\u5377\u79ef\u795e\u7ecf\u7f51\u7edc": 104, "\u73b0\u5728\u6211\u4eec\u5c06\u4f7f\u7528\u4e09\u4e2a\u5377\u79ef\u5c42\u6784\u5efa\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u56e0\u4e3a\u524d\u9762\u90e8\u5206\u7684\u51fd\u6570\u90fd\u4e0d\u5047\u8bbe\u4efb\u4f55\u5173\u4e8e\u6a21\u578b\u5f62\u5f0f\u7684\u4e1c\u897f": 104, "\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u5728\u4e0d\u505a\u4efb\u4f55\u4fee\u6539\u7684\u60c5\u51b5\u4e0b\u4f7f\u7528\u5b83\u4eec\u6765\u8bad\u7ec3\u4e00\u4e2a": 104, "\u9884\u5b9a\u4e49\u7684": 104, "\u7c7b\u4f5c\u4e3a\u6211\u4eec\u7684\u5377\u79ef\u5c42": 104, "\u6211\u4eec\u5b9a\u4e49\u4e00\u4e2a\u5177\u6709": 104, "\u4e2a\u5377\u79ef\u5c42\u7684": 104, "\u6bcf\u4e2a\u5377\u79ef\u5c42\u540e\u9762\u8ddf\u7740\u4e00\u4e2a": 104, "\u6211\u4eec\u6267\u884c\u5e73\u5747\u6c60\u5316": 104, "\u7248\u7684": 104, "mnist_cnn": [104, 123], "avg_pool2d": [104, 206], "\u7684\u4e00\u79cd\u53d8\u4f53": 104, "\u901a\u8fc7\u7edf\u8ba1\u66f4\u65b0\u8bb0\u5f55\u6765\u63d0\u5347\u8bad\u7ec3\u901f\u5ea6": 104, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528": [104, 111, 238], "\u6765\u5e2e\u52a9\u6211\u4eec\u7b80\u5316\u4ee3\u7801": 104, "\u63d0\u4f9b\u4e86\u4e00\u79cd\u66f4\u7b80\u5355\u7684\u7f16\u5199\u795e\u7ecf\u7f51\u7edc\u7684\u65b9\u5f0f": 104, "\u5176\u4f1a\u6309\u987a\u5e8f\u8fd0\u884c\u5b9a\u4e49\u4e2d\u5305\u542b\u7684\u6bcf\u4e2a\u6a21\u5757": 104, "\u6211\u4eec\u53ef\u4ee5\u521b\u5efa\u4e00\u4e2a": 104, "\u81ea\u5b9a\u4e49\u5c42": 104, "\u6ca1\u6709\u7684": 104, "view\u5c42": 104, "\u521b\u5efa\u6a21\u578b\u5341\u5206\u7b80\u5355": 104, "avgpool2d": 104, "\u6211\u4eec\u7f16\u5199\u7684": 104, "\u5341\u5206\u7b80\u6d01": 104, "\u4f46\u4ec5\u9002\u7528\u4e8emnist": 104, "\u5b83\u5047\u8bbe\u8f93\u5165\u662f\u4e00\u4e2a": 104, "\u957f\u7684\u5411\u91cf": 104, "\u5b83\u5047\u8bbe\u6700\u7ec8\u7684": 104, "\u7f51\u683c\u5927\u5c0f\u662f": 104, "\u6211\u4eec\u4f7f\u7528\u7684\u5e73\u5747\u6c60\u5316\u6838\u5927\u5c0f": 104, "\u8ba9\u6211\u4eec\u53bb\u9664\u8fd9\u4e24\u4e2a\u5047\u8bbe": 104, "\u4f7f\u6211\u4eec\u7684\u6a21\u578b\u9002\u7528\u4e8e\u4efb\u4f552d\u5355\u901a\u9053\u56fe\u50cf": 104, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5c06\u6570\u636e\u9884\u5904\u7406\u79fb\u5230\u751f\u6210\u5668\u4e2d\u6765\u5220\u9664": 104, "wrappeddataload": 104, "__iter__": 104, "\u4e3a\u4e86\u8ba9\u6211\u4eec\u5b9a\u4e49\u6211\u4eec\u60f3\u8981\u7684\u8f93\u51fa\u5f20\u91cf\u7684\u5927\u5c0f": 104, "\u800c\u975e": 104, "\u8f93\u5165": [104, 250], "\u6211\u4eec\u53ef\u4ee5\u7528": 104, "adaptiveavgpool2d": [104, 134, 136], "\u66ff\u6362": 104, "\u4ece\u800c\u4f7f\u6211\u4eec\u7684\u6a21\u578b\u53ef\u9002\u7528\u4e8e\u4efb\u4f55\u5927\u5c0f\u7684\u8f93\u5165": 104, "\u8ba9\u6211\u4eec\u67e5\u770b\u4e0b\u7ed3\u679c": 104, "\u5728\u62e5\u6709": 104, "gpu\u7684\u73af\u5883\u4e2d": 104, "\u4f60\u53ef\u4ee5\u4f7f\u7528\u5b83\u6765\u52a0\u901f\u4ee3\u7801": 104, "\u9996\u5148\u68c0\u67e5\u4f60\u7684gpu\u5728pytorch\u4e2d\u662f\u5426\u6b63\u5e38\u5de5\u4f5c": 104, "\u7136\u540e\u521b\u5efa": 104, "\u4fee\u6539": 104, "\u6b65\u9aa4": [104, 238], "\u5c06\u6570\u636e\u79fb\u52a8\u81f3": 104, "\u5c06\u6a21\u578b\u52a0\u8f7d\u5230": 104, "\u8fd0\u884c\u901f\u5ea6\u4f1a\u63d0\u5347\u5f88\u591a": 104, "\u7f16\u5199\u4e86\u4e00\u4e2a\u53ef\u4ee5\u7528\u4e8e\u591a\u79cd\u6a21\u578b\u8bad\u7ec3\u7684\u5b9e\u73b0": 104, "\u5b8c\u6574\u7684\u8bad\u7ec3\u4ee3\u7801": 104, "mnist_sampl": 104, "\u540e\u7eed\u8fd8\u53ef\u5c1d\u8bd5\u589e\u52a0\u5176\u4ed6\u529f\u80fd": 104, "\u4f8b\u5982\u6570\u636e\u589e\u5f3a": 104, "\u8d85\u53c2\u6570\u8c03\u4f18": 104, "\u76d1\u63a7\u8bad\u7ec3": 104, "\u8fc1\u79fb\u5b66\u4e60\u7b49\u7b49": 104, "\u8fd9\u4e9b\u529f\u80fd\u5728fastai\u5e93\u4e2d\u90fd\u6709\u63d0\u4f9b": 104, "\u8be5\u5e93\u662f\u4f7f\u7528\u672c\u6559\u7a0b\u4e2d\u6240\u793a\u7684\u76f8\u540c\u8bbe\u8ba1\u65b9\u6cd5\u5f00\u53d1\u7684": 104, "\u4e3a\u5e0c\u671b\u8fdb\u4e00\u6b65\u6539\u8fdb\u6a21\u578b\u7684\u4ece\u4e1a\u4eba\u5458\u63d0\u4f9b\u4e0b\u4e00\u6b65\u6307\u5bfc": 104, "\u6211\u4eec\u5b66\u4e60\u4e86\u5982\u4f55\u4f7f\u7528": 104, "\u73b0\u5728\u8ba9\u6211\u4eec\u603b\u7ed3\u4e00\u4e0b": 104, "\u521b\u5efa\u4e00\u4e2a\u7c7b\u4f3c\u4e8e\u51fd\u6570\u7684\u53ef\u8c03\u7528\u5bf9\u8c61": 104, "\u5176\u4e2d\u5305\u542b\u4e86\u72b6\u6001\u6570\u636e": 104, "\u5982\u795e\u7ecf\u7f51\u7edc\u5c42\u6743\u91cd": 104, "\u5b83\u53ef\u4ee5\u81ea\u52a8\u5bf9\u5305\u542b\u7684\u53c2\u6570": 104, "\u8fdb\u884c\u68af\u5ea6\u5f52\u96f6\u548c\u66f4\u65b0\u6743\u91cd\u7b49\u64cd\u4f5c": 104, "\u5bf9\u5f20\u91cf\u8fdb\u884c\u5305\u88c5": 104, "\u4f7f": [104, 249], "\u5bf9\u8c61\u5728\u8fdb\u884c\u53cd\u5411\u4f20\u64ad\u65f6": 104, "\u53ef\u66f4\u65b0\u6743\u91cd\u53c2\u6570": 104, "\u4ec5\u8bbe\u7f6e": 104, "\u53c2\u6570\u65f6\u751f\u6548": 104, "\u5305\u542b\u591a\u79cd\u6fc0\u6d3b\u51fd\u6570": 104, "\u4ee5\u53ca\u65e0\u72b6\u6001\u7684\u5377\u79ef\u5c42\u548c\u7ebf\u6027\u5c42\u7b49\u7684\u5b9e\u73b0": 104, "\u5305\u542b\u591a\u79cd\u4f18\u5316\u5668": 104, "\u5728\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f18\u5316\u6743\u91cd\u53c2\u6570": 104, "\u65b9\u6cd5\u7684\u62bd\u8c61\u63a5\u53e3\u5b9a\u4e49": 104, "\u5b9e\u73b0\u7c7b": 104, "\u8fdb\u884c\u5c01\u88c5": 104, "\u63d0\u4f9b\u5206\u6279\u904d\u5386\u6570\u636e\u96c6\u7684\u80fd\u529b": 104, "nn_tutori": 104, "registri": [105, 106, 107, 121, 208, 257], "thiago": [105, 107], "crepaldi": [105, 107], "gamut": 105, "supercomput": 105, "constrain": [105, 126, 153, 173, 174], "onnxscript": [105, 107, 108], "torch_input": 105, "onnx_program": [105, 108], "onnxprogram": 105, "protobuf": [105, 108, 187], "my_image_classifi": 105, "drag": [105, 152, 168, 169, 224, 225], "onnx_input": [105, 108], "adapt_torch_inputs_to_onnx": [105, 108], "onnxruntime_input": [105, 108], "onnxruntime_output": [105, 108], "torch_output": [105, 108], "adapt_torch_outputs_to_onnx": [105, 108], "assert_clos": [105, 108], "export_simple_model_to_onnx_tutori": [105, 106], "intro_onnx": [106, 107], "onnx_registry_tutori": [106, 108], "sphx_glr_beginner_onnx_intro_onnx": 106, "sphx_glr_beginner_onnx_export_simple_model_to_onnx_tutori": 106, "sphx_glr_beginner_onnx_onnx_registry_tutori": 106, "bytecod": [107, 172, 222], "fx": [107, 121, 144, 173, 174, 179, 196, 197, 200, 221, 247], "polish": [107, 127, 261, 270], "newer": [107, 147, 152, 154, 247], "upgrad": [107, 153, 158, 168, 196], "opset18": [107, 108], "opset": [107, 108, 173, 174], "succe": 107, "ti": 108, "tai": 108, "titaiwang": 108, "empow": 108, "runtimeerrorwithdiagnost": 108, "call_funct": [108, 173, 200], "operator_nam": 108, "onnxregistri": 108, "input_x": 108, "input_i": 108, "input_add_x": 108, "input_add_i": 108, "aten_add_model": 108, "custom_aten_add": 108, "custom_aten": 108, "native_funct": 108, "yaml": [108, 131, 204, 221, 222], "castlik": 108, "onnx_registri": 108, "register_op": 108, "op_nam": 108, "is_registered_op": 108, "export_opt": 108, "exportopt": 108, "op_typ": 108, "custom_aten_add_model": 108, "custom_add_model": 108, "gelu": [108, 110], "customgelu": 108, "namspac": 108, "custom_ort": 108, "custom_aten_gelu": 108, "aten_gelu_model": 108, "input_gelu_x": 108, "diagram": [108, 160], "custom_aten_gelu_model": 108, "custom_gelu_model": 108, "_custom_op": 108, "mylibrari": 108, "addandround_op": 108, "tensor_x": 108, "impl_abstract": [108, 174], "addandround_op_impl_abstract": 108, "addandround_op_impl": 108, "_dynamo": [108, 144, 172, 173, 199, 255], "allow_in_graph": 108, "customfoo": 108, "input_addandround_x": 108, "custom_addandround_model": 108, "customop": 108, "customopon": 108, "customoptwo": 108, "cpu_op": 108, "custom_opset": 108, "custom_addandround": 108, "add_x": 108, "round_x": 108, "libcustom_op_librari": 108, "custom_op_librari": 108, "ort": 108, "lonnxruntim": 108, "ort_session_opt": 108, "sessionopt": 108, "register_custom_ops_librari": 108, "sess_opt": 108, "quicker": 109, "record_funct": [109, 144, 164, 219, 238], "incur": [109, 124, 212], "investig": [109, 113, 147, 156, 171, 172], "hi_idx": 109, "argwher": 109, "with_stack": [109, 168, 238], "profile_memori": [109, 168, 238], "group_by_stack_n": [109, 238], "traceback": [109, 144, 172, 173, 174], "193a910735e8": 109, "stacktrac": 109, "row_limit": [109, 144, 164, 238], "88": [109, 163, 176, 197], "212": 109, "953": 109, "mnt": [109, 135], "xarfus": 109, "au": 109, "07": [109, 122, 218, 219, 246], "715": 109, "848m": 109, "350": [109, 137], "151u": 109, "293": [109, 147], "342u": 109, "095u": 109, "931": 109, "006": 109, "476": 109, "338": 109, "759m": 109, "as_strid": [109, 144], "281": [109, 147], "808u": 109, "275": 109, "721u": 109, "_local": 109, "268": 109, "650u": [109, 238], "_scalar_dens": 109, "347": 109, "elimin": [109, 129, 138, 144, 145, 158, 183, 193, 216], "nonzero": [109, 247], "as_tupl": [109, 116], "089m": 109, "402m": 109, "491m": 109, "119": [109, 185], "441": 109, "587u": 109, "_numpi": 109, "395": [109, 163], "602u": 109, "801m": 109, "xxxx": 110, "alexnet": [110, 147], "printable_graph": 110, "tensor_seq": 110, "ret": [110, 149, 158, 161, 209], "disable_cuda": 110, "convxd": 110, "maxpoolxd": 110, "batchnormxd": 110, "dropout2d": [110, 162, 166, 203, 221, 233], "l1loss": 110, "ctcloss": 110, "poissonnllloss": 110, "kldivloss": 110, "bcewithlogitsloss": 110, "marginrankingloss": 110, "hingeembeddingloss": 110, "multilabelmarginloss": 110, "smoothl1loss": [110, 146, 160], "softmarginloss": 110, "multilabelsoftmarginloss": 110, "multimarginloss": 110, "tripletmarginloss": 110, "prelu": 110, "rrelu": 110, "celu": 110, "hardshrink": 110, "logsigmoid": 110, "softplu": 110, "softshrink": 110, "softsign": 110, "tanhshrink": 110, "softmin": 110, "softmax2d": 110, "adaptivesoftmaxwithloss": 110, "adadelta": [110, 123, 129], "sparseadam": 110, "adamax": 110, "asgd": 110, "rprop": 110, "lambdalr": 110, "multiplicativelr": 110, "multisteplr": 110, "exponentiallr": 110, "reducelronplateau": 110, "cycliclr": 110, "onecyclelr": 110, "cosineannealingwarmrestart": 110, "xsampler": 110, "subsetrandom": 110, "weightedrandom": 110, "justin": 111, "johnson": 111, "\u672c\u6559\u7a0b\u901a\u8fc7\u81ea\u5305\u542b\u793a\u4f8b\u4ecb\u7ecd\u4e86": 111, "\u7684\u57fa\u672c\u6982\u5ff5": [111, 121], "\u5728\u5176\u6838\u5fc3": 111, "pytorch\u63d0\u4f9b\u4e86\u4e24\u4e2a\u4e3b\u8981\u529f\u80fd": 111, "\u4e00\u4e2an\u7ef4\u5f20\u91cf": 111, "\u7c7b\u4f3c\u4e8enumpi": 111, "\u4f46\u53ef\u4ee5\u5728gpu\u4e0a\u8fd0\u884c": 111, "\u7528\u4e8e\u6784\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u81ea\u52a8\u5fae\u5206": 111, "\u6211\u4eec\u5c06\u4f7f\u7528\u62df\u5408": 111, "\u7684\u95ee\u9898\u4f5c\u4e3a\u793a\u4f8b": 111, "\u7f51\u7edc\u5c06\u5177\u6709\u56db\u4e2a\u53c2\u6570": 111, "\u5e76\u5c06\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6cd5\u8bad\u7ec3": 111, "\u901a\u8fc7\u6700\u5c0f\u5316\u7f51\u7edc\u8f93\u51fa\u4e0e\u771f\u5b9e\u8f93\u51fa\u4e4b\u95f4\u7684\u6b27\u51e0\u91cc\u5f97\u8ddd\u79bb": 111, "\u6765\u62df\u5408\u968f\u673a\u6570\u636e": 111, "\u53ef\u5728": 111, "\u672c\u6587\u672b\u5c3e\u5904": 111, "\u67e5\u770b\u793a\u4f8b": [111, 121], "\u5728\u4ecb\u7ecd": 111, "\u4e4b\u524d": 111, "\u6211\u4eec\u5c06\u5148\u4f7f\u7528": 111, "\u6765\u5b9e\u73b0\u7f51\u7edc": 111, "numpy\u63d0\u4f9b\u4e86\u4e00\u4e2an\u7ef4\u6570\u7ec4\u5bf9\u8c61": 111, "\u5e76\u63d0\u4f9b\u4e86\u8bb8\u591a\u7528\u4e8e\u64cd\u4f5c\u8fd9\u4e9b\u6570\u7ec4\u7684\u51fd\u6570": 111, "numpy\u662f\u4e00\u4e2a\u901a\u7528\u7684\u79d1\u5b66\u8ba1\u7b97\u6846\u67b6": 111, "\u5b83\u4e0d\u77e5\u9053\u4efb\u4f55\u5173\u4e8e\u8ba1\u7b97\u56fe": 111, "\u6df1\u5ea6\u5b66\u4e60\u6216\u68af\u5ea6\u7684\u4fe1\u606f": 111, "\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u4f7f\u7528": 111, "\u63d0\u4f9b\u7684\u65b9\u6cd5": 111, "\u624b\u52a8\u5b9e\u73b0\u524d\u5411\u548c\u540e\u5411\u4f20\u64ad\u8fc7\u7a0b": 111, "\u6765\u62df\u5408\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u5230\u6b63\u5f26\u51fd\u6570": 111, "numpy\u662f\u4e00\u4e2a\u5f88\u68d2\u7684\u6846\u67b6": 111, "\u4f46\u5b83\u4e0d\u80fd\u5229\u7528gpu\u6765\u52a0\u901f\u5176\u6570\u503c\u8ba1\u7b97": 111, "\u5bf9\u4e8e\u73b0\u4ee3\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc": 111, "gpu\u901a\u5e38\u63d0\u4f9b": 111, "50\u500d\u6216\u66f4\u5927\u7684\u52a0\u901f": 111, "numpy\u5bf9\u4e8e\u73b0\u4ee3\u6df1\u5ea6\u5b66\u4e60\u6765\u8bf4\u8fd8\u662f\u4e0d\u591f\u7684": 111, "\u6211\u4eec\u4ecb\u7ecd\u4e86pytorch\u6700\u57fa\u672c\u7684\u6982\u5ff5": 111, "\u4e00\u4e2apytorch\u5f20\u91cf\u5728\u6982\u5ff5\u4e0a\u4e0enumpy\u6570\u7ec4\u76f8\u540c": 111, "\u4e00\u4e2an\u7ef4\u6570\u7ec4": 111, "pytorch\u63d0\u4f9b\u4e86\u8bb8\u591a\u64cd\u4f5c\u8fd9\u4e9b\u5f20\u91cf\u7684\u51fd\u6570": 111, "\u53ef\u4ee5\u81ea\u52a8\u8ddf\u8e2a\u8ba1\u7b97\u56fe\u548c\u68af\u5ea6": 111, "\u5b83\u4eec\u4e5f\u4f5c\u4e3a\u79d1\u5b66\u8ba1\u7b97\u7684\u901a\u7528\u5de5\u5177\u975e\u5e38\u6709\u7528": 111, "\u4e0d\u540c": 111, "\u5f20\u91cf\u53ef\u4ee5\u5229\u7528gpu\u6765\u52a0\u901f\u5b83\u4eec\u7684\u6570\u503c\u8ba1\u7b97": 111, "\u8981\u5728gpu\u4e0a\u8fd0\u884c": 111, "\u60a8\u53ea\u9700\u8981\u6307\u5b9a\u6b63\u786e\u7684\u8bbe\u5907": 111, "\u5f20\u91cf\u6765\u62df\u5408\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u5230\u6b63\u5f26\u51fd\u6570\u4e2d": 111, "\u4e0e\u4e0a\u9762\u7684numpy\u793a\u4f8b\u7c7b\u4f3c": 111, "\u6211\u4eec\u9700\u8981\u624b\u52a8\u5b9e\u73b0\u7f51\u7edc\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u6211\u4eec\u5fc5\u987b\u624b\u52a8\u5b9e\u73b0\u795e\u7ecf\u7f51\u7edc\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u5bf9\u4e8e\u4e00\u4e2a\u5c0f\u578b\u7684\u4e24\u5c42\u7f51\u7edc\u6765\u8bf4": 111, "\u624b\u52a8\u5b9e\u73b0\u540e\u5411\u4f20\u9012\u5e76\u4e0d\u662f\u4ec0\u4e48\u5927\u95ee\u9898": 111, "\u4f46\u5bf9\u4e8e\u5927\u578b\u590d\u6742\u7684\u7f51\u7edc\u6765\u8bf4": 111, "\u5f88\u5feb\u5c31\u4f1a\u53d8\u5f97\u975e\u5e38\u9ebb\u70e6": 111, "\u5e78\u8fd0\u7684\u662f": 111, "\u6765\u81ea\u52a8\u8ba1\u7b97\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u540e\u5411\u4f20\u9012": 111, "pytorch\u4e2d\u7684": 111, "\u5305\u6b63\u662f\u63d0\u4f9b\u4e86\u8fd9\u79cd\u529f\u80fd": 111, "\u5f53\u4f7f\u7528\u81ea\u52a8\u6c42\u5bfc\u65f6": 111, "\u7f51\u7edc\u7684\u524d\u5411\u4f20\u9012\u5c06\u5b9a\u4e49\u4e00\u4e2a": 111, "\u56fe\u4e2d\u7684\u8282\u70b9\u662f\u5f20\u91cf": 111, "\u8fb9\u662f\u4ece\u8f93\u5165\u5f20\u91cf\u751f\u6210\u8f93\u51fa\u5f20\u91cf\u7684\u51fd\u6570": 111, "\u901a\u8fc7\u8fd9\u4e2a\u56fe\u8fdb\u884c\u53cd\u5411\u4f20\u64ad": 111, "\u7136\u540e\u53ef\u4ee5\u8f7b\u677e\u8ba1\u7b97\u68af\u5ea6": 111, "\u8fd9\u542c\u8d77\u6765\u5f88\u590d\u6742": 111, "\u4f46\u5728\u5b9e\u9645\u4f7f\u7528\u4e2d\u975e\u5e38\u7b80\u5355": 111, "\u6bcf\u4e2a\u5f20\u91cf\u4ee3\u8868\u8ba1\u7b97\u56fe\u4e2d\u7684\u4e00\u4e2a\u8282\u70b9": 111, "\u662f\u4e00\u4e2a\u8bbe\u7f6e\u4e86": 111, "\u5c06\u662f\u53e6\u4e00\u4e2a\u5f20\u91cf": 111, "\u5b83\u5305\u542b\u4e86": 111, "\u76f8\u5bf9\u4e8e\u67d0\u4e2a\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u6211\u4eec\u4f7f\u7528pytorch\u5f20\u91cf\u548c\u81ea\u52a8\u6c42\u5bfc\u6765\u5b9e\u73b0\u6211\u4eec\u7528\u4e09\u6b21\u591a\u9879\u5f0f\u62df\u5408\u6b63\u5f26\u6ce2\u7684\u793a\u4f8b": 111, "\u73b0\u5728\u6211\u4eec\u4e0d\u518d\u9700\u8981\u624b\u52a8\u5b9e\u73b0\u7f51\u7edc\u7684\u540e\u5411\u4f20\u9012": 111, "\u5728\u5e95\u5c42": 111, "\u6bcf\u4e2a\u539f\u59cb\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u5b9e\u9645\u4e0a\u662f\u5bf9\u5f20\u91cf\u8fdb\u884c\u64cd\u4f5c\u7684\u4e24\u4e2a\u51fd\u6570": 111, "\u51fd\u6570\u4ece\u8f93\u5165\u5f20\u91cf\u8ba1\u7b97\u8f93\u51fa\u5f20\u91cf": 111, "\u540e\u5411": 111, "\u51fd\u6570\u63a5\u6536\u8f93\u51fa\u5f20\u91cf\u76f8\u5bf9\u4e8e\u67d0\u4e2a\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u5e76\u8ba1\u7b97\u8f93\u5165\u5f20\u91cf\u76f8\u5bf9\u4e8e\u540c\u4e00\u6807\u91cf\u503c\u7684\u68af\u5ea6": 111, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u5b9a\u4e49\u4e00\u4e2a": 111, "\u7684\u5b50\u7c7b\u5e76\u5b9e\u73b0": 111, "\u8f7b\u677e\u5b9a\u4e49\u81ea\u5df1\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u7b26": 111, "\u6211\u4eec\u53ef\u4ee5\u901a\u8fc7\u6784\u9020\u5b9e\u4f8b\u5e76\u50cf\u51fd\u6570\u4e00\u6837\u8c03\u7528\u5b83": 111, "\u4f20\u9012\u5305\u542b\u8f93\u5165\u6570\u636e\u7684\u5f20\u91cf": 111, "\u6765\u4f7f\u7528\u6211\u4eec\u65b0\u7684\u81ea\u52a8\u6c42\u5bfc\u64cd\u4f5c\u7b26": 111, "\u6211\u4eec\u5c06\u6a21\u578b\u5b9a\u4e49\u4e3a": 111, "\u662f\u4e09\u9636\u7684": 111, "\u52d2\u8ba9\u5fb7\u591a\u9879\u5f0f": 111, "\u6211\u4eec\u7f16\u5199\u4e86\u81ea\u5df1\u7684\u81ea\u5b9a\u4e49\u81ea\u52a8\u6c42\u5bfc\u51fd\u6570\u6765\u8ba1\u7b97": 111, "\u7684\u524d\u5411\u548c\u540e\u5411\u4f20\u9012": 111, "\u5e76\u4f7f\u7528\u5b83\u6765\u5b9e\u73b0\u6211\u4eec\u7684\u6a21\u578b": 111, "\u548c\u81ea\u52a8\u6c42\u5bfc": 111, "\u662f\u5b9a\u4e49\u590d\u6742\u64cd\u4f5c\u975e\u5e38\u5f3a\u5927\u7684\u529f\u80fd": 111, "\u539f\u59cb\u7684\u81ea\u52a8\u6c42\u5bfc\u8fd8\u662f\u4e0d\u8db3\u4ee5\u652f\u6301\u5b9e\u73b0\u5927\u578b\u795e\u7ecf\u7f51\u7edc": 111, "\u5728\u6784\u5efa\u795e\u7ecf\u7f51\u7edc\u65f6": 111, "\u6211\u4eec\u901a\u5e38\u4f1a\u8003\u8651\u5c06\u8ba1\u7b97\u5b89\u6392\u6210": 111, "\u5176\u4e2d\u4e00\u4e9b\u5c42\u5177\u6709": 111, "\u53ef\u5b66\u4e60\u7684\u53c2\u6570": 111, "\u8fd9\u4e9b\u53c2\u6570\u5c06\u5728\u5b66\u4e60\u8fc7\u7a0b\u4e2d\u8fdb\u884c\u4f18\u5316": 111, "\u5728tensorflow\u4e2d": 111, "\u50cf": 111, "tflearn": 111, "\u63d0\u4f9b\u4e86\u76f8\u8f83\u4e8e\u539f\u59cb\u8ba1\u7b97\u56fe\u7684\u66f4\u9ad8\u5c42\u6b21\u7684\u62bd\u8c61": 111, "\u8fd9\u4e9b\u62bd\u8c61\u5bf9\u4e8e\u6784\u5efa\u795e\u7ecf\u7f51\u7edc\u975e\u5e38\u6709\u7528": 111, "\u5305\u8d77\u5230\u4e86\u540c\u6837\u7684\u4f5c\u7528": 111, "\u5305\u5b9a\u4e49\u4e86\u4e00\u7ec4": 111, "\u8fd9\u4e9b\u6a21\u5757\u76f8\u5f53\u4e8e\u795e\u7ecf\u7f51\u7edc\u5c42": 111, "\u4e00\u4e2a\u6a21\u5757\u63a5\u6536\u8f93\u5165\u5f20\u91cf\u5e76\u8ba1\u7b97\u8f93\u51fa\u5f20\u91cf": 111, "\u4f46\u4e5f\u53ef\u4ee5\u5305\u542b\u5185\u90e8\u72b6\u6001": 111, "\u4f8b\u5982\u5305\u542b\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u5f20\u91cf": 111, "\u5305\u8fd8\u5b9a\u4e49\u4e86\u4e00\u7ec4\u5e38\u7528\u4e8e\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u7684\u6709\u7528\u7684\u635f\u5931\u51fd\u6570": 111, "\u5305\u6765\u5b9e\u73b0\u6211\u4eec\u7684\u591a\u9879\u5f0f\u6a21\u578b\u7f51\u7edc": 111, "\u6211\u4eec\u901a\u8fc7\u4f7f\u7528": 111, "\u624b\u52a8\u66f4\u6539\u5f20\u91cf\u7684\u53ef\u5b66\u4e60\u53c2\u6570": 111, "\u6765\u66f4\u65b0\u6a21\u578b\u7684\u6743\u91cd": 111, "\u5bf9\u4e8e\u50cf\u968f\u673a\u68af\u5ea6\u4e0b\u964d\u8fd9\u6837\u7684\u4f18\u5316\u7b97\u6cd5\u6765\u8bf4": 111, "\u8fd9\u5e76\u4e0d\u662f\u4e00\u4e2a\u5f88\u5927\u7684\u8d1f\u62c5": 111, "\u4f46\u5728\u5b9e\u8df5\u4e2d": 111, "\u6211\u4eec\u7ecf\u5e38\u4f7f\u7528\u66f4\u590d\u6742\u7684\u4f18\u5316\u5668\u6765\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 111, "\u6bd4\u5982": 111, "\u5305\u62bd\u8c61\u4e86\u4f18\u5316\u7b97\u6cd5\u7684\u5b9a\u4e49": 111, "\u5e76\u63d0\u4f9b\u4e86\u5e38\u7528\u4f18\u5316\u7b97\u6cd5\u7684\u5b9e\u73b0": 111, "\u6211\u4eec\u5c06\u50cf\u4ee5\u524d\u4e00\u6837\u4f7f\u7528": 111, "\u5305\u6765\u5b9a\u4e49\u6211\u4eec\u7684\u6a21\u578b": 111, "\u4f46\u6211\u4eec\u5c06\u4f7f\u7528": 111, "\u5305\u63d0\u4f9b\u7684": 111, "\u7b97\u6cd5\u6765\u4f18\u5316\u6a21\u578b": 111, "\u6709\u65f6\u4f60\u53ef\u80fd\u4f1a\u5e0c\u671b\u81ea\u5b9a\u4e49\u6bd4\u73b0\u6709\u6a21\u5757\u96c6\u66f4\u590d\u6742\u7684\u6a21\u578b": 111, "\u5728\u8fd9\u4e9b\u60c5\u51b5\u4e0b": 111, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7ee7\u627f": 111, "\u5e76\u5b9a\u4e49\u4e00\u4e2a": 111, "\u65b9\u6cd5\u6765\u81ea\u5b9a\u4e49\u6a21\u5757": 111, "\u8be5\u65b9\u6cd5\u63a5\u6536\u8f93\u5165\u5f20\u91cf": 111, "\u5e76\u4f7f\u7528\u5176\u4ed6\u6a21\u5757\u6216\u5728\u5f20\u91cf\u4e0a\u81ea\u52a8\u6c42\u5bfc\u7b49\u64cd\u4f5c\u751f\u6210\u65b0\u7684\u8f93\u51fa\u5f20\u91cf": 111, "\u6211\u4eec\u5c06\u5b9e\u73b0\u4e00\u4e2a\u4e09\u6b21\u591a\u9879\u5f0f\u4f5c\u4e3a\u81ea\u5b9a\u4e49\u6a21\u5757\u7684\u5b50\u7c7b": 111, "\u4f5c\u4e3a\u52a8\u6001\u8ba1\u7b97\u56fe\u548c\u6743\u91cd\u5171\u4eab\u7684\u4e00\u4e2a\u793a\u4f8b": 111, "\u6211\u4eec\u5b9e\u73b0\u4e86\u4e00\u4e2a\u975e\u5e38\u5947\u7279\u7684\u6a21\u578b": 111, "\u4e00\u4e2a\u4e09\u81f3\u4e94\u9636\u7684\u591a\u9879\u5f0f": 111, "\u5728\u6bcf\u6b21\u524d\u5411\u4f20\u9012\u65f6\u968f\u673a\u9009\u62e9\u4e00\u4e2a3\u52305\u4e4b\u95f4\u7684\u6570\u5b57": 111, "\u5e76\u4f7f\u7528\u8be5\u9636\u6570\u591a\u9879\u5f0f\u6765\u8ba1\u7b97": 111, "\u91cd\u590d\u4f7f\u7528\u76f8\u540c\u7684\u6743\u91cd\u591a\u6b21\u4ee5\u8ba1\u7b97\u56db\u9636\u548c\u4e94\u9636\u591a\u9879\u5f0f": 111, "\u5bf9\u4e8e\u8fd9\u4e2a\u6a21\u578b": 111, "\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528python\u6d41\u63a7\u5236\u6765\u5b9e\u73b0\u5faa\u73af": 111, "\u5e76\u4e14\u53ef\u4ee5\u901a\u8fc7\u5728\u5b9a\u4e49\u524d\u5411\u4f20\u9012\u65f6": 111, "\u591a\u6b21\u91cd\u590d\u4f7f\u7528\u76f8\u540c\u7684\u53c2\u6570": 111, "\u6765\u5b9e\u73b0\u6743\u91cd\u5171\u4eab": 111, "\u6211\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u5c06\u8fd9\u4e2a\u6a21\u578b\u5b9e\u73b0\u4e3a\u4e00\u4e2a\u6a21\u5757\u7684\u5b50\u7c7b": 111, "\u5177\u4f53\u793a\u4f8b\u5982\u4e0b": 111, "unpickl": 112, "facil": 112, "running_mean": [112, 142, 198, 249], "themodelclass": 112, "param_tensor": [112, 249], "var_nam": [112, 249], "param_group": [112, 159, 211, 216, 244], "dampen": 112, "4675713712": 112, "4675713784": 112, "4675714000": 112, "4675714072": 112, "4675714216": 112, "4675714288": 112, "4675714432": 112, "4675714504": 112, "4675714648": 112, "4675714720": 112, "_use_new_zipfile_seri": 112, "inconsist": [112, 144, 241], "best_model_st": 112, "deepcopi": [112, 138, 142, 157, 182, 198, 199], "overfit": [112, 128, 157], "model_script": 112, "model_state_dict": [112, 214, 220, 241], "theoptimizerclass": 112, "modela_state_dict": [112, 243], "modela": [112, 243], "modelb_state_dict": [112, 243], "modelb": [112, 243], "optimizera_state_dict": [112, 243], "optimizera": [112, 243], "optimizerb_state_dict": [112, 243], "optimizerb": [112, 243], "themodelaclass": 112, "themodelbclass": 112, "theoptimizeraclass": 112, "theoptimizerbclass": 112, "gan": [112, 121, 153, 243], "ensembl": [112, 121], "remap": 112, "overwrit": 112, "saving_loading_model": 112, "pendo": 113, "abbo": 113, "joe": [113, 133], "cum": 113, "cnndm": 113, "imdb": 113, "multi30k": [113, 118], "sentencepiec": 113, "t5transform": 113, "padding_idx": 113, "eos_idx": [113, 118], "max_seq_len": 113, "t5_sp_model_path": 113, "t5_tokenizer_bas": 113, "sp_model_path": 113, "t5_base_gener": 113, "t5_base": 113, "beam": 113, "sequence_gener": 113, "datapip": [113, 116], "appendix": 113, "cnndm_batch_siz": 113, "cnndm_datapip": 113, "apply_prefix": 113, "rows2columnar": 113, "cnndm_dataload": 113, "batch_prefix": 113, "sst2": 113, "imdb_batch_s": 113, "imdb_datapip": 113, "process_label": 113, "imdb_dataload": 113, "german": [113, 116, 118, 127, 128], "multi_batch_s": 113, "language_pair": [113, 118], "multi_datapip": 113, "multi_dataload": 113, "input_text": 113, "beam_siz": 113, "model_output": [113, 141, 162], "num_beam": 113, "output_text": 113, "year": [113, 150, 153], "tattoo": 113, "decad": [113, 176], "australia": 113, "campaign": 113, "honest": 113, "london": 113, "stephen": 113, "hendri": 113, "fame": [113, 265, 274], "supermodel": 113, "sydnei": 113, "australian": 113, "fan": [113, 158], "him": 113, "hotel": 113, "heartthrob": 113, "strai": 113, "pooch": 113, "buri": 113, "stagger": 113, "nearbi": 113, "farm": 113, "dirt": 113, "emaci": 113, "disloc": 113, "jaw": 113, "leg": 113, "injuri": [113, 262, 271], "cave": 113, "sinu": 113, "caviti": 113, "surgeri": [113, 171], "breath": 113, "theia": 113, "bulli": 113, "breed": 113, "appar": [113, 157], "whack": 113, "hammer": 113, "miracl": 113, "sara": 113, "mellado": 113, "mohammad": 113, "javad": 113, "zarif": 113, "iran": 113, "sunni": 113, "fridai": 113, "morn": 113, "bring": [113, 159, 168, 171, 184, 192, 205, 216, 234, 247], "rejoin": 113, "john": 113, "kerri": 113, "foreign": 113, "minist": 113, "takeov": 113, "iranian": 113, "consul": 113, "tweet": 113, "american": 113, "week": 113, "ebola": 113, "west": 113, "africa": 113, "discharg": 113, "hasn": 113, "clinician": 113, "health": 113, "boston": 113, "viru": 113, "sierra": 113, "march": 113, "diagnos": [113, 132], "diseas": [113, 171], "maryland": 113, "nation": 113, "institut": 113, "patient": [113, 171], "campu": 113, "polic": 113, "offic": [113, 197, 198], "affair": 113, "admit": 113, "noos": 113, "wednesdai": 113, "incid": 113, "racist": 113, "colleg": 113, "duke": 113, "disciplinari": 113, "school": 113, "rope": 113, "sci": [113, 115], "fi": 113, "tv": 113, "underfund": 113, "misunderstood": 113, "babylon": 113, "star": 113, "trek": 113, "silli": [113, 125], "prosthet": 113, "cheap": 113, "cardboard": 113, "stilt": 113, "dialogu": 113, "cg": 113, "painfulli": 113, "clich\u00e9d": 113, "uninspir": 113, "viewer": 113, "emot": 113, "genr": 113, "serious": 113, "cf": 113, "seriou": 113, "foolish": 113, "spark": 113, "Their": [113, 190, 192], "reaction": 113, "wooden": [113, 262, 271], "maker": 113, "rubbish": 113, "gene": 113, "roddenberri": 113, "ash": 113, "orbit": 113, "dull": 113, "poorli": [113, 127], "advert": 113, "trudg": 113, "trabant": 113, "lumber": 113, "spoiler": 113, "kill": 113, "actor": [113, 136], "jeeez": 113, "dalla": 113, "entertain": 113, "rental": 113, "fight": 113, "van": 113, "damm": 113, "shoot": 113, "battl": 113, "shell": [113, 208, 213, 218, 223], "shotgun": 113, "terrorist": 113, "bomb": 113, "blow": 113, "br": 113, "inclus": [113, 173, 174, 246], "rabbit": 113, "hardli": [113, 115], "profound": 113, "stereotyp": 113, "angri": 113, "veteran": 113, "terrifi": 113, "illeg": 113, "alien": 113, "crook": 113, "cop": 113, "indiffer": 113, "bitchi": 113, "ladi": 113, "station": 113, "politician": 113, "federal": 113, "typecast": 113, "mexican": 113, "hollywood": 113, "1940": 113, "passabl": 113, "villain": 113, "certainli": [113, 143, 190, 192, 234], "knew": 113, "gui": [113, 226, 251, 262, 271], "weren": [113, 138, 154], "desert": 113, "simplist": 113, "hamlet": 113, "annoi": [113, 145], "vd": 113, "daughter": 113, "film": 113, "semi": [113, 121, 193, 196], "alright": 113, "dam": 113, "disappoint": [113, 115], "budget": [113, 126], "poor": 113, "orang": [113, 125, 158], "ein": [113, 118], "mann": 113, "einem": [113, 118], "orangen": 113, "hut": 113, "der": 113, "etwa": 113, "schaut": 113, "mit": [113, 139], "orangefarbenen": 113, "anstarrt": 113, "terrier": 113, "lush": 113, "grass": 113, "front": [113, 115, 138, 156, 176, 177], "fenc": 113, "l\u00e4uft": 113, "auf": 113, "\u00fcppigem": 113, "gr\u00fcnem": 113, "gra": 113, "vor": [113, 118], "wei\u00dfen": 113, "zaun": 113, "\u00fcber": 113, "saftig": 113, "gr\u00fcne": 113, "girl": 113, "karat": 113, "m\u00e4dchen": 113, "bricht": 113, "einen": [113, 116], "st\u00f6ck": 113, "frontkick": 113, "karateanzug": 113, "brett": 113, "tritt": 113, "wear": 113, "jacket": 113, "helmet": 113, "snow": 113, "snowmobil": 113, "f\u00fcnf": 113, "menschen": [113, 118], "winterjacken": 113, "und": 113, "helmen": 113, "stehen": 113, "schnee": 113, "schneemobilen": 113, "hintergrund": 113, "leut": 113, "roof": 113, "hous": 113, "die": 113, "fixieren": 113, "da": 113, "dach": 113, "haus": 113, "reparieren": 113, "t5_tutori": 113, "firstnam": 114, "lastnam": 114, "gallery_pattern": 114, "neural_style_transfer_tutori": 114, "_build": 114, "beginner_sourc": 114, "link1": 114, "link2": 114, "template_tutori": 114, "portalock": 115, "ag_new": 115, "fear": 115, "pension": 115, "union": [115, 179], "turner": 115, "newal": 115, "stricken": 115, "firm": 115, "feder": 115, "mogul": 115, "race": [115, 135, 216], "spaceflight": 115, "toronto": 115, "canada": [115, 263, 272], "rocket": 115, "ansari": 115, "prize": 115, "contest": 115, "fund": 115, "suborbit": 115, "flight": 115, "ky": 115, "grant": 115, "peptid": 115, "ap": 115, "chemistri": 115, "louisvil": 115, "amino": 115, "acid": 115, "protein": 115, "revisit": [115, 190, 262, 271], "yield_token": [115, 118], "data_it": [115, 116, 118], "475": [115, 163], "5297": 115, "text_pipelin": 115, "label_pipelin": 115, "collate_batch": 115, "label_list": [115, 137, 171, 185], "text_list": 115, "_label": 115, "_text": 115, "processed_text": 115, "cumsum": 115, "textclassificationmodel": 115, "embed_dim": [115, 164], "sport": 115, "tec": 115, "total_acc": 115, "total_count": 115, "to_map_style_dataset": 115, "total_accu": 115, "num_train": 115, "split_train_": 115, "split_valid_": 115, "valid_dataload": 115, "accu_v": 115, "accu_test": 115, "golf": 115, "ag_news_label": 115, "ex_text_str": 115, "memphi": 115, "tenn": 115, "ago": 115, "jon": 115, "rahm": 115, "endur": 115, "season": 115, "weather": 115, "sundai": 115, "royal": 115, "portrush": 115, "wind": 115, "rain": 115, "thursdai": 115, "wgc": 115, "fedex": 115, "jude": 115, "invit": 115, "stori": 115, "mid": 115, "spaniard": 115, "stroke": 115, "flawless": 115, "pga": 115, "tour": 115, "nine": 115, "tpc": 115, "southwind": 115, "text_sentiment_ngrams_tutori": 115, "sharma": 116, "legaci": 116, "tatoeba": [116, 165], "deu": 116, "en_core_web_sm": [116, 118], "de_core_news_sm": [116, 118], "dp": [116, 124, 176, 177], "eng": [116, 165, 194], "file_path": 116, "data_pip": 116, "iterablewrapp": 116, "fileopen": 116, "parse_csv": 116, "skip_lin": 116, "removeattribut": 116, "engtoken": 116, "detoken": 116, "haben": 116, "sie": 116, "guten": 116, "gettoken": 116, "source_vocab": 116, "min_freq": [116, 118], "special_first": [116, 118], "target_vocab": 116, "get_ito": 116, "gettransform": 116, "text_tranform": 116, "vocabtransform": 116, "addtoken": 116, "temp_list": 116, "some_sent": 116, "798": 116, "transformed_sent": 116, "index_to_str": 116, "applytransform": 116, "sequence_pair": 116, "bucketbatch": 116, "sortbucket": 116, "batch_num": 116, "bucket_num": 116, "use_in_batch_shuffl": 116, "sort_kei": 116, "x_3": [116, 262, 271], "y_3": 116, "x_4": [116, 262, 271], "y_4": 116, "separatesourcetarget": 116, "applypad": 116, "pair_of_sequ": 116, "source_index_to_str": 116, "target_index_to_str": 116, "showsometransformedsent": 116, "traget": 116, "torchtext_custom_dataset_tutori": 116, "cs231n": 117, "licens": [117, 137, 139, 166], "bsd": [117, 166], "image_dataset": [117, 157], "dataset_s": [117, 157], "class_nam": [117, 139, 157, 171, 213], "train_model": [117, 157, 245], "tempdir": 117, "best_model_params_path": 117, "best_model_param": 117, "best_acc": [117, 157], "running_correct": [117, 157], "set_grad_en": [117, 157, 219], "epoch_loss": [117, 135, 157], "epoch_acc": [117, 157], "time_elaps": [117, 157], "visualize_model": [117, 157], "was_train": [117, 157], "images_so_far": 117, "model_ft": [117, 157], "num_ftr": [117, 157], "optimizer_ft": [117, 157], "exp_lr_schedul": [117, 157], "step_siz": [117, 122, 123, 129, 157, 178], "model_conv": 117, "optimizer_conv": 117, "visualize_model_predict": 117, "72100438_73de9f17af": 117, "transfer_learning_tutori": 117, "\u8fdb\u884c\u8bed\u8a00\u7ffb\u8bd1": [118, 121], "inbuilt": [118, 153], "1756": 118, "issuecom": 118, "1163664163": 118, "githubusercont": [118, 119, 178], "neychev": 118, "small_dl_repo": 118, "src_languag": 118, "tgt_languag": 118, "token_transform": 118, "vocab_transform": 118, "language_index": 118, "data_sampl": 118, "unk_idx": 118, "pad_idx": 118, "bos_idx": 118, "special_symbol": 118, "bo": 118, "ln": 118, "emb_siz": 118, "maxlen": [118, 160], "den": 118, "pos_embed": 118, "register_buff": [118, 153, 202], "token_embed": 118, "tokenembed": 118, "seq2seqtransform": 118, "num_encoder_lay": 118, "num_decoder_lay": 118, "src_vocab_s": 118, "tgt_vocab_s": 118, "dim_feedforward": 118, "src_tok_emb": 118, "tgt_tok_emb": 118, "positional_encod": 118, "trg": 118, "src_mask": 118, "tgt_mask": 118, "src_padding_mask": 118, "tgt_padding_mask": 118, "memory_key_padding_mask": 118, "src_emb": 118, "tgt_emb": 118, "tgt": [118, 165], "generate_square_subsequent_mask": 118, "sz": 118, "triu": [118, 153], "masked_fil": [118, 191], "create_mask": 118, "src_seq_len": 118, "tgt_seq_len": 118, "ffn_hid_dim": 118, "xavier_uniform_": 118, "ignore_index": 118, "pad_sequ": 118, "club": 118, "sequential_transform": 118, "txt_input": 118, "tensor_transform": 118, "token_id": 118, "text_transform": 118, "src_batch": 118, "tgt_batch": 118, "src_sampl": 118, "tgt_sampl": 118, "rstrip": 118, "train_epoch": [118, 165], "tgt_input": 118, "tgt_out": 118, "val_dataload": [118, 148], "ingredi": 118, "timeit": [118, 138, 144, 145, 149, 154, 193, 223, 234, 239, 246], "default_tim": [118, 193, 239], "train_loss": 118, "end_tim": [118, 230, 237], "greedy_decod": 118, "start_symbol": 118, "ys": 118, "prob": [118, 159, 161, 163, 169], "next_word": 118, "src_sentenc": 118, "num_token": 118, "tgt_token": 118, "lookup_token": 118, "grupp": 118, "von": 118, "steht": 118, "iglu": 118, "3f5ee243547dee91fbd053c1c4a845aa": 118, "pdf": 118, "harvard": 118, "edu": [118, 178], "translation_transform": 118, "geeta": [119, 176], "chauhan": [119, 176], "facebook": [119, 135, 204, 222], "android": [119, 121, 194, 196, 227, 228, 251, 252], "2012": [119, 263, 272], "hundr": [119, 120, 124, 171], "distil": [119, 121, 187, 221], "timm": 119, "imagenet_default_mean": 119, "imagenet_default_std": 119, "facebookresearch": [119, 184], "deit_base_patch16_224": 119, "clsidx": 119, "269": [119, 147], "timber": [119, 188], "wolf": [119, 188], "cani": [119, 188], "lupu": [119, 188], "scripted_model": [119, 188], "fbdeit_script": 119, "346mb": 119, "qnnpack": [119, 158, 179, 218, 223, 228], "qconfig_spec": [119, 228], "scripted_quantized_model": 119, "fbdeit_scripted_quant": 119, "fbdeit_quantized_script": 119, "89mb": 119, "mobile_optim": [119, 188, 194, 206, 218, 222, 224, 225, 252], "optimize_for_mobil": [119, 188, 194, 206, 218, 222, 223, 224, 225, 252], "optimized_scripted_quantized_model": 119, "fbdeit_optimized_scripted_quant": 119, "_save_for_lite_interpret": [119, 187, 188, 194, 204, 222, 223], "fbdeit_optimized_scripted_quantized_lit": 119, "ptl": [119, 187, 204, 222, 223], "prof1": 119, "prof2": 119, "prof3": 119, "prof4": 119, "prof5": 119, "1236": 119, "69m": 119, "1226": 119, "72m": 119, "593": 119, "19m": 119, "598": 119, "01m": 119, "81": [119, 144, 219], "52": [119, 127, 147, 176, 219], "vt_tutori": 119, "spread": [120, 171], "demand": 120, "mesh": [120, 124, 215], "ddp_series_intro": 120, "utm_sourc": 120, "distr_land": 120, "utm_medium": 120, "distributeddata": 120, "ddp_tutori": 120, "intermediate_ddp_tutori": 120, "generic_join": 120, "fsdp_tutori": 120, "fsdp_getting_start": 120, "huggingfac": [120, 122, 123, 185, 201], "hf": 120, "t5": 120, "fsdp_adavnced_tutori": 120, "fsdp_advanc": 120, "tp_tutori": [120, 124], "distributed_device_mesh": 120, "rpc_tutori": 120, "rpc_getting_start": 120, "rpc_param_server_tutori": 120, "rpc_async_execut": 120, "rpc_ddp_tutori": 120, "rpc_plus_ddp": 120, "plug": [120, 155, 166, 223], "process_group_cpp_extension_tutori": 120, "custom_extensions_cpp": 120, "\u65b0\u589e\u6559\u7a0b": 121, "\u4f7f\u7528\u81ea\u5b9a\u4e49\u7684": 121, "triton": [121, 144, 172, 199, 251], "\u5185\u6838\u4e0e": 121, "tp": 121, "\u8fdb\u884c\u5927\u89c4\u6a21": 121, "\u6a21\u578b\u8bad\u7ec3": 121, "\u5229\u7528\u534a\u7ed3\u6784\u5316": 121, "\u7a00\u758f\u6027\u52a0\u901f": 121, "\u548c\u5f20\u91cf\u5b50\u7c7b\u7684\u6269\u5c55\u70b9": 121, "\u719f\u6089": 121, "\u7684\u6982\u5ff5\u548c\u6a21\u5757": 121, "\u901a\u8fc7\u672c\u5feb\u901f\u5165\u95e8\u6307\u5357": 121, "\u5b66\u4e60\u5982\u4f55\u52a0\u8f7d\u6570\u636e": 121, "\u6784\u5efa\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc": 121, "\u8bad\u7ec3\u548c\u4fdd\u5b58\u6a21\u578b": 121, "\u5f00\u542f": 121, "\u65c5\u7a0b": 121, "\u793a\u4f8b": 121, "\u5c0f\u5de7\u6613\u7528": 121, "\u5373\u65f6\u90e8\u7f72\u7684": 121, "\u4ee3\u7801\u793a\u4f8b": 121, "\u5168\u90e8": 121, "\u9010\u6b65\u6559\u4f60\u5982\u4f55\u7528pytorch\u6784\u5efa\u5b8c\u6574\u7684\u673a\u5668\u5b66\u4e60\u6d41\u7a0b": 121, "\u4ecb\u7ecd\u89c6\u9891": 121, "\u7528pytorch\u6784\u5efa\u5b8c\u6574\u7684\u673a\u5668\u5b66\u4e60\u5de5\u4f5c\u6d41\u7a0b": 121, "pytorch\u521d\u5b66\u8005\u7cfb\u5217": 121, "\u901a\u8fc7\u793a\u4f8b\u5b66\u4e60": 121, "\u672c\u6559\u7a0b\u901a\u8fc7\u72ec\u7acb\u7684\u793a\u4f8b\u4ecb\u7ecd\u4e86": 121, "\u4ec0\u4e48\u662f": 121, "\u6765\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 121, "\u5c55\u73b0\u6a21\u578b": 121, "\u6570\u636e\u548c\u8bad\u7ec3\u8fc7\u7a0b": 121, "\u5b66\u4e60\u4f7f\u7528": 121, "\u53ef\u89c6\u5316\u6570\u636e\u96c6\u548c\u6a21\u578b\u8bad\u7ec3\u8fc7\u7a0b": 121, "\u76ee\u6807\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b": 121, "\u5fae\u8c03\u9884\u8bad\u7ec3\u7684": 121, "\u4f7f\u7528\u8fc1\u79fb\u5b66\u4e60\u8bad\u7ec3\u5377\u79ef\u795e\u7ecf\u7f51\u7edc\u8fdb\u884c\u56fe\u50cf\u5206\u7c7b": 121, "\u4f18\u5316\u89c6\u89c9transformer\u6a21\u578b": 121, "\u5e94\u7528\u6700\u524d\u6cbf\u7684": 121, "\u57fa\u4e8e": 121, "\u6a21\u578b\u5230\u8ba1\u7b97\u673a\u89c6\u89c9\u4efb\u52a1\u4e2d": 121, "\u5bf9\u6297\u6027\u6837\u672c\u751f\u6210": 121, "dcgan": 121, "\u5b66\u4e60\u5982\u4f55\u901a\u8fc7\u89c6\u89c9\u6ce8\u610f\u673a\u5236\u589e\u5f3a\u4f60\u7684\u7f51\u7edc": 121, "tiatoolbox": 121, "\u5bf9\u56fe\u50cf\u8fdb\u884c\u63a8\u7406": 121, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528tiatoolbox\u5bf9\u56fe\u50cf\u8fdb\u884c\u63a8\u7406": 121, "usb": [121, 158], "\u7684\u534a\u76d1\u7763\u5b66\u4e60\u6559\u7a0b": 121, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528": [121, 251], "\u5bf9\u81ea\u5b9a\u4e49\u6570\u636e\u8fdb\u884c\u534a\u76d1\u7763\u5b66\u4e60\u7b97\u6cd5\u7684\u8bad\u7ec3": 121, "\u52a0\u8f7d\u6570\u636e": [121, 235, 251], "\u91cd\u91c7\u6837": 121, "\u5bf9\u97f3\u9891\u6ce2\u5f62\u8fdb\u884c\u91cd\u65b0\u91c7\u6837": 121, "\u6570\u636e\u589e\u5f3a": 121, "\u5e94\u7528\u6570\u636e\u589e\u5f3a": 121, "\u7279\u5f81\u63d0\u53d6": 121, "\u63d0\u53d6\u7279\u5f81": 121, "\u7279\u5f81\u589e\u5f3a": 121, "\u5bf9\u7279\u5f81\u8fdb\u884c\u589e\u5f3a": 121, "\u4e2d\u4f7f\u7528": 121, "wav2vec2": 121, "\u8fdb\u884c\u81ea\u52a8\u8bed\u97f3\u8bc6\u522b": 121, "\u7684\u9884\u8bad\u7ec3\u6a21\u578b\u6765\u6784\u5efa\u8bed\u97f3\u8bc6\u522b\u5e94\u7528\u7a0b\u5e8f": 121, "\u8bed\u97f3\u547d\u4ee4\u5206\u7c7b": 121, "\u5b66\u4e60\u5982\u4f55\u6b63\u786e\u683c\u5f0f\u5316\u97f3\u9891\u6570\u636e\u96c6": 121, "\u7136\u540e\u5728\u8be5\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3": 121, "\u6d4b\u8bd5\u97f3\u9891\u5206\u7c7b\u5668\u7f51\u7edc": 121, "\u8fdb\u884c\u6587\u672c\u8f6c\u8bed\u97f3": 121, "\u7684\u9884\u8bad\u7ec3\u6a21\u578b\u6784\u5efa\u6587\u672c\u8f6c\u8bed\u97f3\u5e94\u7528\u7a0b\u5e8f": 121, "\u8fdb\u884c\u5bf9\u9f50": 121, "\u9884\u8bad\u7ec3\u6a21\u578b\u5bf9\u6587\u672c\u8fdb\u884c\u4e0e\u8bed\u97f3\u5bf9\u9f50": 121, "\u63d0\u5347\u63a8\u7406\u6548\u7387": 121, "\u5b9e\u73b0\u7684": 121, "\u4ee5\u5b9e\u73b0\u9ad8\u6027\u80fd\u7684\u63a8\u65ad": 121, "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406": 121, "\u4f7f\u7528\u5b57\u7b26\u7ea7": 121, "\u5bf9\u59d3\u540d\u8fdb\u884c\u5206\u7c7b": 121, "\u6784\u5efa\u5e76\u8bad\u7ec3\u4e00\u4e2a\u57fa\u672c\u7684\u5b57\u7b26\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc": 121, "\u4ece\u96f6\u5f00\u59cb\u5206\u7c7b\u5355\u8bcd": 121, "\u800c\u4e0d\u4f7f\u7528": 121, "\u751f\u6210\u59d3\u540d": [121, 127, 165], "\u5728\u4f7f\u7528\u5b57\u7b26\u7ea7\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u5bf9\u59d3\u540d\u8fdb\u884c\u5206\u7c7b\u4e4b\u540e": 121, "\u5b66\u4e60\u5982\u4f55\u4ece\u8bed\u8a00\u4e2d\u751f\u6210\u59d3\u540d": 121, "\u4f7f\u7528\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u8fdb\u884c\u7ffb\u8bd1": 121, "\u5728\u8fd9\u91cc\u6211\u4eec\u7f16\u5199\u81ea\u5df1\u7684\u7c7b\u548c\u51fd\u6570\u6765\u9884\u5904\u7406\u6570\u636e\u4ee5\u6267\u884c\u6211\u4eec\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406\u5efa\u6a21\u4efb\u52a1": 121, "\u8fdb\u884c\u6587\u672c\u5206\u7c7b": 121, "\u5e93\u6784\u5efa\u6570\u636e\u96c6\u5e76\u5bf9\u6587\u672c\u8fdb\u884c\u5206\u7c7b": 121, "\u4ece\u96f6\u5f00\u59cb\u8bad\u7ec3\u4e00\u4e2a\u4f7f\u7528": 121, "\u7684\u8bed\u8a00\u7ffb\u8bd1\u6a21\u578b": 121, "\u4f7f\u7528torchtext\u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6": 121, "\u51c6\u5907\u81ea\u5b9a\u4e49\u6570\u636e\u96c6": 121, "\u53ef\u9009": 121, "\u6a21\u578b\u5bfc\u51fa\u4e3a": 121, "\u8fd0\u884c\u5b83": 121, "\u6784\u5efa\u4e00\u4e2a": 121, "\u56fe\u50cf\u5206\u7c7b\u5668\u6a21\u578b": 121, "\u7136\u540e\u5c06\u5176\u8f6c\u6362\u4e3a": 121, "\u683c\u5f0f": 121, "\u6700\u540e\u4f7f\u7528": 121, "\u90e8\u7f72\u5b83": 121, "\u4ecb\u7ecd": 121, "\u6f14\u793a\u5982\u4f55\u901a\u8fc7\u4f7f\u7528": 121, "\u6765\u89e3\u51b3\u4e0d\u652f\u6301\u7684\u64cd\u4f5c\u7b26": 121, "\u4ece\u800c\u5b9e\u73b0\u7aef\u5230\u7aef\u7684\u6d41\u7a0b": 121, "\u5f3a\u5316\u5b66\u4e60": 121, "dqn": 121, "cartpol": [121, 136, 160, 163], "\u4efb\u52a1\u4e0a\u8bad\u7ec3\u4e00\u4e2a": 121, "\u4ee3\u7406": 121, "\u4f7f\u7528torchrl\u8fdb\u884c\u5f3a\u5316\u5b66\u4e60": 121, "torchrl": [121, 136, 146], "proxim": [121, 159], "pendulum": [121, 159], "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684": 121, "mario": [121, 146, 153], "ddpg": 121, "\u4e2d\u90e8\u7f72": [121, 139], "densenet": [121, 139, 213], "121": [121, 139, 144, 178, 238], "\u4e2d\u52a0\u8f7d": [121, 139], "thumbnail": [121, 171], "holist": 121, "fuser": [121, 247], "nchw": [121, 129, 147, 177, 220, 223], "raspberri": 121, "nerur": 121, "netork": 121, "exploresever": 121, "tangent": [121, 141, 145], "plugin": [121, 168, 208], "rai": 121, "orthogon": [121, 153], "symmetr": [121, 137, 153, 197, 200], "prune": [121, 153, 196, 221], "snapshot": [121, 131, 174, 208, 222], "grok": 121, "torchserv": [121, 161, 213, 251], "torchx": 121, "inductor": [121, 174, 184, 196, 197, 254, 255], "scaled_dot_product_attent": [121, 164, 193], "paral": 121, "executorch": [121, 197], "sdk": [121, 208, 227, 257], "v3": [121, 228], "xnnpack": [121, 179, 197, 198, 200], "metal": 121, "shader": 121, "fp32": [121, 122, 131, 137, 147, 177, 179, 184, 185, 188, 197, 199, 207, 221, 234], "torchrec": 121, "distributedmodelparallel": 121, "torchmultimod": 121, "\u89c6\u89c9": 121, "\u6587\u672c": 121, "\u5f3a\u5316\u5b66\u4e60\u7684": 121, "\u53ef\u4ee5\u5c06\u5176\u878d\u5165\u73b0\u6709\u5de5\u4f5c\u5185\u5bb9": 121, "sheet": 121, "\u57fa\u7840\u5185\u5bb9\u901f\u89c8": 121, "\u4e0a\u7684\u6559\u7a0b": 121, "\u83b7\u53d6": 121, "\u4e0a\u8fd0\u884c\u6559\u7a0b": 121, "\u5b66\u4e60\u5982\u4f55\u5c06\u6559\u7a0b\u6570\u636e\u590d\u5236\u5230": 121, "\u4ee5\u4fbf\u60a8\u53ef\u4ee5\u5728": 121, "hamid": [122, 123, 176, 177], "shojanazeri": [122, 123, 176, 177], "wright": 122, "rohan": [122, 162], "varma": [122, 162], "yanli": [122, 123], "zhao": [122, 123], "wikihow": 122, "p4dn": 122, "pressur": 122, "fdsp": 122, "discard": [122, 123, 168], "reduce_scatt": [122, 123, 124], "xxl": 122, "3b": [122, 158], "whl": [122, 137, 157, 168, 172, 184, 187, 188], "cu113": 122, "torch_nightli": [122, 137, 157, 187, 188], "wikihowal": 122, "wikihowsep": 122, "cs": 122, "summarization_dataset": 122, "t5_train": 122, "gpt2tokenizerfast": 122, "t5token": 122, "t5forconditionalgener": 122, "modeling_t5": 122, "t5block": 122, "checkpoint_wrapp": 122, "checkpointimpl": 122, "apply_activation_checkpointing_wrapp": 122, "fullyshardeddataparallel": [122, 123, 124, 155, 214, 215], "mixedprecis": 122, "backwardprefetch": [122, 123], "shardingstrategi": [122, 215], "fullstatedictconfig": 122, "statedicttyp": [122, 214], "transformer_auto_wrap_polici": 122, "enable_wrap": [122, 123], "cleanup": [122, 123, 133, 214], "setup_model": 122, "get_date_of_run": 122, "2022": 122, "12_pm": 122, "date_of_run": 122, "s_": [122, 160], "format_metrics_to_gb": 122, "gigabyt": 122, "metric_num": 122, "g_gigabyt": 122, "ndigit": 122, "fsdp_loss": 122, "inner_pbar": 122, "colour": 122, "desc": [122, 137, 185], "source_id": 122, "attention_mask": [122, 137, 185], "source_mask": 122, "target_id": [122, 165], "train_accuraci": 122, "val_load": 122, "fsdp_main": [122, 123], "type_path": 122, "output_length": 122, "print_text": 122, "150": [122, 163], "val_dataset": 122, "sampler1": [122, 123], "num_replica": [122, 123], "sampler2": [122, 123], "train_kwarg": [122, 123, 129], "test_kwarg": [122, 123, 129], "test_batch_s": [122, 123], "cuda_kwarg": [122, 123, 129], "t5_auto_wrap_polici": 122, "transformer_layer_cl": 122, "sharding_strategi": [122, 215], "shard_grad_op": 122, "zero2": 122, "full_shard": 122, "zero3": 122, "init_start_ev": [122, 123], "enable_tim": [122, 123, 172], "init_end_ev": [122, 123], "bf16_readi": 122, "is_bf16_support": 122, "loosevers": 122, "is_nccl_avail": 122, "mp_polici": 122, "bfsixteen": 122, "auto_wrap_polici": [122, 123], "mixed_precis": 122, "current_devic": [122, 230], "curr_val_loss": 122, "file_save_nam": 122, "time_of_run": 122, "dur": 122, "train_acc_track": 122, "val_acc_track": 122, "training_start_tim": 122, "track_memori": 122, "mem_alloc_track": 122, "mem_reserved_track": 122, "run_valid": 122, "zone": 122, "memory_alloc": [122, 129], "memory_reserv": 122, "save_model": [122, 123], "save_polici": 122, "offload_to_cpu": 122, "rank0_onli": 122, "state_dict_typ": 122, "full_state_dict": 122, "cpu_stat": 122, "currepoch": 122, "save_nam": 122, "barrier": [122, 123, 133, 135, 137, 176, 185], "metavar": [122, 123, 161, 163], "002": 122, "store_tru": [122, 123], "store_fals": 122, "nnode": [122, 133], "transfom": 122, "mhsa": 122, "ffn": 122, "fsdp_auto_wrap_polici": [122, 123], "bfloat16": [122, 184, 199, 207, 230, 237, 244, 247, 253], "v100": [122, 172, 175], "percis": 122, "fpsixteen": 122, "param_dtyp": 122, "reduce_dtyp": 122, "buffer_dtyp": 122, "fp32_polici": 122, "grad_bf16": 122, "backward_pr": 122, "backward_prefetch": 122, "backward_post": 122, "offload": [122, 123, 219], "allgath": [122, 123, 124, 155, 247], "ram": [122, 223, 237], "1t": [123, 131], "feasibl": 123, "possess": [123, 184, 237], "fsdp_mnist": 123, "size_based_auto_wrap_polici": 123, "default_auto_wrap_polici": 123, "fully_sharded_data_parallel": [123, 214], "cpuoffload": 123, "handwritten": 123, "ddp_loss": 123, "batch_idx": [123, 129, 148, 166, 220, 221, 253], "tloss": [123, 129, 166, 221], "6f": [123, 129, 166, 221], "view_a": [123, 129, 162, 166, 221], "dataset1": [123, 129], "dataset2": [123, 129], "my_auto_wrap_polici": 123, "min_num_param": 123, "elapsed_tim": [123, 172], "110": [123, 163, 185, 231], "85": [123, 137, 219, 231], "67462890625sec": 123, "_fsdp_wrapped_modul": 123, "flattenparamswrapp": 123, "_fpw_modul": 123, "peak": [123, 129, 152, 158, 184, 254, 258], "g4dn": 123, "xlarg": 123, "seal": 123, "20000": 123, "89130859375sec": 123, "auto_wrap": 123, "66": [123, 219, 231], "cpu_offload": 123, "offload_param": 123, "dpp": 123, "ddp_mnist": 123, "77766015625sec": 123, "wanchao": [124, 215], "liang": [124, 215], "tianyu": 124, "liu": 124, "devicemesh": [124, 251], "megatron": 124, "lm": [124, 212], "sp": 124, "parallelstyl": 124, "parallelize_modul": 124, "dtensor": 124, "foward": 124, "aris": [124, 184, 191], "exceed": [124, 159], "domin": [124, 147, 171, 203, 234], "consequ": [124, 160], "ballpark": [124, 234], "flop": 124, "llm": 124, "trillion": [124, 131], "month": 124, "llama": 124, "70b": 124, "2k": 124, "llama2": 124, "1k": 124, "colwiseparallel": 124, "rowwiseparallel": 124, "sequenceparallel": 124, "rmsnormpython": 124, "preparemoduleinput": 124, "preparemoduleoutput": 124, "device_mesh": [124, 215], "init_device_mesh": [124, 215], "tp_mesh": 124, "transformerblock": 124, "swiglu": 124, "w2": 124, "silu": 124, "w1": 124, "w3": 124, "colwis": 124, "rowwis": [124, 231], "parallelize_plan": 124, "layer_tp_plan": 124, "feed_foward": 124, "feed_forward": 124, "wq": 124, "wk": 124, "wv": 124, "wo": 124, "tp_plan": 124, "draft": [124, 135], "num_head": [124, 164], "layer_id": 124, "attn_lay": 124, "n_head": 124, "n_kv_head": 124, "tok_embed": 124, "input_layout": 124, "output_layout": 124, "attention_norm": 124, "ffn_norm": 124, "desired_input_layout": 124, "yellow": 124, "loss_parallel": 124, "use_local_output": 124, "mesh_2d": [124, 215], "submesh": 124, "dp_mesh": 124, "model_tp": 124, "model_2d": 124, "use_orig_param": 124, "broadli": 125, "torchviz": [125, 130], "_save": 125, "_saved_self": 125, "_saved_oth": 125, "kept": [125, 127, 263, 272], "_saved_result": 125, "cycl": [125, 168, 207, 231], "thumb": [125, 145, 159, 230], "pack_hook": 125, "unpack_hook": 125, "saved_tensors_hook": 125, "harmless": 125, "debat": 125, "__repr__": [125, 231, 244], "repr": [125, 231], "save_on_cpu": 125, "152": 125, "48gb": 125, "5gb": 125, "6x": [125, 177, 223], "savetocpu": 125, "uuid": 125, "tmp_dir": 125, "uuid4": 125, "leak": 125, "tmp_dir_obj": 125, "succeed": [125, 208], "selfdeletingtempfil": 125, "__del__": 125, "temp_fil": 125, "save_on_disk_threshold": 125, "tensor_or_sctf": 125, "savetodisk": 125, "autograd_saved_tensors_hooks_tutori": 125, "david": [126, 263, 272], "eriksson": 126, "balandat": 126, "methodolog": [126, 177, 216, 220], "runnabl": [126, 144], "laptop": [126, 194], "sustain": 126, "botorch": 126, "bayesian": 126, "mnist_train_na": [126, 148], "appdef": 126, "log_path": [126, 148], "hidden_size_1": [126, 148], "hidden_size_2": [126, 148], "trial_idx": 126, "joinpath": 126, "torchx_imag": 126, "kubernet": 126, "local_cwd": 126, "torchxrunn": 126, "log_dir": [126, 169], "mkdtemp": 126, "ax_runn": 126, "tracker_bas": 126, "component_const_param": 126, "cfg": 126, "choiceparamet": 126, "parametertyp": 126, "rangeparamet": 126, "num_param": [126, 148], "pareto": 126, "frontier": 126, "weird": 126, "upper": [126, 153, 164, 263, 272], "parameter_typ": 126, "log_scal": 126, "is_ord": 126, "search_spac": 126, "parameter_constraint": 126, "outcom": [126, 200], "fetch": [126, 128, 134, 161, 162, 163, 176, 177], "proxi": [126, 189, 192, 231], "tensorboardcurvemetr": 126, "mytensorboardmetr": 126, "prespecifi": 126, "classmethod": [126, 183, 244], "get_ids_from_tri": 126, "queryabl": 126, "is_available_while_run": 126, "curve_nam": 126, "lower_is_bett": 126, "val_acc": [126, 148], "model_num_param": 126, "multiobjectiveoptimizationconfig": 126, "94": [126, 197, 219, 238], "multiobject": 126, "objectivethreshold": 126, "optimization_config": 126, "opt_config": 126, "objective_threshold": 126, "80_000": 126, "torchx_mnist": 126, "generationstrategi": 126, "total_tri": 126, "modelbridg": 126, "dispatch_util": 126, "choose_generation_strategi": 126, "gs": [126, 257], "num_trial": 126, "scheduleropt": 126, "max_pending_tri": 126, "generation_strategi": 126, "autom": [126, 143, 147, 171, 182], "run_all_tri": 126, "report_util": 126, "exp_to_df": 126, "_pareto_frontier_scatter_2d_plotli": 126, "surrog": 126, "uncertainti": 126, "cross_valid": 126, "compute_diagnost": 126, "diagnost": 126, "interact_cross_validation_plotli": 126, "init_notebook_plot": 126, "contour": 126, "interact_contour_plotli": 126, "metric_nam": 126, "kiuk": 126, "tristan": [126, 158], "rice": [126, 158], "ax_multiobjective_nas_tutori": [126, 148], "\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1": 127, "surnam": 127, "scottish": 127, "irish": 127, "schmidhub": 127, "czech": 127, "dutch": 127, "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60": [127, 128, 165], "unreason": [127, 128], "roman": [127, 263, 272], "glob": [127, 128, 208], "findfil": [127, 128], "all_lett": [127, 128], "ascii_lett": [127, 128], "n_letter": [127, 128], "\u015blus\u00e0rski": 127, "category_lin": [127, 128], "all_categori": [127, 128], "splitext": [127, 128], "basenam": [127, 128], "n_categori": [127, 128], "italian": 127, "0s": [127, 136, 185], "line_length": 127, "lettertoindex": 127, "lettertotensor": 127, "linetotensor": 127, "jone": 127, "h2h": 127, "inithidden": [127, 128], "n_hidden": 127, "next_hidden": 127, "precomput": 127, "albert": 127, "greatest": [127, 171, 230], "categoryfromoutput": 127, "top_n": 127, "top_i": 127, "category_i": 127, "randomchoic": [127, 128], "randomtrainingexampl": [127, 128], "category_tensor": [127, 128], "line_tensor": 127, "005": [127, 160, 178], "plot_everi": [127, 128, 165], "current_loss": 127, "all_loss": [127, 128], "timesinc": [127, 128, 165], "guess_i": 127, "histor": [127, 128], "minu": [127, 168], "n_confus": 127, "111": [127, 163, 165, 176, 185, 231, 256], "cax": [127, 165], "matshow": [127, 165], "colorbar": [127, 165], "set_xticklabel": [127, 149, 165], "rotat": [127, 165, 166, 169], "set_yticklabel": [127, 165], "tick": [127, 165], "xaxi": [127, 165], "set_major_loc": [127, 165], "multipleloc": [127, 165], "yaxi": [127, 149, 165], "bright": 127, "incorrectli": [127, 198], "chines": [127, 128], "korean": 127, "greek": 127, "input_lin": 127, "n_predict": 127, "topv": [127, 128], "category_index": 127, "doveski": 127, "jackson": 127, "satoshi": 127, "bottl": [127, 144], "hazaki": 127, "japanes": 127, "5533": 127, "yournam": 127, "gender": 127, "subreddit": 127, "char_rnn_classification_tutori": 127, "russian": 128, "ru": 128, "rovakov": 128, "uantov": 128, "shavakov": 128, "ger": 128, "gerren": 128, "ereng": 128, "rosher": 128, "spa": 128, "salla": 128, "parer": 128, "allan": 128, "chi": 128, "chan": 128, "iun": 128, "\u8fdb\u884c\u59d3\u540d\u5206\u7c7b": [128, 165], "some_fil": [128, 133], "n\u00e9\u00e0l": 128, "o2o": 128, "muscl": [128, 171], "fuzz": 128, "chao": 128, "i2o": 128, "input_combin": 128, "output_combin": 128, "randomtrainingpair": 128, "abcd": 128, "categorytensor": 128, "targettensor": 128, "letter_index": 128, "input_line_tensor": 128, "target_line_tensor": 128, "0005": [128, 178], "start_lett": 128, "abc": [128, 171], "fiction": 128, "countri": 128, "citi": 128, "char_rnn_generation_tutori": 128, "adjac": [129, 262, 271], "dilat": [129, 134], "track_running_statist": 129, "denomin": 129, "nenadmarku": [129, 142], "once_differenti": 129, "convolution_backward": 129, "grad_out": [129, 130], "grad_x": [129, 130], "conv_transpose2d": [129, 207], "unsqueeze_al": 129, "batch_norm_backward": 129, "sqrt_var": 129, "d_denom": 129, "denom": 129, "unnecessarili": 129, "d_var": 129, "d_mean_dx": 129, "reassign": [129, 156], "unbiased_var": 129, "unbias": 129, "fast_mod": 129, "fusedconvbn2dfunct": 129, "conv_weight": 129, "ndim": [129, 192], "x_conv_out": 129, "fusedconvbn": 129, "in_channel": [129, 146, 153, 178], "out_channel": [129, 146, 153, 178], "exp_avg_factor": 129, "factory_kwarg": 129, "weight_shap": 129, "kaiming_uniform_": [129, 202], "convbn1": 129, "convbn2": 129, "bn1": [129, 142, 149, 157], "track_running_stat": [129, 179, 218], "bn2": 129, "ntest": [129, 166], "geforc": 129, "rtx": 129, "3070": 129, "56gb": 129, "unfus": [129, 142], "68gb": 129, "shallow": [129, 136], "peak_memory_alloc": 129, "123456": 129, "max_memory_alloc": [129, 184, 230, 258], "reset_peak_memory_stat": [129, 184], "gb": [129, 184], "custom_function_conv_bn_tutori": 129, "finit": [130, 150], "differenc": 130, "magnifi": 130, "gradgradcheck": [130, 247], "make_dot": 130, "dout": [130, 145], "ouptut": 130, "sinh": 130, "cosh": 130, "expx": 130, "expnegx": 130, "_grad_out_exp": 130, "_grad_out_negexp": 130, "sinhbad": 130, "cube_backward": 130, "cubebackward": 130, "cube_forward": 130, "cube_backward_backward": 130, "sav_grad_out": 130, "cube_backward_backward_grad_out": 130, "cube": 130, "dgrad_out": 130, "artifact": [131, 174], "reachabl": [131, 132, 135], "2xlarg": [131, 132], "hydra": 131, "slurm": [131, 132, 133], "char_dataset": 131, "gpt2_train_cfg": 131, "bucket": [131, 247, 257], "aggress": 131, "rendezv": [132, 155], "nccl_debug": 132, "nccl_socket_ifnam": 132, "eth0": 132, "zhu": [133, 144], "trigger": [133, 144, 161, 163, 247], "clarifi": 133, "filestor": 133, "tcpstore": 133, "libtmp": 133, "toymodel": [133, 149, 214, 215], "net1": [133, 149, 214, 215], "net2": [133, 149, 214, 215], "demo_bas": 133, "ddp_model": [133, 258], "run_demo": 133, "demo_fn": 133, "caution": 133, "timeout": [133, 155], "straggler": [133, 168], "unpredict": 133, "spike": [133, 158], "AND": [133, 252], "torchelast": 133, "demo_checkpoint": 133, "checkpoint_path": [133, 184, 198], "gettempdir": 133, "toympmodel": 133, "dev0": 133, "dev1": 133, "demo_model_parallel": 133, "mp_model": 133, "ddp_mp_model": 133, "n_gpu": [133, 137, 185], "elastic_ddp": 133, "rdzv_id": [133, 215], "rdzv_backend": 133, "rdzv_endpoint": [133, 215], "29400": [133, 215], "aka": [133, 145, 147, 157, 173, 174, 220, 223], "scontrol": 133, "hostnam": 133, "slurm_nodelist": 133, "srun": 133, "torchrun_script": 133, "rpc_sync": [134, 161, 162, 163, 212], "embeddingt": [134, 163, 175], "amort": [134, 159, 161, 247], "resnetbas": 134, "conv1x1": 134, "inplan": 134, "width_per_group": 134, "_lock": 134, "_block": 134, "_norm_lay": 134, "base_width": 134, "_make_lay": 134, "previous_dil": 134, "parameter_rref": [134, 163, 212], "calle": [134, 161, 162, 212], "resnetshard1": 134, "nonlinear": 134, "x_rref": 134, "to_her": 134, "resnetshard2": 134, "distresnet50": 134, "micro": [134, 176, 177], "y_rref": 134, "num_split": 134, "p1_rref": 134, "p2_rref": 134, "out_futur": 134, "z_fut": 134, "wait_al": [134, 161], "remote_param": [134, 162, 163], "worker1": [134, 212], "worker2": 134, "image_w": [134, 149, 161], "image_h": [134, 149, 161], "run_mast": 134, "one_hot_indic": [134, 149, 161], "passiv": [134, 161, 163], "num_worker_thread": [134, 212], "tik": [134, 161, 212], "tok": [134, 161, 212], "s\u00e9b": 135, "arnold": 135, "practition": [135, 192, 257], "sysadmin": 135, "coordin": [135, 166, 178, 184, 192], "pdsh": 135, "clustershel": 135, "init_process": 135, "127": [135, 179, 200], "set_start_method": 135, "ip": 135, "recv": [135, 163], "irecv": 135, "dst": 135, "req": 135, "nor": [135, 142, 179, 189], "undefin": [135, 149, 189, 190, 191], "behaviour": 135, "fanci": 135, "baidu": 135, "deepspeech": 135, "communc": 135, "new_group": [135, 215], "commut": 135, "scatter_list": 135, "gather_list": 135, "tnt": 135, "splitdataset": 135, "data_idx": 135, "datapartition": 135, "1234": 135, "data_len": 135, "part_len": 135, "partition_dataset": 135, "get_world_s": 135, "partition_s": 135, "train_set": [135, 168], "average_gradi": 135, "voil\u00e0": 135, "send_buff": 135, "recv_buff": 135, "accum": 135, "send_req": 135, "bandwidth": [135, 168, 196, 219], "subsect": [135, 262, 271], "eleg": 135, "handi": [135, 146, 169], "smi": [135, 230], "mvapich2": 135, "ipc": [135, 168], "recompil": [135, 142, 172, 198, 211], "requisit": 135, "forg": [135, 221], "openmpi": 135, "mpirun": 135, "myscript": 135, "handshak": 135, "superflu": 135, "readili": 135, "fcntl": 135, "nf": 135, "sharedfil": 135, "23456": 135, "socket": [135, 144, 176, 177, 247], "everyon": 135, "unclear": [135, 149, 173, 174], "natalia": 135, "gimelshein": 135, "carrier": [136, 159], "brought": [136, 159], "mod": [136, 142, 143, 172, 173, 174, 194, 203, 232, 244], "set_exploration_typ": [136, 159], "totensorimag": 136, "egreedymodul": 136, "lstmmodul": 136, "qvaluemodul": 136, "dqnloss": 136, "84x84": 136, "accessori": [136, 158], "stamp": 136, "is_init": 136, "tensordictprim": 136, "primer": [136, 192], "disappear": 136, "keep_dim": 136, "backbon": [136, 171], "flank": 136, "assist": [136, 215], "num_cel": [136, 159], "squeeze_output": 136, "aggregator_class": 136, "aggregator_kwarg": 136, "n_cell": 136, "tensordictmodulebas": 136, "batch_first": [136, 165], "make_tensordict_prim": 136, "action_valu": [136, 146], "qval": 136, "action_spac": [136, 146, 160], "qvalueactor": 136, "stoch_polici": 136, "exploration_modul": 136, "eps_init": 136, "set_recurrent_mod": 136, "redund": 136, "delay_valu": 136, "3e": [136, 154, 159], "longest": [136, 143], "npai": 136, "chosen_action_valu": 136, "recurrent_st": 136, "to_tensordict": 136, "non_block": 136, "step_count": [136, 159], "action_spread": 136, "dqn_with_rnn_tutori": 136, "jianyu": 137, "huang": [137, 155, 214], "jessica": [137, 157], "paraphras": 137, "mrpc": [137, 185], "dolan": 137, "brockett": 137, "2005": 137, "imbalanc": 137, "sklearn": [137, 171], "tochvis": 137, "cu101": [137, 157], "bertconfig": [137, 185], "bertforsequenceclassif": [137, 185], "glue_compute_metr": [137, 185], "glue_output_mod": [137, 185], "output_mod": [137, 185], "glue_processor": [137, 185], "processor": [137, 176, 185, 199, 207, 220, 247, 251], "glue_convert_examples_to_featur": [137, 185], "convert_examples_to_featur": [137, 185], "getlogg": [137, 148, 171, 185], "basicconfig": [137, 185], "asctim": [137, 185], "levelnam": [137, 185], "datefmt": [137, 185], "modeling_util": [137, 185], "setlevel": [137, 148, 185], "__config__": [137, 185], "parallel_info": [137, 185], "sep": [137, 193], "glue_data": [137, 185], "download_glue_data": [137, 185], "glue_dir": [137, 185], "task_nam": [137, 185], "out_dir": [137, 185], "run_glu": 137, "model_typ": [137, 184, 185], "model_name_or_path": [137, 185], "do_train": 137, "do_ev": 137, "do_lower_cas": [137, 185], "max_seq_length": [137, 185], "per_gpu_eval_batch_s": [137, 185], "per_gpu_train_batch_s": 137, "save_step": 137, "output_dir": [137, 185], "get_label": [137, 185], "overwrite_cach": [137, 185], "copyright": [137, 263, 272], "inc": 137, "apach": [137, 176, 177], "complianc": 137, "law": [137, 193], "AS": 137, "IS": 137, "warranti": 137, "OR": [137, 245], "OF": 137, "govern": [137, 161], "permiss": 137, "mnli": [137, 185], "mi": [137, 185, 265, 274], "eval_task_nam": [137, 185], "eval_outputs_dir": [137, 185], "eval_task": [137, 185], "eval_output_dir": [137, 185], "load_and_cache_exampl": [137, 185], "eval_sampl": [137, 185], "eval_dataload": [137, 185, 221], "eval_loss": 137, "nb_eval_step": [137, 185], "out_label_id": [137, 185], "distilbert": [137, 185], "token_type_id": [137, 185], "xlnet": [137, 185], "roberta": [137, 185], "segment_id": [137, 185], "tmp_eval_loss": 137, "regress": [137, 166, 185, 231, 245], "output_eval_fil": [137, 185], "eval_result": [137, 185], "cached_features_fil": [137, 185], "cached_": [137, 185], "get_dev_exampl": [137, 185], "get_train_exampl": [137, 185], "pad_on_left": 137, "convert_tokens_to_id": 137, "pad_token_segment_id": 137, "all_input_id": [137, 185], "all_attention_mask": [137, 185], "all_token_type_id": [137, 185], "all_label": [137, 185], "438": [137, 185], "181": [137, 231], "30522": 137, "eval_start_tim": [137, 185], "eval_end_tim": [137, 185], "eval_duration_tim": [137, 185], "408": [137, 177], "prec": [137, 147], "9019": 137, "902": [137, 185], "8788": 137, "8956": 137, "asymmetr": [137, 200], "openmp": [137, 176, 207, 226], "tbb": 137, "ids_tensor": [137, 185], "dummy_input": [137, 185, 224, 225, 252, 256], "traced_model": [137, 142, 185, 247], "bert_traced_eager_qu": 137, "loaded_quantized_model": [137, 182, 197], "implic": [137, 185], "devlin": 137, "lee": 137, "toutanova": 137, "zafrir": 137, "boudoukh": 137, "izsak": 137, "wasserblat": 137, "2019": 137, "q8bert": 137, "8bit": 137, "tradition": [138, 202], "simplemlp": 138, "pretend": [138, 154], "minibatch": [138, 154], "num_model": [138, 154], "6400": 138, "predictions_diff_minibatch_loop": 138, "predictions2": 138, "stack_module_st": 138, "functional_cal": [138, 141, 150, 154], "base_model": 138, "fmodel": 138, "predictions1_vmap": 138, "in_dim": [138, 145, 154, 205, 234], "predictions2_vmap": 138, "without_vmap": [138, 145, 154], "with_vmap": [138, 145, 154], "avinash": 139, "sajjanshetti": 139, "refresh": [139, 169], "endpoint": [139, 213, 251], "class_id": [139, 213], "n02124075": 139, "egyptian_cat": [139, 213], "jsonifi": [139, 213], "image_net_xxx": 139, "transform_imag": [139, 213], "image_byt": 139, "my_transform": [139, 213], "bytesio": [139, 229], "densenet121": [139, 147, 172, 213], "get_predict": [139, 213], "y_hat": [139, 213], "predicted_idx": 139, "img_byt": 139, "TO": [139, 252], "flask_env": 139, "flask_app": [139, 213], "resp": 139, "recogn": [139, 155, 200], "ui": [139, 158, 245, 251, 261, 270], "streamer": 139, "queue": [139, 247], "flask_rest_api_tutori": 139, "forced_alignment_tutori": 140, "incomplet": 141, "eagerli": [141, 152, 174], "primal": [141, 145, 262, 271], "dual": [141, 262, 271], "forward_ad": 141, "fwad": 141, "dual_level": 141, "make_du": 141, "dual_input": 141, "unpack_du": 141, "dual_input_alt": 141, "plain_tensor": 141, "dual_output": 141, "namedtupl": [141, 160], "delattr": 141, "setattr": [141, 142, 147], "fresh": [141, 230], "dual_param": 141, "jvp2": 141, "gi": 141, "check_forward_ad": 141, "check_backward_ad": 141, "check_undefined_grad": 141, "check_batched_grad": 141, "functorch": [141, 173, 174], "downsid": 141, "ft": 141, "primal0": 141, "tangent0": 141, "primal1": 141, "tangent1": 141, "primal_out": 141, "tangent_out": 141, "new_fn": 141, "reformul": [141, 150], "make_functional_with_buff": 141, "analog": [141, 191, 192], "consolid": [141, 161, 198], "func_params_onli": 141, "jvp_out": 141, "dual_numb": 141, "forward_ad_usag": 141, "horac": 142, "wrappedbatchnorm": 142, "symbolic_trac": [142, 143, 172], "bake": 142, "fuse_conv_bn_ev": 142, "batch_norm": [142, 238], "fused_conv": 142, "fuse_conv_bn_weight": 142, "running_var": [142, 198], "conv_w": 142, "conv_b": 142, "bn_rm": 142, "bn_rv": 142, "bn_ep": 142, "bn_w": 142, "bn_b": 142, "bn_var_rsqrt": 142, "rsqrt": 142, "_parent_nam": 142, "qualnam": 142, "atom": 142, "baz": 142, "rsplit": 142, "replace_node_modul": 142, "new_modul": 142, "parent_nam": 142, "graphmodul": [142, 143, 172, 173, 174, 179], "fx_model": 142, "call_modul": 142, "replace_all_uses_with": 142, "erase_nod": 142, "lint": 142, "simplif": [142, 234], "fused_model": 142, "rn18": [142, 143], "fused_rn18": 142, "jit_rn18": 142, "conclus": 142, "tracker": [142, 143], "fx_conv_bn_fus": 142, "nicer": 143, "instrument": [143, 251], "tabul": [143, 172], "traced_rn18": 143, "ca": 143, "profilinginterpret": 143, "gm": [143, 172, 200], "total_runtime_sec": 143, "runtimes_sec": 143, "intercept": [143, 177], "t_start": 143, "return_v": 143, "t_end": 143, "run_nod": 143, "setdefault": 143, "should_sort": 143, "node_summari": 143, "mean_total_runtim": 143, "mean_runtim": 143, "pct_total": 143, "pct": 143, "clock": [143, 231], "interp": 143, "51393": 143, "fx_profiling_tutori": 143, "xuan": 144, "liao": 144, "haozh": 144, "jiong": [144, 176, 177, 186, 199, 200], "gong": [144, 176, 177, 186, 199, 200], "weihan": 144, "intricaci": 144, "troubleshoot": 144, "pinpoint": [144, 177], "foo1": 144, "x1": [144, 150, 178], "x2": [144, 150], "8390": 144, "compiled_foo1": 144, "neg1": 144, "torch_compile_debug": 144, "_inductor": [144, 174, 184, 186, 199], "model___20": 144, "torchinductor_root": 144, "rx": 144, "crxfi2ybd7yp5sbj2pnhw33wfhtdw7wumvrobyp5sjvdui5ktjc2": 144, "fx_graph_runn": 144, "fx_graph_transform": 144, "ir_post_fus": 144, "ir_pre_fus": 144, "output_cod": [144, 255], "forward1": 144, "arg0_1": [144, 173, 186], "arg1_1": [144, 173], "codecach": 144, "asynccompil": 144, "async_compil": 144, "cpp_fused_cat_maximum_neg_0": 144, "gv": 144, "cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x": 144, "in_ptr0": [144, 254], "in_ptr1": [144, 254], "out_ptr0": 144, "pragma": 144, "ivdep": 144, "i0": 144, "static_cast": 144, "0l": 144, "8390l": 144, "1l": [144, 186], "i1": 144, "8l": 144, "tmp0": 144, "tmp1": 144, "tmp2": 144, "tmp3": 144, "max_propagate_nan": 144, "dynamo": [144, 173, 174, 186, 255], "aot_eag": 144, "aot": [144, 254], "neg2": 144, "exc": [144, 173], "backendcompilerfail": 144, "cppcompileerror": 144, "xg": 144, "cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx": 144, "deduct": 144, "substitut": [144, 145, 152, 200, 262, 271], "deduc": 144, "buf0": [144, 186], "schedulernod": 144, "computedbuff": 144, "memorydep": 144, "c0": 144, "67120": 144, "unmet_depend": 144, "met_depend": 144, "nodeus": 144, "can_inplac": 144, "buf0_loop_bodi": 144, "var_rang": 144, "z0": 144, "index0": 144, "index1": 144, "get_index": 144, "get_index_1": 144, "load_1": 144, "get_index_2": 144, "silent": [144, 172, 199, 244], "minifi": 144, "dead": 144, "unus": [144, 155], "minif": 144, "foo2": 144, "expected_result": 144, "compiled_foo2": 144, "actual_result": 144, "neg3": 144, "tol": 144, "test_script": 144, "assertionerror": 144, "torchdynamo_repro_aft": 144, "torchdynamo_repro_level": 144, "forward2": 144, "conduct": [144, 155, 184], "mobilebertforquestionansw": 144, "xeon": [144, 147, 176, 199, 207, 220], "platinum": [144, 176], "8358": 144, "60ghz": 144, "kmp_blocktim": [144, 247], "kmp_set": 144, "kmp_affin": [144, 247], "compact": [144, 209, 247], "ld_preload": [144, 247], "conda_prefix": [144, 231], "dirnam": [144, 155, 226], "libiomp5": [144, 247], "libjemalloc": 144, "malloc_conf": 144, "oversize_threshold": 144, "background_thread": 144, "metadata_thp": 144, "dirty_decay_m": 144, "muzzy_decay_m": 144, "numactl": [144, 247], "bench": [144, 176, 177], "csarron": 144, "mobilebert": 144, "seq_length": [144, 220], "input_dict": 144, "compiled_model": [144, 164], "num_it": [144, 159], "warmup": [144, 168, 194, 203, 210, 211, 219, 223, 238], "eager_t": 144, "inductor_t": 144, "1023553796113": 144, "339": 144, "95180135127157": 144, "359459053287382": 144, "355x": 144, "enable_kernel_profil": 144, "profileract": [144, 164, 219, 238], "result_dir": 144, "prof_trac": 144, "my_schedul": [144, 238], "skip_first": [144, 238], "trace_handl": [144, 238], "step_num": [144, 238], "on_trace_readi": [144, 168, 238], "370": 144, "814m": 144, "362": 144, "161": [144, 218], "276m": 144, "363": 144, "416m": 144, "488": [144, 231], "154m": 144, "194": 144, "clamp_min": [144, 219], "444m": 144, "258m": [144, 219], "810": 144, "920m": 144, "447m": 144, "_softmax": 144, "087m": 144, "376": [144, 173, 187], "888m": 144, "77": 144, "430m": 144, "502m": 144, "161m": 144, "850": 144, "377m": 144, "386": [144, 163, 193], "index_select": 144, "000u": [144, 238], "986": 144, "420m": 144, "703": 144, "656": [144, 258], "963": 144, "864m": 144, "_mkl_linear": 144, "231": [144, 231, 238], "573m": [144, 238], "992m": 144, "336": [144, 238], "642m": 144, "graph_0_cpp_fused_constant_pad_nd_embedding_0": 144, "915": 144, "911": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_151": 144, "901": [144, 185], "graph_0_cpp_fused__mkl_linear_add_mul_relu_226": 144, "899": [144, 256], "graph_0_cpp_fused__mkl_linear_add_mul_relu_361": 144, "898": [144, 256], "graph_0_cpp_fused__mkl_linear_add_mul_relu_121": 144, "895": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_31": 144, "893": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_76": 144, "892": [144, 158, 231, 256], "graph_0_cpp_fused__mkl_linear_add_mul_relu_256": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_346": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_241": 144, "891": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_316": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_91": 144, "890": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_106": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_211": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_61": 144, "889": 144, "graph_0_cpp_fused__mkl_linear_add_mul_relu_286": 144, "graph_0_cpp_fused_": 144, "63x": 144, "cblas_sgemm_comput": 144, "339m": 144, "94x": 144, "cpp_fused__mkl_linear_add_mul_relu_151": 144, "clrlgu27q4ggd472umdzwsu6qcpqxcuusjxqvx2hwitjbujiiz7z": 144, "in_out_ptr0": 144, "in_ptr2": 144, "in_ptr3": 144, "arrayref": 144, "omp": [144, 176], "num_thread": [144, 231, 246], "16384l": 144, "512l": 144, "loadu": 144, "tmp5": 144, "tmp7": 144, "tmp4": 144, "tmp6": 144, "tmp8": 144, "neck": 144, "arg_0": 144, "arg_1": 144, "arg_2": 144, "arg_3": 144, "arg_4": 144, "add_0": 144, "add_1": 144, "mul_1": 144, "add_2": 144, "16384": [144, 231], "inductor_func": 144, "780875144992024": 144, "9588955780491233": 144, "0286805751604735": 144, "smallest": [144, 156], "solid": 144, "analyt": [144, 260, 269], "hotspot": [144, 176, 177], "phenomenon": 144, "inductor_debug_cpu": 144, "jax": [145, 150, 205], "compute_jac": 145, "xp": 145, "jacobian_row": [145, 205], "unit_vector": 145, "rid": [145, 216], "vjp_fn": [145, 150], "ft_jacobian": 145, "argnum": 145, "millisecond": [145, 155, 187, 223, 247], "get_perf": [145, 154], "first_descriptor": [145, 154], "second_descriptor": [145, 154], "final_gain": [145, 154], "no_vmap_tim": [145, 154], "with_vmap_tim": [145, 154], "ft_jac_weight": 145, "ft_jac_bia": 145, "rigor": [145, 234], "taller": 145, "din": 145, "using_fwd": 145, "using_bwd": 145, "jacfwd_tim": 145, "jacrev_tim": 145, "hessiani": 145, "overwhelm": 145, "hess_api": 145, "hess_fwdfwd": 145, "hess_revrev": 145, "compute_batch_jacobian": 145, "batch_jacobian0": 145, "predict_with_output_sum": 145, "batch_jacobian1": 145, "movedim": 145, "compute_batch_hessian": 145, "batch_hess": 145, "hvp_revrev": 145, "result_hvp_revrev": 145, "jacobians_hessian": 145, "yuansong": 146, "feng": [146, 155], "steven": 146, "guo": 146, "cheatsheet": 146, "companion": 146, "bro": 146, "dequ": [146, 160], "framestack": 146, "ne": [146, 165, 173, 238], "nes_pi": 146, "joypadspac": 146, "gym_super_mario_bro": 146, "tube": 146, "mushroom": 146, "supermariobro": 146, "new_step_api": 146, "apply_api_compat": 146, "next_stat": [146, 160], "trunc": 146, "240": [146, 163, 238], "pipe": 146, "sky": 146, "grayscaleobserv": 146, "resizeobserv": 146, "skipfram": 146, "movement": 146, "_skip": 146, "total_reward": 146, "trunk": 146, "observationwrapp": 146, "obs_shap": 146, "observation_spac": 146, "permute_orient": 146, "antialia": 146, "num_stack": 146, "exploration_r": 146, "marionet": 146, "state_dim": 146, "dnn": [146, 238], "exploration_rate_decai": 146, "99999975": 146, "exploration_rate_min": 146, "curr_step": 146, "5e5": 146, "lazyfram": 146, "action_idx": 146, "__array__": 146, "first_if_tupl": 146, "ddqn": 146, "output_dim": 146, "__build_cnn": 146, "q_target": 146, "3136": 146, "_e": 146, "argmax_": 146, "td_target": 146, "td_estim": 146, "current_q": 146, "q_onlin": 146, "next_state_q": 146, "best_act": 146, "next_q": 146, "td_t": 146, "td_e": 146, "leftarrow": 146, "nabla": [146, 262, 271], "00025": 146, "update_q_onlin": 146, "sync_q_target": 146, "save_path": 146, "mario_net_": 146, "chkpt": 146, "burnin": 146, "1e4": 146, "learn_everi": 146, "sync_everi": 146, "td_est": 146, "td_tgt": 146, "metriclogg": 146, "save_log": 146, "episod": [146, 160, 161, 163], "meanreward": 146, "meanlength": 146, "meanloss": 146, "meanqvalu": 146, "timedelta": 146, "ep_rewards_plot": 146, "reward_plot": 146, "ep_lengths_plot": 146, "length_plot": 146, "ep_avg_losses_plot": 146, "loss_plot": 146, "ep_avg_qs_plot": 146, "q_plot": 146, "ep_reward": [146, 161, 163], "ep_length": 146, "ep_avg_loss": 146, "ep_avg_q": 146, "moving_avg_ep_reward": 146, "moving_avg_ep_length": 146, "moving_avg_ep_avg_loss": 146, "moving_avg_ep_avg_q": 146, "init_episod": 146, "record_tim": 146, "log_step": 146, "curr_ep_reward": 146, "curr_ep_length": 146, "curr_ep_loss": 146, "curr_ep_q": 146, "curr_ep_loss_length": 146, "log_episod": 146, "mean_ep_reward": 146, "mean_ep_length": 146, "mean_ep_loss": 146, "mean_ep_q": 146, "last_record_tim": 146, "time_since_last_record": 146, "8d": 146, "clf": [146, 160], "moving_avg_": 146, "_plot": 146, "flag_get": 146, "mario_rl_tutori": 146, "vitali": 147, "fedyunin": 147, "densest": 147, "4x4": 147, "10x3x16x16": 147, "memory_format": [147, 194, 199, 206, 207, 216, 218, 220, 223], "channels_last": [147, 177, 194, 199, 207, 218, 220, 223], "contiguous_format": 147, "minor": [147, 157, 163, 169, 220, 221], "ambigu": [147, 190, 191], "n1hw": 147, "contrari": [147, 156], "restrid": 147, "special_x": 147, "unintend": 147, "7603": 147, "apex": 147, "main_amp": 147, "resnet50": [147, 149, 158, 161, 176, 177, 220, 247, 253], "o2": 147, "opt_level": 147, "keep_batchnorm_fp32": 147, "nonetyp": 147, "loss_scal": 147, "cast_model_typ": 147, "patch_torch_funct": 147, "master_weight": 147, "125": [147, 238], "866": 147, "230": [147, 163, 171], "949": 147, "6735125184": 147, "6735": 147, "259": 147, "562": 147, "773": 147, "481": 147, "355": 147, "693": 147, "6968704462": 147, "6852": 147, "55": [147, 176, 197, 204, 231], "58": [147, 201, 221], "258": [147, 262, 271], "461": 147, "775": 147, "089": 147, "433": 147, "965": 147, "7877287269": 147, "7194": 147, "833": 147, "771": 147, "710": 147, "487": 147, "8285319805": 147, "7467": 147, "260": [147, 163], "380": 147, "770": 147, "090": 147, "525": 147, "908": 147, "7370464802": 147, "7447": 147, "360": 147, "623": 147, "555": 147, "728": 147, "7592862844": 147, "7472": 147, "917": 147, "345": [147, 178], "774": 147, "746": [147, 231], "115": [147, 185, 219], "9698858261": 147, "9218": 147, "324": 147, "597": 147, "659": 147, "2505953312": 147, "0879": 147, "767": [147, 223], "785": 147, "7579724789": 147, "7580": 147, "198": 147, "482": 147, "135": [147, 158, 231], "414": 147, "716": [147, 219, 231], "7007197738": 147, "7293": 147, "250": [147, 163, 238], "387": 147, "1010": 147, "516": 147, "7113101482": 147, "7233": 147, "667": 147, "197": 147, "340": 147, "1013": 147, "023": 147, "588": 147, "333": 147, "8943189979": 147, "7661": 147, "541": 147, "7113249302": 147, "9551": 147, "1011": 147, "163": 147, "683": 147, "574": 147, "8537774086": 147, "7716": 147, "279": 147, "453": 147, "7595844269": 147, "3413": 147, "429": 147, "827": 147, "743": [147, 173], "883": 147, "8196096420": 147, "4011": 147, "volta": [147, 230, 247], "mnasnet0_5": 147, "mnasnet0_75": 147, "mnasnet1_0": 147, "mnasnet1_3": 147, "mobilenet_v2": [147, 158, 178, 187, 188, 194, 206, 223, 224, 225, 228], "resnet152": 147, "resnet34": 147, "resnext50_32x4d": 147, "shufflenet_v2_x0_5": [147, 158], "shufflenet_v2_x1_0": [147, 158], "shufflenet_v2_x1_5": [147, 158], "shufflenet_v2_x2_0": [147, 158], "squeezenet1_0": 147, "squeezenet1_1": 147, "vgg11": 147, "vgg11_bn": 147, "vgg13": 147, "vgg13_bn": 147, "vgg16_bn": 147, "vgg19_bn": 147, "wide_resnet101_2": 147, "wide_resnet50_2": 147, "ic": 147, "lake": [147, 220], "densenet161": 147, "densenet169": 147, "googlenet": [147, 158, 228], "inception_v3": [147, 158], "resnext101_32x8d": [147, 158], "spite": 147, "contains_cl": 147, "print_input": 147, "check_wrapp": 147, "check_cl": 147, "was_cl": 147, "old_attr": 147, "exclude_funct": 147, "has_nam": 147, "nc11": 147, "memory_format_tutori": 147, "pytorch_lightn": 148, "lightningmodul": 148, "pl_logger": 148, "torchmetr": 148, "multiclass_accuraci": 148, "path_dataset": 148, "mnistmodel": 148, "tunabl": 148, "hidden_lay": [148, 178], "validation_step": 148, "prog_bar": 148, "configure_optim": 148, "prepare_data": 148, "mnist_train": 148, "mnist_val": 148, "run_training_job": 148, "mnist_model": 148, "enable_progress_bar": 148, "default_root_dir": 148, "tensorboardlogg": 148, "train_tim": 148, "log_metr": 148, "capture_output": 148, "val_accuraci": 148, "stitch": [149, 161, 162], "modelparallelresnet50": 149, "seq1": 149, "maxpool": [149, 157, 200], "seq2": 149, "layer4": [149, 157], "avgpool": [149, 157], "deterior": 149, "quantit": 149, "switch_backend": [149, 165], "num_repeat": 149, "mp_run_tim": 149, "mp_mean": 149, "mp_std": 149, "rn_run_tim": 149, "rn_mean": 149, "rn_std": 149, "fig_nam": 149, "yerr": 149, "center": [149, 160, 168, 229, 247], "ecolor": 149, "capsiz": 149, "set_ylabel": 149, "set_xtick": [149, 157], "mp_vs_rn": 149, "idl": [149, 161, 168], "pipelineparallelresnet50": 149, "split_siz": 149, "s_next": 149, "s_prev": 149, "pp_run_tim": 149, "pp_mean": 149, "pp_std": 149, "mp_vs_rn_vs_pp": 149, "destin": [149, 163, 212], "errorbar": 149, "ro": 149, "set_xlabel": 149, "split_size_tradeoff": 149, "prev": 149, "model_parallel_tutori": 149, "jacrev": 150, "21632": 150, "x_test": 150, "fnet_singl": 150, "j_": 150, "empirical_ntk_jacobian_contract": 150, "jac1": 150, "jac2": 150, "einsum": 150, "naf": 150, "mbf": 150, "nmab": 150, "j1": 150, "j2": 150, "diagon": 150, "einsum_expr": 150, "maf": 150, "nma": 150, "asymptot": 150, "i_o": 150, "i_": 150, "e_o": 150, "textrm": 150, "_o": 150, "empirical_ntk_ntk_vp": 150, "get_ntk": 150, "func_x1": 150, "func_x2": 150, "get_ntk_slic": 150, "nmkk": 150, "nmk": 150, "tensorfloat": 150, "sacrific": [150, 194], "allow_tf32": 150, "result_from_jacobian_contract": 150, "result_from_ntk_vp": 150, "luck": [150, 152], "neural_tangent_kernel": 150, "deprec": [151, 168, 180, 217], "homepag": [151, 180], "ooz": 152, "_might_": 152, "vit_l_16": 152, "2p": 152, "_record_memory_histori": 152, "_snapshot": 152, "memory_viz": 152, "devot": 152, "bat": 152, "2gb": [152, 158], "6gb": 152, "foreach": 152, "reveal": [152, 164, 172, 173, 229, 231], "silver": 152, "bullet": 152, "sizabl": 152, "tantamount": 152, "lora": 152, "unlock": [152, 182, 185, 216], "optimizer_dict": 152, "optimizer_hook": 152, "neat": 152, "lrschedul": [152, 251], "convinc": 152, "slate": 152, "bwd": 152, "likewis": 152, "woohoo": 152, "apart": 152, "shrunk": 152, "0gb": 152, "optimizer_step_in_backward_tutori": 152, "lezcano": 153, "surprisingli": 153, "ill": 153, "singular": [153, 164], "frobeniu": 153, "spectral": 153, "lipschitz": 153, "x\u1d40": 153, "triangular": 153, "linearsymmetr": 153, "n_featur": 153, "reimplement": [153, 156], "register_parametr": 153, "skew": [153, 168], "unparametr": 153, "nparametr": 153, "moduledict": [153, 201], "parametrizationlist": [153, 201], "weight_orig": [153, 156], "noisyparametr": 153, "caylei": 153, "cayleymap": 153, "linalg": 153, "spd": 153, "matrixexponenti": 153, "matrix_exp": 153, "layer_orthogon": 153, "layer_spd": 153, "eigvalsh": 153, "right_invers": 153, "cayley_transform": 153, "matrix_map": 153, "neg_": 153, "pruningparametr": 153, "p_drop": 153, "full_lik": [153, 189], "bernoulli": 153, "niniti": 153, "remove_parametr": 153, "unconstrain": [153, 173, 174], "parametri": 153, "leave_parametr": 153, "privaci": [154, 156], "simplecnn": 154, "compute_grad": 154, "compute_sample_grad": 154, "sample_grad": 154, "per_sample_grad": 154, "named_buff": [154, 156], "compute_loss": 154, "ft_compute_grad": 154, "ft_compute_sample_grad": 154, "ft_per_sample_grad": 154, "25x": [154, 171, 201], "second_r": 154, "first_r": 154, "opacu": 154, "tian": 155, "processgroupnccl": 155, "processgroupgloo": 155, "processgroupmpi": 155, "ucc": 155, "oneccl": [155, 247], "trainum": 155, "emerg": 155, "backenddummi": 155, "chrono": 155, "allgatheropt": 155, "allreduceopt": 155, "workdummi": 155, "optyp": 155, "recvanysourc": 155, "future_": 155, "iscomplet": 155, "issuccess": 155, "kunsettimeout": 155, "virtual": [155, 237], "getfutur": 155, "outputtensorvec": 155, "listtyp": 155, "tensortyp": 155, "markcomplet": 155, "createbackenddummi": 155, "backenddummyconstructor": 155, "__attribute__": 155, "register_backend": 155, "cpp_function": [155, 231], "libraries_dir": 155, "dummy_collect": 155, "michela": 156, "paganini": 156, "biolog": 156, "batteri": 156, "lucki": 156, "subnetwork": 156, "lotteri": 156, "ticket": 156, "destruct": [156, 177], "0a0": [156, 188, 206], "8e8a5e0": 156, "lecun": 156, "1998": 156, "nelement": 156, "unprun": 156, "basepruningmethod": 156, "adequ": [156, 159], "random_unstructur": 156, "_orig": 156, "intact": [156, 161, 244], "weight_mask": 156, "_mask": 156, "forward_pre_hook": 156, "_forward_pre_hook": 156, "l1_unstructur": 156, "bias_orig": 156, "bias_mask": 156, "pruningcontain": 156, "compute_mask": 156, "ln_structur": 156, "_tensor_nam": 156, "perman": 156, "undo": 156, "new_model": [156, 157], "global_unstructur": 156, "parameters_to_prun": 156, "pruning_method": 156, "l1unstructur": 156, "induc": 156, "apply_mask": 156, "shouldn": 156, "unstructur": 156, "preprun": 156, "pruning_typ": 156, "foobarpruningmethod": 156, "default_mask": 156, "foobar_unstructur": 156, "pruning_tutori": 156, "zafar": 157, "takhirov": 157, "initializaion": 157, "unfreez": 157, "set_ytick": 157, "nrow": 157, "best_model_wt": 157, "current_row": 157, "current_col": 157, "lbl": 157, "jdx": 157, "model_f": 157, "isol": 157, "create_combined_model": 157, "model_fe_featur": 157, "new_head": 157, "default_qat_qconfig": 157, "model_ft_tun": 157, "model_quantized_and_train": 157, "heat": 158, "sink": [158, 262, 271], "5v": 158, "sd": 158, "card": [158, 164], "8gb": 158, "arm": [158, 219, 228], "64bit": 158, "aarch64": 158, "arm64": [158, 188, 204, 206, 218, 223], "raspberrypi": 158, "raspios_arm64": 158, "rpi": 158, "internet": 158, "sdcard": 158, "start_x": 158, "128m": 158, "gpu_mem": 158, "commment": 158, "camera_auto_detect": 158, "v4l2": 158, "reboot": 158, "video4linux2": 158, "video0": 158, "picamera": 158, "36fp": 158, "30fp": 158, "framer": 158, "cv2": 158, "cap": [158, 159, 168], "videocaptur": 158, "cap_prop_frame_width": 158, "cap_prop_frame_height": 158, "cap_prop_fp": 158, "bgr": 158, "chose": [158, 230], "mobilenet_v3_larg": 158, "109": 158, "233": [158, 163], "885": [158, 219], "204": [158, 219, 231], "195": [158, 163], "132": 158, "82": [158, 197, 219], "prequant": 158, "20fp": 158, "cap_v4l2": 158, "last_log": 158, "frame_count": 158, "htop": [158, 176], "mug": 158, "allevi": 158, "repetit": [159, 231], "maximis": 159, "clipppoloss": 159, "theta_k": 159, "pi_": 159, "shift": [159, 262, 271], "lingua": 159, "franca": 159, "normalparamextractor": 159, "replaybuff": 159, "samplerwithoutreplac": 159, "lazytensorstorag": 159, "tanhnorm": 159, "max_grad_norm": 159, "sub_batch_s": 159, "inner": [159, 177, 263, 272], "cardin": 159, "clip_epsilon": 159, "entropy_ep": 159, "deepmind": [159, 166], "interchang": 159, "panel": [159, 168], "inverteddoublependulum": 159, "transmit": [159, 262, 271], "gymwrapp": 159, "loos": 159, "supplementari": 159, "told": 159, "stringent": 159, "mu_": 159, "d_ob": 159, "d_action": 159, "mu": [159, 171, 262, 271], "policy_modul": 159, "distribution_kwarg": 159, "return_log_prob": 159, "discount": [159, 160, 161], "value_net": 159, "value_modul": 159, "datacollector": 159, "multisyncdatacollector": 159, "refil": [159, 223], "max_siz": 159, "value_target": 159, "advantage_modul": 159, "average_ga": 159, "critic_network": 159, "entropy_bonu": 159, "entropy_coef": 159, "critic_coef": 159, "loss_critic_typ": 159, "smooth_l1": 159, "eval_str": 159, "tensordict_data": 159, "data_view": 159, "subdata": 159, "loss_object": 159, "loss_crit": 159, "loss_entropi": 159, "cum_reward_str": 159, "stepcount_str": 159, "lr_str": 159, "horizon": 159, "eval_rollout": 159, "videorecord": 159, "reinforcement_ppo": 159, "tower": 160, "cart": 160, "pole": 160, "attach": [160, 195, 200, 209, 213], "upright": 160, "classic_control": 160, "decorrel": 160, "replaymemori": 160, "cyclic": 160, "formul": 160, "r_": 160, "t_0": 160, "r_t": 160, "uncertain": 160, "tempor": 160, "max_a": 160, "obei": 160, "bellman": 160, "huber": 160, "noisi": [160, 231, 246], "mathcal": 160, "le": [160, 165], "mathrm": 160, "n_observ": 160, "n_action": 160, "left0exp": 160, "right0exp": 160, "select_act": [160, 161, 163], "eps_start": 160, "eps_end": 160, "eps_decai": 160, "plot_dur": 160, "underneath": 160, "policy_net": 160, "target_net": 160, "amsgrad": 160, "steps_don": 160, "eps_threshold": 160, "episode_dur": 160, "show_result": 160, "durations_t": 160, "unfold": [160, 165], "optimize_model": 160, "s_t": 160, "a_t": 160, "19343": 160, "3343043": 160, "non_final_mask": 160, "non_final_next_st": 160, "state_batch": 160, "action_batch": 160, "reward_batch": 160, "next_state_valu": 160, "expected_state_action_valu": 160, "clip_grad_value_": 160, "num_episod": [160, 161], "i_episod": [160, 161, 163], "\u03b8": 160, "\u03c4": 160, "target_net_state_dict": 160, "policy_net_state_dict": 160, "reinforcement_q_learn": 160, "unblock": 161, "callback": 161, "update_and_fetch_model": 161, "future_model": 161, "notifi": [161, 168], "batch_update_s": 161, "batchupdateparameterserv": 161, "curr_update_s": 161, "ps_rref": 161, "setti": 161, "set_result": 161, "get_worker_info": [161, 163], "543": 161, "affine1": [161, 163], "affine2": [161, 163], "action_scor": [161, 163], "select_action_batch": 161, "run_episod": [161, 163], "agent_rref": [161, 163], "start_step": 161, "curr_reward": 161, "saved_log_prob": [161, 163], "rob": 161, "ob_rref": [161, 163], "running_reward": [161, 163], "ob_rank": [161, 163], "ob_info": [161, 163], "observer_nam": [161, 163], "future_act": 161, "pending_st": 161, "select_acion": 161, "ob_id": [161, 163], "oberv": [161, 163], "policy_loss": [161, 163], "n_episod": 161, "print_log": 161, "rank0": [161, 163], "agent_nam": [161, 163], "tlast": [161, 163], "taverag": [161, 163], "next_devic": 162, "call_method": 162, "remote_method": 162, "foo_inst": 162, "parameterserv": 162, "input_devic": 162, "intention": [162, 163, 212], "miscellan": 162, "get_dist_gradi": 162, "get_gradi": 162, "get_param_rref": 162, "cid": 162, "cpu_grad": 162, "k_cpu": 162, "v_cpu": 162, "paramt": 162, "param_rref": [162, 163], "run_parameter_serv": 162, "param_serv": 162, "global_lock": 162, "get_parameter_serv": 162, "parameter_serv": 162, "offlin": 162, "trainernet": 162, "param_server_rref": 162, "get_global_param_rref": 162, "paramat": 162, "run_training_loop": 162, "nueral": 162, "get_accuraci": 162, "correct_sum": 162, "trainer_": 162, "traffic": [162, 176], "listen": [162, 213], "subprocess": [162, 231, 247], "rpc_parameter_serv": 162, "solver": 163, "formatter_class": 163, "argumentdefaultshelpformatt": 163, "report_reward": 163, "_max_episode_step": 163, "finfo": 163, "reward_threshold": 163, "finish_episod": 163, "min_reward": 163, "distinguish": [163, 169], "surpass": 163, "ctrl": 163, "131": 163, "130": [163, 219], "137": 163, "140": 163, "104": 163, "170": [163, 178], "126": [163, 173], "180": [163, 173, 174, 219, 231], "213": 163, "322": [163, 219], "165": 163, "272": [163, 219], "210": 163, "168": [163, 173], "184": [163, 185], "208": [163, 171, 229], "270": [163, 171], "405": 163, "280": 163, "290": 163, "464": 163, "3163778435275": 163, "vehicl": 163, "rnnmodel": 163, "emb_table_rref": 163, "decoder_rref": 163, "_remote_method": 163, "rremot": 163, "_parameter_rref": 163, "run_train": 163, "nindic": 163, "driss": 164, "guessou": 164, "flashattent": 164, "benchmark_torch_function_in_microsecond": [164, 210], "max_sequence_len": 164, "embed_dimens": 164, "sdpbackend": 164, "sdpa_kernel": 164, "math_tim": 164, "flash_attent": 164, "flash_tim": 164, "flash": [164, 184], "efficient_attent": 164, "efficient_tim": 164, "efficientattent": 164, "andrej": 164, "karpathi": 164, "nanogpt": 164, "causalselfattent": 164, "is_caus": [164, 193], "c_attn": 164, "c_proj": 164, "resid_dropout": 164, "query_project": 164, "head_dim": 164, "attn_mask": 164, "dropout_p": [164, 165, 193], "heads_per_dim": 164, "generate_rand_batch": 164, "pad_percentag": 164, "seq_len_list": 164, "gauss": 164, "nested_tensor": [164, 193], "random_nt": 164, "random_dens": 164, "nt": [164, 193], "166": 164, "616": 164, "726": 164, "amaz": 164, "record_shap": [164, 168, 238], "compili": 164, "cuda_time_tot": [164, 238], "compiled_causal_attention_trac": 164, "concentr": 164, "6090": 164, "49m": 164, "3273": 164, "17m": 164, "commit": [164, 196, 207], "ae3a8d5": 164, "causal_upper_left": 164, "causal_lower_right": 164, "sequence_length_q": 164, "sequence_length_kv": 164, "upper_left_bia": 164, "lower_right_bia": 164, "issubclass": 164, "causalbia": 164, "corner": 164, "attn_scor": 164, "out_upper_left": 164, "out_lower_right": 164, "out_is_caus": 164, "compiled_sdpa": 164, "scaled_dot_product_attention_tutori": 164, "french": 165, "il": 165, "est": [165, 168, 265, 274], "peindr": 165, "tableau": 165, "paint": 165, "pourquoi": 165, "pa": 165, "essay": 165, "vin": 165, "delicieux": 165, "delici": 165, "wine": 165, "poet": 165, "romancier": 165, "novelist": 165, "vou": 165, "trop": 165, "maigr": 165, "skinni": 165, "condens": [165, 209, 246], "phrase": [165, 262, 271], "\u5b57\u7b26\u7ea7": 165, "__future__": [165, 171, 237, 244], "unicode_liter": 165, "print_funct": 165, "manyth": 165, "anki": 165, "fra": 165, "froid": 165, "lang": [165, 208, 261, 270], "n_word": [165, 252], "readlang": 165, "lang1": 165, "lang2": 165, "input_lang": [165, 252], "output_lang": [165, 252], "apostroph": 165, "eng_prefix": 165, "preparedata": 165, "je": 165, "sui": 165, "noir": 165, "decoderrnn": 165, "target_tensor": 165, "forward_step": 165, "burden": [165, 247], "attn_appli": 165, "bahdanauattent": 165, "ua": 165, "va": 165, "attndecoderrnn": [165, 252], "input_gru": 165, "tensorfromsent": 165, "tensorsfrompair": 165, "get_dataload": 165, "inp_id": 165, "tgt_id": 165, "exhibit": [165, 247], "coher": 165, "grammar": 165, "wander": 165, "asminut": 165, "es": 165, "n_epoch": 165, "plot_loss": 165, "print_loss_tot": 165, "plot_loss_tot": 165, "plot_loss_avg": 165, "showplot": 165, "decoder_attn": 165, "decoded_id": 165, "judgement": 165, "evaluaterandomli": 165, "showattent": 165, "bone": 165, "evaluateandshowattent": 165, "aussi": 165, "grand": 165, "son": 165, "pere": 165, "fatigu": 165, "pour": 165, "conduir": 165, "desol": 165, "idiot": 165, "reellement": 165, "fier": 165, "iot": 165, "word2vec": 165, "glove": 165, "autoencod": 165, "seq2seq_translation_tutori": 165, "ghassen": 166, "hamrouni": 166, "geometr": 166, "invari": [166, 190], "urllib": 166, "build_open": 166, "addhead": 166, "mozilla": 166, "install_open": 166, "boil": 166, "affine_grid": 166, "grid_sampl": 166, "conv2_drop": [166, 221], "regressor": 166, "fc_loc": 166, "size_averag": 166, "convert_image_np": 166, "visualize_stn": 166, "transformed_input_tensor": 166, "in_grid": 166, "out_grid": 166, "axarr": 166, "spatial_transformer_tutori": 166, "speech_recognition_pipeline_tutori": 167, "tensorboard_trace_handl": 168, "batch_data": [168, 171], "torch_tb_profil": 168, "safari": 168, "pytorch_profil": 168, "breakdown": 168, "dropdown": 168, "callstack": 168, "multiprocessor": 168, "occup": 168, "tooltip": 168, "toolbar": 168, "keyboard": [168, 262, 271], "mous": [168, 262, 271], "resnet18_4work": 168, "76m": [168, 182], "132m": 168, "torchtbprofil": 168, "memory_demo_1_10": 168, "gpu0": 168, "distributed_bert": 168, "rocm": 168, "docker": [168, 257], "profiler_tutori": 168, "test_cifar10": 168, "vi": [168, 262, 271], "kfd": 168, "sys_ptrac": 168, "seccomp": 168, "unconfin": 168, "shm": [168, 212], "8g": 168, "apt": [168, 171, 208], "libjpeg": 168, "rocm5": 168, "scp": 168, "tensorboard_profiler_tutori": 168, "plot_classes_pr": 169, "four_fashion_mnist_imag": 169, "datapoint": 169, "night": [169, 263, 272], "thoroughli": 169, "clearer": 169, "images_to_prob": 169, "preds_tensor": 169, "el": 169, "add_figur": 169, "global_step": [169, 245], "scroll": [169, 260, 264, 269, 273], "test_siz": 169, "class_prob": 169, "class_probs_batch": 169, "test_prob": 169, "test_label": 169, "add_pr_curve_tensorboard": 169, "class_index": 169, "tensorboard_truth": 169, "tensorboard_prob": 169, "add_pr_curv": 169, "poke": 169, "tacotron2_pipeline_tutori": 170, "wsi": 171, "tissu": 171, "biopsi": 171, "scanner": 171, "pathologist": 171, "cancer": 171, "microscop": 171, "tumor": 171, "000x100": 171, "25x0": 171, "micron": 171, "pyramid": 171, "magnif": 171, "sketch": 171, "histoencod": 171, "jopo666": 171, "openjpeg": 171, "openslid": 171, "pixman": 171, "qq": 171, "libopenjp2": 171, "libpixman": 171, "echo": [171, 208, 262, 271], "brew": 171, "hashandl": 171, "nopython": 171, "shutil": 171, "zipfil": 171, "mpl": 171, "cm": 171, "accuracy_scor": 171, "confusion_matrix": 171, "patch_predictor": 171, "iopatchpredictorconfig": 171, "misc": 171, "download_data": 171, "grab_files_from_dir": 171, "overlay_prediction_mask": 171, "wsicor": 171, "wsiread": 171, "rcparam": 171, "dpi": 171, "facecolor": 171, "dark": 171, "on_gpu": 171, "suppress": 171, "overli": 171, "suppress_console_output": 171, "redirect_stderr": 171, "stringio": 171, "abnorm": [171, 226], "global_save_dir": 171, "mainten": 171, "rmdir": 171, "dir_path": 171, "is_dir": 171, "rmtree": 171, "kather": 171, "100k": 171, "wsi_path": 171, "sample_wsi": 171, "sv": 171, "patches_path": 171, "kather100k": 171, "weights_path": 171, "dc": 171, "warwick": 171, "uk": 171, "tcga": 171, "3l": 171, "aa1b": 171, "01z": 171, "dx1": 171, "8923a151": 171, "a690": 171, "40b7": 171, "9e5a": 171, "fcbedfc2394f": 171, "extractal": 171, "pc": 171, "patch_list": 171, "dataset_path": 171, "image_ext": 171, "tif": 171, "label_dict": 171, "glass": 171, "mucosa": 171, "deb": 171, "debri": 171, "tum": 171, "colorect": 171, "adenocarcinoma": 171, "epithelium": 171, "adi": 171, "adipos": 171, "muc": 171, "mucu": 171, "stroma": 171, "lym": 171, "lymphocyt": 171, "dataset_class_path": 171, "patch_list_single_class": 171, "file_typ": 171, "299": 171, "211": [171, 219, 238], "176": 171, "178": 171, "209": 171, "232": [171, 231], "modelabc": 171, "tia": 171, "toolbox": 171, "readthedoc": 171, "_autosummari": 171, "models_abc": 171, "preproc_func": 171, "predictor": [171, 178], "pretrained_weight": 171, "cnnmodel": 171, "conf": [171, 221, 260, 267, 269, 276], "df_cm": 171, "215": [171, 177], "993000": 171, "000000": 171, "00000": 171, "988636": 171, "011364": 171, "991304": 171, "008696": 171, "996503": 171, "003497": 171, "004808": 171, "990385": 171, "988764": 171, "011236": 171, "996296": 171, "003704": 171, "004785": 171, "985646": 171, "004310": 171, "99569": 171, "input_resolut": 171, "patch_input_shap": 171, "stride_shap": 171, "wsi_ioconfig": 171, "mpp": 171, "return_prob": 171, "ioconfig": 171, "merge_predict": 171, "wsi_output": 171, "wsi_predict": 171, "overlai": 171, "overlay_patch_predict": 171, "overview_resolut": 171, "overview_unit": 171, "wsi_overview": 171, "slide_thumbnail": 171, "label_color_dict": 171, "get_cmap": 171, "set1": 171, "pred_map": 171, "label_info": 171, "return_ax": 171, "histolog": 171, "pohjonen": 171, "joona": 171, "helsinki": 171, "umap": 171, "semantic_segmentor": 171, "deepfeatureextractor": 171, "iosegmentorconfig": 171, "histoencwrapp": 171, "histoenc": 171, "feat_extract": 171, "extract_featur": 171, "num_block": 171, "avg_pool": 171, "infer_batch": 171, "img_patches_devic": 171, "create_encod": 171, "prostate_medium": 171, "662": 171, "446": 171, "605": 171, "169": [171, 219], "155": [171, 173], "output_resolut": 171, "patch_output_shap": 171, "auto_generate_mask": 171, "otsu": 171, "num_loader_work": 171, "num_postproc_work": 171, "wsi_featur": 171, "umap_reduc": 171, "n_neighbor": 171, "n_compon": 171, "manhattan": 171, "random_st": 171, "fit_transform": 171, "npy": 171, "5mpp": 171, "4mpp": 171, "william": [172, 173, 174], "wen": [172, 173, 174], "modern": [172, 187, 194], "h100": 172, "elsewher": 172, "gpu_ok": 172, "device_cap": 172, "get_device_cap": [172, 210, 211, 255], "torchinductor": [172, 186, 199], "torchtriton": 172, "cu117": 172, "opt_foo1": 172, "opt_foo2": 172, "opt_mod": 172, "generate_data": 172, "init_model": 172, "model_opt": 172, "eager_tim": 172, "compile_tim": 172, "eager_m": 172, "compile_m": 172, "train_opt": 172, "dashboard": [172, 245], "struggl": 172, "fn1": 172, "fn2": 172, "test_fn": 172, "out1": [172, 234], "out2": [172, 234], "inp1": [172, 173, 174], "inp2": [172, 173, 174], "traced_f1": 172, "print_exc": [172, 173, 174], "fx_f1": 172, "concrete_arg": 172, "compile_f1": 172, "f2": 172, "script_f2": 172, "compile_f2": 172, "f3": 172, "dct": 172, "traced_f3": 172, "disallow": 172, "compile_f3": 172, "unoptim": 172, "custom_backend": 172, "example_input": [172, 179, 181, 182, 183, 197, 198, 199, 200, 247], "print_tabular": 172, "opt_model": 172, "opt_bar": 172, "resum": [172, 198, 214, 241], "explain_output": 172, "torch_compile_tutori": 172, "zhengxu": [173, 174], "angela": [173, 174], "exportedprogram": [173, 174, 197], "synonym": [173, 174], "dynamic_shap": [173, 174], "exportedgraph": [173, 174], "exported_mod": [173, 174], "exported_program": 173, "2178": 173, "4397": 173, "4774": 173, "0943": [173, 185], "4656": 173, "8333": 173, "5912": 173, "4689": 173, "2122": 173, "1996": 173, "4628": 173, "7495": 173, "3900": 173, "4515": 173, "8187": 173, "8938": 173, "5753": 173, "7709": 173, "8081": 173, "8002": 173, "9441": 173, "5711": 173, "0921": [173, 201], "3438": 173, "3268": 173, "4640": 173, "2434": 173, "7253": 173, "6886": 173, "6982": 173, "5100": [173, 246], "2279": 173, "2951": 173, "1055": 173, "2088": 173, "5022": 173, "1468": [173, 231], "5220": 173, "1592": 173, "9096": 173, "4248": 173, "2142": 173, "relubackward0": 173, "graph_modul": [173, 174], "f32": 173, "arg2_1": 173, "arg3_1": 173, "torch_export_nightly_tutori": 173, "exportgraphsignatur": 173, "inputspec": 173, "inputkind": 173, "tensorargu": 173, "user_input": 173, "outputspec": 173, "outputkind": 173, "user_output": 173, "graph_signatur": [173, 174], "range_constraint": [173, 174], "equality_constraint": 173, "inputs_to_paramet": 173, "inputs_to_buff": 173, "buffers_to_mut": 173, "backward_signatur": 173, "assertion_dep_token": 173, "bad1": [173, 174], "usererror": 173, "control_flow": [173, 174], "cond": [173, 174], "bad2": [173, 174], "ban": 173, "aot_export": 173, "bad3": [173, 174], "call_id": 173, "tensorvari": 173, "bad4": [173, 174], "builtinvari": 173, "constantvari": 173, "bad1_fix": 173, "true_fn": [173, 174], "false_fn": [173, 174], "exported_bad1_fix": [173, 174], "8415": 173, "5403": 173, "predic": [173, 174], "operand": [173, 174], "mymodule2": [173, 174], "mod2": [173, 174], "exported_mod2": [173, 174], "dynamic_shapes_example1": 173, "inp1_dim0": [173, 174], "inp1_dim1": [173, 174], "dynamic_shapes1": [173, 174], "exported_dynamic_shapes_example1": [173, 174], "0828": 173, "8190": 173, "0037": 173, "0221": 173, "0898": 173, "8182": 173, "9165": 173, "3572": 173, "7422": 173, "4423": 173, "2497": 173, "1912": 173, "0522": 173, "4442": 173, "4188": 173, "8161": 173, "inp1_dim1_bad": [173, 174], "dynamic_shapes1_bad": [173, 174], "inp3": [173, 174], "dynamic_shapes_example2": 173, "inp2_dim0": [173, 174], "inner_dim": [173, 174], "inp3_dim1": [173, 174], "dynamic_shapes2": [173, 174], "exported_dynamic_shapes_example2": [173, 174], "5352": 173, "3836": 173, "8961": 173, "3412": 173, "3891": 173, "4326": 173, "1697": [173, 258], "inp4": [173, 174], "inp5": [173, 174], "dynamic_shapes_example3": [173, 174], "dynamic_shapes3": [173, 174], "inp4_dim": [173, 174], "inp5_dim": [173, 174], "violat": 173, "inp4_dim0": [173, 174], "inp5_dim0": [173, 174], "inp5_dim1": [173, 174], "torch_log": [173, 174, 251], "inp4_dim1": [173, 174], "suggested_fix": [173, 174], "shared_dim": [173, 174], "dynamic_shapes3_fix": [173, 174], "exported_dynamic_shapes_example3": [173, 174], "1510": 173, "1174": 173, "5075": 173, "3566": 173, "2102": 173, "2033": 173, "3611": 173, "9041": 173, "2987": 173, "5751": 173, "1508": 173, "4470": 173, "2460": 173, "9288": 173, "1764": 173, "5879": 173, "5107": 173, "0845": 173, "3962": 173, "4359": 173, "2877": 173, "2839": 173, "3742": 173, "5569": 173, "0485": 173, "1028": 173, "4692": 173, "3837": 173, "8744": 173, "4191": 173, "9387": 173, "8480": 173, "9857": 173, "7783": 173, "2220": 173, "5934": 173, "9793": 173, "1118": 173, "9817": 173, "6156": 173, "2070": 173, "6976": 173, "8177": 173, "4002": 173, "3291": 173, "0860": 173, "7406": 173, "6509": 173, "1847": 173, "6311": 173, "8144": 173, "0439": 173, "9141": 173, "8778": 173, "5971": 173, "8781": 173, "1364": 173, "3096": 173, "0822": 173, "0587": 173, "3681": 173, "_log": [173, 174, 211, 255], "set_log": [173, 174, 211, 255], "657": 173, "symbolic_convert": 173, "374": 173, "658": 173, "symbolic_shap": 173, "create_env": 173, "663": 173, "create_symbol": 173, "s0": 173, "665": 173, "s1": [173, 192], "9223372036854775806": 173, "677": [173, 184], "680": 173, "734": [173, 238], "_meta_registr": 173, "1891": 173, "meta_mm": 173, "738": 173, "return_valu": 173, "output_graph": 173, "dynamo_normalization_capturing_compil": 173, "747": [173, 210], "produce_guard": 173, "839": 173, "eval_fram": 173, "847": 173, "rangeconstraint": 173, "min_val": 173, "max_val": 173, "inputdim": 173, "my_custom_librari": [173, 174], "compositeexplicitautograd": [173, 174], "custom_op_meta": [173, 174], "custom_op_exampl": 173, "exported_custom_op_exampl": [173, 174], "print_read": [173, 174], "5947": 173, "8062": 173, "6231": 173, "6615": 173, "5412": 173, "evidenc": [173, 174], "_schema": [173, 174], "is_mut": [173, 174], "run_decomposit": [173, 174], "decomposition_t": [173, 174], "_op": [173, 174], "operatorbas": [173, 174], "core_ir_ep": [173, 174], "num_us": 173, "placehold": 173, "get_decomposit": [173, 174], "_decomp": [173, 174], "decomp_t": [173, 174], "cond_pred": [173, 174], "stronger": 174, "safeti": 174, "bad2_nonstrict": 174, "bad3_nonstrict": 174, "bad4_nonstrict": 174, "bad1fix": 174, "dynamicshapesexample1": 174, "dynamicshapesexample2": 174, "deriveddimexample1": 174, "dimx": 174, "dimi": 174, "derived_dynamic_shapes1": 174, "derived_dim_example1": 174, "deriveddimexample2": 174, "dz": 174, "dy": 174, "derived_dynamic_shapes2": 174, "derived_dim_example2": 174, "dynamicshapesexample3": 174, "customopexampl": 174, "aotinductor": 174, "tensorrt": [174, 179], "so_path": 174, "aot_compil": 174, "compiler_aot_inductor": 174, "aot_load": 174, "torch_export_tutori": 174, "dlrm": [175, 247], "dmp": 175, "datastructur": 175, "k80": 175, "appripri": 175, "product_t": 175, "user_t": 175, "101": 175, "202": 175, "303": 175, "product_eb": 175, "jag": [175, 193], "404": 175, "505": 175, "606": 175, "keyedtensor": 175, "3x64": 175, "pooled_embed": 175, "criteo": 175, "terabyt": 175, "jean": [176, 177], "saroufim": [176, 177], "ashok": [176, 177], "emani": [176, 177], "tl": [176, 185, 254], "dr": [176, 185], "numa": [176, 177], "upi": 176, "fma": [176, 177], "hyperthread": 176, "contend": 176, "ultra": 176, "cpu_launcher_en": [176, 177], "toepliz": 176, "toggl": [176, 258], "use_logical_cor": 176, "vtune": [176, 251], "8180m": 176, "omp_num_thread": [176, 247], "982": 176, "__kmp_fork_barri": 176, "589": 176, "neglig": 176, "887": 176, "530": 176, "lscpu": 176, "112": [176, 185, 204, 238], "llc": [176, 177], "asid": 176, "get_num_thread": [176, 231], "node_id": [176, 177], "base_handl": 176, "56x4": 176, "affinit": [176, 177], "amplifi": 176, "slot": 176, "uop": [176, 177], "__sched_yield": 176, "disassoci": 176, "exacerb": 176, "core_51": 176, "8180": 176, "tid": 176, "97097": 176, "cpu_81": 176, "cpu_14": 176, "cpu_5": 176, "cpu_70": 176, "cpu_100": 176, "cpu_24": 176, "num_physical_cor": 176, "94290": 176, "cpu_78": 176, "cpu_108": 176, "microarchitectur": 176, "onednn": [176, 177, 199, 207, 219, 220, 226], "immens": [176, 177], "ning": [176, 177], "jing": [176, 177], "xu": [176, 177, 187, 188], "20x": 177, "toplev": 177, "pmu": 177, "mispredict": 177, "hierarch": 177, "retir": 177, "specul": 177, "cancel": [177, 231, 247], "untun": 177, "subsystem": 177, "l3": 177, "dram": 177, "starv": 177, "wll": 177, "uncomplet": 177, "oneapi": [177, 226], "deconvolut": [177, 229], "emit_itt": [177, 226], "intel_extension_for_pytorch": [177, 220, 253], "ipex_en": 177, "submetr": 177, "spinlock": 177, "arena": 177, "enable_tcmalloc": 177, "enable_jemalloc": 177, "use_default_alloc": 177, "range_push": [177, 226], "step_": 177, "range_pop": [177, 226], "step_x": 177, "step_99": 177, "308": 177, "261": 177, "843": 177, "8960": 177, "cpu_launcher_arg": 177, "688": 177, "251": 177, "401": 177, "392": [177, 210], "bf16": [177, 184, 199, 207, 219], "ipex": [177, 220, 251, 253], "8x": 177, "851": 177, "310": [177, 231], "7x": [177, 184], "803": 177, "248": 177, "eltwis": 177, "elementwis": [177, 247, 255], "nhwc": [177, 194, 220, 223], "disable_auto_channels_last": 177, "reorder": [177, 207, 219, 226, 247], "731": [177, 256], "634": 177, "fudan": 178, "databas": 178, "pedestrian": 178, "keypoint": 178, "tv_tensor": 178, "boundingbox": 178, "x0": 178, "y0": 178, "image_id": 178, "iscrowd": 178, "compliant": 178, "pycocotool": 178, "gautamchitni": 178, "cocoapi": 178, "cocodataset": 178, "pythonapi": 178, "get_height_and_width": 178, "ci": 178, "upenn": 178, "jshi": 178, "ped_html": 178, "pennfudanp": 178, "pedmask": 178, "fudanped00001_mask": 178, "fudanped00002_mask": 178, "fudanped00003_mask": 178, "fudanped00004_mask": 178, "pngimag": 178, "fudanped00001": 178, "fudanped00002": 178, "fudanped00003": 178, "fudanped00004": 178, "fudanped00046": 178, "fudanped00046_mask": 178, "122": [178, 238], "tvtensor": 178, "masks_to_box": 178, "pennfudandataset": 178, "listdir": 178, "mask_path": 178, "obj_id": 178, "num_obj": 178, "crowd": 178, "xyxi": 178, "canvas_s": 178, "get_siz": 178, "zoo": 178, "faster_rcnn": 178, "fastrcnnpredictor": 178, "fasterrcnn_resnet50_fpn": 178, "roi_head": 178, "box_predictor": 178, "cls_score": 178, "fasterrcnn": 178, "rpn": 178, "anchorgener": 178, "anchor": 178, "anchor_gener": 178, "aspect_ratio": 178, "featmap_nam": 178, "roi_pool": 178, "multiscaleroialign": 178, "sampling_ratio": 178, "rcnn": 178, "rpn_anchor_gener": 178, "box_roi_pool": 178, "mask_rcnn": 178, "maskrcnnpredictor": 178, "get_model_instance_segment": 178, "maskrcnn_resnet50_fpn": 178, "in_features_mask": 178, "mask_predictor": 178, "conv5_mask": 178, "coco_util": 178, "coco_ev": 178, "get_transform": 178, "todtyp": 178, "topuretensor": 178, "print_freq": 178, "draw_bounding_box": 178, "draw_segmentation_mask": 178, "eval_transform": 178, "rgba": 178, "pred_label": 178, "pred_box": 178, "output_imag": 178, "train2017": 178, "prepare_fx": [179, 181, 182, 183], "convert_fx": [179, 181, 182, 183], "default_weight_observ": 179, "get_default_qconfig_map": 179, "minmaxobserv": [179, 200], "backend_config": 179, "backendpatternconfig": 179, "dtypewithconstraint": 179, "observationtyp": 179, "quantize_fx": [179, 181, 182], "fp32_linear": 179, "quant1": 179, "dequant1": 179, "quant2": 179, "dequant2": 179, "bracket": [179, 262, 271], "fp32_conv_relu": 179, "quint8_with_constraint": 179, "quant_min_lower_bound": 179, "quant_max_upper_bound": 179, "scale_min_lower_bound": 179, "weighted_int8_dtype_config": 179, "input_dtyp": 179, "output_dtyp": 179, "weight_dtyp": 179, "bias_dtyp": 179, "fuse_conv2d_relu": 179, "convrelu2d": [179, 182], "linear_config": 179, "set_pattern": 179, "set_observation_typ": 179, "output_use_different_observer_as_input": 179, "add_dtype_config": 179, "set_root_modul": 179, "set_qat_modul": 179, "set_reference_quantized_modul": 179, "conv_relu_config": 179, "set_fused_modul": 179, "set_fuser_method": 179, "fused_conv_relu_config": 179, "my_backend": 179, "set_backend_pattern_config": 179, "quant_max": [179, 200], "activation_observ": 179, "with_arg": [179, 200], "quant_min": [179, 200], "qconfig_map": [179, 181, 182, 183], "set_object_typ": [179, 181, 182, 197], "use_bn": 179, "quantizedlinear": 179, "012136868201196194": 179, "zero_point": [179, 185, 200], "qscheme": [179, 200], "per_tensor_affin": [179, 200], "quantizedconvrelu2d": 179, "0029353597201406956": 179, "linear_input_scale_0": 179, "linear_input_zero_point_0": 179, "quantize_per_tensor": [179, 185, 197, 221], "dequantize_2": 179, "015307803638279438": 179, "dequantize_1": 179, "get_fbgemm_backend_config": 179, "get_qnnpack_backend_config": 179, "get_native_backend_config": 179, "rfc": [179, 190, 262, 271], "0019": [179, 185], "tldr": [181, 182], "default_dynamic_qconfig": [181, 185], "qconfigmap": [181, 183, 197, 200], "release": 181, "set_glob": [181, 182, 183, 197, 198, 199], "prepared_model": [181, 182, 197, 198, 199], "metamind": 181, "asset": [181, 206, 208, 224], "lstm_model": 181, "float_qparams_weight_only_qconfig": 181, "model_to_quant": [181, 182, 197], "forunct": 181, "fx_graph_mode_ptq_dynam": 181, "charl": 182, "hernandez": 182, "traceabl": 182, "identitc": [182, 197], "resnet18_pretrained_float": [182, 197, 198], "fuse_fx": 182, "recursivescriptmodul": [182, 185, 197, 198], "qconfig_opt": [182, 197], "set_module_name_regex": 182, "set_module_nam": [182, 197], "set_module_name_object_type_ord": 182, "object_typ": 182, "module_name_regex": 182, "module_nam": 182, "serila": [182, 197], "fx_graph_mode_model_file_path": 182, "resnet18_fx_graph_mode_quant": 182, "erro": 182, "convrelu": 182, "moduleattributeerror": 182, "_modul": 182, "conv1_weight_after_fus": 182, "conv1_weight_after_qu": 182, "resnet18_script": [182, 197], "eager_quantized_model": 182, "eager_mode_model_fil": 182, "resnet18_eager_mode_quant": 182, "aibench": 182, "192": 182, "48m": 182, "63m": 182, "non_traceable_code_1": 183, "traceable_cod": 183, "non_traceable_code_2": 183, "fp32traceabl": 183, "traceable_submodul": 183, "traceable_code_1": 183, "traceable_code_2": 183, "model_fp32": 183, "non_traceable_cod": 183, "fp32nontrac": 183, "non_traceable_submodul": 183, "prepare_custom_config_dict": 183, "non_traceable_module_nam": 183, "non_traceable_module_class": 183, "mnontrac": 183, "model_prepar": 183, "transpose_for_scor": 183, "new_x_shap": 183, "num_attention_head": 183, "attention_head_s": 183, "custommodul": 183, "observednontrac": 183, "from_float": 183, "from_observ": 183, "staticquantnontrac": 183, "float_to_observed_custom_module_class": 183, "convert_custom_config_dict": 183, "observed_to_quantized_custom_module_class": 183, "model_quant": [183, 224, 225, 228, 252], "thee": 183, "dynamicquantnontrac": 183, "weightonlyquantmnontrac": 183, "test_custom_module_class": 183, "test_quantize_fx": 183, "hdcharl": 184, "pg509": 184, "330": 184, "myenv": 184, "cu121": 184, "vit_h": 184, "segment_anyth": 184, "sam_vit_h_4b8939": 184, "sam_checkpoint_base_path": 184, "change_linear_weights_to_int8_dqtensor": 184, "sam_model_registri": 184, "batchsiz": 184, "only_one_block": 184, "adaptive_autorang": 184, "min_run_tim": [184, 231, 246], "max_run_tim": 184, "1e9": 184, "get_sam_model": 184, "sam": 184, "image_encod": 184, "fp32_re": 184, "16m": 184, "33gb": 184, "instant": 184, "protect": [184, 208, 222, 223], "bf16_re": 184, "43m": 184, "17gb": 184, "autotun": [184, 247, 254], "comp_r": 184, "95m": 184, "24gb": 184, "int4": 184, "change_linear_weights_to_int8_woqtensor": 184, "change_linear_weights_to_int4_woqtensor": 184, "apply_dynamic_qu": 184, "apply_weight_only_int8_qu": 184, "change_linear_weight": 184, "quant_r": 184, "04m": 184, "58gb": 184, "force_fuse_int_mm_with_mul": 184, "78m": 184, "37gb": 184, "unquant": [184, 200], "epilogu": 184, "enlarg": 184, "epilogue_fus": 184, "coordinate_descent_tun": 184, "coordinate_descent_check_all_direct": 184, "39gb": 184, "10x": [184, 207], "729": 184, "65m": 184, "96gb": 184, "28m": 184, "93gb": 184, "gpu_quantization_torchao_tutori": 184, "supriya": 185, "rao": 185, "per_channel_dynamic_qconfig": 185, "quantize_dynamic_jit": 185, "ts_model": 185, "installaion": 185, "necesessari": 185, "lenght": 185, "qconfig_glob": 185, "qconfig_sub": 185, "qconfig_fc": 185, "242141": 185, "354759": 185, "188": [185, 231], "157": 185, "4s": 185, "quantized_model_debug": 185, "prepare_dynamic_jit": 185, "convert_dynamic_jit": 185, "406429": 185, "897": 185, "113": 185, "4_scale_0": 185, "114": 185, "4_zero_point_0": 185, "4_axis_0": 185, "4_scalar_type_0": 185, "quantize_per_channel": 185, "1640": 185, "_choose_qparams_per_tensor": 185, "98304": 185, "linear_dynam": 185, "_c": [185, 187, 244, 247], "0157": 185, "0257": 185, "0269": 185, "0158": 185, "0764": 185, "0548": 185, "0325": 185, "0423": 185, "0528": 185, "1382": 185, "0069": 185, "0106": 185, "0113": 185, "0275": 185, "0253": 185, "0457": 185, "0090": 185, "0512": 185, "0555": 185, "0277": 185, "0543": 185, "0539": 185, "0619": 185, "1040": 185, "0598": [185, 201], "0465": 185, "0009": 185, "0949": 185, "0097": 185, "0183": 185, "0085": 185, "clonebackward": 185, "0011": 185, "0010": 185, "0034": 185, "0013": 185, "0012": 185, "0015": 185, "0016": 185, "0036": 185, "0014": 185, "0008": 185, "0023": 185, "0018": 185, "0031": 185, "0022": 185, "0024": 185, "016605": 185, "182": 185, "878029": 185, "jit_model_path_float": 185, "jit_model_path_eag": 185, "jit_model_path_graph": 185, "chunyuan": 186, "bao": 186, "cpp_wrapper": [186, 199], "opt_fn": 186, "assert_size_strid": 186, "empty_strid": [186, 206, 238], "cpp_fused_add_lift_fresh_0": 186, "c_void_p": 186, "constant0": 186, "inductor_entry_cpp": 186, "19l": 186, "cppwrappercodecach": 186, "cpp_wrapper_src": 186, "c2buojsvlqbywxe3itb43hldieh4jqulk72iswa2awalwev7hjn2": 186, "_wrap_func": 186, "args_tensor": 186, "constants_tensor": 186, "_deviceguard": 186, "lift_fresh": 186, "stream0": 186, "get_cuda_stream": 186, "triton_poi_fused_add_lift_fresh_0": 186, "run_intermediate_hook": 186, "cudaguard": 186, "device_guard": 186, "loadkernel": 186, "torchinductor_us": 186, "cmm6xjgijjffxjku4akv55eyzibirvw6bti6uqmfnruujm5cvvmw": 186, "cubin": 186, "triton_poi_fused_add_lift_fresh_0_0d1d2d3": 186, "cudeviceptr": 186, "var_0": 186, "reinterpret_cast": [186, 208], "var_1": 186, "var_2": 186, "var_3": 186, "kernel_args_var_0": 186, "cudastream_t": 186, "getcurrentcudastream": 186, "launchkernel": 186, "czbpeilh4qqmbyejdgsbpdfuk2ss5jigl2qjb7xs4gearrjvuwem": 186, "tao": [187, 188], "solidifi": [187, 194], "coremltool": 187, "0b5": 187, "to_backend": 187, "_coreml": 187, "compilespec": 187, "coremlcomputeunit": 187, "mobilenetv2_spec": 187, "allow_low_precis": 187, "compile_spec": 187, "_jit_to_backend": 187, "coreml": 187, "mobilenetv2_coreml": 187, "cpuandgpu": 187, "mil": 187, "385": 187, "1496": 187, "anaconda3": 187, "name_sanitization_util": 187, "userwarn": [187, 189, 190, 191, 192], "647": 187, "var_647": 187, "new_nam": 187, "138": 187, "495": [187, 231], "1977": 187, "backend_detail": 187, "codegen_backend_modul": 187, "desktop": [187, 188, 208], "cocoapod": [187, 188, 204, 222, 225], "podfil": [187, 222, 225], "pod": [187, 204, 222, 225, 227, 251], "lite": [187, 204, 222], "client": [188, 223], "prepack": [188, 208, 252], "pytorch_root": [188, 206], "use_pytorch_metal_export": 188, "ON": [188, 195, 218, 223], "41237a4": [188, 206], "optimized_model": [188, 199], "export_opnam": [188, 222], "mobilenetv2_met": 188, "optimized_mobil": 188, "adaptive_avg_pool2d": 188, "copy_to_host": 188, "metal_prepack": 188, "conv2d_run": 188, "conect": 188, "slighli": 188, "malamut": 188, "malemut": 188, "alaskan": 188, "eskimo": 188, "huski": 188, "ios_arch": [188, 223], "use_pytorch_met": 188, "build_io": [188, 204, 222, 223], "a9": 188, "nsarrai": 188, "nsnumber": 188, "inferencemod": 188, "metalperformanceshad": 188, "1369": 189, "clr": 189, "sparse_coo_tensor": [189, 192], "state_sum": 189, "addcmul_": 189, "addcdiv_": 189, "_make_spars": 189, "grad_indic": 189, "coalesc": [189, 230], "_indic": 189, "grad_valu": 189, "_valu": 189, "sparse_mask": [189, 192], "std_valu": 189, "sqrt_": 189, "state_sum2": 189, "masked_grad": 189, "get_data": [189, 191, 192], "std2": 189, "masked_tensor": [189, 190, 191, 192], "to_spars": [189, 192], "param2": [189, 202], "glanc": [189, 244], "dodg": 189, "make_spars": 189, "diverg": [189, 191, 231, 247], "brittl": 189, "argu": 189, "densif": 189, "csc": [189, 192], "bsr": [189, 192], "bsc": 189, "conflat": 189, "disentangl": 189, "purposefulli": 189, "to_dens": [189, 192], "cleaner": [189, 191, 196, 197], "relianc": 189, "unreli": [189, 191], "maskedarrai": [189, 196], "maskedtensor_adagrad": 189, "maskedtensor_overview": [190, 191, 192], "unspecifi": [190, 191, 192, 196], "intersect": 190, "logical_or": 190, "npm0": 190, "ma": 190, "masked_arrai": 190, "npm1": 190, "mt0": 190, "mt1": [190, 192], "mt2": [190, 192], "get_mask": [190, 191], "mt": [190, 191, 192], "amin": [190, 192], "amax": 190, "data0": 190, "data1": 190, "mask0": 190, "mask1": 190, "intent": [190, 197, 200, 208, 214, 262, 271], "necessit": 190, "maskedtensor_advanced_semant": 190, "as_masked_tensor": 191, "afterthought": 191, "born": 191, "recur": 191, "inabl": 191, "10729": 191, "troubl": 191, "mx": 191, "52248": 191, "frustrat": 191, "4132": 191, "67180": 191, "longstand": 191, "bgrad1": 191, "isnan": 191, "unsaf": 191, "61474": 191, "nanmax": 191, "nanmin": 191, "lend": 191, "argmin": 191, "substructur": 192, "sparse_coo": 192, "sparse_csr": 192, "nse": 192, "sparse_tensor_data": 192, "sparse_tensor_mask": 192, "dense_masked_tensor": 192, "to_sparse_coo": 192, "to_sparse_csr": 192, "nuanc": 192, "sparse_coo_mt": 192, "crow_indic": 192, "col_indic": 192, "nnz": 192, "mt_sparse_csr": 192, "mt_sparse_coo": 192, "mt_dens": 192, "is_spars": 192, "is_sparse_coo": 192, "is_sparse_csr": 192, "surfac": 192, "vast": 192, "mask_valu": 192, "sparse_csr_tensor": 192, "synergi": 192, "invest": 192, "maskedtensor_spars": 192, "rag": 193, "invalu": 193, "nestedtensor": [193, 196], "padded_out_tensor": 193, "to_padded_tensor": 193, "poss": 193, "is_nest": 193, "irregularli": 193, "nt_reshap": 193, "nt_transpos": 193, "nt_mm": 193, "nt3": 193, "nt4": 193, "nt5": 193, "embrac": 193, "padded_sent": 193, "nested_sent": 193, "semnat": 193, "ux": [193, 197, 199], "padded_sentences_for_softmax": 193, "e_q": 193, "e_k": 193, "e_v": 193, "e_tot": 193, "query_proj": 193, "key_proj": 193, "value_proj": 193, "e_out": 193, "out_proj": 193, "e_head": 193, "sdpa": 193, "l_t": 193, "l_": 193, "attn_output": 193, "todo": [193, 260, 269], "unflatten": 193, "zipf": 193, "zipf_sentence_length": 193, "unigram": 193, "858": [193, 218], "sentence_length": 193, "ibatch": 193, "gen_batch": 193, "jagged_to_pad": 193, "jt": 193, "padding_v": 193, "unbind": [193, 205], "padded_queri": 193, "padded_kei": 193, "padded_valu": 193, "output_nest": 193, "time_nest": 193, "output_pad": 193, "time_pad": 193, "entry_length": 193, "compiled_mha": 193, "compiled_output_nest": 193, "compiled_time_nest": 193, "compiled_output_pad": 193, "compiled_time_pad": 193, "_nnapi": 194, "convert_model_to_nnapi": 194, "bundled_input": [194, 204, 209], "make_mobilenetv2_nnapi": 194, "output_dir_path": 194, "quantize_mod": 194, "quantize_cor": 194, "quantize_ifac": 194, "input_float": 194, "nnapi_nhwc": 194, "nnapi_model": 194, "bundlewrapp": 194, "augment_model_with_bundled_input": 194, "bundle_large_tensor": [194, 204], "quant_": 194, "quant_ful": 194, "speed_benchmark_torch": [194, 218, 223], "pthreadpool_s": 194, "use_bundled_input": 194, "use_caching_alloc": 194, "200gb": 194, "googlesourc": [194, 206], "envsetup": 194, "aosp_x86_64": 194, "j16": 194, "lib64": 194, "libneuralnetwork": 194, "ctype": 194, "cdll": 194, "loadlibrari": [194, 208], "get_all_bundled_input": [194, 209], "_numeric_suit": 195, "ns": 195, "default_eval_fn": 195, "qmodel": 195, "img_data": 195, "compare_weight": 195, "wt_compare_dict": 195, "nkei": 195, "sqnr": 195, "relationship": 195, "nomin": 195, "compute_error": 195, "pn": 195, "log10": 195, "hist": 195, "compare_model_output": 195, "act_compare_dict": 195, "white_list": 195, "outputlogg": 195, "default_numeric_suite_compare_model_output_white_list": 195, "prepare_model_output": 195, "get_matching_activ": 195, "myoutputlogg": 195, "logger_cl": 195, "prepare_model_with_stub": 195, "shadowlogg": 195, "compare_model_stub": 195, "quantizablebasicblock": 195, "module_swap_list": 195, "ob_dict": 195, "get_logger_dict": 195, "myshadowlogg": 195, "is_quant": 195, "db": [195, 197], "numeric_suite_tutori": 195, "pypi": [196, 221], "pt2": [196, 199, 210, 211, 215], "optimizi": 196, "nnapi": 196, "autovector": [196, 205], "maskedtensor": 196, "coo": 196, "csr": 196, "14k": 197, "prepare_pt2": [197, 199], "convert_pt2": [197, 198, 199], "capture_pre_autograd_graph": [197, 198, 199], "shoud": [197, 198, 199], "quantize_pt2": [197, 198, 199], "xnnpackquant": [197, 198, 200], "get_symmetric_quantization_config": [197, 198], "backendconfig": [197, 200], "fake_qu": 197, "embedding_byt": 197, "executorchquant": 197, "prone": [197, 215], "composed_quant": 197, "quantization_cap": 197, "minmax": 197, "exported_model": [197, 198, 199], "dynamic_dim": [197, 198], "xnnpack_quant": [197, 198], "themodel": 197, "fp32_op": 197, "qauntiz": 197, "quantized_linear": 197, "x_int8": 197, "x_scale": 197, "x_zero_point": 197, "weight_int8": 197, "weight_scal": [197, 200], "weight_zero_point": 197, "bias_fp32": 197, "output_scal": 197, "output_zero_point": 197, "x_fp32": 197, "quantized_decompos": 197, "dequantize_per_tensor": 197, "x_i8": 197, "x_quant_min": 197, "x_quant_max": 197, "weight_fp32": 197, "weight_i8": 197, "weight_quant_min": 197, "weight_quant_max": 197, "weight_permut": 197, "permute_copi": 197, "out_fp32": 197, "out_i8": 197, "out_scal": 197, "out_zero_point": 197, "out_quant_min": 197, "out_quant_max": 197, "float32_op": 197, "use_reference_represent": 197, "x_int16": 197, "weight_int16": 197, "acc_int32": 197, "out_dtyp": 197, "bias_scal": 197, "bias_int32": 197, "out_int8": 197, "qmin": 197, "qmax": 197, "pt2e_quantized_model_file_path": 197, "resnet18_pt2e_quant": 197, "quantized_ep": 197, "loaded_quantized_ep": 197, "ptq": [198, 199], "prepare_qat_pt2": [198, 199], "move_exported_model_to_ev": [198, 199], "move_exported_model_to_train": 198, "subgraph": 198, "_native_batch_norm_legit": 198, "cudnn_batch_norm": 198, "num_observer_update_epoch": 198, "num_batch_norm_update_epoch": 198, "num_epochs_between_ev": 198, "subseq": 198, "new_arg": 198, "prepared_model_copi": 198, "checkpoint_": 198, "lesli": [199, 200], "fang": [199, 200], "weiwen": [199, 200], "xia": [199, 200], "x86inductorquant": 199, "spr": 199, "x86_inductor_quant": 199, "xiq": 199, "traced_b": 199, "aten_graph": 199, "get_default_x86_inductor_quantization_config": 199, "is_dynam": [199, 200], "converted_model": 199, "absenc": [199, 229], "mirror": 199, "device_typ": [199, 230, 253], "qconvolut": 199, "qlinear": 199, "conting": 199, "qmaxpool2d": 199, "torchinductor_freez": 199, "example_x86inductorquantizer_pytorch_2_1": 199, "torchbench": [199, 219], "example_x86inductorquantizer_qat": 199, "kimish": 200, "patel": 200, "quantiat": 200, "qnnpackquant": 200, "quantizationspec": 200, "quantizationannot": 200, "bitwidth": 200, "histogramobserv": 200, "dataclass": 200, "input_qspec_map": 200, "output_qspec": 200, "_annot": 200, "matcher": 200, "get_source_partit": 200, "add_partit": 200, "add_nod": 200, "output_nod": 200, "act_quantization_spec": 200, "observer_or_fake_quant_ctr": 200, "input_act_qspec": 200, "output_act_qspec": 200, "input_act0": 200, "input_act1": 200, "quantization_annot": 200, "sharedquantizationspec": 200, "average_pool": 200, "edgeornod": 200, "conv1_out": 200, "conv2_out": 200, "qspec1": 200, "cat_input0": 200, "cat_input1": 200, "share_qparams_with_input_act0_qspec": 200, "fixedqparamsquantizationspec": 200, "act_qspec": 200, "sigmoid_nod": 200, "input_act": 200, "derivedquantizationspec": 200, "derive_qparams_fn": 200, "observerorfakequant": 200, "observerbas": 200, "fakequantizebas": 200, "obejct": 200, "obs_or_fq": 200, "fq": 200, "act_obs_or_fq": 200, "weight_obs_or_fq": 200, "act_scal": 200, "act_zp": 200, "calculate_qparam": 200, "weight_zp": 200, "bias_qspec": 200, "derived_from": 200, "per_tensor_symmetr": 200, "weight_quantization_spec": 200, "backendquant": 200, "quantizationconfig": 200, "get_input_act_qspec": 200, "get_output_act_qspec": 200, "get_weight_qspec": 200, "get_bias_qspec": 200, "relu_nod": 200, "maybe_conv_nod": 200, "conv1d": [200, 207, 247], "recognz": 200, "subgraphmatch": 200, "conv_relu_pattern": 200, "name_node_map": 200, "input_nod": 200, "weight_nod": 200, "bias_nod": 200, "exact_match": 201, "53358561967833": 201, "9280493093186": 201, "927572380751371": 201, "607915310189128": 201, "18846387788653": 201, "91255673766136": 201, "parameter": 201, "elemen": 201, "paramter": 201, "bertoutput": 201, "parametrizedlinear": 201, "fakespars": 201, "layernorm": 201, "elementwise_affin": 201, "59602649006622": 201, "51610004515979": 201, "0237": 201, "0130": 201, "0462": 201, "0272": 201, "0436": 201, "0492": 201, "0844": 201, "0340": 201, "0302": 201, "0350": 201, "0303": 201, "0175": 201, "0529": 201, "0327": 201, "0213": 201, "0258": 201, "0239": 201, "0380": 201, "0562": 201, "0432": 201, "0262": 201, "0227": 201, "0244": 201, "0784": 201, "0761": 201, "0225": 201, "0395": 201, "0684": 201, "0344": 201, "43897824030275": 201, "48718950090766": 201, "621004460379481": 201, "368514601141214": 201, "702805917710066": 201, "244": [201, 226], "19364519417286": 201, "87x": 201, "skip_init": 202, "param1": 202, "some_buff": 202, "to_empti": [202, 244], "intial": 202, "fnet": 203, "___torch_mangle_3": 203, "fnet2": 203, "0107": 203, "0048": 203, "torchscript_freez": 203, "lai": [204, 222], "cccclai": 204, "dhruv": 204, "matani": 204, "dhruvbird": 204, "scripted_modul": [204, 209, 222], "input_image_1": 204, "input_tensor_1": 204, "input_batch_1": 204, "input_image_2": 204, "input_tensor_2": 204, "input_batch_2": 204, "step2": 204, "bundled_model_input": 204, "bundled_model": [204, 209], "bundle_input": [204, 209], "deeplabv3_scripted_with_bundled_input": 204, "macosx_deployment_target": [204, 206], "max_job": 204, "tracing_bas": 204, "model_trac": 204, "model_input_path": 204, "build_yaml_path": 204, "armeabi": 204, "v7a": 204, "v8a": [204, 206, 218, 223], "selected_op_list": [204, 222], "build_pytorch_android": [204, 206, 222], "cmd": 204, "build_lite_interpret": 204, "chenlai": 204, "aar": [204, 206, 208], "xarg": 204, "ls": 204, "lah": 204, "rw": 204, "staff": 204, "13m": 204, "feb": 204, "pytorch_android": [204, 206, 208, 224], "36k": 204, "pytorch_android_torchvis": [204, 222, 224], "gradl": [204, 206, 222, 224, 227], "androidx": [204, 208, 222], "appcompat": [204, 208, 222], "constraintlayout": [204, 222], "testimplement": [204, 222], "junit": [204, 222], "androidtestimplement": [204, 222], "ext": [204, 220, 222, 262, 263, 271, 272], "espresso": [204, 222], "v7": [204, 208], "fbjni": [204, 208, 222], "allproject": [204, 208], "jcenter": [204, 208], "flatdir": 204, "ios_platform": [204, 222], "deintegr": 204, "all_load": 204, "bitcod": 204, "deeplabv3": [204, 222], "deeplabv3_on_android": 204, "42368": 205, "unsuccessfulli": 205, "rummag": 205, "batched_dot": [205, 231], "feature_s": 205, "shenanigin": 205, "feature_vec": 205, "8304": 205, "23475": 205, "basis_vector": 205, "get_vjp": 205, "jacobian_vmap": 205, "performantli": 205, "7786": 205, "grad_sampl": 205, "batch_of_sampl": 205, "vmap_recip": 205, "ivan": [206, 208], "kobzarev": [206, 208], "use_vulkan": 206, "vulkan_wrapp": 206, "use_vulkan_wrapp": 206, "libvulkan": 206, "vulkansdk": 206, "lunarg": 206, "vulkan_sdk": 206, "vulkan_sdk_root": 206, "install_vulkan": 206, "use_vulkan_shaderc_runtim": 206, "android_abi": [206, 208, 218, 223], "build_android": [206, 218, 223], "script_model": 206, "mobilenet2": 206, "32bit": 206, "script_model_vulkan": 206, "optimization_blocklist": 206, "mobileoptimizertyp": 206, "vulkan_automatic_gpu_transf": 206, "is_vulkan_avail": 206, "tensor_vulkan": 206, "tensor_output_vulkan": 206, "tensor_output": 206, "_adaptive_avg_pool2d": 206, "_cat": 206, "hardtanh_": 206, "transpose_": 206, "upsample_nearest2d": 206, "allocatefloatbuff": [206, 223], "fromblob": [206, 223], "mmodul": [206, 222, 223], "test_app": 206, "testapp": [206, 223], "l133": 206, "apploc": 206, "installmbvulkanlocalbasedebug": 206, "mbq": 206, "swiftshad": 206, "tmul": 207, "gen": 207, "3rd": [207, 220], "avx": [207, 220], "vnni": [207, 220], "024": 207, "conv3d": [207, 247], "conv_transpose1d": 207, "conv_transpose3d": 207, "baddbmm": 207, "addbmm": 207, "onednn_verbos": 207, "mkldnn": [207, 219], "verbose_on": 207, "6dbeffbae1f23cbbeae17adb7b5b13f1f37c080": 207, "nthr": 207, "isa": [207, 247], "prim_templ": 207, "prop_kind": 207, "memory_descriptor": 207, "auxiliari": 207, "problem_desc": 207, "exec_tim": 207, "exec": 207, "undef": 207, "src_f32": 207, "f0": 207, "dst_f32": 207, "scratchpad": 207, "2561": 207, "avx512_core_amx_bf16": 207, "forward_train": 207, "src_bf16": 207, "acdb": 207, "wei_bf16": 207, "abcd16b16a2b": 207, "bia_f32": 207, "dst_bf16": 207, "alg": 207, "convolution_direct": 207, "mb7_ic2oc1_ih224oh111kh3sh2dh1ph1_iw224ow111kw3sw2dw1pw1": 207, "628906": 207, "brg": 207, "avx512_core_amx_int8": 207, "src_s8": 207, "wei_s8": 207, "ba16a64b4a": 207, "dst_s8": 207, "1x30522": 207, "30522x768": 207, "1x768": 207, "66382": 207, "r19c": 208, "android_ndk": 208, "3859397": 208, "android_sdk": 208, "android_hom": 208, "gradle_hom": 208, "jdk": [208, 227], "java_hom": 208, "openjdk": 208, "opencv_android_sdk": 208, "registeroper": 208, "cento": 208, "yum": 208, "devel": 208, "libopencv": 208, "nativeapp": 208, "useandroidx": 208, "enablejetifi": 208, "buildscript": 208, "classpath": 208, "maven": [208, 222], "oss": [208, 222], "sonatyp": [208, 222], "extractfornativebuild": 208, "compilesdkvers": 208, "buildtoolsvers": 208, "defaultconfig": 208, "applicationid": 208, "minsdkvers": 208, "targetsdkvers": 208, "versioncod": 208, "versionnam": 208, "externalnativebuild": 208, "dandroid_stl": 208, "_share": 208, "buildtyp": 208, "minifyen": 208, "sourceset": 208, "jnilib": 208, "srcdir": 208, "extractaarfornativebuild": 208, "dolast": 208, "absolutefil": 208, "ziptre": 208, "builddir": 208, "jni": 208, "whentaskad": 208, "dependson": 208, "nexu": 208, "libpytorch_jni": 208, "libfbjni": 208, "stl": 208, "pytorch_nativeapp": 208, "build_dir": 208, "cmake_source_dir": 208, "pytorch_testapp_cpp_dir": 208, "cmake_current_list_dir": 208, "pytorch_testapp_sourc": 208, "pytorch_include_dir": 208, "pytorch_link_dir": 208, "target_compile_opt": 208, "fexcept": 208, "build_subdir": 208, "find_librari": 208, "pytorch_librari": 208, "pytorch_jni": 208, "no_cmake_find_root_path": 208, "fbjni_librari": 208, "endif": 208, "opencv_include_dir": 208, "target_include_directori": 208, "opencv_lib_dir": 208, "opencv_librari": 208, "opencv_java4": 208, "libopencv_java4": 208, "logcat": 208, "torschscript": 208, "androidmanifest": 208, "xml": 208, "xmln": 208, "apk": 208, "allowbackup": 208, "pytorchnativeapp": 208, "supportsrtl": 208, "theme": 208, "darkactionbar": 208, "appcompatact": 208, "fileoutputstream": 208, "inputstream": 208, "outputstream": 208, "assetnam": 208, "getfilesdir": 208, "getabsolutepath": 208, "getasset": 208, "savedinstancest": 208, "modelfileabsolutefilepath": 208, "nativecli": 208, "loadandforwardmodel": 208, "assertfilepath": 208, "nativep": 208, "libpytorch_nativeapp": 208, "modelpath": 208, "cassert": 208, "cmath": 208, "unistd": 208, "alogi": 208, "__android_log_print": 208, "android_log_info": 208, "__va_args__": 208, "alog": 208, "android_log_error": 208, "ostringstream": 208, "c_str": 208, "jitcallguard": 208, "no_autograd_guard": 208, "non_var_guard": 208, "graphoptimizerenabledguard": 208, "no_optimizer_guard": 208, "jnienv": 208, "jclass": 208, "jstring": 208, "jmodelpath": 208, "getstringutfchar": 208, "t_out": 208, "releasestringutfchar": 208, "jniexport": 208, "jint": 208, "jni_onload": 208, "javavm": 208, "vm": [208, 263, 272], "getenv": [208, 231], "jni_version_1_6": 208, "jni_ok": 208, "jni_err": 208, "findclass": 208, "jninativemethod": 208, "ljava": 208, "rc": 208, "registern": 208, "intermix": 208, "assembledebug": 208, "installdebug": 208, "icon": [208, 260, 262, 269, 271], "adb": [208, 218, 223], "grep": 208, "26968": 208, "9484": 208, "1757": 208, "5832": 208, "9144": 208, "8867": 208, "0933": 208, "4004": 208, "3389": 208, "5200": [208, 231], "7625": 208, "5724": 208, "2073": 208, "4613": 208, "2730": 208, "6789": 208, "2247": 208, "2790": 208, "0067": 208, "9266": 208, "6034": 208, "1941": 208, "7021": 208, "5368": 208, "3803": 208, "0188": 208, "2021": [208, 221], "7412": 208, "2257": 208, "5044": 208, "6592": 208, "0826": 208, "0084": 208, "8733": 208, "5435": 208, "1087": 208, "1066": 208, "9926": 208, "1047": 208, "5311": 208, "9178": 208, "5451": 208, "0473": 208, "7571": 208, "3909": 208, "4039": 208, "5085": 208, "2776": 208, "4080": 208, "9203": 208, "3655": 208, "4395": 208, "4467": 208, "9837": 208, "3335": 208, "0445": 208, "8039": 208, "2512": 208, "3122": 208, "6543": 208, "5819": 208, "5680": 208, "6442": 208, "3090": 208, "6197": 208, "0773": 208, "5967": 208, "1105": 208, "0274": 208, "0330": 208, "0124": 208, "8644": 208, "0493": 208, "7633": 208, "9657": 208, "3469": 208, "3159": 208, "0683": 208, "4529": 208, "4559": 208, "7038": 208, "8396": 208, "9716": 208, "5279": 208, "1780": 208, "3849": 208, "4368": 208, "1480": 208, "jacob": 209, "szwejbka": 209, "example_dict": 209, "all_info": 209, "get_bundled_inputs_functions_and_info": 209, "func_nam": 209, "input_func_nam": 209, "get_inputs_function_nam": 209, "func_to_run": 209, "model_funct": 209, "decompress": 209, "ie": 209, "bundle_randn": 209, "deflat": 209, "create_exampl": 209, "deflated_input": 209, "inflatablearg": 209, "randn_lik": 209, "bundle_optional_dict_of_randn": 209, "fmt_fn": 209, "lazo": [210, 211, 255], "eager_runtim": 210, "compiled_runtim": 210, "2437149845064u": 210, "07384741178u": 210, "linearlr": 211, "sched": 211, "total_it": 211, "compiling_optimizer_lr_schedul": 211, "set_device_map": 212, "worker0": 212, "payload": [212, 244], "infiniband": 212, "cma": 212, "comm_mod": 212, "pend": [212, 223, 245], "current_stream": 212, "34x": 212, "3145179748535156": 212, "06867480278015137": 212, "image_classifi": 213, "kitten": 213, "index_to_nam": 213, "infil": 213, "timg": 213, "models_": 213, "render_predict": 213, "prediction_idx": 213, "stridx": 213, "img_class_map": 213, "mapping_file_path": 213, "isfil": 213, "curl": [213, 262, 271], "multipart": 213, "recevi": 213, "285": 213, "iri": [214, 215], "rodrigo": 214, "kumpera": 214, "chien": 214, "chin": 214, "luca": 214, "pasqualin": 214, "adddition": 214, "get_state_dict": 214, "run_fsdp_checkpoint_save_exampl": 214, "sharded_state_dict": 214, "checkpoint_id": 214, "reshard": 214, "set_state_dict": 214, "run_fsdp_checkpoint_load_exampl": 214, "optim_state_dict": 214, "run_checkpoint_load_exampl": 214, "effortlessli": 215, "homogen": 215, "num_node_devic": 215, "shard_rank_list": 215, "shard_group": 215, "current_shard_group": 215, "current_replicate_group": 215, "shard_factor": 215, "replicate_group_rank": 215, "replicate_group": 215, "2d_setup": 215, "mesh_dim_nam": 215, "thru": 215, "get_group": 215, "mesh_dim": 215, "2d_setup_with_device_mesh": 215, "meshshap": 215, "hybrid_shard": 215, "sequanc": 215, "quasi": 216, "hyperbol": 216, "qhm": 216, "qhm_updat": 216, "dp_list": 216, "momentum_buffer_list": 216, "nu": [216, 262, 271], "weight_decay_typ": 216, "d_p": 216, "momentum_buff": 216, "polymorph": 216, "functionalqhm": 216, "params_with_grad": 216, "preserve_format": 216, "functional_optim_map": 216, "remote_params_list": 216, "dist_optim": 216, "annotatedconvbnrelumodel": [218, 223], "prepare_sav": 218, "torchscript_model": [218, 223, 224, 225, 252], "torchscript_model_optim": [218, 223, 224, 225], "model_fus": 218, "bnrelu2d": 218, "build_pytorch_mobil": [218, 222, 223], "dbuild_binari": [218, 223], "input_typ": [218, 223], "6189": 218, "575": 218, "6216": 218, "sunita": 219, "nadamp": 219, "graviton3": 219, "sve": 219, "simd": 219, "graviton2": 219, "bla": 219, "acl": 219, "c7g": 219, "bfloa16": 219, "r7g": 219, "m7g": 219, "4vcpu": 219, "myneuralnetwork": 219, "11008": 219, "mymodel_infer": 219, "813": 219, "255m": 219, "177": 219, "032m": 219, "160u": 219, "162": [219, 231], "054m": 219, "540": 219, "180u": 219, "738m": 219, "201": 219, "955m": 219, "985": 219, "282m": 219, "421m": 219, "043m": 219, "810u": 219, "356m": 219, "179": 219, "388m": 219, "896": 219, "940u": 219, "mmla": 219, "dnnl_default_fpmath_mod": 219, "943": 219, "052": 219, "507m": 219, "167": 219, "653m": 219, "838": 219, "265u": 219, "107": 219, "593m": 219, "358": 219, "643u": 219, "167m": 219, "262": 219, "911m": 219, "060": 219, "533m": 219, "414m": 219, "892m": 219, "307u": 219, "281m": 219, "934m": 219, "670u": 219, "fastmath": 219, "821": 219, "914": 219, "713m": 219, "244m": 219, "711": 219, "220u": 219, "322m": 219, "307": 219, "740u": 219, "094": 219, "495m": 219, "921": 219, "736m": 219, "131m": 219, "441m": 219, "803u": 219, "942m": 219, "144": 219, "186m": 219, "720": 219, "930u": 219, "848": 219, "944": 219, "148m": 219, "141": [219, 231], "309m": 219, "706": 219, "545u": 219, "916m": 219, "720u": 219, "431m": 219, "06": 219, "471m": 219, "951": 219, "170m": 219, "027m": 219, "243m": 219, "143u": 219, "928m": 219, "143": 219, "237m": 219, "185u": 219, "47x": 219, "outweigh": 219, "till": [219, 228], "torch_mkldnn_matmul_min_dim": 219, "958": 219, "612m": 219, "124m": 219, "620u": 219, "951m": 219, "170u": 219, "423m": 219, "034": 219, "691m": 219, "988": 219, "628m": 219, "520m": 219, "945m": 219, "817u": 219, "382m": 219, "136": 219, "910u": 219, "781": 219, "604m": 219, "295": 219, "437m": 219, "477m": 219, "516m": 219, "558": 219, "387u": 219, "708m": 219, "499m": 219, "788": 219, "627m": 219, "982m": 219, "385m": 219, "617u": 219, "932m": 219, "297": 219, "369m": 219, "487m": 219, "038m": 219, "060m": 219, "300u": 219, "013m": 219, "106": 219, "710u": 219, "521m": 219, "750m": 219, "216": 219, "475m": 219, "033m": 219, "110u": 219, "285m": 219, "345m": 219, "725u": 219, "margin": 219, "thp_mem_alloc_en": 219, "321": 219, "069m": 219, "568m": 219, "613m": 219, "602m": 219, "682": 219, "007u": 219, "777m": 219, "082m": 219, "329": 219, "097m": 219, "547m": 219, "325": 219, "115m": 219, "626m": 219, "08x": 219, "avx512": 220, "amx": [220, 221], "xmx": 220, "xpu": 220, "claus": [220, 221, 258], "roialign": 220, "bertmodel": 220, "check_trac": 220, "cache_en": [220, 247], "memoryformat": 220, "channelslast": [220, 223], "intel_ext_pt_cpu": 220, "libpytorch_path": 220, "ldd": 220, "workspac": 220, "cmake_have_libc_pthread": 220, "0x00007f3cf98e0000": 220, "libc10": 220, "0x00007f3cf985a000": 220, "libintel": 220, "0x00007f3cf70fc000": 220, "libtorch_cpu": [220, 246], "0x00007f3ce16ac000": 220, "libdnnl_graph": 220, "0x00007f3cde954000": 220, "mitig": [221, 247], "fc1_drop": 221, "pytorch_fx": 221, "accuracy_criterion": 221, "neural_compressor": 221, "calib_dataload": 221, "q_model": 221, "top1metr": 221, "quant_aware_train": 221, "training_func": 221, "q_func": 221, "dummy_dataset": 221, "dummydataset": 221, "linearrelu": 221, "best_configur": 221, "best_model_weight": 221, "int8_model": 221, "martin": 222, "pytorchstreamread": 222, "regener": 222, "model_psth": 222, "_load_for_lite_interpret": [222, 223], "optimized_scripted_modul": 222, "pytorch_android_lit": 222, "litemoduleload": 222, "getapplicationcontext": 222, "prebuilt": [222, 251], "use_framework": 222, "libtorch_lit": 222, "nullabl": 222, "instancetyp": 222, "initwithfileatpath": 222, "nsstring": 222, "_load_for_mobil": [222, 223], "utf8str": 222, "nslog": 222, "architechtur": 222, "dsp": 223, "calibration_data": 223, "588kb": 223, "nio": 223, "suboptim": 223, "analysisresult": 223, "analyzeimag": 223, "imageproxi": 223, "rotationdegre": 223, "modulefileabsolutefilepath": 223, "minputtensorbuff": 223, "minputtensor": 223, "imageyuv420centercroptofloatbuff": 223, "getimag": 223, "flatbuff": 223, "_use_flatbuff": 223, "jit_model": 223, "ff": 223, "5387594579999999": 223, "038842832999999466": 223, "nake": 223, "rf": 223, "speedbenchark_torch": 223, "speedbenchmark": 223, "121318": 223, "24281": 223, "trace_model": 223, "rubi": 223, "iphonex": 223, "2121": 223, "722447": 223, "762": 223, "mobilenetv2_quant": [224, 225], "hackathon": [224, 225], "xcworkspac": 225, "your_project_nam": 225, "unexpectedli": 226, "path_of_launch": 226, "iteration_n": 226, "brown": 226, "percerntag": 226, "occupi": 226, "jitter": [226, 231], "enrich": 226, "ittsampl": 226, "292820": 226, "iteration_": 226, "basefold": 226, "bash_sourc": 226, "torchscipt": [227, 251], "ota": 228, "incept": 228, "print_model_s": 228, "mdl": 228, "model_dynamic_quant": 228, "model_static_quant": 228, "98mb": 228, "tra": 228, "model_qat": 228, "gradcam": 229, "freepik": 229, "puppi": 229, "dog_58409": 229, "6024": 229, "center_crop": 229, "283": 229, "labrador": 229, "occlud": 229, "attribution_dog": 229, "persian": 229, "attribution_cat": 229, "guidedbackprop": 229, "deeplift": 229, "gradientshap": 229, "forward_func": 229, "pictori": 229, "textual": 229, "vis_typ": 229, "vis_sign": 229, "distractor": 229, "visualize_text": 229, "imdb_torchtext_interpret": 229, "gilbert": 229, "tanner": 229, "gilberttann": 229, "captum_recip": [229, 235], "carilli": 230, "ture": 230, "kepler": 230, "maxwel": 230, "pascal": 230, "modest": 230, "gc": 230, "empty_cach": 230, "reset_max_memory_alloc": 230, "end_timer_and_print": 230, "local_msg": 230, "make_model": 230, "in_siz": 230, "out_siz": 230, "513": 230, "modestli": 230, "underflow": 230, "scaler": 230, "unscal": 230, "use_amp": 230, "unscale_": 230, "max_norm": 230, "bitwis": 230, "rough": 230, "suspect": 230, "docstr": [230, 262, 263, 271, 272], "subregion": 230, "backtrac": 230, "torch_show_cpp_stacktrac": 230, "amp_recip": [230, 235], "tediou": 231, "mistak": 231, "batched_dot_mul_sum": 231, "batched_dot_bmm": 231, "mul_sum": 231, "0x7fb10400d0f0": 231, "379": 231, "0x7fb103d67048": 231, "sub_label": 231, "0x7fb103d54080": 231, "118": 231, "0x7fb16935d2e8": 231, "2775": 231, "0x7fb10400d080": 231, "reliabl": 231, "m0": 231, "274": 231, "748": 231, "432": 231, "22657": 231, "11899": 231, "609": 231, "23098": 231, "27246": 231, "267073": 231, "118823": 231, "189": 231, "2782": 231, "7471": 231, "11874": 231, "173": 231, "7264": 231, "27824": 231, "100060": 231, "121499": 231, "2773": 231, "12833": 231, "6295": 231, "27062": 231, "71804": 231, "120365": 231, "103": 231, "2804": 231, "6764": 231, "11871": 231, "6640": 231, "27592": 231, "73003": 231, "120083": 231, "trim_significant_figur": 231, "callgrindstat": [231, 246], "trip": 231, "ab_test_result": 231, "dot_fn": 231, "ab_result": 231, "36000": 231, "40000": 231, "round_tripped_result": 231, "stark": 231, "fuzzer": 231, "fuzzedparamet": 231, "fuzzedtensor": 231, "parameteralia": 231, "10000000": 231, "k0": 231, "k1": 231, "discontigu": 231, "example_fuzz": 231, "minval": 231, "maxval": 231, "min_el": 231, "max_el": 231, "probability_contigu": 231, "tensor_param": 231, "725": 231, "383": 231, "5039": 231, "1200": [231, 257], "2140": 231, "1296": 231, "41000": 231, "1598": 231, "519": 231, "763": 231, "1082": 231, "op_fuzz": 231, "binaryopfuzz": 231, "473": 231, "12642115": 231, "8192": 231, "4800": 231, "20400": 231, "110000": 231, "400000": 231, "493": 231, "1100": [231, 246], "2440": 231, "870": 231, "2030": 231, "23600": 231, "24000": [231, 246], "62374": 231, "90000": 231, "240372": 231, "16000": 231, "40156": 231, "2670": 231, "opac": 231, "complementari": 231, "insensit": 231, "environment": 231, "batched_dot_src": 231, "batched_dot_mul_sum_v0": 231, "batched_dot_mul_sum_v1": 231, "cpp_lib": 231, "extra_cflag": 231, "extra_include_path": 231, "module_import_str": 231, "67631": 231, "importlib": 231, "spec_from_file_loc": 231, "module_from_spec": 231, "exec_modul": 231, "textwrap": 231, "pretty_print": 231, "machineri": 231, "t_baselin": 231, "stats_v0": 231, "collect_callgrind": 231, "stats_v1": 231, "as_standard": [231, 246], "denois": 231, "ing": 231, "wrap_pybind_function_impl_": 231, "linewidth": 231, "valgrind_wrapp": [231, 246], "timer_interfac": [231, 246], "0x7fb0f06e7630": 231, "2392671": 231, "4367": 231, "rel_with_deb_info": [231, 246], "0x7fb10400d208": 231, "2378978": 231, "functioncount": [231, 246], "0x7fb1000ab358": 231, "0x000000000020d9e0": 231, "0x000000000020db10": 231, "integer_sequ": 231, "0ul": 231, "1ul": 231, "undefinedtensorimpl": 231, "reset_": 231, "5935": 231, "0x000000000022c0e0": 231, "13693": 231, "changing_default_devic": 232, "\u6df1\u5ea6\u5b66\u4e60\u4f7f\u7528\u4eba\u5de5\u795e\u7ecf\u7f51\u7edc": 233, "\u8fd9\u662f\u7531\u8bb8\u591a\u4e92\u8fde\u5355\u5143\u5c42\u7ec4\u6210\u7684\u8ba1\u7b97\u7cfb\u7edf": 233, "\u901a\u8fc7\u5c06\u6570\u636e\u4f20\u9012\u5230\u8fd9\u4e9b\u4e92\u8fde\u5355\u5143": 233, "\u795e\u7ecf\u7f51\u7edc\u80fd\u591f\u5b66\u4e60\u5982\u4f55\u8fd1\u4f3c\u5c06\u8f93\u5165\u8f6c\u6362\u4e3a\u8f93\u51fa\u6240\u9700\u7684\u8ba1\u7b97": 233, "\u53ef\u4ee5\u4f7f\u7528": [233, 246], "\u5305\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": 233, "\u63d0\u4f9b\u4e86\u4f18\u96c5\u8bbe\u8ba1\u7684\u6a21\u5757\u548c\u7c7b\u6765\u5e2e\u52a9\u60a8\u521b\u5efa\u548c\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc": 233, "\u4e2d\u6709\u5c42": 233, "\u4ee5\u53ca\u4e00\u4e2a\u8fd4\u56de": 233, "\u6765\u5b9a\u4e49\u4e00\u4e2a\u7528\u4e8e": 233, "hhttp": 233, "\u7684\u795e\u7ecf\u7f51\u7edc": 233, "\u5982\u679c\u8fd8\u6ca1\u6709\u5b89\u88c5": [233, 240, 241, 242, 249], "\u7684\u8bdd": 233, "\u6211\u4eec\u9700\u8981\u5148\u5b89\u88c5\u5b83": [233, 242, 243, 248, 249], "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u6240\u6709\u5fc5\u8981\u5e93": [233, 236, 240, 241, 242, 243, 248, 249, 250], "\u53ca\u5176\u5b50\u6a21\u5757": [233, 240, 241, 242, 243, 248, 249], "\u6211\u4eec\u7684\u7f51\u7edc\u5c06\u8bc6\u522b\u56fe\u50cf": 233, "\u6211\u4eec\u5c06\u4f7f\u7528pytorch\u5185\u7f6e\u7684\u5377\u79ef\u8fc7\u7a0b": 233, "\u5377\u79ef\u5c06\u6bcf\u4e2a\u56fe\u50cf\u5143\u7d20\u4e0e\u5176\u5c40\u90e8\u90bb\u5c45\u76f8\u52a0": 233, "\u5e76\u7531\u4e00\u4e2a\u5c0f\u77e9\u9635": 233, "\u5185\u6838": 233, "\u52a0\u6743": 233, "\u8be5\u5185\u6838\u53ef\u5e2e\u52a9\u6211\u4eec\u4ece\u8f93\u5165\u56fe\u50cf\u4e2d\u63d0\u53d6\u67d0\u4e9b\u7279\u5f81": 233, "\u5982\u8fb9\u7f18\u68c0\u6d4b": 233, "\u9510\u5229\u5ea6": 233, "\u6a21\u7cca\u5ea6\u7b49": 233, "\u5b9a\u4e49\u6a21\u578b\u7684": 233, "\u7c7b\u6709\u4e24\u4e2a\u8981\u6c42": 233, "\u7b2c\u4e00\u662f\u7f16\u5199\u4e00\u4e2a\u5f15\u7528": 233, "\u5728\u8fd9\u4e2a\u51fd\u6570\u4e2d": 233, "\u4f60\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u4e2d\u7684\u5168\u8fde\u63a5\u5c42": 233, "\u4f7f\u7528\u5377\u79ef": 233, "\u6211\u4eec\u5c06\u5b9a\u4e49\u6211\u4eec\u7684\u6a21\u578b\u4ee5\u63a5\u53d71\u4e2a\u8f93\u5165\u56fe\u50cf\u901a\u9053": 233, "\u5e76\u8f93\u51fa\u4e0e\u6211\u4eec\u7684\u76ee\u6807\u76f8\u5339\u914d\u768410\u4e2a\u6807\u7b7e": 233, "\u8868\u793a0\u52309\u7684\u6570\u5b57": 233, "\u8fd9\u4e2a\u7b97\u6cd5\u7531\u4f60\u81ea\u5df1\u521b\u5efa": 233, "\u6211\u4eec\u5c06\u9075\u5faa\u6807\u51c6\u7684mnist\u7b97\u6cd5": 233, "\u7b2c\u4e00\u4e2a2d\u5377\u79ef\u5c42": 233, "\u63a5\u53d71\u4e2a\u8f93\u5165\u901a\u9053": 233, "\u56fe\u50cf": 233, "\u8f93\u51fa32\u4e2a\u5377\u79ef\u7279\u5f81": 233, "\u4f7f\u75283x3\u7684\u65b9\u5f62\u6838": 233, "\u7b2c\u4e8c\u4e2a2d\u5377\u79ef\u5c42": 233, "\u63a5\u53d732\u4e2a\u8f93\u5165\u5c42": 233, "\u8f93\u51fa64\u4e2a\u5377\u79ef\u7279\u5f81": 233, "\u8bbe\u8ba1\u4e3a\u786e\u4fdd\u76f8\u90bb\u50cf\u7d20\u8981\u4e48\u5168\u4e3a0": 233, "\u8981\u4e48\u5168\u4e3a\u6fc0\u6d3b": 233, "\u5177\u6709\u4e00\u5b9a\u8f93\u5165\u6982\u7387": 233, "\u7b2c\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42": 233, "\u7b2c\u4e8c\u4e2a\u5168\u8fde\u63a5\u5c42": 233, "\u8f93\u51fa\u6211\u4eec\u768410\u4e2a\u6807\u7b7e": 233, "my_nn": 233, "\u6211\u4eec\u5df2\u7ecf\u5b8c\u6210\u4e86\u795e\u7ecf\u7f51\u7edc\u7684\u5b9a\u4e49": 233, "\u73b0\u5728\u6211\u4eec\u5fc5\u987b\u5b9a\u4e49\u6570\u636e\u5982\u4f55\u901a\u8fc7\u5b83": 233, "\u5f53\u4f60\u4f7f\u7528pytorch\u6784\u5efa\u6a21\u578b\u65f6": 233, "\u4f60\u53ea\u9700\u8981\u5b9a\u4e49": 233, "\u5b83\u5c06\u6570\u636e\u4f20\u9012\u5230\u8ba1\u7b97\u56fe": 233, "\u5373\u6211\u4eec\u7684\u795e\u7ecf\u7f51\u7edc": 233, "\u8fd9\u5c06\u4ee3\u8868\u6211\u4eec\u7684\u524d\u5411\u7b97\u6cd5": 233, "\u51fd\u6570\u4e2d\u4f7f\u7528\u4efb\u4f55\u5f20\u91cf\u64cd\u4f5c": 233, "x\u8868\u793a\u6211\u4eec\u7684\u6570\u636e": 233, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9conv1": 233, "\u5bf9x\u4f7f\u7528\u6574\u6d41\u7ebf\u6027\u6fc0\u6d3b\u51fd\u6570": 233, "\u5bf9x\u8fd0\u884c\u6700\u5927\u6c60\u5316": 233, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9dropout1": 233, "\u5c55\u5e73x": 233, "start_dim": 233, "\u5c06\u6570\u636e\u4f20\u9012\u7ed9": 233, "\u5bf9x\u5e94\u7528softmax": 233, "\u4e3a\u4e86\u786e\u4fdd\u6211\u4eec\u5f97\u5230\u671f\u671b\u7684\u8f93\u51fa": 233, "\u8ba9\u6211\u4eec\u901a\u8fc7\u4e00\u4e9b\u968f\u673a\u6570\u636e\u6d4b\u8bd5\u6211\u4eec\u7684\u6a21\u578b": 233, "\u7b49\u540c\u4e8e\u4e00\u4e2a\u968f\u673a\u768428x28\u56fe\u50cf": 233, "random_data": 233, "\u8fd9\u4e2a\u7ed3\u679c\u5f20\u91cf\u4e2d\u7684\u6bcf\u4e2a\u6570\u5b57\u90fd\u7b49\u540c\u4e8e\u968f\u673a\u5f20\u91cf\u6240\u5173\u8054\u7684\u6807\u7b7e\u7684\u9884\u6d4b": 233, "\u795d\u8d3a\u4f60": [233, 241, 242, 249, 250], "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u5b9a\u4e49\u4e86\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 233, "\u67e5\u770b\u8fd9\u4e9b\u5176\u4ed6\u6559\u7a0b\u4ee5\u7ee7\u7eed\u5b66\u4e60": [233, 242], "\u662f\u4ec0\u4e48": [233, 235, 236, 251], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406": 233, "defining_a_neural_network": [233, 235], "postprocess": 234, "quanitz": 234, "lstm_for_demonstr": 234, "out_dim": 234, "29592": 234, "model_dimens": 234, "sequence_length": 234, "lstm_depth": 234, "_lstm": 234, "float_lstm": 234, "quantized_lstm": 234, "kb": [234, 238], "mileag": 234, "mag1": 234, "hidden2": 234, "mag2": 234, "mag3": 234, "documentaion": 234, "dynamic_quant": [234, 235], "loading_data_recip": [235, 236], "what_is_state_dict": [235, 249], "saving_and_loading_models_for_infer": [235, 242], "custom_dataset_transforms_load": 235, "save_load_across_devic": [235, 240], "saving_and_loading_a_general_checkpoint": [235, 241], "saving_multiple_models_in_one_fil": [235, 243], "warmstarting_model_using_parameters_from_a_different_model": [235, 248], "zeroing_out_gradi": [235, 250], "mobile_perf": 235, "\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": [235, 251], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": [235, 251], "\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 235, "\u521b\u5efa\u795e\u7ecf\u7f51\u7edc": [235, 251], "\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": [235, 251], "timer\u5feb\u901f\u5165\u95e8": 235, "sphx_glr_recipes_recipes_zeroing_out_gradi": 235, "\u4e2d\u6e05\u96f6\u68af\u5ea6": [235, 250], "\u63d0\u4f9b\u4e86\u5e7f\u6cdb\u7684\u795e\u7ecf\u7f51\u7edc\u6784\u5efa\u6a21\u5757": 236, "\u5e76\u62e5\u6709\u7b80\u5355": 236, "\u76f4\u89c2\u4e14\u7a33\u5b9a\u7684": 236, "pytorch\u5305\u542b\u7528\u4e8e\u51c6\u5907\u548c\u52a0\u8f7d\u5e38\u89c1\u6570\u636e\u96c6\u7684\u5de5\u5177\u5305": 236, "\u4e3a\u8bad\u7ec3\u6a21\u578b\u63d0\u4f9b\u6570\u636e": 236, "\u6570\u636e\u52a0\u8f7d\u5de5\u5177\u7684\u6838\u5fc3\u7c7b\u4e3a": 236, "\u5b83\u8868\u793a\u6570\u636e\u96c6\u4e0a\u7684\u4e00\u4e2a": 236, "\u53ef\u8fed\u4ee3\u5bf9\u8c61": 236, "\u63d0\u4f9b\u4e86\u5185\u7f6e\u7684\u9ad8\u8d28\u91cf\u6570\u636e\u96c6": 236, "\u53ef\u901a\u8fc7": 236, "\u4f7f\u7528\u8fd9\u4e9b\u6570\u636e\u96c6\u53ef\u901a\u8fc7": 236, "\u672a\u6765\u4f1a\u6301\u7eed\u65b0\u589e": 236, "yesno": 236, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u6709\u6548\u5730\u5c06\u6570\u636e\u4ece": 236, "\u52a0\u8f7d\u5230": 236, "\u5b89\u88c5": 236, "\u6211\u4eec\u9700\u8981\u5b89\u88c5": 236, "\u4ee5\u8bbf\u95ee\u8be5\u6570\u636e\u96c6": 236, "\u5982\u679c\u5728googl": 236, "\u8bf7\u53d6\u6d88\u6ce8\u91ca\u4ee5\u4e0b\u884c": 236, "\u6839\u636e\u4f7f\u7528\u7684\u5185\u7f6e\u6570\u636e\u96c6": 236, "\u60a8\u8fd8\u53ef\u4ee5\u5b89\u88c5\u5e76\u5bfc\u5165": 236, "\u6570\u636e\u96c6\u5305\u542b\u4e00\u4e2a\u4eba\u8bf4\u5e0c\u4f2f\u6765\u8bed": 236, "\u5426": 236, "\u768460\u4e2a\u5f55\u97f3": 236, "\u6bcf\u4e2a\u5f55\u97f3\u957f\u5ea6\u4e3a8\u4e2a\u5355\u8bcd": 236, "\u66f4\u591a\u4fe1\u606f": 236, "\u521b\u5efa\u4e86\u4e00\u4e2a": 236, "openslr": 236, "waves_yesno": 236, "folder_in_arch": 236, "\u6570\u636e\u96c6\u4e2d\u7684\u6bcf\u4e2a\u6761\u76ee\u90fd\u662f\u4e00\u4e2a\u5143\u7ec4": 236, "\u5f62\u5f0f\u4e3a": 236, "\u6ce2\u5f62": 236, "\u91c7\u6837\u7387": 236, "\u60a8\u5fc5\u987b\u4e3a": 236, "\u6570\u636e\u96c6\u8bbe\u7f6e\u4e00\u4e2a": 236, "\u76ee\u5f55": 236, "\u7528\u4e8e\u5b58\u653e\u8bad\u7ec3\u548c\u6d4b\u8bd5\u6570\u636e\u96c6": 236, "\u5176\u4ed6\u53c2\u6570\u662f\u53ef\u9009\u7684": 236, "\u663e\u793a\u4e86\u5b83\u4eec\u7684\u9ed8\u8ba4\u503c": 236, "\u4ee5\u4e0b\u662f\u5176\u4ed6\u53c2\u6570\u7684\u4e00\u4e9b\u6709\u7528\u4fe1\u606f": 236, "\u5982\u679c\u4e3atrue": 236, "\u5219\u4ece\u4e92\u8054\u7f51\u4e0b\u8f7d\u6570\u636e\u96c6\u5e76\u5c06\u5176\u653e\u5728root\u76ee\u5f55\u4e2d": 236, "\u5982\u679c\u6570\u636e\u96c6\u5df2\u4e0b\u8f7d": 236, "\u5219\u4e0d\u4f1a\u91cd\u65b0\u4e0b\u8f7d": 236, "\u8ba9\u6211\u4eec\u8bbf\u95ee": 236, "\u4e2d\u7684\u4e00\u4e2a\u6570\u636e\u70b9\u662f\u4e00\u4e2a\u5143\u7ec4": 236, "\u5176\u4e2d\u6807\u7b7e\u662f\u4e00\u4e2a\u6574\u6570\u5217\u8868": 236, "1\u8868\u793aye": 236, "0\u8868\u793ano": 236, "yesno_data": 236, "\u9009\u62e9\u6570\u636e\u70b9\u7f16\u53f73": 236, "\u7684\u793a\u4f8b": 236, "waveform": 236, "sample_r": 236, "nlabel": 236, "\u5728\u5b9e\u8df5\u4e2d\u4f7f\u7528\u8fd9\u4e9b\u6570\u636e\u65f6": 236, "\u6700\u597d\u5c06\u6570\u636e\u5212\u5206\u4e3a": 236, "\u6570\u636e\u96c6\u548c": 236, "\u8fd9\u53ef\u786e\u4fdd\u60a8\u6709\u672a\u4f7f\u7528\u7684\u6570\u636e\u6765\u6d4b\u8bd5\u6a21\u578b\u7684\u6027\u80fd": 236, "\u73b0\u5728\u6211\u4eec\u53ef\u4ee5\u8bbf\u95ee\u6570\u636e\u96c6": 236, "\u6211\u4eec\u5fc5\u987b\u901a\u8fc7": 236, "\u4f20\u9012\u5b83": 236, "\u5c06\u6570\u636e\u96c6\u548c\u91c7\u6837\u5668\u7ec4\u5408\u5728\u4e00\u8d77": 236, "\u8fd4\u56de\u6570\u636e\u96c6\u4e0a\u7684\u4e00\u4e2a\u53ef\u8fed\u4ee3\u5bf9\u8c61": 236, "\u6211\u4eec\u7684\u6570\u636e\u73b0\u5728\u53ef\u4ee5\u4f7f\u7528": 236, "\u8fdb\u884c\u8fed\u4ee3": 236, "\u5728\u5f00\u59cb\u8bad\u7ec3\u6a21\u578b\u65f6": 236, "\u8fd9\u5c06\u662f\u5fc5\u9700\u7684": 236, "\u60a8\u4f1a\u6ce8\u610f\u5230": 236, "\u5bf9\u8c61\u4e2d\u7684\u6bcf\u4e2a\u6570\u636e\u6761\u76ee\u90fd\u8f6c\u6362\u4e3a\u4e00\u4e2a\u5f20\u91cf": 236, "\u5176\u4e2d\u5305\u542b\u8868\u793a\u6ce2\u5f62": 236, "\u91c7\u6837\u7387\u548c\u6807\u7b7e\u7684\u5f20\u91cf": 236, "\u60a8\u53ef\u4ee5\u9009\u62e9\u53ef\u89c6\u5316\u6570\u636e": 236, "\u4ee5\u8fdb\u4e00\u6b65\u4e86\u89e3": 236, "\u795d\u8d3a\u60a8": [236, 240, 243, 248], "\u60a8\u5df2\u6210\u529f\u5728pytorch\u4e2d\u52a0\u8f7d\u6570\u636e": 236, "\u67e5\u770b\u8fd9\u4e9b\u5176\u4ed6\u6559\u7a0b": [236, 248, 249, 250], "\u7ee7\u7eed\u60a8\u7684\u5b66\u4e60": [236, 248], "\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc": 236, "pytorch\u4e2d\u7684state_dict": 236, "mikayla": [237, 244], "gawarecki": [237, 244], "somemodul": 237, "meta_m": 237, "undesir": 237, "upfront": 237, "my_special_routin": 237, "fancier": 237, "my_processing_funct": 237, "processed_t": 237, "new_m": 237, "param_in_model": 237, "param_in_state_dict": 237, "set_swap_module_params_on_convers": [237, 244], "swap_tensor": 237, "module_load_state_dict_tip": 237, "\u672c\u6559\u7a0b\u89e3\u91ca\u4e86\u5982\u4f55\u4f7f\u7528pytorch": 238, "\u5e76\u6d4b\u91cf\u6a21\u578b\u7b97\u5b50\u7684\u65f6\u95f4\u548c\u5185\u5b58\u6d88\u8017": 238, "\u5f53\u7528\u6237\u9700\u8981\u786e\u5b9a\u6a21\u578b\u4e2d\u6700\u8017\u8d39\u8d44\u6e90\u7684\u7b97\u5b50\u65f6": 238, "pytorch\u5305\u542b\u4e00\u4e2a\u7b80\u5355\u7684profil": 238, "api\u975e\u5e38\u6709\u7528": 238, "\u6211\u4eec\u5c06\u4f7f\u7528\u4e00\u4e2a\u7b80\u5355\u7684": 238, "\u6a21\u578b\u6765\u6f14\u793a\u5982\u4f55\u4f7f\u7528profiler\u5206\u6790\u6a21\u578b\u6027\u80fd": 238, "\u8981\u5b89\u88c5": 238, "\u8bf7\u4f7f\u7528\u4ee5\u4e0b\u547d\u4ee4": 238, "\u5bfc\u5165\u6240\u6709\u5fc5\u9700\u7684\u5e93": 238, "\u5b9e\u4f8b\u5316\u4e00\u4e2a\u7b80\u5355\u7684resnet\u6a21\u578b": 238, "\u4f7f\u7528profiler\u5206\u6790\u5185\u5b58\u6d88\u8017": 238, "\u4f7f\u7528profiler\u5206\u6790\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a": 238, "\u8ba9\u6211\u4eec\u521b\u5efa\u4e00\u4e2a": 238, "\u6a21\u578b\u5b9e\u4f8b": 238, "\u5e76\u4e3a\u5b83\u51c6\u5907\u4e00\u4e2a\u8f93\u5165": 238, "profiler\u901a\u8fc7\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u542f\u7528": 238, "\u5e76\u63a5\u53d7\u591a\u4e2a\u53c2\u6570": 238, "\u5176\u4e2d\u4e00\u4e9b\u6700\u6709\u7528\u7684\u53c2\u6570\u5982\u4e0b": 238, "\u8981\u5206\u6790\u7684\u6d3b\u52a8\u5217\u8868": 238, "pytorch\u7b97\u5b50": 238, "torchscript\u51fd\u6570\u548c\u7528\u6237\u5b9a\u4e49\u7684\u4ee3\u7801\u6807\u7b7e": 238, "\u89c1\u4e0b\u9762\u7684": 238, "\u8bbe\u5907\u4e0a\u7684cuda\u5185\u6838": 238, "\u662f\u5426\u8bb0\u5f55\u7b97\u5b50\u8f93\u5165\u7684\u5f62\u72b6": 238, "\u662f\u5426\u62a5\u544a\u6a21\u578b\u5f20\u91cf\u6240\u6d88\u8017\u7684\u5185\u5b58\u91cf": 238, "\u662f\u5426\u6d4b\u91cfcuda\u5185\u6838\u7684\u6267\u884c\u65f6\u95f4": 238, "\u5f53\u4f7f\u7528cuda\u65f6": 238, "profiler\u8fd8\u4f1a\u663e\u793a\u4e3b\u673a\u4e0a\u53d1\u751f\u7684\u8fd0\u884c\u65f6cuda\u4e8b\u4ef6": 238, "\u8ba9\u6211\u4eec\u770b\u770b\u5982\u4f55\u4f7f\u7528profiler\u5206\u6790\u6267\u884c\u65f6\u95f4": 238, "model_infer": 238, "\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u4e3a\u4efb\u610f\u4ee3\u7801\u8303\u56f4\u6dfb\u52a0\u7528\u6237\u63d0\u4f9b\u7684\u540d\u79f0\u6807\u7b7e": 238, "\u5728\u4e0a\u9762\u7684\u793a\u4f8b\u4e2d\u4f7f\u7528": 238, "\u4f5c\u4e3a\u6807\u7b7e": 238, "profiler\u5141\u8bb8\u68c0\u67e5\u5728\u4f7f\u7528profiler\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u5305\u88c5\u7684\u4ee3\u7801\u8303\u56f4\u5185\u6267\u884c\u671f\u95f4\u8c03\u7528\u4e86\u54ea\u4e9b\u7b97\u5b50": 238, "\u5982\u679c\u540c\u65f6\u5b58\u5728\u591a\u4e2a\u6d3b\u52a8\u7684profiler\u8303\u56f4": 238, "\u4f8b\u5982\u5728\u5e76\u884cpytorch\u7ebf\u7a0b\u4e2d": 238, "\u6bcf\u4e2aprofiling\u4e0a\u4e0b\u6587\u7ba1\u7406\u5668\u53ea\u8ddf\u8e2a\u5176\u5bf9\u5e94\u8303\u56f4\u7684\u7b97\u5b50": 238, "profiler\u8fd8\u4f1a\u81ea\u52a8\u5206\u6790\u4f7f\u7528": 238, "_fork": 238, "\u542f\u52a8\u7684\u5f02\u6b65\u4efb\u52a1": 238, "\u4ee5\u53ca\u5728\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d\u4f7f\u7528": 238, "\u8c03\u7528\u542f\u52a8\u7684\u53cd\u5411\u4f20\u64ad\u7b97\u5b50": 238, "\u8ba9\u6211\u4eec\u6253\u5370\u51fa\u4e0a\u8ff0\u6267\u884c\u7684\u7edf\u8ba1\u4fe1\u606f": 238, "cpu_time_tot": 238, "\u8f93\u51fa\u5c06\u5982\u4e0b\u6240\u793a": 238, "\u7701\u7565\u4e86\u4e00\u4e9b\u5217": 238, "509m": 238, "503m": 238, "931m": 238, "597m": 238, "700m": 238, "585m": 238, "_convolut": 238, "450m": 238, "mkldnn_convolut": 238, "838m": 238, "114m": 238, "556m": 238, "693m": 238, "_batch_norm_impl_index": 238, "482m": 238, "724": 238, "100u": 238, "native_batch_norm": 238, "229m": 238, "109m": 238, "705": 238, "450u": 238, "332": 238, "631m": 238, "286u": 238, "668m": 238, "292m": 238, "988u": 238, "549m": 238, "group_by_input_shap": 238, "\u8fd9\u91cc\u6211\u4eec\u53ef\u4ee5\u770b\u5230": 238, "\u5982\u9884\u671f\u7684\u90a3\u6837": 238, "\u5927\u90e8\u5206\u65f6\u95f4\u90fd\u82b1\u5728\u4e86\u5377\u79ef\u4e0a": 238, "\u5bf9\u4e8e\u4f7f\u7528": 238, "\u652f\u6301\u7f16\u8bd1\u7684pytorch": 238, "\u7279\u522b\u662f\u5728": 238, "\u6ce8\u610f\u81ea\u8eabcpu\u65f6\u95f4\u548ccpu\u65f6\u95f4\u4e4b\u95f4\u7684\u533a\u522b": 238, "\u7b97\u5b50\u53ef\u4ee5\u8c03\u7528\u5176\u4ed6\u7b97\u5b50": 238, "\u81ea\u8eabcpu\u65f6\u95f4\u4e0d\u5305\u62ec\u5728\u5b50\u7b97\u5b50\u8c03\u7528\u4e2d\u82b1\u8d39\u7684\u65f6\u95f4": 238, "\u800c\u603bcpu\u65f6\u95f4\u5305\u62ec\u4e86\u5b83": 238, "\u4f60\u53ef\u4ee5\u901a\u8fc7\u5c06": 238, "\u8c03\u7528\u6765\u9009\u62e9\u6309\u81ea\u8eabcpu\u65f6\u95f4\u6392\u5e8f": 238, "\u8981\u83b7\u5f97\u66f4\u7ec6\u7c92\u5ea6\u7684\u7ed3\u679c\u5e76\u5305\u542b\u7b97\u5b50\u8f93\u5165\u5f62\u72b6": 238, "\u8bf7\u4f20\u9012": 238, "\u8fd9\u9700\u8981\u4f7f\u7528": 238, "\u8fd0\u884cprofil": 238, "\u8f93\u51fa\u53ef\u80fd\u5982\u4e0b\u6240\u793a": 238, "008m": 238, "956m": 238, "909m": 238, "834m": 238, "332m": 238, "303m": 238, "273m": 238, "233m": 238, "751m": 238, "\u51fa\u73b0\u4e86\u4e24\u6b21": 238, "\u5177\u6709\u4e0d\u540c\u7684\u8f93\u5165\u5f62\u72b6": 238, "profiler\u4e5f\u53ef\u7528\u4e8e\u5206\u6790\u5728gpu\u4e0a\u6267\u884c\u7684\u6a21\u578b\u7684\u6027\u80fd": 238, "\u7b2c\u4e00\u6b21\u4f7f\u7528cuda\u5206\u6790\u53ef\u80fd\u4f1a\u5e26\u6765\u989d\u5916\u7684\u5f00\u9500": 238, "\u7ed3\u679c\u8f93\u51fa": 238, "666m": 238, "484m": 238, "_convolution_nogroup": 238, "thnn_conv2d": 238, "thnn_conv2d_forward": 238, "im2col_kernel": 238, "844m": 238, "sgemm_32x32x32_nn": 238, "206m": 238, "sgemm_32x32x32_nn_vec": 238, "093m": 238, "015m": 238, "\u6ce8\u610f\u5728\u8f93\u51fa\u4e2d\u51fa\u73b0\u4e86\u8bbe\u5907\u4e0a\u7684\u5185\u6838": 238, "profiler\u8fd8\u53ef\u4ee5\u663e\u793a\u5728\u6267\u884c\u6a21\u578b\u7b97\u5b50\u671f\u95f4\u5206\u914d": 238, "\u6216\u91ca\u653e": 238, "\u7684\u5185\u5b58\u91cf": 238, "\u7531\u6a21\u578b\u5f20\u91cf\u4f7f\u7528": 238, "\u5728\u4e0b\u9762\u7684\u8f93\u51fa\u4e2d": 238, "\u5185\u5b58\u5bf9\u5e94\u4e8e\u7b97\u5b50\u5206\u914d": 238, "\u91ca\u653e": 238, "\u7684\u5185\u5b58": 238, "\u4e0d\u5305\u62ec\u5bf9\u5176\u4ed6\u7b97\u5b50\u7684\u5b50\u8c03\u7528": 238, "\u8981\u542f\u7528\u5185\u5b58\u5206\u6790\u529f\u80fd": 238, "self_cpu_memory_usag": 238, "max_pool2d_with_indic": 238, "572": 238, "resize_": 238, "064m": 238, "cpu_memory_usag": 238, "\u8f93\u51fa\u5982\u4e0b\u6240\u793a": 238, "\u53ef\u4ee5\u5c06\u5206\u6790\u7ed3\u679c\u8f93\u51fa\u4e3a": 238, "\u8ddf\u8e2a\u6587\u4ef6": 238, "\u4f60\u53ef\u4ee5\u5728chrome\u8ddf\u8e2a\u67e5\u770b\u5668": 238, "\u4e2d\u68c0\u67e5\u5206\u6790\u7684\u7b97\u5b50\u548ccuda\u5185\u6838\u5e8f\u5217": 238, "\u53ef\u7528\u4e8e\u5206\u6790": 238, "\u5806\u6808\u8ddf\u8e2a": 238, "self_cuda_time_tot": 238, "439": 238, "_conv_forward": 238, "1051": 238, "_call_impl": 238, "016m": 238, "659m": 238, "\u6ce8\u610f\u5728": 238, "\u811a\u672c\u4e2d\u7684\u4e24\u4e2a\u5377\u79ef\u548c\u4e24\u4e2a\u8c03\u7528\u4f4d\u7f6e": 238, "\u8b66\u544a": 238, "\u5806\u6808\u8ddf\u8e2a\u4f1a\u589e\u52a0\u989d\u5916\u7684\u5206\u6790\u5f00\u9500": 238, "pytorch\u5206\u6790\u5668\u63d0\u4f9b\u4e86\u4e00\u4e2a\u989d\u5916\u7684api\u6765\u5904\u7406\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a": 238, "\u4f8b\u5982\u8bad\u7ec3\u5faa\u73af": 238, "\u8ddf\u8e2a\u6240\u6709\u6267\u884c\u53ef\u80fd\u4f1a\u5f88\u6162": 238, "\u5e76\u5bfc\u81f4\u975e\u5e38\u5927\u7684\u8ddf\u8e2a\u6587\u4ef6": 238, "\u4e3a\u4e86\u907f\u514d\u8fd9\u79cd\u60c5\u51b5": 238, "\u53ef\u4ee5\u4f7f\u7528\u53ef\u9009\u53c2\u6570": 238, "\u6307\u5b9a\u4e00\u4e2a\u51fd\u6570": 238, "\u8be5\u51fd\u6570\u4ee5\u6574\u6570\u53c2\u6570": 238, "\u6b65\u9aa4\u7f16\u53f7": 238, "\u4f5c\u4e3a\u8f93\u5165": 238, "\u5e76\u8fd4\u56de\u5206\u6790\u5668\u7684\u64cd\u4f5c": 238, "\u4f7f\u7528\u6b64\u53c2\u6570\u7684\u6700\u4f73\u65b9\u5f0f\u662f\u4f7f\u7528": 238, "\u5e2e\u52a9\u51fd\u6570": 238, "\u5b83\u53ef\u4ee5\u4e3a\u60a8\u751f\u6210\u4e00\u4e2a\u8ba1\u5212": 238, "\u8be5\u51fd\u6570\u4ee5\u5206\u6790\u5668\u7684\u5f15\u7528\u4f5c\u4e3a\u8f93\u5165": 238, "\u5e76\u5728\u6bcf\u6b21\u65b0\u7684\u8ddf\u8e2a\u51c6\u5907\u5c31\u7eea\u65f6\u7531\u5206\u6790\u5668\u8c03\u7528": 238, "\u4e3a\u4e86\u8bf4\u660e\u8be5api\u7684\u5de5\u4f5c\u539f\u7406": 238, "\u8ba9\u6211\u4eec\u9996\u5148\u8003\u8651\u4ee5\u4e0b\u4f7f\u7528": 238, "\u5e2e\u52a9\u51fd\u6570\u7684\u793a\u4f8b": 238, "\u5206\u6790\u5668\u5047\u8bbe\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a\u7531\u4ece\u96f6\u5f00\u59cb\u7f16\u53f7\u7684\u6b65\u9aa4\u7ec4\u6210": 238, "\u4e0a\u9762\u7684\u793a\u4f8b\u4e3a\u5206\u6790\u5668\u5b9a\u4e49\u4e86\u4ee5\u4e0b\u64cd\u4f5c\u5e8f\u5217": 238, "\u544a\u8bc9\u5206\u6790\u5668\u5b83\u5e94\u8be5\u5ffd\u7565\u524d10\u4e2a\u6b65\u9aa4": 238, "\u7684\u9ed8\u8ba4\u503c\u4e3a\u96f6": 238, "\u5728\u7b2c\u4e00\u4e2a": 238, "\u6b65\u9aa4\u4e4b\u540e": 238, "\u5206\u6790\u5668\u5f00\u59cb\u6267\u884c\u5206\u6790\u5668\u5468\u671f": 238, "\u6bcf\u4e2a\u5468\u671f\u7531\u4e09\u4e2a\u9636\u6bb5\u7ec4\u6210": 238, "\u7a7a\u95f2": 238, "\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u4e0d\u6d3b\u52a8": 238, "\u9884\u70ed": 238, "\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u5f00\u59cb\u8ddf\u8e2a": 238, "\u4f46\u7ed3\u679c\u88ab\u4e22\u5f03": 238, "\u6b64\u9636\u6bb5\u7528\u4e8e\u4e22\u5f03\u5206\u6790\u5668\u5728\u8ddf\u8e2a\u5f00\u59cb\u65f6\u83b7\u5f97\u7684\u6837\u672c": 238, "\u56e0\u4e3a\u5b83\u4eec\u901a\u5e38\u7531\u989d\u5916\u7684\u5f00\u9500\u626d\u66f2": 238, "\u4e3b\u52a8\u8ddf\u8e2a": 238, "\u5728\u6b64\u9636\u6bb5\u5206\u6790\u5668\u8ddf\u8e2a\u548c\u8bb0\u5f55\u6570\u636e": 238, "\u53ef\u9009\u7684": 238, "\u53c2\u6570\u6307\u5b9a\u5468\u671f\u7684\u4e0a\u9650": 238, "\u96f6\u503c": 238, "\u5206\u6790\u5668\u5c06\u5c3d\u53ef\u80fd\u957f\u65f6\u95f4\u5730\u6267\u884c\u5468\u671f": 238, "\u5206\u6790\u5668\u5c06\u8df3\u8fc7\u524d15\u4e2a\u6b65\u9aa4": 238, "\u5728\u4e0b\u4e00\u6b65\u8fdb\u884c\u9884\u70ed": 238, "\u5728\u63a5\u4e0b\u6765\u76843\u4e2a\u6b65\u9aa4\u4e2d\u4e3b\u52a8\u8bb0\u5f55": 238, "\u518d\u8df3\u8fc7\u53e6\u59165\u4e2a\u6b65\u9aa4": 238, "\u5728\u53e6\u59163\u4e2a\u6b65\u9aa4\u4e2d\u4e3b\u52a8\u8bb0\u5f55": 238, "\u7531\u4e8e\u6307\u5b9a\u4e86": 238, "\u53c2\u6570\u503c": 238, "\u5206\u6790\u5668\u5c06\u5728\u524d\u4e24\u4e2a\u5468\u671f\u4e4b\u540e\u505c\u6b62\u8bb0\u5f55": 238, "\u5728\u6bcf\u4e2a\u5468\u671f\u7ed3\u675f\u65f6": 238, "\u5206\u6790\u5668\u8c03\u7528\u6307\u5b9a\u7684": 238, "\u51fd\u6570\u5e76\u5c06\u81ea\u8eab\u4f5c\u4e3a\u53c2\u6570\u4f20\u9012": 238, "\u6b64\u51fd\u6570\u7528\u4e8e\u5904\u7406\u65b0\u7684\u8ddf\u8e2a": 238, "\u901a\u8fc7\u83b7\u53d6\u8868\u8f93\u51fa\u6216\u5c06\u8f93\u51fa\u4fdd\u5b58\u5230\u78c1\u76d8\u4e0a\u7684\u8ddf\u8e2a\u6587\u4ef6": 238, "\u8981\u5411\u5206\u6790\u5668\u53d1\u9001\u4e0b\u4e00\u6b65\u5df2\u7ecf\u5f00\u59cb\u7684\u4fe1\u53f7": 238, "\u8bf7\u8c03\u7528": [238, 243], "\u5f53\u524d\u5206\u6790\u5668\u6b65\u9aa4\u5b58\u50a8\u5728": 238, "\u4ee5\u4e0b\u793a\u4f8b\u663e\u793a\u4e86\u5982\u4f55\u4f7f\u7528\u4e0a\u8ff0\u6240\u6709\u6982\u5ff5": 238, "trace_": 238, "\u67e5\u770b\u4ee5\u4e0b\u6559\u7a0b\u4ee5\u7ee7\u7eed\u5b66\u4e60": 238, "\u57fa\u51c6\u6d4b\u8bd5": 238, "\u5206\u6790\u5668": 238, "\u53ef\u89c6\u5316\u6a21\u578b": 238, "\u6570\u636e\u548c\u8bad\u7ec3": 238, "profiler_recip": 238, "t_larg": 239, "fw_hook": 239, "reasoning_about_shap": 239, "\u60a8\u53ef\u80fd\u9700\u8981\u5728\u4e0d\u540c\u7684\u8bbe\u5907\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u795e\u7ecf\u7f51\u7edc\u6a21\u578b": 240, "\u4f7f\u7528pytorch\u5728\u4e0d\u540c\u8bbe\u5907\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u662f\u76f8\u5bf9\u76f4\u63a5\u7684": 240, "\u6211\u4eec\u5c06\u5c1d\u8bd5\u5728cpu\u548cgpu\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 240, "\u4e3a\u4e86\u8ba9\u672c\u6559\u7a0b\u4e2d\u7684\u6bcf\u4e2a\u4ee3\u7801\u5757\u90fd\u80fd\u6b63\u786e\u8fd0\u884c": 240, "\u60a8\u5fc5\u987b\u5148\u5c06\u8fd0\u884c\u73af\u5883\u5207\u6362\u5230": 240, "\u6216\u66f4\u9ad8": 240, "\u5b8c\u6210\u540e": 240, "\u6211\u4eec\u9700\u8981\u5b89\u88c5\u5b83": [240, 241], "\u4fdd\u5b58\u548c\u52a0\u8f7d": 240, "\u4e3a\u4e86\u6f14\u793a": [240, 242, 243, 249], "\u6211\u4eec\u5c06\u521b\u5efa\u4e00\u4e2a\u7528\u4e8e\u8bad\u7ec3\u56fe\u50cf\u7684\u795e\u7ecf\u7f51\u7edc": [240, 241, 242, 243, 248, 249], "\u8981\u4e86\u89e3\u66f4\u591a\u4fe1\u606f": [240, 241, 242, 243, 248, 249, 250], "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u7684\u6559\u7a0b": [240, 242, 243, 248, 249], "\u5f53\u5728cpu\u4e0a\u52a0\u8f7d\u4f7f\u7528gpu\u8bad\u7ec3\u7684\u6a21\u578b\u65f6": 240, "\u8bf7\u5c06": 240, "\u51fd\u6570\u7684": 240, "\u6307\u5b9a\u4fdd\u5b58\u8def\u5f84": [240, 243, 248], "\u5f20\u91cf\u5e95\u5c42\u7684\u5b58\u50a8\u5c06\u4f7f\u7528": 240, "\u53c2\u6570\u52a8\u6001\u91cd\u65b0\u6620\u5c04\u5230cpu\u8bbe\u5907": 240, "\u5f53\u5728gpu\u4e0a\u52a0\u8f7d\u4f7f\u7528gpu\u8bad\u7ec3\u548c\u4fdd\u5b58\u7684\u6a21\u578b\u65f6": 240, "\u53ea\u9700\u4f7f\u7528": 240, "\u5c06\u521d\u59cb\u5316\u7684\u6a21\u578b\u8f6c\u6362\u4e3acuda\u4f18\u5316\u6a21\u578b": 240, "\u8bf7\u786e\u4fdd\u5bf9\u6240\u6709\u6a21\u578b\u8f93\u5165\u4f7f\u7528": 240, "\u4e3a\u6a21\u578b\u51c6\u5907\u6570\u636e": 240, "\u4f1a\u8fd4\u56de": 240, "\u5728gpu\u4e0a\u7684\u65b0\u526f\u672c": 240, "\u5b83\u4e0d\u4f1a\u8986\u76d6": 240, "\u8bf7\u8bb0\u4f4f\u624b\u52a8\u8986\u76d6\u5f20\u91cf": 240, "\u5f53\u5728gpu\u4e0a\u52a0\u8f7d\u4f7f\u7528cpu\u8bad\u7ec3\u548c\u4fdd\u5b58\u7684\u6a21\u578b\u65f6": 240, "\u8bf7\u5728": 240, "\u51fd\u6570\u4e2d\u5c06": [240, 248], "\u53c2\u6570\u8bbe\u7f6e\u4e3a": [240, 248], "\u5c06\u6a21\u578b\u52a0\u8f7d\u5230\u7ed9\u5b9a\u7684gpu\u8bbe\u5907": 240, "\u5c06\u6a21\u578b\u7684\u53c2\u6570\u5f20\u91cf\u8f6c\u6362\u4e3acuda\u5f20\u91cf": 240, "\u8fd8\u8981\u786e\u4fdd\u5bf9\u6240\u6709\u6a21\u578b\u8f93\u5165\u4f7f\u7528": 240, "\u4e3acuda\u4f18\u5316\u7684\u6a21\u578b\u51c6\u5907\u6570\u636e": 240, "\u9009\u62e9\u60a8\u60f3\u7528\u7684gpu\u8bbe\u5907\u7f16\u53f7": 240, "\u662f\u4e00\u4e2a\u6a21\u578b\u5305\u88c5\u5668": 240, "\u53ef\u4ee5\u542f\u7528\u5e76\u884cgpu\u5229\u7528": 240, "\u8981\u901a\u7528\u5730\u4fdd\u5b58": 240, "\u8bf7\u4fdd\u5b58": 240, "\u8fd9\u6837": 240, "\u60a8\u5c31\u53ef\u4ee5\u7075\u6d3b\u5730\u5c06\u6a21\u578b\u52a0\u8f7d\u5230\u4efb\u4f55\u8bbe\u5907": 240, "\u52a0\u8f7d\u5230\u4efb\u4f55\u60a8\u60f3\u8981\u7684\u8bbe\u5907": 240, "\u60a8\u5df2\u6210\u529f\u5728pytorch\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 240, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9\u6a21\u578b\u7528\u4e8e\u63a8\u7406\u6216\u6062\u590d\u8bad\u7ec3\u53ef\u4ee5\u5e2e\u52a9\u4f60\u4ece\u4e0a\u6b21\u79bb\u5f00\u7684\u5730\u65b9\u7ee7\u7eed": 241, "\u5f53\u4fdd\u5b58\u901a\u7528\u68c0\u67e5\u70b9\u65f6": 241, "\u4f60\u5fc5\u987b\u4fdd\u5b58\u4e0d\u4ec5\u4ec5\u662f\u6a21\u578b\u7684": 241, "\u540c\u65f6\u4e5f\u5f88\u91cd\u8981\u4fdd\u5b58\u4f18\u5316\u5668\u7684": 241, "\u56e0\u4e3a\u5b83\u5305\u542b\u4e86\u5728\u6a21\u578b\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u66f4\u65b0\u7684\u7f13\u51b2\u533a\u548c\u53c2\u6570": 241, "\u6839\u636e\u4f60\u81ea\u5df1\u7684\u7b97\u6cd5": 241, "\u4f60\u53ef\u80fd\u8fd8\u9700\u8981\u4fdd\u5b58\u4f60\u79bb\u5f00\u65f6\u7684": 241, "\u6700\u65b0\u8bb0\u5f55\u7684\u8bad\u7ec3\u635f\u5931": 241, "\u5916\u90e8\u7684": 241, "\u5c42\u7b49\u7b49": 241, "\u8981\u4fdd\u5b58\u591a\u4e2a\u68c0\u67e5\u70b9": 241, "\u4f60\u5fc5\u987b\u5c06\u5b83\u4eec\u7ec4\u7ec7\u5728\u4e00\u4e2a\u5b57\u5178\u4e2d": 241, "\u6765\u5e8f\u5217\u5316\u8fd9\u4e2a\u5b57\u5178": 241, "\u4e00\u4e2a\u5e38\u89c1\u7684": 241, "\u7ea6\u5b9a\u662f\u4f7f\u7528": 241, "\u6587\u4ef6\u6269\u5c55\u540d\u6765\u4fdd\u5b58\u8fd9\u4e9b\u68c0\u67e5\u70b9": 241, "\u8981\u52a0\u8f7d\u8fd9\u4e9b\u9879\u76ee": 241, "\u9996\u5148\u521d\u59cb\u5316\u6a21\u578b\u548c\u4f18\u5316\u5668": [241, 243], "\u5728\u672c\u5730\u52a0\u8f7d\u5b57\u5178": [241, 243], "\u4ece\u8fd9\u91cc\u5f00\u59cb": [241, 243], "\u4f60\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u5730\u67e5\u8be2\u5b57\u5178\u6765\u8f7b\u677e\u8bbf\u95ee\u4fdd\u5b58\u7684\u9879\u76ee": 241, "\u5c31\u50cf\u4f60\u671f\u671b\u7684\u90a3\u6837": 241, "\u6211\u4eec\u5c06\u63a2\u7d22\u5982\u4f55\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u68c0\u67e5\u70b9": 241, "\u5bf9\u4e8e\u8fd9\u4e2a\u793a\u4f8b": 241, "\u4e3a\u4e86\u793a\u4f8b": 241, "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u7684\u793a\u4f8b": 241, "\u6536\u96c6\u6240\u6709\u76f8\u5173\u4fe1\u606f\u5e76\u6784\u5efa\u5b57\u5178": [241, 243], "\u9644\u52a0\u4fe1\u606f": 241, "\u7136\u540e\u5728\u672c\u5730\u52a0\u8f7d\u5b57\u5178": [241, 243], "\u6216\u8005": [241, 246], "\u4f60\u5fc5\u987b\u8c03\u7528model": 241, "\u6765\u5c06dropout\u548c\u6279\u5f52\u4e00\u5316\u5c42\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 241, "\u7136\u540e\u624d\u80fd\u8fd0\u884c\u63a8\u7406": 241, "\u5c06\u4f1a\u5f97\u5230\u4e0d\u4e00\u81f4\u7684\u63a8\u7406\u7ed3\u679c": 241, "\u5982\u679c\u4f60\u5e0c\u671b\u6062\u590d\u8bad\u7ec3": 241, "\u4ee5\u786e\u4fdd\u8fd9\u4e9b\u5c42\u5904\u4e8e\u8bad\u7ec3\u6a21\u5f0f": [241, 243], "\u4f60\u5df2\u7ecf\u6210\u529f\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u4e00\u4e2a\u901a\u7528\u68c0\u67e5\u70b9": 241, "\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u6709\u4e24\u79cd\u65b9\u6cd5": 242, "\u7b2c\u4e00\u79cd\u662f\u4fdd\u5b58\u548c\u52a0\u8f7d": 242, "\u7b2c\u4e8c\u79cd\u662f\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b": 242, "\u51fd\u6570\u4fdd\u5b58\u6a21\u578b\u7684": 242, "\u4e3a\u540e\u7eed\u6062\u590d\u6a21\u578b\u63d0\u4f9b\u8f83\u5927\u7684\u7075\u6d3b\u6027": 242, "\u4fdd\u5b58\u6a21\u578b\u7684\u63a8\u8350\u4f7f\u7528\u6b64\u65b9\u6cd5": 242, "\u56e0\u4e3a\u53ea\u9700\u8981\u4fdd\u5b58\u8bad\u7ec3\u597d\u7684\u6a21\u578b\u7684\u5b66\u4e60\u53c2\u6570": 242, "\u5f53\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b\u65f6": 242, "\u4f60\u4f7f\u7528python": 242, "\u6a21\u5757\u4fdd\u5b58\u6574\u4e2a\u6a21\u5757": 242, "\u4f7f\u7528\u8fd9\u79cd\u65b9\u6cd5\u8bed\u6cd5\u6700\u76f4\u89c2": 242, "\u4ee3\u7801\u91cf\u6700\u5c11": 242, "\u4f46\u8fd9\u79cd\u65b9\u6cd5\u7684\u7f3a\u70b9\u662f\u5e8f\u5217\u5316\u7684\u6570\u636e\u4e0e\u4fdd\u5b58\u6a21\u578b\u65f6\u4f7f\u7528\u7684\u7279\u5b9a\u7c7b\u548c\u76ee\u5f55\u7ed3\u6784\u7ed1\u5b9a\u5728\u4e00\u8d77": 242, "\u539f\u56e0\u662fpickle\u4e0d\u4fdd\u5b58\u6a21\u578b\u7c7b\u672c\u8eab": 242, "\u800c\u662f\u4fdd\u5b58\u5305\u542b\u8be5\u7c7b\u7684\u6587\u4ef6\u7684\u8def\u5f84": 242, "\u8be5\u8def\u5f84\u5728\u52a0\u8f7d\u65f6\u4f7f\u7528": 242, "\u5f53\u5728\u5176\u4ed6\u9879\u76ee\u4e2d\u4f7f\u7528\u6216\u91cd\u6784\u540e": 242, "\u4ee3\u7801\u53ef\u80fd\u4f1a\u51fa\u73b0\u5404\u79cd\u5f02\u5e38\u5bfc\u81f4\u7a0b\u5e8f\u4e2d\u65ad": 242, "\u6211\u4eec\u5c06\u5c55\u793a\u4e24\u79cd\u65b9\u5f0f\u5982\u4f55\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 242, "\u8ba9\u6211\u4eec\u53ea\u4f7f\u7528": 242, "\u6765\u4fdd\u5b58\u548c\u52a0\u8f7d\u6211\u4eec\u7684\u6a21\u578b": 242, "\u8def\u5f84": 242, "state_dict_model": 242, "\u901a\u5e38\u4f7f\u7528": 242, "\u6587\u4ef6\u6269\u5c55\u540d\u6765\u4fdd\u5b58\u6a21\u578b": 242, "\u51fd\u6570\u63a5\u53d7\u4e00\u4e2a\u5b57\u5178\u5bf9\u8c61": 242, "\u800c\u4e0d\u662f\u4fdd\u5b58\u5bf9\u8c61\u7684\u8def\u5f84": 242, "\u8fd9\u610f\u5473\u7740\u4f60\u5fc5\u987b\u5148\u53cd\u5e8f\u5217\u5316\u4fdd\u5b58\u7684state_dict": 242, "\u7136\u540e\u518d\u4f20\u9012\u7ed9": 242, "\u4e0d\u80fd\u4f7f\u7528": 242, "\u6765\u52a0\u8f7d": 242, "\u8fd8\u8981\u8bb0\u4f4f": 242, "\u5728\u8fd0\u884c\u63a8\u7406\u4e4b\u524d": [242, 243], "\u4f60\u5fc5\u987b\u8c03\u7528": 242, "\u5c06dropout\u548cbatch": 242, "\u5426\u5219\u5c06\u5bfc\u81f4\u63a8\u7406\u7ed3\u679c\u4e0d\u4e00\u81f4": [242, 243], "\u73b0\u5728\u8ba9\u6211\u4eec\u5c1d\u8bd5\u5c06\u6574\u4e2a\u6a21\u578b\u8fdb\u884c\u4fdd\u5b58\u548c\u52a0\u8f7d": 242, "entire_model": 242, "\u540c\u6837\u8981\u8bb0\u4f4f\u5728\u8fd0\u884c\u63a8\u7406\u4e4b\u524d\u8c03\u7528": 242, "\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 242, "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u7528\u4e8e\u63a8\u7406\u7684\u6a21\u578b": 242, "pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 242, "pytorch\u4e2d\u5c06\u591a\u4e2a\u6a21\u578b\u4fdd\u5b58\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d": 242, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 243, "\u53ef\u4ee5\u5e2e\u52a9\u60a8\u91cd\u7528\u4e4b\u524d\u8bad\u7ec3\u8fc7\u7684\u6a21\u578b": 243, "\u5f53\u4fdd\u5b58\u7531\u591a\u4e2a": 243, "\u7ec4\u6210\u7684\u6a21\u578b\u65f6": 243, "\u4f8b\u5982\u751f\u6210\u5bf9\u6297\u7f51\u7edc": 243, "\u5e8f\u5217\u5230\u5e8f\u5217\u6a21\u578b\u6216\u6a21\u578b\u96c6\u5408\u65f6": 243, "\u60a8\u5fc5\u987b\u4fdd\u5b58\u6bcf\u4e2a\u6a21\u578b\u7684state_dict\u548c\u76f8\u5e94\u7684\u4f18\u5316\u5668": 243, "\u60a8\u8fd8\u53ef\u4ee5\u901a\u8fc7\u7b80\u5355\u5730\u5c06\u5176\u9644\u52a0\u5230\u5b57\u5178\u4e2d\u6765\u4fdd\u5b58\u4efb\u4f55\u53ef\u80fd\u6709\u52a9\u4e8e\u6062\u590d\u8bad\u7ec3\u7684\u5176\u4ed6\u9879\u76ee": 243, "\u8981\u52a0\u8f7d\u6a21\u578b": 243, "\u60a8\u53ef\u4ee5\u50cf\u671f\u671b\u7684\u90a3\u6837\u7b80\u5355\u5730\u67e5\u8be2\u5b57\u5178\u6765\u8f7b\u677e\u8bbf\u95ee\u4fdd\u5b58\u7684\u9879\u76ee": 243, "\u6211\u4eec\u5c06\u6f14\u793a\u5982\u4f55\u4f7f\u7528pytorch\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u591a\u4e2a\u6a21\u578b": 243, "\u5982\u679c\u5c1a\u672a\u5b89\u88c5": [243, 248, 250], "\u6784\u5efa\u4e24\u4e2a\u53d8\u91cf\u7528\u4e8e\u6700\u7ec8\u4fdd\u5b58\u6a21\u578b": 243, "neta": [243, 248], "netb": [243, 248], "\u4e3a\u6211\u4eec\u521b\u5efa\u7684\u6bcf\u4e2a\u6a21\u578b\u6784\u5efa\u4f18\u5316\u5668": 243, "\u8bb0\u4f4f\u9996\u5148\u521d\u59cb\u5316\u6a21\u578b\u548c\u4f18\u5316\u5668": 243, "optimmodela": 243, "optimmodelb": 243, "\u60a8\u5fc5\u987b\u8c03\u7528": 243, "\u5c42\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f": 243, "\u5982\u679c\u60a8\u5e0c\u671b\u6062\u590d\u8bad\u7ec3": 243, "\u60a8\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e86\u591a\u4e2a\u6a21\u578b": 243, "hereaft": 244, "t2": 244, "__slots__": 244, "pertin": 244, "__torch_dispatch__": 244, "new_param": 244, "myquantizedlinearweight": 244, "__new__": 244, "_make_wrapper_subclass": 244, "storage_offset": 244, "_to_copi": 244, "new_elem": 244, "op_tabl": 244, "param_nam": 244, "__setattr__": 244, "module_load": 244, "__torch_function__": 244, "param_kei": 244, "custom_torch_funct": 244, "dest": 244, "disabletorchfunctionsubclass": 244, "scalar_valu": 245, "walltim": 245, "tfevent": 245, "tensorboard_with_pytorch": 245, "\u6211\u4eec\u5c06\u4ecb\u7ecd": 246, "\u7684\u4e3b\u8981api": 246, "timer\u57fa\u4e8e": 246, "\u5e76\u505a\u4e86\u4e00\u4e9bpytorch\u7279\u5b9a\u7684\u4fee\u6539": 246, "\u672c\u6559\u7a0b\u4e0d\u8981\u6c42\u8bfb\u8005\u719f\u6089\u5185\u7f6e\u7684": 246, "\u4f46\u5047\u8bbe\u8bfb\u8005\u719f\u6089\u6027\u80fd\u5de5\u4f5c\u7684\u57fa\u7840\u77e5\u8bc6": 246, "\u6709\u5173\u66f4\u5168\u9762\u7684\u6027\u80fd\u8c03\u4f18\u6559\u7a0b": 246, "\u5185\u5bb9": 246, "\u4f7f\u7528callgrind\u8fdb\u884ca": 246, "\u7528\u4e8e\u5b9a\u4e49\u4efb\u52a1": 246, "\u5c06\u5728\u5faa\u73af\u4e2d\u8fd0\u884c\u5e76\u8ba1\u65f6\u7684\u8ba1\u7b97": 246, "\u5c06\u5728\u8c03\u7528\u6d4b\u91cf\u5faa\u73af\u4e4b\u524d\u8fd0\u884c": 246, "\u7528\u4e8e\u586b\u5145": 246, "\u6240\u9700\u7684\u4efb\u4f55\u72b6\u6001": 246, "\u4ece\u5916\u90e8\u4f5c\u7528\u57df\u4f20\u9012\u53d8\u91cf": 246, "\u63a7\u5236pytorch\u4f7f\u7528\u7684\u7ebf\u7a0b\u6570": 246, "\u9ed8\u8ba4\u503c": 246, "\u6b64\u65b9\u6cd5\u5c06\u5904\u7406\u8bf8\u5982\u9009\u62e9\u5408\u9002\u7684\u91cd\u590d\u6b21\u6570": 246, "\u56fa\u5b9a\u7ebf\u7a0b\u6570\u4ee5\u53ca\u63d0\u4f9b\u7ed3\u679c\u7684\u65b9\u4fbf\u8868\u793a\u7b49\u7ec6\u8282": 246, "measurement\u5bf9\u8c61\u5b58\u50a8\u591a\u6b21\u91cd\u590d\u7684\u7ed3\u679c": 246, "\u5e76\u63d0\u4f9b\u5404\u79cd\u5b9e\u7528\u529f\u80fd": 246, "0x7f1929a38ed0": 246, "iqr": 246, "424": 246, "cpp_timer": 246, "0x7f192b019ed0": 246, "\u4e0d\u51fa\u6240\u6599": 246, "\u4ee3\u7801\u7247\u6bb5\u7684\u901f\u5ea6\u66f4\u5feb": 246, "\u53d8\u5316\u4e5f\u66f4\u5c0f": 246, "\u4e3a\u4e86\u6df1\u5165\u8c03\u67e5": 246, "\u5c01\u88c5\u4e86": 246, "\u4ee5\u6536\u96c6\u6307\u4ee4\u8ba1\u6570": 246, "\u8fd9\u4e9b\u6307\u4ee4\u8ba1\u6570\u975e\u5e38\u6709\u7528": 246, "\u56e0\u4e3a\u5b83\u4eec\u63d0\u4f9b\u4e86\u7ec6\u7c92\u5ea6\u548c\u786e\u5b9a\u6027\u7684": 246, "\u6216\u5728python\u7684\u60c5\u51b5\u4e0b\u566a\u58f0\u5f88\u4f4e\u7684": 246, "\u89c1\u89e3": 246, "\u8bf4\u660e\u4e86\u4ee3\u7801\u7247\u6bb5\u662f\u5982\u4f55\u8fd0\u884c\u7684": 246, "0x7f1929a35850": 246, "563600": 246, "\u7684\u5b57\u7b26\u4e32\u8868\u793a\u5f62\u5f0f\u7c7b\u4f3c\u4e8e": 246, "\u662f\u4e00\u4e2apython\u6982\u5ff5": 246, "\u79fb\u9664\u4e86\u5728cpython\u89e3\u91ca\u5668\u4e2d\u5df2\u77e5\u7684\u566a\u58f0\u8c03\u7528": 246, "\u4e3a\u4e86\u8fdb\u884c\u66f4\u8be6\u7ec6\u7684\u5206\u6790": 246, "\u6211\u4eec\u9700\u8981\u67e5\u770b\u7279\u5b9a\u7684\u8c03\u7528": 246, "\u8fd4\u56de\u4e00\u4e2a": 246, "\u4ee5\u4fbf\u4e8e\u6b64\u64cd\u4f5c": 246, "\u4ece\u6982\u5ff5\u4e0a\u8bb2": 246, "\u53ef\u4ee5\u88ab\u89c6\u4e3a\u4e00\u4e2a\u5e26\u6709\u4e00\u4e9b\u5b9e\u7528\u65b9\u6cd5\u7684\u6210\u5bf9\u5143\u7ec4": 246, "\u5176\u4e2d\u6bcf\u4e00\u5bf9\u90fd\u662f": 246, "\u6307\u4ee4\u6570\u91cf": 246, "\u6587\u4ef6\u8def\u5f84\u548c\u51fd\u6570\u540d\u79f0": 246, "\u5173\u4e8e\u8def\u5f84\u7684\u8bf4\u660e": 246, "\u901a\u5e38\u6211\u4eec\u4e0d\u5173\u5fc3\u7edd\u5bf9\u8def\u5f84": 246, "\u4e00\u4e2a\u4e58\u6cd5\u8c03\u7528\u7684\u5b8c\u6574\u8def\u5f84\u548c\u51fd\u6570\u540d\u662f\u8fd9\u6837\u7684": 246, "tensormethod": 246, "ab_ref": 246, "\u800c\u5b9e\u9645\u4e0a": 246, "\u6211\u4eec\u611f\u5174\u8da3\u7684\u6240\u6709\u4fe1\u606f\u90fd\u53ef\u4ee5\u8868\u793a\u4e3a": 246, "\u4f1a\u5c3d\u6700\u5927\u52aa\u529b\u53bb\u9664\u6587\u4ef6\u8def\u5f84\u4e2d\u4f4e\u4fe1\u53f7\u90e8\u5206": 246, "\u4ee5\u53ca\u5171\u4eab\u5bf9\u8c61": 246, "\u901a\u5e38\u5efa\u8bae\u4f7f\u7528": 246, "inclusive_stat": 246, "0x7f192a6dfd90": 246, "47264": 246, "_int_fre": 246, "25963": 246, "_int_malloc": 246, "19900": 246, "tensorit": 246, "tensoriteratorconfig": 246, "18000": 246, "__tls_get_addr": 246, "13500": 246, "malloc": [246, 247], "11300": 246, "smallvector": 246, "10345": 246, "_int_memalign": 246, "9200": 246, "iteratorbas": 246, "get_strid": 246, "173472": 246, "\u8fd9\u4ecd\u7136\u6709\u5f88\u591a\u5185\u5bb9\u9700\u8981\u6d88\u5316": 246, "\u8ba9\u6211\u4eec\u4f7f\u7528": 246, "\u65b9\u6cd5\u6765\u53bb\u9664\u4e00\u4e9b\u51fd\u6570\u8def\u5f84": 246, "\u5e76\u4e22\u5f03\u51fd\u6570\u8c03\u7528": 246, "\u8fd9\u6837\u505a\u65f6": 246, "\u4efb\u4f55\u51b2\u7a81": 246, "\u90fd\u5c06\u6620\u5c04\u5230": 246, "\u7684\u8ba1\u6570\u5c06\u88ab\u7d2f\u52a0": 246, "group_by_fil": 246, "fn_name": 246, "fn_dir": 246, "fn_file": 246, "0x7f192995d750": 246, "118200": 246, "tensoriter": 246, "65000": 246, "20900": 246, "15900": 246, "15100": 246, "cpualloc": 246, "12500": 246, "352327": 246, "\u6307\u4ee4\u8ba1\u6570\u6700\u6709\u7528\u7684\u7279\u6027\u4e4b\u4e00\u662f\u5141\u8bb8\u5bf9\u8ba1\u7b97\u8fdb\u884c\u7ec6\u7c92\u5ea6\u6bd4\u8f83": 246, "\u8fd9\u5728\u5206\u6790\u6027\u80fd\u65f6\u81f3\u5173\u91cd\u8981": 246, "\u4e3a\u4e86\u770b\u5230\u8fd9\u4e00\u70b9": 246, "\u8ba9\u6211\u4eec\u5c06\u4e24\u4e2a\u5927\u5c0f\u4e3a128\u7684\u5f20\u91cf\u76f8\u4e58\u4e0e\u4e00\u4e2a": 246, "\u7684\u4e58\u6cd5\u8fdb\u884c\u6bd4\u8f83": 246, "\u540e\u8005\u5c06\u5bf9\u7b2c\u4e8c\u4e2a\u5f20\u91cf\u8fdb\u884c\u5e7f\u64ad": 246, "a0": 246, "b0": 246, "a1": 246, "a127": 246, "broadcasting_stat": 246, "\u6211\u4eec\u7ecf\u5e38\u9700\u8981\u5bf9\u4e24\u79cd\u4e0d\u540c\u7684\u73af\u5883\u8fdb\u884ca": 246, "\u4f8b\u5982\u6d4b\u8bd5\u4e00\u4e2apr": 246, "\u6216\u5c1d\u8bd5\u4e0d\u540c\u7684\u7f16\u8bd1\u6807\u5fd7": 246, "\u8fd9\u5f88\u7b80\u5355": 246, "\u90fd\u662f\u53efpickle\u5316\u7684": 246, "\u53ea\u9700\u5728\u6bcf\u4e2a\u73af\u5883\u4e2d\u4fdd\u5b58\u6d4b\u91cf\u7ed3\u679c": 246, "\u7136\u540e\u5728\u5355\u4e2a\u8fdb\u7a0b\u4e2d\u52a0\u8f7d\u5b83\u4eec\u8fdb\u884c\u5206\u6790": 246, "extract_fn_nam": 246, "17600": 246, "tensoriteratorbas": 246, "compute_strid": 246, "12700": 246, "allocate_or_resize_output": 246, "10200": 246, "smallvectorimpl": 246, "7400": 246, "infer_s": 246, "6200": 246, "invert_perm": 246, "6064": 246, "reorder_dimens": 246, "4300": 246, "compatible_strid": 246, "check_tensor_options_and_extract_memory_format": 246, "__memcmp_avx2_movb": 246, "empty_cpu": 246, "1300": 246, "2400": 246, "6100": 246, "compute_fast_setup_typ": 246, "22600": 246, "fast_set_up": 246, "58091": 246, "\u6240\u4ee5\u5e7f\u64ad\u7248\u672c\u6bcf\u6b21\u8c03\u7528\u9700\u8981\u989d\u5916580\u6761\u6307\u4ee4": 246, "\u56de\u60f3\u4e00\u4e0b\u6211\u4eec\u6536\u96c6\u4e86100\u6b21\u8fd0\u884c\u7684\u6837\u672c": 246, "\u7ea6\u536010": 246, "\u6709\u76f8\u5f53\u591a\u7684": 246, "\u6240\u4ee5\u8ba9\u6211\u4eec\u6df1\u5165\u7814\u7a76\u8fd9\u4e9b\u8c03\u7528": 246, "\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u505a\u5230\u8fd9\u4e00\u70b9": 246, "0x7f19299544d0": 246, "compute_shap": 246, "2300": 246, "coalesce_dimens": 246, "\u8fd9\u8bf4\u660e\u4e86\u6b63\u5728\u53d1\u751f\u7684\u60c5\u51b5": 246, "\u8bbe\u7f6e\u4e2d\u6709\u4e00\u6761\u5feb\u901f\u8def\u5f84": 246, "\u4f46\u5728": 246, "\u7684\u60c5\u51b5\u4e0b": 246, "\u6211\u4eec\u9519\u8fc7\u4e86\u5b83": 246, "\u4e0d\u5f97\u4e0d\u8fdb\u884c\u66f4\u901a\u7528\u7684\u5206\u6790": 246, "\u8fd9\u66f4\u52a0\u6602\u8d35": 246, "\u88ab\u8fc7\u6ee4\u5668\u7701\u7565\u7684\u6700\u663e\u8457\u7684\u8c03\u7528\u662f": 246, "\u8fd9\u4e5f\u662f\u66f4\u901a\u7528\u8bbe\u7f6e\u7684\u4e00\u90e8\u5206": 246, "\u603b\u4e4b": 246, "\u6765\u6536\u96c6\u5899\u4e0a\u65f6\u95f4": 246, "\u5982\u679c\u8ba1\u65f6\u53d8\u5316\u8fc7\u9ad8": 246, "\u8bf7\u589e\u52a0": 246, "\u6216\u8005\u5982\u679c\u65b9\u4fbf\u7684\u8bdd": 246, "\u8f6c\u79fb\u5230": 246, "\u5bf9\u4e8e\u7ec6\u7c92\u5ea6\u5206\u6790": 246, "\u6765\u6d4b\u91cf\u6307\u4ee4\u8ba1\u6570": 246, "__add__": 246, "__sub__": 246, "\u6765\u5207\u5206\u548c\u5904\u7406\u5b83\u4eec": 246, "\u9690\u542b\u7684": 246, "\u4e0d\u5305\u542b": 246, "\u5c06\u81ea\u52a8\u586b\u5145\u5b83": 246, "\u8fd9\u610f\u5473\u7740": 246, "\u5c06\u6b63\u5e38\u5de5\u4f5c": 246, "\u4e0d\u8fc7\u5176\u4ed6\u5bfc\u5165\u5e94\u8be5\u653e\u5728": 246, "\u4e3a\u4e86\u63d0\u4f9b\u6709\u5173\u6267\u884c\u7684": 246, "\u5185\u90e8\u4fe1\u606f\u7684\u5b8c\u6574\u4fe1\u606f": 246, "\u9700\u8981\u8bbf\u95ee": 246, "\u8c03\u8bd5\u7b26\u53f7": 246, "\u8fd9\u662f\u901a\u8fc7\u5728\u6784\u5efa": 246, "\u65f6\u8bbe\u7f6e": 246, "\u6765\u5b9e\u73b0\u7684": 246, "\u5426\u5219\u51fd\u6570\u8c03\u7528\u5c06\u662f\u4e0d\u900f\u660e\u7684": 246, "\u751f\u6210\u7684": 246, "\u5c06\u5728\u7f3a\u5c11\u8c03\u8bd5\u7b26\u53f7\u65f6\u53d1\u51fa\u8b66\u544a": 246, "timer_quick_start": 246, "szymon": 247, "migacz": 247, "inexpens": 247, "fused_gelu": 247, "erf": 247, "41421": 247, "conjunct": 247, "carefulli": 247, "anomali": 247, "detect_anomali": 247, "set_detect_anomali": 247, "emit_nvtx": 247, "nth": 247, "cpunodebind": 247, "membind": 247, "pytorch_script": 247, "thrash": 247, "gomp_cpu_affin": 247, "omp_proc_bind": 247, "omp_schedul": 247, "libgomp": 247, "sleep": 247, "jemalloc": 247, "tcmalloc": 247, "emphas": 247, "neighbor": 247, "enable_onednn_fus": 247, "optimize_for_infer": 247, "avx512_bf16": 247, "_jit_set_autocast_mod": 247, "ccl": 247, "alltoal": 247, "cuda_tensor": 247, "guidelin": 247, "slide": 247, "no_sync": 247, "tuning_guid": 247, "\u5728\u8f6c\u79fb\u5b66\u4e60\u6216\u8bad\u7ec3\u65b0\u7684\u590d\u6742\u6a21\u578b\u65f6": 248, "\u52a0\u8f7d\u90e8\u5206\u6a21\u578b\u662f\u5f88\u5e38\u89c1\u7684\u573a\u666f": 248, "\u5229\u7528\u5df2\u7ecf\u8bad\u7ec3\u597d\u7684\u53c2\u6570": 248, "\u5373\u4f7f\u53ea\u6709\u5c11\u6570\u53ef\u7528": 248, "\u4e5f\u5c06\u6709\u52a9\u4e8e\u52a0\u5feb\u8bad\u7ec3\u8fc7\u7a0b\u7684\u542f\u52a8": 248, "\u5e76\u6709\u671b\u4f7f\u60a8\u7684\u6a21\u578b\u6bd4\u4ece\u5934\u5f00\u59cb\u8bad\u7ec3\u6536\u655b\u5f97\u66f4\u5feb": 248, "\u65e0\u8bba\u60a8\u662f\u52a0\u8f7d\u7f3a\u5c11\u67d0\u4e9b\u952e\u7684\u90e8\u5206": 248, "\u8fd8\u662f\u52a0\u8f7d\u6bd4\u9884\u671f\u7684\u6a21\u578b\u66f4\u591a\u952e\u7684": 248, "\u60a8\u90fd\u53ef\u4ee5\u901a\u8fc7": 248, "\u4ee5\u5ffd\u7565\u4e0d\u5339\u914d\u7684\u952e": 248, "\u6211\u4eec\u5c06\u5c1d\u8bd5\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": 248, "\u6211\u4eec\u5c06\u521b\u5efa\u4e24\u4e2a\u795e\u7ecf\u7f51\u7edc": 248, "\u5c06\u7c7b\u578b": 248, "\u7684\u4e00\u4e2a\u53c2\u6570\u52a0\u8f7d\u5230\u7c7b\u578b": 248, "\u5982\u679c\u60a8\u60f3\u5c06\u4e00\u4e2a\u5c42\u7684\u53c2\u6570\u52a0\u8f7d\u5230\u53e6\u4e00\u4e2a\u5c42": 248, "\u4f46\u662f\u67d0\u4e9b\u952e\u4e0d\u5339\u914d": 248, "\u53ea\u9700\u5c06\u8981\u52a0\u8f7d\u7684": 248, "\u4e2d\u7684\u53c2\u6570\u952e\u540d\u79f0\u66f4\u6539\u4e3a\u4e0e\u8981\u52a0\u8f7d\u5230\u7684\u6a21\u578b\u4e2d\u7684\u952e\u540d\u79f0\u76f8\u5339\u914d\u5373\u53ef": 248, "\u60a8\u53ef\u4ee5\u770b\u5230\u6240\u6709\u952e\u90fd\u5339\u914d\u6210\u529f": 248, "\u60a8\u5df2\u6210\u529f\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u4e86\u70ed\u542f\u52a8": 248, "\u4f7f\u7528pytorch\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 248, "\u5728pytorch\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [248, 250], "\u6a21\u578b\u7684\u53ef\u5b66\u4e60\u53c2\u6570": 249, "\u5373\u6743\u91cd\u548c\u504f\u7f6e": 249, "\u5305\u542b\u5728\u6a21\u578b\u7684\u53c2\u6570\u4e2d": 249, "\u901a\u8fc7": 249, "\u8bbf\u95ee": 249, "\u53ea\u662f\u4e00\u4e2a": 249, "\u5b57\u5178\u5bf9\u8c61": 249, "\u5b83\u5c06\u6bcf\u4e00\u5c42\u6620\u5c04\u5230\u5176\u53c2\u6570\u5f20\u91cf": 249, "\u5982\u679c\u4f7f\u7528": 249, "\u4fdd\u5b58\u6216\u52a0\u8f7d\u6a21\u578b": 249, "\u5c31\u662f\u4e00\u4e2a\u4e0d\u53ef\u6216\u7f3a\u7684\u5b9e\u4f53": 249, "\u5bf9\u8c61\u662f": 249, "\u5b57\u5178": 249, "\u5b83\u4eec\u53ef\u4ee5\u5f88\u5bb9\u6613\u5730\u88ab\u4fdd\u5b58": 249, "\u66f4\u65b0": 249, "\u4fee\u6539\u548c\u6062\u590d": 249, "\u6a21\u578b\u548c\u4f18\u5316\u5668\u66f4\u597d\u7684\u505a\u5230\u4e86\u6a21\u5757\u5316": 249, "\u53ea\u6709\u5177\u6709\u53ef\u5b66\u4e60\u53c2\u6570\u7684\u5c42": 249, "\u5377\u79ef\u5c42": 249, "\u7ebf\u6027\u5c42\u7b49": 249, "\u548c\u5df2\u6ce8\u518c\u7684\u7f13\u51b2\u533a": 249, "\u5728\u6a21\u578b\u7684": 249, "\u4e2d\u6709\u6761\u76ee": 249, "\u4f18\u5316\u5668\u5bf9\u8c61": 249, "\u4e5f\u6709\u4e00\u4e2a": 249, "\u5b83\u5305\u542b\u4e86\u4f18\u5316\u5668\u72b6\u6001\u7684\u4fe1\u606f": 249, "\u4ee5\u53ca\u4f7f\u7528\u7684\u8d85\u53c2\u6570": 249, "\u6211\u4eec\u5c06\u770b\u5230\u5982\u4f55\u5728\u4e00\u4e2a\u7b80\u5355\u7684\u6a21\u578b\u4e2d": 249, "\u662f\u5982\u4f55\u4f7f\u7528\u7684": 249, "\u5b9a\u4e49\u548c\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": 249, "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u5fc5\u8981\u5e93": 249, "\u73b0\u5728\u6211\u4eec\u5df2\u7ecf\u6784\u5efa\u4e86\u6a21\u578b\u548c\u4f18\u5316\u5668": 249, "\u6211\u4eec\u53ef\u4ee5\u4e86\u89e3\u5b83\u4eec\u5404\u81ea\u7684": 249, "\u5c5e\u6027\u4e2d\u4fdd\u5b58\u4e86\u4ec0\u4e48": 249, "\u8fd9\u4e9b\u4fe1\u606f\u5bf9\u4e8e\u5c06\u6765\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u548c\u4f18\u5316\u5668\u5f88\u6709\u7528": 249, "\u4f60\u5df2\u7ecf\u6210\u529f\u4f7f\u7528\u4e86": 249, "\u7ee7\u7eed\u4f60\u7684\u5b66\u4e60": 249, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406": 249, "\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 249, "\u6a21\u578b\u80fd\u591f\u901a\u8fc7\u4f7f\u7528\u68af\u5ea6\u4e0b\u964d\u6765\u63d0\u9ad8\u5b83\u4eec\u7684\u7cbe\u5ea6": 250, "\u7b80\u800c\u8a00\u4e4b": 250, "\u68af\u5ea6\u4e0b\u964d\u662f\u901a\u8fc7\u8c03\u6574\u6a21\u578b\u4e2d\u7684\u6743\u91cd\u548c\u504f\u7f6e\u6765\u6700\u5c0f\u5316\u635f\u5931": 250, "\u6216\u8bef\u5dee": 250, "\u7684\u8fc7\u7a0b": 250, "\u662fpytorch\u7684\u4e2d\u5fc3\u7c7b": 250, "\u5f53\u4f60\u521b\u5efa\u4e00\u4e2a\u5f20\u91cf\u65f6": 250, "\u5982\u679c\u5c06\u5176\u5c5e\u6027": 250, "\u8bbe\u7f6e\u4e3a": 250, "\u8be5\u5bf9\u8c61\u4f1a\u8ddf\u8e2a\u5bf9\u5b83\u7684\u6240\u6709\u64cd\u4f5c": 250, "\u8fd9\u53d1\u751f\u5728\u540e\u7eed\u7684\u53cd\u5411\u4f20\u64ad\u8fc7\u7a0b\u4e2d": 250, "\u8be5\u5f20\u91cf\u7684\u68af\u5ea6\u5c06\u7d2f\u79ef\u5230": 250, "\u6240\u6709\u68af\u5ea6\u7684\u7d2f\u79ef": 250, "\u6216\u6c42\u548c": 250, "\u662f\u5728\u5bf9\u635f\u5931\u5f20\u91cf\u8c03\u7528": 250, "\u65f6\u8ba1\u7b97\u7684": 250, "\u53ef\u80fd\u9700\u8981\u6e05\u96f6\u5f20\u91cf\u7684\u68af\u5ea6": 250, "\u5f53\u4f60\u5f00\u59cb\u8bad\u7ec3\u5faa\u73af\u65f6": 250, "\u4f60\u5e94\u8be5\u6e05\u96f6\u68af\u5ea6": 250, "\u4ee5\u4fbf\u6b63\u786e\u6267\u884c\u6b64\u8ddf\u8e2a": 250, "\u6211\u4eec\u5c06\u5b66\u4e60\u5982\u4f55\u4f7f\u7528pytorch\u5e93\u6e05\u96f6\u68af\u5ea6": 250, "\u6211\u4eec\u5c06\u901a\u8fc7\u5728pytorch\u5185\u7f6e\u7684": 250, "\u6570\u636e\u96c6\u4e0a\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u6765\u6f14\u793a\u5982\u4f55\u505a\u5230\u8fd9\u4e00\u70b9": 250, "\u7531\u4e8e\u6211\u4eec\u5c06\u5728\u672c\u6559\u7a0b\u4e2d\u8bad\u7ec3\u6570\u636e": 250, "\u5982\u679c\u4f60\u5728\u53ef\u8fd0\u884c\u7684\u7b14\u8bb0\u672c\u4e2d": 250, "\u6700\u597d\u5c06\u8fd0\u884c\u65f6\u5207\u6362\u5230gpu\u6216tpu": 250, "\u6211\u4eec\u9700\u8981\u5b89\u88c5\u5b83\u4eec": 250, "\u6b65\u9aa41\u52304\u8bbe\u7f6e\u4e86\u6211\u4eec\u7528\u4e8e\u8bad\u7ec3\u7684\u6570\u636e\u548c\u795e\u7ecf\u7f51\u7edc": 250, "\u6e05\u96f6\u68af\u5ea6\u7684\u8fc7\u7a0b\u53d1\u751f\u5728\u6b65\u9aa45": 250, "\u5982\u679c\u4f60\u5df2\u7ecf\u6784\u5efa\u4e86\u6570\u636e\u548c\u795e\u7ecf\u7f51\u7edc": 250, "\u53ef\u4ee5\u8df3\u8fc7\u524d\u56db\u6b65": 250, "\u76f4\u63a5\u8fdb\u5165\u7b2c5\u6b65": 250, "\u5b9a\u4e49\u635f\u5931\u51fd\u6570": 250, "\u6765\u8bbf\u95ee\u6570\u636e\u96c6": 250, "pytorch\u63d0\u4f9b\u4e86\u5404\u79cd\u5185\u7f6e\u6570\u636e\u96c6": 250, "\u8bf7\u53c2\u9605\u52a0\u8f7d\u6570\u636e\u6559\u7a0b": 250, "\u6211\u4eec\u5c06\u4f7f\u7528\u5377\u79ef\u795e\u7ecf\u7f51\u7edc": 250, "\u8bf7\u53c2\u9605\u5b9a\u4e49\u795e\u7ecf\u7f51\u7edc\u6559\u7a0b": 250, "\u8ba9\u6211\u4eec\u4f7f\u7528\u5206\u7c7b\u4ea4\u53c9\u71b5\u635f\u5931\u548c\u5e26\u52a8\u91cf\u7684sgd": 250, "\u6211\u4eec\u53ea\u9700\u8981\u904d\u5386\u6570\u636e\u8fed\u4ee3\u5668": 250, "\u5e76\u5c06\u8f93\u5165\u9988\u9001\u5230\u7f51\u7edc\u4e2d\u5e76\u4f18\u5316": 250, "\u5bf9\u4e8e\u6bcf\u4e2a\u6570\u636e\u5b9e\u4f53": 250, "\u6211\u4eec\u90fd\u4f1a\u6e05\u96f6\u68af\u5ea6": 250, "\u8fd9\u662f\u4e3a\u4e86\u786e\u4fdd\u5728\u8bad\u7ec3\u795e\u7ecf\u7f51\u7edc\u65f6": 250, "\u6211\u4eec\u4e0d\u4f1a\u8ddf\u8e2a\u4efb\u4f55\u4e0d\u5fc5\u8981\u7684\u4fe1\u606f": 250, "data\u662f\u4e00\u4e2a\u5305\u542b": 250, "\u7684\u5217\u8868": 250, "\u6e05\u96f6\u53c2\u6570\u68af\u5ea6": 250, "\u6bcf2000\u4e2a\u5c0f\u6279\u6b21\u6253\u5370\u4e00\u6b21": 250, "\u4f60\u4e5f\u53ef\u4ee5\u4f7f\u7528": 250, "\u53ea\u8981\u4f60\u7684\u6240\u6709\u6a21\u578b\u53c2\u6570\u90fd\u5728\u8be5\u4f18\u5316\u5668\u4e2d": 250, "\u548c\u4f7f\u7528": 250, "\u662f\u4e00\u6837\u7684": 250, "\u8bf7\u6839\u636e\u5177\u4f53\u60c5\u51b5\u51b3\u5b9a\u4f7f\u7528\u54ea\u4e00\u79cd\u65b9\u5f0f": 250, "\u4f60\u5df2\u7ecf\u6210\u529f\u5730\u5728pytorch\u4e2d\u6e05\u96f6\u4e86\u68af\u5ea6": 250, "\u7ee7\u7eed\u4f60\u7684\u5b66\u4e60\u4e4b\u65c5": 250, "\u5728pytorch\u4e2d\u52a0\u8f7d\u6570\u636e": 250, "bite": 251, "\u4e0e\u5165\u95e8\u6559\u7a0b\u4e0d\u540c": 251, "\u6b64\u7cfb\u5217\u901a\u8fc7\u7b80\u6d01\u5b9e\u7528\u7684\u793a\u4f8b": 251, "\u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528pytorch\u7684\u7279\u6027": 251, "\u6765\u51c6\u5907\u548c\u52a0\u8f7d\u5e38\u89c1\u7684\u6570\u636e\u96c6": 251, "\u5b66\u4e60\u5982\u4f55\u4f7f\u7528torch": 251, "\u4e3amnist\u6570\u636e\u96c6\u521b\u5efa\u4e00\u4e2a\u795e\u7ecf\u7f51\u7edc": 251, "\u5bf9\u8c61\u548c": 251, "\u5b57\u5178\u5728": 251, "\u4e2d\u4fdd\u5b58\u6216\u52a0\u8f7d\u6a21\u578b": 251, "\u5728pytorch\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u7528\u4e8e\u63a8\u7406\u7684\u4e24\u79cd\u65b9\u5f0f": 251, "state_dict\u548c\u5b8c\u6574\u6a21\u578b": 251, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u4e00\u4e2a\u901a\u7528\u7684\u68c0\u67e5\u70b9\u6a21\u578b": 251, "\u53ef\u4ee5\u5e2e\u52a9\u60a8\u4ece\u4e0a\u6b21\u505c\u6b62\u7684\u5730\u65b9\u7ee7\u7eed\u63a8\u7406\u6216\u8bad\u7ec3": 251, "\u63a2\u7d22\u5982\u4f55\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u68c0\u67e5\u70b9": 251, "\u5b66\u4e60\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 251, "\u6709\u52a9\u4e8e\u91cd\u7528\u60a8\u4e4b\u524d\u8bad\u7ec3\u8fc7\u7684\u6a21\u578b": 251, "\u4e86\u89e3\u5982\u4f55\u901a\u8fc7\u90e8\u5206\u52a0\u8f7d\u6a21\u578b\u6216\u52a0\u8f7d\u90e8\u5206\u6a21\u578b\u65b9\u5f0f\u6765\u70ed\u542f\u52a8\u8bad\u7ec3\u8fc7\u7a0b": 251, "\u8fd9\u53ef\u4ee5\u5e2e\u52a9\u60a8\u7684\u6a21\u578b\u6bd4\u4ece\u5934\u5f00\u59cb\u8bad\u7ec3\u6536\u655b\u5f97\u66f4\u5feb": 251, "\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 251, "\u4e86\u89e3\u5982\u4f55\u4f7f\u7528pytorch\u5728\u4e0d\u540c\u8bbe\u5907": 251, "cpu\u548cgpu": 251, "\u4e4b\u95f4\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 251, "\u6e05\u96f6\u68af\u5ea6": 251, "\u4e86\u89e3\u4f55\u65f6\u5e94\u8be5\u6e05\u96f6\u68af\u5ea6": 251, "\u4ee5\u53ca\u8fd9\u6837\u505a\u5982\u4f55\u6709\u52a9\u4e8e\u63d0\u9ad8\u6a21\u578b\u7684\u7cbe\u5ea6": 251, "\u5b66\u4e60\u5982\u4f55\u6d4b\u91cf\u4ee3\u7801\u7247\u6bb5\u7684\u8fd0\u884c\u65f6\u95f4\u548c\u6536\u96c6\u6307\u4ee4": 251, "\u6765\u6d4b\u91cf\u7b97\u5b50\u7684\u65f6\u95f4\u548c\u5185\u5b58\u6d88\u8017": 251, "itt": 251, "andriod": 251, "graviton": 251, "compressor": 251, "tensorpip": 251, "dcp": 251, "diffus": 251, "vertex": 251, "tracerwarn": 252, "_0": 252, "WITH": 252, "encoder_input": 252, "decoder_input1": 252, "decoder_input2": 252, "decoder_input3": 252, "scripted_encod": 252, "scripted_decod": 252, "optimized_torchscript_model": 252, "hoist": 252, "blocklist": 252, "compile_model": 253, "resnet50_weight": 253, "weights_prepack": 253, "oguz": 254, "ulgen": 254, "_triton": 254, "has_triton": 254, "add_kernel": 254, "out_ptr": 254, "n_element": 254, "block_siz": 254, "constexpr": 254, "pid": 254, "program_id": 254, "block_start": 254, "add_fn": 254, "cdiv": 254, "nx": 254, "ny": 254, "ni": 254, "num_stag": 254, "num_warp": 254, "add_kernel_autotun": 254, "torch_compile_user_defined_triton_kernel_tutori": 254, "repl": 256, "r18": 256, "r18_script": 256, "unscripted_output": 256, "scripted_output": 256, "unscripted_top5": 256, "scripted_top5": 256, "463": 256, "ts": 256, "msg_without_backtrac": 256, "output_sm": 256, "softmaxfuncopt": 256, "top5_tensor": 256, "ndone": 256, "418": 256, "845": 256, "644": 256, "cpulongtyp": 256, "exposit": 256, "streamlin": 257, "billabl": 257, "model_artifact": 257, "mar": 257, "your_model_nam": 257, "bucket_nam": 257, "bucket_uri": 257, "gsutil": 257, "aiplatform": 257, "vertexai": 257, "pytorch_prediction_image_uri": 257, "model_display_nam": 257, "stable_diffusion_1_5": 257, "model_descript": 257, "your_project": 257, "central1": 257, "staging_bucket": 257, "display_nam": 257, "serving_container_image_uri": 257, "artifact_uri": 257, "tesla": 257, "p100": 257, "n1": 257, "endpoint_display_nam": 257, "deployed_model_display_nam": 257, "machine_typ": 257, "accelerator_typ": 257, "nvidia_tesla_p100": 257, "accelerator_count": 257, "traffic_percentag": 257, "deploy_request_timeout": 257, "examplepup": 257, "basebal": 257, "jersei": 257, "base64": 257, "b64decod": 257, "vendor": 257, "deepspe": 258, "marian": 258, "oftentim": 258, "exp_avg": 258, "exp_avg_sq": 258, "peer": 258, "print_peak_memori": 258, "use_zero": 258, "optimizer_class": 258, "0mb": 258, "992": 258, "1361": 258, "3453": 258, "6123046875": 258, "pytorch_sphinx_them": [260, 267, 269, 276], "html_theme_opt": [260, 269], "canonical_url": [260, 269], "analytics_id": [260, 269], "logo_onli": [260, 269], "display_vers": [260, 269], "prev_next_buttons_loc": [260, 269], "style_external_link": [260, 269], "vcs_pageview_mod": [260, 269], "collapse_navig": [260, 269], "sticky_navig": [260, 264, 269, 273], "navigation_depth": [260, 269], "includehidden": [260, 269], "titles_onli": [260, 269], "canon": [260, 269], "trail": [260, 269], "slash": [260, 269], "sidebar": [260, 266, 269, 275], "display_github": [260, 269], "display_gitlab": [260, 269], "gitlab": [260, 269], "bitbucket": [260, 269], "toctre": [260, 269], "unlimit": [260, 269], "github_url": [260, 269], "bitbucket_url": [260, 269], "gitlab_url": [260, 269], "visitor": [260, 269], "revert": [260, 269], "misbuild": [260, 269], "sticki": [260, 266, 269, 275], "nav": [260, 266, 269, 275], "django": [261, 270], "payment": [261, 270], "dotpai": [261, 270], "dotpayprovid": [261, 270], "seller_id": [261, 270], "pl": [261, 270], "gatewai": [261, 270], "purchas": [261, 270], "seller": [261, 270], "data_item_1": [261, 270], "data_item_2": [261, 270], "data_item_3": [261, 270], "lorem": [261, 263, 265, 270, 272, 274], "ipsum": [261, 263, 265, 270, 272, 274], "dolor": [261, 263, 265, 270, 272, 274], "amet": [261, 263, 265, 270, 272, 274], "consectetur": [261, 263, 265, 270, 272, 274], "adipisc": [261, 263, 265, 270, 272, 274], "fusc": [261, 265, 270, 274], "congu": [261, 265, 270, 274], "eu": [261, 265, 270, 274], "hendrerit": [261, 265, 270, 274], "matti": [261, 263, 270, 272], "emphasi": [262, 271], "hyperlink": [262, 271], "uri": [262, 271], "anonym": [262, 271], "exceedingli": [262, 271], "ugli": [262, 271], "autodoc": [262, 263, 271, 272], "test_py_modul": [262, 266, 271, 275], "2822": [262, 271], "subscript": [262, 271], "superscript": [262, 271], "interfer": [262, 271], "mmb": [262, 271], "menuselect": [262, 271], "whitespac": [262, 271], "hyphen": [262, 271], "restructuredtext": [262, 263, 271, 272], "literal_block": [262, 271], "spaces_and_linebreak": [262, 271], "markup_process": [262, 271], "eric": [262, 271], "orchestra": [262, 271], "leader": [262, 271], "philosoph": [262, 271], "ipso": [262, 271], "facto": [262, 271], "ancient": [262, 271], "sing": [262, 271], "elk": [262, 271], "brontosaurus": [262, 271], "thicker": [262, 271], "ann": [262, 271], "begun": [262, 271], "someurl": [262, 271], "pane": [262, 271], "shell_command": [262, 271], "window_nam": [262, 271], "session_nam": [262, 271], "some_funct": [262, 271], "THE": [262, 271], "heaven": [262, 271], "hexagram": [262, 271], "unbroken": [262, 271], "unrestrict": [262, 271], "conceiv": [262, 271], "men": [262, 271], "deiti": [262, 271], "holi": [262, 271], "sage": [262, 271], "ruler": [262, 271], "awaken": [262, 271], "sphinx_rtd_them": [262, 263, 271, 272], "tt": [262, 271], "descnam": [262, 271], "descclassnam": [262, 271], "myclass": [262, 271], "dothismethod": [262, 271], "flox": [262, 271], "unreferenc": [262, 271], "nonexist": [262, 271], "bold": [262, 271], "ital": [262, 271], "heck": [262, 271], "backlink": [262, 271], "indirect": [262, 271], "docutil": [262, 263, 271, 272], "sourceforg": [262, 263, 271, 272], "clickabl": [262, 271], "revis": [262, 263, 271, 272], "structuredtext": [262, 271], "nickel": [262, 271], "mad": [262, 271], "scientist": [262, 271], "bread": [262, 271], "wash": [262, 271], "ear": [262, 271], "closet": [262, 271], "bathroom": [262, 271], "trash": [262, 271], "mother": [262, 271], "rho_": [262, 271], "thing1": [262, 271], "thing2": [262, 271], "thing3": [262, 271], "prose": [262, 271], "provok": [262, 271], "mental": [262, 271], "exert": [262, 271], "advis": [262, 271], "subtitl": [262, 271], "border": [262, 271], "disconnect": [262, 271], "arab": [263, 272], "iii": [263, 272], "iv": [263, 272], "goodger": [263, 272], "a1b": [263, 272], "2c3": [263, 272], "myself": [263, 272], "humankind": [263, 272], "tue": [263, 272], "jan": [263, 272], "7302": [263, 272], "redistribut": [263, 272], "reattribut": [263, 272], "sell": [263, 272], "bui": [263, 272], "rent": [263, 272], "leas": [263, 272], "excerpt": [263, 272], "stapl": [263, 272], "mutil": [263, 272], "anyon": [263, 272], "bibliograph": [263, 272], "markup": [263, 266, 272, 275], "literal": [263, 272], "yahoo": [263, 272], "oh": [263, 272], "heh": [263, 272], "beat": [263, 272], "hehe": [263, 272], "cackl": [263, 272], "lone": [263, 272], "guangzhou": [263, 272], "destini": [263, 272], "dream": [263, 272], "sixth": [263, 272], "donec": [263, 265, 272, 274], "porttitor": [263, 265, 272, 274], "odio": [263, 265, 272, 274], "posuer": [263, 265, 272, 274], "vita": [263, 265, 272, 274], "ornar": [263, 265, 272, 274], "libero": [263, 265, 272, 274], "loborti": [263, 265, 272, 274], "justo": [263, 265, 272, 274], "vestibulum": [263, 265, 272, 274], "nibh": [263, 265, 272, 274], "aliquet": [263, 265, 272, 274], "sed": [263, 265, 272, 274], "feugiat": [263, 265, 272, 274], "sagitti": [263, 265, 272, 274], "nequ": [263, 265, 272, 274], "qui": [263, 265, 272, 274], "eleifend": [263, 272], "dui": [263, 265, 272, 274], "rutrum": [263, 265, 272, 274], "lectu": [263, 265, 272, 274], "suscipit": [263, 265, 272, 274], "nam": [263, 265, 272, 274], "mauri": [263, 265, 272, 274], "arcu": [263, 265, 272, 274], "interdum": [265, 274], "nec": [265, 274], "finibu": [265, 274], "dictum": [265, 274], "velit": [265, 274], "ut": [265, 274], "efficitur": [265, 274], "aliquam": [265, 274], "erat": [265, 274], "diam": [265, 274], "gravida": [265, 274], "imperdiet": [265, 274], "tellu": [265, 274], "nisl": [265, 274], "praesent": [265, 274], "eget": [265, 274], "elementum": [265, 274], "rhoncu": [265, 274], "tincidunt": [265, 274], "suspendiss": [265, 274], "volutpat": [265, 274], "scelerisqu": [265, 274], "tristiqu": [265, 274], "aenean": [265, 274], "condimentum": [265, 274], "risu": [265, 274], "accumsan": [265, 274], "laoreet": [265, 274], "maximu": [265, 274], "sapien": [265, 274], "ligula": [265, 274], "fringilla": [265, 274], "commodo": [265, 274], "proin": [265, 274], "pharetra": [265, 274], "etiam": [265, 274], "turpi": [265, 274], "luctu": [265, 274], "vel": [265, 274], "malesuada": [265, 274], "dignissim": [265, 274], "nunc": [265, 274], "augu": [265, 274], "sem": [265, 274], "cursu": [265, 274], "nulla": [265, 274], "pellentesqu": [265, 274], "morbi": [265, 274], "senectu": [265, 274], "netu": [265, 274], "egesta": [265, 274], "placerat": [265, 274], "tortor": [265, 274], "iaculi": [265, 274], "venenati": [265, 274], "cra": [265, 274], "puru": [265, 274], "ero": [265, 274], "vehicula": [265, 274], "auctor": [265, 274], "phasellu": [265, 274], "viverra": [265, 274], "conval": [265, 274], "faucibu": [265, 274], "vulput": [265, 274], "feli": [265, 274], "sodal": [265, 274], "maecena": [265, 274], "semper": [265, 274], "enim": [265, 274], "blandit": [265, 274], "sollicitudin": [265, 274], "urna": [265, 274], "orci": [265, 274], "lacu": [265, 274], "quisqu": [265, 274], "facilisi": [265, 274], "curabitur": [265, 274], "variu": [265, 274], "bibendum": [265, 274], "massa": [265, 274], "magna": [265, 274], "tempu": [265, 274], "metu": [265, 274], "nisi": [265, 274], "pretium": [265, 274], "leo": [265, 274], "euismod": [265, 274], "ultric": [265, 274], "dapibu": [265, 274], "lacinia": [265, 274], "vivamu": [265, 274], "molesti": [265, 274], "hac": [265, 274], "habitass": [265, 274], "platea": [265, 274], "dictumst": [265, 274], "changelog": [266, 275], "submenu": [266, 275], "symlink": [267, 276], "subtre": [267, 276], "_theme": [267, 276], "html_theme": [267, 276], "html_theme_path": [267, 276]}, "objects": {"": [[270, 0, 1, "", "Data_item_1"], [270, 0, 1, "", "Data_item_2"], [270, 0, 1, "", "Data_item_3"]], "payments.dotpay": [[270, 1, 1, "", "DotpayProvider"]]}, "objtypes": {"0": "py:data", "1": "py:class"}, "objnames": {"0": ["py", "data", "Python data"], "1": ["py", "class", "Python class"]}, "titleterms": {"onnx": [0, 20, 105, 106, 107, 108, 110], "live": 0, "tutori": [0, 42, 49, 50, 54, 57, 114, 120, 122, 153, 156, 157, 173, 174, 179, 186, 195, 220, 221], "what": [0, 6, 10, 11, 15, 17, 44, 52, 56, 57, 60, 112, 119, 130, 138, 147, 154, 201, 205, 211, 212, 213, 215, 216, 226, 234, 256, 258], "overview": [0, 1, 17, 60, 108, 114, 136, 144, 164, 175, 191, 221], "prepar": [0, 49, 60, 113, 115, 127, 128, 139, 165, 168, 179, 182, 187, 188, 189, 190, 191, 194, 197, 198, 206, 208, 223, 224, 225], "environ": [0, 1, 14, 23, 53, 60, 136, 146, 159, 171, 184, 187, 194], "download": [0, 137, 171, 181, 185, 262, 267, 271, 276], "train": [0, 1, 3, 6, 7, 11, 14, 19, 24, 44, 49, 52, 53, 55, 61, 87, 99, 110, 112, 115, 117, 120, 122, 124, 125, 127, 128, 131, 132, 134, 135, 136, 152, 157, 159, 160, 165, 166, 169, 181, 182, 197, 198, 199, 220, 221, 228, 247, 253], "pytorch": [0, 3, 4, 5, 6, 10, 12, 15, 19, 20, 24, 25, 43, 46, 50, 54, 57, 61, 63, 64, 65, 67, 68, 69, 72, 81, 88, 91, 92, 93, 94, 95, 96, 99, 100, 101, 102, 103, 105, 108, 109, 110, 111, 121, 135, 137, 147, 158, 168, 171, 176, 177, 179, 180, 188, 195, 196, 197, 198, 199, 200, 206, 207, 208, 209, 217, 219, 220, 221, 223, 224, 225, 226, 227, 231, 233, 235, 236, 238, 239, 240, 241, 242, 243, 245, 247, 248, 249, 251, 253, 257], "style": [0, 12], "transfer": [0, 12, 157], "model": [0, 1, 4, 6, 7, 9, 12, 17, 18, 19, 20, 21, 25, 45, 49, 55, 58, 59, 60, 73, 74, 79, 85, 97, 102, 103, 105, 112, 113, 115, 117, 122, 124, 125, 131, 133, 134, 136, 137, 138, 143, 146, 147, 149, 150, 156, 157, 165, 166, 168, 169, 171, 175, 178, 179, 181, 182, 185, 187, 188, 194, 195, 197, 198, 203, 206, 208, 209, 210, 211, 218, 220, 221, 223, 224, 225, 226, 229, 234, 240, 247, 252, 256, 257], "convert": [0, 4, 25, 58, 59, 60, 80, 147, 179, 182, 187, 194, 197, 198], "coreml": 0, "run": [0, 6, 7, 20, 22, 45, 49, 50, 53, 54, 55, 58, 59, 60, 73, 85, 97, 115, 126, 127, 133, 168, 171, 174, 185, 194, 210, 211, 213, 245, 256], "io": [0, 59, 187, 188, 204, 222, 223, 225], "app": [0, 58, 59, 126, 187, 206, 208, 213, 224, 225], "conclus": [0, 1, 2, 3, 5, 6, 9, 14, 15, 17, 19, 21, 22, 23, 49, 75, 82, 97, 105, 108, 114, 124, 136, 137, 143, 144, 146, 152, 159, 164, 172, 173, 174, 176, 177, 181, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 195, 197, 198, 199, 200, 201, 203, 204, 207, 211, 214, 215, 219, 222, 237, 244, 254, 255], "torchrl": [1, 14, 159], "object": [1, 58, 59, 99, 126, 178], "code": [1, 2, 14, 22, 54, 183, 186, 189, 206, 208, 226, 262, 271], "ddpg": 1, "loss": [1, 12, 37, 44, 47, 49, 52, 97, 98, 110, 124, 128, 136, 159, 230], "prerequisit": [1, 58, 59, 97, 115, 157, 177, 186, 199, 200, 254], "import": [1, 12, 45, 55, 87, 110, 137, 171, 197, 198, 213, 256], "setup": [1, 17, 18, 23, 87, 116, 135, 136, 137, 150, 168, 169, 175, 179, 185, 187, 195, 201, 208, 210, 211, 213, 223, 231, 255], "lossmodul": 1, "The": [1, 6, 87, 125, 134, 155, 165, 213, 226, 262, 271], "__init__": [1, 34], "method": [1, 15, 22, 135, 150, 177, 178, 192, 244, 252], "valu": [1, 136, 153, 159, 252], "estim": [1, 146], "actor": 1, "put": [1, 146, 175, 178], "thing": [1, 14], "togeth": [1, 14, 124, 146, 152, 175, 178, 230], "forward": [1, 5, 6, 21, 78, 109, 141, 145, 178, 223], "call": 1, "transform": [1, 7, 14, 41, 42, 51, 118, 119, 122, 124, 137, 145, 154, 159, 164, 166], "parallel": [1, 7, 21, 45, 56, 61, 120, 122, 123, 124, 133, 134, 149, 247], "execut": [1, 4, 14, 18, 105, 161, 168, 247], "normal": [1, 44, 159], "observ": [1, 183], "stat": 1, "build": [1, 4, 5, 10, 22, 23, 58, 59, 99, 116, 142, 143, 155, 157, 204, 206, 208, 213, 218, 222, 256, 260, 269], "explor": [1, 4, 18], "data": [1, 6, 7, 9, 19, 44, 45, 49, 50, 52, 55, 56, 60, 61, 87, 110, 115, 117, 122, 123, 124, 127, 128, 133, 157, 159, 165, 166, 168, 171, 181, 191, 195, 247, 261, 270], "collector": [1, 136, 159], "evalu": [1, 7, 49, 60, 115, 117, 125, 126, 127, 137, 157, 165, 182, 185, 197, 230], "your": [1, 4, 5, 10, 60, 151, 178, 183, 184, 213, 223, 256], "record": [1, 168], "replai": [1, 136, 159, 160], "buffer": [1, 136, 159, 247], "storag": [1, 257], "batch": [1, 7, 8, 14, 115, 116, 129, 142, 145, 161, 219, 247], "size": [1, 137, 185, 197, 234], "modul": [1, 4, 6, 15, 25, 60, 67, 85, 93, 104, 111, 134, 136, 137, 141, 149, 153, 156, 195, 202, 218, 237, 244], "construct": [1, 18, 55, 191, 192], "target": [1, 7, 146, 247, 262, 271], "network": [1, 6, 44, 47, 52, 87, 99, 102, 110, 118, 127, 128, 136, 146, 159, 160, 166, 230], "updat": [1, 47, 146, 161, 202], "optim": [1, 44, 52, 69, 99, 104, 110, 111, 119, 126, 152, 163, 177, 210, 211, 216, 219, 223, 224, 225, 247, 252, 258], "time": [1, 82, 109, 137, 223], "polici": [1, 14, 122, 136, 159], "experi": [1, 14, 15, 126, 179], "result": [1, 3, 45, 52, 73, 105, 109, 115, 126, 127, 130, 159, 165, 166, 168, 185, 201, 226, 229, 231], "next": [1, 44, 52, 73, 159], "step": [1, 4, 58, 59, 75, 114, 134, 152, 155, 159, 168, 218, 224, 225, 231, 234], "autograd": [2, 8, 10, 43, 63, 64, 76, 89, 111, 125, 141, 163], "c": [2, 3, 4, 5, 6, 8, 10, 22, 23, 186, 206, 208, 220, 246, 256], "frontend": [2, 6, 85, 86], "basic": [2, 6, 21, 25, 35, 133, 134, 141, 149, 155, 161, 172, 173, 174, 203, 219, 254], "oper": [2, 5, 8, 10, 22, 23, 48, 101, 108, 177, 179, 191, 192, 193, 200, 207, 208, 223, 247], "comput": [2, 14, 43, 82, 101, 103, 145, 150, 157, 229, 247], "higher": 2, "order": [2, 247], "gradient": [2, 12, 32, 73, 76, 154, 191, 230, 247], "us": [2, 3, 5, 6, 7, 11, 12, 13, 20, 22, 23, 24, 25, 43, 50, 53, 60, 105, 109, 112, 113, 116, 119, 123, 129, 131, 133, 134, 136, 138, 141, 154, 155, 161, 162, 163, 164, 168, 169, 188, 191, 200, 206, 208, 212, 214, 215, 221, 222, 223, 226, 228, 229, 237, 245, 247, 252, 254, 255, 258], "custom": [2, 5, 10, 14, 15, 22, 23, 51, 67, 108, 117, 120, 129, 130, 141, 155, 156, 157, 173, 174, 178, 208, 216, 222, 257], "function": [2, 7, 12, 15, 19, 37, 44, 47, 52, 64, 73, 78, 85, 87, 97, 98, 99, 110, 115, 129, 130, 137, 141, 145, 150, 154, 156, 157, 159, 182, 197, 198, 231, 247], "translat": [2, 113], "from": [2, 19, 22, 43, 50, 105, 112, 131, 171, 175, 176, 177, 178, 188, 237], "python": [2, 5, 22, 23, 58, 59, 85, 155, 206, 252, 255], "cuda": [3, 5, 50, 80, 82, 212], "graph": [3, 43, 60, 101, 105, 108, 172, 173, 174, 177, 181, 182, 183, 185, 199, 247], "api": [3, 4, 6, 89, 110, 139, 141, 147, 152, 155, 185, 186, 200, 206, 226, 247, 255], "get": [3, 4, 10, 58, 59, 82, 103, 123, 133, 144, 151, 163, 193, 213, 214, 215, 220, 221, 224, 225], "start": [3, 7, 82, 123, 133, 151, 163, 193, 214, 215, 220, 221], "\u5728": [4, 158], "\u4e2d\u52a0\u8f7d": 4, "torchscript": [4, 21, 22, 23, 25, 60, 110, 112, 172, 203, 208, 216, 220, 247, 252, 256], "\u6a21\u578b": [4, 92, 96, 119, 238], "1": [4, 9, 19, 44, 58, 59, 78, 85, 105, 134, 137, 150, 155, 157, 168, 169, 176, 178, 179, 181, 182, 185, 195, 199, 200, 213, 218, 223, 224, 225, 228, 231, 233, 234, 236, 238, 240, 241, 242, 243, 246, 248, 250, 252, 264, 273], "torch": [4, 43, 61, 80, 81, 93, 101, 104, 112, 133, 156, 164, 172, 173, 174, 176, 191, 197, 198, 205, 210, 223, 230, 231, 237, 240, 244, 254, 255], "script": [4, 23, 25, 53, 85, 119, 151, 185, 224, 225, 252], "via": [4, 15, 267, 276], "trace": [4, 23, 25, 82, 83, 85, 143, 172, 177, 183, 185, 204, 226, 252], "annot": [4, 200], "2": [4, 9, 17, 19, 44, 45, 58, 59, 78, 85, 105, 134, 137, 150, 155, 157, 168, 169, 176, 177, 178, 179, 181, 182, 185, 195, 197, 198, 199, 200, 201, 213, 218, 223, 224, 225, 228, 231, 233, 234, 236, 238, 240, 241, 242, 243, 246, 248, 249, 250, 252, 264, 265, 273, 274], "serial": [4, 15, 22, 137, 156], "file": [4, 49, 105, 112, 131, 165, 208, 213], "3": [4, 9, 19, 44, 45, 58, 59, 85, 105, 134, 137, 155, 168, 169, 176, 179, 181, 182, 185, 195, 199, 200, 218, 223, 224, 225, 228, 231, 233, 234, 236, 238, 240, 241, 242, 243, 246, 248, 249, 250, 252, 264, 273], "load": [4, 6, 7, 9, 12, 22, 25, 44, 49, 53, 58, 59, 60, 97, 112, 117, 131, 133, 137, 157, 165, 166, 197, 198, 214, 223, 231, 237, 247, 256], "A": [4, 23, 43, 46, 98, 129, 200, 226, 230, 248, 262, 271], "minim": [4, 97], "applic": [4, 6, 135, 155, 208, 244], "depend": [4, 105, 107, 164], "libtorch": [4, 188], "4": [4, 9, 17, 19, 44, 58, 59, 85, 105, 134, 137, 155, 158, 168, 169, 179, 182, 185, 200, 201, 218, 223, 228, 231, 233, 234, 236, 238, 240, 241, 242, 243, 246, 248, 249, 250, 264, 273], "5": [4, 19, 44, 58, 59, 105, 168, 169, 179, 182, 185, 200, 223, 231, 234, 236, 238, 240, 241, 242, 246, 250, 264, 273], "help": [4, 168], "extens": [5, 10, 13, 120, 155, 177, 207, 211, 220, 244, 253], "motiv": [5, 6, 85, 182, 189, 197, 200], "exampl": [5, 13, 21, 22, 58, 59, 73, 78, 79, 85, 99, 102, 103, 112, 125, 186, 200, 218, 220, 253, 262, 264, 271, 273], "write": [5, 6, 14, 51, 135, 169, 178, 183, 189, 200, 216], "setuptool": [5, 23], "op": [5, 8, 108, 173, 174], "pass": [5, 11, 109, 142, 152], "backward": [5, 10, 21, 78, 122, 129, 130, 152], "bind": [5, 22], "perform": [5, 109, 138, 143, 144, 147, 154, 164, 168, 176, 177, 197, 219, 221, 223, 247], "comparison": [5, 129, 133, 154, 172, 182], "gpu": [5, 6, 44, 45, 55, 79, 87, 95, 104, 110, 112, 168, 184, 188, 220, 247], "devic": [5, 12, 15, 112, 122, 206, 212, 232, 237, 247], "jit": [5, 10, 23, 110, 158], "compil": [5, 23, 144, 164, 172, 210, 211, 254, 255], "mix": [5, 25, 122, 131, 230, 247], "accessor": 5, "integr": [5, 15, 187, 194], "defin": [6, 7, 8, 9, 19, 22, 44, 47, 49, 60, 64, 97, 115, 126, 134, 137, 159, 171, 178, 179, 181, 182, 197, 198, 218, 231, 252, 254], "neural": [6, 12, 44, 47, 87, 110, 146, 150, 221], "regist": [6, 8, 10, 15, 23], "paramet": [6, 13, 45, 60, 93, 112, 156, 159, 161, 162, 200, 202, 231, 247, 261, 270], "submodul": [6, 183], "travers": 6, "hierarchi": [6, 226], "mode": [6, 18, 19, 141, 145, 181, 182, 183, 185, 197, 220], "ownership": 6, "dcgan": [6, 52], "wa": 6, "gan": [6, 52], "agan": 6, "gener": [6, 7, 15, 52, 110, 112, 113, 115, 126, 218, 231, 247, 261, 270], "discrimin": [6, 52, 98], "loop": [6, 14, 134, 136, 159, 160, 198], "move": [6, 22], "checkpoint": [6, 55, 112, 122, 133, 146, 198, 214, 237, 247], "recov": 6, "state": [6, 258], "inspect": [6, 153, 156, 169, 230], "imag": [6, 12, 20, 44, 58, 59, 105, 117, 119, 139, 157, 171, 213, 257, 262, 263, 271, 272], "distribut": [7, 11, 16, 18, 53, 55, 56, 61, 82, 110, 120, 133, 134, 135, 162, 163, 175, 214, 216, 247], "pipelin": [7, 115, 134, 149], "multipl": [7, 44, 112, 156], "process": [7, 53, 55, 58, 59, 115, 133, 134, 155, 161, 213], "input": [7, 11, 52, 55, 58, 59, 60, 73, 127, 130, 149, 175, 195, 209, 231, 247, 252], "sequenc": [7, 102, 124], "scale": [7, 124, 132, 164], "pipe": 7, "initi": [7, 48, 52, 53, 115, 133, 135, 146, 153, 193, 202], "test": [7, 9, 10, 14, 44, 73, 87, 115, 129, 142, 178, 206, 218], "dataset": [7, 19, 45, 51, 104, 110, 113, 115, 137, 178, 182, 185, 197, 198], "output": [7, 58, 59, 113, 130, 221], "dispatch": [8, 10, 164], "schema": 8, "backend": [8, 10, 15, 135, 144, 155, 179, 197, 198, 199, 206, 247, 253], "implement": [8, 22, 23, 52, 73, 98, 129, 153, 155, 161, 162, 164, 189, 191, 202], "For": 8, "do": [8, 44, 130, 147, 234], "need": [8, 183], "In": 8, "place": [8, 80], "view": [8, 168], "ad": [8, 87, 169, 208, 230], "support": [8, 10, 87, 108, 157, 164, 192, 202, 213, 216], "go": [8, 44, 52, 73, 171], "beyond": 8, "autocast": [8, 230], "tracer": 8, "beta": [9, 17, 19, 108, 137, 141, 142, 143, 147, 157, 164, 194, 209, 210, 211, 219, 222, 255], "dynam": [9, 21, 98, 137, 173, 174, 181, 185, 195, 228, 234], "quantiz": [9, 19, 119, 137, 157, 179, 181, 182, 183, 184, 185, 195, 197, 198, 199, 200, 221, 223, 224, 225, 228, 234], "an": [9, 10, 14, 20, 44, 58, 59, 60, 102, 103, 115, 125, 136, 159, 211, 237, 257, 266, 275], "lstm": [9, 21, 98, 102, 136], "word": [9, 99, 103], "languag": [9, 103], "introduct": [9, 12, 24, 43, 52, 58, 59, 61, 91, 101, 137, 153, 168, 171, 172, 175, 185, 186, 187, 188, 189, 192, 194, 195, 199, 200, 202, 204, 206, 207, 209, 218, 222, 223, 224, 225, 227, 228, 231, 234, 252], "text": [9, 49, 262, 271], "pretrain": [9, 60, 178, 224, 225, 228], "extend": [10, 22, 23, 108, 156], "new": [10, 15, 58, 59, 64, 98, 115, 129, 227], "s": [10, 60, 101, 146, 177, 190], "kei": 10, "full": [10, 87, 213], "list": [10, 263, 272], "kernel": [10, 15, 82, 150, 219, 254], "against": 10, "nativ": [10, 208], "compat": [10, 188], "known": 10, "issu": 10, "addit": [10, 42, 114, 168, 234], "note": [10, 60, 98, 200, 229], "futur": [10, 15], "work": [10, 11, 15, 122, 123, 124, 147, 214], "stai": 10, "touch": 10, "uneven": 11, "join": 11, "context": [11, 260, 269], "manag": 11, "requir": [11, 17, 105, 125, 156, 201, 212, 213, 216, 226, 256, 258], "distributeddataparallel": [11, 61, 133, 247], "zeroredundancyoptim": [11, 258], "keyword": 11, "argument": [11, 252], "how": [11, 15, 122, 123, 124, 152, 182, 197, 198, 200, 212, 214, 215, 216, 222, 226, 245, 256, 258, 260, 269], "doe": [11, 17, 125, 201], "joinabl": 11, "joinhook": 11, "make": [11, 98, 116, 183, 208], "toi": [11, 200], "class": [11, 14, 22, 51, 97, 153], "underli": 12, "principl": [12, 176, 177, 192], "packag": [12, 78], "select": [12, 136, 204], "content": [12, 111, 219, 260, 261, 262, 263, 264, 265, 269, 270, 271, 272, 273, 274], "descent": 12, "creat": [13, 45, 49, 99, 101, 126, 127, 128, 143, 150, 156, 247, 257], "numpi": [13, 40, 48, 71, 80, 95, 111, 190], "scipi": 13, "less": 13, "parametr": [13, 153, 156], "pendulum": 14, "\u4f7f\u7528": [14, 42, 55, 90, 93, 96, 104, 118, 159, 238, 246], "\u7f16\u5199\u73af\u5883\u548ctransform": 14, "effect": 14, "action": [14, 136], "_step": 14, "reset": 14, "simul": 14, "_reset": 14, "metadata": [14, 15], "env": 14, "_spec": 14, "spec": 14, "shape": [14, 173, 174, 239], "reproduc": 14, "seed": 14, "wrap": [14, 122, 178], "envbas": 14, "our": [14, 18, 129, 135, 142, 152, 175], "rollout": 14, "simpl": [14, 45, 105, 143, 165, 230], "facilit": 15, "privateuse1": 15, "guard": 15, "deseri": [15, 22], "other": [15, 18, 168], "improv": [15, 109, 168, 219], "user": [15, 81, 127, 183, 206, 254], "renam": 15, "name": [15, 127], "properti": 15, "relat": [15, 171, 177, 244], "combin": [16, 124, 133], "dataparallel": [16, 45, 56, 61, 79, 87, 112, 133, 240], "rpc": [16, 61, 120, 134, 161, 162, 163, 180, 212, 217], "framework": [16, 162, 163], "acceler": [17, 151, 201], "bert": [17, 137, 185, 201], "semi": [17, 24, 201], "structur": [17, 201, 265, 274], "sparsiti": [17, 192, 201], "problem": [17, 200, 201], "solv": [17, 201], "intro": [17, 201], "establish": 17, "baselin": [17, 182], "prune": [17, 156, 201], "spars": [17, 189, 192, 201], "infer": [17, 58, 59, 112, 117, 119, 137, 176, 213, 219, 220, 230, 247, 252, 253, 256], "torchrec": [18, 175], "shard": [18, 122, 123, 124, 134, 258], "instal": [18, 75, 82, 105, 137, 157, 175, 221, 245, 267, 276], "embed": [18, 103], "distributedmodelparallel": [18, 175], "multiprocess": 18, "tabl": [18, 111, 260, 261, 262, 263, 264, 265, 269, 270, 271, 272, 273, 274], "wise": 18, "static": [19, 98, 182, 195, 228], "eager": [19, 182, 185], "architectur": 19, "helper": [19, 137, 182, 192, 197, 198], "loader": [19, 87], "imagenet": 19, "post": [19, 181, 182, 197, 199, 213, 228], "awar": [19, 198, 199, 221, 228], "speedup": [19, 172, 230], "option": [20, 43, 45, 114, 178, 206, 213, 260, 261, 263, 269, 270, 272], "\u6a21\u578b\u5bfc\u51fa\u5230": 20, "\u5e76\u4f7f\u7528": 20, "runtim": [20, 105, 108, 247], "\u8fd0\u884c": 20, "syntax": [21, 85, 203], "appli": [21, 124, 137, 149, 199], "ensembl": [21, 138], "bidirect": 21, "layer": [21, 90, 124, 129, 247], "asid": 21, "visual": [21, 105, 117, 152, 157, 165, 166, 226, 229], "project": [22, 260, 269], "With": [22, 168, 208], "cmake": [22, 23, 208], "save": [22, 25, 53, 55, 60, 105, 112, 122, 125, 130, 131, 133, 146, 152, 197, 198, 214, 230, 231, 240], "To": [22, 213], "ivalu": 22, "take": 22, "return": [22, 125], "bound": [22, 177], "appendix": [23, 192], "more": [23, 58, 59, 119, 125, 144, 145, 161, 168, 175, 187, 188, 194, 209, 218, 222, 224, 225, 227, 228, 231, 234, 245, 252, 257], "wai": [23, 154, 262, 271], "supervis": 24, "learn": [24, 35, 46, 58, 59, 85, 98, 99, 100, 110, 117, 119, 120, 137, 146, 157, 161, 163, 168, 176, 187, 188, 194, 209, 218, 222, 224, 225, 227, 228, 231, 234, 245, 252], "usb": 24, "built": [24, 179, 188], "upon": 24, "freematch": 24, "softmatch": 24, "cifar": [24, 97], "10": [24, 97, 152, 182, 264, 273], "onli": [24, 183, 220, 221], "40": 24, "label": [24, 171], "specif": [24, 171, 197, 198, 247], "imbalanc": 24, "algorithm": [24, 160], "\u4ecb\u7ecd": [25, 82, 88, 90, 94, 95, 107, 233, 249, 250], "author": [25, 105], "further": [25, 32, 43, 53, 55, 56, 105, 107, 108, 109, 114, 117, 131, 132, 136, 179, 189, 191, 192], "read": [25, 32, 43, 53, 55, 56, 105, 107, 108, 109, 114, 131, 132, 136, 171, 177, 179, 189, 191, 192, 226], "\u97f3\u9891\u6570\u636e\u589e\u5f3a": 26, "\u97f3\u9891\u6570\u636e\u96c6": 27, "\u97f3\u9891\u7279\u5f81\u589e\u5f3a": 28, "\u97f3\u9891\u7279\u5f81\u63d0\u53d6": 29, "\u97f3\u9891": 30, "i": [30, 44], "o": 30, "audio": 31, "\u91cd\u91c7\u6837": 31, "\u81ea\u52a8\u5fae\u5206": 32, "\u5f20\u91cf": [32, 40, 72, 92, 111], "\u51fd\u6570\u548c\u8ba1\u7b97\u56fe": 32, "\u8ba1\u7b97\u68af\u5ea6": 32, "\u7981\u7528\u68af\u5ea6\u8ddf\u8e2a": 32, "\u66f4\u591a\u5173\u4e8e\u8ba1\u7b97\u56fe": 32, "\u53ef\u9009\u9605\u8bfb": 32, "\u5f20\u91cf\u68af\u5ea6": 32, "tensor": [32, 48, 63, 72, 76, 80, 95, 101, 110, 111, 120, 124, 125, 127, 152, 164, 192, 193, 200, 211, 223, 244, 247, 252], "\u548c\u96c5\u53ef\u6bd4\u4e58\u79ef": 32, "jacobian": [32, 145, 150], "product": [32, 145, 150, 164], "\u6784\u5efa\u795e\u7ecf\u7f51\u7edc": [33, 250], "\u83b7\u53d6\u8bad\u7ec3\u8bbe\u5907": 33, "\u5b9a\u4e49\u7c7b": 33, "\u6a21\u578b\u5c42": 33, "nn": [33, 61, 67, 68, 78, 85, 93, 104, 111, 112, 156, 175, 237, 240, 244], "flatten": 33, "linear": [33, 99, 104], "relu": [33, 179], "sequenti": [33, 104], "softmax": [33, 99, 191], "\u6a21\u578b\u53c2\u6570": 33, "\u5ef6\u4f38\u9605\u8bfb": [33, 34, 37, 41], "\u6570\u636e\u96c6\u4e0e\u6570\u636e\u52a0\u8f7d\u5668": 34, "\u52a0\u8f7d\u6570\u636e\u96c6": 34, "\u8fed\u4ee3\u548c\u53ef\u89c6\u5316\u6570\u636e\u96c6": 34, "\u521b\u5efa\u81ea\u5b9a\u4e49\u6570\u636e\u96c6": 34, "__len__": 34, "__getitem__": 34, "\u4f7f\u7528\u6570\u636e\u52a0\u8f7d\u5668\u4e3a\u8bad\u7ec3\u51c6\u5907\u6570\u636e": 34, "\u901a\u8fc7": [34, 242], "dataload": [34, 51, 104, 110], "\u8fdb\u884c\u8fed\u4ee3": 34, "\u57fa\u7840\u77e5\u8bc6": 36, "\u8fd0\u884c\u6559\u7a0b\u4ee3\u7801": [36, 88], "\u5982\u4f55\u4f7f\u7528\u672c\u6307\u5357": 36, "\u4f18\u5316\u6a21\u578b\u53c2\u6570": [37, 38], "\u524d\u7f6e\u4ee3\u7801": 37, "\u8d85\u53c2\u6570": 37, "\u4f18\u5316\u5faa\u73af": 37, "\u635f\u5931\u51fd\u6570": [37, 93, 96], "\u4f18\u5316\u5668": [37, 96], "\u5b8c\u6574\u5b9e\u73b0": 37, "\u5feb\u901f\u5165\u95e8": 38, "\u5904\u7406\u6570\u636e": 38, "\u521b\u5efa\u6a21\u578b": 38, "\u4fdd\u5b58\u6a21\u578b": [38, 248], "\u52a0\u8f7d\u6a21\u578b": 38, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": [39, 242], "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b\u6743\u91cd": 39, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u5e26\u6709\u7ed3\u6784\u7684\u6a21\u578b": 39, "\u76f8\u5173\u6559\u7a0b": 39, "\u521d\u59cb\u5316\u5f20\u91cf": 40, "\u5f20\u91cf\u7684\u5c5e\u6027": 40, "\u5f20\u91cf\u64cd\u4f5c": 40, "\u4e0enumpy\u8f6c\u6362": 40, "\u5f20\u91cf\u8f6c\u4e3anumpi": 40, "arrai": [40, 48, 80], "array\u8f6c\u4e3a\u5f20\u91cf": 40, "totensor": 41, "lambda": 41, "better": 42, "\u8fdb\u884c\u5feb\u901f": 42, "\u63a8\u65ad": 42, "featur": [42, 102, 117, 122, 157, 168, 171, 220, 221], "thi": [42, 57, 122, 152, 263, 266, 272, 275], "inform": [42, 85, 144], "summari": [42, 45, 113, 122, 164, 227], "gentl": 43, "background": 43, "usag": [43, 110, 129, 141, 149, 152, 172, 173, 174, 176, 206, 219, 221, 253, 254], "differenti": [43, 101, 141], "vector": [43, 138, 145, 150], "calculu": 43, "exclus": 43, "dag": 43, "classifi": [44, 99, 105, 119, 157, 171], "about": [44, 137, 239], "cifar10": 44, "convolut": [44, 129, 136, 142, 247], "where": [44, 52, 73, 171, 191], "dummi": 45, "8": [45, 182, 231, 246, 264, 273], "deep": [46, 98, 99, 100, 110, 176], "60": 46, "minut": 46, "blitz": 46, "backprop": 47, "weight": [47, 52, 65, 195], "attribut": [48, 229, 252], "bridg": [48, 80, 95], "chatbot": 49, "preprocess": [49, 146], "format": [49, 105, 112, 147, 177, 223, 247], "trim": 49, "seq2seq": [49, 60, 118, 165], "encod": [49, 60, 103, 165], "decod": [49, 60, 165], "procedur": 49, "mask": [49, 191], "singl": [49, 149], "iter": [49, 51, 115, 156], "greedi": [49, 60], "my": 49, "googl": [50, 257], "colab": 50, "version": [50, 150], "drive": 50, "enabl": [50, 186, 247], "compos": [51, 145, 254], "through": [51, 85, 179, 199], "afterword": 51, "torchvis": [51, 74, 178], "\u6559\u7a0b": [52, 75, 86, 97, 121, 159, 160, 166], "adversari": [52, 73], "fault": 53, "toler": 53, "torchrun": [53, 133], "why": [53, 56, 124, 125, 191, 193, 215], "grace": 53, "restart": 53, "group": [53, 55, 155], "provid": 53, "variabl": [53, 247], "snapshot": [53, 152], "trainer": 53, "constructor": [53, 247], "resum": [53, 112, 230], "\u5206\u5e03\u5f0f\u5e76\u884c": 54, "video": 54, "section": [54, 265, 274], "ddp": [55, 56, 120, 131, 133, 247], "\u8fdb\u884c\u591a": 55, "\u8bad\u7ec3": 55, "job": 55, "you": [56, 124, 229], "should": [56, 124], "prefer": [56, 223], "over": 56, "dp": 56, "\u6df1\u5ea6\u5b66\u4e60": 57, "60\u5206\u949f\u5165\u95e8": 57, "goal": 57, "segment": [58, 59, 178], "deeplabv3": [58, 59], "android": [58, 204, 206, 208, 218, 222, 223, 224], "deploy": [58, 59, 221, 256], "reus": [58, 59, 223], "complet": [58, 59], "ui": [58, 59], "refactor": [58, 59, 183], "recap": [58, 59, 122], "deploi": [60, 213, 257], "acknowledg": [60, 126, 176, 177], "handl": 60, "attent": [60, 164, 165], "search": [60, 87], "chang": [60, 232], "host": [60, 194], "own": [60, 135, 183, 213], "greedysearchdecod": 60, "print": [60, 109], "\u5206\u5e03\u5f0f\u6982\u8ff0": 61, "fullyshardeddataparallel": 61, "elast": 61, "base": [61, 113, 157, 180, 204, 217, 260, 269], "develop": 61, "control": [65, 164, 173, 174, 247], "flow": [65, 173, 174, 200], "share": [65, 200], "warm": 71, "up": [71, 126, 149, 171, 178, 179, 184, 210, 211, 219, 234], "\u5bf9\u6297\u6837\u672c\u751f\u6210": 73, "threat": 73, "fast": [73, 219], "sign": 73, "attack": 73, "under": 73, "fgsm": 73, "accuraci": [73, 87, 137, 144, 197, 221, 234], "vs": [73, 145, 190], "epsilon": 73, "sampl": [73, 128, 154, 226], "finetun": [74, 117, 157, 178], "torchmultimod": 75, "\u5fae\u8c03": 75, "flava": 75, "track": [76, 130, 169], "histori": 76, "convnet": [78, 117], "hook": [78, 125, 152], "recurr": [78, 136], "net": 78, "multi": [79, 87, 126, 176], "part": [79, 85, 102, 157, 177], "cpu": [79, 112, 122, 125, 143, 144, 176, 177, 207, 220, 247], "inplac": 80, "out": [80, 129, 142], "zero": 80, "index": [80, 191, 261, 270], "No": 80, "camel": 80, "case": [80, 133, 209, 247], "former": 81, "holist": [82, 83], "analysi": [82, 83, 177], "hta": 82, "tempor": 82, "breakdown": 82, "idl": 82, "durat": 82, "commun": [82, 87, 135, 212], "overlap": 82, "augment": [82, 102, 247], "counter": 82, "memori": [82, 102, 109, 125, 129, 147, 152, 160, 176, 177, 219, 223, 247], "bandwidth": 82, "queue": 82, "length": [82, 247], "launch": [82, 134, 226], "statist": 82, "\u5dee\u5f02\u5206\u6790": 83, "hybrid": [85, 86], "pure": 85, "top": [85, 177], "level": [85, 102, 260, 262, 263, 269, 271, 272], "rai": 87, "tune": [87, 122, 137, 177, 219, 247], "\u8d85\u53c2\u6570\u8c03\u4f18": 87, "configur": [87, 126, 137, 177, 185, 197, 198, 226, 260, 269], "set": [87, 126, 137, 171, 176, 179, 182, 184, 185, 197, 210, 211, 234, 247], "space": 87, "youtub": [88, 91], "\u81ea\u52a8\u5fae\u5206\u57fa\u7840": 89, "\u6211\u4eec\u4e3a\u4ec0\u4e48\u9700\u8981": 89, "\u4e00\u4e2a\u7b80\u5355\u7684\u4f8b\u5b50": 89, "\u81ea\u52a8\u6c42\u5bfc\u5728\u8bad\u7ec3\u4e2d": 89, "\u5173\u95ed\u548c\u6253\u5f00\u81ea\u52a8\u6c42\u5bfc": 89, "\u548c\u539f\u4f4d\u64cd\u4f5c": 89, "\u5206\u6790\u5668": 89, "\u9ad8\u7ea7\u4e3b\u9898": 89, "\u66f4\u591a": 89, "\u7ec6\u8282\u548c\u9ad8\u7ea7": 89, "\u9ad8\u7ea7": 89, "captum": [90, 229], "\u8fdb\u884c\u6a21\u578b\u7406\u89e3": 90, "\u5b89\u88c5": [90, 158], "\u7b2c\u4e00\u4e2a\u793a\u4f8b": 90, "\u4f7f\u7528\u96c6\u6210\u68af\u5ea6\u8fdb\u884c\u7279\u5f81\u5f52\u56e0": 90, "\u4f7f\u7528\u906e\u6321\u8fdb\u884c\u7279\u5f81\u5f52\u56e0": 90, "\u4f7f\u7528\u5c42\u68af\u5ea6\u7c7b\u6fc0\u6d3b\u6620\u5c04": 90, "gradcam": 90, "\u8fdb\u884c\u5c42\u5f52\u56e0": 90, "\u4f7f\u7528captum": 90, "insights\u8fdb\u884c\u53ef\u89c6\u5316": 90, "\u7b80\u4ecb": [92, 95, 96, 236, 238, 240, 241, 242, 243, 248], "\u6570\u636e\u96c6\u548c\u6570\u636e\u52a0\u8f7d\u5668": [92, 96], "\u8bad\u7ec3\u4f60\u7684": 92, "\u6784\u5efa\u6a21\u578b": 93, "\u548c": [93, 104, 158, 171, 248], "\u5e38\u89c1\u5c42\u7c7b\u578b": 93, "\u7ebf\u6027\u5c42": 93, "\u5377\u79ef\u5c42": 93, "\u5faa\u73af\u5c42": 93, "\u8f6c\u6362\u5668": 93, "\u5176\u4ed6\u5c42\u548c\u51fd\u6570": 93, "\u6570\u636e\u64cd\u4f5c\u5c42": 93, "\u6fc0\u6d3b\u51fd\u6570": 93, "tensorboard": [94, 168, 169, 245], "\u652f\u6301": 94, "\u5f00\u59cb\u4e4b\u524d": 94, "\u5728tensorboard\u4e2d\u663e\u793a\u56fe\u50cf": 94, "\u7ed8\u5236\u6807\u91cf\u4ee5\u53ef\u89c6\u5316\u8bad\u7ec3": 94, "\u53ef\u89c6\u5316\u60a8\u7684\u6a21\u578b": 94, "\u4f7f\u7528\u5d4c\u5165\u53ef\u89c6\u5316\u60a8\u7684\u6570\u636e\u96c6": 94, "\u5176\u4ed6\u8d44\u6e90": [94, 96], "\u521b\u5efa\u5f20\u91cf": 95, "\u968f\u673a\u5f20\u91cf\u548c\u79cd\u5b50": 95, "\u5f20\u91cf\u5f62\u72b6": 95, "\u5f20\u91cf\u6570\u636e\u7c7b\u578b": 95, "\u4f7f\u7528pytorch\u5f20\u91cf\u8fdb\u884c\u6570\u5b66\u548c\u903b\u8f91\u8fd0\u7b97": 95, "\u5f20\u91cf\u5e7f\u64ad": 95, "\u66f4\u591a\u5f20\u91cf\u6570\u5b66\u8fd0\u7b97": 95, "\u672c\u5730\u4fee\u6539\u5f20\u91cf": 95, "\u590d\u5236\u5f20\u91cf": 95, "\u79fb\u52a8\u5230": 95, "\u64cd\u4f5c\u5f20\u91cf\u5f62\u72b6": 95, "\u6539\u53d8\u7ef4\u5ea6\u6570\u91cf": 95, "\u8bad\u7ec3\u6a21\u578b": 96, "\u8bad\u7ec3\u5faa\u73af": 96, "\u6bcf\u5468\u671f\u6d3b\u52a8": 96, "knowledg": 97, "distil": 97, "util": [97, 110, 156, 160, 207, 223, 231, 244, 247], "cross": 97, "entropi": 97, "cosin": 97, "intermedi": [97, 130, 247], "regressor": 97, "advanc": [98, 122, 135, 168, 177, 190, 207, 230, 254], "decis": 98, "bi": 98, "crf": 98, "versu": 98, "toolkit": 98, "condit": 98, "random": [98, 115], "field": [98, 263, 272], "discuss": 98, "exercis": [98, 102, 103, 114, 127, 128, 165, 177], "tag": [98, 102], "block": [99, 231, 262, 271], "affin": 99, "map": 99, "non": [99, 174, 183, 211, 218, 247], "probabl": 99, "compon": [99, 144], "logist": 99, "regress": 99, "bag": [99, 103], "nlp": 100, "librari": [101, 171, 188, 208, 224, 225, 247], "reshap": 101, "automat": [101, 141, 230], "long": [102, 264, 266, 273, 275], "short": [102, 226], "term": 102, "speech": 102, "tagger": 102, "charact": 102, "lexic": 103, "semant": [103, 189, 190], "dens": [103, 164], "n": 103, "gram": 103, "continu": 103, "\u5177\u4f53\u662f\u4ec0\u4e48": 104, "mnist": 104, "\u6570\u636e\u96c6\u8bbe\u7f6e": 104, "\u4ece\u96f6\u5f00\u59cb\u7684\u795e\u7ecf\u7f51\u7edc": 104, "\u4e0d\u4f7f\u7528": 104, "\u91cd\u6784": 104, "\u6dfb\u52a0\u9a8c\u8bc1\u96c6": 104, "\u521b\u5efa": 104, "fit": [104, 152], "get_data": 104, "cnn": 104, "\u5305\u88c5": 104, "\u603b\u7ed3": [104, 158, 246], "export": [105, 112, 173, 174, 197, 198, 199, 200, 256], "netron": 105, "6": [105, 168, 169, 179, 182, 223, 231, 238, 240, 246, 264, 273], "7": [105, 168, 179, 182, 231, 238, 246, 264, 273], "compar": [105, 119, 185, 195, 218, 231], "ones": 105, "registri": 108, "unsupport": 108, "aten": [108, 200], "exist": [108, 147, 149], "without": [108, 206, 218], "registr": 108, "fx": [108, 142, 143, 172, 181, 182, 183, 199], "\u6a21\u578b\u5206\u6790": 109, "debug": [109, 144, 182, 185, 197, 247], "profil": [109, 143, 144, 168, 177, 180, 217, 226, 238], "cheat": 110, "sheet": 110, "vision": [110, 157, 247], "creation": 110, "dimension": 110, "algebra": 110, "activ": 110, "rate": 110, "schedul": [110, 126, 211], "datasampl": 110, "also": [110, 210, 254], "see": [110, 210, 254], "\u8ddf\u7740\u793a\u4f8b\u5b66\u4e60": 111, "\u70ed\u8eab": 111, "\u81ea\u52a8\u6c42\u5bfc": 111, "\u5f20\u91cf\u548c\u81ea\u52a8\u6c42\u5bfc": 111, "\u5b9a\u4e49\u65b0\u7684\u81ea\u52a8\u6c42\u5bfc\u51fd\u6570": 111, "\u81ea\u5b9a\u4e49": 111, "\u6a21\u5757": 111, "\u63a7\u5236\u6d41": 111, "\u6743\u91cd\u5171\u4eab": 111, "\u793a\u4f8b": [111, 251], "state_dict": [112, 242, 249], "recommend": [112, 127, 200], "entir": 112, "One": [112, 134], "warmstart": 112, "differ": [112, 178], "across": 112, "t5": [113, 122], "summar": 113, "sentiment": 113, "classif": 113, "generationutil": 113, "templat": 114, "torchtext": [115, 116], "\u6587\u672c\u5206\u7c7b": 115, "access": [115, 176, 191, 247], "raw": 115, "instanc": [115, 178], "split": 115, "\u9884\u5904\u7406\u81ea\u5b9a\u4e49\u6587\u672c\u6570\u636e\u96c6": 116, "vocabulari": 116, "numeric": 116, "sentenc": 116, "bucket": 116, "pad": 116, "\u8ba1\u7b97\u673a\u89c6\u89c9\u8fc1\u79fb\u5b66\u4e60\u6559\u7a0b": 117, "few": [117, 157], "predict": [117, 139, 157, 171], "fix": [117, 200, 252], "extractor": [117, 157], "\u6570\u636e\u83b7\u53d6\u548c\u5904\u7406": 118, "\u7684": 118, "\u6570\u636e\u6574\u7406": 118, "\u5f15\u7528": 118, "\u4f18\u5316\u89c6\u89c9": 119, "deit": 119, "lite": [119, 188], "interpret": [119, 143, 204, 222, 229], "speed": [119, 133, 149, 219], "fsdp": [120, 122, 123], "tp": [120, 124], "devicemesh": [120, 215], "\u6b22\u8fce\u6765\u5230": 121, "\u66f4\u591a\u8d44\u6e90": 121, "fulli": [122, 123, 124], "fine": [122, 137], "hf": 122, "precis": [122, 131, 230, 247], "intial": 122, "strategi": [122, 126], "prefetch": 122, "stream": 122, "rank0": 122, "larg": 124, "when": [124, 130, 131, 191, 252], "layernorm": 124, "rmsnorm": 124, "typic": 125, "than": [125, 176], "concept": 125, "pack": 125, "unpack": 125, "some": 125, "unconvent": 125, "int": 125, "tupl": 125, "str": 125, "disk": 125, "na": 126, "ax": 126, "torchx": 126, "runner": 126, "searchspac": 126, "metric": 126, "optimizationconfig": 126, "choos": 126, "\u4ece\u96f6\u5f00\u59cb\u7684\u81ea\u7136\u8bed\u8a00\u5904\u7406": [127, 128, 165], "\u5b57\u7b26\u7ea7": [127, 128], "rnn": [127, 128, 163], "\u8fdb\u884c\u59d3\u540d\u5206\u7c7b": 127, "turn": 127, "plot": [127, 128, 165], "\u751f\u6210\u59d3\u540d": 128, "fuse": [129, 142, 152, 164, 218, 223, 247], "norm": [129, 142, 247], "formula": 129, "batchnorm": 129, "doubl": 130, "real": 131, "world": 131, "cloud": [131, 257], "enough": 131, "multinod": 132, "local": [132, 176], "global": [132, 137, 156, 185], "rank": 132, "heteregen": 132, "troubleshoot": [132, 230], "between": [133, 191], "skew": 133, "partit": 134, "resnet50": 134, "stitch": 134, "Into": 134, "point": [135, 195, 244], "collect": [135, 159, 231], "ring": 135, "allreduc": 135, "topic": [135, 230, 262, 271], "dqn": [136, 160], "mlp": 136, "q": [136, 160], "huggingfac": 137, "necessari": 137, "token": 137, "check": [137, 185, 197], "refer": [137, 179, 195, 262, 271], "vmap": [138, 205], "\u5b9a\u4e49": 139, "\u4f9d\u8d56": 139, "\u7b80\u5355\u7684": 139, "web": 139, "server": [139, 161, 162], "\u63a8\u7406": 139, "wav2vec2": [140, 167], "\u5f3a\u5236\u5bf9\u9f50": 140, "fuser": 142, "fusion": [142, 179], "benchmark": [142, 185, 194, 210, 218, 223, 231], "resnet18": [142, 143, 200], "captur": [143, 152, 199], "symbol": [143, 183], "investig": 143, "inductor": [144, 186, 199], "log": [144, 146, 245], "determin": 144, "error": [144, 230, 252], "hessian": 145, "hvp": 145, "vhp": 145, "revers": 145, "jacrev": 145, "jacfwd": 145, "functorch": 145, "\u8bad\u7ec3\u4e00\u4e2a\u9a6c\u91cc\u5965\u6e38\u620f\u7684": 146, "rl": 146, "agent": 146, "definit": [146, 263, 272], "act": 146, "cach": [146, 153], "recal": 146, "td": 146, "all": [146, 152, 175, 230, 247, 252], "let": 146, "plai": 146, "channel": [147, 177, 223], "last": [147, 177, 223], "gain": 147, "machin": 149, "best": 149, "practic": [149, 168], "tangent": 150, "ntk": 150, "contract": 150, "nvfuser": 151, "dure": [152, 247], "disclaim": 152, "techniqu": 152, "register_post_accumulate_grad_hook": 152, "everyth": [152, 178], "line": [152, 185, 262, 271], "hand": 153, "ar": 153, "first": [153, 176, 177], "citizen": 153, "concaten": 153, "remov": [153, 156], "per": 154, "grad": [154, 191, 247], "effici": [154, 176, 189, 222, 247], "cpp": 155, "subclass": [155, 164, 244], "expos": 155, "re": 156, "0": [157, 191], "nightli": [157, 173], "raspberri": 158, "pi": 158, "\u4e0a\u8fdb\u884c\u5b9e\u65f6\u63a8\u7406": 158, "30": 158, "fp": 158, "\u51c6\u5907\u73af\u5883": 158, "\u8bbe\u7f6e": 158, "opencv": 158, "\u89c6\u9891\u6355\u83b7": 158, "\u56fe\u7247\u5904\u7406": 158, "\u9009\u62e9\u6a21\u578b": 158, "mobilenetv2": [158, 187, 194], "\u91cf\u5316\u548c": 158, "\u6027\u80fd\u4f18\u5316": 158, "\u540e\u7eed": 158, "\u5f3a\u5316\u5b66\u4e60": [159, 160], "ppo": 159, "hyperparamet": [159, 160], "asynchron": [161, 247], "cartpol": 161, "solver": 161, "reinforc": 163, "rref": 163, "high": 164, "dot": 164, "sdpa": 164, "explicit": 164, "hardwar": 164, "causal": 164, "self": 164, "nestedtensor": 164, "attn_bia": 164, "\u5e8f\u5217\u5230\u5e8f\u5217\u7f51\u7edc\u548c\u6ce8\u610f\u529b\u673a\u5236\u8fdb\u884c\u7ffb\u8bd1": 165, "spatial": 166, "depict": 166, "stn": 166, "\u8fdb\u884c\u8bed\u97f3\u8bc6\u522b": 167, "event": 168, "analyz": 168, "amd": 168, "\u53ef\u89c6\u5316\u6a21\u578b": 169, "\u6570\u636e\u548c\u8bad\u7ec3": 169, "projector": 169, "assess": 169, "tacotron2": 170, "\u6587\u672c\u8f6c\u8bed\u97f3": 170, "tiatoolbox": 171, "\u8fdb\u884c\u5168\u5207\u7247\u56fe\u50cf\u5206\u7c7b": 171, "clean": 171, "befor": [171, 229], "patch": 171, "patchpredictor": 171, "whole": 171, "slide": 171, "extract": 171, "patholog": 171, "here": 171, "demonstr": 172, "torchdynamo": 172, "break": [173, 174], "constraint": [173, 174, 179], "decomposit": [173, 174], "exportdb": [173, 174], "strict": 174, "program": 174, "embeddingbag": 175, "embeddingbagcollect": 175, "queri": 175, "vanilla": 175, "offset": 175, "repres": 175, "minibatch": 175, "keyedjaggedtensor": 175, "kjt": 175, "resourc": [175, 213, 234, 256, 257], "grok": [176, 177], "intel": [176, 177, 207, 220, 221, 226, 247, 253], "avoid": [176, 247], "logic": 176, "core": [176, 187], "alwai": 176, "faster": 176, "remot": 176, "pin": 176, "worker": 176, "default": [176, 230, 232], "torchserv": [176, 177, 257], "set_num_thread": 176, "number": [176, 262, 263, 271, 272], "physic": 176, "launcher": [176, 177], "down": [177, 263, 272], "microarchitectur": 177, "tma": 177, "back": 177, "end": 177, "vtune": [177, 226], "instrument": [177, 226], "technolog": [177, 226], "itt": [177, 226], "leverag": [177, 207], "alloc": [177, 219, 247], "tcmalloc": 177, "jemalloc": 177, "ptmalloc": 177, "boost": 177, "\u5bf9\u8c61\u68c0\u6d4b\u5fae\u8c03\u6559\u7a0b": 178, "pennfudan": 178, "modifi": [178, 230], "add": [178, 224, 225], "backbon": 178, "detect": 178, "prototyp": [179, 181, 182, 183, 184, 185, 187, 188, 189, 190, 191, 192, 196, 197, 198, 201, 204], "backendconfig": 179, "deriv": [179, 200], "pattern": [179, 200], "each": 179, "dtypeconfig": 179, "conv": 179, "qconfigmap": [179, 182], "satisfi": 179, "faulti": 179, "workload": [180, 207, 217, 226, 247], "eval": [182, 197], "specifi": [182, 185], "calibr": [182, 197], "9": [182, 264, 273], "float": [182, 195], "guid": [183, 247], "skip": [183, 202, 247], "traceabl": 183, "torchao": 184, "glue": 185, "qconfig_dict": 185, "one": [185, 263, 272], "wrapper": [186, 206], "ml": 187, "maco": 187, "metal": 188, "sourc": [188, 208], "adagrad": 189, "maskedtensor": [189, 190, 191, 192], "simpler": 189, "origin": 189, "maskedarrai": 190, "reduct": [190, 192], "slice": 191, "distinguish": 191, "nan": [191, 230], "anoth": 191, "x": 191, "yield": 191, "nansum": 191, "nanmean": 191, "safe": 191, "miss": 191, "coo": 192, "csr": 192, "unari": 192, "binari": 192, "nest": 193, "nnapi": 194, "numer": 195, "suit": 195, "correspond": 195, "locat": 195, "its": 195, "equival": 195, "same": 195, "recip": [196, 218, 223, 224, 225, 227, 228, 235, 252], "lower": [197, 199], "qat": 198, "x86": 199, "common": [200, 209, 252], "param": 200, "ir": 200, "pt2e": 200, "match": [200, 247], "directli": [200, 247], "subgraphmatcherwithnamenodemap": 200, "detail": 202, "freez": 203, "mobil": [204, 222, 223, 224, 225, 227, 252], "so": 205, "vulkan": 206, "workflow": [206, 228], "desktop": 206, "sdk": 206, "java": [206, 208], "upload": [206, 257], "matrix": 207, "amx": 207, "guidelin": 207, "can": [207, 263, 272], "confirm": 207, "being": 207, "prebuilt": [208, 257], "gradl": 208, "manifest": [208, 230], "bundl": 209, "uncommon": 209, "inflat": 209, "arg": [209, 261, 270], "lr": 211, "happen": 211, "direct": [212, 262, 271], "tensorpip": 212, "flask": 213, "both": 213, "quickli": 213, "bring": 213, "servic": 213, "pre": [213, 218, 224, 225, 227, 228, 252], "dcp": 214, "hsdp": 215, "requisit": [218, 224, 225, 227, 228, 252], "two": 218, "fuse_modul": [218, 223], "tool": 218, "aw": 219, "graviton": 219, "processor": 219, "bfloat16": [219, 220], "math": [219, 262, 271], "openbla": 219, "smaller": 219, "dimens": 219, "overhead": 219, "linux": 219, "transpar": 219, "huge": 219, "page": [219, 260, 269], "thp": 219, "float32": 220, "imper": 220, "float16": 220, "zoo": 220, "eas": 221, "compressor": 221, "driven": 221, "mobile_optim": 223, "mobilenet": [224, 225, 228], "v2": [224, 225, 228], "showcas": 226, "begin": 229, "final": 229, "gradscal": 230, "e": 230, "g": 230, "clip": 230, "amp": [230, 247], "minor": 230, "inf": 230, "type": [230, 252], "mismatch": 230, "mai": 230, "cudnn_status_bad_param": 230, "timeit": 231, "timer": [231, 246], "autorang": 231, "fuzz": 231, "instruct": 231, "count": 231, "callgrind": [231, 246], "\u521b\u5efa\u795e\u7ecf\u7f51\u7edc": 233, "\u73af\u5883\u8bbe\u7f6e": [233, 238, 240, 241, 242, 243, 248, 249, 250], "\u5177\u4f53\u6b65\u9aa4": [233, 238, 240, 241, 242, 243, 248, 249, 250], "\u5bfc\u5165\u52a0\u8f7d\u6570\u636e\u6240\u9700\u7684\u5fc5\u8981\u5e93": [233, 236, 240, 241, 242, 243, 248, 250], "\u5b9a\u4e49\u548c\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": [233, 241, 242, 243], "\u6307\u5b9a\u6570\u636e\u5982\u4f55\u901a\u8fc7\u4f60\u7684\u6a21\u578b": 233, "\u53ef\u9009": [233, 236], "\u901a\u8fc7\u4f60\u7684\u6a21\u578b\u4f20\u9012\u6570\u636e\u8fdb\u884c\u6d4b\u8bd5": 233, "\u5b66\u4e60\u66f4\u591a": [233, 236, 248, 249], "look": 234, "latenc": 234, "\u52a0\u8f7d\u6570\u636e": 236, "\u4f7f\u7528\u6b65\u9aa4": 236, "\u8bbf\u95ee\u6570\u636e\u96c6\u4e2d\u7684\u6570\u636e": 236, "\u904d\u5386\u6570\u636e": 236, "\u53ef\u89c6\u5316\u6570\u636e": 236, "tip": 237, "mmap": 237, "true": [237, 247], "meta": [237, 262, 271], "load_state_dict": [237, 244], "assign": 237, "\u5bfc\u5165\u4f9d\u8d56\u7684\u5e93": 238, "\u521b\u5efa\u4e00\u4e2a\u7b80\u5355\u7684": 238, "resnet": 238, "\u4f7f\u7528profiler\u5206\u6790\u6267\u884c\u65f6\u95f4": 238, "\u5206\u6790\u5185\u5b58\u6d88\u8017": 238, "\u4f7f\u7528\u8ddf\u8e2a\u529f\u80fd": 238, "\u68c0\u67e5\u5806\u6808\u8ddf\u8e2a": 238, "\u4f7f\u7528\u5206\u6790\u5668\u5206\u6790\u957f\u65f6\u95f4\u8fd0\u884c\u7684\u4f5c\u4e1a": 238, "\u4e86\u89e3\u66f4\u591a": 238, "reason": 239, "\u4e2d\u8de8\u8bbe\u5907\u4fdd\u5b58\u548c\u52a0\u8f7d\u6a21\u578b": 240, "\u5b9a\u4e49\u5e76\u521d\u59cb\u5316\u795e\u7ecf\u7f51\u7edc": [240, 248, 249], "\u5728gpu\u4e0a\u4fdd\u5b58": 240, "cpu\u4e0a\u52a0\u8f7d": 240, "gpu\u4e0a\u52a0\u8f7d": 240, "\u5728cpu\u4e0a\u4fdd\u5b58": 240, "\u5728gpu\u4e0a\u52a0\u8f7d": 240, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 241, "\u521d\u59cb\u5316\u4f18\u5316\u5668": [241, 242, 243, 249], "\u4fdd\u5b58\u901a\u7528\u68c0\u67e5\u70b9": 241, "\u52a0\u8f7d\u901a\u7528\u68c0\u67e5\u70b9": 241, "\u4fdd\u5b58\u548c\u52a0\u8f7d\u6574\u4e2a\u6a21\u578b": 242, "\u7ee7\u7eed\u5b66\u4e60": [242, 250], "\u5728\u4e00\u4e2a\u6587\u4ef6\u4e2d\u4fdd\u5b58\u548c\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 243, "\u4fdd\u5b58\u591a\u4e2a\u6a21\u578b": 243, "\u52a0\u8f7d\u591a\u4e2a\u6a21\u578b": 243, "swap_tensor": 244, "scalar": 245, "timer\u5feb\u901f\u5165\u95e8": 246, "\u5b9a\u4e49timer": 246, "wall\u65f6\u95f4": 246, "blocked_autorang": 246, "\u4ee3\u7801\u7247\u6bb5": 246, "\u6307\u4ee4\u8ba1\u6570": 246, "collect_callgrind": 246, "\u6df1\u5165\u63a2\u8ba8": 246, "\u8fdb\u884ca": 246, "b\u6d4b\u8bd5": 246, "\u811a\u6ce8": 246, "disabl": 247, "calcul": 247, "valid": 247, "bia": 247, "follow": 247, "none": 247, "instead": 247, "zero_grad": 247, "pointwis": 247, "channels_last": 247, "uniform": 247, "numa": 247, "openmp": 247, "libiomp": 247, "switch": 247, "onednn": 247, "cudnn": 247, "auto": 247, "tuner": 247, "unnecessari": 247, "synchron": 247, "prealloc": 247, "reduc": 247, "accumul": 247, "find_unused_paramet": 247, "balanc": 247, "\u4f7f\u7528\u4e0d\u540c\u6a21\u578b\u7684\u53c2\u6570\u5bf9\u6a21\u578b\u8fdb\u884c\u70ed\u542f\u52a8": 248, "b": 248, "\u52a0\u8f7d\u5230\u6a21\u578b": 248, "\u4e2d": 249, "\u662f\u4ec0\u4e48": 249, "\u4e2d\u7684": 249, "\u8bbf\u95ee\u6a21\u578b\u548c\u4f18\u5316\u5668\u7684": 249, "\u52a0\u8f7d\u548c\u6807\u51c6\u5316\u6570\u636e\u96c6": 250, "\u5b9a\u4e49\u635f\u5931\u51fd\u6570\u548c\u4f18\u5316\u5668": 250, "\u5728\u8bad\u7ec3\u7f51\u7edc\u65f6\u6e05\u96f6\u68af\u5ea6": 250, "convers": 252, "runtimeerror": 252, "lookup": 252, "cannot": 252, "rang": 252, "must": 252, "found": 252, "fp32": 253, "bf16": 253, "triton": 254, "limit": 254, "torch_log": 255, "engin": 256, "stabl": 257, "diffus": 257, "vertex": 257, "ai": 257, "endpoint": 257, "handler": 257, "artifact": 257, "gc": 257, "contain": 257, "onto": 257, "changelog": [259, 268], "wide": [260, 269], "html": [260, 269], "theme": [260, 266, 269, 275], "toc": [260, 269], "test_py_modul": [261, 270], "paragraph": [262, 265, 271, 274], "markup": [262, 271], "inlin": [262, 271], "liter": [262, 271], "quot": [262, 271], "doctest": [262, 271], "emphas": [262, 271], "sidebar": [262, 271], "ch": [262, 271], "ien": [262, 271], "creativ": [262, 271], "footnot": [262, 271], "citat": [262, 271], "glossari": [262, 271], "center": [262, 271], "figur": [262, 271], "admonit": [262, 271], "And": [262, 271], "rubric": [262, 271], "titl": [262, 271], "replac": [262, 271], "compound": [262, 271], "link": [262, 271], "enumer": [263, 272], "bullet": [263, 272], "second": [263, 272], "But": [263, 272], "deeper": [263, 272], "rabbit": [263, 272], "hole": [263, 272], "hlist": [263, 272], "grid": [263, 272], "giant": [263, 272], "have": [263, 272], "caption": [263, 266, 272, 275], "like": [263, 272], "sticki": [264, 273], "nav": [264, 273], "menu": [264, 266, 273, 275], "11": [264, 273], "12": [264, 273], "13": [264, 273], "14": [264, 273], "15": [264, 273], "16": [264, 273], "17": [264, 273], "18": [264, 273], "19": [264, 273], "20": [264, 273], "submenu": [264, 273], "subsubmenu": [264, 273], "element": [265, 274], "document": [265, 266, 274, 275], "subsect": [265, 274], "subsubsect": [265, 274], "demo": [266, 275], "incred": [266, 275], "git": [267, 276]}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 6, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx": 56}}) \ No newline at end of file
    +
    .. only:: html diff --git a/docs/_sources/recipes/recipes/profiler_recipe.rst.txt b/docs/_sources/recipes/recipes/profiler_recipe.rst.txt index 4db78c2..bdfbba7 100644 --- a/docs/_sources/recipes/recipes/profiler_recipe.rst.txt +++ b/docs/_sources/recipes/recipes/profiler_recipe.rst.txt @@ -20,66 +20,61 @@ PyTorch Profiler ==================================== -This recipe explains how to use PyTorch profiler and measure the time and -memory consumption of the model's operators. +本教程解释了如何使用PyTorch profiler,并测量模型算子的时间和内存消耗。 -Introduction +简介 ------------ -PyTorch includes a simple profiler API that is useful when user needs -to determine the most expensive operators in the model. +当用户需要确定模型中最耗费资源的算子时,PyTorch包含一个简单的profiler API非常有用。 -In this recipe, we will use a simple Resnet model to demonstrate how to -use profiler to analyze model performance. +在本教程中,我们将使用一个简单的 Resnet 模型来演示如何使用profiler分析模型性能。 -Setup +环境设置 ----- -To install ``torch`` and ``torchvision`` use the following command: +要安装 ``torch`` 和 ``torchvision``,请使用以下命令: .. code-block:: sh pip install torch torchvision -.. GENERATED FROM PYTHON SOURCE LINES 28-45 +.. GENERATED FROM PYTHON SOURCE LINES 24-40 -Steps +具体步骤 ----- -1. Import all necessary libraries -2. Instantiate a simple Resnet model -3. Using profiler to analyze execution time -4. Using profiler to analyze memory consumption -5. Using tracing functionality -6. Examining stack traces -7. Using profiler to analyze long-running jobs +1. 导入所有必需的库 +2. 实例化一个简单的Resnet模型 +3. 使用profiler分析执行时间 +4. 使用profiler分析内存消耗 +5. 使用跟踪功能 +6. 检查堆栈跟踪 +7. 使用profiler分析长时间运行的作业 -1. Import all necessary libraries +1. 导入依赖的库 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -In this recipe we will use ``torch``, ``torchvision.models`` -and ``profiler`` modules: +在本教程中,我们将使用 ``torch``、``torchvision.models`` 和 ``profiler`` 模块: -.. GENERATED FROM PYTHON SOURCE LINES 45-51 +.. GENERATED FROM PYTHON SOURCE LINES 40-46 .. code-block:: default import torch import torchvision.models as models - from torch.profiler import profile, record_function, ProfilerActivity + from torch.profiler import profile, ProfilerActivity, record_function -.. GENERATED FROM PYTHON SOURCE LINES 52-58 +.. GENERATED FROM PYTHON SOURCE LINES 47-52 -2. Instantiate a simple Resnet model +2. 创建一个简单的 Resnet 模型 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Let's create an instance of a Resnet model and prepare an input -for it: +让我们创建一个 Resnet 模型实例,并为它准备一个输入: -.. GENERATED FROM PYTHON SOURCE LINES 58-62 +.. GENERATED FROM PYTHON SOURCE LINES 52-56 .. code-block:: default @@ -88,31 +83,27 @@ for it: inputs = torch.randn(5, 3, 224, 224) -.. GENERATED FROM PYTHON SOURCE LINES 63-80 +.. GENERATED FROM PYTHON SOURCE LINES 57-70 -3. Using profiler to analyze execution time +3. 使用profiler分析执行时间 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -PyTorch profiler is enabled through the context manager and accepts -a number of parameters, some of the most useful are: +PyTorch profiler通过上下文管理器启用,并接受多个参数,其中一些最有用的参数如下: -- ``activities`` - a list of activities to profile: - - ``ProfilerActivity.CPU`` - PyTorch operators, TorchScript functions and - user-defined code labels (see ``record_function`` below); - - ``ProfilerActivity.CUDA`` - on-device CUDA kernels; -- ``record_shapes`` - whether to record shapes of the operator inputs; -- ``profile_memory`` - whether to report amount of memory consumed by - model's Tensors; -- ``use_cuda`` - whether to measure execution time of CUDA kernels. +- ``activities`` - 要分析的活动列表: + - ``ProfilerActivity.CPU`` - PyTorch算子、TorchScript函数和用户定义的代码标签(见下面的 ``record_function``); + - ``ProfilerActivity.CUDA`` - 设备上的CUDA内核; +- ``record_shapes`` - 是否记录算子输入的形状; +- ``profile_memory`` - 是否报告模型张量所消耗的内存量; +- ``use_cuda`` - 是否测量CUDA内核的执行时间。 -Note: when using CUDA, profiler also shows the runtime CUDA events -occurring on the host. +注意:当使用CUDA时,profiler还会显示主机上发生的运行时CUDA事件。 -.. GENERATED FROM PYTHON SOURCE LINES 82-83 +.. GENERATED FROM PYTHON SOURCE LINES 72-73 -Let's see how we can use profiler to analyze the execution time: +让我们看看如何使用profiler分析执行时间: -.. GENERATED FROM PYTHON SOURCE LINES 83-88 +.. GENERATED FROM PYTHON SOURCE LINES 73-78 .. code-block:: default @@ -122,24 +113,18 @@ Let's see how we can use profiler to analyze the execution time: model(inputs) -.. GENERATED FROM PYTHON SOURCE LINES 89-103 +.. GENERATED FROM PYTHON SOURCE LINES 79-87 -Note that we can use ``record_function`` context manager to label -arbitrary code ranges with user provided names -(``model_inference`` is used as a label in the example above). +注意,我们可以使用 ``record_function`` 上下文管理器为任意代码范围添加用户提供的名称标签 +(在上面的示例中使用 ``model_inference`` 作为标签)。 -Profiler allows one to check which operators were called during the -execution of a code range wrapped with a profiler context manager. -If multiple profiler ranges are active at the same time (e.g. in -parallel PyTorch threads), each profiling context manager tracks only -the operators of its corresponding range. -Profiler also automatically profiles the asynchronous tasks launched -with ``torch.jit._fork`` and (in case of a backward pass) -the backward pass operators launched with ``backward()`` call. +Profiler允许检查在使用profiler上下文管理器包装的代码范围内执行期间调用了哪些算子。 +如果同时存在多个活动的profiler范围(例如在并行PyTorch线程中),每个profiling上下文管理器只跟踪其对应范围的算子。 +Profiler还会自动分析使用 ``torch.jit._fork`` 启动的异步任务,以及在反向传播过程中使用 ``backward()`` 调用启动的反向传播算子。 -Let's print out the stats for the execution above: +让我们打印出上述执行的统计信息: -.. GENERATED FROM PYTHON SOURCE LINES 103-106 +.. GENERATED FROM PYTHON SOURCE LINES 87-90 .. code-block:: default @@ -147,11 +132,11 @@ Let's print out the stats for the execution above: print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10)) -.. GENERATED FROM PYTHON SOURCE LINES 107-108 +.. GENERATED FROM PYTHON SOURCE LINES 91-92 -The output will look like (omitting some columns): +输出将如下所示(省略了一些列): -.. GENERATED FROM PYTHON SOURCE LINES 108-126 +.. GENERATED FROM PYTHON SOURCE LINES 92-110 .. code-block:: default @@ -174,28 +159,32 @@ The output will look like (omitting some columns): # -.. GENERATED FROM PYTHON SOURCE LINES 127-135 - -Here we see that, as expected, most of the time is spent in convolution (and specifically in ``mkldnn_convolution`` -for PyTorch compiled with ``MKL-DNN`` support). -Note the difference between self cpu time and cpu time - operators can call other operators, self cpu time excludes time -spent in children operator calls, while total cpu time includes it. You can choose to sort by the self cpu time by passing -``sort_by="self_cpu_time_total"`` into the ``table`` call. +.. GENERATED FROM PYTHON SOURCE LINES 111-119 To get a finer granularity of results and include operator input shapes, pass ``group_by_input_shape=True`` (note: this requires running the profiler with ``record_shapes=True``): +这里我们可以看到,如预期的那样,大部分时间都花在了卷积上(对于使用 ``MKL-DNN`` 支持编译的PyTorch,特别是在 ``mkldnn_convolution`` 上)。 +注意自身cpu时间和cpu时间之间的区别 - 算子可以调用其他算子,自身cpu时间不包括在子算子调用中花费的时间,而总cpu时间包括了它。 +你可以通过将 ``sort_by="self_cpu_time_total"`` 传递给 ``table`` 调用来选择按自身cpu时间排序。 + +要获得更细粒度的结果并包含算子输入形状,请传递 ``group_by_input_shape=True`` +(注意:这需要使用 ``record_shapes=True`` 运行profiler): -.. GENERATED FROM PYTHON SOURCE LINES 135-138 +.. GENERATED FROM PYTHON SOURCE LINES 120-127 .. code-block:: default - print(prof.key_averages(group_by_input_shape=True).table(sort_by="cpu_time_total", row_limit=10)) + print( + prof.key_averages(group_by_input_shape=True).table( + sort_by="cpu_time_total", row_limit=10 + ) + ) -.. GENERATED FROM PYTHON SOURCE LINES 139-159 +.. GENERATED FROM PYTHON SOURCE LINES 128-148 -The output might look like this (omitting some columns): +输出可能如下所示(省略了一些列): .. code-block:: sh @@ -216,37 +205,39 @@ The output might look like this (omitting some columns): Self CPU time total: 57.549ms -.. GENERATED FROM PYTHON SOURCE LINES 161-162 +.. GENERATED FROM PYTHON SOURCE LINES 150-151 -Note the occurrence of ``aten::convolution`` twice with different input shapes. +注意 ``aten::convolution`` 出现了两次,具有不同的输入形状。 -.. GENERATED FROM PYTHON SOURCE LINES 164-165 +.. GENERATED FROM PYTHON SOURCE LINES 153-154 -Profiler can also be used to analyze performance of models executed on GPUs: +Profiler也可用于分析在GPU上执行的模型的性能: -.. GENERATED FROM PYTHON SOURCE LINES 165-176 +.. GENERATED FROM PYTHON SOURCE LINES 154-167 .. code-block:: default + model = models.resnet18().cuda() inputs = torch.randn(5, 3, 224, 224).cuda() - with profile(activities=[ - ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof: + with profile( + activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True + ) as prof: with record_function("model_inference"): model(inputs) print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) -.. GENERATED FROM PYTHON SOURCE LINES 177-178 +.. GENERATED FROM PYTHON SOURCE LINES 168-169 -(Note: the first use of CUDA profiling may bring an extra overhead.) +(注意:第一次使用CUDA分析可能会带来额外的开销。) -.. GENERATED FROM PYTHON SOURCE LINES 180-201 +.. GENERATED FROM PYTHON SOURCE LINES 171-192 -The resulting table output (omitting some columns): +结果输出(省略了一些列): .. code-block:: sh @@ -268,22 +259,20 @@ The resulting table output (omitting some columns): Self CUDA time total: 11.666ms -.. GENERATED FROM PYTHON SOURCE LINES 203-204 +.. GENERATED FROM PYTHON SOURCE LINES 194-195 -Note the occurrence of on-device kernels in the output (e.g. ``sgemm_32x32x32_NN``). +注意在输出中出现了设备上的内核(例如 ``sgemm_32x32x32_NN``)。 -.. GENERATED FROM PYTHON SOURCE LINES 206-214 +.. GENERATED FROM PYTHON SOURCE LINES 197-203 -4. Using profiler to analyze memory consumption +4. 使用 profiler 分析内存消耗 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -PyTorch profiler can also show the amount of memory (used by the model's tensors) -that was allocated (or released) during the execution of the model's operators. -In the output below, 'self' memory corresponds to the memory allocated (released) -by the operator, excluding the children calls to the other operators. -To enable memory profiling functionality pass ``profile_memory=True``. +PyTorch profiler还可以显示在执行模型算子期间分配(或释放)的内存量(由模型张量使用)。 +在下面的输出中,'self'内存对应于算子分配(释放)的内存,不包括对其他算子的子调用。 +要启用内存分析功能,请传递 ``profile_memory=True``。 -.. GENERATED FROM PYTHON SOURCE LINES 214-243 +.. GENERATED FROM PYTHON SOURCE LINES 203-233 .. code-block:: default @@ -291,8 +280,9 @@ To enable memory profiling functionality pass ``profile_memory=True``. model = models.resnet18() inputs = torch.randn(5, 3, 224, 224) - with profile(activities=[ProfilerActivity.CPU], - profile_memory=True, record_shapes=True) as prof: + with profile( + activities=[ProfilerActivity.CPU], profile_memory=True, record_shapes=True + ) as prof: model(inputs) print(prof.key_averages().table(sort_by="self_cpu_memory_usage", row_limit=10)) @@ -317,9 +307,9 @@ To enable memory profiling functionality pass ``profile_memory=True``. print(prof.key_averages().table(sort_by="cpu_memory_usage", row_limit=10)) -.. GENERATED FROM PYTHON SOURCE LINES 244-264 +.. GENERATED FROM PYTHON SOURCE LINES 234-254 -The output might look like this (omitting some columns): +输出如下所示(省略了一些列): .. code-block:: sh @@ -340,14 +330,14 @@ The output might look like this (omitting some columns): Self CPU time total: 53.064ms -.. GENERATED FROM PYTHON SOURCE LINES 266-270 +.. GENERATED FROM PYTHON SOURCE LINES 256-260 -5. Using tracing functionality +5. 使用跟踪功能 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Profiling results can be outputted as a ``.json`` trace file: +可以将分析结果输出为 ``.json`` 跟踪文件: -.. GENERATED FROM PYTHON SOURCE LINES 270-279 +.. GENERATED FROM PYTHON SOURCE LINES 260-269 .. code-block:: default @@ -361,22 +351,21 @@ Profiling results can be outputted as a ``.json`` trace file: prof.export_chrome_trace("trace.json") -.. GENERATED FROM PYTHON SOURCE LINES 280-285 +.. GENERATED FROM PYTHON SOURCE LINES 270-274 -You can examine the sequence of profiled operators and CUDA kernels -in Chrome trace viewer (``chrome://tracing``): +你可以在Chrome跟踪查看器(``chrome://tracing``)中检查分析的算子和CUDA内核序列: .. image:: ../../_static/img/trace_img.png :scale: 25 % -.. GENERATED FROM PYTHON SOURCE LINES 287-291 +.. GENERATED FROM PYTHON SOURCE LINES 276-280 -6. Examining stack traces +6. 检查堆栈跟踪 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Profiler can be used to analyze Python and TorchScript stack traces: +Profiler 可用于分析 Python 和 TorchScript 堆栈跟踪: -.. GENERATED FROM PYTHON SOURCE LINES 291-301 +.. GENERATED FROM PYTHON SOURCE LINES 280-294 .. code-block:: default @@ -388,12 +377,16 @@ Profiler can be used to analyze Python and TorchScript stack traces: model(inputs) # Print aggregated stats - print(prof.key_averages(group_by_stack_n=5).table(sort_by="self_cuda_time_total", row_limit=2)) + print( + prof.key_averages(group_by_stack_n=5).table( + sort_by="self_cuda_time_total", row_limit=2 + ) + ) -.. GENERATED FROM PYTHON SOURCE LINES 302-323 +.. GENERATED FROM PYTHON SOURCE LINES 295-316 -The output might look like this (omitting some columns): +输出如下所示(省略了一些列): .. code-block:: sh @@ -415,99 +408,89 @@ The output might look like this (omitting some columns): Self CUDA time total: 11.659ms -.. GENERATED FROM PYTHON SOURCE LINES 325-328 +.. GENERATED FROM PYTHON SOURCE LINES 318-321 -Note the two convolutions and the two call sites in ``torchvision/models/resnet.py`` script. +注意在 ``torchvision/models/resnet.py`` 脚本中的两个卷积和两个调用位置。 -(Warning: stack tracing adds an extra profiling overhead.) +(警告:堆栈跟踪会增加额外的分析开销。) -.. GENERATED FROM PYTHON SOURCE LINES 330-346 +.. GENERATED FROM PYTHON SOURCE LINES 323-338 -7. Using profiler to analyze long-running jobs +7. 使用分析器分析长时间运行的作业 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -PyTorch profiler offers an additional API to handle long-running jobs -(such as training loops). Tracing all of the execution can be -slow and result in very large trace files. To avoid this, use optional -arguments: +PyTorch分析器提供了一个额外的API来处理长时间运行的作业 +(例如训练循环)。跟踪所有执行可能会很慢,并导致非常大的跟踪文件。 +为了避免这种情况,可以使用可选参数: -- ``schedule`` - specifies a function that takes an integer argument (step number) - as an input and returns an action for the profiler, the best way to use this parameter - is to use ``torch.profiler.schedule`` helper function that can generate a schedule for you; -- ``on_trace_ready`` - specifies a function that takes a reference to the profiler as - an input and is called by the profiler each time the new trace is ready. +- ``schedule`` - 指定一个函数,该函数以整数参数(步骤编号)作为输入, + 并返回分析器的操作,使用此参数的最佳方式是使用 ``torch.profiler.schedule`` + 帮助函数,它可以为您生成一个计划; +- ``on_trace_ready`` - 指定一个函数,该函数以分析器的引用作为输入, + 并在每次新的跟踪准备就绪时由分析器调用。 -To illustrate how the API works, let's first consider the following example with -``torch.profiler.schedule`` helper function: +为了说明该API的工作原理,让我们首先考虑以下使用 ``torch.profiler.schedule`` +帮助函数的示例: -.. GENERATED FROM PYTHON SOURCE LINES 346-356 +.. GENERATED FROM PYTHON SOURCE LINES 338-344 .. code-block:: default + from torch.profiler import schedule - my_schedule = schedule( - skip_first=10, - wait=5, - warmup=1, - active=3, - repeat=2) + my_schedule = schedule(skip_first=10, wait=5, warmup=1, active=3, repeat=2) -.. GENERATED FROM PYTHON SOURCE LINES 357-374 +.. GENERATED FROM PYTHON SOURCE LINES 345-359 -Profiler assumes that the long-running job is composed of steps, numbered -starting from zero. The example above defines the following sequence of actions -for the profiler: +分析器假设长时间运行的作业由从零开始编号的步骤组成。 +上面的示例为分析器定义了以下操作序列: -1. Parameter ``skip_first`` tells profiler that it should ignore the first 10 steps - (default value of ``skip_first`` is zero); -2. After the first ``skip_first`` steps, profiler starts executing profiler cycles; -3. Each cycle consists of three phases: +1. 参数 ``skip_first`` 告诉分析器它应该忽略前10个步骤 + (``skip_first`` 的默认值为零); +2. 在第一个 ``skip_first`` 步骤之后,分析器开始执行分析器周期; +3. 每个周期由三个阶段组成: - - idling (``wait=5`` steps), during this phase profiler is not active; - - warming up (``warmup=1`` steps), during this phase profiler starts tracing, but - the results are discarded; this phase is used to discard the samples obtained by - the profiler at the beginning of the trace since they are usually skewed by an extra - overhead; - - active tracing (``active=3`` steps), during this phase profiler traces and records data; -4. An optional ``repeat`` parameter specifies an upper bound on the number of cycles. - By default (zero value), profiler will execute cycles as long as the job runs. + - 空闲(``wait=5``步骤),在此阶段分析器不活动; + - 预热(``warmup=1``步骤),在此阶段分析器开始跟踪,但结果被丢弃; + 此阶段用于丢弃分析器在跟踪开始时获得的样本,因为它们通常由额外的开销扭曲; + - 主动跟踪(``active=3``步骤),在此阶段分析器跟踪和记录数据; +4. 可选的 ``repeat`` 参数指定周期的上限。 + 默认情况下(零值),分析器将尽可能长时间地执行周期。 -.. GENERATED FROM PYTHON SOURCE LINES 376-389 +.. GENERATED FROM PYTHON SOURCE LINES 361-373 -Thus, in the example above, profiler will skip the first 15 steps, spend the next step on the warm up, -actively record the next 3 steps, skip another 5 steps, spend the next step on the warm up, actively -record another 3 steps. Since the ``repeat=2`` parameter value is specified, the profiler will stop -the recording after the first two cycles. +因此,在上面的示例中,分析器将跳过前15个步骤,在下一步进行预热, +在接下来的3个步骤中主动记录,再跳过另外5个步骤,在下一步进行预热, +在另外3个步骤中主动记录。由于指定了 ``repeat=2`` 参数值, +分析器将在前两个周期之后停止记录。 -At the end of each cycle profiler calls the specified ``on_trace_ready`` function and passes itself as -an argument. This function is used to process the new trace - either by obtaining the table output or -by saving the output on disk as a trace file. +在每个周期结束时,分析器调用指定的 ``on_trace_ready`` 函数并将自身作为参数传递。 +此函数用于处理新的跟踪 - 通过获取表输出或将输出保存到磁盘上的跟踪文件。 -To send the signal to the profiler that the next step has started, call ``prof.step()`` function. -The current profiler step is stored in ``prof.step_num``. +要向分析器发送下一步已经开始的信号,请调用 ``prof.step()`` 函数。 +当前分析器步骤存储在 ``prof.step_num`` 中。 -The following example shows how to use all of the concepts above: +以下示例显示了如何使用上述所有概念: -.. GENERATED FROM PYTHON SOURCE LINES 389-408 +.. GENERATED FROM PYTHON SOURCE LINES 373-391 .. code-block:: default + def trace_handler(p): output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=10) print(output) p.export_chrome_trace("/tmp/trace_" + str(p.step_num) + ".json") + with profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], - schedule=torch.profiler.schedule( - wait=1, - warmup=1, - active=2), - on_trace_ready=trace_handler + schedule=torch.profiler.schedule(wait=1, warmup=1, active=2), + on_trace_ready=trace_handler, ) as p: for idx in range(8): model(inputs) @@ -515,16 +498,16 @@ The following example shows how to use all of the concepts above: -.. GENERATED FROM PYTHON SOURCE LINES 409-418 +.. GENERATED FROM PYTHON SOURCE LINES 392-401 -Learn More +了解更多 ---------- -Take a look at the following recipes/tutorials to continue your learning: +查看以下教程以继续学习: -- `PyTorch Benchmark `_ -- `PyTorch Profiler with TensorBoard `_ tutorial -- `Visualizing models, data, and training with TensorBoard `_ tutorial +- `PyTorch 基准测试 `_ +- `使用 TensorBoard 的 PyTorch 分析器 `_ 教程 +- `使用 TensorBoard 可视化模型、数据和训练 `_ 教程 diff --git a/docs/_sources/recipes/recipes_index.rst.txt b/docs/_sources/recipes/recipes_index.rst.txt index 289e119..b19ac42 100644 --- a/docs/_sources/recipes/recipes_index.rst.txt +++ b/docs/_sources/recipes/recipes_index.rst.txt @@ -117,7 +117,7 @@ Recipes are bite-sized, actionable examples of how to use specific PyTorch featu .. customcarditem:: :header: PyTorch Profiler - :card_description: Learn how to use PyTorch's profiler to measure operators time and memory consumption + :card_description: 学习如何使用 PyTorch Profiler 来测量算子的时间和内存消耗。 :image: ../_static/img/thumbnails/cropped/profiler.png :link: ../recipes/recipes/profiler_recipe.html :tags: Basics diff --git a/docs/_static/fonts/FreightSans/freight-sans-bold-italic.woff b/docs/_static/fonts/FreightSans/freight-sans-bold-italic.woff new file mode 100644 index 0000000000000000000000000000000000000000..e317248423c75c8291b49bf7ef10e792167a1623 GIT binary patch literal 39560 zcmY&;W0WX8un6QW_06+xFuP*QlC17gc zb}@N5MF4=vGynj&2><}063BqcIx$6M!C#)*ZvtKb03hil-2QPnMLNdcI?1n}<}dXA z)Z6W8+~hI001+L|5N|~a}wv4eO^0TM<)P)u-|(Jc=OBOV#nfmvU4#0 z^@TwA^^5sM&%qGpxvR0kZ<{mxes!?_u%Vz?2>|$80|pS3ez%a(h39?(!2hp{008qJ z8=wEl)%l3I@B6P=2u!fuUmgU&Z`S{c+lHZ@k>1|kJ6Ev3|JO&a+)oDw3Fco6Va&LG zDuBXq@VsBrf3eSj!T~^kz$S%cx78C+LG zWN@FXN!MP_)59#xC)Dn}LOj6um!(GbyxKfXm1#x)Kb?+aoRC9AB1O(<=uRtDXWJME zda;t}n9UJil)-4uZ5;y|{62`G6bmYgDF28w#|WQqnoQeg;tGw#;SGjp_KObF&DBH5 zBiXOB3U|o9ZnFrDvh3X~0D64%cgAd2xc1s@31?rmoiHUZ$?*~@fOI{klxL7s zxx^bKBvv;zyrbE7jrDug>r9=1?7!xeoRQy;h&)6Huc!~BYSPTVrb(W%)aSCz{`Qet zWWq_aEFgQ}m!f+=b}KzpM)RbSLdG)9bPSF;j6``IMXiW=;I9DDSB{aba3{0*j=5fm z!A-Dar2;un=Jf(DP{t~J0k9oG^H8O&b3XQLzxMz#&G$)fP!Hf>)p0N%Oyzgx40>E@ zEzQtJf(=kxnMk}_dhY_T1*)Y5zwkZwG>b-AB|~0*qz-!M^@1zHHk$RB5Wb{=vT*t% zUsF9hka@6(=Gy*4?E8XQQZ9ar#0J+a7fy;=1CgaJ&%-g2DFNQRu0X_DH?J61EeswwDEt>te&2UpB^Td zC>R1e@DW468#N5JUlUj$P~338{OD~iLt1^nKa53OP+Cw#&_AFYproKIpx&TV!EV7U z5t0?YK8>G0@Jso9b$$#G6$t_Y`~rdkU=<5UH3@e=KR>ZQ`0u*6yQeoly|s8azIJE* z-{2p3mp*le{UP9!_{@Cty}oBFQY)qMs)(Q%>lk|znCX5X$Q?j=s_JU%YaHzDZSHPw zub?2oK_bG#L!>0dMaD+QN2n;tNyrRC0hi>)>M*#C7!jBl3zPjdljZtq^_2`9@Iy1z z-Kk4UoL_VMm8&+}JwArygZ;!XvH09x&sq8RC%7RgIVU?c-;l^3C9;NTjHcICA%&w* z{uvd17yuDcVLtye2HFapvYG-2+pzG!{zGd792+Q&>2V{T`Jj+P%h3i#T*1c>=4=k} zk@kT2{QknQ8?~5u`9Y96#R` z$b|Sd&djf9X$_L`y+pYDV2>gdH(658nwHk^O@iDXJnp2d*gW;R(XZXmc%~OfIqeU= zHmKqbg9isshO*E~GC>WC_-s%)1c8`{1I2N?HU3@1|0a$!(j_6ubr{kNHWI(um&YpC z_`{tkV{MB&@T!i}@7jwg#rZlGvVnnUz-92q4^miARQW9gYqpyj?C9^uEPs;U@m;KM zHbm3)nlN{2vojon3WSHx=GOgWM5jvoOr)TzZG}bI!k_66otd6d;2b>YK>@@5%-N4` zN&k0l>KbMzp&`2DDQae z?X@Oi6gCK94_gFCAVw@AW41c;QDJ&3Jr%p{zN)JRf0=$~WJlse*0e#WqdE}*4r+e5 zN~okkxW6s<6Z-%TYfSk#vIL=n&;$BgeV{BUn*Gk`z^Y%qU}RU(Q#Qu@hq~3n7nE zmUfWVOsk=9WYDBnrN1%o86N02=s)Oh2s_5hMBhYo0e+@^ro%zPxnM75Ph?-U%h~f9 z9v)d9!5!QlB_2W^Y>ZBgUX68y&Be*Z*Tvq&_5uBN|KtM+0AYocgnWi%fLMp9M(!ZC zBFG}@5`B$<2n~xA_a9@9hb1}{Mi!GbetNp%ko;;*@$1jS8J& zStnUHbntNSJn}w@JYpN;`x~cttLT<@D^@Rc7juA1N>~hKjDAc^X+Y^x0aU?TakDhA zRI!v&hWocxA-C{ba!}MTgDkWp#3c9xYT8o6OG8Jau?fzs^q<`s_ae=lcJYU_oQ!R7 zPnu8QH)J3{AZmzo2xN#{)KU~mV4YAX(U3VX9{de zYSmVidX;5W?|RZ&#(GbKrg5&`&k*6reuQDzAv`&BDO9QV4AhLPR!e(C8(RC0L#5rv z;q_k6DDl8y=qYzCOs(?{>khWpk{8_D#w*#I%^+axtIoam-p8ce(Cl#Sn63XVyf5F6 z@pmi`jvqZW0XT#&ND7E7qysc3>L<++HUR2wHnrQvR5!F2%JLf77#!rcMchGH>56-*39O_4V-v$C(H2)ArmOdTORL{k69NRG3k-bf|Fp z{P(t$7hk*-=7G*9`nst=D0_ zZ)dQc1oJcQ@oO|NCXbORC3<_@K@jAuocad=A`L+zM{dHjbZTCT;`lrgdREUZJ?2pZ zhLQ$K4Q*_f&a8~j0%;;USXI6zw>u%#pI3{9%Yor5)W0la&o52s5Bf(Gk z{Gb@VNJRJ7bMb&POdfocV0uJnLJ7Hm+iEzXIEYUelEQF>o;Pi``AN%mg!Va-*kW)T zSJMK=_&SYSrgUjqrlfF7NaUm_^LU84LYao+pg|(+1TCGmzJ5?K6?Pm`4xzf@_~|8Z z5%?_zI+C}&m;@EW#>i(i;bO^r8XX97dnV|ciFQ_^5y67}HWd1%aKK6>*r8e0 zCJE2#03hU zA*n-NUdTOUsH# zAgkx5%@#VSSWMjua^Vj?;K~piY|qW)MU$Fz9=-3QxX*td$N6`grF^m{A{S)o4WTkK zGQ9=@xjl_+2(t|kcb$`1A=5S9HPOr6ZVhf>Tf7C*-(;SBNy$Q*yvtq`st&7Y!j3a_ zfm~_%Uy@i4M~yJV^w6BUOI65}{3Z*2vw&m+-2FrT5d!t}2@v;D;qU=LO#Nu!^BMt= zblnMM6UJefI!Uf@Ox~w?H(_eHNN)?ti2(nI0`$cMjXJEJ&R)HC(lvh2@fbLGwMY3&z zqxj_=(l4Nc`qm$fU9r54OXFTW3KtUzQf*6-Y$!JzYhFYUY>t0gIh&cW7{m0 zb`>5RgWsWh4|Cp@M~~t+4|BPDtjEr(RbermT|*__!!FlReynbu`wLrV@VU?Nk~l_| z-2bjYSdxbRF{wy@lIDgsPs5A9e`95UfsO@tuY?TGI1EPuR_p`UbdX~1$Q$yzWgz^6 zt|M9X7h+7Gm7XIH+QJ`=w4HvPnidUNs0FRNx{N=*7A=%(TS|nU51M!HZUB6s#S|lY zU0Yu1FIcZXsg5>wH37>qXuKVqJqHcQ5ZyU39HAZ|f1+SsIF|;9Ee=887bKK!{K(^n zr>Gp!Q7~z*4v*!;>Ix_i&3{2^b;*5?%VV2NETFE4{FW@R}pE@c)AHDkh| z34M_Hf#4;ulH4%^y}PmqVntmHxf)Yp@Ei0WnPuS&NUGhc3i8*VRoAQ|8x&ban~{Em z`M@73#{LNz)o-chZa(ZMHFit5i+L5h%cnsVp2wpm??$}crLC@icj_M{Ja2Oq`bS6F zLr<;fElN3Mn~p_7-zA4*IUUH!nYypo_JDj6r);?7>y38s=-r`QBv7Np%x$5eJAoIo z>Qrm|%%MgA_Uh1;%~M`pi)jp*c)9H_9fo(sznQvxGd`_$Lt~u~q(c)hvNo+u9uvY_b5#}K`P@BnZe=TNCP^Qp@ z!3tta`|}=9?Sj=pb|6iOV|qH@k8dB=$a3ELB!Lx2FVq)D&v8%GZ1uH(K2(@@P$AJTM|4SxBkp zgLeAd^y=^T+jjhVS1h0U+XP}u!9?+srl8;p^q{SI;qj!Hjfm#s?y%k<-+-V%FVrb?grCV6Z z@r1o}FMB{)rDacdnwtzvZ$qwDBilt=EdZPp3;ru@ybC=sXqkNPXVeBGxyLdK9noJd zvYnm_SsL|6G+EFW?-3B11m*J$)heF}>3ViW>EnS$YYaQR;r{fYX5CdenMR)NDZ`VD zX46$U&FBWBfjOhSdp3#}kjmY7fr*a0-CTOHq%@WJYQy#C>ft?R?RL^U_uAtn7%-Q1 z!(9)2?h=S%usQ&YdeSY;k$VDqG@#2&LcVI6eaZKf?E_PF zP7l$&lA?*RKwe-^%xa1tYUqAxPDRByLC_9~_I1tjnC{51*6||T<|-I^OTVoa;Dv|q zsG*ffnxwbI|8Z45xE6M)0{NsF>y{}X`_?r_fd1c;kT2KG%J&zyYV_+}i%;k-mgh@G zNkROgZD%vbr7@Gk*pH^~+D*s6v)9$#fX>O>S5Ws+)5S64kB7IhCs*&$Blu_cYthG~ zFORW{|GYn4)K#oNHr*4rh>Qfc>XO1!3&Hl7t?#6l0BmG52NG0r%)w;FTbqkg zP0#g`gZYE;QziLH+3#aEN$@FxB$K`5-DFzBW75uAB74%( z%#pk6=CB~zq|Z?O;wM){Eeo5sRgl^1^lnjV2Xbd)zNQCR7DH2_b5+nY<3DCAYqGYR zOkAh;cZXE8*veb%*DLz@d|W2St?{KlE%ap_wbi|I(#>MqEhkJz zH>%0=$CUY4U+E0OA#+os=b?ylJa6GL`1lUX>MmkhrB7 zbt>|u?iC5RsV^a++dXyvhItJ$ME#LJ=wHARI^*E#FWV6Mijm9vCold&Ip)V!Aoh2U^-%~p*i`%e^*S=yY7_wP z6U}-C`yiH?`?l; zZr-fz)n^5dcL8l|{Xb_<}dq4?s~%=adlTTzs6}f(#3% z#JDFQq&QF@2MM472hmu3977ho1{GP2IlI>uz8YNDpA*P?bg>cZ4X$SU?f3St@S6?$ z!&H>mGAf&l?x|fqjXKATTf|5Sv)krrmKJ09T?e~{Uh~DKS<&6sy{+xW3LIr(l^u4Q zfhBuVAqxjIFlv;Ii@?c_~{ zh2t#xO5Osd^kcwNd1j)->WD&!?`|U_yH`$(9zDzbCX)>9vz+&OMLwi$@!f^eRBG?@ zbIVkjj4rpkBZ)mJ+BA0kc_Np-9ueqVH9rpQ+tPn-Sp><5qEm3B3(E|CD)#u`y}a?| zTUgyzPM9<{YH1^nR;2q*;icQo4^m#&(dYCYcirvqONjY9nKNf?xO>IsnApgsknaK7 z?YFTPMOIj}E1bndqKr`?4t!MCYxCW(y={*}wxZj;UjU7w4@ zW2?t{uB-f3CPso&&e}V@xLv-(uLj>`2{l&H?bX9Y`cD1A@klu4RSCEd&{R4V0jorb z(?0UE#R79WF@RkoWXA9Qn=YM3G=ZyHnQ8EUFHij7|Fs`8Q1)&Mg2Nn_(}*r#mnj2z zz_vAFr80#EBBWC5a++Kgh!~Di!&dhg&$sm(PSogd*O@Oz`@YU!UtKI{m%y0zoOFjM zj7Je>vgr%xsJNRGWTl8m?=ZyD?cUl+2xP2RG<)K%2XN8DpYSR27P~8z>7S?TPhm%4 zK$BLOdw>fz2^SjFEXc<^Bv%RvhD#q?$f{Apl7g_HGiO2hjP+scsS;9!oQ3;9CBLf| z3z9N{^d^dyp?xGTYR(x%a-gCyv?^m6@zB9p86UI*gZtBv(Qr&a!om~{_^^I31yC_n zH*sPWzQvtmP=r#j&^I%bGvrcA+K18Ti_;kiihoLXrpYK5cefBAoou^^h@ky3kI%61 zB!SUyCM&1?dg}s93dOCqTms&rkdIPW^5--(MCZhN4+-$7q@FTB7y2VaKGbb@_5 zm-y>=PyTRl-;4J?9xgLTCU>^#cILktUPH2Ge^RmjW48UdE~IGtUHJLWdy^}Da1}%> zG&bR_mQ}8nNX9u<9(U;tVDQ#f0H6powp_Z|48d7{gEoI&-$r&JuMJBm0kRrf0M!D3 z@|EFuLjNRLvoD8;OD6>$ee4=MEElEC$~k-ye(IFoiPzF)dN~#U+vhhX&oPrCA(~QHl(GZX zOeCmEcwgk=M#3>QKrS_Q>=s}Mdt(E1#}-3lY)o!^LzbOEO!zvh8x`7`2#qx5!L34Y zt%8=)48FWqC_(s&=)FZnAcM)G1Vt@;JYR6Y+7 za*oS%p7KY;m#d6*m&ZxpfTPeT4E8;_%Pi*{`68zr6el72r5YdEwScGXYUNIx0=(i( z9wp)Q5}7ek`4t{Uek7+=)J}L$>~emY8Yij5HyNDuw?1QN zK*wAb=+F1kmvs{3%88AQBCc~Gi#mz&lK)7}h+soGr~)~p&N2tG8lgZZC3Fgln$UXe zV~W%9;l|;DDftndiQ+SIkr|ul;f>)5>7zV#LlH$vKlxF!$`A7|Z$AQJ=UlaY4ED0% z@w8o*8+((jLa=DM&`5Lot0J4l8?ME^^n-8em4qv532kabc(SNY2!i5= z>%o2C46Jji!LDQ57DjgtKlU8AezYac_?YEomSdF$JyjoP%P-P0$vuN8=;#7TmY+t* z!%{aUYG$ID4Yle`i36i54*LR(Ln_u`qXWnG#dfYA;?x86JvMs#rE)8FfR+J1*E0OX zTyHWsr^?uux^8}Jpb#M39UW5PPcd?Dh0+tZ(RNnxWLX)KQjGl^NBAMt`#rc!ZaTU8 z4hBBR| zRN8wyU0_OGRd&_&n)J$q=Fx7WDzx-yrB#!m<)|d{M zX6OgxxT7R@u^Avq|E46C5c)c+H&e5eui74RLH(2bMIH2#0TdB*4dNzQZv+EK!hOGXpn&I;93Qr``>bA*lRZiF)N+-RuR{wa7d1emefjv*)A1PyT5QO_FE%g5O@i>7( zmP$}6gs&Px6c;1H*o6`VLZE*}Xo;O{%boYc-=yGs_@!X~s(2iK$v&p@6EA(Y%y@N~^k#Ub~Ka+6{!un7Q*Wp5J8EiE!ChsZC>w zBZ)Va8Z7va0JV(k_e0KUh<4}43VwB$NqL{wSLE=WOrg3vcBjGDBZFhy$vvE;Be`2V za(WxAc}`A|J6@_ZQUCUaaH{fzig^rXkrg_KcmOIFv2dVFLlNQAqICpxn(0L_xQ0LR zcR@gom0suCZEC8xUF_xjx8V0dJ*~>r8Vl1vhzl^e3L*J7*-g%K8FiwG4>kk7`VTK1lgVxOwX_H0i8#900*f_dVz9#y356_%^ehYxL*Qbi1IfSGueZl}8yp7B z;l~xUL=IebgMMPWAtQ-*qlCq%fYKvay?w?6(B|TqvLdHWd&$D!CxEVqg|(df^TAfg zhfHm;BkvE_C|zf{?aO-ON)xN&W40IGPnGgZLiNr^%cZUsxOKJ3e#ETX7^PnSPD z=6n?gmGa8g0ivUHBu z=ND;`O!FL?tIG=A=+U}Z&8Zn7pRRCTmT!L-s$sgxP@R(=0zHO}t1a}1>TLKP+}H6s zvTMTw7fJzsO}J<<+ZJJY_l~k9et=-8oKZa}FYtJ1i7rUG{6*l)Qe#EVvS%hf)k{EA z)OD5OGMBO+>{4H`P^bW73sf2vhU#Q8)hfMM=Okv-?|&=FS+!ql?T$BtI4|^F zb|@!h`jn^}BldTGi9r&oS=j!@d4cNkT(Rr=qC$z+cCJmrL#?6G8UyEJ12I}}V0G1|FX2oE+Y$)V4lz;O_uS(51o2=5cBMqQ)trt_*2Wqg&P@hFlLh15ZVxcF#m1zM4>h~t%M?X!d1z?!`wr$oP2$VlT%2%I^Z>^JRa5i) zb)PevA41Y zapz=HTZ6e^m2M0I+6_7OE-->LKS@4`Jp>9oM)6++78w`^DVjdL@1Iq9UcI+!5X-5d zvF)sT$$jn4JQAsjT{$gfS_(b=-SF1XvjDV}M3<(2gtgXJIG3$p+ST~JA}FGW^{12q zRzBc~Re(O_nHAKVb{Kaak*9oTMcg!bv)s>jtnK%vxp#VAKJsdk49Jo)=IK|LF-v+w zfSn25^GZANsyi(J^P#3sUB9&D48cJwY0dUTK5Yz)b#R3S-}m$uCyxWO>dqh6XCbc; z=gNT7s~W_=wRDa1NNE0J8|QTY^1S)e(AA`88=~TYFprLNfflvs6;*8&MM%BMv)nu?CH4&ufs}|93PWr62 zftzN5D$@e2QQ66?R%rxYyaj|}Z%s2tNJXY$ZJ)@4%y-%%6$3-c0^P4f6EvkJ0Wnum z_Sev^1Q9l57O#4w77_*Y6RUY1YQTI)iQ%Va7@80O3&8wtmH#N+0e+#(BJDI@;x~5Tv}u1qAsKnSg2PS_Jd&M@@5mHt69f9txTPW^E?k_IdX=!7J0Ky?f%0F(l+xc~ zZJ7$SzKghpOM>!h8ZE35a~cXJW}IC^c{r4U%`3P~yH$2BwleZt@@ z4SBuKH)cHLNO#!;Q81bcO`ek;zOh=bhJ#U9;u4*1W0%FTc|3h7(NS>a`dAGvWAocl zA)U9otqVg6q4}AY_S!b&DDVecTG99b_SnV6!^Z{G7pSI8^y76XUSgHjrxy0YW@3DI zk!HV42-;w=O`0Fk#m;$LVYkQbZpW6|Oef1+%~YM{8n+L{n=$+ZF<;TP4^v-;s|uPy zbX~^UB>;*Z@~Bl!+& zN?~o#7SZ!ZD86=Nn1+$wCF?D&n{Xb|pRp^S>-ZVLj4pIVPDjO;o^G?(!WgK|C>z$>h0OhA=K5}rMo-i6+q|iPwPw3^n4_A}Ff zLIR5Pe z@+(DP1Ds()99oxfdz_kl=GBoj;J5FL4YOP*3HUMSBcHt}caVo##f)FxEf$qwFx5MmK=B3>hqsJg;+pUgM3#3K9o7c;y zeO2}bvMQLa_k)-iu_M_xse{go?P$Z(&6B8Em?2qKcuZdFr8s@29<1h>eXIrBGY8Z0 z6nm-z$1(XE)tZR{o>A@%Ez_Lc{PEv^00lhAt=wE@TX_+BYyHK==8u8v@Ytht>706( ze}`Wl{AyV+oD!Il0~s^2(p(2NN{tRTgjthd$g}#mN)2$LLu%Ics~1O6@fIkQ{9^rh z`ij;MqqX#4tJ5r)qCGzIGV7K9M zrv*?QBtey+C-cxWQJS+tF~Hjny4vXFB{KJ^551+2G zt4>?5$9;+my*^$8>P~l()fTEJC(YdN!u&qxDjWaKSzI`|t(No8ufnb%v?5^mLVvJ#RYh zCS&H0)aSI5Ai<~cbIx_Ri=iQ_vz*-#WkFSON`cIY2_L(WEg=Z$iH6tQ#ZZRkuWk1$ z_WmSRG8%P{f(=8$e}+eKQ{?_A#j0nos+u#uyj_c*ZJ!(ti?$~NuDH^aJoL` z{^SL(N!0Q(P<|SB0kgP8FEqiRN*2lY0@bf|kCw?eW?=hEuwWuiqD9P(nP$*Z#^-xG zyk8Qr{mGO`-VcwJ6USbaXSTsNh>aR|gFi}wRH4dFEfFr2W|lH0m(jPnnr(lp?p~{C z)_bV;#PRU%JRo&q2kXHt4{klVC&36;kY~UmT1comrR;J6W1iZCNm+VPFwpzRNF)@+ zJ8us>=t3Y9wyR5^nE|JAi~fKv3er6J@>HN#oim>UT54gbvZ1CD2sL2g+i19XnjAW+ zexAV%YP=JvRjgI z8jjkm=%n^Ixs9INJOjL*8hnd2gOfEvU-^efdI&c-mNVB+@;la;6vt{c5w%hyO2BV1 zhA65ZMz$aSZF^c>)TQ)d&=irX)MygF8wT~V-v_ckV1OHyx(u2>P!f-c99mBfb(klE z8#hvZ5XACqkc}s?lq2>>!FfJP!?$MJA^EY%*FTObX9MbYfzPzRiO_>Zs+{Sz(jS#w z_Qi*2`aQ0e_QN)B!TVaVq*P+qlwGX!;E!RhvQb$a$P&z9u8L)+NV+T;F^8-D#Pds2URul|?K`g35jggLg0Rr*=`r8HY{GxjpU_4}fo zV=~4j*Kyjpvs~LvJ!fDx=uTbVt5^TP1SeMr_9V_(2aqP&ESdz|LZoIMR+YJLQibDr zKm8I9r_n`MH?O^FERETtY2J|Rce|z-JF!pNluSL@Wb%^n-#8mo=h-t&G$v%AW-~=0 zdx8N<ib5-g@cDdJu>x(iLG`ND`11ce;p2-t}M#B0#!)7O(j6i*rqaJ(yj zCM-YpR&&akD0UQ6oeaiWXgaMny0vr?>pLx3g~oQmIf4rn?tq45=4#p2!m}P*+)(f+ zdzLG4IJ8nh|8WUprLrsv(OEo%i5-7-uv#JbcwW?8HSp*oHn-U&jbd%+Q@gXc zqdYHaTg_oyf^Gs~%ogxNp7!Wl(+e?nP9KuHYPCOw4>s&zk_NEC#_d`N)en15gZ|nP&!#MI z?<0O9`1im02DQVfQ5(Leh2>nBPgNs+2>~DaLZiid>+p>GMk?SQEnnH;5bPE{#Xv9f zkhj}UmyyX&*{gyUGqcG60>6Rz;`@ZP*Es*|jI)H%Xq%10nqYax^lHqnC#MXSJxXc= zk4l2O^iu&h&0!}?=*$_8fB}(c`p|c}w|5%K$y-P|A0oI>8)+j$Y3NG17s`{E<2p;S z?M){8yg)fgmDax&M3Qyqh1jkv+Ucpbr%F7p6Z<%C5xgC1i`>?Gx;iWP` zaV(F|<&F2Xk=e(9tExS@TPkb0)CyKhdUJ!0?WX;rxQd1sO%T@L13c#TJ4Pj>2y7?1 zqGBCtWD01Dixh`g$ND@kGn}49gvm;Xv-$W>Y7pJ zWKLms7@>x2jF6WHuE?*1!TdcS{TfD9GX8Y1L<9TJW8ToL}3iZ9l zHy|aJWs^dlA|pvS*;(e!iHtQ3$mw1yFJS0pzOG3Cnd~Bt+)%Bz1Y7^V8 zn~{cZu2eqfHZSc}=;uz9JYuDr0UClH=Ml;OK>F~5jXU3GCf_r>(XpLyf(607s$dBwtLfAM0{?Y{PSnN61-p|~shgrZC+ zH-y5Zz*D`1O?k~S)q^wybIc6}(>c<2|Ue+Z3gxCnVZTzhBk_0R?Gc!OU{S>kwT z9L|-g)5$J&kL2GJkN9iCcy08&RmtTj4M*R*erDrTc%&E~n{p+5_>+oucFzP^N1~ zsUZyXXigm~g^&QvxN1=7t0;0R6V`vSmm&Uv?ryi^uEbFmPXTq3@==@m+sL^jR{CL1 zUvCIMD&=@*Se$&zfRr-O_5$Fg^=DhE6#=bJ58BY6SZ0C}l$8H6fjsc~Fs`Wv!$ty( zuwRD3iP&Do*_Zdc;16;YPiGmBh|GBf0)Kl!%Cb3Y4UQ7K#WU{aDYu8F)9y(0M?otO z=f{k-qbMp|hdr?QZXP~;!RO|`d8&7`(#$p$#h;N+cvI@n@|E&l!~JAibXYty_9-kL z{~lH0(%e7zyi;X!XQIE`DkPU7ZWNgkDyZxlX$rat!=Rb7F2wZ{&}Y0-14lsCfk`c{ z4E*yTg>x(T310k~VifzA1=S~QW^hs>{7qSQT8cr!i|l4!pcf`M9aAe1+dj#dF{$#* zK}dX`JEaKCMG%(H9vUK*AO$Kz!hAyrr2N9U8lA3dBuqg_1&g#D4DK}xO{^M1*2oF9 zWMcB-8Ic8&|E%_#+hae=W)Jz^#t*%H9>=n{uG4rr^!6sAv8F??!GZEyw>dtl^!N4( zT5Gl3LU+o){taN_pRhf%H9M3%8WbJ09utF|u~{+0Ve9ySjpN;7s1L&>vTTt&gOX*p z2Ow7GS@%I*RI$@!OTgR2&r|?IhDOqIs-g#W26vBp^Me`V$4RWO#CY$d9k3K1qWM}% zM?coP1awXpAR4#AuW8e0wz#NF5BLu*YJ;kLA4h1Ks19P=+8|1`TKE&QfPv})W9z}>74)0yCttzgg^r4MJZ*T+ z_|{n+Ce$0IP-8N=gePhq*zOMDV{kdHq@AQQmG7=ox88w$6K;U=s8sV8`9sd~H%q5_ z>R6DY1SjTYQju(-qzTwYWgkm<2Ae z>BG80%crrQ+z?|;3p{uhKR_$q_Z4e1UL?l08{DU(4<_5elHDqPe6od>lIzd9LGqiq zxbcj7@0lXz_Z!UtDc>v4%tM0cY zY%^EAaI~mT$IgW3MpKFWr)CYR>NaSRxzD%GyXlx~S&OYqw_(1q$*aJP;Us5HE&Tem zwVIjw*lRjBCBg|SHiCU5ghpHKWp4g;c1gUWyg9<-?s@r7CTJB(Y@r5Y*X^oBLg;6X zA#c_+-@{??^IT%ngta)Df&#m}?&e(=j@)$xo~cxsMi>IC1pm%~?!l9PB*LGmEtW!V zUR)#}q_(0UA?}PPXG|qUtp)WV0J5-QsP2Mn)3Om?FMH^Cyx@zK6~e0iVbzDfa5;0a z%BfWtFRdTgBobAL$){|L%sskE(8W)mh0{Bwp`7|We^@pa?a(Tgl^>K5p_p=fk>+9B z_Vhj9(KJ@W@#bCdCnY;`ugiS8o9#4H+p`vf)#+d;f3RlHnQIjtY-Ov}=YEVsh;_HO ze6ICmhb1s&C6;1~&uk=0Ah1+U_0f&?6_O4T=Fmixf+~vEd>%o9eyA9fp-EI;tPo>k z5K<>^RT{AfR;Mut5hb8NKwLv0S^!s}t^u&P5;2lWBNu%4NJGNC)IX5x9Qi3;~ zRE)QE!qylGo~jo!SvLyl12?m!zVHacy_mS(dJ*>?eF%2{nWyzOMdLpn2f1+=!>;XX*df(@XRPr zG#v@adKCG|DZ07s!aC38OH#&!y^gm?s}>G+6*Q4F(_)TS5m8}SR2!~-C#0FYm#05H zs^0$huqcC}|KZ?OcvROx0wL5!G)7D~VP{(4RU5;w!bCkT!OX#VKJp#1yUTd=M=GP0 z6IC>M#)hU^f1!L?=Jl%)MDn0VQVdPB%66REp54hUg4#aq5ENh}1y(g#TY+&kn;q8U)Ho{pdZyU)uBeQI-YPa$JYdqU7i$k&3yPUgmAQkv| zQzTPq8xW~?WPyg^PhMf}c7JboP2QNgTH3XP$?{SZEX{Tnuh+yD7dUJ=S3PHK-~Pj< z7AG$gvz5lvmP|TvKP0|7cNEV#_4or96GzR|LTxV%9~<%D`2k4nq*8oN{^ir=Ae$W> zq~)1TFBX`(P3&Gt9n4-UM^(=Jw9gUybIGA7z1=(g6aUxDL`BWC6KHuOkD^#i8l&-$ z`2FD@8RAk|-1VVd=iMO4ao;ul`aH)(lL9+pL*U+$jP)5kz`^P<4|bAd|11>$N+3FQ zZR}c$GDsJS_kMxa1EO0P$}=RYl@Y}8!MLIH@%nX5YOfUN^^0a6L$s}QUSA67W?^*< zBZ8pwe1+Opu7z$6X#r55IaBnn@sLUGj>L%NTX#^As%?u<)z0MLNw_Ri$~4&(qe!%^ zN36Tw^L1Z`GHhQ8-)cTG->=P?A-vFplavcTtGy|@Nv&ga)o*9bnXOS-?6wD6n2M)U z)sQ<}uP^v@mcF8l-)$aG_{Xt6&wihG@tHQ9K)TElJ=#9|Y`uiAM`R0buXR)S-vjrT3tlV>IlR)!$u%NpA{#szqs_R1!dm!(1(x`k7x}oVr`NHz zm2Pa=nVo-T9R+K?@6{vMC(c!9+YZisLq1^et-z81ak+rJr_4d74uw)ZCUQiLw+Advxs6OVg0} z6l_9;JvIOZOh8dUM+$&ijn``3zNjIEfuLRXkO;EYgRqdp@94c}D7QMI@ zZn+x!B`{gw%|&I~Wxoc?aUbrOVLL{aqREW@mb`cB*a-@MTj{6Z0!xV~|MFm?t=;D& zN0iB9ba>j@~hn6NoYjw`%`nty*-ivN<*TvfN{OGz`j=EQWrodBWTEhvReCOf$o93mr*>`ga zwG(ZoddPF*#5T`ZmE;~5iohypAE(C0eu#TDt<$KH)+M*MmQTX_uwjB5HeHp0|?4yzhp4)1AZ$lc6|Ir zQ5obp3hVy?GeFG0c#|#8S==as@IH;EH7FVe)(QsU}h7*NUjiA?xDm4i6D8yD$-2KcKcco;oqGqy7 zI6I7nUD?>tu0+FJGE)n4iiZ2MJtwE2l7Ot38Y*wED;fUNP>Cl!dPTIVWXAO1mQ_`A zuIy7fbX3XsmCx;dgq{6FdTvqi5O$}KR$QMOe4>w|w7EJoI+UehXHB?zEknpqKFS?T z_A4^I^ec90G2D$rh7u>4E>Gj5WR1KL*3}Bx&zrbsm7XE2P$=6SG+bNUMmslcAUSbD zsBhc7DT57TUj{aqo5QpQO)EM|vjkWk?EAOSrWN!ml~sXoTQz7}1GW{U@2DXSSCGE) zE3Wb7^D1S(aBs)ouNpCNKI?2BK0Q2We8(r$&)(d*oPUAt8}&1E0|pg&-SLE0fm^_E zS*uernrd;&hi#$x72M|LyZ^a^{0;Qe$IG@2-SDH?eYx^EPu$jYVL4mkshhT)e*bJT zo_xr@0(zl>LCH{X5q!T|!lu8=E(43M0xcVNH`|$IADK_o+YEEV}8V zj-%T((b~z}l2>;5OjnJ)?hfoRhBdlIh=QHGg6U=zJ?KANie{Dd)g4OKnWz1~yj9|? z=Ph*GqV+t}f=PCoMNUFo;fM-3zhkSHoOnULoiBW4WcxYR0s3nl_$@C$jBaGoyX#hG zO1IJ#=1uBWPY>PdQ4=n`>(=g6?oq2;ckZ{pdawQYU;Y)`g8>tkjB4yNImj*h&A(sY zclg4w9ph%~y=KhZ@oN=7ga<$5ounTUB{hL4(UNlYl_!(FnL++k)giJ&N%JRHlHXNz zy!}@0?~oJ1oC?R(=(}i|^bczoQ8OjXChJonT8oQmhd=)V7FfQ6!5y z9F99(NOGqg6t5#3cR6Y5$*fnbj3U6u87-}=Xp#Tki#emK5H%IF+Y&hgp1R(8{!stB zzqv~(3^*!8a|OB$_N?<*ACNp*=LOMjZL!!9Ey#vP?5S}&JlLLzM-E#sb$Yc06P#tU z#b!r%#qM1$zyYVSA%@r_UZ9<4BtjJS6BSiR>yHK^j@iPapI?|6P(*_4V97L6e`T|8 zOyPTZ*FM<)3*n0kcEO>P_wN)U8HF$(yxAckjg|~Hh2Sh%k>$^7@ht`GGdLH(|b(+T~$ezsoMq?M=|R=I^%F9gBJ_0G282 z{E!QQ-YjIQa7QYwAZLT&EkOkuQj^2s?(m64AnRo`PuyZHE7BzuDCl}bXTl{A!SXVr zbe|T1h?*#zgXGLdO4$yY9oe~gB_SF#hq6Js8FQ{01*iZn92T0<;kWQECxsNjJ@yr( zyO&$Id;6@BrVK~E@J{2%n{KHHMm@GcW6Gwl9?*2-s#n*O`g#Sv?+e8xNGaqfZU*|VF+%$PxS0>uf@ya~G6$XG5# z3Ndvdg`|bBIe?Lf(#YQ(Da7IDEj`R??3dox+I3$?2)ALveXS}+b@IN+Eif0& z_n)LM$=?6fOkRAs+nj|d%I=u%^X4^Z7xTco+H~>#eaZWax=@Qrmu?A4R=!Ql4k5lB z_4h#~=P9vL9^EIJa4E48djEMyB412&+MXdSZxqt=>CQ=)o$jG02#?~AN!j?R%$Q`v zZWO00)_rQdS6wce=}SF}Fl%Qei!h73PkhDh`wN4G!4k*AyNb$-hUc_Dh7>@1jx^9{ zc2n#n#G|_UVk+2EQ~wTQXGG7*`nVwXhPr_{(h50YtTmvo`8 zC?jJt5o@R8D8`#S~aU1wO$(X`f2xU=n%VVqBh2L5s^Mj!{r|jWJyTbx()I6VEOPpitRu6uQTrg6^?h9=az;)JQ_Bh8EGH z-m!cP`|@X7n-!)8)rt{th~boDJhw){cFP zU9?EbtwN92NIl7Z688v# zvCKg5cQ#UtrfkFlv8bJl;0`F8-Mz2?31i`50a~*o6lY&zGZ0lGCnUO#OFDC#l-m=% zN=&N|y%lKCY_{_lrLgdlW^J+JzFg5}ZOO2C5hxFj+(9oA})x72Zz854wz( zd=aeB`m(jN!Alp5r~R=Lm(%2ULc|+sLj3yjfkJC=$VV>(fps!BLVX$44~s{u+e%BmkinBEuU_tL3Z31pQe+C7l{ zKC+#;WYuDgTA|-=O22X@%B<{-f*>5VkwieTVO1$W3YB^o#h04sJ~@?iVhF8RH5e^K zs3Bmg~odhn{%!M5`wO65K~Zq-vjhghckq$K*Hnkt)vfxcoYaJTAW>AKOR5@}KsR zaz$n%oi_@f37f%R@Bz)QQIQ1-fZ{qRfHBM&pn8vq zrM4EQE|cyHNlQIwO)7BWv!-x^L$<9YjmyA?D2X~CwV6I?%28xfsO^bHIJXUp`Pc>L zaC!)Z6vGWo2(A@iBJYSmWcR~w-1X?5cb~rYCAsb4mmhxgof_8BykZ6rdfnLTn}E`J zwH=>rCYpzc?m^-`x_U~h+`dN_W$Vo5iJX5?sDVI5#QnR^GAzynfbE|shzsAHwy4OQ!%PSgA+i5EavBzqe1o$ zq(RRA2QqK~Wxz{2Pc3#a{kup(4c+C$;mTCNdl`x(jT)!YWH-$-7BkOXL=}lQgChzg z2}BSNA60UGm^RUVCyms+BSPBc0hvr;HM=BQ@Us-dFGPu0`W-}MBvwEqEj&^>WrD1< z=--JtKf#g+R`y5L_NL)In10w z4zv8H$YF7o=wrQNhh<_E+Y>+RsZ@R@1tZ2Sr_!(FXP%%jmY2CljU271$T5*-qxp?A zp)J9sQ$S&FMB+FF_Xt8Py}1kb=$+H2lPL`aqs!``7+nNjtkzz(#d`6`Jwx%1AkgYj z)ulL;%C6+(lUFQkkZ2tdx_^U$E)L0Gbi<3c4n>U2!-b=F-}GMT|HnBP+X%X$HZ%B+Cm-;{y)yGPo zH2@KDi`7sC;cpNw219g9aFvxlSOhJjRG&irRv|572v~@4EzwpuZ((DY$f?6)9F7<7 z6Xc_H>dIHoD2Ic6zzy(%A}7&*(?U$;DW?}(*+N=m)fg2J-8A+w{q-l(elvMM;BwqRhN zev`wYaeZUM0u7@ljBaOD9395g`7ZYdAx@*25Hm%=(UA;5_ljgzKVCr_cq)9@bD%s1 zqF8<0Lor0$Ehe+CfV#Vy3LADVK@boZOs<$xQ#CtPATiDpt-T0A4B^96>@W<~xNi7i zZ>;0fruD!M)2EjYe_*$Q8}<#_&STxN!_sx$km4DeJiA`yLWP^2YX$lDJ`X zzI;DA-yqC)a<}=Grsi8p=Udusz6I)h3$QB|=BsqYmj2&QHwl%7dg1%0n}SKZQ?Z%f zIb#JRjlH)kzC#|rEgYnCj`ZMhI5p=mopYGZxth+o4CagvDJ|>C-(hcKH9G%poRTh9q6!6lB?<(u2hU^x zHd&?!Ux9=dOYI43z))6&1drMdXmWCO5!BdXy*)|&>i>I*?pAPB$=v0-d_TcIQWLEf zmA>RI@MES-8QJumgyxA-rTt7<=YLQ7G`ynAH5R(g`+&3`{2uKl)`SxEN(bw}P$Hz3 z7KbD?9zLR^48%I72zksZHNd-YPa#*ep%g<&HDLctgRN1o0XZ+xg=%OcRM;N(WTt<& z%9IAe0+GtX|C#daY9*;4-8-iL1C8qc&ARI!eswv&OdO^i_ zsOQ@fLZrY-9XPe6U#tbGZ%FE4vCK*{B_2@8jjBop!qX=k#%zs7L2q?xa|((wswlFj z#~%0QDK;up0A%$Q0f8gf^Ml>qlfz(JD-k>VsPlHP1j;(aQlS9f-JYA*p9%nNkG z@F=Ru*OZea*@xeKVIOa~a&hBRgEB|_asHPpHncp85QLlOZ~k#n{eemHAJ$Fz{hGDA zN!7r}t+T9;Kgh0A0SUhtwPr@C(K~unarW1_C9`KM(1bJRBQ)WWh4UY|w=%Y@dh)P0 zQW%BNj-wPCGl2E-6gFmIYG*1?7yA-&RG}_TLSK8&CY=Eg?A}?2wgzJc!sZl$}N46q~4x_+O%CBYEyf0xg4bR66nosj}G&z z#qtmC*!#-GAe{ZUYFCd+`BnZ8QRXNHCHOOLCIi;}O&6n3`arfa6%@)$l@tZtQ7Cg% z6v{&N*=&ffnPWS^Tb$_`nG}r@<`4cqoqta_%1qkB?)y$SO6t{pCnV)3=*jK9JS-)D zQr_5cL1nu#U;cVJ-&~mQbw2=gv!FNB%|aD*6KCql^DDTUI8$FQGyRW%H_@Z}Zt%@n zO33#e7@Xu0)p<+u_aMwS2V{NC#q%wM`Q|F~&FvxT>U{In`IdC!Z@%py@;56dS7Go0 zWH9CS#S_n^6EFO37AKv$?__fvOQh(?Nz*USYi@z!zIE}Nr~EDf-@(n~F(u%=K5;Px zz=2En6bdNKG1yKOjv%5SdJpAc>d&Shm$LEUI@#%6-UE^-+e)`)RGPrrsZXnh))LUj&UCL0bOy1zqrY9`28L`4k0Hhk0~m{;5>}bTFwf z;)3`kjwgvF{_U%DNI(HQjHL!-T2Ffdu2IpH&5^hXT>~9$2;h1&1Q?V(wq^w0zz6>J zDEOzwYCs%1LCIgjSdB1Nqe&U7#z40m_1Kn+W9@opSH-Lu$9$ifOXGh`1?bzO3N?S+ zl|QTQe4n2!Yy`fR;ob$Bt-)=%r3xgyF(f)dwB6oxyv1N*EI}y;hU|nPd%{woxlJq# zscrURQ3f67tBhnaR=i3ihZE18j*3@tde%WNW>82c`sgaB1NVHim`x7E@5Ccscj5Io zTxnyDa6FyfD(J4B*qEr zOjRE$5YOHlRGqLA+&&lAWECm#g@TtTdBIbod+IKOoMv06~= z4QY`d+e_~Q#a;y6XMvTUiycxFebJpnU!;$ZRItGv23j%os=$5NGV4%9)C(eNHQAL~ z9o-w3<-QCUV=9++89>H!sGk4SD<~uXF1TCMQ^<_U*w@gpXTsP=_lg{u*Bf%APeqPw z5lmUs(a<4;!ViUzq+ZlzVI+5{9#n5=lI(=;z7x>>AdKA&zT#AM>>0_i=kckhUO`}m z0N>fl*hPDoI*1;X^x3wAV0D_@YMs>PKvB!fxXe8C-LqVmgT&-hkD7R`S3YoaR9EO? zUf|ldfG1eZJgm+q2=npa($9sZU*O5rDeNh*(@x+t+~a3Ig&@tRWZEPbeX>ziP^ATZ2B?&o)r(Ai zM|SFRVtToSx2boM-F(r~>ll=xo#IDM2b*hQ(wRaggwGSB)XPdrLq1q7Pe`nYBDAq7yhax;cawi4Ch7X znbYo2!lt5oq~q34(GsS*-w~#dnNaq`lhgydtzE6Gxcj?fDD?ja@8IOy+P@5@Zp092;#M6VUL5iSP6AtB6MdL;UPuuV z(-g%|zOkQP&i&nc&%NiI-|uSIvxB=o+I8wMF&$iR@TK^@#}Ah-9qv2AC;MXL$>ckw z=c1!O8}1F0)1!3#M*c@SpL#ey_s$nEKnA`P17z@PXMj}Q)cVK)S+IG1?0jGjB1l-4 zjL9HBgA_a?Mo7ytJ--+1c1*L|x&LFk>CBmVTcbb62vx4YbdX13Y&zb|(*2CAXF5HV zAI)%gl-jSE```=g*Yc(87y94gE(mD_)P#ATpQX6Yg+Og-Ha6v(+8|X(U|{ z8!C*p*%(oI2RmLcU`DlEVtE_LWj4*1e1?p-l3wbD39a zSyfY+50gbBx$W2g^tICK=kL5{@PYoptqcwuH-cvweo{)=PHe|vXJkIpIr3NVM1I+P?IoNS#03=fFwKWiZiiI@p z-Ye=~qx7QL`kORNFUK+Hd13vGx}2Li&iX9sTsCv}Y1*$MN=LAIJ~~w>flSd}=K?Kr zJ8a5Zm@t83YFgC`k^J4jFhCto(FGMqYJgrusbCjvNLFrxLL}<>i2guDmX5tnuZBo0 zSK1+DQ^fuSZb#e2!A9IW+phX6fdL@=&LL)X=?a+Pg ztIX$%-OhleE>-N-POY=}&ubbQX?FCW_R(uP?5cmkVsi&toJpi&bGY&%rnhpc8}?w{ zCdSU&2xX4l)X`32=Bw&RQ(#yixNDs{yr~Lj&0}Y>!17qV`z%Ma(EmO;_Sl)@Z$TLA zwxv(Va4LI#?2$LBcclDL(kot*TfU9C;bUX!)7$Tc09Jd`g!0l`a9E;`s?Xv|=uBg;xt?64R(8Sfq_>-sCw8?P)=%}$q4o;X~v zSwXQhlcC%tZ!lP@Q`lA-6s%1pv%OY1Gzj;YIcs|SOX@N{Rz6Uz(q-fxFkfvtNB6@% zZjfWC(GuMPe?^*J)l{Qp5YPuO-n2e2+s4%3^rxC5j;msT`zn9yB|FUmKSKZJWxR8i z^YA;3x~x|)of62-3m5e7SYN$@?^qw2`pyCV2>+sG9i6X(9MV0q*b=T)7*KL)d`TwY zs|Dt3Ta}ZNgt?`_p(c*Jjk+);Z-T2=-x2@YW zZeZ6<(_0<^PDuV4^KP_r9G^F#TN?R(fM^AB@(S9=>B~`X%JqP>~57=L&apD1z6iC45nw+;Y< z_`p_P-g;=umP7OktSxs8tlGMN^~lKTRim2+;5x9GU002cGTvi9|0Z&2ag52+VhyGF zonmPxiEkjcPLLI+FLUMz1+G3d%G~Xctg)sk%^8TW`Q)OFy>H9_A&0w1bqK7?&CI0Tn=|~0Q+mL8T;UL3Zb-4BDQC7ZcUUptKnw0Cq z8s~Qe8NUUq;0b%f$dTj0#Nf2>jFpI%9m0_($-dj)TQ-{8zijP&ak5V+T~lXrkU^pJ z%i8Tf+_`DH`p?S(d1|jKSF^HyFM0Xut1hH^HxKSz+BhKWy=^pgG5zto%pX;FvsJP1 z)P`Q}FynSoZFG}b6cD9qjgumUF_mCLB_F0@%IG|)4I1y5fI8E_lWGxkJ(s+I)RF>F zL|P=!>d z{&JST)5Wn|X3x z2?TKH7D(|!XxB$QInb?v&~AeVG*=sO!Y8xz^5jt79m)&=N(5*~9YhBot-! zgR7_3#TZ9hiz{yrhP8}!9%(;xdDbXwo*>3PrA*jmf7R>myLr#I#%^D;WZ}2{?)QXC zDAy_!$>NtsMuxt*Y2^9upm^(s`$y&8OG!<>b+X@dBsq~apFw@X4I5bPzNH`aW_^&~ zfhWNppDgRLv)-P9!z+k%Ed_h}4a8@G#Q|1zpM9#(sVoENVQN=CN%4a18maAorw(ja z)~i)Ku0pNgf)Yf@~kfX~&okgn8f;Jw{Czi(_;sLQNNA?7+PYiru|EQw0^>)SL@6bN=F!KjU6B*)1w{ zC)AFX&lS^&7Z?8S(;e6xmlWv)y_XU?0fL=pu`wknoz(K(lF~(6|8enlUAK_$K=r1i zR1lLuE*O^z&bZ`;hbgqiLUdOfg;!`#Kzp8kp&~YXlsDB$p^nb7;-*L&M5h#LjV6*E zom~ccoAEYq6$HkF1Kq2n>eT=Q2zp$q&x>0}r7x%Sy3|Y-wU?7jyrvfFJ#0R@m(0-J zX2Dz2)61r*s{RjW%L7K_^&t~B95(fdlP^4d&v%Dbj`~Hin+~GkJ-6JqbZ5l-j1kO2a>_y(z!8e z1d6L9o%l9$`2?UU9BE5YRMAOGZH?++YNlZ7pp(0d5UQn<4WP)a)qf}6QsWdC@v_`y zJ{-a9$q;D1NNO8F;J}Jlg_syaOmZ4xB8V7G>5?gn+9^bpc8VAZoQ?{_P@M2dL=44; z7z4yaC}JYgOz}(F9*rPkk~0v~lx&}ln5O2|Xe`;@VSt!OTt`e;Lrhz}>IcU-;khv#O;Zpb%0!{Gf~5m@|S0DGROXvqi;>QH6;;Uixm${>-+){sr@EJah*61Q9WY zi1>)qf@WzI77DMVA{TSlf1?rz+N{F;7ieCfwg7nA%{@zxK1!O-fp!Zs%J1qN-C-8p-7oUc5m;|#~?Z7o@?wwe9SGkTyl(! zMSvj3{DS-dBj2mYB1LI>#v3F%J1vT=s_*@*YL4f5Ke_ey-Yt*+`}M6SQ-{ovg~uHW@6F7IyrH-iOO?%Jp}>_m_9&`g`6F zmn*>V*6nWt0Y4;c@%omhZvBH?zvF%X)_=(LyWX#E{Xwp8d!N4ZFLM12@1uABRIb12 zb>H>n`aSQ9cmGzdzvcCB_vQNA-bc6pQLguHeR=!e<@$Z^(R<&O>kt0wi}$8-{T=Vo z;_u}8Lr*RKORm4`eSi4_x&EGaZ}}JAk(YXF@7l|}$Xj|BUhXOHH}Lm?cMtwN^6t>p zeebc?fx9CZ5qYuqQ_sM+W0;%34C8g-+W@X-H0opc`*V0^V07Vy@U0I&GjHx`7^A!% ztPsOz1=G+s4WAl5FX88$)*Qk7DU6M1ExfDX`!)Q0N-KsiUwexZ59OVE0j#gQhlKSV z?^Ev+?=$%P4Cuf=%DbXJU6|RnLKkRAy_M%3rR(b~T3+PpH|oK?dynosxOe|?M~yC` z_@_o4r%7(QYLLu2>SOiu)Layy>WA4}C#o06ie?&>X`{1CJ@2YfF^wa0q33FPt)7Ni zxYP?=L!Adb_3+;PJD+~?*`3cGJb0k4uCBVvYCw0E0yf9Q9?Px(&`to^6SzNuCn*fb zG=dDm#GD+DGPrXHw`1bi0H%b*#TndAQ->fuSj>?L#2@9;uc0 zTxTXq6ZNor@812_BXFlg0Ksp7y@Ox}d2<~_YOlzEa#B?k&WgnJ3ht$#w%bjzQ<`M= zwI*pXQjt-i%Cm5;S7G)_rHh)rcTnHEO?~%v+WN;gMA56;(8n!+cLDMmD7Cq@eE@XO z>e{SRc|D?Er*oSSG*grF4AwL-2VIaV-4Z&j2tF_1YEJGdgmE!FK~+xZ?~-O9)I#7X zQFKlE$nG;IgE)p2@ctCOrKC-$vva})S2g5#QTONYHzaDbIQkwuTMC{E_;-)^V|nQ~ z&i&azlQ6gozA73CLdt`}hu=PHhpC|RmSv@BpAe4XjU zfV0h0bsWz0G)-TrFqx|;SEiVnXdZ=Gq``ytiY2V6?%(Su#L^>)<)AxHyu0w{hQZ<@ z&(}}x-feZ=qEzZf4W+tUi($v5sC^N{xhRYRN8$<*1+XLmqchMl3z5oN1-sV}*rS@b z_UQQxMkX-+3KRy_Wa+GpB1iQ<1xn7mF{o|N8^TWoKhNNE0LJE%Pak>D;M)mM8W1LD zG%g@YdoZ&HpT2WnsUHJvJbwt^VRiLq1PkZCz_sZ45ayw|oDnao@ji{6)SxL^=NPVD z5KO#e8jY5T!CE z3{Hg;Eb(f_Kp3OpSojl~J8I0*Wp68j!qzSd+J@fGM<{a=CFG*iHg>ZOFp5u`8bt1aGFW3a+Z3o2Vap_-J zesx|V{3E)1O0++tJ1EstN_BYb8ToGZe=dG)((i2bOrMj*y&x|4Nj5>vpRo<#H@uHD z_C)sR#hW&Ga}BQMS^H{gXNPQSDB2eYU;2&@J*6>~Hrf?}(y|T-t3$Xxmr<+}c77M2 zAGh*m(<4>u*X=fVBg)$)aY|lfLiRHj$xbBt91+hMiuE;huGiP=m#bieI}$tJ1rzo1 zlx7Y{>b^kki}g)Pt6)FD`GWP`bzF8?^FTa0>kebeYc%8Uk4i6xoH!Tm?!(;!pay-` zc0Y$cb|gCE6Agi*uW#<3e32&eetaX(8VHte4h^mAIZ@`fP*>?5N_ZfgJ|hlQv3w+1 z%XS@U!}(3D*FMEq{JhNAstECta2kupIFcw5l-a=7?JHENW6fMfa=a44VVMK6$KAMy)~Vt%h`m z=|Rd4$=W)v$<`QSzjdu+@t<}r*6urm2R1Bns4+sSUKCXr+$vF2+-fR-v7lN*wUSHq zv!)ixk}9Q@j7X@9gGH~FqBW5#F-VXeId}fw8z#=NS#VeV+@SIHS9fX)*wZ3Ijbt|ab`}%e@M93 zAzIoD(4^shMC;mmZ$)!ClgWuoS~!{2ng*dXCG5IJW@w@W+Xue{{Oo0O2#Gx$vN(_ejbS~~U_X;tXp(j(1uy9wC3ye6wqrIv+)56=mm=4ScO&sV*CnT;n#Ej+cdAy_0w4VR5&?KF!;e}dP^U>dTIgmE8O5lAEUdF-HqTm?yfrmTYljt< zwBLd6UkEkG$4jBnKFwuaBax=!kGrL@soUEqa6L&SJtKItbTmPj5$u#KZdS`w+VcX= zn=n6#C9krck#nB4Sj~twO>lc`Ml@hv@LS1LGs-?DFdHM>Z%gYxqwh)WNiNq5>2%vo ziG*NVUZjo(W3QF8==~LK_rx2~Qc*@XC#z(==7<|_#M$~r&Mscrtdo62L~GbgQwzTm zqF`Neb|IR98SG=~=p0eDZyde7i7j`_n7gTyjCtYs=xuuB=3y&>u4~-gj%{ZLx&%%hxN% zefW7mFx|}1P_4okM0ADqGD`FT=~E~YZfdU&u_G_3W^c~%`KGk8f7|BgzFz%p+FC_* zp2th>K)4XQp$m<+-y#F5{buL&vUkvwd54GHf_rxS1t3Knqj@ZZe(nm zkg5p7et!vTGS*4$JX3qluq$H>fqM(_3{AbV+SJUuY>mr1!FofBxLd=zHx=Cr%3}*z zS(UQancN_kuFGzB^vlZlT}8uCvg1VRe5;{6+EP&6--oeX!m!hrr-e^5$r>2Wf%w;o zLd-|wvI?=?gBJwxm0;~w%~ee_6Kq`=e3XLot~wmcA?wYotilZ~;BG)dR@xPQXSKW+ zwR27RRVDK|QEdAPNiDkT(&E;FOMT=;z(w(Ly3me zO^KZq3}r=YTA%r`DC0^jIdtBrL+V^HqEXn@ds1dYRiCGl$9*~;w2OMqpA)gYW{s^I zlJ3;v>mE;G}LTJbC(U;UR*(a3icw%2e+oZSzTQBWldXsKorcWR$T~R zd9CeKvE^LK5u=pWR3x>i(XX;Tt+PefR^dJ zs@onm>)tq)Hlrp-^F61wXwn;&wqrIt>SjG&$+v#QFep3lC$x8BPfWU*pX-U)J4Vv0 zWG=P&j%I(>I99;&+yAjqJ zFQpG-b60C!bLu3SH^g8Y{o8B5!pU#Y!rjW)t%!@#CpPQeH|a6k+GA6aQG-_3N3u6! zUzWd>W`?AFyg#!~Qs+4x(ShptY<1SRBYio<&%NFpwIXaI(&^^+&C!N3vxwG6y3n@v5DgcDpbe-poCU$tM|O$qp-B=RD_<)@)m+iESo_tfMmXRMc&< zxi&(2DEqiq6k9T>f7a#6x$T{H*B98F*!JUcl4~KIhfp9lyM$an#Vy%=D!sv|%!Zr& zo8A3Mx2kFDUACPPHMN~KOKm+bezOy>)+^4E}^)&kL zu(Z>9WUTjh=aiwc)>M5TSCTGl*Fvp_4R6q`ulAj$qLGEz-QFA9-O||?X@it(=uy=v z3PnP>v)^6+g#)W~RX>9Jc+8Q_r-^h$nosO6e3>n*D4 zjpwy0a9Y|^^OsNBvPGK@r(!`>UR~ekvveS)0!zBrO)j^}JY7hu;l(wUr<_5HjhAK0bC_VbeXR@C~# z+dNhUpEH()?EiBAGb|%?+o_k@FRR^H&RweAHuv-`_LT>B<5S!2N84^-*wSxpKP~X) zJELjM5^NvNNOZSnNsLr6M!J&=IYV^Oa;B~Q)W)9d`eaUjs5+U#`$5%{x~I0|>RFawQfnN_)Al>r)q^Nnz~wB zQS>%GC#;=RZ2Of=*FKv5xXSdff_OyIvwj;-i|VrGnbkT<^@^gI(MM%RvJOv+|8ecr z&8XeIPR`J>@=Ro#{o0jwd55>R@pF<_A<-}+zo%=Qv@x@(Gwu9nvoWS>NGgcbh%&0 zx#lm7y3wEagk0(h=Ui!9#?z)r(MI>IdB#)A3EMh%D=6)9tDmp9AfG)aiuk;xJ<)4( zMtcUv#=S)&S7rP&(LB9zmgx=k9LBwU{p#ip*5boj|2=a~4i_c#Dkp95OR!#$M~Ef& zsOr0^=w!1VbK_Xk65HYv=2MR)!`pts^=3Y9^H-TG&EMVEaCNwSKeBn+Dl2v0IGwuc z3^0GsoKu$ec_MvCL-NWT8!~0&wf8prT&^@txx3!>3*1&qt8)>mb}k|;&!}G4_Jf-> zNB!)a-POxVIVBrsO8*!?k3G8WmTP6QBI)BU(sg;_{*~lm8R> zJJobTv4A~yN6tQkbPlZ}^@H30&}CmFD$n(^#6sCUUO6ZJ=MoFA%k`>^%#`N@meL2Y zP-cSXvh3fvc)0l|@2||A>TxQWS!ZYd)7hGhWLt8WcE4@UCT^?dx8)PIez!i@N;#4p z^4I-7$LphLQrZjh^;Kyh9=>hhD|y?%U4G>XUMoMDt8=3>b;556P`zcQ^-9B|MVeLb z3)qu)13cna1MKbfX0MX;D%SHQjqWNnI31mhC%xfB4bLWnBmapSJsX^S6{zF0;Uu{G zv^VZO_32vu?gX9>gR}AP)gVwW1}7(j;Zrp^Q+(f7g9%Sl!P)WTMQ`lm!`|?vIy?^s zLq7w579i73D$$-A~CKiaVdPhh8 z2q58@i9bFK07SnU9pL4p2k`m;1V#a_7Qx=rvG1P(5( z@dMVV4-L)_f9?a$FyN14#NOWFOEo&_9icFLLy%419|N#4t;Wp8M>iy4-#-Dg#%II9 zQT@q52gMGs`e!eOCuhArDG#7tP9^LC!_V!L-@WvMjv6qwzXvUvOn}?_uuL#G9h~&W zs4qaDVA&fU`Rdd^de$2bg3|-Mdv-bk{p0m2@;k0FeLg&UapL!%`T^@1NZ?s7P-DLb z)SsMK3AQqro}s)fJ3H!p2dRoq+iq`8}9|S|g~-xIPZ)pC5tD>oW(Zr+$CXoA@xf58^}Z1*1j3 zfZ8pq)WtjiMF;M{qA>Zv6ESD9>el_YC^bnvSn;RcnyzcaWU6w9xbChjN@yi zlUX{~^A0?oUBGme>2MxSW8G0^7RGp`(jt%X5xp>H9_FD6jh%?l%v#T)FvhsI3UhEW zdAihqWX5mT0XPcB8hD^*7fJNX0vWPMY^9C6e=ozkM)Z>o&Sx0@+ zQJ>QE&$@f}=>Y-Uy=l)5fzX~hNR~gVNOilHksCD&1#?p7@+8I zNq%<{X=9llb=6B4zbG=&kPvS(w6BMpi||sbB(?8<0`P^=L2=8O<1I)U!Yk@$@{AaUkt`Zslxd@LSBQ}#@1rxEn#)6&~bu7 zM2SI{32X-W6l+9w0nAYQj}O$*=-d!*H>KP~!!0=pix;HOE|1uQty0n-K)1GRr#4xT zC$mbY=U`T~$yVOtZyZg0pCXy9R=62o8ZDA-L-Ti$idS;O_43?(Vj@ zYaqZ9+}$qUSNFg7<)4~5T{Sh;)!j8uJ>935D@~}}vfVNDMI^eBOY_y`3_(6-PwE{0^Q0^rvm}1I@hiop_Pw{Ia&;VSs!s=_PgJsDy8-s- ztX?X5$R=dFdgoeeKGy(A!I>P}d)-ORPU+riN zy022(@64Y2V^l`UH>dt0s_df01PR)cQX$P^3w6CfsGKTFBd$pFNOX=ZDeTm>*WCPi zByiSe76S+m;a3cVCHxu=i{Ri-WPUSh3)1Jq8rRpz%=rdeDGPlsS`3m_G1GwI7seHl z79`|{6us`LaHjg(jaAY2OM2yMv{1heEhY(@CbuQJ)d)ln60P_MeQ&d zDcP_ilDZq72*!>;pPWn-fq)~Hrqjz$HyD>9cl)Ko-SKQQ6E8Y5Vo@{rq}syIR@1fU zG3xLK59gdZ*CB2{e&sNiV$5CYwxui$A#0tI=NWN0Sv;!gyoj$YTOW%Ix^0Fz%~t}j z=Frv(S{rLMS(_9Dn;%BRFwLk{m5BWOSR^B#t#l7#u5LiO!o)A(^m}==z8HRFjhm*V z9hKTfSZEbkg?G%llHE*rG*q6nf`Zjm$oX!pz;dQoL9$qLI zAZP(AUPr94(w>LFZhCwKi{U zBPCv2kY|R(gPQgm_v40+F?j(_^cF1D?jiyg&Lg7UsbzIn_qth(yQ2^9TU8ZZFv_upqPm*`}0RR1moGoTmh7_Ps=-~Gcc)xGaH zfH=gOONj(vyqH(A?N!8};$R$RY*nse6+*4DM8cJsNHRicbtMidL)r6Nk*IMk4s3l?q9*$ zmisE(7nY38TBF|Ga)qN$1nP9;-fyZADn5zc00tW>!`cPgBX%lD5>Bf_FALSQ`%;5_C$A8WEe!624l@Vc;)8))8kJpg(X=Iike(pbT zJZ8Zz8{D~Ub&qPzUjdhMp4k$Oz12wXQU4f+*A%ZjDr(t5@J`fO+zInPIH>;dXYZ@J z4*_U8DK$pCuRh)Gte6HVyKtIJxlF5Ubio80TZgY8@Q=uN^7XRMfw~L(NwWR|YSuoC4Kuuo&*5>u$pzdJ*O6rNHNY1w;n; zL~A>!A~Y+3oQ<5!{iB&T6wag-3xom8deidlHpV0n{i5J{)-sF~8-{|s4R#OETt)vW zs&O=wDxWh)WObm7Yuk_sbKziqbt@)sE?99bxZ9d;qnB!F5OW`5kdgF3F2pMKMD@O- zBh@k{Rt4>Pny2wd&li1+OWi&Z?z?3o`8!xXAml@^Zh5C~tZOq;Z*OuPc0`KwFCDM< z7{znU;QPMkBa)#QO75k1KHBoz@qqG{Is7;~Os6cx3J4>gJoV^1?b}(q4rwSKu~b7% z++QTuMLGSSQizhVzVL-DeKiI-&G^;(1Zeqg@LlHZ{@$#w0{+W4NM6)cn|l7zkk^+l znf7tsPW?JLyIG`L1MRP{(u@lTFmE*gR#TrWf7rbnIzOe2%;4*|opN_SU6%J%JfbPQ z-9V+O!Tf-Vg(Qj|tcxh>hbpcGGhHU!4HLW}j>Ew*JMfMeHt5!LJ2C3y(^^I(%H29# zm(2d?>j9qhFLB(E0EY6VU^*nhntmJwxDc9{Z)hd?G4e<$#xZhOEjuv^uvTWWf-AGW zkw0^}b$Z=fr!y$7@`*b3{R1O?;py4X7;}?xA7-MI9=LscF?u6{xJFC5$Mgd^;teoN z5vTzJW`i7wcHyRQcq#qHg&Yay-%OFXQwA)dij0Jj)tQ*urtFkU!}5(aSw>_D42>6& zjz>6UOG`aMybfWvxZ|*qm;Qua_Q`Q;du&C?V?d|x17f8uL-3gw!9&0;YM%B@z$AY} z)aenFhut+GYtq96{Svj>Ctyx#NaR369A1P3wI-RC1=HIVFlKIuSf)NgfHe&PFH|S8 zdu%hA@{RFqoT(c2v(@0zpU1uriKQ8dr7DS~+mG$xpKu5nTZ6(8we-=+OVfR7X4Hrs zcN&S&9*Of{tbPEekvz4A7@*H1ejKl09FzOZbjue{Tk$q{l+m#u=O;skOj50)Mm~$` zOWGdq{JgeK(;|XLj=rOcN#5^pjH;3`ixL#X!&hE58;vsEC|4R~X*j%o7+G zSQyyXR~T%U74mRdG#?K9{+WwxO<;0XX~(N>P7{YTiZLe!s(QV7VJw5dR}iS-6RHzd z+gDrr8t= zR+N(#_n@#Xn?W=pwz2F1)ytRiy;r#2R`1Znmty+a@8U;>6Tp)cZf+tZVE{a^7bDIt z6qkg70&7KxM9MCUxLzTogMnu7d(=`?l;;s#9UyVZYBM`pDphMdj7Y;iuwrZ8#IJBu zUZ7>7+Bq(xh>uv#TIw%KmiDx7_V;lzbiYKcmb2;*tNQ9F82X2qoTjT3r}Z-LcM@Ur zK#N@oCM+Sj`Fbc1-qa^^+P6+|zbI_`*5ETXp?*>os&-tlhCz*Y^2gZ7T^mG<{?0Ao2kq!97UDx@(BO*N zzQ>@L$@OfNtMM4rA13NADFg4Ef0KH{4h!%o{1d<3baz|jc|doUWg=z>EP@(7iX?16 zurP|5csO<_enQYd@ihqn{`Ot(!BUE5`Rav|2X!bwxOhP+GQb(jy!gvDw< zG&EVY9AbP&9k*=fL?-XOx8`u0fT=-|rr-Aa>15>d?V5Yn<>v|hTedL#VCj%=F&6oo z8?M-_(HmScqDg{k>5O@u+(n7UbIg@Sf(|zrjSiqmV=ciwa3hsWh)~;RrXa=KUPu$Y z2&y7dfzA2evk(b~99n3Vp+bI%zHdy{%7tqOCJ=uK!8@lhFWJf08?lp(Oj})pugunK zD@tT+rMIv*%8&MmhuH;GP2+;PyXJ@3Bjs=5e~R$snBXr@?}mv813r^jsXq9x_2`gT znV8m+YDz0tQ4hYv5; zep!Ur=mlP*N;`JUC5|Q%vtflq6W9reUj|guLg~R}u3Ff$vhH+=Yzdh5fHgD+kwxVn zKjh?ic;@YM@Iz%gm_IPY%ARL34=BRXi!fgKc5=YT=g1Mu2l(2Oq+|K(b71&#F%%uA z*b-v+Z`q=1qb2q1av)m6Dtu9c_E^~pLW*|DZRyt#Zxx-{pI|6{QGUPW*rh(>c9F=8 z{~YhW1P8rv#JbvAH(?B^Yx?ipQu27XUh$*N@^ICMuoC{3J}5pP@!Gpgkg}MBT^z^J)^+ zw4!2oDm%Gu9H+9Fhd8t03;dZD*s2D>JZ+B3a#C(F|6_#;qK9#tT2E zR{BM2dE=dQ2XUVMX5fvx6)cpimJF}(KBIjm;3sWmwSP$hl}RtW4fO4e`=L((F%3N7 zn|%7lQ(H+A%zCBCB<>AAqcAbWjc$sSSYpNnkUNP_o8D#n*@>)Uo$xpfqDTdX4@SLr z&i)FYQlq&rmS;9cBfBHF%v5GfS}VCBv5-6Keo=drIB9my@75WasW(h|Q9u?g$@up= zVcsx%4#}E%jj17kGH)EETnMQYfJ~25L=^KOF620D-l8`6VW1izv6ssQW5MC*vpVFy zG9BaDfFT{0+Bhy<&M6C?+5lgf!k?3aa8QIcJcub725-xw8K!hgG?`{{RDvT# zNbj45*t#;%0rC7(#6=qid8P3y(`Xr^Y4Fq3Kz;e%ky^_w`zFsFt)-7%kK`SXrQf0fcROr^*%|2)Tvq_yffuq(@97rn9lT|L z)tQtF=?lVXcbnPY-mDgH?#I)dK5Os`>i0Vop+JRA?z>p`C*)2)c-xF{MZN8N5};nt zp2e95W@c5-rK3wH(&XYWG4!Y=emfg?P>f)RUQs?Dm~{bH9Efg!tBnx1WjJMzsMdj7 z8JNO>4(cP54AN|-u+CnOnB%v_^IrVE@$HCBbm%`pPMrONy7C!Sp=b6CxZO{X~EY>sLOk<;ZJ07CdyC2Fa*Erl1+vkzwK)eRE!*8t~Np>tm^x-tKN=O zrm8=WR<7x*!c6?BY-I4OaY0gw;0UC6PO&NT;`3h?bRCbaKj=hy&3C;#&VodeeXblx zgS~vkzs?mA@${+Ev5ABm0Mq|}NkVH8WI#iWPR)x>ZES!*DRK7w4I-(~sTno?&S)jE z{2USe51eO(y=p)0{rN)l+HyBJ;LY~p@b3}cHhcH~xgs2u$KEHPjxCiLfK$sMN+>zp zJN(_);8&YuFzO;GXH|kwGB^q49QT7R6>#h@VeBiUq%VcYCc&@U3bcl;^aIdL!{NW| zg23O5LfD6^jyAT*sk8X?<2;@m*7VN1e;|2H;J^CCqm2?591*6^Rb$I(g6a6yp}sh~ z>XuuQX;w;~dJt0RmOJtxl`MB;3+q3c{#Exc*zyFK*$318cSxP~H)=J?Gatl>*bfNj zb;~z5dD{Wo5n^r_;KIg~70~5PF}6k0szw0FX(8=d$THqim6a@j$YEK7q&sM zLf9*}(}0Cd?e}}m`NA8A9TOmcO?<5@5dBuUP|$&Yd>83+yEHVYRS<{! zIA}aAuR+6M!)hU2z$Vsib$D_eT$Y)2#bUy;w=1Tuh3S5Ck9BI~=@d zt%~J#yjkrSK35X_&>gJjm0d`4Lv4Po+Db7iz;E9j*>U`4dwa3uPxA%S!8kB^d)2}R zxxqdVp+23ah;C(fs@(x4hlS%h-9g3F(NXpEPIY1exJ}2|N};?PN`KQ-G;dly84hww zDB6aK1IbW#bXU5Ibk&@^*BD?;aI9W3l2MxHO|hIyQTje>Fn&fJ!Vh~ zWq2}^ieT0Jwj4Pgj#Rn;xo#MKRxgD`w*s}TEm@GntXD#7Be*6Gcm+c02v0@!6 z`llgrBbHqNd#dNeF@;XKR^$l6n?;g!v$W#5Gviib;fut zqjvU=MaFTmlxN8821~1Q>zdFu+$rlw|M|A_C;y>&`TFz1YIrX(sSdsKD*ziv! zujRz&S}6e9(Kg<@k&=w{fL<&WQvs$RVAwr#=_`>9)U2-Wiptw=ux?78y47+QZ~>cN z+4tBbIVq}PTGOZVtnZdmZb}ABCjQivYWl{eTuNUFy2+4Ox=e6gi3DXiyXkLC6oGQW zxf+Dxwa=4JMORvri>Xh};i~+cn^Usn64D=j?atU3H8{@L{tC*RJ#_k%G0uC{-&=w}aI zAAiOEb}F(s^rX*9dyN_fxyP>dHLj*f)Mc2bB3feqSqHKN+DB+nTh+7gXRbj~gMxO% z@2(ntFNW&TU9DP$q}_eVe~H+;d>EGs!dN<#(gq=D8bVpGCdajoIxcZMyG?a*1b|E;g@WTdw8GpFT(J%o465oj^S zh1}1*2XnPzu~6V1^*nN&tSYikZPk6#eF^3Cb}ndiTkXGn&1hKNcw@+UmG}m%U_0qT z7FxLHHnkbFPpgTo+v8k4g11>!p?l+}YPMgCYgyrSkXW_TyPE7%my6oi(zD zFDJpQg|AJ%*$Eq}XmXSu23F?3Z-4Cv6uBz}&V=Qt(&TgvCe3;GXd0l*++2}8aLF^7 zv@0)HYyyr86spyHYjheXgMSfRn?`F}dD-QB=_o&Wa7ch;C;9!ZcN)05r)mF$e|jy~ zruhYE%eC>>pD1uMAjT!fj{zX}@rs@zFmD^+;tHdSwY}@he>L{#P0{*-A%pYvit0M= zaWl;4v`eYXy)^wBB@kd<(6#T+ZungiHot0E1EpN(qEz5eN!`(`0 z(j*6kTnvFeKX+wfW(HeZS#bs3wqFs=D7{(beK~jIIai<@+fnXTfrUaaE5^1gc(;QD zd6m{6`~Uy{)TAO~HmRiD1^|F^b#kr<5}B4(R1*SZsg^L-Vr6O#QZ_HvR+Xk=V@|NK zwe2hp(Nlw&=<*D9BwdEEv3yZEu9^HbDp7%m9L-bg@RdQvgEXAe-Ur!_lZ6%gU{pGq z9{q)H|G{WIEwRF_ux9;;SGT}X(Cl7MvMlozt5f<3LMW5OB%<6RQ3^o_t_YdPrch#R zH%wDidM4;WtMF+fMEy|lx3g`Ir@N5Lwfa~1N8wKHc*H4kiidmmc9@BV^rls`i1xuO zp&Z*$qM@an^Yr!M`ECBW?>$mlEJVdfh9LHo|2M=aR)vc!BXZrYU1Ym(u3U%Crz_tX z4S`0)E3KCB@4?zfu|K6s%B1Q6pkrzZm$hH&gy8%A9^C`?eNX{%VI3jk2vlql9I>t? z(sjVPQxB}_ND^LurtkM#-=?BWB+J{s4iCpMn;94ZlgLF|zTW`Mtr#$B)F_FPiUDH` z7_~Laf{nq}L=HrRk&+`6+5!Q^OteqVL&55kQ;g(ZB;#3mT6!V7fmYL4XVX7XDwxe%~C|b(IHXLKfAFNeN<&Ol0Se%DPzv3R=?u zv84^6i;!}^SC(#k%cr)iPno7o(-D-ZE&yC%Meu;(3TPj3o-Awh znj`doxAhi)^ck!#yKKd){MLj^F)AqJ9&g0kkx97&+Q3^IHKzr8bu4VfhA}pd-YT310{`S=pwXG?^XxM1Yf+q36e|VnXZyu(4 zF;8Ub2x;?pCjQzFXVu?h|Kon~#MT`Ytp(Erb+&0M98K5uYgRliuofg3Vsj7MA zu>E$Ep#ZYn(>AA7A+o-V$0GXzi6nR@6B)<%AKmib5r{YmoYnl-EW^6dZSSx=`2RBV zwFl09^sM(7*xm1%q?}0=MA<#B-vU((A}L6iWO4>Y9h*{7dWK|%l+9ji+ru4PL!VIU zmBT26f2h`^c1dC*V(h`g%YzeERQ0sVy}I74mHc<3uYEfsFMN9mKY5Z-XaZQLYEm`S z5>(+1?ymPSIY(49S8+7}@<83E{Br98E?5>UH*)eV$4$M)PrzDOQd?Z?lw$qFWy;^1 zYL&j<4UoS%mK4|7XwR9-<<3SviY&hAZngv12E=p&qy~o403aoyo1~TirD=emXr#HL zxQ;rz#u(j11Av+vnl;X(cN?Db;aw735^rs^n{5zYkQy7`{OdGVD>)Z=1YE{LT=u?Q z`uh6L&$sNvPWmD_J|9rRK6bAlHpqPB%4Ye>woS2|E0<0Das=;jx0UR`irn@R}*q`h>ALONS74$-re`SK7B7Cdz>Y90J^B92^LgwiX2~Z+i@X5Ay2K!_R|H_rrTK|F6YD5M!3jnpu@1ld(V5 zjD^ssFJpwp7-144gb>0AV?2AkcHW<>76d!HPD5uzr6r_v5=cPz?o;1=-A}mb|ASCM zjc)rvTA(537dv}ru=$U_X$v#^I$>r<+n^GAlEA(BpWn~6^nT8=mO}|41Q8Jt@p-LH z(|H|D8X$iKfB6Bw){gM`CgJ6Z>J%o=?@%|n^(AEY4 zDJrh&E3??taD`HwkzLcEotSO>>QkSjC*08;y3+vkJ2{`{dK(Cta4V z%r&%TGo{AG=Z^F4#s6qDx2pNff9~B4jPX6c7hi|3#s|gn*kN+~Voj+vz41-UXjjdf zg;Q@0{W29P``70cF4C_kj&fCH-6d`r-+$dma6@$ zs8z=e4}9=50R$037!gDfLo!mBR3?o{XEK;fCX2~ta+qAE0EH+*F-p(^Lo02x(}}bV zksf;Kqu&geAv0pe7-yPUmdy(5Y;$q?%sXFv^C$bxMck(3rS?*W3!$P=a)*@zmBXr$ znk-3VVFL~?&Ks&g6=lKLvx)V8^*rqtgGehHt|n|*(%Hv8Y#L6MpzW6amZo`&fw#SZ zt~|8fJUp>_yVov;UT*;N?orxqY2y5gWsy|MzY9%b2E(klEl1SV5uw#~_6}d`i{5O;QnO;ij-%$p zRdcJ<)AQDR_4^4BBt)19QDVeNkR(OAmm#Ybl%i5nR#A;hvTQ|7T|-k#TSr$<-@wqw z*woD2qSE!Pw$@l@gH5*BW`|uA_Solu!`cxXJE`ZCGtRl-k}Iyc<&JwEc;u<4s@rO! zW3*n>SM^POS3lJ+^;i9``HGjyD=j5Gc+8(X8F;bqX5gdvrhY8c4BDldd4fL!EuDb8 zo<$&oAQr(4LX=Qp!nGG6vchXLU-6JAnOUdUm5c6rro9;S;j3@H9|H?tDdaNdf0;^_ zY&mk%d=>=^3Kc0Z%QLrpcZR)>03w1cZfA_fEeWL26);v=U_q~pb2gZbE5mc$Ez5iy0iu$Hv znCRMj{;Gu)H0+9ht+8kd1?XIB+!S{5QkL*I#VkZ|Sj05^4JU7ljTOoM%MT@Xn4HKg zFOc^st8Vb}>WFVdQRdFdMSVq|i|A+hZR69xgdgs^ zeJ)7Zalc83Y2(18_@3Xdhq~1xN8|3CM}vvCw`U|)ia5jmQ8KN z%B`%mh*xjM3efgotSqu%SG(U`5Zy!=%mw_^FRVsSCR~jcY@KOx!?!gqF$;d4x@h*a zn7_+Y?a?U%j#wTcZ)&dVJu z!=BU}<69Sk)_2BppQox4C%#NndPiR_rzRw|aePg4WUQ2~-Yry=I5WFxzy7)ZWr-P) zNed>}V(^jn5L{c2aEE)HNu>jd`{Yc8eFjJ>64e_`-kd$SmNgkxVuGVc-f8JLs;)j; z*Sl}YQpkmm<_1Phwc zn41DSiy)L3>Y zo)3@|{%ha=Qh5x7ntcYNWk82QVXIK08`f-776Ds`tmftsV2ex!#9~hf-a$>S-DeaD zrUuS{93-*~(0;tX9R8pjcw0VR7Q8uFq61T}zf0`wr1ZpccRq6fqa}XFhxCr9*to~2 z%OV%GC_yI6*#H}Yt*WVA@GOU6kz_?LTd7Ea$;u5xlO#uzm4!^V5UWyRTU211YirO` z>!3?7R)!}NS?xm7V?+vTMTU2=deX%k6v~^wTN%SvL{F4SBS`B3EJ?G_Tu%d6hjVvA z;bd===p;vxbmcHhzn#Q4J^$S@$;)eI3^!sAC8~-GIqL`)ZPf1@DZpxMSy8bDGM{7V zO+AAoVnl%kU@kyNbJfV*r4?uIqsYv`QZ<*naMLV3L?_o{cymZWLKtBATxe_{trsZ{4o{Jmc0x#5{B>2wjw@mkw)*MVwpB08iV> zqWbl&%m*+zG;%WH@azpL9jB==cjYmpE>(kJuD$Sse?8T@I7DF1nt#KL%*3CAM-L^` zP5~o_2oQ@|358c~u>G64?97G`6b?BMvlKi8%~z&J*&Ocw@puKwKR zE$nE`&c_}gT|-tG(#p(C`|mGLjt4zyii1mQ_&T6|6Z|0_W-_&!oG-28>0c9@?DaO> zUxtb1rHk)?!+LfalgYSfn}&$t?#-M>R#z1*EU#>3n2i|x#I=0 zWpto~(C$s7@(~D16@muCbe1N4)Kceif?%V-ZjG#1Ub;?^6YoOHeSew<0~V7QF5)C8 z%}iBKU3G)sL$9&1j}&SXD5{g8PQX98TpnkoEzEYn==%>Z#eU*IaS$3@Z8Y2?{9QR7 z0r2&;_CM$l!{!Nq)VVTO>waJ_?vVEK)zMvER{MVc`pz?6-YUAi{N|fi!U|#llyz#} z4dU_y%_8&RP`G3i-1yOpWYXDtc?<@Hn7qL%;@d6622j?!NXFB}LfS_XhkiUHObCAj z7lR*tkV*?$yiQ)Z{gb>z>Es1U5`s{kP_Dl~VH2(8Yj|)FMSwQPRMQT@n_L&3%V~rH zAv^pB!$D9?x}p%)ln_3d?M8&Uikb(QaPa)Tf2+(^Hq1_+|u9xWxi^nAc$26)@*bU!~Yn09>j5 zNl~-{;BKk0hk!}|$S21nfC?kkK=SJVa8ceMK#5Tg@LBWa=bEpLWX#OdN8=Y?wMV5; zIjh`MUMj7sy=s7Jv#XEi-~Y(}R{&I&N7wQDLbXF>uTl<&11I+a{}K^zdZqAJ^4CvK z&OAB(SCx(Bw7ZXeq*zH`@}-Fx>P*njZQkz+@XpFDA9 z^6WW-;-L!7v+|L`ocXeByFlIxm;xj2Q-7GpK8*DrrVkkp0OKBcBz-cw_V|fgx9>l= zb9di5_7R%DYkKh#v%YzXtfw-I3rfq%OR8&7_0p0>IQ8))z-$1RYPebnMYEr1C7Q^> zE+X{TQ%sn{CkVcgrwEG<5fD5Q5>derNd$(*RWHLYwBZ&W;lQ-14KIReu<{5-Ck=*= zSunM^ftY7D+U3V~*3uX7^6G{UuIU%R^AXY`)22^ZsYeLw!wo_(X{7L1&H9LFxE@l; zQ|52ZlNBI`n#G)dE0jdkGw45NOH(Ge9*F8}ddp~t>DwKAiE<-d-nLDEp_quj#U;Z* z|Aa0TX>F&Eq^7e3w0H3bL(jrIlc_pWDRM)XzPmMF z(LC@`Fab(>k$HOBsubxipHSzfT~g50FKgmlzofFB!~2wrgC@-e@v8FBioVN&IOy)? zBaaGfNc2TpI&&uKF>TZy0#n^01x~cSPcUunFk(?z_Z?0=S_;~W=KeN1epREwS74t- z9~1~b5cm!s!fOD?=RlqYhc^Hp|9L5(f?jV8WrKS2X{?W@8#R%v%DwSI0x(gV~6|943>ChOT28D;ka?KDj}c zyz{t#D8X{J3DixXvCI%$+#WY z6boKDt>skXz)&Nj$}18V)QTs}XaR)zChw8^Di2&Hl3m2uy~>oqn>3n0IqlENd4I=a zdBUec=!XA0&t(`t)JBFnYn6j24z*=m(V1sli^RErYJ;+dD%A5%@mis|<`{8Arv~w& zg-Rp?q#fD-(;;##MWa~}$5IAH7Eu=OHpQIljMTYgh*=ckiIf5d;`J!_$Z?~qte{46 zxe6G)m13C*kqMmf!!LzIR{+b_Pm73+Z?MlPD>9!n5=)tJo#MB<$5Sa|>{KjeB6=f) zl)PYOLLAlFna_f=lbZ7_cR0f;!5ft=^FgSc+2&f87|p2>`iiLQ^~QGQw%S=?@p91s zF@jharhj$8B0z>*gHgqE;s{ozkme(Q==O%jpzIq<3=65f(#5Z*CE5=>fgPZG@ZruiM}u?;Kpf6=3*ADbsf`-!oSz%JmtA+jz|Q<%_fKtN8+AmT z5mBq`X~hgPE%p$?I zOba7&Za7pyyq|T5xVG9z22Cv`w+r!`{X20ZLr| zu*JFM(8R8AYdaah^aE z^33>=$EC=ENakY13n}DfAXTd}tCs^DrH*LxH@G zi|};80#6h~tib2@~c#mqqK-0X6$h-HVb< z?>*1df3ef2r}s?T_D$~(xE?gYBQwoM#(KT>e}MHzGN*rW`|*>yM@{W7AJjj7s-J`D zq(K!FT4Nm(p3U;g5O7n}=MQ@zI@z&e#Zm=m18}yG zwc(7usxT^%`{qHGnx&mKZ7PS(IDMJKPzL`05iqo!&W6v!*|W=tKZEE;t=qi$;QEW( z+@{9_w$t&%e?`DU)c1b)yz!AVZ#_hwwyn;qf)&FG3k@-X$NPHK9cI}_WzBgCb~dI} z^V_I+h^RPYZb}|+CreolY3*<0D2o+!=6l^llF8%tW9m7uk|0PRal8UAF^lZ8IsdIPm#wjr7<(W&y{s|W=Xr(FNQ4Q z5?FVgxMpZZ`)ti|wC5_kW@M!eT6?^8tMsZ2?MO@ARaxoA=@nI##t+RRB#G%_2)$VW zC`{{eVRAFcjjWy@^)EPlJ`(UH9Z{qv#I{^LK)tp|zI56V5rMO_5rl>{b`GUP;Zj*{ zHO{$DqPs7B`lTchp%gooPgj5abr(&>oTpF}u#;W&j04>$=yB#;It21(P8Rpc zOFdXxP-W+zCW+q;A^7rv2iD2GW{(Hi3UEHIo++Xv=d*Z{iCxWlfHPgl(<1z6O|Nab zYEB@*ggl01l(raZm9y+2eZ5*sKAt*LiMhMzB%p5lUR^!oNlrgpMzQZ{IMgVBrmB9G zoz+?p+XWgzROy?lUIOxtp>!dx^Sy>@hD&+{7B96?lfO*JML27I4xrO_6yAy$j z@m$Hd3S3ff^#O@_xx$lGn)v18NwMzUd*JDdT?RuB!_9}EwCowYu=;ipjzURJm9;8x zspLeOY$LSr@cHigF1Ixue)?wjrVFd?mSDAwB@*SWax9sgK#_G%fc)~W9P0L=L~!+- zVS^WBpTw4TW(YD`T2tv}8S$xteT#9^H{BhSnv(l6L-TO0dg9?8pIZbqpIT*DRizp0 zX0yC9bN2w@CJGTk@e^baqG_bVctfeE)_7D)T_Q@n;bUyB`{q z5Bz`k6caIPP`%dyy6paMN&pK9r}{t%XrzZVEkA>uS<@jy#a8eoT25hnj~k-+XVG6b z*G-&k1z(_+b2%C%pO>SGvFZ;dz%4)iXA%R*6wmoM^a6iE+qi=!%O5Ao8zc8+lWYe9 z#^d`0O?lF81TSwqRbCgh*IoEw11@_2{>1eH>O*IoNEO>3aMY&DWHXxXZCX$X_BV+T z+&ROt09wt~x8vf@_DShg*-7X`mJ>0EAg2%;^qGloCM)hSHU?JEiA@5G|2k5By1ZIl zl}?Sdt9A7N9O9;KVo<3(kB9n{onlif$wEt_el(@d%8A}sF_q<7K9zqI7s{zLS56fc z(uFKl${ndBRlATx|G>}`0BrigY2~(x-DQLW@2zosb z7h)Cf_v2}V4Ae)MDT@@{1p-Z}l}b?Qtaa|xa)Imgxed>~ek`L~QrH6l4K%u5JYxrV zp8e%NM%;;<=v&o~F7AcZT$Cq&Jck|n&Cco6(Y*J}mU`_!PxWnu`$?L*n4J#DEMW;P zUAZxn&Et^@a4`E+>E#g2&#pd81@_NF8l1dsAf|`{E>!`Wo6Ox-S$*tU&njl0PcxC# znD!A&nJ(KRWo&B97>yJnb#^t8S*b}{?=ofqi^yM%V2t|`3FWmNH}`8-26SmRbsmQ?XKhE{iWzE?KN7hEPJLjq6YqGRhys)bV_GAvae)lF9>Agcbi>*1t`|BFF;Q6X{o;xe7HU+hA_|(wM zH`9X&;vjH{3gj>pE@7#MUmk5K{%~%~|9fZl+pfKIt=OTjQ?{~ya(P^tZheR|r7NoI zVZYgnGU-(sB^{A+5KSB;@bZRl4~K9K$|G!NCU=|ngEl_aXxQ_xP@DDm-@PMBA&khw zly!|)28w-D8-z&z9GsK*q@3W_nvF_E^lRwC%Y-!HPw@6 zn_Ou7a*Vd0`~LB9|Ec~_K#{b~O-_^nb0CYqp+>*`m(+To=63z)t^l#1rf;AYZ^Uz% z=>hAI|J0p3q5o;FeEE==;yKGap0@{|TNOJlH8QU4ArPePb_J#{HkkG2>c z8GPs87guxVa1oGq12YP42o70Wrmbu(i-#KKKs(W`lLFuO&M+{}*lxGspTPRf?y}vt zgpNqCsIPZ7+ByIz+iv-F*TGO5GXpf%Y4edJ7N3MxW%Rp9oHe=~N{NsPZ ze>aUH9_nm-lhkttfG;j6+^nmu5z)1o`8j3jkj;p9F8x^keMfdl7&5XA@Rn-2n+6wc zx1^rJUMAk#x>ygL;Dp*Vv^GClxjnY+^xeAP>9=XS4t0T;Q*-1$3#8xrp(iF%W=Uy=fgOpEJ7 zP(6y0Gue@O*lYgt-Ssnk9DeF`8t*aFSB7U3U7IZ)A zj#nwv+}`J5REgU<7zk1@YG4|^@7;0(plJB5-mG*h*sMRqMr1X4Q~B;d!{09lpym#t z2|D*(x&`r5hvyVz=UQF(Qh$I<)#e12gij`qH&9+Uh!6)VhbnaYw%ib-TjTpN63Q0Du#^@a6AoU=2b z`3S#ZA*oZh&Tc*dn}n~<*Vt2nSS`#V-Jx3ps|=Qp;o_Xl7S1_D1Pp(;I+MzA3fTXV zyjeb4JH^%27n`cpUE6+kTLG}m_dbEyz-{VsTJac!}t7zW)r z@ncJvUEhOFbXKjH(Yyy1m}DTgp={q-z>?+etTBJKzG_nd1B>vhK$r<^fLr6QrJYHt zCb26wg?L88t!wWtj@(vR7_R_>uvXFQ5*TEHp*xASDw8Ftz=O^?S`L9w*|-u3ySZ(` z<0nM)x{jWr(6KdziAwOGQ(mc9pe$3}gpU_9XFB_D_pZ2W`s2c2)33H~^gi!f_?awW zE=yHC+nL4Bqmc`WqBda>J8cyVYyddR#a^C?PV1$b1$k={xKjbAfHI>4nBf~}&W>C+h3$FCNnQczTkYXhK?zoqG~Az6`c{e18tJeO@j z`o@Cxxt-^8Ucz``sKra#?O~0py}pQ@wud*>X*=ilTps%lCZ(PQUOfPTK8%W-p8+n4 z;_>|s;bn->9>0YWZ(Zx5^)>#V*qT2uPa{B7tvE>m-Ve?zO(!ucDic8U^{4>PZHcG} zF|%=f>n&!qA%&<)R8f4`rwOY~&b2qrly1)q4#7XiV%%kC!Xxq^d7<&j&GU`7@#TJh z`>~p5AHBs_VBTW_uF7=tvwXi`&KE7!V)SfBavije;`Q<{e^dJSg`B3g(1g_|yaBs) zzbI}eJOHQXx(YGbn>l2gj1{WHu`hg(wMoOE3z>%PR_%6@KnlVa`d*=yHAF44!3>zeYRIrC z!>5L$zVh;-2I!qSEhK=AM6cdd*)NGv`k_Jye$I~Z|3R;WZ(Y})2~+x`!U+B@UjC^b zT$xSx=;uBrch;J5jxjWz!=hkK2A!r6(?6bY2z6wz3t&>aA_7RB?clu;JEOuiuZXbu zb3nJjjd0J`JxRmiS;FtdL+te7qYrd^UK7TjT8hG$FqCL@KErRi#JZeg%iLC|W+~`H z>I#jLMxv@u0JL`VIYpa!K%CW|#y?L>uOq3knh$?>Ct$<|BW9S&*oIt|xjrVtiU_ez zy__8yl1L%BE2k08HKlv?1ct$e!_KyS_(n@>9b0LPsWG~1)?ZswgY%PSk^?F#dV2SA z{dnXoA8bo=e_vzcwOxtcFL2M=iq+_xM9Wm{=q?OLM8LB}7%V#-PvE52c!F)(HLi^= z06qI7nNvQsdP;Jg{K-bIc5Pe*XxG5O$r(y4ci(TjA8fSI`*rXgEqr)hHx`WX4RH8I z^!T%(o8TscH3ZWmayB#_OE12Ky5?LCKPs+WyXW6Dw8r_`wDTG` z6@N|hr-kE|pGZzTU6yqEWODh*l%&bB#L0>u2cJKju4suN&9b9poGi53;wlVaG&zbpsk;2_O#ytiha}K#lDs$MaD=V&MTCI|s zll!L1`>k(^k9XfZiwlxPE+)Y3|DyhnX?Z6+)c}qBL65b%&IcHO`XM}GK)49}*lqAB zCE5mJbj8;qier!1RjSVJI{;5`lonKu0B!}>yUx&bN;)zVtVSrAt4e)zQQVL#i^ zgFVmg4z};v)!ILIb939yUHSTqlEN%?_kc=LS|FLNdTF7+Ps3S*xD>$*mgi4T*5~(M z;Pul>ZUnL3H(V|lq9lS74ms-MO*) z4ROQY(%ua&xk2stI;Yxri4f7@D*-+iR{8LX5QPC@aRa=`gcZFxPGlK*&#f;!Wp zZZ-YqK9Pst)X0o|3O^Xz7M|5#!){iHM|9n$Egc~lE+o%YO6P-I?T&f8>N{z0G<%I= z-RdWMXu_W#!?QZ(Q? z3ugQUm86E5BRA(g%X&&*x(?<0KubuG+UxPl>E4A+Yy5qVECFU!pECT1E!9J#qq|6f z5xWM}VPWk(+EB)5$Vkd)U=dmurG`iB z#>XJgNN9Bd3x`6+$01Q+QF`$s!yKT^k68znm~ENhd}-FPeB14E{>b^^C-lBmhFd1M zUYd0(-*#mwcjWBjBLy&yT>&+=NIbyJ&__?`3h41Aq>^o!*RNMIwjhRQpO^OL$%EMZ|vXtk`F*5k8B{1#@n<%+Ph-^^jV75mQx! z>t2d|(QN zf+dJq))dR`*5KwNcWoHg&8<~B(>M`HNOdbaweB2)Hk&$|Q(e)(^PU?n^8xU}_&&(vUjc### z^%p=UO?3GdWEePFd%C^4WNT@T_C#AXu_BV8sw5|+p>RYs8;j&8<0&e}anL6Up<<(G z$#>i$PDn{3Ymj>a(eAGQraE5>k}niW>Lf=_nvf3d-z<~2*!;ibqdvSi-85f$MYgVL z({N-@Bq}aimy!Fm*P6|E-7UjXB1gqEx&U1^zfCW87ZH{@Cqk9K=r#& zuAn=sRwZq`L5a16@Z!~urENt5PWzypnzD~=B z^_Ov`o9lKEIfJ77C{zb;?Lvy*_-F`*ibiX_UpOx&`|Q{ie#FiAL}`fip=~!r{~7mW z$W%0>!RR4~ahYdqu{^9;ot3!pwP7pAki!sk(RgB$qD5I**uO+^RwE9w&y1SElEk){ zc?Vd%91k^it^|{1BsMu$%)kgcE6$wVE|bQ}#I>y!8NT}mFT3}ar;PD!z1XTOq!{>d zIFD6fgijar9EvB11RK9@T`cJ1dnodabD~Wt9-1Zk zFq+RBa}9(g`s69sD*6HkNc3s!4q7|d!`#JMu{Q+zyss=1*xd|8>~x&^ja0~tY9_^z zhyHqTaV47a&cb?l-7zwjcdRT)Nh*<{E58nc@m#sSJ}ceFpcHOX=kCIOTPP6Wzjy;` zbR%*p0Sdfx^4?s&xFZ86`?dq5z2B>D%0=kL&B`z9bRD{xQ}^mei^B@pbfW^hF({Pk zTn6uSx;EYHY!Hu8VD!h9eCC9_;$CpmLF3W$wQbXG_Ko^<+SLp;y9v)M69sPuObh&c zCCgXsh4LDMqi9}VeiQh?W|ne_5WNL8N3wAeO&Ao9MtND&3Ph}|TD=?aa-g3*GcTB) zm(I?rZkN-U-NxuoAcN%QR`&E0Es}+VQ+%KV3^G(_32Ek8kLiUqWziTeuRIY)TGIxX zVbKR_ZW4p1aB&7|j(uI9KRA59fP3xPbyjHDH2c#>_DonfYkKALb#_?jbv1sC(7|eZ+OGi$OuAz?h3McijqP92{+wo&- z(ra)`tjp<-^t#`281Invx5@WkO>3h%sV4G^qagNnbim!Iv)UP!{N(K@*e?^TjO-lR zh)?6;6Rh44a9#~Vl!SOvwZqB~?O3dxqZQ9Y;8FJ)7{&h+XxEEzcz=NG>1Rw`{`rOK z|DPf869iD1Kw6BMtN%v^rk^w8EL26F%2S1H78oUw`ls+YLs)!FPQJB<@cbWyYoDVQ zdOGhXQVR2o;9T9q7^h0LeC%lUgu!6Dm6u7=>usJioL{`x=Tg=YCa7t#lt=8JhN>4J_ww5#WRW8Ur+Dc3 z6iMVs#iLNa?|EP_a3+Mp=7vN^S2i}+e!1H`$uS@RknQr~3OJAh14EnJwX_=ITCdOn zv!LZ%5A__i+Z|Qmq34sOwY|>x28^HQ%gud8&7TE%Z4{319HU;OQx9STL9t{NOVk18 zYe<10KasuPh6PoyYKl`8!9uki6G=k=o{U-0gCe%f5T^=|0s8DW0kDfy9O@3(@F@hu-2*DS%#v(#4hx+WX`N`HA`R_?~lABuc${ zQH3f*V|93yG+;laAcps?sj$LI^IUKUq6GO<8`HCKPEos=2f+rrFkK0d3;f%Xp_4B9-x?MB)3dalGU ziMBv*cV?|G1+rBv3SxVT3nux>s&(8To;Pqw5H;UxYBKH%mRlAEEI zjwdY=IZ_fB?rf7pj$%lVYb2DB^<%`w`fNj4T zW;_-y45dmPn>bdvlaY3+w}4U}aCOb*XqrhHxmO$Vd>+C=6bY3~W_vm=o4b1XDr5}K z+C$nPN>tNzHT1ZhMMH-gBw!<~mh<65(o|hn^2_Wrr-b~)y>(wR=1>72C8}u4T9cDB zU-(m1KIvd%7b^}xuH=tA!J|2w*hqDj&koVCcNM%(Zu1*=#k_Uz^>5x$x-(G_7mCoH zm@kOfy`BonWq_oj$0_E}Q zotn(f2?!8f%Or&-Q^^$qWE(^l5oxd;%+9tF7{W>b>SZ&}=GzECN$0VeIbvizfb@I!JHvsaNYFR*H(7PPU9SnRX+ac7^|k? zf}rRYpke)KP!1{p`&rhq^JLl%Jb^@7&1NKwqdG*W3S@-dM2SPC-(ahYfwuj=T{5_n z)0M?RGN>xjfoGI~RzW*o1QfU=Di{p$u_Pnv*hw*&U~;nYE;$Tv@)PsRC3O%b1nIoi zQxh$_k?=*30L=o;anpLh2wvYDk|gX>e=kRxf8zvO@nVYjvBvq@9eVb(rriV~111?K z%b)p`D_|fW)p4s^kD$jv*xJO7hm>|g5-nh7hsP&y&f6!!H}9B_NuGPy-)0lxDn}3@#TP z5`dy@$3C?aC@>&C?nlJfEJUHLsH=`%M{x{Hkpoa=5wPf#e>WolD1+g$h~eCDrslCC z#{U1hb75scD6gwW_4nxuCkqAx8f=T-*Ld1Ra#N3t%}7RNMVj8UZFYbg0oB5+CIBmP z&U7e3TL2i%gT}Qqw-bS7sH2=frW#LqH~n#yBQAzelbr9Yt|%=?s7elNI?wYL^e_m( z;!|vjRBk;R@EDDxF$A`a)`}ZK;i1$kDR+NlEhFNNvlOmI;W1oD)Jh(|8DPt=$SjzS ziFkP!#W}#LTZauSyG91khyYGNCdo6+ATYwTFHGc&Xpy5CFDs)_Pg88kP;`nNoG{}A zJ1QdW$?s-AMnzH!xbPqfhPU8Npy5*kQYr&W^Yz3OmkfgQb-_{k8W=P+5#TVe1srA) zV|s-A%7=x|Gy&#;#(`E`u_llb)HJFo<+yX-QuP9Ej$3kOmojekQGELl(wqz5Cu#O* z;Rt9#CGSs~GS~1iijRefF0h9*?HM-js?T8h1EZUz6kxw&saoXFbn3-sG>k znEqt|>Tp2ID`B?2NP|Y~gZmg9CHAOun|B zqoX(BkHW0?R{av(wlDz()hMXDH70zifd(&&HXK_sp4r<};AG=pyUhTBb_ECWx;$$( z`+;6&ItnHG^&q2-6!pkM))75T8efQ`oUlbU(vzpG2m)?y3ZkeHF|#D_CTw=@sn)yT zJ7fU0H`hFs(bR7N<#hVS=EnL9sP$NaR}n!`bbykQi#79GU6uipWC;UgVv}PEl`@wN zpheM*NLE+8zL<&9uLku*Ch$f@ko9_bY8WJ1(HET<2%%;f#4)#=HnAq&ESR2?4LI;W z0^4MobPGTCoi0b|LH>n`Egs(u3g2xy`r%O=@FNJAZP7pbTd&P^vkPB3=Lds5E%FFd7ZHV5 z_okNUin!PzC@9oI?J`+IMvn*0DrQq|#{F8ACmy{ftTaRIc+)J59{&N2gr5uE<@$KG z=?{APC10TEF4@3J!&b{e)Fbq(O*t@e%Z;ZA+wvWzce@b_y%^JRLi7^6N~qN#EkR}? z`%Y*aTo-{wBBzRW)Db0;vG07iH?^3o?OLna87M)!lVcBAXF4)&Lq#D|+b5ZQJ`^-c z#W|W3Rf;Nx2G)09Za}Ox{}p_cAP!9nNuypuK+6K31=y?vV?{uPcE*)O3?Sn|M#%Ad za}2yBo11^H6Am`Hu~NDW2%Bp7o)`#~W}o8CJ{yRt#_x)`$3~SCj@X?(M2&D)Pj0$e zZ2>#1ZYL2O$3?e6;DDj=Un&A&rgujShJ^F{70r6$Y4#DXZ8VW!a&PvM$qpRpqJG${ zE#hR@Y*RPWn$Cj;CP*cK4R-7?8>Z-QwDet_aWWF@-23#o;~gu^y77>8ra?pgIGh?nImgz*3FpvYZkMkQ*9j=^?s5~j55aNbgOqP-y1Gu>#&)_WZWPN*qsGRry&AKN^o!z_kqk8Cd^3el_c2#LL0pRcJ^7 zVH^Mp%mtBXT(2tDm=rF1>^1?6LuQ%niuBk^j~K6+_WR8~8hp%ZaZkGQki`+GMeb=E z62*9inq!ifM3JF}J4H^caxz!FhdH-)a9G^b76ej=pMb;=*Pg+@73OKvk_LU+To)m? z)>R>aE%57fvWuPrPAwJFGP9(=0U2ZXy z9c{S2nb*Lo7tUQGs?4Uu@ghFfFq~X1{7425PCC{89q3I!& z_S9-0lTR@)@e#h8nNz*lg1JAMKrfG0#!c(HLYSnSBG)bChNfV+RF!(|_D9=Obt;p%IcqXQ%Df-kr zyf=EG-^;oyT%vvvK9OP%e|LI7#iFTq1h)MF$dx|#`S7Qqm!tJYiR`5d>MS~VwQCQx zp`^LRJ>1qGf7?BDkBKLprlb;aQQDNoFgWtmb+e|#3>bIdxY-njB8syV!Gzi8hLli2#&~0V*Gn zD9DhJBIEN4WoQa(_6!|ph_2y;J6a69)+d#8d~GrNoZ)iAW!u{ zVpG|&HasnJ`eO66WYOh>P3eGIjiQBnqYusHy0G6*EhMmR$C79xCGF4zTYis=&fdaw zHnTD4+yq4&e{6F~G8enoM0yZOU(6F4Gzty+j8-%tbX^b93<~-t3Vk#~4RDsK(o+ag z4C@WXb6`Zh7l_s4sbj}nG)*DYcrh~vVIxD5#cVv2EStrJpgLe`_M;N$WB?-wBTaG^#S@QrL)2Q0%Qn{gTM49?;~sDc;k#&6BlwO1z7(khx3+dWT+h|d8J?gMTUJYS zB^Y)*ACrR67n-ogc588~o;WT;irA9oSs}U3_YYp0v^gWp>8#yb76Q0SFRL;|Ktasy zf4cI%t321DT;^gBcGwF7Gm*_E79nJtuGLWLk!3N*N$XTk7r|l7t;_u4FHqct_aT?H zx~o|RIw`uPYJvpTIjn5S*F~02c|j?zW0w_I%m(B7&f zcQ>Kc(csg4x5Vq6qM?aS!b;K1IX)T{MXZy|_0jz3#yU>6OvPHkJ?SR+wW_4^k&%0m z?mxrb$n|jk`f{G%1P5cerV9^-;?qKOl>E4q(LZK+%%WUD7x^yNDX##yeT0+n8g56= z2Ve9XM1qR>{?NAz{na8xSg-Tq<;14t?caP`DL$)~6PZikdU%?&;TUj)Ihg~IaxF)) zoXFT!jFZ`m8?CP&?m(Y?nN=aK_P6vox<6Wgi#B?k5Nu>Xkz>| zR)WG<61R$BD6PPen&3()b91H|t`I{Dz*?fRmAgiM8m4-KAIG{d5@b056W|hOMNq6c zfo|9~r`S*hjmGyze6OevbnC@>x@#)Y%{-K{VIYvg4KCdyZ&#(o=9JODb|ToA#VgIe zpCQh1!qhq$R_UDMhL@2_z#_GyT$)Lm-ca5a<0GSz`H;7-cT4emE=svr}q z8xD~zq%x{baWBWJs5`NAWQ`rzyDAK~f#d@c(DqY@8=iE=6C*YD@Fu!D;ul9Ai6u9X zI$o2`3L&ssGIbppXIx6Ut)#(Og`gml?@5%100HSC-7fJ%yW@WjvASI8kP6T#8lWZO z%5i(pW_vBduLPR(aY&&lWH-VyuD|o%2=re4@DH?*U>>*V2#@{kUn+9>NPzEROY?RI z`IucJQ7Q$HOYD5tE%koC!)I?vvC|zaYgiFoS3-UxPCe_ezrh(Up(Bi9fy#t9Q+ns1 zizf~M4k=|wxCc*tz5^JEa(J)<E_|_h; zl``ZaHCydL{+mMDuu-H|BaPny^rz|gUc zhKI6}SYE0IRIr(rE{dBY8xI-Rm7+q`J2dmHrJ;ZP!n8xNc=~~Xcg?k7N>Lmf=?Cwl#eB2Ge-0lg& zxhT8H`4A2wvu)sNMr7Pw{E#27hR@ls8bG|WYI9i<@ ze;!rGh)zh{ErZkf*I|BC(=~h%FX%!=mfqpmjxKg3Fz!nl$V*edz; z6t3v`BxkwtI9xG<?QC5N0@R;>L zX;?rU5L&eQU?{2c+Yw1d7MAFi3qQBTNw#R$?R;kOrCEY8U)@8l_;V|*Q~h)@Uv^*E zz;l_mV$>DzVHT!eq{IjJ8eH(9^hvqooHT{o&|T*t0x$ycN6Cn4v|Y7yA|JNax^X|95vhLPD-J=x3<6ZCWpA&}QOD zmN77y4Wm-CUW&8PWZ5`kw(4T_5Wt?`*UQ5AuuY@b4=vhwsWR5f7>Y^pi~8F2hXrEs z0b4D5U3caQp9vh4C_x*%wp8O^jesM;n7jlbai<7axhY`k1PKOd>SR(pSat!J5(suo z+3etR6JI?PNTk?;lOUw-RDfyl1kTu^#OV!tW#Jojl@$?O@M-8V66l6$9mYz^m{}cW z1QX;n&vy5~pO$*6(q+{Az;QyW@g#Tl_};wqaD>`V8nb~?t8%!c*MvkfH?FAop;%Oz z+7`(&j*Z82C1wJ*kt2UHS2A&_wR`Jvk9ZV9FxL{%Iu6)Qw8U+t)wy9dgXLKOL6A+# z!0@Kofrbf(N?M-%^zmj;$w}U9_b9opJv%cZjSTB3FiH19=E&7lDVi#2bJeK*0v;YpgbXu$W|uby$yPye$_cG5+rH; z(@rw9(X&Z`y2{uYok{JC9!cW|wol=dzEN(2@$Z3KV!^kCVTUhqRDHk6tloXGioB** z;QcbZ*J*mJm-U4TNrs!n&UdyFJ9i?U z6q!J;EcAwTgjnk_Hues=cJvt{OL{ZF$fA+G3A3lMwL7{~gpoc$yHJnp*1(dYJ0j$d zU-|7-9oa-JX1CK>+-%kp=R~B z@`MY{DN%zK@AVe(P7d?2POD>~dwd$Vyb)iz!w*y1U|Ew{ zr*{yD1hSX)D9chhuJ1kI&LSR0|40d9D!3*KeO{q}R0Y=sj?#4FSagtc1^Ffo$=_Jm zYp;T{5dvh#WnszuJU1h|;~Kq(836Em>I~H7X^^w8C=5qO<6C<;au;vO8!R!yL|Id* zpg`V+$i!i|v~zMs1*x%rkhfYpNzzF>wPODaRX`Am5jwZmS=iU~59#?~JPfw1O%~Q- zp9SQ~jM2)tjwZL#)WdKYJggdO4H2zPAJmqT3Z$MW<-x0qZli#lcsdpQn*~W2Frbn8 z@MCpFJ1kh)Xt>k1AYQ=UZntYbSx$da6XIh}a zjDhrE0b(ZT)db2yv4Vx`v@Cr1(mHxYe$mDx%?Yj3C&Z8&)TdvFLnbh)-!Wx#A_({K zMHj@?+}Q@7S?ah>4ey8}24+4h$PJzf0t`k|JrsBib=tm9PY}*B-wO3S=aNR}+P@w~ zqxC4Qs|9f+gHlCfKJwlaTiAX^jP-fm`?ijj;~rb0rZCH<$i(>9?l>9z($6F%LVfGMam)3NCOe;vE4SYHo(jxvV+?J;?X(hzTJA%`1zhU|>&Roibf;UWMU$^5NwGa| zva#ERb>AkVtZz;#j9MqEb8xq(a9-S&TeM8|;WU%LGRXA|p_KkOAwe;Z@FpdgmB}}C zhy3{zE<}7N!>gz^!5CzmH%c0(=18eFZz^in{=gGLqU}-g_1MGrf4#lPZ*02j!FxRd0r@vf zd8;}Dxgwuk>WZycV54nu0()(DW#-SX>Tprld-Upp#l80Knxve}e%EUiY08t?s8;2v zN3RKU%_7H5@&~a5FPZSx7utJ6=`)xa##NKB>`g5K8GBwDMX zq)^31h+qqIG|SBVb%XR1B=sZc-K8pg%5>UGJu#kaAr5k&F85v5F8bNlY6+X;*JvT$ zp;7pPhUf9=)_a#+bElK&{^%5rfi92tbbC6 zsQbCTVdCFtI}r|h4^@Ls~b^im3QwsV5IS#DG9omyqbk}IfHti`~giz%|7F7 zcBxcziW%O9ugT>!WFHE$)@g73=e2^_)rJzqVeaWnO(9{l7+pWwhU!aOY^`hW48%=f zhKstCcDBabwEK1qnnv4$RDJL+3C!wH>e5=i3^lwoEPaO{g@oDiyK3!fkZo0+tBRTZ zZ0#bZ=bF?F@>84I6z@49S1GI|Qo9K=8d^~#?Yd{mSEJhEm3G$Tf#o1h6m2*=)-j?Z z+=kBx%tM?QXuk5HG$~(=@nT`Tg&I#wB_|}fAnR&DIp_!-rQnvxL!2n2t|YEuRjuE0 zavhP=v$RS}BeNzzEv3OWb?)cfdq9pG8xJUY4PX$|fK1QP!Gc#mo|I~JVEHaHzr)pm zCAGDZQ(9`dZ!1#Yb79>v=KH|hEMWCOeKi2{In7`rtxDmti&SbkAIlFLA=}ok0(r%x zxqVndF@2$LzktO3+G5c=CSEU?M>`SCUZO{EU?CEq3QJx?3U;rAyFVZb9u1 z1^&azLXVBv$Jx?W3Dgd1_!@%;&J=|ec+PFbIt5<%@O_vB+!3Lpx?pGMH}=ap+f$F_*3yTN0$E_T#S!VX%W{T8eR-)AmexH2>6NLG4(ke9tWIN$jJtPFR0 z!PIq!?nmK2-WQ9_?0Pzv+Y;(S$JdMpx5^cstt~Kx7tdn~?j$-5yD`w|Atw@(@y@yv?o8TpBcfAIgBEdU(GfHYEJjDHi*!S|nvqWD~(Hmf`V)#9| zG~umCb;G(^ESAJ~{sflFBuhSJ{cGVMu=!a5f!Hb4$(bGY1VQ6)+<6(a6>;+sf)WS` z={zN#2%D>yEd5>Me;Mb=n6ejRGJedaL^TspfHi;dX}E~ZU;P^LC_0(6jAtWzO3~TJ zvl>$>|Ko;FS`lQb96;l+jhIPFfgOu|$PT=y-K2#EXFZD*HpzF2iPK`HB5wBWoS7 z++>bIuNDnEI^Aa%Qhc8qE!iQC2Wfn`KY`Xk?9cO&+EqfCE9~ZuuZHEK1P+Z!Z#9<7 zoB7+-m?++M^)cpy#JZ?@rMvKOfD2=3Nfyz2I2g)>7sg4$%QzGq?CW31@?lf zh0^t|FE`0W`gBq>f2rPdlSO}+6i1)}ux(Ki!ZDx9mtIDv)0w%E!;%;aWG0A zG~#w#c!Z>lbm6{C=a@vA z4hXMIG_-@h;k*4+>28q!eXz7%ZyIt)RqLb=AiGHoN^lNq0e1n7h1oA5mP&J--K%oQ z&o*(}PT1bis>~m^nNoQ(YUU1vmu*^^=qb%gB7Dlce|p#Tw~}~G549BvbKa2EwLnNp zda+L#myHnFjf?6QmaO^^%7MLQrw}T%RLsbX4mA7bCF%wi%COKaWC~WboM&l(C(vdB z!h=y+1}tJ}8gHIg)FAxTLa~CWD$1kns#yf00&P2h(X3=uGly&d68)j~=G5S(VH*F- z!$W%7?W)n@=CsTchya6>>dMxnU=p;y@i0|QfGbZbOoB;z9Zt?5yD|lprI4`u@^PJk zrBNPLxT`6b7oJG$6V{A7$PFiblz^8Ks{J+YHjznQVT?Hw?`{~LkN5|(gku)NZ5lSo zC+c1X%nU3=RWsqq{+@=tw+=!sXs-E)TQZ?&JG==vesip>MkRIzEPtF~hmNU95PHfh z9HXao@+E}*?`x1myKC1+ zqcOAem~c+Gy?B|aTe(lqAshNL6z*iB(zQ36%GhSaWN8{ev%kTZVs*`OpcMERK_v9pT5- z4=nWyxHRPJ3LeIi5-21G=OR$}=HM>cI1b?=<=_`;d|!;OQwq7aV>rxNd67 zB`cli$Ol@tsj`MS8F4S4IA4&Iqyp=g3o0WuUB*!3Zf8_v-2~p5h+$3>GMEuJT-w~? ztks2-hDdJYw(v#`F}|LS7D-W-7fTh<;&-vTRT+wrCZ6( z8xmr3NkbpZ3x;*bB>!Nhw`!bI&VV{5N*ZoE?mafRiPKCI11Ic3sGlJdLOw6Z2nwWX zCyLXcuyqF927S(XGeXCC_1lUZ0lFXUxk*AUg2^y>OJW;=9=l8pNH<>fVDJd|P>sId z@cOv=v=~|4#sbBIYrUS5W$fGqZ#wzPp%Eg=KLY^yO@#*4Spu>od@~^p;+Y5cQEv#m zPmNyw;5ckFYq&irF|4|D;;lk?9DY39Qf4}vgPX>499CLxp_{%y@kFYL0Sc1Okse?~ z64T36JthJ)1&oRs-DwZe89Rm8g0S-I;mh(3Rzna97bec>qCd(?u_;g~DY6?1_lbL7 z6k_pj@a9!;!rGcF?ktjSs567uSY==`+YF;L&B=2olcVrmEE9XC=EcbJ2ug<{PB52N znPS`pmOmXh;H~X4HN=JHu(+VjW(uLCD5NlQG2coyj-7x|)IfF@ z=-k}1a92pAFq}8aiO~UXdpKVX?>0^-_(dtnQ(1wZEHx$0X+|XYQcw36iH{R7Hqxq!c6Q7n zvpj6K0GNx8ED&A(NlYW$OL0bO$FCS-;^v)ZZ%*Z-p<}|ydzC9ftQmDPPBX1!al>tJ ze?aVHl%oO^J6^+X$=KJ{15i_qhM;jph3aeIYrOrL3W=8a8=iI6|5% zYY7l78uNo9f=bj=1;f}%Wu-+=FIi!F6ZXd3XOb^W&ZT0PhS5?S?4oXXur)a>~G1Rk`=w_DaQ+ zn<_lBq-oH^IE~ERhlwplbUT?N;>i2B>WC1iB<5H-;7jjfcG^XwSGdy$Gq!sVO5B=j zEZLn6Fb=bdTZ$^Pq}5gm!U9ZECD?1I1+xa>u)5i!nskY#T3c2(MBQr2RN+A+UUB=C zhSZnPC<;dTGy@aciBhhYCrI1RJk+-TKuG$;mFnQk&!-wS0i z*l7L@8mLx|jU^-Tg+A@F^d*CjyDJ9OZn3B^ZSf3t<5+ZaojPf*A5awaX62+>j5;-U z?J85-H%u9ugiJ}K!cJeS?%-hq3eHp!6JzA8UQl0%gok|C! zT6|jxFl#M^51v$mBBL-g)FV;{D^3h#4#5;{8bCz#QJ3HSMtl??BPsc^WT0bipWH6y z&IG<~%er0?h@rlGn_wjIj$0ndV~unI?qCvj@WhKwf>@!*G{bsmdWhs6l zZfGiksf07jY@%s4>;!P6aw(Zxwm;OPK(l=LO-__;XEoepR%SNBif*f4v3FVAxw`S< zA5>e16E&?lgziCro<)!F0sDKrmrn7U8L^HuC7n30EJIZ07 ztzlzB)xxKbYRGJ*$kAjD1CwS;5D>{0IL}>6L=`N0L3v*koW`A>YPi7%ImW?rbbMcl z-+M?kP?5S-Zc|I9+c>EctU^-7wJVtO+8U_J$wMf2QoYq8ZxWip<7JnSm-|7$G938}(2@RYDyA{(B3zhVG+isheagqBk^t@3Q zQvqE=bYt!@tts*A)|^mwb+LhJ-%9oVwy-sv=VTK{BdX2-o;yMraJxK;3K=ttIS&g} zSoNmVOX)V;HEy@AU~iSjn2qT7s5G2>8&;9wrd1Bv_gvDM{a^ga)ke=tiO{2mR;izy zuFLaE#pRgHyjZV3yiI|coro)f8=7q3Dmcs=!QLDfdO0|9n|>!J{Ts@`M%9uJ8JM5c zww_8MeMT?|S!e(POU^6PYjP~!v4$|*a`_EDmQGx3-GuC_kIYIW>rOw|0*}IVhdG1~ z=6jS0W16tlYPrk_Y9Qht6lgt!;G!p1D}7In=jm}SQ-kPp+!92NiTKiB+1yKPO7cxn zg4vz+ONPP!2TK3Sv8RI)5QLPU>Tm<}$$vDE{K@>;|F=R@^La1aTSuD=yuBb`8FqV+ zC(Czr9vVK8Px@9UhkG(%y3cGLfjf=Wpb-Rj3hPz)bppQSPeqj?QYGBiC+N>3bj)y*%%DE zS8yvjP+x#@jMR3MtAfYgi2&P{8_HWr9H}~r}!DlS0dSXnef(AMfVHE_aVWVYp4m-^Qx ztJU6VxsCx*E^H!#j>3SYA%PH4Fmy0+Q7ua|7a-(@D)>K1+kc5wh(|v6A8iIvu8Bwp zQm5UyQUDXquMw82CA#ilE@Am-f)vwS>kPFbUp2yanzuG$Si3MSEk=_+Ag#ghch~JJ zD9}74cZbkPTS|bT!H%|;4&BpUq(;WI0!~7E9uH6&c`e5FI(Kqw9zcvPAX;Z_t697*>mkCkz=SPG5-#p*yLxLD6mXL!meqOT}h~az4 zdG)ok5;b;^K@LqsX;0aSA|Kig40404joAsSyOxY`!&!6LeW}CkIFLw`E|0+lxXJjg zA}femt&{*0Y62_+Uu-I)sUc3O*K)gHXB~_e>kt|`){t0OGW~v@(=1R?+{Y#F zNKORE*WIF!acjJ;7Y?k$dp>!`@04#p(+L)eoxtk)plvDTlJz#{*;XlaL*nQ{x!Z^3 zYdt7QByN9>5(k}^M~M~47~&lc*d@B!j+$|5buP3?eym1%_E5m@1}IR9^7m6?if>Ag zp<%-_FtIJ+yo8GqE@8`8m0CWX=&d=JtY0ucBa4O@=KnAMB&mJ1A8<-%Y6f%QG;H=Y&#;R63JZkb$!iGEMv;2B~ z9~DS`Xr%pWn6@g~8Hx>s4N>mj^oL?>@ovFw+Q3wvOLZO{xr}Ie)E9{u4d)O=d6%ge z)E@T?Z$7-wR!d#U0|!pc?5}tS9Vz>t+!qq{)ORk$774N37`!k|$C5VW+&!3RM`tC% z1~=F$+_d?Vco1lT)x3t>ZunSX)-?;YXMJv=z>mxKG5PI%@yFd9J}+89ldl1rH0BCB zyE!m|Yn_urOz&s2jxiu_2kc!--DGHTT5W$pSO<=%*R(Y^pIDZR!H!@UFNmYlccR#y z!R>#(>u{~;;TK!sdDCK<5~DS@>4yg|cW~F)K@8>Q1yW|54XMMzqeKme_c=;G{Uy?+ zgUMzu5_qMlJVd1kKhFmPVI!me48EEx6iv2vgoOnAvoJJ=f4ttuz8cU$W7rST7aQ=8 zrq)ESkC3=k{Fg|`5kB_=e`WFK^fi_c0#qf-5|d*vO82&!75bRvk#JKrY9F3u$vTZZ2s1}uPc)Df z!(?Dfk+bunf>yVd)km;^tud4R6_{9Lw86~Bg1J8)&s>^02TdC>;Pc?wj#U(ch!Wm7 zjpAS4(VEr@4}BDgGcHf57g!eKe3>9CfA#Q-G2Ggz#%9tCsy;#qPd=FSk%Q=b4F5nC zabM)TMr{kv>l(@qJwZ&*tm#8$Bb*2}?zaF`mxDnWev{>5LHZKoW^8k{MS;!5FKzd} z*+qk47G zlZ(dk!%S!4zL9L@$>*&MN-@pGbhgDx9DTJ-WL6uXGGve|SZhv`q>hG3r;DmHI1^QV zCF<=OvBcY-P=|*-?!LDkZRn}RZW+pBtdZK^QSIrITV|?qr!b@b70bAag-p8bCl0h5 z>(r4=EAtM5X3-O^dt^_&Jl2`eZM56xJvQ+cY~0f@pMuG)I&pRLpiJitRX~dh+R=UFUgJ%WlCu_2Hv`#}UxD!}aWt_RQt% zHm^Wdj?72jD!yBhX?8V!8qfGCZG!bv)DpaQ$Job^RTJP}rVT?TVT7gLkD8|^?1o$Yt7mQn$ z)+_=IVDKDR2BUva2;J3WNH(1$NiJlRvu!|ADA%JH0GH`-H-^`GBC)#c2pj`s#WC1w z7C3(~>X!YZ3y9WWrs>eQJi<2i$?msDl~7a$f~zKGe9Y@PEpNV*_*a)5;36$eA!yE{ zrQzv56J<#^V)?F(u!lF0r{ul)+6Q(OK<{J1XOXn$yjF&^+ORRXKAvE^-TF}>N`a-c z`IEck!w?AZYRnegp7nC_p>|3<)3(4h{mT+}&0=uq4R#)SErA)0G7x{OrIVD>xY{qD z77(ISc*b&YYZqee(4;FpIovGaw@u#|h||QDtabP-uxVM@ zB+)1bsk5Ug!4mtO#WQd6A$_ojx0V43O5Fr$E~A|aZ?ma%hVTzo_ba|ug}cT7IGz9Dn7}I@ynzIdhTKrVT1ec-JI2P!57CW~&*~GHwH)@%|>T&uE14P9mV+ z$|o7Kh3!*{rTt4Aw@o{(REEVx{IM_+T5DO~B`-z+ zHW?`|Gd}z}+~$oou2kyX;Z^COH{<9vtJ4{Q@@{2?bUA7~%vLI-EDwb;h8epnuWGZ8 z>jn5?R!qlqiU@_plXo@E6#I~J7R}Yo*JMfDLrWuc7z^DG_Fk>YtiwZpUp?O2J| zAvRcl$GtVyQxVaE4qt&HD>P_*ZF^s$Sid-J99jq{gPy#Iu z|IWdR$?VGPgimxJUX(FSq%oEg>!59v+@HzfvrgJkRTe$oF4<7ga^&dfx!ZS}67zCP zB|EF5s0+xpP`mxuHNLO^C*H~#!yF}yNbcc)v*t4?qoPWkNVapG=$Hnc^Z3wC9>&Q_ z>A@H&{bp*rn^{*IZ3-Sa-aAPdymR9Uq++hpqvH*RbIk5b_D@c8znti8M!2JgDv%lYk} zgp2Ti@d(569t$`-#2S~j`a|lyie0YSnM3l>DTU;9uu&1o42_WqkAE_GbQ9WW=xjP3`h2OVj@w>8qo z|2kg-NkYR_Kvuy-WmUnR_S3eVHnQ zO*kl4E6)j!f{Ud#`i8IgPA~c6b|=ddGT9}WZm>#L)}F_hsH z&dZ29XH6U#kYBFnOuKuOPS;VFCQNr3^~pdX{AqffPL~Ww>XU)Vpk#0|BpI3vQ*b3Z zW&?DQ7r_5-G%7;}O&NLZ>0{z(a10ZD&*TYNYU@#v7h~js9FzKF;0G4eK-$)?GW;qV z*_W6!w>f|9?f(DUjz$#h2rAR3N4{X&5%abgMp0iMI~&{h^1I*t=k}cE^i<7LRo!RK z>FKH-cSQ*a5Kxfs<`)fu{@sD{d;EX-Ki&Ur5)!KN--Oa{E&hM-?|8S66cd;D)(w8k zBHvI2rw4D7{H3S@0s;mD0s=n@0>W+xFtF~GR8bQJ0YRMo<_dm4lUpR{8&gzaVg&&~ zM)|h;=7ShgH#=dP*cmx~>rB6Sf!~-vY!ihrar;dS0)le#%@O+#Xv)|&=8hJ2ARwsp z-<-N{e`YF;OeGdZF5k9jJKvn|*#83*3tLa~Z{4@8@-qlXjVheP7onw@(YJrI|9G7L z0Y#ur*792k0%DHyEfar(99bK3)za>_$G49A+rJVB2zY6a60?M@gUL6~GWt92*f*Bh zC17yuj6A;MT5JBVEio80RKLBEo!PhU+aA>)1Vn;9I!poI(ZS_62#ELdx83Ep&kb%$ zo(D%~vu|79|K^tQjb(waISh9*SzPQ`Z*`VEk!%cO_@`nk9DZ(krF zD|1mF9zcRrN7e%943dutCFfA60jP&fI ztupWih_ZdBuXvuCS{QuWgq!{De5dc;r+H>x{%*hgU3pXGN2N)ja8C6=7P{}c8bwKG z%wt;G;8iO2_mt;YDQc-cY`1=pskTwC+0*ViLaHVm4xhU4eZvC)efET;;~`*z(UAP` zy;M7Ql*vhj;%2(yxZoKdQ@rRpOP|yn5?hAeP#a4h{LVN$avWR6-jH{Xw~B?G44n;~ zh<~i2t^T}}F9Zz??R^Ve2%I*gcGRZG3@QlL2>RD|*2&Q4sn1|#p(Of4huTIKiIYYJ z##G>iqU~1UZ8XWVsn0X%&+qiBjgb$Z4tfc1e@owVM7)~r<5K2~}VKY$r(qs^cOI}&VMo%25D2L%$rmHCZGlC(R zwoKUG47E#ryl8NcV$y|%#GkZXO;ZJH7bV4#bX!TuX%SvxqL8V*wU9ASesEv8nB^x&!QzLgt(RR~ z$^W*Arzc3B{u0Wqhjv-jr0}GxnG9!c0|(5u(9s`vP^b_b-6O|F-T#9r!fKX zAV0>1(e`96<0G3?q79mv=Rizx9GlWav4&$O+2xPM1h>O75HKn=@1;!QV%73ekMpHX zJ7JnnpNc7^F>aksYjZ%DPVzJs%qmF;$~C6G_A^%7vE&@Q;!vDN3h<>E-Xw5SBM2dzByN zY}nPc70mfTpPK?-HbZ)c<|TGO^US^hl@qwWE4UZiTW5)zr=MIO;7GDdstM^3(lWre zBhw1^@9&=qqog!#U0UB|8g_cs@|}VKxyT zy2Wwsv<^8E+K9q3b(rj(i&;kvVafCD#^?RPQ_+ zkp7_V0~Wh3*PipAXrFMOKQ05Ct|9jx`?q^}n;b9+RboeyCUT6x-{JWokO#Qt%22z- zwidAw8Z;;%z@!nCGL7m z#~(9;bHqlmM=@uM&kFJ`SUMOI!8q@|{h`f+(XHy@V2BtBCPdwhYIgjs?c&btwk%YZ zT`QGtdX0*`lpd4#jVr49d|^n&bbW3QXmyi|s_RVgi^Dw=j5@Az2+i9EmKf5_fmWO& zm{iwUGs0l&6qCqPbkRdWx;4rOkeP0@Tk7~+-ty5~hVcmNlShj#^s<+;!4~UWEu)3q zjjpN3cWc<_(pNL5;D3WPMbXt?{_+?iIex)iIAeLc?X4tEmJ}<^6>lNwBCR(Y9jnDO znv-!Q2bV8!ve$+8o3o8oa^X!)RqBzi9k&fnb{uWWWpc;tjddH8&e3onQ8E@<+}HSH z&CzMG2>INfePT=@ZCagniq@kD+%4hkA$YC62Whgl!oz8i8%0*TU0$ zr-|9wj~;hbNs7N8SNYy73WmXer8F*+%StWj*;~0EWkYMUc^Q(G$*MnA7Mrn~nax{J znlXPD`?id*2<)!29Ig!oZ#kT@jS%oXmT{0qCuPdV7=!<~bbb~rP><1403w?6Y$*@u zA?}*2PERXvASpFWcNR#6UZqi#9lL5dhi#1%5}F^i_P9;NH6!2h7gcEEm8UkB6+r;X zRqz*67L_u!3Q{<(%;`PiY$g}ut79EoGT)H7ZMh^jv;5dOI{XD5eAs2P*`6vS+Cyv4 zke5zcA3qgoT*C4dIBuMJ&)ETI?ccY+-PTNe^@3ykY-Wd6zjy?lS?ZT}i4^{b>3f+; z{N|m{+GYtntXb57DnKP92Vla;2L1L9ef<)E9z3_cp}SUi#;{YiIiGsZdqNZei6f-K1IQ4q?lykjQ^1#0DT39T%@F0LLyW;k7jS35KTrJpa1r z_55zlPCFoBbn&)(|2b4;0_T*U%ngkf(eR6V9dK?{SRDD~&;sNEmUe9FiM)qz4zYwF z?w|K_23w}O)Oc;PzRXD9j((*R6dx83jLU^l@crpBw3sfN5HE>eUy$60aPnQ@aCIoc zHWlD}{t+_@%XUbE`!=Y8)n#e=(N?CTSmREpm$h{Jac{qgSI;MR5%9W%e7i>Hda1UG zDFxnbzuQvKV^LwTUCR4XV(oS5fGhvEN^23R)%L>X2a>h{-e|f_ApJ)67e3V;Hi_4l zY@=APCyyfXiH;S)KN|y=!|}xi#mDWM298r{Di=yVxkKK44^EYd?q$X=kI5z-+2abA zTleIw#9fu*P4-|m$g46v>zrm8{V0S<08&xSW}ycaK!VB43gh+x$I|=36Y1Yl!s(jR zJb=d5VB$>Dg6SlUoy1e{ueX9-4|#3R;y>-H=oheUdliCV46md{i=K3&V*Zz?Kr0r! zNu-7-wfVKEW3id$qUK{roCbL9nk~uEM;Ck&zWcLu^E>@)H68!q0@N-~r4(BSzs)(? zSc#jcNr^g8VCmCMX~BvXc_Eb`l{}qE?+xfo{rH& zPJ)XjA>PF~?}9UzC`m}O(&v)a)AB^4fxo(gUyTuyS9zG;&s4Rlv%Ix!o|qHujv%W8 zezFUaBMyQb#aC~dRCfqE&hv@$S%sCW?No$6x97(mw$rP$GmPFGP%1M|V5>D}2((iKPGNEUk z%V4KWh*c*Z(3TNr(W{u2%QbxM&Yo?b3*t?Fx{JmCyk#nNmCA7lEeip#mU#czFCF5B zmj36E{^#rbOI`&lzWE&glvSrX#l|$Y1C9YbZoTeIiry9Xy4C^qDg%TzPET4o5mTkt zPScLoYzidxWPSKLg{NMw8gk;07bOX=x5ybijohX0S2}d)s1LIoR)Db<%Op1oaB_(qy}w`JYPXeZM9w<;5Xzu5#l zSTHi^)bV7*^i&5#Cn(?~o28}9{wU&6RQxuF z; zVKK%sV}d3~wXix#mj~#S!!3}yjizBO6om_9=$~=+jPkppDpwf*E_a%iFvbKJROkaJ0{s@kuboRMats^{zlK_tcW_o7)AUFT930Bv0~{t+%pfx@ z5M65o?f>yBP1#$ z4I~dF1tbTgFC<-vM+irxOu4^b!}}NVVqR};01Hfcf{2K)h^Pou`8-;6!p+y$7vPKN z)!=&j`0A^th7jN1@ucq)`i=11uXevL6ncV)U5L5I|72Nqx#X7yDkRPt&dxY)dH@7^ zJ6NuUmgd?j4|iLur^m}PBt*y`aj~I63i6^tGt4)&%-*WVBKhzK#! z@^Vv?4D?l%cD5Ji1o(fm^mI2j1o*o;eSJRO!NG!qeu@tClaUtWn;7r!p`+mffqWfQ zGifaza|vd$sWrM?)>FWTGfvx$PS=TMg7v5KtqwpQH3i3={ZN0f$2r$Lwy!iv4D{p9$4K9~lCGh~MWiEARG*AT%ZWXsh}Y z7X7VQ!6c2<;?g#>U<58OqdWiyBvLlq@4rMD1iTdz1QY=j6XYD^9^@J19TW@{3KRuo z6O`}!k^tET*#(ILxdEjBg#lRxIRc3Q*#|iRsQ|eI`2wW^nFkSrMD+mbDRn65h@fmD zB7+AGt`hSAF&fh2hQ0G3VF#CDj7|AM4q>dgoa3XMK#7C{#SnotxVd?SQkhUB*it^C zf+T2cHsSf~e0&Wq)9GxoPdj>+TtH=(9DKNO^z8bF>3&(30^8-t;>ZO!k; zUEe<8p)%)^_^d$=1srIQapm~}wHr%5=icE$-`bq2GczKpR8tJv5}dm<1bAyZ<^w~&w1BceVUR}8|S zCgQ{K9Bzz#77D*ep$&IR%kb@oHbD)?uk_|}DmHxaXUf|-5cEH5;rF@s;L7qokA?zq zP>uPFX#!xyL?zT-LVwJ3(L)_5zs(3I1svW0{QtrCzQ=N%O@cOJQ1OvF!gP!ik5+@;?`B-a`t{R zE|-7D{*Z@XyuCeqdc>43>vnQq%vOg2ttG5%E?U0ODaer#?FNC(`|)I~ltq*0R>!$h!ShC>ok4VM|mmSJflw$SI3%6o`gf5x>p zt;G6C2>>g6qO-H|r;M2#YvwQ2`uU90FyfVgp-WDnGygL;hO4VG7BhP)19RhChpOwoGY9 zUA~dm&fJ0~5x2()Wqv&T=gkYG9)j*2^BPv~hg~{9s@`sJ z|KyoZxJ#|1Hbti+L6LU_Z|S4VB9FgB7e^lFZ8{S9n9#B^X9_P$64-mQoRk>@F(eK_ zBinz3Y-OH}qMfq3;^VkfU;CfkEpI%D=nL}92)>s(oUi7`5qQ33ONW}*YtbLYW^9cu zf}R@QsntuDy$0Ni)rDO9SEw1#^l(`ymq*XRdzs{-*3#gcGRkJXMKaWR%jvwzn2uTX zE{=Wazif7b5U@+L_`)%z^#7@!8G!`7N?sZY_#Dg&ISC+n z$kVvDOdQ%fJaj90`s0Oe+sq6sJc4vbUXb_<2vzkuSU4=}4_&gSZNgqDt-KK;dSnER zByZ}vxoA3%XBU!^Czltpa;FC&-{70;>nB7v-vmwk#imBqK(rsl<>CcS!z=JGp_G^Y z&|PsHk5gV!WAs+_mS>e-Y-dfICofwZy;$6X-%D!t#&AFj-OR+kUcQMzl#lSpt81mvd-bApqC4iw(x{}K)a~g)Z)l_Y0 z{fz}i=*^}VZQ2~~$_REORKo(#kvtY=__5rMj4V_mSZGe>k1HmsUIRVJKjfS%LLAle za@1Ov`W)5EWd})!Q9l@S3lkM7F{RZfrJM3mrlTfyeQGOL1G_mmTYqV0$d$hkawkZk zNu7yj9Y_u1{c>a&2?sFbVH4soe2e=FryL`Xnm4QG$TlPbqK*7Xx*z~)ot%+3AL;$CYd zfmBfxi&V5&rJ78T63>n)m7&=#BSh<3!9pChAR==gQIsOntLCE|qc)cPxOXdqcblwY zpV|e9=_s{$YfLPW3vz;y`h+r;uAv3Kf@_v>W@+*hz62enwVKB?&v;RK;4m4rP}+qe zi}6)$#;j@ANuqmc3l#GzV@p z%>3ZptDGY%UQk*Q&_{cFOsHF_wtWFyVEZ&w+8*iv&F$`Lh4lTF0u5#~ou8h5&}lf{ zjy4QnHY665Obg?RD>*oUE$En)S|KEhi=+}iIWqFA3{@V@H>Kp&TwkrY5*)5XNlFvm zpp`@5XkEl2apZhNwDc|Xb3kY1rnCl>#U3xqciw&yF>d%?lC7Ihu0D>obzpy9f6`IS z7qqB+IplPBj>a1yB$&SZX85}5w&qg(z z+0pTEC&0F2%nMn(+Rw@wYdeUyW3#aLHXR#C{a|(79i;1dI}yEz*xeRb6#uIi*3I`m z8lK~ZF2Cjy_Sp9w%_>|08u{Z76K2IO>>!?1G`n|Z7pNdgJQ-z81mKnsSlH$EB;vj^ z$mYhY`qt)pb<8+Jvehu{{eq`mB1Sc}9Loc2Ote$D7|{A%pKIkfV~w^0xK>2ROP5yW z&nnO|1Y=-y3y_cdUcKSt)(KTA!!Q}Mo4KVx(iFo>=+)m>gRIxB`+m~Z1=Qs)H1UuJ zdt$(h8MSHWH}L(lm3|YU(tASHD-?K-e`MB!m_fF-iVY^CnuKJIoW}}GbF|fC2@#6U zz+csM1vgpuG_-~P!O#09u0w62%F=op)S#|iZLibybNyptY~mEE1u47Xb_;&nKXQ&< zdc}#!IThq8iR`L$aU-y2l%F=RY@p-X6Y9wW@8>7EJG|b?T7-WG%z2CZ34g9UnY0$d z*%XvA<8fL%Wb3ba2A+?pTwxc9)m{kg-$v{2OEyPMdLG*wm~=!HR4b6!Cv*8$J6`K89P9Gs;pZr^kGimn zY0UQgQgE@VkdvprN9z-p45jsB6W& z5#KS5n=&NqCw7z`VxXfm54=w&YDc;Vs?05tR$Va((Ay1+P|I7-q@_4$o0n4+D z8azm$@qE0h;r3{BJUFna5lsE;dER}+cPi<2{`h+Ae0bUZlC22_{dy2Qc}uw4I`h9O zP(f1UnKkh0%Dy#^=XKyfl$GzPtX9(JwR>|j`dH=Z@hE)>S~|AZ<&*WU@O(OOB{K&^ zH8Qp*+zdPJY+_tr65nzpM3Nrg_O^wLwh5|80?h$fyaAc<5f#RfzqtvP)49*pgK`Dc za8=9jRf2oP4CMl3v6mQ_GqduQxzokK>CG77cjFb+!9_fn?x|mTmkLUasME&fV;DNC zKjoB6{4z7*ri2xdYW!Z0)VS=s>`yr=dYrTdvUn1SezfhRyFY#Hc09cwl;Lf!KN#=l zSWIRw1Bbo0u0z72E3FB+DvwTz!>&GnA8PYYJ$1VgF0h#es5`q)A&G`IJfrNJ4yu*8 zN@%NGA%GHFxpN?Q)TI;VJ^o?KwvDfx*zERQTqeQLfi`g?IlF(1J=E#MXnZpk5!0d8FAX+URWte zd3BLuU0AjNA%+}u#9av$&`Ci|2S&-vu4~Wk8Y234R-L$!EKZIUujS7vM#u}!Lr@0u zzd;OP%~&S;H7@tHPzT-5o$>OvjdeOK zLS8o>swFy=Zv>yNbpg-9%S@y+pt#^!azp4Uce_>O#di{ExFCLpP%ilV{7o=F&i+Vf z^m@k={jj?upEFm6M8z{mKu!&3i}1T_rQ{!P&V)aquSAU4TGHf2{!Z{w7BS{_zjdUKGD4Y>%GV|zN0CSZBaRGLp#X!1Y@f1Y zlapr`Hq#>t29!vMJzCZ__dzo;Nw6&(DP;-QYS%J9q0CXHB9CjQB*)|WHf;=%tw`J0^9vJx} zTA>m64Pz`-#9dU!)28L8B(AK#KDQlmG(QU;ONanpJjn$|4h}sZAc&{@b&Ynf#(oDA zi-ldkox_$tPOJM1FqzKdmcLde;2Cl7@zq{&h8FkY3vHP_O6C>#JBsI-(6j zE~&VeGODGut(G{FgQUP15XljLiVQYdyK4vVMZ4+NiU&~GE2WN#XC@CX8 z^z*x@1jsoPP)$kOa;V2N+XIInG5qNTfC@f1=)zF6D>Vw?MN#(^6i#N22$lQ-;mi@Z z(<}m$7%l}msf1;81M&78U>52E*X+1M%TjA>K+@MJ-C(?o#Qikcb88TNTbc3#k!QN> zLRJw4ojWq}(0jUDY7t*^E;W#{TmJUz^2N z@KgGQ#|cwCc@dIVMIm7|na)!mcN&)nl+{EHH+?hN+4X{kapu^0A*3S%T4xP^*7EunzVi>fFYF({Zop4L=VEJ5)8wUP)%VhnR1 z0ZSkKBZ0J3>luQraUmi77jr)OA}cjfdJ0R!&RyIqL}?ld(OwscelF9T!(5KFBGVjc z6k#D7A=Vf+#QWubR$~72noM{ta`rBTc&_U-6%ErVe$Hb2UR)7fVeD_Ey3}Av%)Ij$ z=Cw2MH645nA6o>qu!^5FKg~>?T}zW4`;umWB8#L%_}mFHbK`V zj_Tj9bOp_)JWUF66f(SyC)lW36qa3YDlZHA3z#MEgy~9rR<>v$k5el+wMz) zP6x5ZrHANC!Vk>ZrVGMHrR>onp*;?udZuxDrOZsRx`JZ)U+3$+{hvRuk>9y}zn;td z+f}`#J7U(QGEat%twyjvtY^?2D(AP#WM+rBLxm0M;7)9ywAfTzP}QP_a;t3vu{<@S z=!L}`_wY{!MfN*axz|X~Vn7p;QE{~gEu_T&^SJkL7hV_fRog)CYYXU>2(h>LN1Y4A z3lduXyL)&=PzFa^o82|ew3cXZ)u^W6IsmOE-+cbGC@E)uH5b@0W&z|Mad=xpR%a&x zTSJfW)@ZcbvmTunqTjxmewAYzv>uORGmX=UKxs~>=M6BA>X7K=92@?`E2&KJM>#g+ znMQNItvk6b<3Sq7K;k>$M+Z88ixrc5c?LM-H&wp84|%$&Xm_e;capZq!rM9k;}(uX z)NK6Y>#e6pHujrlA#~D?r&|jxc;1~b`0$Y$?PH^v4=#|S!e_y zE^nhZyC2^htj>tG3_e8@WZ0Ot1|@lOuAV!yOMC0Cl%6EBWC`cFNNl(hKHO2svt zFoi^nnbs8SKyNvo!C~lws6zBX`Yjtsl6ko0?~~DslzX>|thf`awqO>@4d{1*M%?*) zLPob!r6TYKK%Fa2NQDdSyWf)er*7TlHrMT(NzYQSym_nr8dG`DlS}gc)HOlE(G*sN zyur=tKwybg)=3n;+r136_HS6G1gJ&G*)RhoS%V^V>jI(gkAXDs4LAVIG2C*C-OG6k zx^{4-e8J``h?dyQiCnVH1}u@O!m$khlrk-82_ECfW@Ur1Xc`aJRN+CNrjP8Va^RE* zC%vKm>@<7e%dLUxhYWa8&|ya(O-#R-X0=g-Zn!c-|*(4IMjw z6}B3FPkOXul%LGU*7CGXx2U!JFfUY7w1|cNS;Ebgz@Mae@C(u zu(Ar-)uAqyV!5clugA&Re)4*=2b?zcfu!ek)iX$<@4PCHlHX0q+1M93D5Enh`&Ici zj&&Yh`EQdZ^x(g4j$}0lcl_Bm@FKJ-E*i23H21q!JVtBgF2&MB$Veuh60Jn_6mH<> zN(`22aQ0xD2KPKk2q8!JD&LG)q>Ibrcq~*VeJaY6J}682De2C{D%cpzxVhmvdp2G#T;B9NPJux{6@)e;U=#Rk!SZ>ZRtS=_f z;Ey3F?+_@Ly}*(f*rQ<(mmt5A81QUHG;T-y+L1R1*E99?fdOH1^B<+5;-~ve0?2#e~#66^CUX(vYxS-?Cf-FJU znKyqyS1y-EwVG`6)q4LxILcsYEbOi*F+-(El_tC z?{HhNaA(N%wOqrjE~bzdFg%K=XAa<&MIX_FKDoq?4e`Pj{uCjp=QXG~tH|9@@C|W2 zv4Y^25doZ9m+lw1Dx3Ti&!_KQ39Q+DN|pj`hC)ynx=z`CZ@=h&k1R8hTvpI$w)b&G zE%Gn!){tQGJ>Iy|xdrFQi=P`^RZEqNwIX`=?Rb3QKkal@tV)IU++KqoJ{}LB)e2o~sc@3+9)O zm;}Y_>y?ovC6sA}Fy-C|_54Mrn^!fT4R(yeu2GUHRDHH7&m2n}$>Zp8lWD6DI1lw7 zB4L-A7^UR(8)(wdR~WJSD*DhnTlA9#++IvSAlZ=Y4=IDVxLzt30} zKc(M%$iK4bqjS4@?o4XHz8cV;FfdJ9UhMpig6Ud8d6mJDO;zKo?oyl@HBo17s_Y#> zd$o%Oz>aL_A>`*f=jUdX+DpL@vrJk_{Yon#Wt)o_#Oe%4PLIK^pVwlSu=%HJmjHDs zeeC!-#Dv2%Vpy)*XIn>yptEEwOTIdw+(}IF+ne6Rr70~IV91G$+>F^`(3ByFjk*5m z3tdU%-&d`3s+zfkP(NN4>Gv$RI+KV&rLEL`4jC*vsjVwf{#~IKyAeWMv!s^5{&)u5 z-wJ)DP0tc8`T69lcq0JYvwL9u`<8)Ao;1xoaSxER-sk#^CQm?<$yp7aMmNY!U=y=S z>Id>HRb$(|F^&toUcpqpq77dYpb5EcYQq(%{3^T>TkXnTB|mWd{F?y2`xIp}`wSNx zUWZi}emXKGD?$lx)c#c54Fl;O-@5ouv(mIjN~)esb9k#_yvv*U=izP ze<)KJX;@437Y3i>zqC^&k(7avpbVOL(}P^nA@2hs7wZ-mMN;`j@nT?XBJvmP9VC)f zMXQCP)?1O+tjzJS%Ca9a`D^8evhPLemBR)0b1rJ=5mN@`mj9mFNtlYxAi?DQ0EPjp6M7q?nevy?eo(0OYHp47;;B$>|1Ih%?dHi-%0C& z32KYHHboG?c{cmi3^qJ;4UjQ1+Cq%sKFv}3uAPti);dud>gsEh1slMi7;qGh3B5$* ztaRqG31J0~U_X2Mf~rU}rOO9L2g_>R3vH8#W!(zfEF-2s!Hoy;pc{JIDXK$zTant- zkR(c3V=JPpIhdVbj-%Qj5Ofrv7*%%Ydtl6@#bMd=QKDgZ#NP>PebgcbYT8%l6O2U; zuVQiNjO8PWg|oMhk9|Es(Q&%x92E!^3KC-vewa7u`5R8+NeT)2(`Y17$E>{jq_G<> z^v4M0s+r);NN+i*K@*%kD%k10eir>+x(!Y!{BV*A^jQ2Yd)C;|qmzo?r9p`J(Sz~( z8sSEHFMl5vb`-TOqRP-PnhlucswvlZX}DDM`?*-};!2_CQ)v1PC^J+0GQp(xooyBv-m>&1CKePO3EYT=vtxY-m#p?%6Z$e=px?Xw!U^t2+rr+8JiHuHcO` z?euNF$8W6WFZLxksW#lJ8Algac4RaBL zETS_$W4<)KK0SZ`dF&tlp1>R`Hj^el=bD?~2L-EW_!g!>o6VZ*qPPZOkLUT99>9t? ztjz!CX(Pg1D#a_IpH{+PFXMbFrKDy>nw(dvKlXEpx~29R&wFDeW= z@PG?KIqoJ56Ps~Aa;fSFR|HizWCq-UVuwXZ$C}|k9$LJJTY<1zDMYmL5 zWf(zxl<<9;n7!dZ>A66%0sQ^U3&*1eb?Jcj+NxUU%Z~Tg}4(Zc>ehz z4wrg@TeOUNO(zSui(*tRTQA4@f%O^SbA%WU;Q#zcq%m`o5C@rUemae)!gg|TsqooD z7qepwC4tGYtK8+uZh6r5fCx>@fMXXB6CuNgqpD9a1=z#P<_HHe>iDvj;+>SQGZRTT zwPxUe`0JMgjG=?rP5U8WrhSm91lpdCDr9u4@y=sWVXcz|7xWLZ1vL5Il5>VnQsxTi zPM#wc6n@L^3lIEuw-&>JG;xM(%RVRnl2&HKiN0re^;$HmyNCKXX;1sX>P{U}caL}u zrsh`nj=&7tENlV8XrWhD69(M;hlUld(%ia~DZC4Pe+Js(%;IKsnS$Z%PVGXNMZKvlo z*7;&1=xw+1ck$Av|LAk)2DmoWkb=M+@iuy#1-mS3T2FKq>CF}Wn)f*7-hFerQg(%h zUG=qWrgK!C-R$^!une0>6_Z*0H_fYTpeNUCBN)0}80NpoZ!G+P1<*W0!5 zAC#z0PU3ECQA>NXWY$=84Nl>-yfM+yf2w8g-g|B3LdJ82+>71$bGw-B@8`Alk}Ox? zkv|UX5fEqW|1LJcnvd#Q4vM6aaqjhZ65W$3E69yC4m$d7N1Y!`o8le)TMNBjzDx*j z(+1oPYtGX!inhk7(DUnP&ghLih;|%h3;Fleo53ID5ETxDJXy3fO$pk3zB4Uf3x&Ha zqgTJ>9u2#NbL{;}Yx*vQ=Xf5ji1)&sAPGVwM$EJsxlH_lA?W_tEuWNcdJ00X(Np+x z|8g`q>V7KFd0k@bN}8e}^l_MCi=+Bl(tZ7GTueQF^MyqAHzeu-#GY-hTqRPj8syd* zOmWvn^2?*`f{;kaCVl#!hVjKTc^7wjm`4oSb)f$o_yx@J^zcyxu5rO2y4L~C7C#H{JwDsk@} zpoO0sR`-3jH$f%Om(dIndy$iUSZvxDj`20^n}%+}9tP;J!)N^7ZsgQEoJkL$H2?^~ z4CE0Yq4l~-R+cK8U4KH5TM|lG+-mU!=tnM0*&?E|=Ywo@DIiR)&2CI2vPdo!)}$Me zg=Z(p^s2L+W=d?$JH4$pUZ)6czUo{c|6U!p(5Uo!1baRD@b6ZBJD7R$bHr>ST5mNO zDXwtX9D47SZQ?Y7YMhX#GW?y5C`!rrOZW{6%B`^{EHKbT!*mZ!JCmEP-KfFs-Tee9 z#rm%G?Tg^Yb7UUq{fH5M&^un+r-wd>4bkh}K&(taUe_JxEKRQUqi6`XR>Z8r>nRl6= zn%h()5b-=OLen-e9q9=OCZi06d-fn!G2jRj`i)j#PQX z5QUhT4Chw}@4zTJ?JrkaN`1JNej@Uuu{kwZ5@CAcLL@WO{TrJI(zP#=?2@F%|~g~oNycevsjX`>o%fU zYjH@xoB8pmgQ`(d+{w}jmf@M6-+SDBgS89gwGqm+bxa4Ob7$ z8WX0`HYL%dlelWn z&9#fS#1*5Zz(xP}aT*U?#ZUgZDp*v@s6Q|2uU^y4!ST_2lu<#TsB_ORDmK|24k$X(&Fbh+YS;JwaJU+vE}>I>8S zCw9TZ`_nUNdR{-^xbU&~pZC4%1=&8J1QNrw_{ZB(1)LQkNnn{?aLhJlQz<&nWmNos;v_oIfLy6sI}8@h)0m)l4va$Lc#1iG8QHo0 z3mJu0mBZ?peQ$$Ai6jU1`Kp7=$3OP9ej3v@xf$Mc4}@DRjU)jF(qJ_w_hQQSw6j8o z6w>}4Iu)%>!HF;SUGEyIOGRSkQf2?pjWodHhv=5rx5j_&c4MxN#>f?;tqBN~NEk=a zVjx67Pxe|ACh6=jT{;MJhc1RRiif8|v9z^B&G=A&Q-(!%eW(8wLOO0h6|^XNW0uma z&%(%R_itM7Sm6HQXj7-<(*E=Hr>w)K(^lhX>w}KvG1f%dSd#(0wV?NNt`A?&_7-dV z`{odx1Ir6NpGNkb`QdZjatV(PG4K2Nk$BFsLWbqS@qm{d8Mdlwl{zRYQz~0oG6w zs-5+x)ctT=lLAv1dWPpU@vy$+1||`uiH#U*Npov7X);8eekWvH8`q<=XGHuC$J0d% zbi?{}Y6;DiMDTyMoX+NFDosW-x;>}I|6=9*OG%E}W+2)$-kw>%gC@c3DgDboTyIuk zw^s;Mj6a_Xh%sSzosaPe_m1_7_LAq6%m_0$I~X`jQ(#Ij=i(KxnX&nNjqK0Q{YSSJ zUvt2*@*$>w_ghn9fB=vABt>QC8QOw2_^I9kHW;Ip@nw(vnwI_A!=(k|P zg-oQ*X1vQ$)hFdzXwD6c%xpKv9~mN!BAQ+}%c{)=F3{O)R*oRp1?Un zISfyi@6aQd^cA!!#E@gn{c&H&&|+JuOy{wQ@qAz3|08S8z~g=tO(EO8I%Ng50z!H{@A z;KSd>lnDB!u?xaL#W5@KT`fVbZ@V9LjV>Mkv(r$Ta^I%L((M^+%_ZfW!ibjoO6EwD zv@?s8lP7(Waf!tiS;Z^~o+}V`FW-nMsv5dep*E$_bs9sHq}bCU>=KUDlBcs~^Xk}2~Kds)Xdo#J;71&lF` z73tgkIH{SGC}J?s(a`J9%3^$q90!tQlX9Gttk++8rB1zSr!*t6jJiFcza=%w7=wY@ zG7(C1n6q^4GWTS;eiR5wszmvDt(Svm^Ce>H;|VfF7JvaARUC5)X(g>>EiKDdDEtpf zWs6Grn`9+jj8qo)l?-S}B&LSw&_%X3B1B2_WZa5H&3%MFawNLt^F`FN%tU-L7XmvQ1W9X2~YGC1F2u{~%sEp!_XQLDJr(S5t-a4qf~EzUFZ>UI=>gctS* zz(^E1ID=^PZ5KiJFFK|EVZlFIMXtWYENesmN(MXo)Sj$0rE zRRQJqCQlsNb#4F_vNDrBa%b6}(D{`qtHb{ahtC%HlQ@}T+|^&t)0=AyMoBKw`^Pm* zNhL{5j}zKi-SV`jtIc(7-U_d$jR&p!pU(P@$M|puXDERua*jZq>vYy~ga!QfxofN# z*H)9~=i(h@uLfye%=QMi(Ze-OyyOUjKEM5YzIb#^`!)n09VuFZWJ+8T8&wI_Matj7 zKywFR)m>){bw^ZN1G78n592*pb^a zP&v#b7yVAaY=&@AC6!)~buVsx;w-1b*!|Bi0UH_)$?ttQB{3n{Sp$|D=SKY*| zFQDP3G@-IE#Z!~g$ECJ*pSSDFV^0Ay*EAig zjha}dXI-n!o-2Q$JGE>uBtO|;;ZtFC%Q zdtZB5d;jIDTA!dJ>6NtQ$tOWR+^jvn@sBTGee=}0=g(cXc)@wg8mqrK{%61AHr-1L zU)iwX7447r-lM&L=&Gv@!Hwo=H)_v4^%NaNucD)$ep(ZrdAsSg`0BPL7Y=IKz^%7Vyx<`0KePpZYO`$<+~ei&(FEFc}EzJOR6 z4YSo+y&AnyivH^NEy>F_x3;{n z$Zy_$a?RStk9X!aw zijm_?`{OrqW=o=<*;1{~mYTRyts{4Z^$X!%)29KrpgMQ@#AL*v3xgpb7UfkA(r1(s z1&$b;ha8a)V_z$$ETj^dCGJUi3c`k&dD?j-hjd5=ZzyW=8?`QHG>aai>%RNLsS{Q0 z^Q{ZHxtli6I-@Dnxr@`buAg{$iFV|K^aJHj@sR$p)YaZyNqeAQWwCZfb7OMM-%b4P3fs`pjA1!nV`??(XIacSh_&xxY8IV3NwxkgF;{&Co_&?MqpO-$B_9@ zs1>upFD?L~hDam6Vj1h%iRu9s#N@nuIc0VGaAFsDQsz8dN>EB=RYa&m&d6%kM~%S{ zNk-ysV?!9BiVUPaQ~0X;w%m2-YuD_%=Z4F|Uz@vaTk+y6&kGN!Ij>weK5^NyZEc0bcFVje|GKpL$t8?&92{HFnP`eoUe1zqWHMkU4Lfn zo6&uV5E2Q+8l;AbP^wS~zQeslY^07D`D-@eOhEIzy+QLB*2{&Q{p=Mh z&YrV!B^$H1x}N6lBC|lE4r2GF24reMS zP)MZEpmeHLN>khZ-(Q!}l?&t;M)Mr_q zM29&&1-le0+Iv({b4PpXXh%wYw{z~4$+PB6natm`?>BEf_2h4UL(5*i`pOGdY(zcO z4EEY{8GEf6(Icr$Ybn0_X)`U=jwU!q*I&614QL%r9MQ--oq~2yd!n0YPaXL{ICelg z^qF>$pp7&|drREMXk&qS9RNwlit=%l%at&)l3~`SyndYEUK!D!y?E%iqgu<)Atn~E zz{FNO@k|`j4N8t-CpbVIvOEV)M}AcDKoHveN!`vx3F-Ihpx7okMK~Q+Odl1QCM+C- zI`fAcL(K`<7^aOMeX*7P0r0FSZ_G59Hpwbno^%uleEs&(!75gkRK7 z6sfK+qsNeP;%{_1c1>HgW6fDNejPMt?ZhTYGBl?^!UoTjlS)z#9%lzhRUlTdy@GRA zqtm3XHYqiUblfnu@?DAfrmjU~)N01yLdAgF+6Yuo`467*xlUvcu_!jyL6x zl$onlf*I^FL`X~dS+$$r4V0=uc(gJ!o~;~18;;0(9UfDDkiowZH9yD}=9NJ(OC5!V zThiRZH#gMLXj1}(vcAX!jy#WuNnQic9)SQqsxGPbi?t(7kGp3rdbMrr+9fO2+E-k2 zNb5ejO1W^&g0@w3#p_d?HlNpSuWK@ugudQ-+t7lFNd3@=b|UgN-#&ZMqSD)sv&dz~Al3v%gcJ8I0 z^?s(czh|2Jd1habKSC@ z1(NNnS1;E)wZB6@rKO+#_YcKK_?$kAZF(tR?|wf_Otg>!gJti@*7!JMjgRYD<2w~n zs>O5Bc{R%?P4)ll7yay`=8yj0u;zC-m)vU~yD3r~sU30Ejz)N|9^UyN(p@m-k;4Mho0=qCl2Cjyu4NT?+67LO z*$h9Gb9l}ON5Y_bvJuH%!#jh8C%*|jYBeI1*`Bqt7-i>Uz|KE0!j)Nm+CbdIOM=;6 z*%LTzWHSp>N`@*ZVfKZwcqlW7&qCeAFybo++T!OiaT7}~3uRUEA`FQ~wJ{iyVp;a= z;Vr=b0k*o5pjq@vQwIKw%VNX}^qFbj*}UccY4pjSsrkq`Q>HIoJbkKgbo7dq+izOE zeDoK=>?D2unzPQjW;)@zKOsbVMRhPZdEH-5_CRg1cKWy? z1NW@!X@+}NNml3Jp0SM~dce=3S*$3V8>yQv)CoNZ0qJcBxM${_d4b|!7%}Lv&N^{|2p7JJJV0EgI)NO*F^cU;VWZJv)o7 zQwy>h*Ux8u8M2xC%aF~`0kP=I=%*l@p%TeKIqTet3Z!QMP<`}i&&2}K2 z(q};?w>$SQymP^Vp2eA*PPO-1rU4nT0rAs-2XM`@ilhXVdCKX~qKa^s;j!UbkV#-k z^PG;P%A=XW(A0plrqNbpsgpm@fz>#~WaD1%xn~Y4n>mZhW-&4oQ-WwpX1j+RvyHZD z?`KVq93JWZ0lYlMYz`Y(mMp6yWnuRPci*g6Fe4D54J@2?j*1d$4`{40;26kh`;?aG z&;YbGGr~s0`R;GS{r555hRC;za-M)3CnXU2R$nt?(O&(D?V`;Lwkw1Ah~es4yMtZu zxY*_lsu{sPcqy4=IQFW`$2yzUU|1@e9m7=%P;1>qTj#;Z&6@`!r;pdk2N)^ZGsA}a zBZ0nJ%kV%7$V!s3vKrnDHkKcxIRy#nU|0jx)S=`-lM7>tjg`Hk2KIv+Y-4V4K6pPi zCf;or=ym8AgE;O*Sui@2%*^V>44`8bnEV+?M?dgm>7!X($M0(iI$_h3N8f&REfus* z&U%t|W)L1Zt9Ek#lg~YS;-o(35r++II14R6Y^)598lPjsZNhMyVZ&XW1F*IN&A0Q> zd^^3(bZY8&f7V;SZfsxstzWZ=vwAK*PdDC5P5+$j)=x9C@4cMn{>pxG0q3%|n{qQV z-I#sD@aLp=hzy(^!pIRrpex8A(3K*ZT6uqHYGF*aA$o#Qv7B~z1;3A3Wo)r<04zG3 zarAU}bRQu`MmHH4ln!Lp)~-+nnJ%~e!JPK@M$jwo4?!<%An2tXLP==|%>xUj44pZa z9)_JygQwTQMAg8kdfcF_&!qR^2=t+VM9A4jAA*@agspnsJtnESSdvm|6o2ih%vm0BBu@5DYWva5|RE z7%#ajNwP|?FEiMgGgp!!0R5g}*Yrb)|6(e#E0URf>vffh`w;nzeTaNSUk>7X^7V1e z*FpmpYO+w6YrAQT*6-F1(Zp`;m)h&QX+0l!M0=Gc9?^cK{c<;rYyY{M*6RD)&F)?= z?h3iT6-k7M<^;YHfh7) zGwuebdi-ohfOb16jN)g4N0lr+G-U~%9-XdH+_(({SAa5Pb)B-&*+|TLH!Zqz)AhF^ zJ@377$(@@wZKtiv>DJci5A1z*+&SOfvsx!){k?C@)&B5Pq-E0sZ_T3xFC19QJzV;B z*DoUPJpS`bbi0FL>PfG2HQbPaQ1wvY^g-79CJOw2!|VMUUhmA|^~66Le(D+U96Ant z(HzrEH~*XK{>^n~&UL~ihP{^IyCcAN4FmCA26CPg7+(m9*YLB^uP;(mvc|-u(Hd ztG9?G_1Bk=e#AXT_i@roOV4MxbKUQVf_MiRM!ro_N!+j4o(wv{1CTnD#+YhFgpJ`b zCCLJBLmeHd z_N2;68ud`cIbG0YS`YvHu1^9MXfBz#YL^s1*C`vx2(eSMyIjAGj1+-Dne>J&&1$S1p^!v z9UHzMfYhJy2#~7%u~o-MHPN{*zcBPvjMUeDspF$Y9&Md=w>VVW+WC6}B$f20NktA# zO8e5Jye~}ZkH$J&x^7$m{Nl#<^L#6vVgHTlLw|r z1~XP*(|Z7_7^tz_@7RRT&}1*rBur|^?FLPveQ7ed7fot2G^qfZRJhU8&d{U|Xi@<* zNt+9bS)f9xlG`O)s9YyY+MicaTE;|G)F8~@f0Qs8%h3Df3^ODXd@DIE)9}w2DG)u3 zlcCWTFhr|poRHJ9Z%+NQ9#^M&T>T81*yOqByrI{vDE!|LZg0MBW&Xc5+TL;car)I` zHw_<#(YWEms)u*JYK)d(jMZ9$pPR@}&Wxim_pCgT9-@cmO5&_;Hh5SKxpcr!#gbsG z9?E5P#pPBKs5VpsHZi^EUpZlasH_7$gQ=B{$GDLWYneIbhJW zp)XyVbLm4xu6 z>3;5kE!S5pnlk;IbEZ#?pO%epg)A%*B&l=S-{fo7|_0>^H;*XFjk{~0H zlgn9DS?tg^POi;>30Wi<13VaJ??^WkM7=n8JS>NbP zZGrc}YP{JrLZM z*NlbVE*KV7jxh2zv~am4Y{ovjxsb$_J)5gG<8F+#)QD7%9C7`7-&wd2NZj_vYu;Xc z{f`d3?(2Hca{aoyzf*Gek=x!H`{2(|-;Ha!V0J!#=VmTWCvsCJPg~Y8aov(;UY;>w z>HBqKmaq7&ngudmx#T6(eQjq=w~zZZC%71-G2(W2JSrZb zp@BG!TRU0x$)ps@dw7Q@FOZKNlsp4KPZuzdoRZT(Pcy6TH1N}7F~?!~KoHcz&$X>x zodyhbuf7&TU#~a=bnVap=-TB5x;FMQSi+VDBrIiimofw8A4S+^cG_uBwsi+=K&);0 zSSBAM)7QPMuNCClQ~O#DeGTe;4H|uoWcwOqeJwHiT4{`{>PP745_vBh*@7Z{XtC4z z{d79WI$eI6PG^m<(~R$ImTn5xmu;Xi=BFDApV@I1jJ~fm`d&xw`O@B_U0RgD{AX0- zfjHZ8w}%>ehM$LIL2^{XVYOS4@N$WR?Jka#!cBM!^JFYk2S=ve;o;c?uV(luEM16E zMrM@p3{07o;)Kf&B-%zd`X^BL|&6I>CJR_W*3r7!*T9(V?g5v zz(2injqoW0<{CNv>0F~oPOi~LHl+8^;j=O&{NG^1^~GyCIlht25hJbLM}@iK4iW-B zf0v|6kF1Q8&{~qefNTb!9nSG-lYz>icNHwVyrmw)Q7F^0LP+ zEG}H!eD+23;5py9XnMswZtaec?A{$cuW(#_ZB7<)+!$8mVXV7yCF}7EnMe+5x*&IYchIo-4qHjPSkkf+8ChKTBh5i9> zbdAtbe^|Qf(f;^WKX|&ri(q;@oCVd*ZEql_y}i+Xi~B?S4H{^_X~CASD_xVU6rLIG zFS955!~Pwm8xs8?0MmD}IZ=9>_d=Wfq!e?aSepwnZ7#t!>rl_&3}9YbkHdb{+}z39wJSRqf-x3r4SuR3U+;&bFd@g6NQZR|>y8^+ZZQsX zp}pmG<+7S$GEkH-;1Y_dl`efFE-#kO=9lO@px6*vtI`8LX!3N-mlGy22EQlqsTUhu z!PN7GM&}DNOLx7f@GU*r=~1KmTus*A;z@P)Yy1&GfFqO!4FpV=v`O!qyFlqY=XJKnNE?TpmlcJ}|}hY^8^R z39_rOG$&Omgad*5(kR84DpgQ?4 z8{6L3J_>FB+1S@_TRDgB58kJp@4s*B;`zGHW_Z0Ihdt2iIRhZ}1_nUv%{S~-)r~bn zb~)w4(A<}z_oDtd6~Q-*ilZ-#uNcbIT;#TM{y*4G^v0l-z|TpBEyu!Kr*A77-+j=A z&pSltfVSwaYmxV=~-3TCs=~Gc_c7+t;$TSAgfzU+WRjqacwk(Wj|Dp7EElH$D_Vm_pdATZ+xC zgz%GM7Z#qNgksKPzE2;SVp-os;Itjlz5wj#cERc~YxaP<=UmAoeQiojTJGn@Q99<$%+LzX_M8-I~c|`tIff^zo4hGUI2#ST`8WjF^CJBogpy6fyGj- zm*tqOXkqAOIjkNhTZ36fs4s6gl|i@7rkBwL!kDi6=?TruE&F1xrfNHA>(3AF_|D@m zbL(j>U6ifLJe$_N@Dz9A86&p8i9Z4wdk~3XY#+gNmEwfzF^nk1oKT~pVNliDJJMCo zfZ(V$R#P(RPMvdOwN+xr)YQ;cc3=tUHJ?uijrRy*p z_Y}3`3XC8lgi z*)nHuLnOe!JakCTYPxXy@>MfeTQ)9Oy`6vHPmfRX-%Y&^Q@igY@Q*-a?eoo3+;&Q-TSDC`x`j z1Ds&bY){Hisfv2qYfwq?$SIdUi0v)%DEa-2N@QRn(t9pgi6;wJZ$EX!HcmJ{#!l|O z(4a4jpAco^_dnd;z(3aBL#Jyl@LMyP#ZTjxgKnuq6yLPSnrghUbVqtPZDru2#v4m? zMEG9Z*NN@0%Iu%YXl3)fmRGB54zp&S6b%GX?dll_E1^r+_OtU zsK=IpEijT!Ay)7a%g9^{`=q9tRMA5nl zz*#Z-43{_wF2);hSICJy5M+^T=waDKGiR(>bKhF7;i6e^Fk|LguJNM#;L1gJ&04;E z*31CU2+PJY=BGi z59i(sadq|E_1uf%y)y7;ljv;iu|}@B>)<<`LgztkUpLX7#CCx%I7O@`Rb(;I(0|F7l##yn!)Gw8DMVG;S9W%C}s9w!N_d!=hMX7({aG<|igdAlRE5EXkCW?N_buRMc*>%YHpiwh`^; zFawB4U_iwi=JDSYu0#9NYuqRoU9`Mt6P+!+WX^y1-JA0yVMZ#|wU?U$znxvjId_); zWBq%stm`G6|IiS8f`0;LQ8bgSOtTvy8YscN!Gi0-T*E)FiR<*?~xN=8(jtbK)(C{ z+wvO87tm`G2Z8OG7b!%rG&WV4nU1?B!u(JQ<&@;Y4HMNt5ujhNxSY|?n}^1zjtUG` zIGCcra!fC?Cv*13cJht-#@GqAF*fZ%-(m}rxKH*IdoEhX+wxsgnnxr$r9WveavRTo zZ29?Z^Up7)BaAJxqjJ;b(`adC%WN)q)`A6R&2DS^VvD}5Fi;EW^$^;hht z$ZP~2jJ4Z?k`q_}X;XS8dw^rTCI*2^V6v6n`xPl-6_0lMrNx_oj**Apua=N2r`=dhNNOB zO9qcjBvPZ0LwvQdQI2Y5P=fWpGOi4Zr5kiUkudiPDS^wc<;XDwNR=@$CB~>yr&A?X zhop!hDeBxPZ$J>S1g%IsHMlwpQ9anLjs)_IMiv@b4=mKIv(Q+~W2gfj(W!;tcHqC& zdr}4ExM7;wJQBF2VHncUSIbzb1-~|mu~Ne@Ox-FfO(qATV{?D}71DVu(TB-;(fONr zzJ@W~#GxbNou&@$1#P|dqBsV*4tJU^qQh|vT6)G{!o=o&bE%Z~8 zs>6|~8j?sTH8CZs4@d-oy%i~u8HP}H7#d4Y2BTZXKNAR`8jT{zK$c0j7xI;`jfV9^{;SMC#ql#0_3H zztKn$v>4HlK;VOgkW#fG&Xf%d@m*VcD&*x7ZEcJgIe_UL65y>k!Wqm{MGj^}+6Mq# z&}E(g0RR910{}w5Dw1no4?Oh%9|!;d0002d``dH?0002j(Tn~6bN##r#|Ga30RRX9 z0ssI20001Z+GAj3VBnDb+sDAb{{4UP{|xry3_uYS@CpE&RtG|O+HI3fXj4HHg->Sg zdkHQ=3B`h>1Wcoq5JCwhgc5=@XqrW7S}8?>)*@NBP-5|?LKh+rkuJKkD!9s`BBi)9 zh=>ajL?|LikRTXYD4=Swj%{2}jzPvaV7cG6Tn2;Cu~^n#EoH1|bVvABJOZp<+Gb{ufNi z>#lz1-W{I*0SRj!%T@@7{52%4VGPJu^h*snUBZf*b>Hh51a*?@bM6nFV9#OR^B$^t z8#!4eL&&OKD9N~gc$caQn~eC~FGF zdv7i2`MT+4QbRw9vaZ2-O6r(YNt9XB1KxWzmC|#Y^@K(_iEJ0oW7B(uulz4{{^)v?cZKUlrESO%^W?dTv^S@GIUy~WtIc`DmyH);m z(t!F4pfkDA0001Z+GAi~(1F4dhFOetOp}-`m@hDYU{PWTVX0%;$MTMqht-C)jP)4n zGqx-29_&5rPdI!y3OGJ+MsUvHe8$DZrNZUFwTHWcdliomPZZA#o-4duyk)%Wc+c=L z@R{+&@SWgi;t%7W!~ajs0borBr9Beo>QAcTlg=kkOc>u}|ZLCY$B~%?Da~S`FG_+I`yVwEyX>(z&6_ zrK_e}q&q{8M{kpUh5i=Z23w8zZJ zY>_#Od7g!x#UYD#mT6WCtnb*$*k#x)v3qCV;UMHN$5GFT#c6|cmWzx_gUdJ99M@NF zO>S%4Zn$%~CwRzt-0?K=?DPEKwawegyUzQEkB`q1Unbuw-vfRven0#p{C@?c1#|`K z;ea-QUV#yTMS(qmdjj7C$pn=Ioe5S6jtkxcgpWcvfUqLuPpC}jmN1>LU*W3&RE3rq z000000RR91>IFFf1poj5000620RRF3761SN00D&n0001Z+Ra?ca$`psZcheCh9VUx zDn(L2onkTAlt!6blF4kqwls;!_)?ZVQ&}EMN1nsTk~l{i$9WW1tf*p>6~!}fc>*>p zc>)$J>Hhxz@7rm~vNKgsF3acA-T(dCEi0woU3*)-q1JA`rPSJwl;Z0(mFYXWzM$#oC|v`djM#wSV&UxApV?@b!1pmp6XK*KexMjoevmtWre17E+b9(I1p*YBvTbI8}7xixE_k8_V zb+_|pzW$qfyYnx;{=0go^KZKT#~bSX?oG9=CTglKRHaIFs$Qs>%G4kA?|pSw|2$N8 zaCJ|8s9O5zfgVw+k@~r+_1zOacdTdBs;%#K^mQMjZtLG)>vy#tJy*HD>*&u)4OF4W zWNK5dFw%b=%o=xv{#)q3uk_~tYaZzNCwgp&wan8@-(Tp@PqAXI=ND>d@yOJ%>gn|} z^#EAkQIFKe>J$C<6HSNt$<#T1+InVcg|?<)qRupJ1|Pw%r^k);+o$^ZfqpYlTl#mT z@$u>Osk|NV%5kd2d}^!5;NWs7nT7M%lga9{o`IjW9ysD1WJ+O*AhT>q*P%N&8YgS*Ag^SA?;6jg;Q6>p2@q-50I99OmoP{v$xE z1D^Nwnzf!|bTqSiYqYx5e_!aU0rWZ7<3@O6tY?hhQ_L_>=M0bD_JLW=_BDeBJ<%(e z=O_AZ0?8T;82}fvY7NUYnl;eBIjAYv6Kv{tr;KN&`F9um5ndXKXPWnq)d%`#HEU$P zXYWOP{~+)KPb@dOjO#J;G}D^x(`j%#1rLnw7Cg(qt&+6gifDQmP;?9L`+DS9k3ZKu zHJm*4);3%*8nUY?*;j{JvYTp8e`fk~U;o|F`q+hyAE?jt-BV3z518y@To06P>Y1DR zZ`XUCWk1%m(fmDquUF500$67LbF&uS@9B9)qxQiIH@=IpM**}9>pam{&jGV*XBw=( zfPXQ5)~wpqe|zBg9_Tp2dqZP}_Z|KDO#gQDj7<$W#<#1wz}G;2%5(Ps?=!&N#(f7X z?|APvfoHT5FxD@9q4x9}WW(AOi@?RCbc2XDIrE+1O|Lh=iFY2a_; z=`Lvh3{Q+ycaaUy*nRkJ@_#;lDe1QsdZy1|anHf!4rJ2{{2AGRxiilVjhifcJ6o`=J=VS+^QGhY&|Qpi+9)gZtYvKht1W$f%%eyrWPV#if0E=)(<8a{ zL%Z!=iSo20cHu>iU_XZ}*&~iV+u%7t5nmH>JzTG2S1}Q8o9%oVOrw{(n7IR~cNubr zt?$TM1^Efe7sPjmxGb~g9roy?JA^5%5y#*6td}#KIA-py>!%x<8soDT`#Ixd4_Ifq zprPmK>(%{Jm!(O(KU~SP_87~nLo?R(43u>f)H&TV65e4>?}I}wmLG7|vRFq_IA6tj z<*kXu&uqr#BE%QK>5x6fHb;@3%?4h#ugI*9#kmaUcoxEz%>l_{Qq~L(eCU38t3B>Xc54&Y^t^?q+&2Nk*x0Xh&9qX<3@Pz0wlx@MzS@Ga#SxFDh#UKGt_?tYD7~rO?9<0dp++;3;av9CfZ4Q((*l zBL?8i8Pa&QKrcz&(U0wAGrXLO(CD zuGD*Hm`j<=3|uOhlT}bx=UlhTx;4)zK#8faf2;A6=XFC;GgOl!e(%GkC$y&F-k6_| zluRW$wWH1$JA*?VROJKkux1_@_(bW9dEh8nT~B0np?!c==eDjjt4nXmP&xA82@eZU z-qsd2Vhly%LxxHnhZ49LuFL>;#&YvH<-+*ncQp1nD8JyYX9caw zJzO@SnSM9HblNUp6`9qtobjPKx!0?6u%;fYX%bd$VY#kIjxN}oM-|YqjNh5hQ&3r| zuRKY$JPa%7vGloUZQ%=9NoD0e13oiPSFZ}$;q7~^<=lF~{OYqb2}{2#=DcIGf7C`K zruB#5s`Dbb9qrTh|0Ep);T7;3gVL}&Nz~8Tc10%6cA9bNoT)T^sKCk<;GMwR_>%BB zGri-kiIJWUKcf*-t&~q#kz% zTz(0xr;WV|kyY4t6w4iZT1K9`3UrqsOc7%pmGo4w9b+u{QR0+~l%uHIIRw92jd&f# z{emL^%_aC{LINR8g{Osn_D~^4&0%4!1+!_^spV}QSXvrZZfU=x@4sYf3?E-Hjq-NJ z>((4;9Dn?-e^a*?QQ&(LC%u~SCg~J_&K=@2<3vt9!U!Hf(3s zc>Cv|Wt`;ogm>{OteDz)k{z`Zys4n8{_eElR0W$pg$69z*Yfu;Th@}b-tb7tqDb#6 zTS1UFs(`^9JgU4rU{RJaN@Tt+$5^g;&Zm;bg&E81mE*ep+yG2JGptdo5C$c#OucL* zdLR0fvxH;q?dsSuvs9Ber}(@ot>oVp`MKAtzp<@3s-3?KJxv{Cq~bZp@aipOd=unA zE;k$C$(Z9Y)$^1sRf(KJYSUB>d6t+TYle9JBFfmBkX(czzkjONB&^55nUHkOuq8DhN>ZHn_Qsc~s1xM*k*b!$lXPFVMPc4xn`RVjI$qZM-LP#=QM*ox*A%%?tQ4FqR{{i~zUX7+LYb~aVEaw%U!kJ*r3{oqjewFyN)&gBS zvnO0m*a}XfE^$}`QQvlEdu+?B>9zrBafrTh3#(SB|A|)TC&B%d0J7dUI<#b;F}J z>v1RF@I+kCcHp04??g`F`I(>ZiOD;b+^ZxmrF=)+pRGMBAbBo7rBz>gPOHhom_yB- zS;w&At4_Sh!yq z`xWur`oy^Iy-JT+YLBKQ%ZOIrN0K)pUpBjzX6Dd7+Mij6)M-wOb-co&Y`uzAjeJA)^Y{l@usEH62! z7+4@zYovpu!DsAEYYS(}wN`C)!TGDM_I6KUr?F>V)W>r>HEFx38{W)6ZAm8?N1Pox zU8g+f71m6x6JuNPnc&i9o*BALl4~1C4|pH<9I>V1`e$lS&Moe=`@TSOV(G`tAlEr} z9&&~pcL}L}8YQy(3HJs|n+?bPo8|pUzp6>~E>ovO>tLr%s15VttDS%quQc{TwJU4Rzn4>RVQ>rloLbXmA~&0)};zgmYh><+Gqfvd{~URSvf`bwM2 zrtBcqcU;_Q6dL1L?bp-Bf9KXt!^jx+cL&H&No!o+$CsoJ+qY2hu=xtzdbjU%!Wube zySsH|yF2yvMN*K)4Lx$5qMRi(^Y**LGx?%*t{*{tJmN_6?U=hF@f-PmLT%46_3R{uRoP*T zkP*Hf(k^4+|wkyxLjMH%rt-0da4uX|n2-21-Q1o^`hK5oo$XKs5SaSpy*Uqefpu)nMW zdvYtdXzFXNqv$$5Cl5|4roKVw+ehq=U8ZL$h=-7#_-%7qw6HZ#Kj6PdDKS!tPfxW0`aLtb-^h86r?5pYssW~?)5exz)Ss5*hq zBCpk6vR^h$oXC?r+;tAaEc7aQc`Jyv1Ml3SS^2Tu{gbsWJPWLOchu$6BYq#omXdKi z_qyDdaW4K&r62uiPspck?wu=5WjrZODjVIi_>5=4Cu~FRIw)zmh36|?z-JFY5uLY` z6TOl%${84md&4MKCHyPayrOZI>56);$6ddE^>YWY_&n&pSKi6txrOd>(uiM-^$;Fm z#JPv7?@m}J<9f`GW3eTs;*-gzKI9B<@d?+}d|dO}zE1O(_ceSSPVYy?r>!ch`?c4p zb7z3*zVc34%KI_*A#2F1@@%NKkyoBI`&_;>YrDIi`i`?`sXG^u1?M7idq(vl*bk0t zj_~Z9?CMokPUFUz(r@DDO^NEFjO_;UC(7?wLK?r%6$-l z(q}wRZU4^4!_Plye`VlRk0+d&wU*{Tt%cc0wIGK{`)xU!xTu<6lutreUrAk^RBKWD7+Un~YXGdDeQhy6YL2aD&nf-ex& z?yHY@_xG{>e560=e|^w5^dCk46QO3kpJGR%4)$wh9|zxN_%Bw~^)CQ;+HKHBOp|dK z$MNq2rG>Kh2KOHC`?h5$juxnU?=1?nRRkvz-t?g_8af6JoVX~Wm=a3qM}Nu~ zz(58u7&jiush|=sLm0|1hBJbZjAArn7|S@uGl7XrVlq>h$~2}kgPF`?HglLul~_1R z3mdt?K0dOEU2Nw7$2lfZY~wu}*eh1Cv6KC5;Wi&6nuDC+7eD#U5l-=ddz@w-^Vv-` zkEr234|&F8p74}U)bf(&yx#|mUj{(c8QfZiI)UPlq5-(6iJmdNtX=H zbAiiT;SLwM#9cOXQZl*8Eyc1VuoN}l9Pfz?;n-00U$3|pu^plNPRSz+o?xyPX_ zZPm~;O{pslr9<{e=Tr9SC^?|Ogg6+~poD%d8 z+#S`$QT>${C-LX%L!a9{mkakL`zy+u=+JCjkn-+BtHDiiK-j-`Pew8T0RR910Axr26951J0X%pB0Atqx0{}t*00000000000000000000 z0000#Mn+Uk92!&`=wKX#Oa@>8gHi}Y34~=42nvGURD*;m0X7081BWOJgH`|pAO(Sp zEC+>L41rcZcV%K`23svmae(c52DgL#7QWsP1)P&>xm!9n5f!LtL=77UfMA!S+5i6u z333d{0N)F$w%u&cyti z3PH8Tzdf^a_lbh2QV|a5UVtS4I06-yO8Kw`LPw|o-FE?;0h(L4jgcZC6(WpDM6Fmd zSim+m=xuC-L^&q3L`j!XAXVC=@roFQVkhD=rK_@~CQ^%N1Oq3{@X`ZP5*d)A*yZ^D zZD#>+kl4Ggs=a3~6DB)(PgYu)u9l?F5D7^*lLQYSt?0(>SDycVO;2cdgX$IdN5+V% z)&j{0*|P9Da~m9>zW+b{RaL!Bv6WgaCZ|@pW~CC(xn#xuiamyKoMkip-l+U$T?tP0)N~5I9jg zXLDc(addG;a6=^7E_`VD!{N3yAOKc%_`Y@|Gymw#oEcL5X=!gy41y9l9^P(z3+OGP z?^ap+Srp*$LCZBe41xfg|20dS9JLORg#>baeZIaGGXMX9oteO9XR{YP$R1I4OE4d1 zlFUw)`-Y`fB_@{15zeHN=s4pE=g&%BqjSq%DYtZNf&h?#-b8P?>cXc zmr}Pyf2plf?C#3${IBKrij{FlR8WMa0GV26kHW26jTF147OSR4X_Z&u-rN0Vd*;2r z3MnCF+jQ$=BLieajXp(dBlD1d(;ndge%IRCt^fo2*y13@uqDM&m}n5wh8&HL{U``+ ztQx1*hF`taLIRM1h=}_+5fKrQCP@8}zt6mXN}|;ce|{?pYl0 z|NjU;S6wnXXM^(*#{dHTc&|%B!-E4R_#+4<>R$WsL}~btldd}I7_{Cz?adHqL@uwkcR6GnQBAG!GbQ6sgK zr15pk#zPsYMWm<0RpAJ{5HR1xs3R9L1~~4H`1kq`*PwA~9-P={n%(*nl)9~=9pvQP`g`%4& zuOAs`ZkANoUC}t76SzYAi4}H{HY(T@5sENdc}eG?3E8m&gJ)uCjfLj-ovz9fOf<{q zbyjmQp#sz&fRP1>kwYapVn!|5}h`(pfZ=WA>Wvtf?8=9zCnHbljLQw0o_Q($^SI5*SveW4Mo3*R0$9YQ=YvO`7JwX(HlQf{uGB-HtM|L2Pm@sJj18L}s4pQlXK=#{CX zR1)6hnr<&ihbw6Nv?pIbi8L{;(ZEeyz5O|#ic;L!QCRSZfP#sMNR)-PXxJJJ$|-Ao zX`H*Mg<@Cd)k4$=A2}*FKA>jO-?L(xmgd#afmL28pFm=MzJg^Sf22E^JQZrHswEc$ z>%y1mrk8|x(!-Ih=lEf1=1!1&2}P8+&_a8ls0J%CcR(qRcM%Qj;rx`neor5e_DrDx zq7p!Hs`F^edMxBDT^sc;XUcuTB*cXEw^RX&p;) znI0<)S@7s&60k|CY&PI7#Ijop+?@MB(zcQ>c*5yC*I%j@R_^*QUi?$QTpSB_z3?+pyKu~M zkWIY;J2qPUkW%UI+%D9oBhZNB`UPSolQBx{IR==ykcXpbaj+vYD>efQu~J+>7)3cH zM>&y9@Yo~bE-#$19WmeTaft2VY0!co>@|wolN~dHSeV<6$`LkD(Dujq_keWb_K3)# zgJrjB$rq~$6}5g*tnT^LK4o&bP&>n>m>Vpz5~xbPPV1^{H)%UIW*cB3(T`_tROw*@ zd%0o(7+gGu(BS5GJsF*i?uB3$Z$Cz_b%wP{{Faw}sWi_s#qFVjCdyaw;l7~;Kau7S z0qlK1RmUE6ke&bLr))<;W^ifw=k(>x@nCDs& zvjRaE=`_#K(2WtnjbLEdnoQlU@FNx6PsGvTRrNxSSt%RWG=$!aB=%6sOT&P=vcP7} zgFDm?Z1&0+X~bsvu3p&D#u@8W3ErnlJB}mo)wiaJ-=bbjX2{YtuYByk*woMGGd3$D za~2B;KP>n~B5KR?uRhg(Gp{&a=iIoqE%Xk@`65*8!xgj&Wv9Eq^$*@HzJ}ruJmhS&ky34|}(FGBOT=;sBj8k5(ukVoxpYed=mjz` zGBL9VA_*2EFzkJpa8^JBn@G{wexK!vL3=D% zhRfyi2yB6AIz=UW!G4q;Fpj|g}6mbmQD8 zCf6^MVzrIbYqK3X+wGWQ{-U0_+8|mvV_W+jKCgO5PbR-E2O@w@tNp*WNX=DL=7G1| z%mC;aPp{|}s}CM<(VF{v`czn5j`8DCzxWaafmSL))6>TK&*&m^Y=!LFdnrS62u1a^9tFF z*t&|w03T0tHZtT1Dq+0GfS|vYiNqRREFfX%`V|wQxHpAv&FC;gO=Wv#q2#ErQ|Gx-?iPufr^}{&LnwH!T>l>R}+dI2^`v-?d$0w&}=NAtiK6?D*>9glA zMweIDH@B*_cW`uac5!uc_we-cMj%mWj1LxvClE=#WIuljl|~N;WH4DlY))`UXjnLK za6w5~ZBs{YPv7DGBgal0KY424^x&D{(UGx<@tNt_IUp&DD|nRAoe=XpO=wgsyayNq z18!J91%}>=gD>Ys4hMi?x4qYU_PoXmw_knjt+!u)<6<}8#mC=$_}S-}^vye%dslu% zY1N_X%K8Ri?S1X7z}@#p0hk;-4B^EIw4Q=};}?JUCwvmg(~YzYFzsruuA<}jyK|NMjID9Bx_sP9n6rj6pd z(JjMEK~?9G*QM4~$@Orxw8V+!G2*?eW&Iu9eKHY;#(JCl5-tj`pTc_t;ytPXTpdb6z4?w}zMs^0{ zgiEDSPcYDL`qt5a!J-_@*{6;%<&C{W)Uo|Q;YFmBrLFI|1i|6mh=6988w6srbP17W zE-De;3r<8(!_!=lrJ07An-8KvFoV0Zp4u3*Q)E-D4v?HU@$B-p62LL15!|+{alxW| zQUc}9rN|P8w$OM9CR7W*OFV5#-m(tzMs``mi5PP@vXsHB0tr(JH-H!-c?1@%^pkW< zsT&5s+df@47Fgg=f=$YA7nYMxOG?Nik&Hu^BoONVj5hb_D*)(ophqD0M8IB4EB>tu{~n+YxYW`E;7R1=f;-Ix{j82D;8&Tz7J8Tq<4+V5PF&z#>A}V zj1d$nLlI?N)!(s_`&1PWC6nqTMC31cs_!I2kiqgQkllwsFfN?u1Gs@tcVLW5A2HA( zv=;Y4A);eEWSPGYR#8c)oKY>%4%rC=N18oaBVKbUnPho3@NgX zeD@4GdJBVu5y-HXUbZ-;NqZ$@EJ9mgc@ZO~PZcxa_(D+51iP2erq6!A6R8AaGYe2D zQH9P5oscdFtkZsP+JneyJT(N<|Mu(yCV;@4HBdC4y98C+LC!Vi*tysbJirRVP)* zRTQ2aD#pHZ!z|=ZB%HHhaL<7j6b#8o2O*cU5dPE{DiRuwmD6KdkZJy;NHybi03^=1Q z-{i!=9((nLj43q&4c~qkOnb1m%-pTGbEjwZz9Yl3PdQ3b8(WkU3)wuT+bsW(oPuc} zd7w+%sj!nYk8hsdIIaQVj={bRdpj3G5B5nar^#lU|Jg7cyolc-uE*i=SV@ZPcd2uyiBxSPe4uBnytp#AkC#UELWSc)%EZeCgOH^m-ZLp=a+w8p^;+z zoefu0-LV_7OBK{02YLZXOkL$xc8i2YP=P+s>TCB_fSEJ*1P8C)X^{Qxm%CT@aQ*yJ z&gnBdv)fZMTjJD5k+^bnAh8FyS7%tUqfCu0rU3{;lXW9 zG~uvh>+&MBZD1#UrT%1R+`k_!lxUy6q?p&_6)l$}K6H05)V22QD5tHAP6OgoP-$@P z9;ceXv|pzBh3u5-#P!^J$ zmhqz+<_|%#;J0j+(DKypPd>o`ZU1D zDG%&Q=Z&rSrX=>^+vNn4j$(JV-kn`2ES+L9`aGgw^fKH^b~$67^sWf>G(7pjlXI9m z=WtcjV|j#NgN&VvLI5FGMUiHzK-ykXh8c1K;MwO(!ATOad)J4UJMQWmFw6kKa|oZ7K}sd{DyKSzw?tMM5Lt5PS3E1vw4U)qGMB8y*RS z%a9R`ePNk1%{y4=57einj3FhM_WV{EGujd;fds}IuFcZ#PRhtqiXM3}i_@e-5w-`L zHE)@P=V?hx3wTb>LV(F)hYO_9to||=bL9%L4CsRy0jBif5SvH}iNG0RlPZf8R|_g& ztbgvxdGDPoPu>Y61Pr?uS&;aWpyut{cWzhI9s3dvZCWOSt1l4yL#a#;f%eottqpo_a!h0E^!DblO>NU!GI4N4P2FQOx&ByQ4z`$;%f(r? zfak8ghPD^UpwUl!9vTHp+<@APDSP;8fV?$b%*nCj!)SR%60CB1TNwQ`or5Q72 z37*A=T0;h}q6LsY5Q2OAS1M5pa|94165ITTQrYeqd5I?;csrlXHZK>DtYDULOEyEwLV>?Ixz)q;)ymjLRzW>ltG>xq=D4dNbN52)SiuCUDZpqu+B#V;7o z4b}m^`48fgZ)K2X*YJ zb?jP)$q|PxyPOWue6L1y;<9(rGf6l--Sy zEL>Osd|$--pWv=P`k8bA=e>fSLD&NL!U%PQM1~RP7(+3TiGC$+-F8#~c1|nKA=8u; zjh7&0RmQP1?h>wCI1n7Xs9)xl+rnd)to*eIDn5Sv7(bxJk9nU&9I}C@r3bmAx9ohv ze30m&0!3%$K&TBF`xksl&<12~kjtU|{1PxnJkWQOfb<*_pB{qSdo*&mrqm%&;FS^R z*3M%;k6I$(_8lGU%^pzPZ9rQ){g<%rDDoUZt+rI}0!*$Yvf|0~lX*h3Tz>%}zdV@( zOq!K-;O-&e1s;H}BH})Hgsf+vyA*zRB&M2gzPPWYzUPI%O3pehL$k(SStQn7hi2V; zs;F2^avkGMkhPar<5377C4(iHBL(~vjp|N6?dha0a4YpiB-9hlK8>m_DHy~zwYEfcwhV`_k1d!PUy9wY~0+FSmuJx6NK-!(Unvz%8V3!={{^U=N_9ED2$ z75jeylKhdyN!Gj{GN`7jO_nK@Q~_%+nnk5W2Mr2>fWE(zxncGP7LcFv?vD{~J@B-e zWyaeM=;(dfxP#(?~uUqC}Ir1|8LFki{5O7{7#xisRETbDkkWL49ydIB;;pZpIxD|E$-QK(7d1?2_uq@jwgiFVZ z;N-{Y$zw0h8{8vD2m2MpH#PShwD&e5a%qYlbh^JmvKz(4+n?a=PVzmNcg@#NTCed@ zNqy9Q?q~_is(&rSrLXhglJC||cd6@eormdPV_6+7erqiCk&lY9JT}<1uj4UJ-r7kX z7j(2Hd)E@(Zp@w8?pHNhdzSG#&K)amwlc_YmqU`Wb#l|{0_2Ap_7~-f(u@;B(wo&j zs{Gr}fKy%q0j?zIdn#v(Q(I2v*;b`w>0&~@Jyts`*}=3c}vVI)|9bx(pLGF z0lSqhW<*WU&7O@9kRYKZoQ$4zp_4hYFj@zv3J5cSo6gG ziLpVt^himB7=TLVU)1-|h18|f5l^Y9i|f~WoHV1{qj4bzMEhey{6KSawl-z27Fb8K zBnJ$C;BRaJ0Z}^I6&?_}q%JAo0{oTK{nNoA#} zK%eW)v~Ov25ryPaz{mm8v-T^#(NXN65E_Y)7oV^PX^0W10^S6nV7CY- zB8P+$sjQ#`@GXy}pW@v|zj8M#B7un~>Xj!nQS0-DiWlMKsf}r6HRo^XEV9^9$+*Q$ zR`zT0L(7@IoCHp#DMTEOLT2C!9v1L^mRzb_1Br`kahgSBi;Kzsmd+&=^+iH}X{fR!O zyNjg9$wk+$IB6dFBuj~uw~KWOvCdEf_a;)KSxgpKQ_?v63lYP9@4Qlp5W&ajqok-CX-m z=A1^w{TG&#R2r%xw@+W*j9ZyiXsSUvWOL{)``Y=)hy^lC1M2l{DF|%=E-VQ#3eWiZ?LmAr zmRR@f#?rZ{Xfoa>49B?<=_hhbiSu}RB`jQ_g?;SErT<1J&aa*vY3HN#3C6E%6J6pt z9_MZ4hm|RG1G59c>;g#R*uu=rrOQ)`Mb2BBIw(f}{3P*dbD)U*e2TBtQ>E|8-Fxco zCvr&IHhzB|b*sD`_f3yK>**YMJU%_K-rY6)5PkC9^-Z<*=jC;y zkIG_DvQ&H?=qGso;;%V`i|qSkw?R2Qv@u7@(K2z@*_Jgk{-URA_;Fg;fo^~5P3_`H z+hnsh+t^IoV;?a084-EG(m-og*cwCs6IEbL`?u`f*}TG;Y-{YFegB_YE7t?9>5*95 zIdJq#3E&#wA^#xtK2zxFqM6}N&_yVpTgIs~jgTfNcTL7mc_!hxje@+8G!++|tX z3rJZ^zUcy>oUYflkbn+xv=mH}pZ?*0Gri}(VNTnEQk=eKIlg7Re(b(P|NT9R8J{z( zkkKLflIW7L`)j0~f-=z$!^}G$>iu#x;ps;pf*%^WC@D$d)<uTl;E@hH#7%?#@ z^GK6%hb6+yxaZc6nvz-lmC$bt!_h>}MIKh`E6WXu7*HQg^t<2BkeGX2PkXezIm0yx@FcoY0 zX=K8f|5*j%;d!Hwo%w$zhDCq1hZnfi6$Xjg_Wbf^_pfeF6$&2IbvtQCN~J^!J}5ZbLB; zsj}3B*c}*^P^Kp;J~coi&{)tC+4bYb^{QHwoSOXhxb38Zw|33j%i|Ul`B-CpKkblw zCzEUn`vb=#g#MwJu78VGhP$VLkbHDhKDfPL#XdVxxxzUg9h=^Oc6UnLn@^915)D|d zeMv!hA9OIy7stY(NTJsf0Vu&0?q1P7Qqg(3xys#+io|$_`C;>sQ1mNm1cSi}XHY5O zfhbR5UJM1D!=GVx6V87MW<#Yc_fr;L4a z^$O_h)+r#CR9r>9|OmGcZ} z_;p0dBt+{>?9+6a)D>~Q^E9uQ{_J%IH{5AR-2l}+C@R>XNf>-F^cyc>7CdLM0dRJ| zPGU2AlnP7A``J|teM-%-@zRcgmI^l;8p6kmj`45`JeE#HV!Z>VP(v*MOTK4u;`k}|#axNb-dF6B5@&h7%)m&61I^hTa z^>>Bu7w1$AKUY{6=RTWe6wY~?HChWwcbEO_yoAL@pwK4gd%})ZTfM7z#upn&kDEWuJB4X?=C8{tZM)ZP z&LH%}#mC_kzs-1!CXFR|rONs|_q<6SP&%gM?{*FQnmlSfYz;RR2Y+G=8Q5iOqcrjA zs3GcN;zXjqYJQoO7`r^%-r8hlG&B3_qy%AR`p*p5QtB@>uRuD*8*hQ!J!a@ii<29D2y`Tb=Dk}3t#{S|z+<6Ss98__K@6AG%5EmsSJ6J23+Cl2zP z1uo4ePqsO&8IW>RT%4@BdOx~kauH~_(_J>ducA;|rBJf3j34au%)mR>qf72w7`Q^N zLOpaZ$<^@a!-d$iz^8Z@NJD2s3-V;sd~g!7<5~%D)5_Z{v?A7<0svmXF7%Y?--VIkl z8@s;6n2=N$GT=#I5zhQW7GV)=`m53$Jg$FjGj)xD6h98wim z`i1p%aWODJ3*2_#>AlBLbPm>s%0Z#2Y#%J0odZqJxBiVUPHjCOhM zGLo&(FVdGS-wGM8b6WAV5~Sw!NEwoqyhAz+6+r>Pvb`s+JC;y zLj31fs9irC9;H`q2I+-+>+i7*Gvex%n0~*q7r7mesG0^Awa#JSDCoza5{QADOB*K= z99+e%>6(kn8X1mKxV(HUxwR!-V|hs<-I2n@CBAtu0U6_-?o(+VQxl#U6J8$EY3|da zzq2nME{RGU2-j#fk@WCrW(Y^f3J-U(U+u5cMPGSxtqQ)7{@uNTIHL)OjX)9@VT6S1Q>hq$#I>x(^ng;FHc9j`K{`_a}cwXa!gvMLP3pi`Q zfVExF`zN9I*Y+}iU4g!@1wI7X0hdOn_@t8ENc=x}$I*gxEFsxPchFd>;1^5v6?BjW z5`&{7a{Xt)^eEM#*)}_v?8b7{&ZOg9@k0@HQ*$2(!Q{yK^ zEe8{=4f^*P(~Gc#A{~xgW2#b^iHWv_wRxDndZ~Ph(~^kJ66xDM1fccqdR!t7<4LD- zRoo|BI0y>TBGQVY#*o+`Up0NM0-96R5mwD{lI1ZYBnW1qo>g++KP^<%%4TV~ifS(b zwp@U1azLPf8$bgY&l(}m^8UeBYptD!uEa~!3)xQ^Z4|0M%7!{88)rxxOZ0u5#Yux5 z!+L6vUe z`Y`SvB<>C;@W;w(%Y~H8qNCZh#o;=^^??IV}q0}l<#!&E+dP{^jz1WXo_&rGq@ zh9t+|GNH#WLk$TQTbdPDjj5})q|I^2Jmxoj{4RRq=zVD4eZcO-r9(cAQ#ut>9BwY9 ze4+_3RqYkQX^8<7Jj(;^y?amI`!AuuKA|}_7eJQ8r^B2(BtxU_t${htzxO*+^L}%=S=o`}oW7TO4gG~IkL|_;u-k4y=MGhF` z`D)2Aq3lo{jqcsSG-XOI#Tn9g8k4xpgyX$VyL_>^{w75xP@MGItwbdNCRW@fSvY(# zzDNVyux$|)cli8{0B6ABIC?Uh$G7|n?h&l3vS{dm$@R07=O4~qjr%RJDZvNq1Cm@E z?;Nq>AI1z=`}C%XGNohH5}D3C5LXgT-Yel-VMt4dIK-(TRc~Y+&J5w5Apqaiw*A)sQ$`+vZ@#Z!a6UI+=+@!XIS2;P)fh@&~ ztJJMF-TSB2=t-;YjU<7G)%*J_ZLMvy5qk?;%l>{#8*>}!ZEdbXx%^(Yimll#b>h`r zT9x+Ms~p4DB8TA4x}5vsfKm<2#S4+K1-%$O->%VzvsOqL`%3S#FGR;jyF!Fz8s5^X zXV?LviD;wu@uv~(<7~OueUkEscI;VIvaw6blo{Zd7XjZ&Y@!qg@8#n#R4b|Tb?GVW zy)x*)d8x@9&~NB`m^ea|Pjnu7YyprjD8R0m!4|odYtn9iI@fOpqu99;%%g7;&4{iZ zSh&#Z@U=^G{T+DIFKH!Vxk5u}{L8kxal<1`J*m83{XOx$;~zdfA3Gc7-`#0a@TxS+yct)==Xd4R)d|l>EvXxZu%}j`FzC zRxH_GBmnU`OY`##ZNzK}!8gd?%QHy7k_~~?-r~S7xWC4_CFKS`cWeVIky+@VbMGI+ z;)S>PQFLT3_r!&pkIp#gIYLI)^vIo{xs9#6>^s%>d5GYyD_2PKQ5EUz$fYpU{lTPK zxg4a;Js*&=0s|j{CxxdB_*O141~DZ=za3}vb$)WD>{iOrsc}~{9{;QH5e!SjF6dXP zMM7K!D^28AsG6UuNg1Wak3wU7b%&_>q{?0^!>r>{TFSRt*}swh%jV33r)vZ7Ez-A# znuw)C(N3pbwH8hGzs8lGJ1wTIfr(_FH?ay7>|c|q)JVa3!!ms~8yY|*<~Em)t8p+3 zY@0S}ObjW>&?PT4z{WGSq#PvHU;kv>Uk^_W(_|yPt?T}HyAHR)HQc;<4uF3&^*>UV zaetDMn0Z=Qm=d7PY~dI<1;i9=IJra=U?fum-zc;L6JY&@R3V4W3>CxuCoDDgGQrkt zV0!^&Om-D2_I#{4qQ}dY?n59D6ZpC3KH#;e)XSldt>)>3yqgC=wYtXIS5p`eyN0G& zC6sfXel6(o>4_jdY-Zi$K3ER3W|$w9K}N_)t~iDXTE%U2SeUT2Fc=n?>?IQhJM1Af zi?qGFrke8MB@vA!Vsx`5HVzB*7DEnNRgjHuV18!%eQqMks$a1CE|?_@0Fs-oaP=H< z;n<6(96pnWa`lD|zvwIYRRtO&$=zoFkCJAQ$YvoVBYyst_`Mk+68w_r7>i5uQ;QY9 z+s7AYA}YrLEM|)jiWe8|+!+s3!Lmh$SPnml8SavMDMvjqUimrKsM;;n0K{l@X6tLni;VCXoYHKzC?XQTQ;|# zE^U8Yp_!Yl(66prhS&SYL^_5^kq%-B+_qSro$uGq{sYKF7g#sLe!&p~IQs0dZI`L6v(YhdsT)V_q}l784;Fdn%{DyVW}r(r zNl}`DW~s`<9(q{N1QZQB@>Sm4O#tAdQ5`E;MH$xhP>jY2y&cB>K3ff`? zD)jHXl%qzk?ncROHK_A(V8T-N{yyeF$LB_4li>RO>d8BaAiSQ_i(||AdOt)ulnCbO zNG63E!C*3C7lAGvIO+z!KJe?Bt)ZI(3f#TX9eDN(044nL$$c<(#kyfRG}fse#M(0k!wQuxei8u*wwW=HggZ$I7gPXGPFrEfm|`RmQf zQT)~N^^v1Vqk$$rdgqiM_XqNc`Q3T(%<;9L&B;G*B<;V~0#@%)5&A4n!EHgi(_dc; zFM1ro3_!w0!YOoN7_cVJ5=`NAFPdtFA$1Zr1vIC+zF2GF_hmpR3Y*{e)x~xN6H?37 zbpbG_q}K>XxeY8`FqT^+e@|Mx+1bC?zSWCtJ{}xiY~KX1Bid7-m`5bb-i@_@xIs8N zPKEe6#Em+D8y(Xj7Utz$bWFKsL1J40Qj26yQP2UBP+V&1&@rMVB?d|eR}G#Oiv5n< z?!SHfpMNDwo-NG1fBuW#D@thoes=v?gGYtX0!oeV=0Zq^#Igv<9z8F~7KEx(V)k9l zD1w?(e4`bPzFKK=t%Xt+)ycoXM8$QGdx5ckOaXoI&@-0ze5mRL z4DQhVNV>RT_?qh^%PF++ZoWqjNkk3S;MpRZ_@UtRTC-)#8C*ke#q*peKl<(;H>+cO zBk-L@aG;+sfws~gL%Z)jvlrt^4PLKu0A+{Ga~p?R56X{pc;=7> zphe+q1-Xf$Y6+BD6stEiugl%(;;bj*X;q$_S1%4c|G>{rq1a`_U1Y?7%9+1H3K*@H-FZMOTL43gUQ4h~0dY^e zP>fjdC3%u;3LpvYKRMi!1j5~j0HHds77QnEgc1Z6pio?o8*r$qwgK+zru7Ey8Rd-v zi-Z})nrDN%S&%F4oSqr5CULpO$tv2a1Q$};20_mv{U??y_f>m;`&aNu>i}=~ZvYVX zt6*^HI;3pCmX-c;8jv<9TLzS}5<(n!t2mfEB?rbLoTzra<<`&Byv!%N$>t_Z4F zLslVV^Lf~^2*jw@kWjLcNx;fNlj!o?QqBFKq-sQwsKx8I+m#NEW+loTAlR5n*t3JO z%%bQSV`Sej^{qK@7y+=4J5EJn;ovIAm0P$JPg*yPlj-i`o{3$xd9^TOONX-q%U&W0 zqs6^ZA36r@WM_{xf)xSXJd#!HuHchSpqayp1PmkwBQyh$xSL|)oT5W_)oDF*#GKZS zl(dMFX%2U_e8U_WXP6R-nPAOiGMxa5PZdrA*~+ohA+#7J!QfPnPKk(bSL@VpfAbwE zi&`eWx4`Lw*wGGa2+b;zo_-%jF;Uadn#c1w2qlW9)3`#jG4J9@bKU$EuWf7b#Btu7 z3BwEvNwwJB^+OOW4>cg-c~y8=T(>MsNI0KTAig@5QFlmy=e4T26=qHx#a+DQc-&(T zVB`qq>f;q22Ukx*BnQ5%74T)!TUxxizj}A~Qhhf_EZUFyfm`*d{@g>ktSVp<#2nRI&H zgJ!z6kZv)Riq&+fXr;!-8cTxauf$o?_{K@ru+iBqbD+rtu8CoQE?4ptf&ETV?r3Xr zjvZk};7j44wh-e`qDkirMFrp$Zx(qb7J`GbYf2`zRjL75z?VkLTJSu~>`?Dwt(`7_Fw0fkH;&a{La zuSPyizj+*sRHYO~!hB(vxJ%`lHa`9nb$f^VzJ&j_67ZlLR-rq5`}nv2e%$oiEGdZ} zrbXjVvbz7?SP~AyIE9Cdx(~muAB^5CQDzEHdjwekyA!A=i%2Rfp>;yO@|+Bv4f?&; zqSsGDI0!(|g~YRYYpOguT67X-H#9^hZhH}OcOK{l@P=(0H$u#q&2;i0W<9|N3({rc z8nDT%^O`U`jA_vYV^UnUaFi&m+G8qH&{GC*AoY?Di_wFta8w<6Ef&}hD5XWp@Z2D* z85usksl~Mx;laI;&~yIX`zKy0g@L-+?`pzNI6Sm9c{Hv+YwD=zdREZZw~v?32H3Ic z{Bg-|G$7dZBubH5-g4?@Vbb&uJazuAtQEuSl^nX|7W-O@@V#a?HrTvrZ{&6%Q;RX; zD*_ODNpTm98Nf1dgF`Tkg0urdK&I{DNC=vMr3)%n^juF-Yy=zz&<@~^fNlz3O|i_w z<1O-Rz@~k)0ZY%H`$Yf$CqnRhihk7~58wVt_Fumw)$uo_?}b}h5zomj=rCD+@3*5s z=0E+qZnQk}hp}bQeZExeJQnL4H;Bx5E9FV>ejO4NNPPU!1nAjNK!FC%xU-UieQ78) ztplRkd|W$##VtX71TN?RtR@c2$-rhk36X)-`PV$7Vpju~{U0;e`c472dUYGTuER@U-U5ZWV)tzjw{r%LJ zF|Z=&dZvGWw5Y6_T@ht|W4PES(u4nySc@*vt%bem2iaMz_y|$tE}9?LT3nv>1EsRT z0P|2Sl2qw1gWSxUeC!l^(RE6g)osQd%E(OI+N7dPvX#bHOs-D^ftNZ{Y)R^)fQhIE z2nNe|+lrd{fk4FABv?r1fKno}REi*DMXH^EB{d^>Y$RCbT-qtxxLwQ>i6rvfK+m@Z zify(iyqe^@29OrBH&M2wbkB?i#7(RX^H-wb%omRN^>wfB9_?ua5Sgb*bPCtleB zA+gEDZqTdUI99Lg7|6agq%Ax04ogLhfn2Z9M2nRjjh2dn*J6tA+d!WTo=r9@iiVnN zsYXT{UKi#_reF-O?$VE=FN}n}GDc^OwY-*;a*zbr;YQD+6t+q>j-gw&_Rq<#v7-pb zgW3<_HDASaZ(KhCyD4l;Zr?h>Sll!4K--(TsF_@nks+%hk(Ayzz;C74c+-I25+Bst zSmx^mg`pk*Pk!S%>}lS+w3_QY~(>IY}o1H!tRNYt+nkkl(p3_=Z>6yJG=m`#(cI*x=4%;#jj zs^Ezi6zre)ma@}_8(1Zu(E6!XJTlv_UTjf1e-%wAH4;K=E;Ae$PA*6>jMzhTju;4N zTthoR?sO6X0D`bWP@IOC?H}Csm*B287eWJ2=3olSk-v79i5~F~no3Sty$v zbjnapt;YJjm=0;C&w-K#sb~#C*qK@1sx2ck*l6GfZ;@M~KPi(ad2g7BNkb$RUMBs* zQ~_??c-r-Mzl9Viq$Jsb+9z8QU64Y<%Z$AzV)HBrvG4f1&mH|antqFyERK?;-}cSl z-8)SuXzi;Vvrb_jTYa8AM){KTy18|DG@2jYed0kkw!d=WUMKU1!|ZebU=akPaky*c zR2&^c2WN_UCh6~&6%-|j*5}NXH21RHql-I6teNs?zmQaCX?0;*=C&P3ajk9ep)jq> z`!p@mDQg<*aewbzD^=Z~4tnV`MSE|}sE%O3yGLtZm({#tK}3&|pmss1bt7w3#0|ty zxJ_w6gQF&4?q##5oBgKg9#{|Y9GtlphrWl!&-rKbpCS8G zJi-}n4n9}>g!j{L|0{l1Ho=?lI?47uA`UIz?5{s-#j8@%6H4v&!~JJ*7bp+c^IXuL zf6n^`Z|-^H%?dk$4m`Fa2A$P&tK4Z^j(vgxN*a@*>GBrr|GO0Fzdq5gul$=6>AyDd zZ6(j&$!<5V0|Tyw*EY`BSiZe{tQ86sE~cW`ppw}s7RNYVz4)+tP=gVY%n|~Il$4E> zL)$L}zUK0v@D$((3}uqlnCnb9$W0%5(uLhcvS$0`rdn&N-e?g-*lH6@SZEw?$#hn2 zra9P5R<8oT((Ts%>G|ai#*&=`90|3@TUx%hzO#E&F4TAEm2nvb6PH}1W@hAs>rIp= zah>QaLb9f$vW6zE3?*H9c!$)chkREn0|vEKB;bfxi;LanI9h6@3IVoymiY=rIq;ut zLQUTm*rp&L0&yg8G7#I?hJY??gEq6yye`k2`?ZXjtLpP(XvKwEu)Ur6e|}fmc4jAR zK}&c1wskBIygt|VR7Ye|MjGpOf9v7nDHIJGEzV1!;I@8`!Ogn%7hNdA-FXwt&DjRq zUGcG^eQdBnH%h!E_dwS&>g14mm)m_vd{Ph9Vwm0%tde60*r=0+f`Tox>&gPfS1Zpq8kmsr zI*bdJNz%{-65@qZkclgXSd3yUfecjN=8@C_GTSL~xynxw%i&#SG+Tc3nj5y^vY4I+ zAw!T;tEgc+6w=5dC^Df_OS`j$5{H}QHE_@7u*d?l%tkaAy5uCrdRPJS_On}@0xZ~! z&}tD8V~cL00WA^DMWRQ2kc{snS>mm-Oj0Di%rr?TB3U_*(7JzJ8!TKO4qrx!A;M;D z7}(>~lMw{a9H@X$T#h%DK?3bE1nOCKB`;BRmN?0|$!QeD<=s2EJXsU-IK4f3_(u0H z_sW8!1H}86uJPQ$MQ2GD#ZKVD1@X zDS8h?Uf4qCt}J~+$?XY%9so8;jKn+wSZj1=VRBK|hkQA;v%)Vm&F&n+tmDPW+lJqX z2N)pjDe4(W?Hn<*40$NtJ7M6rOuP=X3OWZsq{cbu)!+4?WmJqQnetpI#54w+=p1Oc zK*1u_pw>{;ShVVG0#%YL-N1=cM6?*}CP+AF-7QJjr1rQVNu8vZ zy;7oNT$MQ~VF0WbkD;52^=j@fCPG3=!z>ex56B{PdrQlzw6%S3cz#htvP7P}UTx(DY>gKx02j&?uz!GZu8p4K zLd9N^qAyT2*8VbTCM=m@V9p3swa&BG0Du<04Ir1@$}6o|I!{?kw?tG3T-p0$&}yj! z9!ncz+V;{DXIc#V7(Ymd<{7B%6sB@eF4IZd8WA~En{S)8F0350+&V}~TFI7+6UIpk z8V-FAu*P8-S2q344o8qhGRrog<6b^R?UVu(IkiQtJ#kFWh+2*IzSl?1(nZNgvoov7 zBMAdK=sF*e31tBdeD8)#D_iPziZEhdp)B6+0Nmjirbh8?t12O@$*xH>s;}DTt;qf%jfr~TD zsoZk0c(?n$ zYrY%j_!v&{6hWoaD#GTW7wsnlW{Wd4t)5eP3hqZ96EBt zigpT*iifeb;i1HM__G0dxWqgJ1}`4yY3_jDCJW^T(@%RRuW%GB%8rp9E}a&zOWo~?X;jBgZf@+RqAL@YWY>Di zNxM$4s}E*6NjP+#UQ)4SveYpdcL9kqIU9ghU5xgOyJ!(fwlJQM^I4qFRS4I2${PHq zJCo60E4_Q!a!LbHd{k>CWz!2goX_UmPknn_21_7O3*iBmkm8^!EMvk(!s%HA85|ws zZ?U+UUd%HSM`wnTrwS}vF|ds^gnb6bVt7gBx%vtgxY`kU$P}RLRi=S0*PrI&o&yHU zyBt^LN#^^^R7I7}h39j9&QE7qa!%{)k+lg?7mp;@)b-th4K#6oy&|Ks#N%0Rz$@H9 zwYJM&=8RG_cAbw}c$>1)S0wCWAvev$?o9E1zQwzb(#*{^1)Gxw1BV%#mae3ud+UwQ zyZd2pxARD3Uhf{QFT>AmF&3^N&-dUx?iFa5-V5NJ?~?BmtLkj}!TdZGclef$FYD8X zXAgES?=Yh&rO3}uFqIUi(+!+IP5)A^k&DXT4~FFOlCRBTL3f+f4h!;@mE4AnmgCxy zSJkV_wg$(n-rPIEMmKL`ejPDtJ=LYW&Av?2L z^tBrUwl7GZ8rbdj9Uh%94V|8kHv(?2azz}pCe`$>)F#z>>#R4lGqEHF6r9~nl35q1x_s1`q0IblttUBCp(rHzIl!|1Zxve zn6zn+l~vBQ6LPy}z3*NujQ&~-axzW#^MY^wWCOwV=>bbaacC;HI={h0>}Wrf%wr z&d_KtZG&mAaEx*uHW$xm=*Qmgc88cKITM#0NhTYJI}g7C^F{s$qkN+*6w+YK((Vyt zXPXts1@kj+4_!9j)tW3$>#b)|ob)=TQ+7G!bl4`xSQOU#th-66FROUCHdKE>vQ*y1V5}8|5p(}l zVf&+hK1tA{trUtvNTA<}bxsm8B3-txk#E!r5y+f z7NTJESqDUlx!RClo4faNgGhS*zLnm97_(66Nh}&5n|!pTlGLY49Tj*RTY}XHp*fIE z5D7WYQ29vSfEyE?`V_!yj=C7u%muLGru|@o)#99vwx<-bprv>k&w(+l&!)9x#e#iS zggl%PF!**$y?1k^H28or40-RsOaW+MBQ1se! zycNo#q|jTtagIwV#AhgvEzNXY4+Yz8W=&=bzlB-GMV9?icyU3YAuyXa>wXTwX?KOH zxiNo7lb*1}N@vIQZ2C0C=|4j@3Y;xD+C+?KN9S3yqY_6bDaE*M4yWNVBMEW;VtP?; zsRK3B(T>IN>%pr~Hd@`TNK=NBY^p9}reU0ry>>o?>K`nBDF>W*U@o~C zpysV9@&+T|27rutbtyZ$y-m}I+gOIXo11}5_{|h%O(zsqJSc^8=#w}eEwkRvq}xr! zqR(QptO)2eYvkj0q&w+WGwKModHM@E*>?)nfwrV)%Umu{CM(IlLednnsw3AF$d!e& zL%nPWf2FhhT+raDZ7$1H}+XZY>WAAg@%4q9qfDPSW*xVjpiWMAH7v`yDc-tcF9nT+yV?Kw)!Ps6Ij#>zIM zW#`edb4!hZv+>5v(#YD}KM^L88+91hu7(oXHX_+(6#3@e$?w3;j9c~t8WN?qd-f>) zxH)BGj*$UKHMucJ?%nb}xXpso{IZrJKUzMyp6$1BgZOImr0|Ea=$^W{stmg{+|=nz zf4l$eNG=gU%k_Px%dStA7I#qJ)^Oe}>j!5vqD}!G8=b$ry^SaH>{;>a<(n}N zN_rNqg-1BAbIu`3GfP>O02uO6Dd1`K=pIrzaC~!)NrOYMwWP`0*7GZg`Pn+(GJ}s> z_*9YVUtVi>_zc;;nW;}^Ml$70QC#g$TD<$RAH4o>Uow6zTIC7#$@D+^qbQG$fi658 z!|C1aEjwnD9auRR6~)R#e-GE{LE8@;UX_E`b25f-g5|*U6i<)l-8SqKl2_?TkAnNR z;_sUyCQ3ayAyem>3cz-6IhF@BZiB(|C{k=R}OcwIQLaB zlC-PW#R#XExGz##y7YJf?%YGtc1%k0>jfaAE~v~DzPSB%Xou3VO-_9%XA-+qVul^l zcE{85HEDWPQrmstd(cT~f}SL)wGYahHmWXh$W>7)z%51XK6Da?eI-3kz*@eRBy$OE zL%u^ryPfo`wDmsUBx~Qn{As?4cMn!Y9&k%hybmjgg6|i#E&WNg^EC<|)(f{gk{HGa z5WfXF20H=h1)u}9kGIi$9-tQ-0h3;-vSh6K{n_c}RwAEWHQak5tEgqnk~446JI`mo zrbM4BF6r}2b58!Y(s2R!_t<2?Rvpmr`e_j0tI3550Joh90YZ1qX9q&U00EU2pk3fI zPvqIaFr$gwVZqqwILx`?%&>|z-m}F}>W^Wyi5Wet;mOShwXB)?0$ohb;Q*O6dN}a# z8~Oeb1A~iw*hF4x51MHf3|qu6lZPJ&S#}OTl)9W7e#Ef+^0LQF%P-%DHz$B~g`-Pm zA+nibgHZwg0*)Q3_|)e8;T<{C05?V~STo=Qk(BwxE$~^mg!&cmg-j*?Fs5*gI85U>CyaY&EokKjbxf6I<8*#u1jJ_tA}#kvHEs(;@tAbLbDX>M8D49{__=o|a1$p8Ev zXCHe4w;|uD0bd@NmS*>3PG#~wK?Y=>3MQ<)1URnkp_+o{1xa6IXigQia^XarD79#% zvX6idNTEkMvdETM(pjoefQ9lrD;{eTCX@EFRC=+da^%n&+L$)`)FQifpk@f-p5=Ge z&Xxxmz@q`Ym#L3-ei(eyID*#({e{E>Ek$VWtq{ifRz=lcqP-+nE$0-Xf{;Z?nK&a5Pc7)O!z`o7A1vSsW+WgtHb9*U~7;)3$r8==0GSXh^OIbd?8_la>Gd;`+{ z6(Q~Q_@h~=NONIrr&A9p4i*SwFHBaY&3P~s)~2EYG_W)@?SP!%U z&{-7P3;6Q-2NIfbePvoUe_%1X|7&5m@1zbt<3OhF2tzqAi;RdQsOm$OgPI+u$AM=# zgKm^W%O_W@egEPfbZ9zRxF6FwHj$|V!z+x&cG$Q2X@5n#bbuVN*4DdI@80!p<+uVjSO`V z+2c#q4KAF0SW+QVxT-aHrUsaSITIKjP-P*Q#L^<(%=d^IlR)Ie3RqQw$J|xR2vh~; zb|9lU$f{`$Y#H&v#>PcQI$JeaC!1XV&Af6hJze((t8QGFF_1Bg*lN4 zudv4K)w_Gh^H%?mmdTF9aGOR>@-t&ELuQ7SqNXu9?+79mn zcE1m-tVt!dgO*=s*rsc00z!AZLK@w(llK7oU*98%g(rH&1StX{n%hTEjC;&WQ&yG9 z=j@ph1BK%0E0Y4TH1nl*^kdR28O}49t46SAIxf!0IiR`Ypc7QS;aZOkrN9|CEf^oTK0F!>r9&@*Gff^Q{D=yH|5(Ffx=TfBb*Krf8k?ay{1EX}jA#xPx z7GfqDE2|@EhcKw6H`F9Z#zv>>e}*&XaD;XUNW@|i%C*Lpewf%)Mv_hnMIGYk)<&+^==|o2!Y+YK&8hA45o;Jvfl42OJzB$oCsWxPcHE!Ww!MaJj zOA+Ionq)X5L@tiEh}7yzN<$?mz>^GFs8mcv)E$iH5!?{2v)^+R%ZmR?>OWHzc`(b! z|G}4^|1Q&^mOt7rxw*2J#7i4`Nw4(&aVR0bKjF&^Hz-Gdye1-zVY?niY;eudY!eG7 z@~Oi)hQ8K z4E!)94e*SCnARHtw>0R>v$3aYv&seD&np9$PP|N$?(lLN|<=QEaj@NSURTQKsgQ$RLvud{@iF z?=+2K%M9y`Z!2KU1%a1t>pVkoo z@sPibo(q69GaGXeYAJ>Ze4~xX zViI;;@&d&^bQe=c^ANBVWEXzaIyT%45*Q+Odwvqku8WXa@fa`CbC2B*m5ckODR$v} zy+$rCo601qrCOZuF`Y)np5RkF4tNoCEts&13->5dR4e|SQ9jYj_fL{NyjLooEM6jt(jvXU9PH_hG{`%LhK%DGVN z!Z2DY!D~jm%-B&OagFD6`UoY0jvaqt<%A;6X7=}l_OzJaGNd@lwO)?qepVVJ4l2y& z@b^k%F*JyFWz*{44MVW8xj{pQ75o-7<$aG+1gv?jlWyp}L#kL(^y1qKYWM*5YE;r} zJv7IxY&Ua*1BfImeXM}@_5=Z2K&pr9< zR7Eo~++mWG?U4}^OLL8o-RS`RFj3r8u%edK+6o|i0vJpb-6B-5U}h&AqMHrSqzg1v zY*{Ucx@^jz@W2z#Sbn7<^@V9<1-*Q7K*X|6DftPYfJ*?Rc{Q-IG6N?=@{9wgV)nfm z%?d{YFgQzh6UllHl*P?P^>2_s6*)FSM$Q-7w2RVL2D0u=F+jV;BY~;&XV4o*qU-C# zNp*df2-KU*Njo-bmE5hnG}ykO%X;FFfkcYr^d;*K>iA@wK@o!?&sn{p35bM;+)a4U zR2W>oKPfV3WhQva7`;8+%KHYDm8>3moJqr`a6Xs(hpS?`SMeX=3EC5(j=-MoT@N@Z zbB@kZL?vN55}|G=CWFP7B>?75O5tus)hW^oLqa`x>LBC9iHsrWqW2A0M0FeFr@uiH z09ixGmrDfNWwyy>qwWmgOPAL57(mSG$6qQvM|^V_M{>nTM_>*nU{rsujOJV|y!gGUc_{w57Wk3pb8w^H&YG&pM>Pqo#QmnCz|5)WQba%mr)KP| zk*Eb2H86>#eN8c{vo#bpbeZ_{iiS)nMaCv`7^pN`0*6SlKza63;#5J>iw_8Yl~@6~l;t zN?P79DD%=Uvi?HLTkCx)MptFsI@Orw19*%A+Wdb&6un!a@;Nttnll^vvBgmRo1gx5}okVf_Y3!|}HviwuiaS$W?Zq%-wj z{LXBnr(20|kB(BMe6pD?|E?e|M`X5Sy}I8_hMG#m4S@wsHZThg<3>=MW1^RpB3JY~ zI_}>C2OC98IwTT5us)wkG2MEwLFs_vzP^PjFl!?L_&Z_dt zc2WP*pxLY?HU;@6FTvk}XHB zJoySP$#7tM9dz6f3U%R`BVI)tTLVj#DZkvv!Bwi&>~gAnsy1lUq*;qrZG5`vu7{p_ z1;-w9&2!ayUzl&XCAK+aZ>X@?Tjp33BB`;=1`FNxUPxoR!+!OP-!47nsrJx)$Mx37 zN_{=n&jXJ<_rz1re5t>ez2HSB4Df?hUh|4q4fM5dEi%|3Lku(2a664KivL4njQhEa zH^EmXnrxCOrkU!3U1peWrdhu6olE>qy6g>ah79Q_fc~(UWHOMEOkoa71jQd@_^XHz zr<``qd3T&~)?Eu6iBQ*EkFW^0G^`O3wulV-JmBg{BL}8^IWk>6?%F}Ashv_^Xr95& z>8T7Q@A>Jesi~>7RC+2Sm6^&)Wv6mdxz<@)r)*m4lVhgo`d=|%+~|INdyN_RX?MD} zIm^qtUN?Hg)AVw>AoO+~f!b7hD&wAIUZDR^`$5Z;J*lZa{Up)yGfsN{hePW9CRUkW zqQ31slNIR~-Dfw$Kjf9@DP;wS$^m)D3D= zFkn!ZjQZUH5k>NE=nRI$O9;H9!47&#@LuoP#+004$j2@%e#s1U)+29E2LJ#7&j)`t literal 0 HcmV?d00001 diff --git a/docs/_static/fonts/FreightSans/freight-sans-book-italic.woff b/docs/_static/fonts/FreightSans/freight-sans-book-italic.woff new file mode 100644 index 0000000000000000000000000000000000000000..a50e5038a40569ac50f2cee39a0751cb26037eca GIT binary patch literal 33944 zcmY&<1CS<7*yKC5?cK3$duGSBZQHhO+qP|E$DSSAy!q~ri@U3ctfwnG^Qo%ti0-b4 zYFAlNQ2-F&rv#+|P<{ds2l4;3|KtAuA}XpR{Ua#*VR8S1Z|Cc|n6QZG4>$DF7Wjb@ z2sKE%n4GL4000aL0KmWl05lpb{rJ6Nipqij037CzmiOnJ)Dm9*xU3=_BLD!e_T$s~ zfgYKF^^~EtzTFSk^rQ3t!NO6yAgG~>(=Px3k^M&_{2yRm5WGz6Os#)7uOChQPd;PC zCc08nea9a!GX0O{r|l*<8mj8{J^*zm962A&c^Ad-^m}WjPhi}SnIp} z^lQie6005FN03ga4Q!G1TXY2Um^WXjPUH|0VWXI-sv~w{2 z@dnQQ`1*c$nNovqOjl!rpD_o;{czy_VckNr@+SiQ0I+o=e4_nhnZnX7n0B&ac9bs7<_oVOLWA|=v@?|Nw%vB{y) z!D`%0jGCi1gJp-9J!LBPmXK6?)IX#m%d{R}YZyvA^)*9e_%pm%Y95UrwP?)>N}PdI z@obSQrQ@v556qq}gHTk{j>Gr${|Iz$SKLkAQUen3w!OFSw>P{h@4ps3H`wMh|5;LM zTxy~ZaP?!FH_)0Ix|XAa-)x9xxkd~5ZN_V#}}e?PN(C}BG+`i|`QyM5%o9FXKB zob9`fAHr6vc)FB&f3uT3(6xwClrOgJFWqaC<3-U@gqMO^Hx-rUi#Y#jb``bXbOrLf zpsiL+sgFUI$jbQJpfxjIc!TyAx^b9lRlJwfhumL*JP-iu=TPS7F9#*`8*(rYIz)&i z$}e6Hq*<@e3=`yW4xk%AH&}RsN$p40zi^zv4Ysjs?gpL{Tsz=+!+qgrI{H9qn$`pcpU?UoJ5+&rZIaB}Uw7MEozqNYH|#bfZ{l6*_?l zwnC4+D3yGs{>U6^t$fg&qqDhCAwJ5W-*4%>CuY4}?8t`EV6`&o6zfr|KVQyR|LTu#(FTPRW@FvMn5F??r1adJp(EeTzq)24*<2&-n3c})EA zbm;;0LP~lP+C5@MR~%7%eeE(yVHBMNCD4Q-J|#_1Gn0l zx=7&@>#@P%rck-GawBDbOM_&|dTk2*OEuoHW|nX?@>t&kdeNgT6U)u^4w);=Vxn9- zkl3ap0G^=mx0;56$G~8Yvllz1!p~8cP zoHkC8ZS(d3o9jQJxcfFel(l1_WBN{=v|@)LoAHKbxQQqyo~kkvrgt2V5nbOa*vWYt zoU=?h-rJf@o$xdx2H&D-!(I#!zB42V$4DUeiKfN`r|)}!rhWl-(9*F^`1f*OY4AZr zOfYA9behp|QY-`%J;ES8WNuIdAtI>|iaAh4eQc>vtQ*LwAa#12<1xZ?nESd}uNhMF z>AyC=ThxZ!8JhZ#Yf>F_M%+27;;ttoW-9eqPGwKnwh^zvp5%aIm zXSlEyd1L<10Cq|rCT~Dqes=+f?m>1z^92;z!RiFA?v37{yinkVy10SJ^v&)PXBjA& zp1e!5!|<)nH!J%9{oA8)!|{Q_*d^35i0TcPyn)yHeW~q+-~-p|zato`1JN?^e#7;` z;{_mK+_t&hgRvPbwS(X-jP32;*>fb1udmX4*W<(WV`Ya7)uXZ3 zN5mktNBT`GwLd`oQxOVkr40pBL?>lUxkEGeE2W8kIn6M!^9{I@P6e#dLmUrqry)q7 zFPtH(fm7*`R0Ys~w*E|5wmq7YQs`y9=m@a~e%};?59ejAZx-B#^`_B3mgwd0&?qS{ z>ur5_thATaz99-h=KoMJy9bcG|F`;o6<9B$eSF|w3^%d8) zN!>f2vKJprnW<=2WRsW6D-&`VyT#nwwNS3O2?#+s(wpeBot0Q5`O%X^#23MJ}_ z^^fA%@J{a$3hQSzBHe6yCQdNSrrPjk!1@rIEgiwu{O4d}W_~fM`_N_sKwK5AZxAlaS4hc}zOm>ZCawai5~$ zmGi7ulpNq4$!Y*wET>t^53)s?sW%F9lx!Hj1I0FeT@NQP4OwU(37iddf1xM;{8&`A zUqUbyXA@26^iUfH4wKO56`agN`z}`&wmghFwz6<`(u`=k*Ws=$JN0FaC{Y3HG-bK+ zT~souZcTLV3Cg9hy?ONJ-09g(Mbtg0z4!cgCDQcj zW9!7_7^LvMnNOM5`qKBtH1A{O(eGh07RR6GBK&>DD(9!2TiOS^?52hpSufv%x!;aGaB^GtaT&yy18d1Oh@op%NiET zf0xaYF7dWgn%gjjPR@w$1`{Os`A^OP|B*W$_IZp#}i|)HjA-E@ko>_Fk z)xBa#v>@2?`X`~{Daynr*whO7FVX&gg+9m4UA`btPufQJRmIOwPp#~-N*1vM;~M&& zUJ(;s3FJdQ4d3QPJjhMm$V=FVA0g|jmgc_8V{5Vb@e!M5PZsCAwj++J@!JtM5Mje= zwPvWNCIkzo+#BU%u8WJg07H+ND0bITjI(wkvSI6Lf=x>iM)9v-iAD9J%csBH*$*^6 zUCXvZ$kBUyXyvb)5T!wiv?$$J35WxY!;~iE3>?yw#&4q5moJ({9ctn=u#8KW+bfsN zVhoFPYD*1`v!YU=&bDUWeXzgJ^DCbPy<6A`YViY!fRkI4);dayLgbhJ5}Nk{Vb&DY z8ly1tPN*C)q==?dD;ACOR(J=BrRc2+{B@vL2=We{TOcn2I$zdbtk)R%J*{TV?JX@B z;cV%nVV)4oh-Myd9;RyYtC$f5i=r{kZ%TB+2ws8KF&>B!p*-bPJot;i=a)5G;V@y5 zC^}K0SuL0>tpNI%LXk`gQKS)AgPID_!6B4USJ314qh%b_LPS(b^Vq>#buvQ(J{BQP zTz>;nd6Kkvx0PrBcf4p=Da{!DS~%)BFUOFZuBg`?_5xw;r2WWpjN1_$$GDozZ!`zd znZkQb@#roZjQOX8uD}r02j9nQ!h^>Rwh*89k+|n05GT3o-7?qoB^+sj-#X#z-)p+1 z(>M+&cpY)b?ZIw`tO|s=g!t`&N~h0G=yu8?*FrZ19*Sd;GbyT4Rhv=h69JO-!xBY6 zFxB}(8dePWI9C1l7EOs*m-+^Km_%8nJJ=e1WwZ*4(fP`jy(*Tyf6lwrd$~{rCi%uy zs;5`KKtwKc82ZM#a!Z#UP|bT@+*>K|U+#%p(_! zPH3rogYxkw_~jF&yEia8!&gSOC@*|rFvES7&cuWP&W{DcJph|%AAyWbjt{@ii!ElK zi`gU_-c3$CA|LxVHrD$BxDhMmuk~(ToLGkDbR>qlLrC@BvT;Dkt_)}UOr2|Db}2ii zw2jyaWUkh{f1dm_E=)j*X8TQDxOG!qEP(87A;0w@-DRuN7f~dVjN9@^gc6=tdb#PC z1!a!SoTMVjI3O0mp(E^umUjq8nXn64XsueZQZlyK;3$;u-!v9FRh10Gh%jxr0bVnh za%jDn<0C}M(Keudvw1`vQRWf>qIVmEBG9!x>Z}W9-BNhe>^Q8tVemaPes(KQ`C&R9 zO3_&DD}5NzbqB{6XpECZ_P^_AsAsZ0%>>s?Gc69Om4%^7jJP2FT2%8}l0t+hz zTV+KJ3!4Q?4TFif0zqHr#>DU6i4&)1B=<5sFmi)1X4E@tRMgi;k3~G{7Ez8UPC;J> z07#o4B>k6LPtU|p4+~rr9FZO5kRjle8WzW|2|N%uZn$4=^d^@ftv=usa}f`W77PiD z0*nKU1dIjD8;mO0Etn-jqQcjw@#7m|DZj7Ij{&kGK|p|CKu`d@Vgb1(;r9FcJNBF4 zP4{N!-}QHIEk3TV-AVr!#5?|lPu)R(2*e}-Gar4g@5zefN~xSG5*X$h=I#Vmx*sS? z2XLOMy4u=b4)*pocemFUFwo#25#iw>65`?_W22)(G}PoIWu@gM7Ut$AXQ#&pIN0bY zX{qTc8tUpQYpcr(JlyOoZLO_M9`5cgZ?De}5a7T7A;G}`BErG~LxY2T6lARRb*@gb z*|b)-`2=Ih)LN}>i|O^pb5^U(F6YS>yp89J?atVIauSw%o8f_g3o>JMSiDBe2rSHn z$^M$ja(%V>N(K&up_%IL)TJfP&$+$IRhz9IA49Uiej?ad0&cITto*xUypWWf9H0R(0GI(R0k!}~fHOc2 z5D4f5cmsR^egOZU<6uB2AROQcum`vTbOA;HWq=95`e(f_42I;kt}WjwqbY#61&09Q zKlJw($2w|bdfbR-J{Z){aG~tVbr8}FJ`%s$m&YpG_|2UuZEcG;@S={}@7jwc$@wxCvW|&l zz-2(;2PG^hs{9&)J=;wUeyH$1%b(d9#qJK&EvbE`7Erm3xl_T zY_Ydq{!u%i| zpo9D{kqo24fPm!XgoV%iQLASzz?i#50_0IiYGC}_K!-Nt|5zPJQ$W01GLLS9mt7YEKJWmBAj5T=3(voL6k1b1YffTgUhD1#2&q%B=f z&HclzWjNipVD{M8S7+VHM{8A9jfaRS@nje9C`BZ6jjl0O4%r($hiv3! zx6_YC@af8$-8%|f-J^N^sCT`74>|OydjUzIe$(5#ermMcdPbxAe9x_U)mr}~+b3MT zNO8F)^i7u*oguZAIC^2y^ss3;B=(KZx^M$d0x@&+bi2}A_LM@>b0=>M33o?YL=sZ1 zLXuU~QeFG?1pcuZ=E`Z%p!!A(o}pRljtb z=_z-o*^~(?0{nPj5~0#ym^9Nc^_UQ6O+SwPFy)+~jszGmbfg64f#^;Jh#8S6{iJOFY!Pbe*ICje$>o}fejyzv?9;81%+i)^hdVe|d zwK>n9bzj6iKW*B-v?5r=ux)!xXF#w`>3#-kDPNYWwz)oeeVmj)@UHh-_roDntGgW( zn)*EUUGEND-wX^|VpMr1<$ok^-KSTGC&M8l8daoQrm4a2{uzUe1nZ#Hx07Qw1EOIO z@aG`)kk$@ZrL+KA7kHx8k4px&X>kc}zR}tY#T}D3(VR+7`4dmy2H-Vl zI&PZcPh(6fEQpCtikARWVS>R0W4AYBXZq6z*DJ4PbR1U?ZG>uspu5a#|M3uuzxm;1 zbTy&Rb(|2zqp*>g`Aq%oeO{y6Y^%-eHatL4i~}F7#?g6}NM(X3Hd*!R8h3LT?HJN7 z*ebpKF*3*oYim>HGWGg9olH6&-Yx8MBwNh4uCCB%KWGjjQfoOewGKtBI%XzX*X7b0 zRw#`e!{}1!-(mj9p9&oO`T6mT+w8J}HvpPU615IRwcHZy*Qd$&j8FdhfEy-+P!Mwk zW^@iML-tqrmIVYRk4cI%ha-DzNz?|n%km7KAp{$4o2koZz*F=fMC?|5VLB`c$IzXM zS9NdwLq9?hg6q!9(S0oIYYn*?j&I~|9)dxhkkV}-Z>c7->;C0iG-EA!;?PD-b^b=z zA?wTg^RwgD9o7Pmi!CnIXspF9!%_BA4c$c|IxqMA$z1M+iPe)(x|E)TuV3C^Y&87r zHTs$CrIdJAasxxmdG?&u+=Y7}3^^jj2e1*eOFi6S{8Gg$qVc16U*hsZNG@*7_{k%+ z_GY*u6_(;q?*xuuj~U0gH^gzI-X+#%rppOK&CF-MoRXYE4xv7ktgW-ElGm7jNPH2m zc@WC#VmJCQ(=;j`S@h!prWJw=AtxZW`B6F;VMySzP^E#(nB~w$LIpF6Bsah3i5JQC zoBet2-K=>xxLMjgNYV>au5|yv*Zi6+!lNp(E`mDpe{d47Wi(Ao#iBYe1+}bGteo3K zM{P4K=-(n)_g{m<#l*HwGQj-X28mWUHD+mQtxk?>rv8-nQatzylLrxGpl2_j*de zJig>?h^}lad*z$~!4R!?T| z)!kqYVYM1=RNBICanoxYeKT;RNJjob&gL?G3CF!82BL#CsxzfM#C1}pf0J~EmHch| znPrp$h+eNIJ{i^IoQC7si?lml=E;j(#?$f2skSy@RdfHujuCL$Jsh+JGE{PPS$x~P zWLkE54)Q&@(3e)UozJI>#MHTiNmyl+X8o$qZo+MLbvoZgUMy>RBjrog#P zDx>s*Qy3WVohdM4>Xl@c%(R4O7SRse4pn28!Gxou$nQ5X2tXwAu6U27ve9uq!u5i?jewkU zz&2ze+zDCdrG;(-E6kQboV^AFT&0~bIERDrbH>8ooJ@-)Vc%OlvDd5dC>e$lIa{d1 zSdusXL+q>7I9PUzg6p;1@Ln^zei~LJz&p-+xVdve|LzNP8?s(F{DSe#4 ztO$UmqIUiz{>?Ct5Ov%Nt?oW*Re&}X$3kubG?=Uarvz*;E)14PBg*XKC;#n9z1}>_oR16p~KY>{<_+4z6W6}00evm>XNwzkoYpd%v zyZr$&tJUsmu6OZ4(!4RWqPt^vw84})(7drCtBt=z+i{4XI-T2lvVOL4yhNQLr)ku% zy}11_wfv}*0?cFD=Bn&*lP*1FLRunnH5b&s7NW|!SIZ)vqPGZxXo`ALj@u>tNJ??N?PIWuenYl6*Q!xP_~8(^Y9y z{%_u&+~Wd5GdFTZU44U_>YToF?C+*lj&(Vzo&q+OGP1B`jS(;TCsmM<=HBUC);ph zW;#`-!7v&@_~I<<*>I)_MQ-qG=Y3EkQgeaen$?Gc6E(-7EqztGH;*LN5fs&~mddlu zxF52St>Zrb(e+gs1R>*nNkpsNdfB{Q*=jv~BCyeXAH0;g8)Gea9o}wVNsc+^TN{S2 z@G)O~W7F)2b>jZ^8eNBrw4AfC(#O<6cu)vL&*KE_^ZEseG!{Y?2tlx$B+pSu`9X0T z!Mr;^|7ETTyJo$`S()bJA)p@mn?rjg6sL@!I3+CCD{mQBu3RNRQea3gB8DAAV6Gx> z3>ij}LYqHC88T;~(YenmBra)){F{t?9iS`^E6;C}yW%h-<@g&;46~kb(S&cP47Oz; zZ=XR$1RCY5AR~fIt%)&#UnRX_ObYizET2b|hvjLlbLZu3cW@Mci`n*aCs)JX&H3Dr zt(E&?qMRD*=z05LaAkiYeCWqBt&S`QP;mc|%rg?I; ziRKZW0w?L9RrBuJBpZZOS;XN2Of!YL%RF$3?A)UVz+uN|Gcv06`~J^VP}&V}tQq4b z=`Io+VKKlPc^-t{vx+cCxd3fwE!NM|PmGx~<}Pf6rqMkFZi>S$0%ISH%0Z$iA{E%+H70`6AP8{yY49_d@bl~tMA@*MRM95;O6sR zAC24254TI(iK`ARgCm`utHNm}BeTu+@0f6d?3BL)LccRO3|+Z4B76=<9v3WWPn(?? zZJQW(>~Q|Fne`9~Jw5bUgP9-9n<^lqmyPnT@Ow5}tl2i3%Gg_2w|-?NQ;ok%+x0rz z^}@gU#7hKxx3AP!Z(U~1_r?fo5jW^qr~^G)oWDkW!WyviC{9eJUP2dZYsgKBV$s1s zhZtgZtO(*}TI&4*9r=)|S9bCnP5-Aq;x~#lgz67u)sr$g2AYn7XMreSsnODF2S6KV z?yFB@i(@1vsS;F`GYB)R2qzl%n}J0>lYfWau#kXQSpo-N0f!lp!tXMW7a81i*noAl zf9QXfpzEgYuo_7=Tx%W!h8qlNcxtdu273w^M;Tb0SX{PT&TfrWW3Cv=(N$zQq&%mN zSWV~Y^57iPVqwZ~j|nfQ$Hvk#qWn!B3(6&Qmrg={ETnWTj9#wj3PluPKpOIFXtt|D zI(lQQGSSD9*KS!w9xYKs7o&V}v3IcCkd0@77J`T7$U+vJRVc+x=6XVZ7E3x?#&%W< zgjdqQ&IA!eNrbAOf=F*HqJ%3C5w^sH@0*SXav+r%M^pJ-5nvbQx`CwYH%`ccX2&r) zQ0{q&g8)>J4WSOqf@VJI`pPJ{lB~5>*n@BBt`)lp;=bgBCcVKJ?)8dD;r@Nh z5&KO4y!|q%Il>&Z`Lf@#va_wFO3|*e{qm2^=H2T#YPFb5*F(kQ(r$dLZ+7fqGtSy4B|p($}uX`IVAv&Iq>n0Q8PJNqm8yhZXU)*G6O=DvLs(KivSfj z&s0nM)+!KWDSKj>mZ0-WGf(cVt>5&FUI=|Xv#85_ z+21gaz$!U`TFoq_SjOG({yQys0ozCh4Kj~8%Fet~W7SyjS9nZh_c;(&ir99Sz1Z-B zd<@_CuZ37PFR#@lMO(f%{^KB3xCaUUGcdK^?}%x5N;eXVfurNlMLA(;=OEkv zkWMM4Jf7Whoiu0}oAkRYk(8wW5)|i~2%B+Q>XK2_@UZpTwKsgQ4JX_vQ1XVDGzc1` zuzH8J=ayP~YKgthSonN;#2Jy4ElPA%W$s#bW4-rTdHZTbYA~^WmW2q4_otXq2AV*5 zN6pnJWC=p+#xPX2V81?mfZ7_xqQ^=WpU3DdU%Y4F#8l8Gt%1zI9c3mT5?X`A$ZaA0VZnK#k|0p70h zi|>vwUyOvAd5pJlofPqxyF6%E7Svu9?jJC=%};qHv-2t6&(LUDY26Lsh4yJv6PViN z$BAheC5Wy3vF4RBIXNR`eYKSE0V~h}OwaLRsPN++Ju(^C8%z6{F#k57SO)edlV(ub z2pCbojd(XWI+Z~e{+6#s*MgYwVelU{F|VOeP|eAPTHFg(B=gv$nHsQ+OOx7Dn@bzR zf3DYm`ueBA*_Ecsg1}TBP)M>eNKfK4BpS-ER!4J-vxKXF9Z{KNHsxiE+IV3>G)g}a ztR%7H?6x?ublVXHu_=0T6x?*G8A9HN(=rXD0;^yZviVn?b#XkCqp^I1=y7@O3jSqk zbX6d$afq2Qn~4NM9BTVMh=2O^LNVgVfy<3=_A%JYRI0sgf)OvgEW(@Ox+mH>K`&MsbR~T1j%Tu1RwZb%vK$CAVW<@z z+3wdfl4gK{WZSLphFFhx>En=h!W*92g^tg5x$VnQ>2m>|_1UXbvrICSk2E?{LO2%6 zI=bS$0cS?hMUca=R3wf{Iaq`q;#teDYpnR^g-g2%ffE5?&B zRy@K3pPt+k7yOi*uXN&1HxT_Dx3n_Oq8wcw>g+2$D&60yJ?)Bb$G54)qdTOjh=W`U zsiER;Am5@=_NTH?odlp=8fnZX-37+f&?<|48tK(b8tL;I#gkO6i^*K_LID^l^QsT1 zgU0pH=3)mXlGtH6Xt8>2Q!7oNV(iAXFaemIV&RC77E4V9 zyttCwCE zhjs8pM0re>a4r@v#O9Lu9cY~ z7qax^kuEK6;Erm+H2fYO}0? zb>Z{fBEV=~kv&t>U?)VSm6$D0?`ZQ`_Ah_Te?%+Pz(By|DPmsbI&3&1@_nhaS2A@5 z{^S?nr)JFwFPCpng1*G8kvwEclUY#^sst9Qlni0wD=h+^uHcBk4u>%8vqZKSL%LmP z37K)yxr{&KHGdDCfXK!u*K&OM^UsaGRce|_0jqI6Y*Ps`A&8TYyQv#656Fv2sl54pMx z%KnYk>}Yfi*uL6b%`rhTE%g&VFUPY^VPSnccbmlAo41uxli!!fm?;dD@kC~0A+_;1 zJlRZSU2{5{n9~x3bx;U?Fzf>nL5RaOaEDBbE{_M(#?rlLqJ12hQ#eb`!*jy3iQg$djtfILi+~ z0u+ztvrGW>5xVo^>_w5n$NvI7>l~jETMwBv;}=BTEtBg<^v7P$71_Vm83Pk-dnZc>po1m#sfuN0=cRb*+55^!bg3>4vvN^V4od50E>LYO(u z7A@!&cWs>)_h@Gc$8lbY3JPtfyZGS;Pl9;#c$%gVPm077nP1Es5MBX{tK$o95`%IF4)DI+Ds2gD)2wMPD+6Pl+`QAr*d?GQO~nN&V4B+##10AeVh*vrc9u`@P| zP}%E%V0V96Xrzd-w-Mt4gh@VNfiRC7Vy=265XwzyIB(&7u1C9aD^)K;uHoi1_{6xn zU>!m+fQQrTFL$$a=%#>P+hYH`W+Tv^?)Dyk8bvpyvlsUQq+=hf_EzR(Qlo-wtF8;k znht4K*S!5U<~JKnMOlcvjJU5&UCXaRdMQjmW1hS*-ygiwlAw9YAVr||u*Y7+;AiBw zXtsh|m^=SD)}(o+V+{$Xr>3c4IXDTZRn0j=wdbd0>vah2ERTy#T#!DHb%L^({j-<= zIohR4(nOM)w?0R_!&Gv+E;cN+DFo*V3Ep1RDsJ`n*pwX6D9GAL*Vyi zT3IMNxoZE3*iKmzYBW~l73<_5jX%x$fYj(wOx$;HyX;@MEmrNn_YfD~MdjILzy^1_ zPs~eIgDMS=65#g90?@Tmb@g8TrrJtz3Ua!_*RAzJM8Y~w+WtD3t#@=Q7zJ+gqM1j9( z5CgeMS7YV`(=gk^2oCIxPuGp8fq99*e-TQue6@HW1qntjqiC4U-6I-41UTI_Ku7a<-;c{HW z>Q7zGC0x7iF;fkiS>lLWeP+x`Om$X3pjO*%*0hD>G#&XL1yLuL53H%hMvw212q^Ydu5@ zb8TI!E!Nw`t*3f)yZd$pK|GJ9?6v1bOK@}-s~FMZ0~KQ^96Af_7DU$yprTQ!IoqDm ze)x%N&>>#Y^5m?E6SEqs5w<{ihr~hDZ(Ky*L8F6yMM?alr>Ye*W87W?Y*L;*76sf< zl^b8#j>X1VW49Y5mf?juc*HBIpSwsTg_FCH)1zD>SjLD$$$+#nOJ{XGNl8MUN0N$i z>=3=G$sW%0TIu@U-L<8KSxF|_>l{E(Z&t*2aWL_y*ah*-OMkK6U&}M^bqp7BzD8KT zxynCjP!fSP^AR7O9v3Fmzk&un?7vRikAhkmA45bwMWUi{3XUKW<<=1twop_6d{+^` zuh2yd?=PEuL!s9nnhQ>&El5xPwmXcEEH**@ewU506ECl#k0vNKtTp)O_cb}n>@ zSaInPRxqC=7{8-DLqTd~p1?-Flk8sKS^gLgZ>Jv6kQ+F#7()d$flg&hxCV71eDmm| zODP;(x>Z3idM1lRu{LiIw~uVR)&R{wLJn6ddGqr&Z*YO2hUfLAvi0^7XSw}S1s}KF z;L%X6PwmGuUz>rT{_rxJ=o9zSeP`~s={b|8E05#ibYd!v#{D%LwN8uSR>Uh;XHDCp zDsQ=mj>f_E)^%g^sr87xBmPVDEGIh|>Nx%3R@2GK%crKPPUB0%+c?&-l`P8p`|G)D zwU*rh?RqH`cL%{kY~*Wm!6%$3#<4}2MALcVktK%Qm~k4tqqJ-9%-n2taNCWMqqZ-fa7qNzGqaynVAS#tK`FDot@AfMDnc(BW@c*6=83-3< zi@SQZ!r8$tML;HXuj-K^&W%}X z%?nesCAp8s+uRquc)nC%FcQ`=hM>SPtoojb%1ARh>1EZcxE9~H4|nPLb5b_CBkA)W z`9LJg%OoHcSS@7KlQR}Jke`_%wmM0w6_wG^2trssR-Rh+TeFTI&Bc ztO~XRD+&>#^H+#X*@>`~@N*oQA#Y4{gYOQlpR1PnBnY%kdA26a*loHKo~s*74j zP=?IzXW_`74;aG6nBH=n=&B-DPq+($biU8`K_e^PmX=^nZuWK_*;q3Dvb;Jfydv<1 z&@($_C`2NtavI4&>cK4Fl^9QkxqxDj=RaOQqSvC_PPRS7Pe3X)$2paRzPt z*|Is}MIK8f(WsxSh$8*?qR=8aCJ>x1W&U}VQ_5%kezsleyVKEH_$RHs)G(PnakH`e zy}y^Bz0z}*jc$9*eUfUj<=btr@^9~L{^7wkh=%^f11{0~1tx1bnu5Tg@Sot@HWsNs z@`qjHdcfJ7fdgUA+aZqFP8D6m@W!aF;3DR~DseOzp7j$3oLGjo1i{~$N@FS~M)5*a z>7R;&)EtqutiM$lvn9eqiIAcL(6BA+W0uq=#c*-725U3#`Zn-%ZF&z%f~`Sp31E6Y zx~DJCNpdX=j~4{ca$ztnwAVhNJbmj*E>ov9b2Osr;dcMQT!CS4e1x6iEbf|sLR!*u z6~mQ+vV~#8ZZ|*aNIq@f#v1D^tAnwn$yeui z3+;y^hVBcP4%7D^ikD)Ule8eY;Yds92L)CO5B)nK8(4c-eyV1(O8zReKCL@1<-SpQ z@3ypQzg=J07<~X|k1j>8BgvN_>A_+KJ-|_KneL-I7M@n34^5mh5T9r!>7Q%6jwRf^ zJfJJR2~j_eW{Vv)-liwwOS{1gJXm8Q)*5mHJe7lNq;Alq*~O^Ebi2p;yCu zGHKu45cIgImtsfBRWQD*p3L7oWFEYRy!u``x(VdWbpX9@w|Fthc_MCjw-X6++8k8 z%F7dLY?8Ho`QG8M|Z;d8G_xY z!x$5q?+HB;P#xr@MGAo?pB7eT%cXn{4$Z;kL01Wo#!w25tW$) z$=pcN5ETT5-Gv;IW@Y*{AM^9}QJ9FzY(O8QHw6I2cJjcUHCs{@wE^0lIE2`4?pY@;s!@g6LoaH?*V)g5_f2#m5qN z>1%tg2{P|Hi#?X{gk-dM24-~3TJE(BY;KR@TDLLoGjDCu%gq%1S+Wt<>>rr-Yy#}_ zw!%N=y2KA~c7uS}G~ir&KOXTeGV5IWG9OJ`U^-O1t7uBEil-!@TcfS^yG9UqiSXrm z8Z|?D

    73{u|(M+ArYhpI7ZniMreC&fX3abUX=g5nVc&HyJ{fgFlJ_RM?S@PB0nL-4w1A!YA z%2Ki<_7H(FcuH5pt6*-5;FN3ED9hDR+L)e`ela@D)Y(1Vu%ku{_BXl$p0w{HxxaeF zy@K{P;sr4-lRv`Ti57`12qiD+ok%`nh1q-#67=vwr2J$t4*%p)@c!EAFycIhUkH^S z{?!>L{b7kfKOgD@$H8TFH zdeA%w{vt$FVK1>#3`96(ZH}6v<~wm))5KtcLHRp-4-9-)DA-3@f+1W8TpuZ8w*XcM z=LO=%GUlHwWRo}YS%-vSqJHrg<}Bg)SAMS&H)tC3=^yxTb%dZ z>||9LCd$V$5n_pRQG8OYRG^X@u{A$4m<=7x^i6n3-vco0W}s+rdP_{mVqtKzB#eux zc=JQZ2$>>zK;=}L;VlpnqYy(g!fBxkuy>kV)_r+1&<*J@A;O69KEDyR31GK^nDTH< z*jXOcwJ1^}u*-2Wh~3cu9!Dj}ObqB2;c-`9Kv85Rejli4Onpp-{Q;gd%1HhBvsS-_+(@~Ei)hHd7W3Aj+iY*$$DwR!h zpinx*Yy>shaG%EY`wN{GsAa(kYLTCvMZ4Y{7nm)&f2(vOa948lTB!)6E?LcFS$FAfdKgXny$Eu9;L0?~yi5%fPP%+2;f|%q*jUos__Quxnx{2b3%TjQ?0KO+DN5zQz$ecy|LUv`ELe2X;eZ_Up#@PxguxDV5k;1Pj6MFQ9@! zxiE?Ftd09e(9TNOzf`iE6#Ik=Y8>aabhL)`L!=_blw5PDF}kMvh*;N7wbdP1z%(zk za-yn|k}!xW1ZGE}Kbj28R>y+r5~b_%{%ML4DkJI2w^1hiY}CNsq(2+RSSJyxM75B@ zw*-H+)y<7J@yPI9KD+I8+wL~rg~ztl>@g#4=@l5tLamXuRUbN)&U~f7c4B(TkUlI0}+aYLi(}JEO|>vmKFCXb{gb;ASGCcNylBVE)VXA5%O(u zR&90Sslgu8=uC9mRxY-2nXOJYUiaJLI+Og{ygkmaYOO4~5f6>UJQ~a+cr-0T|*Hl%MG|jnkRnzP_O}ut|OJ$^a?3&4Q z=8tb1-&z@7J!Z|NS1lSVTz=#FnU~+Vj@nU%;kT(6(CUxM+%LGoRN@4ExRW7njVU0q zHeeYBC!GMxbn+^^D44>C86PmPGB+ZaHR)5Z zZ9cmHDw|On2yh+%7&k#pUy_{_VH-#7+{%^Gr|gs6)403vD1T2)&sy#|m7f{T%w;yn zJG#Z8I=O>D@CC&jl(egYg7cU-0={{K6+r{RbUxaU0lG!u7* zn$xiqtHntyIlj`NmrR*G2id099xEGEO*zX4>hBQA^wv(HpXAttJgg}vi^$kyhErKs zWou+2y3A2~a(H>HhLR$3ICE5<9L|HCX_}%kQlze_t=>1GeAejfqDyKkD~C@9AFc74 zs@YH98o#f4`^IrAwCRpu`tXe6s$nzB3o2$@UDYse*UVY3OmLJG4)ND%jip(I);}52 z(+6aS(#qAkYcl@Rx~yVY_SkSvl|PW__T*NCMi&pBJ3OEtw{YE-c`N1)A7l6Cy0a}g zMq65LBs{((I(OIr!|3_bZy7q0J?ah=Warv4IF;S#(2Z)f=jUW(*gOU&%NJWl0UZd> z&*Y{7Jq^IsK?YMUt}xx?W(mo|57H7F6qUI{qTQUBf{{8?#h-Fc_^JVc!Gi+>sz^sQ z9N}Fx{{rs#!!3!*D{xRt&&R4xRW|MMtYB_oz-D#2jZ8jhjBrpa18q_q6n*fL9qi=k zbs|(!vu2m|irtD0pPd1^(@qG`HqcI;tYxaO6EtA6KW%pL**<@HnC5cI!XO*vXosHG z+0*m9OyMAvhf3ombrU5WD_qQrWrW(20)Q zPjoKnBo&7rmHznXqa@?e{Ur0T$E44sC&5`bV{K$1Tw7mAB1hH~WHhb3qCxD;R?qG-=N2?4YU-o?2B%scoC=vJ^e zNJfDiB6E1^Pq9kgOxc9{Z864^hPFw=$+;qJu{uoLwS|k%dTKlIG;q`RhpQD!s}9p zOkne>GWY~Xo^Vx7L~4>|l8CbR;UAtu!uOGfQl^S|B2^*+K{06TiUoqWra&He{3Riw zDo9D6A|H{nPV(=P9b!{U*5QG&&!){xNrK(%ja#vAMTwEKizr5 z#-n$)&Rn$hs>>H`p|*4`W9RmQ9N=885y?H#0FWUps^Cl)it#FB8{VwLdTpW$k_cAJ z$fDUcfsNIMur!z0Je@MwXRewHsn5KmCReQ_SE;4@R@zsrAU|m$qoik>r1wb?^1X!( zvTIeN**8EE^FhvWFib)fptV$KYIq@`tn;A?{tR4 zS5MeFi2MuwvFE$Mo^?zO;F8f-${E}DH6_fu(0{2fDWP0yVAvbmr9^qDKW88M9Pvf3 zC;!F&*z;pC6`B3vvL9rA2V(n2ZNE4@7r_^U=L=$+Tmaz;+LN!!S+G1UJ#hVy=`~~h zHN!_vo49OF;i!?3OCs|N8gXA2>t)xdMuWw^oT26!RJ9=}8bM*$f}&dqlhhCqt;_n^JqRvO%YqX2Gc~M%Bc4W{|3}B4W4)snoIcMGun;7U(n47n3_0;CI zGxMrUq-J{kyoKqjZmeH+Nnre?gJ!iHZXLRnoi}sDq%kAw`ALEGk*exxL%o;QmX0sa z(`jc-U9!PPb!Q9j=VsCV-Q?Uh<9X(`=|~uUpVS={Wj9eR_ z#T7MHw`ku?7``>NcFl&ce2tYZV<=G`U__z@)oF9lDhB8%TBYSG;mlWw;h$}D>-MGj zLx&E^X>D!XwP!ZgA-fN*TW2Y#x~z(wd1m^G+i&YWjO#hjvyS_mmlzXx63Waqv)mBx z>58c}G_|JE1!&4dt)bl-jFPYL5}$((N;z=r@9!X!r9U;b`x{z*-pb9o`RKe;>)D;^ z@efdcU^ZDo0&ES~i+pM=z^6X{P%%e}C77KU=Rw|0OclfL+X%6ml^McVnL!ErMTe;I z$2!f_s>gUURrL%k97n2QWdr*hDXSo(Xe#|-nJ+f-ts8G?A?9UYEx7)r?r&%E!-qr% z8HT+7iu&?#vu~9BnfE}iXR3yPU$lx*yr51_zR|hUwoI42c#WL?W#!IaRhB$%Yv0$u zl&|w;BA0!Vj@@FdqAL3&Lz{hhm6GJ`JAKPRr*FMyCRO_v-@)%~9ChYvc9$GK-ovt7 zyDFX5{>Lg^|7o&(*;I+jKcWOZAG!G7sgb+&|FQc2J=eT={f;AxUb=qA)AMg#*|>E~ z`-&^Jjo}(szkc&8JJ!73`qG}&cP@EwM)O_E9>n$Gz>F5IL-tMU38^IDmvRyL)u<-# zNC*5RmXXer*CfGD_GeZ$kzp(uKV90jQ97`M)Uaga6zQQh@C$psmEKpq2Q=Uq9phv? zM9supbYH(a92T9%F45`;gz-_pq5icQ8*`q>0k13^_sMO_wlilq=#TPA9NpuA3t@u4pJ2wauNT!CL{kksRW`Dylz4sv0t5KiVtLb~!8lvL3ip^8zR)(C7!xzp? zTi%9FPU!zTIsf0u`M=D`=_4jRtr6~V!%~RCx8`#|76GC%<<6tU-5car9hFrKj_s zt#;8z3z9a`lS8|{ad+IsxoG_0}WPIA!^0REyAADWTTXA*T%-Gy&Ubl5MNW8qYNqm;++2xl70miUr`!48YzVhs}OS zt+MJpS(rr7+F}N85#q>XkEdtk7t(ZGkq2$BA)1(7Ooxg^Xre%_H-jBKUuh3N!>+fESWEM%915HWy$)lo3doUv$G~Gbv<%$PU^HJb|rez ziFH4jTzAWV@47`y3<}2RS?dQrKWqJN+51m{0F>79R2Ty4FDVRmoM&?}FgOx02J~~1H^f~}Tog5&K_M>;;Zm275u)>Z4aaaABe<`0 z3PZNJE6!zmv;mPfVRDTUs^Fg^l+7SF^iYCjQ2sOIKC~v8Q$j>cjHr;er zonQ$iM*Epf$uVxdxUg6S*HL-wfC|f)R+ojAF)fG-5gWuw++=mS64=PXE^!T^wO_O)dLK?@W7|L6)(Tk}4g}z8R^%bMb@FFzVOo{1iKLx6(Psg!>F6gRrX8Y&9a+ z*upqTMKFarRazq*QYJT(C6rR#Z;t5dEb83`SA^j)0mUL{uS!R*z zrEm)c_d`~YjcleK-<>^qCR6;6{#S40Z?orO2{ z=w%xgw7eAOTQ|119QeKTw{xfB6%1sT(Od>em>T%xVpZ#8>z=^vm#|*Ph1V-T z<=|hu-h>@L7r#>ymOORc2{W$Dvm6Vy1M54!q#Zxc>Ty%9H;jXPh0GA`Z#N#p`ZyNe za1Te0nfAB;v%rZtX`l`@dV?CB=CioyJT~H7$mg9~l<#FU=eah5rE}|E2fo8zkLmqP zuG982xekj-x_*Y&i5w#bO9bZ+2`p~0mWOds-xr74O?l+tY#eMyxn8+HSFhZE+(q8M z|C`I>;51R?mK=8J;w`t4+Q+0@@TLjwRqo3^1N_SY7tHAAzQ+FUYq|i?1_U|=#y=WO z0GioQ@08q#jiLzNMh*FAPgEzo5Xgj>7XK zb5%d^2up&ZA9TkG@ZM2(Jk=j`LJD*X`$8xBmw@zVU%M)LVa_|B6kiB*|NlC{z7P!# zpCjwMLW>qki(;mNS<)Xh3WGu@Earht9vD*E78At40;CVjv(HL?IL4F8Z=5 ziPG)gPa&MgR$quJt>-2XE`Sy;dal1nnAuE}J4l}?#zb@k{`cqzxZ<-(qqKh_X(Wvk zrAP2^K-#|n-p-sT?I*L~KtGlCQynzDXRYcHRR@y}-uFOek+RF65HPDp%;uupmQn{N z!%3fvg}G)spsfsEGcc!@9u)@Ip4J;J?lh8JfXc{j$L)V&AvQ>-;r7x)#A4^O2I6OW z%w^&(2)Y%BqZ<)8j6V^-MH+|GLuho0PhUht7fpZbvN^vie>`?z#@5p7MuV*L-y3j>!w&k-oj;<6B;q4!(2Mo9xft z*~m3bTl~bw-6y6XN`G}b_y%;|Bj{ciKz>926CX1!F!3?-`%Zj}>mBYi%3&86`iP3H z-@%W~4(;s;3SZZ?m1(5$`Z@eJG z_$9!YeLmXdTmZ)0e}s1F7el**RqB_1*Cb5Q`C#k~LqIlVI9q7Ou$0-|AEY>PJ`fhu zLGAfN^a&~bf{nT^3)G&xF+?nupPG_DM)3O}gJumK`imG{dOr2oFJ?BJ8{71YBh`Yl zH6bg{+ytK2GRA(VZkm!)H_iXt)XhvRyQECsY$vreBhx#7lUqaCRL;q$mFIM9?wv58 zM36BLk%w`1nk)>4VJ0rw`fs+==@}_Q^&Pl{%-y?xB{4GEY)u_F5Vz2y$1IP|H(5M= z9@Zi19P%ucutshh=Dj|RBkWELi*66ZmOim`u=K9<#hbxVufP7@!QF>d%m+iRX&ZB_ z=QA)WhviYxI7d*M*NC=8W{2t9sm1QcHoVvCyZ};KO-b z9y+`VpSfxRlTwT^a~2qsA^nV55mgl`?3sMtSz1 z;IehrBpgV|-Hrj9B*vSa^)fthU+rY|lX zK6!X)<%9{9SI>B9;CpmL+g`SLN9}{_LYLNr0wv+>f-#XXqppeG{G$bHtHX;Xl}@c5 zSwE{{@bsGM>4O^T8pK<#+H$rtcMD)dAtM@XoY)k7r!J3_gQ;gX)o`g!_gm0>xNX4MVzzmFipM!ErpD)d;VX;7aGrt#uu?t4Rv9Zu|HGd zIKN!n}A6{#Ky@ z7#J4UX}bEuWoP+ynpJRGjuGXvNwhxq--uSR{5trgq~)e)^!uRrd?D&ZbvrWNc_R8N>9>)6j!hq<5Penh5@ImE;YkZL7i zF^2;g3B}B~xxo<@HHI#sHq^;g6qro`tk@v=szA8vDa{4~%?8ruMSQ9+)->=Lu5MG8 zI22w7GV%o83R_%bE}>pxrajK7iYSVswoa?VTTmrW9;ZQXPJ!%JR@e?@GI>QZDL9$| z(bzg!z11DXD`t5LLlW!CgQz{p*~fiG9~bpvJ5m_oOGy&xgUJZJd+ALhb`P}bRwqLl>3;+`zhS}kw3FeMmM3;}_A?IrtTu)_ay|vV zqcgF=pTwEi{$#G~yi>6Y`pzO&;2eKNwbnbO3-mPg|mdY_CjzD=nu|-0_S0w zjzuz{F`d6K`p<((oz?FGSDo-rF931EGvz7F_kd55MsrC~=Hcheo^SBe=g}b_Qv+v(28^(To2bL)ZrPxaM=4t4DD29&Fq!T1*qXd6U)L47F zBa+jn>0~|nta~gI3o1-FsZ++e`8Y>}D+hV~!=d&c<3l)3e?VtX<2~!)@R#0urp~}l zHfQvA&kIhxM(L`D`;DhkB+t6`_vTx{DPq^t=b0FoDe`lf1w)w5yr#_=+GBLyxasWs zYH{kKN}gv6_tn9Db@D_v(V(>{9VrUC8wji;8=HlYts7u5y^lXhqJTcpkzu#dc_`SM z(R9uv@N*h7a7ZN10mrf6{WN1-1d`--(PWQCCP@?LXuFJ zK}3_e>@`L-o624zqRWlvZdciB2(7jDr8GJa&SZ`2O*p32K#xW|Vmi@c#<59GJmT+o z@Olg`rVMs;Mq}{nc&5iW;{sUhLq?0!lX!9=>GO_e~iXw$Y5jV~kvODCbNhdc27SV@~O}zR2n-1N?dpmC!GQ{|D%@z05PWaF) ze9Vn&d%5|@A3OGLSn+s+dZ2LmU9XUJo4Pi3>?91yvs!0|Ctu;NofDm1Dm^XzcGWwN z%=_rsj)!i4^SbiD;Bmi49>;mGryy>3GY1IiJMDQchU^((aj~ZBoXO9fx%2IFL1pG* zy#B)r41qrQ-#!GoQ)TyLETn^;aK@{kwa0Sv=SNcpLyNidff}BL%P>ZmyBMxzpMO~N zd4v3ZrbxH^uWMxQcdj*Gb9MyJ$#bqjE^)7GF7`6?GwC|7ze(3#Wv6T0z-P(4evzA9 zQStXb@VWzCxBiA+bDOEp25aTb$+eFC{%h@owJMD;7r9u>K%Qqh_bj=9*WY^C?49e{1%qtXb}R(a3!-7mH@awd#NM_a>dH^Q=EL&xd$-g1$f)euQ=? z3Bv+Z7r9|^xuzGM&Vt2h3qVa2pqhBHKhT~^0j*%M0$NcjXkx))?C@UJ6ulsr=M&TZ z;a>m0u1TbS0))?L4FSJa<|QAcLlG0kr#GI%P1tx;9u{-KEeL>HP?3s%^kDPBY0XcP z0)4YGEJ{%yH;67R&AR1h0s3ue1`I=sZTKvoi)Op?_zV4$<48Z1(0=i8xSxF{%sgf~ zw~t!{XGX>aUMh~8MSn;cQsWGYR$hLNj0y*vcIwQGlMe{C5N^7W=PY@c#O6O1PjIR8 za3W3jsUeNEwT(k+8tdvx2aP~IXTE3pIWIW*2lwb^r z^QkeNCO^O|TPFup+%Yi?2#{u_0i#6;sM4?*mf)1sBHJOI)2+$$(yju#sHa2neK;iF zjoE@j#Kc)LN~oO3!}mNmJWiezA6C*H+b96 zrM6)EPnX>?gZjpF7B}c$H`+qCWki(xs%e)osNcN48O=fh%eZ>Nk$ zAKj~1#&mx-CeeEu7#1@?hZchI2&SSnu}_hw`xNPer-BsE*>wMwSYpP9^9UBSCe+>p zDe4FP51~HWbJ0Wh&u6mw!~BVJ4OYK2;3u8CPeGm+54yk()aZ9&yeBy^KJ8yTF&?F{ z->LEJrBocx9UiZCBxF&3-i-3B&S%eh-V8o$Mt;tWzy>ewQ8UT>L-JuWFaIMCo9QIU zC(K;@<7T+;dfd$74NLob+)T?x$)_2X+5JI(&zqUYa0*?0K-U~*0CW4fl*Q~!aTp(% zCgg|c-bb0txbwmR$kBwvbTfT&37|^!gA+EeFa3F${^mXmAn0XK{kgPyb1`gizHCmv ztU>lf zw5m*WA6z1QbEWLbdHwi9G=Y#_CTPnLMJCfpz=oIsFD7eTXVTK7ju!W};pW!#jFb&H z#x!(VUD4!*(3Fj?5Gh2Qya%*wzL{;G_be%WfqTc@eRm_vySq;}vMbWhwBG#DqjNfl z=JUH>`}CHNADhGa?x@ZV5RP%-9vZ!(atgO7;E7*P=L)| zJgpRonjBgWjqB4gL-MmA=_4aunQ|Yp)fQ(wIke;wvI~KzP-YWNsm}ZPYHz>{oy4(m z;%s8$B+i4_Ng*%VM5!7crGY$3X^;?24kaLjDnt=N2mz&m6GgNLl{Ct!LWu4nb`bnH4CRS72jE&Y5(?CG_7j?!dQ}H0db@#z|*y@c;_+!D0`s)8K zcYc0A3#ZB19J$bJ7s!Aq$Fw^l zX1>o`2M3N1+dHaOtZ5zG(JUOQKe4KXt-sr(VE!X_gg5){IiktP5vaY z;eS?M>kG=eH)na*wGPd5g1N=TKHbT63!8*Nt^j8^;B(j=aFxjpOh-6rC-o>hm;*p$ zX$1(o5mG2<|7uZZ->T_o_4QzBPfuxZx;i>tT+)y3R^M3F(-SPYvH5ywu(z*7yMZHH z!MWA%+$F+AP{O@URn!f4ah$N+8%{6o>ewhbOv+4B8QHx9qs0hdpt15hNs`JzjxyV{ zgy@h|S!nj0l40)rta(#&OF!yruC8fnu8wvyB2U!Y+S=RR-b>zLY#O;n{siGMFEkYu zfKAnGQlJ{5oaT*7`4%}HL0iM<>n!$iz}Lsc`CW6KA!R?qD)=uUb(gbZJN7h#;- zls@L z6OAIrVe>Q^%R#I|P!y^-!6o4xJ22)50f!kPNnoeNyD4JJe zlw#IW)hV479HM)VbY>0WFMV)%RYTMGy1)0L2U1#cS)EoiDy26I-+X&u8^7gvx&>Vv zXjvavJ20JESvy?anEr8~t*YalfeU(ccZGn6M*S7uV)fyEvlX`|XE?g6+vWg}B%F!I zOg?$Z7ByrSlLC=$Cq+V}hHE^+%PrWV35l?EOPnpLi;eleaT+nArepGo@5bMhDz8o@(YS!rqclk%J$SmKz7Jc+^ZB zsBVbjRZ6Go3{M_m4E89Li@lu0a=r^R;Yk3q0bU;?<_KjJM1RX(<3iYyf(Gj)GVFL{>qohE`ry9a z#trWssVYaV^xZLZJ$ZPtHwLoUF(IC}UOPW}u6^gqYZpFwI!#vtWNBja&)H-qw?&eQ zhm##->RHK40pJr}hb&{m`*Of;_!q_cmxt3Yfi;C%Toh}V1xW(Pg|)8&IBYJXt1P{A z8F5a)aV@$4%-7J8qv=29BFt2^iLXl|7}qeaVH*(R+)8R?;blZu+Yi_l*i#H-oR7+i zUIVpn96Np#tWXCp6|;_CK^$L&)-05lO7NxSu~-b!QxXAm({UJ^B1~6FX$o1i0bATF zT|}oFcF!(%l1<0C3>2mY8vpASF;E$i+SU|3kQE`z6g`5iR;lO}#A>&5Mo1W2EsX7j zpE049x$z&GGEuArupLX`70#EF^Z3e8czzUpkE6&PFvS4hauUm`?m%&Ac_>m*TRT@c z-Y5$*!ERks4SOCwE^{Xe{3T%RN*Ev4t6<=lGiu_%dSNG$CbEN!2IsK+iaBmj?#aYn zJUjS;*egEmYwYemQWZqMhPBfN_G2H}Kz-!i*uk-Ma12+8hbH^$qt!SdmlJpSa`ars zjuqFw(z60HK0i45Y#%~gsNH`i;)d+6?NuP!Ua7fqs#s;+`46j3K`dUDc=ZZYJf78`G}kOh??;cx{TTZbAaF+pq-oNZF-?^Seb8_ z)x=^BA*CNMkEldT4zsFb0bgL%$UjT4?Oh%9|!;d0002d z``Qcu0002j(TeH+7yb4JeFpFV0ssgA0ssI20001Z+GAj3U|_%h_Z*N6{4f4*GJ7pU z3WF#EGI#|5s5=Ll0001Z+HI5HOH@G|#m}AZ_udr=6A9X&#gZ^Vd{`vpvMhma5SxL@ zB8v~pvMtd=Jwy~)WJnJpBGN-aLP(@+$kJ1Yh)6%4G#^5OCBpm%3hJRB1Tmdi+gPj% zAI{wG%-oqdXRi5(6!@4$z}up>V8mQRkB-}l09gw^XMGFlpoM$vK-!Ex>v$HH7SZ6nXxO<>7`{7F>OPS+{1t#;aaO0GI?a=xt-QVgkBj5 zp0!)9v%P>Y=tk)3n&kL4yY1$fcL=4?{xD?}*;kYT@_rmwrQI${!FI}F``VOn+yLv; zqteB1MXTNq(~G+b`(Cc`%-9_xFOd-S)PIXndY{z?RbLCvdsmY#ubIAwtmVyP>?f@} z%P8Nc)ZhvI&T)+i)+Ty{xGaaPA^!ugWPSsV($zzF+GAi~(1F4fhCYS| zj8#kmO!JubF@0cGVoqS5!F+=G8H)gm0?Q6o2G#)9V{BS%v)Gx~)!5f@h;YPkEaTY2 zagXB@X9kx6R|_`-w-5Is?oT{cJZpHxcwKn=ct7!}@y+4;!0*AoK|oBPL*SdBf#4*; zQ$k8YAwtuHjtPAd))EdAZV;X&yho%+F)UBnzahqz*|7 zNH37lkm-_nC)*|`BIhHwMDB{bntYf7pMr+M5=9pvtWtcU)S&cBxkh<`N{Y%NRSVTa zsxQ=d)U?#@sQpoQQ}56e(yY>)rTIupM9W62MC*XIfVP?T8{HngG`&aqcKQnpI1J7i zCK$djiZOa%Y-ZeN{KllnWRuA|Q!~>UW>V%H=2_+!EG#VkS$0{jvC^=bV$Eh?g~5+_$csCkX}$+P+!oCV29ut z!B;}mfY2i(DH^sS1poj5000620RRF3 z761SN00Er<0001Z+Ra?qZd=D09@*{^Hx1gL2%4Y;&Xp?_G~+FatXTJacXFEfRR1CB*M4n}4{(YUH zl~Nz9y{B%fwOj8fwf0k`_J*04}ATO`sl{L`1ovxqNJyW^9Yw6EY^;Dt9WNK5dFx1};W`(;#e;4}uwf^j3%>zCE zRF55CE%P+f_m}$f3#^#y`Gx9RJTi5xI(q#~Jp|Tw)noOU`doj1uIVuUGIfD}O+7QU zLQ~T)R_B^FgOA|X(c?z??Q{M7K))GlYNz^{!K@q5>Qj0r;Fsf8gL&0dPr${+kg@>Q z6Hhj)&3pmgR{DAjDLmBh?}1BKt#cRagrhRZB!hIP;G?1W9Mr$k&&Hak^Yx`+^`&{G zzAVzDJ4?ctzeY;`*Y%u@qz#DnT@CYXTEP*ZRRPbtdd*7DF}j*r{WaP>(BCihRS$Zd z>v2Q8Fg@ndaX;@JD!QD4uHGKT#j+f6G}V^F8}8;`_&eKX_`n(PmtanWvf7YM)Mn z;~98hbhqGH25y<8{dPptqky8@c;D3{M|%8)=BeT2nYXs#iqVi=P07AG)RNs)d-^le zpZofIN9$u7Hh!R<>AUBe(he}$$G8qC-PAKT^>^EQo@GDNw9))MeXm!~ehye>{)t%& z@AvdPqfz_dg&W_-*rNbihIO9ms}sO%+nEOIuk`m8{H%o4_+#2^enU$pOm2FNL(TsV zQ_)JU-LX%NgowTtQ$lMIUtUFHNy+|Afw$Zq{Z;CcjZw!!N*<~p2H)Dh;X z5r*f@04BlMLuB0c_}9|kZHyr86P!9M!DDcXuZU8G&vPgo0mKE*sH z4Lr7YgvTPC?dZ{4+84K(&$Pn-QX`C~*n*ZH=ov;TVwsy*&&aR^yojw=4W!77j zf{uS}$a))^W5yYp7R}j!A0#}9E~8r~u;qO{rsa8_XDpK#s^dNJ@XL6P_84D5Un$CZ zyoKl3g1#QHZm%;o9eCRvaQV>s7m{DdO9Ou!Pj^B4GdwX;-9zTfU#hrl5Ey$)5_%pHrb7!6#8aG+?#*4=`xV#3td17C&b~a#Jd#rsO=1a@-p}QF4 zv{6>*Sj*Z1R$Kb|m`9OL$o!^;{xr#(x<_*Bhj!apiSo20cHu>iU_XZ}*&~iV+u%7t z5nmH>JzTG4S1}Q8o9%oNOrw{(n7IR~w;6Jat?$TM1^Efe7sPjmxGb{f9roy?JA^5% z5y#&Tt(P;LIA-py>!%x<8soF(`#Ixd4_If~prPaG>+1fg&C(>^A1>utJB;P((2RAx z0A=k2bx!w;gm;+J`{0m^VT?&!3@EI_D81^axB{Sa4l8;x(w+oS+JN#kG}*tQUCK zMU`nP{!5q*XuKG1Ir>Ku};2uI0+A2*`p`Q=1uGD+ym`j<=6kIBplVwm>=UlhTx)skT zK#8faf2Z-2=T%KoQ&f{fe(%GkC$y&F-iV)&luRW$v7^ozJA*?NROLPJuwot<_(bWH zdEh8nUQc9op}mJyXSS|2t4m+WP&xGA2@eZU-qaR0WDG^(eTGUMhXHUgT$uvyl;!4g z%7=BvT@~qU9ALF`P$@W2{qOUs6X}5K8TcInS<}EVQXSw*sIII=b+DG;Wu8;N^izC( zhR??y^v{hgXY1;|*WWQT+|}6Up!|}%pCz;^_i)*SX8PR((`mbeRb*Dna>j?|;Il5po9#ufcGJa=1&p_oseeFrA;bB-pkEPE=YYSh--DUROgPYalqKp(*gUQ zOUvm&U@;f$o!rU=!<%u}kZknRP@oz&xQfy=Le^`y3EA+ielj$*kZPs_-2mx1mQ zgb8A-qmrHqwj+!sKT4c(k#ZPyJNw{QqZY5jxLiaiLjp5^KrcvHbdEJU5jpL8s^{?ypJPLeI;-ptG-Xxs@ z5W0XphQ)P*OeLKcP~K$nlOg9-;u$IDnXuIyU|+%P)pS9F$qT;WOtnPzainLP2=|S( z{(an!f;UsX?sKPG`t~Eh7G8`!4@O>Vl+gPN?1&6&(K16u*Mn7(UQ@&!*5Yiq*RhCK zl68`g7+?*_Gz;d}2oy{#XZx%fCWHM19i44t`<17+%h+<$#@xD266Q0{N6*tEKMy+x z^djKyd~6#FAcvfH@oKE8kSw1pXP5Vd2HHN{?#Oj~S!nen?+H^&UW9T%V~-|dJY`s9 zCqmW777NnBb>vjVTg9}3F8P@nY0wb6H5;}wYrOplXc;AWJ?34!5-X;5o@7Vu6mLrC zs=rHZI90-?&!7SG_O<*y%!ajOtv5VUvMAE~(pC`UjY?oJ1CL5C515x_3=^5J%P|&f zp7W`sabd>tcICLPKQ{o=&kQTnDulrRSEgPz5`6%D%2~p(_O^BGm|CjIn^SyVmR9m_ z^ZeY~)!*3G9M#TWhMuMhGE(uJBY5=&GQKf#AeWo<@MOgCnCf}TmdZp2LhdfWr zk2OQQei3DCbx1D4kl#PkYZBI@;A}`bXIPXm=9+tb_6)IJi8jS~m(;kl6I|4^h`KeT zd#9{>9lNt%+NzYi&e0ONbSS&U(XX`e+eO2iv*Quh`J$mTS}1VO*Y(&YFli;LO8-9@n#~cyru=z4H&^n zo6PSr$a{@;PLN+YnfE}k^c6-ybT6#MO&FV0oSRQ`sy@vV+E2b`1pRd#G{K;co)See z!OloDM>l2YtxzE=nqYn6N8iSkA?MK3s16CaQn5yvuHF-y4Y@v#lgE9Wpjkvc<>4YJPoaC(p+SN(u-D&kZ+IfEV>|HAv3DY;@chir_r&BK z2i&V9E~R`&+@GyHDtgDAkQnexm^XQ*n`^~)k##p#t8T%FS%=*N*?p>wFEVV~nl7om=-$#-+ zB40MWmS*PAKH8sIhtz3KgLS~2_H-vn8{C&O`1#lMQRl#R0G*ES>!T}VW&^A@`f~RXTr5sWp%;% ztG4!b&ta#rXP(!`b2~L@yQpg3%s*{OCmDyF9Xeg7Jm)pmOsx}RTk@IUfz3QKbekmC zHjp0jKJEo#OUd=m#Gag+-)Z-Kf#k%}kDEfSGwwX(3_0!+QvEbcWcOq44GwHJ9QSV) z_b2_TCe^!4of55roi?F1%!^k$0V`f<>S>#3hUD`@+o_xdlup>ITt>S94bC5?%s1De zj3wx@aPgY`pgX@>hcxUCE{lPy%X(f{xeNLRHkVD=L8|XKztbo*#jOddu6*j^Y%qjkVZ8pNd4`IyCU%$`F%oV&oTIW{Ir`){<5$g)UmB(Q|~uylq#*nG7nDU z3XO_s^mqSbe#s7BJqL+b>9aJtEXBf`KdkkX26iu9PDa#snXYTCS6h_pjZcFr@YLE< z{QHblwkY}Vm@UZV)!{xTttz!h!Dj)cUiFgtMaXmg{-V|e$)ir+)Yd_lb7Ey9@bFTF zcY__f+^a$y|9^{$)2!9QjJPJ5*nc5Qv%OXLHKbXdM$gKx8-KRnN4Irx;Z^m+f6 z`k%Rt(5X`|!EdXUmU9!eTYXPouy-EZk58%HkJN5pp6IuxPYbNRGdd0|LHckNM|U|( zQgIbiad)!MXNX=V&a|aZZQSNvpVI3OxsxfhALQPIo?6C*S)xd+%h6&G@jTq^CBCnF zUC!M5z1JA|!vsEV#Bpb4dmwQRzF1#FOB%DktO9#-E4XOtYptW`IzA^4PAaB;LFn5@ z?2lchXDWzCke>K$b6T{pHBUF_D1{Y8oY4<#M>2$0u>bMx)z7H?y-v!|N_!?UWxul0 zBJXg08$X7;W*iMm_`M?Fq{PfvXVUyg*%(oE3ZF$@tGQsmY?3&UCwaK*9EMrwDtUP$ zh_*fN+@V?diQWB^wJtpitax|S<p zJgfJ)d}&s8cRlqRXVFr3E+PxgMdbF3>SeGW9M>G-**V$OE3KSHwKJvP#?PA`-F(Xx znVduVW*6zwp16O-c~}YEC>bk~lpik}YzHs7mMpw#dW2X&p1Z+kA99>SYjFMG_dg2T z7a7=d{UouRcaP7#6aPJqg_m|c0aF94{Fjkc_ME^O_dx_om+?Ha{W~8IKmVltm7Z5U zo^oc^SeXAb=4K=1oE#?Yx8-c&ylQ@4J|XqH_+XLpfOp8R`aQ?hQFLVO#qjl&wGjEO zeii*%f5QI{LiH{G2aV`tzawe1yG5`lbHk z=>JBTFh?sy0e{z4c60EXhW`T2TJ`z>c-n2yH*8aJ5XbTFC61jqz4y?2d+*s!fl%xu zruW_nB(V)42@VEA3y59?LV^iITL96kK)?Wq-b4{FFw?~l7y*a(XXBQS?l;_>jtKbO z0>4V>%Kz#UNQ6WZiG?Vv*oY)YrnPibo4!Pu!PXTRcOFP=r zfsS;dGhM=ay3w5;^rRQP>4S!jfdeNl3MrzP68h4QQu;H1fegZphce2kz{_BUFqB~o zX9Ob|#c0MbmT`<{0u!0UWTr5cX-sDZGnvI~=1?gXjSesY+T+~+Q*n9DqNQN=^5xyJ*Z@`%Sg;UhJ?;2F<3 zjgRl_<~1*Qg`dxSWef8Ouz-csQpZ8+SwsUt8VRwOB`ghpc^S)TVg;*M$rTRK%xc!K zmM?tcDrY#$HQw-6V#F@75-0JJAc>MB$&wkzC1>d?~Q{YMUDTx`|;6)de)ottrb*Ju3G&lqIbinx-jrrJ-~vol2LoP+6ob zR{opkHr3T!UANZ+e4$`8gHi}Y34~=42nvGae1g|b0X7081BWOJgH`|pAO(Sp zItPVZ41!KScV%K`23t}uaRk+CH{x*H0F0aE*Mg1~D7T$(w-W0PQlN@)%ql>4a3>X4 z3z7Z*|DTsM##q~-+W`nxS$$tDJ4&M_9Juv?qtP5|)gY0^sqUK44WgPjZ>6Rq(8}H1 zADWZaexDA61G7y&do&CM!gOFL5)|nwXko?~YY!QIJvD zf~;ZgDC4L0H}KeE!7i(TURyVwEL>Rpjz^(4`B;CvOkY-0Bo(E~K5*&KU6Dw7HgoEs z$P&cD*A^rkW{W&bMoswiKQ1)YUq$20PJ=GvZEm80zJ`8u<`PE95@XkcfObe$dw7p% zTeEvdDj`xP82!GH7@t^$nV*eOZ(u}x1|Nl=*$(OS-#Z=2d^*Dljf z*Z%H6JH9_I1>DL*wASaVuA1JxyD&`L2^--3L0};fHK2|HbbtySI^cfj%FbPuGU|Q9 z)&~<*&ID2*dXJShRBr&1$FuU8lIV^2W|o39Jy1*PstsTj?hvak*;m!xvzG}|&VEm3 zTA8kvq|XouNjOsk4 z69cw^{{}<-upb&}8L^rV2vs~<1N`?3{8QIs)=DzSg7>txwSWKaCmz2<3Tcuy>F9u{ z0&2ROo}dQoR2_m3p}`r_>j%I9Y|})Y&dNJypi{soi~>Q@20=hT1*Hr?L{uVejA1mJ zvCwUIgsa^zNpv|a=!`Xsl%!tW44 zmeTg1u<$+lT>wHAH%e{_IF+V6(U(qlGma=ib<(V<^dWjc!8r{YNV?b|7LUU?5`D!!uR$5jXY;y?1WyP@nQ?+dW015-`B}tbg=Q57YDkZ~gxk0K&Gz(r ze+en6kYv^c(oO9N4SxE3fe1A0Gvudn`>x7_{nZA%+%v{Fimh=_GFM8idY#j3E#b#3uy{frRo&VZtF1)}%{fMkMioXN0K>r+30KtdXf1exRy@hJ9zNh59A5)9 zz22Ag z-J@da<^FboX<`;$j8wE@WXn6|4V;Xiw*WN~apQ@B*3795ORf%yx_b+r5p45vnk>Xs z=}L8NuwrW7(%2N7@C2DwG5@fT>-7bTSw$(3sA%XIn6zkPVdK@!FDNW3u2;W7!;;b_ zO`9Ec^fAU7CykQlqD)z`<(OcSDW;ijwz-sY6(~KowCRWL9eQ}^(V?fh-7OELmH1u4 zM1)VAo9adSO%1ZgWC^2JD11>lC%E8FU|Wo)*f?V;8{ycZ*ywT1SOa*NO#2wkE1Eqm za5Rrg%?cXEpm;1_X8LG(JYR^i={}t?B#w)SH@lXjc_g@!fgDmG_;m^uVeNvOXN|x! zvB+F{GwW$jrzqcR#VD(N1^rXV!3E1#7iHQQT2+=!ThSGZ#nnwQ3^iAqQ@aAxEY}Vk zpPB@faZPVb#WXZr(}8M_=NsdCH8$LeMq#OpC=mZi2@V7uK^G@(=Hz;*QwIjX@m_qBNFkv>mD zf8fW`wS!Rpy#aP&abr*G8i$(09H0Gky+?~I@~U_zK5dKfl?CN0R8o~exg162KOFhd z3T@C19nfd$2Mk~V2Y4U=5lDed5fBuj(&)k>qGIbfBY|s@YAFT*X__&guAy0)qj|GH zi#Mf2X?a#Lt5KtM4NWa=9bG+rU~qmo8__AcQ=3W|l&erl6;+U=T8&zD>NRN8q*;qr zZQ6C{)TKwSKK%yLLGZT>GAy^kN~^54##-yFx538P1Pg4Ywk5VghHbXnVW(ZK-9Tf= zUi<8i15nNIw|h9yqjADBUhs-{eBc{D<~R8HcUyd6X=QC=Yj;iC$H|Xi3|Ryh@Tp)Z zBBWFf3L+pVw5u9w2t5l&1Q8VzmyncdcwLl?m~1McVZMZYd-(Po$js%pZK$slHd65| zCQ%lYt58XmR!dRCSFJkr8Z>IstVL_INztxDr!GCw%U7R%0|sL&iS2gSX_wtJae$3O zmk&#Egv3$4p0n{HcpfvSd^Dx+X(+ad)9B}`MR7O8qkg^6=e zR%5(YhiQhZ1zy9x;Q~OM6O~sO!o_l;$#G*Y!vlRN?Z?KOqhH#Rf8@&iWDTzlRSU|d zanN+O(!|n$<^;M(x`?Rr?oe~ z1$+|CGzR-*j~4=Ly4;wr?N4$>sF7Q=h==P3Smnnx;5OM<4?lvBcLMa~gMR`8GXFv0edS#IXn^TebO7rL|$(2j&Xkn<0@%U!J2F_j=_%)&;2L3<*f{pmL2Onod!%3QF z-G1lcArV3vsRB|hwSES+(c=!NeQ8ua`YpNlXn=As_;mVk;@3A1uJY#{Enn-;}(``(;#4NAG9H4Y;3k`-I zgJ;}h@VnhHUt?BC)t4-^y^unB03AWX3Vci!1^Am?nsiQpw zv_809?V%RNC~d#+fB%<|WKo(p=FR>i)bRvEJ>J#p$){|ki)RSOMYimVX;3>Orff01OzoNdNf>F# zz=+|?NC79zgRpSe2G9)XD-y_Np2W*PMW&ZAX5|!-446y>AH&-l$$_IcI)Du<2**MZ zE+RT8WQ1mn>*z5D3zV}&k}ab!QmDFs=Eq6FK+Z^TMLKuX=YdR~$RI;)UZ}+z#e5j+ zCwPrb4#?q;1_IDXAQ}q7ae|rgEMM>!zyOhGAqp)iP$C+w#Gq6x8$V-3GZ7D{BLTS* zktYdFB_m%7>Pkg{SsJoM}HEVBm3S~~;lY-DJYE&Od= zpu{$2IrGLV8Cqhv0zf+)|r@5h-NNUJWGjE*>DOY$FAp~MHlZGLqm_V%tnF3 zXE6i!#1rMTv%zu3Eqdt5m0 zTu-j4qb{zl)sPl1Z>-sHW8n_~PZl}?5Jv3c00;@^g3oDtK)*oBrtj->1h9!IqemEP)2svaVgpR~yo=oZ$LXZeAv3;l)un5m#p%8?0#E^a< zM#ZL;Xr$6)m^MPb`4(^?O?6XHFg^j%hw!*(G+uQ%1y6BZhM>G_!Wp4#ikRvE?p#6Jt!+bOnR0oJdVHp&%!hIyWBZ!Plm% zonzCS07mH~00a3v*nFIkM=~FxfI}7li1eSL!hZm?Z<_P0pcMe1kJ=mnQsht>NIwn$ zaCUgf01T1T0IX>qc)B9P$V1tVx4ZLt={BfA9qQ49HVonjHtb>A`0t+@UI##GNhpjC zNw+{1YO4;Ac!0(aAw`|+7edq37dx!Szhq)I`m~v0HboR8T(y36@1M|S7TLA!I`dzR_Q<^;!0AR-5 z_p26HbRNdF>$mURxVh)hJMi|~N6%kC%hxYJUsqON)7aG9(B1)Uef_;~?7cYvkOu&; zb@l)36sjzfO*6~9*?aZMUqjD2pzXP?-0k1u4UtyM82i(l0HVy4)|4L2>`#4kv-=c>SD&6zXjW2V_^ zb&QxR?(gcY*EDzQ{;$6CS`5?oInG@0x&0!nHm2MBgZs;qVeiyOw>tLX*1?0Cs)>Qj zx7^U4G|sXm#TaOdnQd{s1^x;>BrvscUcj`b1*)}#a4H-_;P2PQcpXwL8?-euXJDBk zU1XSLb1goNWgw47(8kPt2OTggGsn)u;pFk^lt$!tO0=d3m<=<>Bp^szLK==TF$iz; ziOb|vg3ucUofMCJt1?F8TMz-MFf|XV?O_>)WU9~#zO`Ie;1)NvVdPyH&8G7b1Y!OZ z$B0#f`fkjkQ-HiE?mZ3mR01OS1M=DJC>K8%~acN+z@h5s~_xBpdFof*PMaaW_H)TN5W(eX6#bM7d=_ zLYOpe#$F*00GDGvqSpWbeFo5@K=L!Nf65~Kekn+L;wBbs?Gh+XA3=+8KuXXugL;O> z-I21=A|o(fBHFcTZh~QO*CW|v?1X&g50tP%+O1D)%6q7=MaB^_qEtoQKEV_v+o6YX zg)I4+;{;N~gnlh9@_$LW2)B4;G}h)X&)^g;ibQ*?aaq&ZR-vIZtne;3T6)Pb=4y7Q zIdVeQMrzqw2|1OgjV>^L%V9dQ=|pl)aTHwis^9hg|JlaMt@hMfmTRa&+3f$H*Pu`*Il>4y zysXhWCJ~|yegEKmJOZ1XH{kb9zBr3*;3Os`6O|MhwtfN6v=-Qj`+hPTIJ{U|JN~T{ z+frZvuCgPXQCa2l7i+NsoW$hF8X<}n&9N2bd0*;bZ(^-eHMgRg&0lsAZ~o#;bH({F z4{?g6JD1q5f=|ZQnghwwO6dHG{v7=TXe$bviv~LHBMmW5BpSQmW)u>@`4t6vXjOuj zxfJ>vZ{B&_5KzHLr64a=xwyl~0oM|+x9w8g8{)yj2e{_zXo%}&$C0pDv^up^!g0^- z@(87wO%dpR8Qh*)*562r-zdjMN_9ur-+Hd{(s9$WIaiI2%AMLiRhNrGw;K(S^p=<% zDu_;GNzQX8ZtXVvdfCDKB&Vna?bA;Kd#9xL?bDph$9ajU%!Bz9LR|UaFuuX{I!+=M zX7m@uUvjDwOhTXvg`l$lZ-mZSUkNhewq3x%u9gQ2u*jj9EFF>!s5)8YsYc9eT5%j8 z=93TwRP*W}19;sNdImk9tDKlxno42oQ%#Mk>dE1WY0`Y!5!8Ltj`j)sIVa<1=p~#g z?;#2u4WALElOH|Z>MNVhzvJII_iWtxbNTfJ{EQrS^S%sI+^LEXdZ=)daZJ@E1vE~6Ei4R$}&4S*mt4zKgYpf6Y5o!C%tGB(KvS^!O1X=hR`(K z*@CLsE@HvO(tdYUG)m#z$uyieIyV(}Rs!15*{bF^Xz`(|8H*`h;Ur^I2eX>N0!%fF zy@liw)d3qLEh)ooxOoMv1dTF{ViShIdbm|2`WI<~N{3JMX!B`cmu~M|iCxkN_4ani zRe&fXMn_20pTy32&kpLR;m0az7w*A}fdRh6IZ2@?wY8{{n?%G9 z64Jz0;##w6b4;NQ3ibdtx=juo5^;Yn?xnXP5|8h2byu{{-6$Tn0mr`a!6tq9>2A6; z*3MmHIeYiVa1(3=NPfS(Fl=bztGtPQb-1KA@s?SaX-A)$O~sd|m&D zy3yfCR;b|wQ6jN0-Os8!IVuK)JS606KQTC=xTc((2jpOPcWA2S$cw5^9-e`DbPPNz zNEiR3TlHgA2z*h803+WpR#Rn{&LoS&{O0=93h6#9WHw}30;N2d z-Q;X)Ii3w)sbG#Hb{e@N>8ccZmjmQ=OrQM-4U6mhPYQmbNQ3&J#Qla`nGxu?hQEHs%=zn^~b zz()iigd9Okz!flVN3MxYV%h6tE<2at&R1`Q$U`NBxdZ(wPKLmNL1NGZ*OA-LJG$@m zk{LPS9Qk&E#rO!eMV$FGeculB#u z<6ca5$VUz=E}mGtzT>)g$D?rUbJl@|2c0Q2#8&Cxrp!+Ai&$oS(PnaXY_FZ$#g^Q#0CTc`OC*7KRykUX?lB+%^tXLRDtd~Na=GEo) z)<7&LWaC1U-+}~Nf!XS2MG$X4UM{em5O6ENyasr$4ZzeMF58_?@gT;fDEBx}W8LJA zM{ynx^AM@q`DC$Zuyr#>g#-k~E~ww5y7;HhufM*!hC*EzErkqkQ3p%soi&m_BvI5- z^gQ}Zds)yTr;TU!VhT@3uIJdu4ksV-%T$TS?5OJmB1gh}Q$V2K3`z$dgjDxdEz^}o zo|t^OlFV3^?An>^cVWY`TbRQ0!R6RM^t8X$!8wC+fV!H7h3x{QSyK?}G}+k1Xp+&H zg3z+nq&S-8f_L?2s3fXn*$s|OLziO%ky_^y9i&-pgb2K#aDJWX zN=T#5jf2z`W`_Mj9I^bPpT2wVrOGQQB}nzltRFeHqgNK(nd?t7ZiCcAF9*&+L*QqsN{*W5ZkAHbicz84Rsq>$C3~J;SDMl* zdPT>+=jaPv+~|g@Z*Z+AZUNC5cLVC_&-4_EqE@Cjr&>r~Yxxa4*nP82E!jKs za}8p`L|Un4vHFBVKPkgGmcmlTsc0AHLY8e#pM_R2%n3vqRyls2p48A1sg;`d5PwCH znLqBX(RP5~nYxMY^1=)9E2XPM+HLJ*`4QS!jkl3S)dIwRYJ8-Fzf&y}_K;BpWxWcm z;}10JUPp#G3?{2ayw>6Nj6iE+2+j2jm6L2zO=n(FOLZwZ(nj}Y#YuDxuAp+JSz*%^ ze#Le%ejmG(GjC4Y;#6PHZLoQ6gDt8*t?r| z`@2p}k0EE9mLO3*Ag~z%hE3Z4qV9Ha`m)N^x-q8apLt#bXWvi$XTI0q*en!qn7Kd5FLQ4<{~->j@-4uR%> z^e6xqWW>V*N%7+5ovTISfC78O^gd%j z(WMN^+?A;(uey7W&Ua5gc{$L1c!Abet!-gTw{36Y=-RlF>G{z6&i#*`_w}wEZ~f`> z{+@#ilvl2{*>{&4G%Ugoad@ zyNSWvdDag( ztJ?W?Av`3RiVihNO$WtyJfvH5LJUIf9P3o(4?lZG_USvrAbKZGrJ#XZr9%frcTmoO zO%vZSHFfhbp&quZmI#X9*GJQ7%htB@1I5{=e{%yl`Dp!FO$3P6(bAP*x!b04H=v$X zE39SKEv*&_MH$ld@P+H5tDIY75jD{1Y6{<;GD7O)vHR0YDBYPQ6-hb|6|yquZp2rT{l~@P?4=Tz zP+k3pvJIudTxcFE5sqxkEMR3CLfd_ec6@MDQFUHY7dije?VI;{=foB7<+vdp% zs`YWyMkAjutErtYFU0+GF(TRK9_k z4&tD3taM)ZYM;ygcAZFh^mbJ%{chGY&_e7S+u*<=opYISB|At8!%{ozK6S44K#Rkr zJH*@jPVVeSrtlaU4Vy9=X}*V7=v+scgKXduKBv`33?&rBH{&kaeLg{1%TQA0`Wd!! zrylqJkzV5B-Z19w)co#Cug*AB%)V5j`SiIlMg6U-O8M&Ze_Qu-jjeWf?pp0??$bB# z9^j@?j4?pNF`w2g)~uMssStFy@x<}1k!$mIP5gLzaqi*n5zYMmu9(UcX)nwC`?2MQ z6=b7HDXrfjQMb&h1;KeQ3ynx1+*uL4Ypc=&v?V{60G-x|LI->KoIypsXotSGmG5l)4X_Y*om>WC|mC=fZY&i zI#GC{jNpe5ws&df&i1PspI*#gYj#a$QzGkY?^&2Oifqs4o0Sb8j*tHsS8^V6{bcd^ zlXFn;%E_ko2scCrsQY%_rDLU^7i+~mbUu|s-d|86D(U6t?_Nd40RQh|6aO#sWfiZn z+@Adu_ls~Y2AI5h`9N3e_NAfV`T)fc%lz-jzwKq4mlxH-O0(Sfvsm<*ZBD8Z6)?JF zJ#YJJ114*{j@@z3ojrFg!dHHdeBAJgGq|tlz4GZ_zg%9JD)g7&fR{(a0^muRj2|6- z`z2<+gK<|oS_wFD3Nr8Xb=kXp?uL1{)rWw`A5dEo&Se2ep-e}{UuRpvbHZVTV3p8osWWtkp|l@NWU59`wik$0Svy7kCQ%Vxsg zTGfR^&P9J{KyS;_#ICMn^tq+cQoYdhDn;yQU0dpimti6 zT=K7|?*q$9%IfXmBUi=-8d`i>b2qyWTc}xy+z1Kxgp-#=g|=t;mczuMjrwpGecUq6 zrPN}Zgk9y7Sfz3?Xpc+g>y?|MHx8HpitSD@4rQ%l}cKdWZX#oO5$F zhpT+2A6RIgKgteP`5?Q$4Q{Iz(|PP<75d4L(xh;(Z{HvyZo%Buj%6hZW6z zS`?#iUi*g%u=+`0e2EtS5jN#|PNUoZfh;|QUkYpY_;@=aQi38?jMcHXQxNW-a{wQY3zy|?Vx`fGVz}92 z+0N5N;@Z1eVR1onY{G3hT{f@eK|*tjGKdgVASS3fqnsFBhur<|xl_{j7=k0x;M;2J z-Fn`cZ_qdwgOfAy9s<)R&ER()87Uq6O>;x1&IIjn@JQFhCEy~T;cpl2{J+-hSZ!g@ z`gM`Dq}dpq_SuvjN0NPiFf3md666&aEnaKR?XNd#We^t4xNe+J^`(;{LDTjw2Li7NQ|$N1-0?>8E&_jID&6Z4RM3 zBWt3+urhXI3z{a(dI`FMQQRdFCOZCszZIV6xjvk!_veP6c~BFSY`*<*v$@m$yYc=$ zRjHr$bXQs)Z?B4eLt-4+*Qn6f8Ve_R*ejaxv-F1LL3T*v5Uana7e|*RjTTHU>@(Jj z6J13cdL-GaKfTWkQJOpLei#jrQmWP$>$`cWRL*!EvTtnROHm-34Ai^9JvO8#cXiC*WfF;%zB^T-=ubQrRv7H;}VC`~9{E61puMEkL zEl8tOB7H=ZnTfBS^jWr+r2~Bd>g$e<80Pfr$4hCr5N2{%i@!lP8Ey6afpQA|wV6T88H@ zT8H0|*^Kk{OP}S^&5Fjo8x$^m9uboE3$brdC+4;@Jny} zJDaq3vZBOpNh)NjW8-M9D7h23+{~Vf=Ocy( zmH&Pm=s5c3_Y*DZb!&S&kG}pzd2nF*P?u;~L%vWuIC-o~ykAegj0}09@$uL)F7obE`&Tme}(8h25hoV$AIoNkxhkDbkZEfgcgt#neu zkATHBCl*cLQJaqJZPK>YzpctZhxQKk9v^Zrp`@Rg$3{bfTl1qy(=D%LwY_$Dki^V4 zQd-D)DO9W|L6#etld-uVq3z_TZr03*Xq>9l7xN2pGKffVk|askz))Y99XiCYMWh1? zr-Nc2pKbir}z*30l#dT%l@U~ z%bae4Dj8zTK4unX2)DeE@oHnWqa@5E^g$WYqCN+}ctGwHRzC(b zp)aB9kGK7T6j@LMTUHod4teJf@ehuJsVvPj?1~Pc8L347%vYo+ahp zsr1KYB=TTT>KDH~PT;rIK`lk%WDQuB|Cv~f6%e9%Z_1mR`^It z?9yRoLT-tG6JEmz2=ClE*-W-rN<-&IVaz2OFN+oAJRO6T$#99)wHT;Kj7Cc&u?0+a zJXWp7V3kT-VhtM~-`I#oNhC=nmD~h$#4<(L#-xknW%yzlOkrzFxT7152RzKOrXzjz zz5iw3Weso8<5V|#&5uDVtZ8-ejw+A7a57+%aG#xZi}%a4X*peBGQ;q3w18Z6Lg1yG zJkW_;6g;pr!7?N_A_dB%z^g$NI)>ABq*s4vtTMHJfZ2hqhojwvePQ1=z&A|_$*@2& z)G8DknVP^P!Kxyugj_bMQZt%eR(=72JL3(~mEVFr6(2r#vgFSfNR|6`W7qgu?>y^b zUG7wk0c&Cn2@%zFze?xpXWPYyoDXJ{=Pf%{QfxH31!#rEbFGFhtSBWf~MXPz0No( zZ7hX*u&HV7vs&_b-5;&r@Dz`NqnB4HQC^fzd|M_x01NjNY%EL*_u{9KYP}->Seut^ zIho`JF_#jL%YY`;CYU1boF>*y905)HYauiM|7r#U|Iete%n-?6n(`-<(+L~-Z!68tT97fw7HyfNU z?Oz%#*u!++aQ>pIZE~o! z`URPDgrCd`do$r64cmrr78n~RmZ`E#zVX3fnu-h)i6J!ONxEi@YWFjfk!WeoAr_%g zo4g<=r%kC;r@)xJKqn*JsTT6oiF$6(O7aX?3h()F*uR-9$dMF_^U+9YR#^~XV}2S) zkzAUTT~(9nTP(_!XA6SzN;0BASZr*`=0B5ZGFmZzMX!PxLnuB&VQF={lyyPfFDxjk zVp7{ct03h6FW-!a&@$Dcs)5omHbpn!&nfsCDqr@ z7R!c?Ul?lQTt8QYvm@tNlM-FOkZR7@XC>0Ze3GM3) z($nx*`POpGmWbqTR$&?whuD-F^nf57@bPK>YYiek*Rv`gmt?H|d69}w62G3%lOj{G zcq2ofE)5+7Ai*3WvLs@wAc&NbjHFYrF3l7!NzQHre)@Nog?R`{MQa2iYr$Je2ALlp z_G9~k&2j4Dx@G0JtWOPvgV~AR&Gxc1RkLq7e$!$l{bmWj%fseJUHOOiU#w4%Fo^fO zTeI~^B9~LpQtCAYvuj5->+6YtkqCSO(nFsJTtd&D9LTRHI9cWC75#Evb!Q_DPp{2) zcN)^v^c1@NE*@-Hmu+CPa;XIw=>$9sSynti`Ixw=b z+fM)<0xzBu!rk||waovuQJMav@c7~O_0VyS7$0%((c)JHJGV05_C2(F{2sN&U*(H6 zqxH|D-B$($vVda$s4`1WL7ly=&QA4^I8(UJ(BB^iGPAwT3P5$1`8>5ZO9b8x^s54{ z(7CT=o{-NkGP5w7PuEj4g^b60MKqJ9l~YW95iCkO?*L*78DHs}5HFR-mwH|l$S(D= zci$5|*r3RxzS3SeT#CMTdFM#Q!mZe2S4!F;p`xbZ3Hd{A-%|0b3$%HKqZnNLt=0~1 ziF%HYd)nO9AT#%^U(|u+YjQC6n&TC{bJiqa8g#x!zOmJ+JnM-{c$vLRQ#vY)IPdYL z**@DUSjym6C#%tqK>vBSM?RI)Z(N7#ok_BLaNip1Bh*dS@^We*@`2~*x-t{N$%mqvd8XGjl^LOE)GhxRH^{W@Rd2@dD(=C}tZ0B9I zaz4&wbDznT}R|Y|h%tG>x<~Fl;-`FedvxX)|wu>oqWz z55gRWjsuY2YcKkW>@J>`v;VM*@U7jdPfse9D~e8=prJ$SXx@DLf>!GJc&`E~b=d19 zj`1ReMPG)z3bYCnWA3Tv&Q~^`c>l8MMA!6oL&IVR;g&RxdUP2>*?QsikF7LsS9WdQ zG5S#&t~n&vzO{C_KoIIQC<{#-QgP({89 z{x1fAJMkv<6bO8Vnjt6cqrN6)!lEE?cAc89#Z4y%RsVk)?9f$a8xKf&4_%csuh!*V zGmKxNi8M9Y-OI%xs+`iVnE2>&@c~2G6}=J_%@Xa`mR+pXB1rr>G}i@SCIJiZ=$pxa zLn~(s@bGxC6JaF=T8Nj}9F{)(_(<1bt6ee->Ve$y-(zk(o-^oY#JZE2POUO2Y`ok5x#m9;u$37#>=w`Fyy-8`~OPLP)n|_ zzh8@nfY)Mf-if^ty|Z0HgGJ0_*(5OyMnc1uyo;}OZsMeWdm78G?g_$*`Ayo()LUy; z{|IJ9$A*&kb9~#qo%T{_6QGUxcsE=VfHsC*vwV4kaxD3!%haCjiFyAl^m_|P{`)P@ z32uv;0nm0>Ee$O1QdEL0h2>kitS;T$>%8ff-12?~sqiAdHFNRP><-k`8xDQ@6Ve1SqWWCP+ z8GgRi6#;WMt(C|DdbLZF=gi!Nn}F4$H;jq>zkgEs_upt0MF#Yihm5sZefY=c4Y+>x zn5cq-1cD>MrPKliG^1jsaNT!8=1>+B%H|wieH;WxI29<^T1`=$5R7^)uaZdq&}Bem z+ol0YG}+g+C=ne$0ai`J7*PW;W!_en4gJTidS)4DW>+aVKzy{QH;s~uMPvmXX~8XX zCXT)tkGfJD$$|c(O|OfSbu-^tUwHBLF*} zRu=B>4eT=q!h>Wi1^2J1 zLudICXrJg#jIG$bgu+&8G8}uN5+Xek1@pUwky_>4*FzRdzz#?>zzq2_Sg*-o^?+fO zjMAKi0E;k=Bc_Kbg;Y42;4gxfs;M(#YZQ-3Tm;8}9M^O--xR>8pmj*FgA#6Nk`iFo z+EA7ypLx2D;j6$o>G<9VF0BkI;E3Rs?+E`Q>vH?kRCTFU-4*#Bhcn)+bXAT^MQ=S{Hy7rfBvu#~o|z zW3=U%24PELOBV(UP;>Iz+t7D}MB_V8L%aMc4p?*EQv2=q0_Oh>$jbLh^26lDF+4$%0-PB&7DG$n{m)}HwoT)C{3@<2@mc!0ci_3vGeBSjoAa4yT6!-KYyn{x(>L;A@7d+qTn_eC0nn9B?J~_S{JJKAC_sr_y#na{Y#Eqx7 z_0#7_Vi!F+&%EWa_wOgG;l(0ds2bG@=p{g6Q2$QavI2<&^4it(oCB=(s>`vQntvY1v zoY|Yk0<(r$0C4c9Tj$XCIPlzEv?~hu1A84{el|KWGD_|WRaSxGf~#qtR3sw~|5C_a z^a!%uAaR*Mw9z2-N;J@pvvCRH#po6>?;sR!; z=pCP#jZWJHV0#Hil91l}#xNb9`9m@wqq^QYSd1^!U8GQCjb1kwjW8;Zot; zkW|3JgjHW>|EU)l5G;)!FI)~qvzm5*nngrCZ5wPBW=ok=Bw}qNjZq!3!~J>p53749 z={!(UmW3ILvJA5?%V7n?3%y_jjb$h@;-=b>g-W0@C*+c{#lX2`z{VDV-Ki zZd2qt5DK(cO@^ea!*l$nNTopBXGO&}hINiL%)98bzyGfQpcW~sF1={Ln-h%&<1?`Z}g70N?W9O#mQTZw?h1Xej` zLDkYYX==boWYCzB(xsJk{i>nAh#&|Q0SJ{>z{!05Mw@;Zk31nZN{8-X(Z@b-$~pgS zOQg#8hUogdld4J(v)-fb)vpSFvdQv2-Tg;RYDQ%9P`v0JN3H4J%q?OMS5@;wm4dBd zIwpzf$^x+s25OC}j5S>x06-vILqIK$`~MvQ$fkyucLb)#nggMLmUlqhzjOn6tEg>S z!ce9|tCuz|am&JoEbu&Y~$Ls|c9|PXma*Xu<6?F>70%_hB z3D5P3Mw{N}nmi3nizI)(E)Y}(P`3e&C{j@&3Pa?5QxrNS?H2!{&E`g3&0yUX&{PG& z9AjKROyuJ&)Ub$o1T&apgMO2Jp$TjN5Tt=wRVajQ6DiW(5%ohFb^*P<=Ce0Tb0*8qFli#!YA+2EzkHv;)=>Y)5$k5~{4V zY*1v*N0zNrtg&gH1r)ubi0f4kTd2;n^k(bUD3D7a+C6m56XzYeXc4nHMq%-ji?n66 z{Xk>X?LOWQutx%C*m~FXsn3UQDVOS1)H3|3F3L)kIDKMeYwlODsAtYL<7W%gjU9cc zdhS7#ebp??5?HWHHw!JlW6yArbKvT+Dp`Fu&)veP5q8rx6rsWxiQAo*q+=KhpuXiW zAr*_#pxya9AOC(Sd`1(c-VGb~B6RQ_EfTK+*u2116%Q5|SAi#*P=*tnV>P<^Krp_F zSy*V4W2%~oHMoU%**Y;hG@gr%qi)M~!zEN>8bF`%YP>KV*-Mu?$R>1#>WSX^giz zXT3j0LJ22`L1N%pMIspbrj(?7AM^hFa2;0fMnNJ}6lsKXmn1f?IKrBreV&1(3WIyZf53Lj=a{?Fo3!0R#D1gfm_-?5>^} zEQxK4oVX>2{1$r+RS+bnu0qFEP<5A?T6MX02uecBA zcXudu{h+>#cPI4|ltcFnUEIjcgfdsE`cOJzTZYRAuiY`BXXfQ_{*ZGZ*JrQq>K5S# zIqNxc>36FY0iP&f*O*!dH6d5&No2<)JRYffi7$nY6k>PF#6YVaGP-KLB6R*WG@-z8 zj{dqsi~?w+-l+HS58Y3uqTQ*bATA|ukI^2!LEt(Xm9--oiB|!jcHG$UVxKo^WPDH( zdaM$}^UaPbI!w!9lz{mR!3FXV0R6B$29X+RQk`gd=^*otAgX~Y4=H44P)nK7 zmIZ1GtG(Sns0PV;u2h6S)wsaABD6uF%p~rW16R%@4Gm-?S#IP(8Whtkmc_Fjr_aHH zE>St$ZBW|(A9wVi>h0p&j3aHO&AXM#!7QVq91mq4Rgi8};-#eLkUvr040c><>rP;h z?1`XIZdnBhWu@LEWIW^#F(H8W4kg5+v=?moCC`$|3GdOxNVwLkX)8Z z1vy8Vk<9{9jrF1c*Hi64VW`4H2*GJr=MHz`2?oCeDA9}#@>s(eAJYb{7Rn~y$l-*RMkXsyFKx$f8FdUnB zf#HY5m}4_??4dwmL>OamroVBUXgsLIEaLbTGsJE2Z#qKK7JK$D+a_6IAhL?pn6R-T zeXOJmQ5llCFEK6;mh zFrh>;X*xz*Sq>Gj)YU* z(vy@=Niq-Pgdye%oGM2eYoQ;bz7Grn*zn|jHbx}}29Y~+cLKW3f_w(83qjF_Jh;ID zry_#Lg42@BxzZ*YkOhI7b}xTeCTllexHnk$YdNfs`BY>7e*cp+|F3k_sTF2|A7jy{ z{MY6~vSV@w&{!$&InzH1FcFR`HlIs2dp zfM|7;bOFO^3}4svSyy7Tt!pc9dWcePtnH(>`<<>j^UyIT_+``3?xSu;ZJyBI`|z2+ zs_!P1#jI-90%+Xes_(D-?Eb^A{}vu-&Z>74QkL=M<<)_B0mAJF@z;d5`jY?MSDRPU zQD3pI^rtYbzd_22oCQ5e!0*!t_hBWcgya)Dbg%Vw_$?h1KtfMtQh$i01U7d?7bY?b z9d$H%UU!9#0i1=-mnRe^j#kesk8GI-z+IKJ&gv0*owFt$-rL26sm?%xl-{-8H^LkE z@Ca%!A4a+24?{uJYxMP(Y!v?dAJGrqfL^YX?#5F8=CNj_#cUNvtIzf#01=H5ZV?uu zPdaer`czkw*egB>)Gp<$I=}`K5&*HOK?W#(f~07L1=xOc(Pm!QOEKJRM_MI73j^M$ zgKVM3Jopq5rqesd*pEf$t^Z?f%hGX-RGD|3aK&2igbGh0-|Zzu6^WjrvScz7V^jDg zC&S51RxS_Fs!BG$G*&oKqaOexyVQc2NyUiZM%#xKsa*bzGZh+`+C`Be)|Ap5RLS8u zwBnX%iXPNq_k&M)W1Y2Z zT5kzw&&^mmENx%>K7xDn;h~Fw`0@|LA?iV~i@OlVJ4U@ddw3TXnU>Bi-@UipBd;|m zo(W$I4^Q6sG&MUx_1y~uq!j8-K{^Z4o=7WuC*@EF^FTG$kfn%PihcysL2I_i?@ z8f@rgU7_CG>3Xx2payow-VL z&!_|mb0Qj+9KqP7jR>u`8x=~uw1;tX80Qfmv##-rBq%~_@PxBLYJh^K!kVSrDswI2$Rq(;k6J;zg)l80CCl3h zz&a-Um`(m{@-dl~y@NKGHtY%0CM}uy{gomCT%guw41}1)%UZEW8n%rIjJ63=F>Q(5 zv@Yx{`l%U^dA;WOLp6|8Ewn>+_o>hS^K6O$Bq?6cX&QhJwWY8nzv!*yL-GSZHdsz6b+bcmF619Vna!Ch}mOf9}- zPucBYEoQAF)?rOw?jB3#5e0(8QW!X57`9oV;M^%^ z&7-?hLaf3$x`8v;b&hEv4hhN4_{C!xiR-AJUqv@_>~>T?eUa;>oF8>#gnJKg5NPhJEON}Sz%ybp_js#)dk<55JG~!9sE+%@gGT@!L9ypyvN6alf zW=Xz&=KKIE!}{K=fTO9?tJ3_&d$~QmoV4&!xM~1>Msc;fw?cS$BNQf>9ltixxzM&a z&Bn#r#TTy_GOvD^X6nlqh$JaPsHk+=E zEKbWsL}c6=C}5yM;GDEz2gFgEyTfr?Y)1kk=vJ{Yu)Ft&n<)unDnDAU!-_AIdr2P% z670?^ip9d_YC=9?pMdEgtpm{t=)%?e_{W|%m7axXX+QuJ?-NEqj%3{EloUSMsW-+_ z>E4=M0zE8b4dtsK1fiq63iqqu05}I`bO}VKkB-?+nH?F+Rc|>nw~;7sGPDI3zC2Kz zRLPq2F~yG1qT25FA908fzE%9;jb4cAiE(n1QYmRjIH9#*##7KZvSy?uwwDicij6&TIY=R;7&e_jh~Gw1s}Z$M6dZ$ zd40Nzd86^{OUnJX!URX~N*KoF4y{vgXLIConHJA$7N|If$BNpKs>^A)i|QpsD|_6~ zw?`HYelXHMgM0m5hJAm(jPHJjSiD~+S^J^6vdnLFNjfBYfo(Li=y#~~%`9eMWaDF0 zHI^tYe_-s%Ar^@ZDML$1LYE9DeUMiT+ZD*bJZb{%a3$_aW!5p?OYNtlcyivzJ&~8e z%c-%7tPWe~QvditI>^J)8Jf5<)heyQ?fp^xg7L{;Dk{<8Si6yOsG{(dnJjq6_DYVM zt0Qd^rNAPF;LJ<|6`YaAV#0M;h2`j!t+J6xc_)a~=Tl`sWxH8zHZD7}q%3E+O5YmC zde%ckH*nh4JJy2%1}Lr(lUY~?K_6hjQER(Pr2L!q8f5$|tmP7jb*2OEME8(ibOy&9`Kl3cQI@rvHDF+S!WGFo>$4h z!Q}DHzGChBQ}}SeKMuZKZ4*CXsN}@%KSukBw%Ip?KTv$C{PB=r|FOcWWc|q^nOHV= zAU!6w0@u+SU#0m#`YDt4KKssk<)1{1xLRYy{iAo?Y|eUKGo;w&tUFKa*1tG~hj91X z;9BF6*lI4FaG|YA&F=nE4jfEu20UNeY7(_jW0ZYaxpBfe~xWk9beTVgVMJa!xE^lpT82;c018Z zO+o3}V7#~BP$w{nisxl*v-!Ts{J5HvW$}E8Ro6G!SlOZzrMQ`=hoNsTu3Z3|d$}}@ zO4>tkdVcM18D$rj4RM~YdwFbZN?(pYzq-6yCN3}Y^>b}VSBZtd-k*S!DyvC^f``Gt zyXIx!?1~&Tza!3VutAEcQKQWjF6oxE^Wfv0X{rkG^Ik4_^f{JLnZ7XIFM!iETjK++ zVX&|dA$u7xsUMTA2%{o!2vUbWMuI#vVCq5&gs|WdC|MdBqEn;5JP?Wq;sS)aCxC=0 zj+c#UqaH)UGFLVcB!T#FXar_~xzeoaLqqxkX_B9JI0;>+<=H8DcLBh|WDe4Aql~#{ z(|F*lq_hN4>hk^MOXD@o?-=PA)D7G;M~@ zDqjqsI`Ov{ptOG{rF$pua~9DxgkPX)Ppw}bpjgAng8EOCLbX}kTX*)g3~5_T_fDN; z`Fp14B>3XD)O~8vx6AEY2XJ%E#p&_9W`T-k>X_60a_4;)DrsS}$ccXqzJa>L_gSu` zJAa?}8x}Ed&%OS(fWE&w{rrcej-t$^ctfoD;2at4%`Hg#L?^I`ThRoHpyMN++QDgQ zIT&cS?qMTnp4eHGF}khCg!#?Jr*T;;6s}`ZnnnfamydUW zU2-C`AS&{TeTV+@O- zo9BQwU77k+Yz`PVhPGk)7KO}Iv?mgFlKh7&E#92i=e?$qwvNot+xpni=r_rIQHjho1#niMOWAd&Po~wWqo(_( zErZhHGgaIGa8!Zm6h;Z1SiR1vTeFy4ZHeAg34pWW_2w2dBvOu}=!*i<+I6~u+bIW_ z_A_y)ceBHDfH~UWD6~YU8ILy?Nd~bzOTvy8!daJ_>9UdGXU7BSp{cwuL*)dCv-#E~EETeoo(&dLEhUPm zj*`vW?alosrYxyTrKOd{aA0z95P@?}HAPz4K6x}!t0(I#udbL84e8cVnS&ZTsI51` zO{A4Oq=YU%oj~&zDi4$uSkX>esB3bS{e~Ka-@xj=%H^r zh3v?W%+#9?ikiIaVWbDXn@g9oCuG?z{j_Bqz)4m(Zl@HDo0xZEG!*O^$#ipC8S-Z2 z%nSkiTix6&D%x150{bB{i#mU%zw6w*1pG^d)q8#~1N#89<&@;haCUJSY#ggryZWd+ zDCEFFCub@?6L?cuHomD^brJbS_z~nHbHxNFXSL|0$%I9|KnruBIpYJ^1K8fR?H19o zeQIskGxD!x(f!4LUNfd1$S_nl!URin1Z#P<{Of3eE=m22`?D0la8`Rdv%F7enmi*^ zhnQaq9BPNt%Z7cs zSt^{vOAa%RyT7y+U4Oz9o8It^5gYxdf@)U%l;=6(q37cIbYcn>0AbwyKb_!DFZB6s zDOp0NyqW&XpyjaWzuy;y{Ub&X6oVr``{uv%>2)1HME^g;3gr-h-Rt(2901@K0Qw|f z>{gQ6bRJbYZWMrI`jk}vj3SJzomHC-#)G!g!~)2QqEX%A1Y?66tB0rn6b0yyrKL!CoUFoS!j+Q zr^-npmoqz0Uw3PUn+DA(%S`-S=R2ZGu)QuStUNmx-hNlnI8uN@2$|KuFmb8zPy%a4&OdcHd#ROSw;7xS6r1CiAO0w=kCS{gyX~cBA zEVpd8$dWnyXWJkrTv|?M$(WohNXxO9S;H<3$Bnj{RRcJchc-!jvJl&Tyto2rE*QR( z3k4S}TjpWjNg|SRRW9^|>b6wP0-f{HKDY&F&sauVjx*Uy(k^lfptdlqi6Uw36_sRh zBXe}rAnoa&mB>-FojF-P87kl3>&FTos0SvZFroJ(CdVWZEr7Jl;(Ra>#gLYQD@u&z zlcmh*TNWerz!XI&PJq#>QSMXrLTQqu0c4R%_rXLI)GwL`TbL{Br^`e=(X@AOiXBNM zSW9V;4}y;a=uLn&QiX6IpbG(H0UuP$daHB&UMmuIwi-6>eP= zKgSKKUP}igU@ykopPK-=gqWgIy-y}N+0aVuaSO#Z6QXg1071`qJCQKhKtRO+Ks$h= zhDdKEaF}*@as*|_Inv13%TegZYmUmYksOV(*>ZI9woIT%zdZ-XjJyO+i)-a^to?6G z+r+WCu9`S5>1uy(9onl>j>mR&gF8vMB6o`8>J4`qd-Z$wGt^qETW~8uf2{<@8!aN6 zDb^bl;CFE3fb|ob{iPi`)d1H9EPBC!_e4^tsRKSSUoiL{@R{7$4=M!SLMosT1FuB> z2c(65VrRci3{g8Iw0rQisud};3BrERnt>0^c2SSmY4|Ph;La=HSn+RfTsU`WC@$XNv5hkz;D>;-QY;LRQTcbf1w@C+spjIjYKRVFkG^ugi2hfv zcx(I#-kN-8OaSDbX=!%f<5d=~6+}Sy!C=D5vjE3A9aMvOBue^A`r*(~D;F-ri&BeN zXuAvEBS^a~d6F%&q^r;)0So65O95*WCKLBAm0oNp9XhavHtr5eyeGS|&ocya$MP$h z%jJF+@N59@Wa@*RZvZBP66H~{J# zRyE25BmxjBu!Q3MTg{4c4}yYG zp|NE!2~do)aPUQ%+KS>P7a7~JtV2cWS%fAf%A5$7teld* zl}y_5`J1Cq5pEMoFWU5wVl@y`Uj@mEw9!w7fZ8;x01Yg4%}Z#pXdu-DxNU~^=;Gy|EHTIj`aw7gts65%mjI7))ZH7pU=o;<@_fCTS?5Kx8mwFA zZ2-(Ha_t3tv3~;z)wn+0b(1@?7}Nh+7_R-~G~sET6h|0JL8?)iED5Swla)cui8IH6 zM;MS|l-S7IXK8$IbO|~%{dT4fqEKieQwN3@7>(_)ue*&uZQjKb@q)FsUX>a$p{nuJ zLCC6O6&oBaTi~5zV?y#pz@?O|FT2cd;y5On+X2g`w4(FdT~aA+#G0`n*_Wkfnea25 zB?tNxeShgg9_E-LQm$Erm2P z)J|j%&sA5rkgBe30*$$?hRauT+mzNMFy+bZjfuT>3|udmu5s#H(xhlQ zy_T^3rLZC=mBonnF%0V7)3M^Fr}SeK@( zDvQq_XG-)G8ZV!o6o{pjFYGaoMKfi%&S0$?!OC==yn%B-^TetbRbk+qfc4ltNPHe6 zk%t6RLS<+HW&s@|3UK2ibbYPegnGUvAZlWqFpF=fS}hPj*$x|Z?Kc_mn3AiWjB{u) zQVdcu@daw7hL#AFYQsV*9-FXV>RI1hx~C9AxXO6(0=mR{Cu8H#u18NC&{0?t;U}|@ z4*@9;X)vNvi+-bGCPYX~-4Y06U1>w)PAMsJid?i$NOf|q9aLPsCq+8O)j|N4k%Ush z(>JnYQpSUAK@3|Bxh9fPA^EZTXBPGD{5Si8Y&$@@fZ(X`Cn}BxliWQhX)v%Wm9u}2 zowpav*IlmT_s_%OZf8{m8`ny-Y?xA|K(#32&0gs@31bJ$frtQ@q7;l11x6Y?=gk+M zPodd}JQ9Ic9Z1AzaUPQN3SZBDbE$2_g`1dnT%e^T2uM`VrAXnY!zNZEIZLcHjMCu^ zk)yzDBW9AZusaf0!l0JUP?I1L2Qyv&8P5EJ1GGaxA~usyt~Ivw!^EagNjfPUjUZA{ zuGFf-#)ZrjkxO_Tp4znaCu4DIhaf5o#R=jH3l)znEIK8VAywjnM%9=eJ8D0GiT(EK zTf}Syzi4(}L7$wRBSYIJz>wNY#TMkB&(N$8Clo4a3>gZOOi4N$-2kORb*kE_e4&Tx z9Jn{J`Hr5J0L+@hA1M)3UMb1KBqm~S>(WA2!4pyUv_YPgB*TEU&4m_9wURN`WE=ki z)>Y!O6fw@JNrp2*gt=j}`0Ob5z^J z#)*6oo@dJh$j3ygD441p6u$*lPOX7AO`kl6p)roGZVNa)GaJWcD0$0uQe>zlX%$xeAhM^ebvas3`6W0Di;DovJfL zWHRudX=#9GjKs9x5O@n8^zx)*bFx|G22Yf%cGJD?@BhKtAg7fFu%SPgR*Q9iXaV6vCK2*MQFCDPVKj%KwLsv|?d!TH$2S$S(XT zIZHQ1MM=?J7u@^bc~%sQ{D*3uMJKYYD&x)|blsR4#U?AAlv!FEWoizI6qyX*XT40q zi>4~ZDvzeLN&5uX(qezyG|swEF!6iT)(R}9T#)%gPXsU1kA+n9h3d9Ap-z_yE>Z-^ z?Oa@M#RmHX5H>Zy?nE2!ZuM_d3n>!kbXz^z@okObi(1{L2nGL9USy)ei9w1tXX6TU z;(E=Dl11tp12}Y@twvp{k{q?jz&Uwh)2-laVK(cKdZ8J80)}&c;Gj87GWyg<03=vG zB)p{c-bV>w?qve@BRe1<-OKR@D6*zJh%BU7ag}L(I!aprp$qdb_Mz4&0Cip_-vQV6b zVeBacuNm<&V@H9+9*>#nBa{d_cKC&rg3LoUv$qoWhd1*_gcL`)-pk&yUxghqb}Gzg z_s_!4WT=y=C8D*t|5kLtoz*)uW?0T2&aSxjIJXEW*lVThdT*C1mK1aG?F2QvgS|Q` zX|xuaV^%aC7_Cb0Jd{@os$7NeOiEKBiM}aWR^(%}pe015g$}8r8o-0!8Fl2^l$_YtvbjK0A_rFhvLLrho*d-k(8lG7_`4 znK-GguMmNHlR0V2My-;&WS0ipS2XD-4jD+KNKRX_Zl{h<#u*eb81kIO3z~q4yUEpr z+f0Qa%l9WmdaaBEPZ^^(r%Q2dP*KThp~dMmY;woTl7DwrO!o@@!#zMdBGePu(zX4F zlOpHnEJYL&rUMb`nqo3od|3iuY^CI`W)z(wy)Y!yf~R&eP8`S>f+l*m1CuB&gM9f{ zXaXQTgnY3?plxQGTsG>?0KW8TU5f$4%s%~8yAd0=@8d|U80i4a!31pQofk6>B4IRH z5Uwb|v`{rGDgiuF4N68I?KcH4P|aU{likdg6%ALZ zm1zyPqFweY>2pMLE*4($wW@h2{wfE2&-2;2QSZ!}ipfVY2`t3@s-nQmspwKfKm?~| z?5vTf1sF9jiK%@=F{rau6gG63__T_KOesZ%U1rl!Y3^|xBFO^fF-VC+IY}>O-mU z(ut#H-w$q4+-d!1H%z#09vg*Lpu~}C=BBfpQ)n}49kM809#X9g2PE%DK1fhCLQ&0I z(iCZzE?+8UQIr=3np!L<*2{FVvX{upc=X@~8afViHc!56jMjK-n8R&Xl0P2P&f*j6 z!uUK*!@0Ji++RBZ?zN`ou2W{lk31+FtgV&OqT4C5sL$Zct#=B|vo}oEG^n7=sa6aF z0xIF{dA%|({UYlxw7g#DQ_;IB>-tn&K{>lMG*UUFi>`O%N&r_x0SQ{HZ>dk7W z&;}SsYIL~SkUASX2EXUaB6c*^rBLf z75xs5`&YxkO3{)I8HpcQmrsRDy7gd#(hkLcdl6M&)smZ! z=pzymiCpOiS)frU?=YLN!8jjf+?ZP5ny_4?2I_mnf&#UNJ!IY!*-9IN+t>?tS9alK!kNZi^7k)7;rqme|Tk4t;#9 z#1sh(hQEUU`3jsF&;5-_NY6vS@Ofk#w(N{JC4jgSXD)*z zbLYX6j2G{-^NEi#+L$#VZ9Mt4?k`|%D;_LF=viF#j}R$pq4T*KD^9!wiIOBskt$8P z44FZ~a^))Q)8VB`4QlmUYei6?#%*O3dh^`C2}oUloj zY)x{UF~LcvU2xVp=e;t~6&GEy*(4t|yY8xMCVS(ZYEw-y%?#7cw8SiPdI8R};LI0V z4um-L)P;T+gkczkai4V6oQK2H_(!w_*YJVkc>ASqDlpOM@A3>Z zJaTMr_jmX^{ayZUe~-V{-{Mar%{~Hv+72KD2qV9HQ zxrI8VYvgt-3hCNiE@*b2fUF{*4#-w$0(AtmfhG*PKiUL3Y-^tSpfbyMza62E>tH;eNheB0iF#e_vfzq$VJvcNZ# zK&e4n#N=cZ0e~M+002xd0KiQDZ^IK+Oi@`70Dz16*7APW{h7z@8Ie__V*~);r@!r# zzoADeX`O9ot#1baAdr9S{J$}K&>{$C=;A~G03eosYqIfAQ1Q%H8Cf%Lf4DF#v$_{uEosIx}N^BLKjl{aeHO9}r`! z%gnyXZ|?rPjQnegymKJ&Kv_rH8;CKAqV z6*p1}#*hA2|LkqH26u8+X~&mNP7}R2lo10Qv|7D+VH`Q9go#N58?*~Tn}nUiN)uSd zkPqhN-q$whxHH7zw;#9Fi8NoUUqh%vTbG!I2v*%%>%myxi zRG{S3>G+1M{_;mGeXsH2js0@7F2Zmqa|34&cgpdXJ&wGqCY|?-v2#|ls={wpbMeE! zo0aR7DrOWMgk<|D*SclBFq(JeoMoAN3X^?{l4UEa1`V3_Whj*C^_|w*^_LEdHXr`? zptI4|Yn4rD7tJ3uFMrSCVID=^wA;2m>ppTesvK7@B0ow#%!?VBr@}){%j4&@G5OOo zciqjF?)8tfT0W9DU$w#R%Hwl5Uj86-3liKlqRaXe`;(WJf&LvN}Y8;vBZct)NFa?qImcq;rr zUSNERKWp^qS->OFWaopal0S@Mtzbc!rE#ZGN_Gk4s3gtpM4iUGUG?EL|hZToFf1+jp!LZX7`{@3+j%OVX|tTNDq$iE(z2`!@{1L6cM< z;?b?s0<-I&Z8OT-LgFp{f#)V+6S(If_Igmp2-Ui8yKVd;9=wljuu}9e#}SdqRdPqy z7F0jSYk;5BB90tO+KdEmE4XPgSdV$4nT~yr8_RS}eI9(Y?d}Gw^?4@G3#AWFW{$TZ zwf3*D<64K#S~3hDv2j?Fc& z>a}r0$P9VI6j4fav?Z#jBG4`=Fas)URgr3grWLm&-rF}L@PcIJd-0qo=4X*?0N8qq zc1V}u*!s|lf8s3J97mM|e(u@var1Ws?mPDirIU#x=4H(#WcZuvvvEUC^<8B@sFplv zpZXyB;CDjkhM;dFZX@nsUrW2iw(cp)R zw^*p8gPTaPY;O5Y;m6XAP#Lf-Ph@ppoSfxm;}>9Car(Im zhd0Q}Y?xQLZ4z?OhEp(1$ zoDvO!GUNq{f~fM#R27LPmMs-~WnspaVrR4=aPQ{4H} z#cPGDa++?O;>STY#VDh^+E@8O-8awo20p{Zh+m!Qtd{oxOE+|5%HA_r{wjVO95`CL z%f`b3%=>L^#KV14!)zme;mf&n;4!|9l9a8t23k;l+;B_PTNjcal_K&O1zd76`(6>I zh1=3e`g^2qT@%5pqD%a|caims zS6uJRLp^tUW=&h3W-Y+~|}$tt0W@#e{k)E-?HC#hvQBx~;f9qrYRFIc=)apZlmY*Ri(+ ztTn`akNtvp7A*{;Ot>Bl{7SCKgNCL|n8n?kzKitwkqLO`Q&%jk!yPO<>KOl0R?)Tf z2fdQe@WHOGPCEMCD*5SXZ*?t_el?8SF^rH%9?i-1vx7s{6b;m4D9O%sWzTyR)?vJ^ zaEkP~9B9m@t|QGiEFJi=!g!Q;Cl*8~+pYH6T6GwAv#wfS0lDqdxxN=`#$3{VYsK?4 z-nInHsa|X*ZY?_6NmZ~)jDPZ(nSnRQg_r(Qc=HlFGa9&iD>EEz!_g#Kap!{+R=F>( zbTZ2D(u%nj>b+H(GOe32_*Ncu<4$?^j{mSaW~(YjC^YCHURP0q zN!aT?)ltM#E$UBRR^!o^{$yr9l5`v9?6??_lv4SV6p^{NAhI+cE|57>J`ahzVaRDp~``C*DOqDa-w~4Pb2{Pr^)kE#)P)9YGz;?X0LuJiBEw`s7d} zw;iL4X;j@5=uLZ-I@Jvn{W$Pe@^!}tZjD^U3V8c=@n3%XL;p)`-dTKEG|@E-Ih@@& zmPO$U-uTJsTeuF|_>MAvLif<*pe%NESF=m#gd%9NL|I{`{*ly8_@VnlDj%0QJEvoQ zIfNE#rbnN;O0+F;rZbqXy$6bosk5x!Gb6VCgrUFT{;mE#L*r8D^$P-7{Kb`{wBTj* z3-C}Lw)@{Y)LCv!vQO?O&r{)|LcVyph#-1T&@XiDU+9FizvcuPNRUqp+p@_8qv9IN zUZH*b@d z;o#0dG1S^Iv%5Fo#o6h}-%a!lpCOHEeGO{m_4JbA;taV5l%Vo|VWAG)r-un43h|R2be|#Mg&GdquO1@sN6bKv+|YFvLvl^P3C0{QI4w95I0ZNdI0-ll zxHmXekXsN-xMZoXPu=?$;(ShbwI2giX`Fxnzkr|sMCmMYW!%lz*H`ox{;Tfw*3s2h zR}~(PuibIaC*&L6xli?8PcY;dJ~JPEm+$eS)MAmGDiS!x3dZ&*W{MveO6!koRduzM zWe)b1W_P!jXK=8fzaqi|{UpQ%`Nl>E`>4Nw3Cc0yt+zXmHR7&4oo}{9=a7@I+}RBD2Aq=_tHa^eVT5C1%#QU`j+N-E z)s!)CAofpIbR^BsbAC+klr7n8bov;Q_4N?JMdNdOJ*MZ}9^wWkW*%-fgUiz_I$PE+uBrGY1^H ze<8}ih%4v-%ACz1Ho_hRpWj~?ezgiSJ11W}4dOStxR)UBZ)7IR&|GFNt~$rb6eg+B z*izRM%PGYp;+WnIhzZsY8S#cXz*GL&SyW_wAf$$s$^EGF+b1kU+DrnM1>k_kmI4t| zn#*6KzUXu29VYng9siCCqn>&0ex4KhpTsCVK_gDeiVfq> zt3BGab;o*vloS4t%Y7>DaCiuaq`zjHh)1d6ksb}o`k|2GabP$O)<-_``Cr752iqki zx%Pq^AO>TXy0ckj>%O?tq^)gnd!N;DdR)6Or8u95gI6(-47dy^{Gf#eMU`KIv8Fnx zA@&vCruY;54sN1-Gob1(mxZ~L8k`XrRG>V3*4A&w!rN3@CL;u0ZA&eRXDKG$bS688 zKr``R`veSo(x%=%CH-HysVkYy5Ws{y*gU>+8%{&Z+R=Gy$>zFhH2#}z5CF*67XZ<1 z^`ZmTO=+Qpt#fg+?kH~jkI58E{F@PD3UR!V9_a|Z1XPn9%MU_AQMl~TUrIKjkw^wG zp?;yEO@zuy!u?|_o{ZTKDi)SB8vh#bY8E}X@uC;p<~7!)N@Fs<-YR*RQvQOSn0NV3 zJ#mXLd0w@gcPzGTK5Q=8BK>1V>7_xUCE%WkwMdE6GyGFD@^J9(4g#C{u;H)|cNK30Xl=jCAmSMatftxoLIq!0b9>K`Nrv#n|$ zMhW4E52y_q8-p>`i zyi*Wo72!wO9|hHPKR(8o=fLPjNP_M)+D)T3fEk**Fk?zfYkgtvFC>*Q`OuHoi2;IM zntn|U!Eh+;(gnHM366x9tnm)VRcnN2*`6MbwttGIpzb4=%;Eg;igY0R?W?Q$ab&!< z^qIhjJ47b){hMRG2|UgCOUK+z&Sk&kWO4lAq7oEoPRa^!BF-JD!jnl)%!D%~O=qX(Aq_$5 z)YGpb^laFp@);WF1nn9%=?d^XB)y7HYM15pDJmj(nGp2KB9lG2PZ157%TUaC78}xJ z$D=Stip_U_0S{Ub`jpsn^n?981`pB!77 z6Uj(&`8Gx9PyJHcM?G0lUd zON7?H=e9KRqG1@V8F_(fhH$C78a>(LpqMj!ukur>h%=mIAx@13sAg1k4ev8U*v$`A z^LR#%pt&Az7V)j=d1CZrcB8mA+5x%TG<*o>*GKO}@S?z`3(7R$-sbTNypqq^B#LPt zD(>m}w`~lEr&M2ImZoZnRv}+Ph!xm$L(L_bIjh!hWh)_Kr1u`#PC9lvO8ck`CMpsf zi4CODNggbuOdfPtAfLe^WA2le+YOf_m9Oo4#}><=)odt4Gi|0qUgXejRp8Uj_8-B^ z=CsY9HwmFj@Q7$=v@5P`ES%?SE4B2zTaKW`*S&d5o{HlldwN@n?tEXpiLy@mNB1>1 z6VS^M^fu16K5yi*)qW;5Bpq$DT%Y|xNcORKYMtEb)yqR?Plw}}QRm{&h+O}gHre9P z+qty$)j#lczB@*BBDMaixO4HnA%Xiz7-RQkKe5zn7AJ5{oaQEh+7j50(~ZdE69Typ z)Lo-ehB)A6_ful%>p@F!x26M@rreJy9eEaxLIik_bSnjwAwR$bx8qd8%&*{reO4R& zh;oy;8iv3cIUun+7@xRn-VPrIB4ih|5nutW=^1PJbNTr-rM2Y+nMKcKLW%G`+amyuD1>wmq2AU8wmC;f|?ZZhGI^ z}e>XE+HUyLLi6Q@Q$f*aF>+x8xTkv$z975$2+NUjLX+tecl}gc~fA$;?KLYzg%C}-? zS5rw#Eg-Z(oL92vI5+<+;Drb^Ds&B+xav>&`wmJrb$ajQja|LZJUS~rNxQ${9kA2r ze1(8_UHQDbJyo9hp!t4M9LTD+zfHb2lHk_2oTZd5Ol7#f^)3ff;Xx&?Gbc@|(kl9F z=jFL_yS-LF}eggF3XmqS)!oZr|28}x~A1;>GD23<#Lg= zwCXgUiz_T7NwcxANpF1nx8TH0ldax$s;;`KQETya=eu708FBPfMcLBqq$=&iheVyl&m8 zq1%sI)8dviwKKQk)UKN(RWX{xw6!4C=3-{va+~OK_FDX?&FkSgcv-f2U{G{ClN86fi0b);4s2)UiuQ(_w|GU95bmErM8Cs7mQtuHrHSw7}OMg{=>IPe}H^ zBXOj!T>8oL&s9ZkS7tb+dk*a(_>V=w^E_%*);L>aX_oI8)(e(BYz>el0E~QNSVGYpTNGd4uHwC6Va5X3SbP* zgPK)5gfF%_C-|+u-5{S3OYh$MyUc8-eZcFsJ~Zt%DM|OWPnFO2#ln2(5mc5OpHFh? z0BxoW*alomSORjj@N_TWD`GduaXC|E5k_tOg|I=7%*Lf9X28>caAB+umy?>A$)?^G zHxESi{jm}@b_z6uisB)Tbe@ffW-N=;Aa+n9vee4n3(Dh;WnNGs6&xME0oj7Koh8Z` zElZ_I>-wlOdHDg{+U~vraA^J+EOiOf8h#qIdiEmXUB*s;BQq*m#&*Pt8Oaa{2CNbZ zv!aDB;>8);GxlJb&zAgC{b9k#S+SI`J-tVnENs>;}?6f&cF9hx#b$Dc7)&kKtYOQwCOI@rCJ- zE>jwxr;G|qQyx}Y_J^Vfyf+|n1g_$%kJk>vY z)NJkd&uanJ_+%~#O_Nv+zed);HL&`IoY@BWY1ZhOMd(>_K7AM3w=t{1&_atkBW}uJ zv?VqZ32qoG!T^pXLog|B;|`7n`kZlf_8hmTZYcIVq0q}Fkhg1484a;V+_y%)&*2TO zCA6s>74x^wP#xB@0oktSmv*9=$;CF?%T?TahYj3O!XdhY=PR)iUKQ;7D~WAfbc)|e zG0C`|$*^}i5j^uJo_i+I+Li{jev-T<(ng?TMt}3IBDDPK@Hy4PSzTEFcvq|-DC#1M zNF-JN_FxQ6PNBz5eGZk9a;nT%dPGxIG+`uu&9g4k{+KRm@_0?qRkA4LZP(CcU<*D&bws~8F1ISZ&~IS9Rw&vDY87C6?oZ*97^rl$i%-_Go?|om6$%qSm#2F0z_z zNlk6O#b3T(b3~jL`T9zH$Rd<)w118slPHR|j5ax57ST~`EqgpnurYKdgL-d4dQXw^ zIxvK#B=b&_-TSlUv0V-`-E^ZP>_;ewg0cPKxUP%HE~9@l;=|bxH+NK`ME3mCE@ag4 zcnG3;ENmc+m9QfR64ZIi>5CioJQMS$T7+0%X!7NQiS5e^X)mf*vA$B0>EN0qiN{Oi zXyZcmVjgdKp(EP%YsPf#^X!q>ahiZ}sNJ^(B&8R09pppbBQ*=kLxXrmAXTFlY%c|x z$J%%|@b4~ZVV*z^aYKW3Oyl7V6pofw>FLGbpga7-9k$ZLgtzwQvYO5cGs4O6IjUPF zCOJo-c%|NYs#_wLd5s@0@VuM+hWa5#y{B2*+YF)fg*sW)V3ZY z(9NDU(wCeC6nZ`*np!;*IabDvT*zD_ z{;xhgV^4QP+q>(a`#zrgjS0=y%r)eqtao(+GH7jR+KG^Lyh78*J|^mGI3}|lLWh*s zUmURKaD$g3dZtEg%Xzgo@_3}yb=~n(2omaOzoZ>VwGMuBLFpx+_hGveuoCk`#=*)m z<|#BnB`L&W`GTubopj~lJ-REQo|i};8%+7M-fcA594~ji1?n7tp8A?y?F=Q@0ymGk?H%6CNN zAG{8z$?C_08>J(U%gMLg%JM}PYkrz#NpSzRXBvnF11OR-G+2Ivh%R~U8gGz?XzwP?t zR7jHR>~cZZw476N1Q29*ZTYG$G^dQ8yvMD7iH9h7Rv=$uxLs;rYk^``@v_~Fk8d{X z=uOSVHPvk!MJ#TRB9SFB=3@&Z*$b_X*u}zxNT>KfSDz~!zZr!6PNZb>GKrfZ z`4p|&-qdKxi#t)p)9_I66vtfvUHuj^j z#;*stj`Q9apOHZ+-JOr_Qp4IrvRW=(ug)}WQauofMuBob4&ERU=un8cWza%Ib1yz6 zT%Lj?yJ)x`I7gsb$}|3bI_GA#e0Y!(@qXwhOyY4oay#K-+#_S$39I3hWbz`BYtH2^ z&h)j<3(WlRT|C!wbjr0zktD9L4l6M?s0|wm?%wW+OmGL~)g8*L>N`3^`BgZqt+d{i z=2>PbmW7__F3hyI#%Fn$>6N;IK`$GGmRzL1z3{ybM53^inp9$Aw8!%-1owawO+b00 zWK>mg>AjDSO2$vvU}aw@o3TrG1o!TfYilYNdUtShaPR!5m{TtDkRrKmeMIruAxMr@&JO+)0cFFguc%Cq^?< z8NgQyfu5t8v=B{j+l|)*_VuOF979NXL<;z+G!|=c=yFH>B%MMX}HAnlcFxIAC3YCT2;+lu)-C10v5J$|=a?8H~$7 znR1}8%ODF^yM|h^5^{C_ib>zq!v-Y{0L+{CP{nzEUVXjgq#YNyQprBWBQ|lP@;%q` z>v(vb#ol%{aYTsx)@svfZZP~1Wo0w*!}ma+?!fxED$S>M)N^#KiR#HVGKNO@V`-M7 zk4n!as?Xg!D!4(gf^bJFR#^p8qN@+oUKwt0;T{WDucMMwGLFNWEi6?kja zOjMC6gGO7k8Za!XOm>@+qFM^hJzE=16H`UyupxelZICp z^ZXMQ&r+6P$1ng*Bm)r6QHXl2Bn3CZ&p24X;DI-P3@nUFoyf=_<5DLGjBDekYl8Wk z2IGSl3V|kzv4;31vi$?j?y?eIRw86~W9#$DHzVKn)?X2y*YSN>{!hd;CyuTUXX^fIyY6>U(MQxfaJtQHVOTX%ZVx%>`^2-}SuVZ?1Q z_!r=MpHg$j`-ap>CGOSmhl8ixG?D3k3rgW|##G1artaXJEZBmBNr=w4+w=!wmicxF z{?|^?b4oeVecU1;v>3RAY3#k2JM!LNxWrsGJ8mzF;bCS3n$qsh+RFf3W>;AFX^N*= zG>vBYmAL{OCA?0M*Uv~3m^Y%-0gAiaI_iNGn=eb4Pt}#JG4NF5x^4jZ-GL z=NPTmLPm2sZIPu*`N5f{OVvt6&gKg(PhGmB)3t@BxQKh)K-1__UCafm>eSAA86YYY-70O1!$iWg7x_(M!+tDT{B58j2`#oE>9XKYHX)JxCJ zhP`;rwtfeu?kYfFinyeKg8T#mV&&ARFJGX~pY14=6CAca4y!DkVrC2Rup;YK z<%ez~bQ^Fj1%45(k)P@dnF7LBk0%Uuhk6)#tRPrt1Svd)T)!rnT~+=s2POiMfwI+f zyI!xG`a;O~L69J|ssC>eIvI2!2w3RB`a;6Qwra_j?iJJmz4|aPsqx&}#J(%_+;Sg? zKrW;RTe(&#vQ_PDx-iz3ACKr^Q4EmU(sC zm-nY}PDHXf;%{08!T_KFxGFlRRRcIPP-^6As>{@MDH#9r*!y6gDi%A?A3pvv0nuu0 zMu*&L{DRA+;x@_GQ`NnzyQQJ|oGqHi?cMVWAU!Gns(NzKW5K1Z>KhV{_i1D#!rgw0 zTk0}ZY!x!o)R&%KX&8dD4drNxcm2V2M^WS=dq4wpVch_fd=M94MgwEP+ zRW$EoS;|FS$?)M8ccQ82W<(&#hz$hXam7GeF*J5H#nr&tRNks;mFCRCg8PvpzAbnC z-XRP6mWL@K&!;Ag#p}hoZQD^*!S46Z?$q-O13Qk3Xe*;fiF<>cn=0?R&8nwPznv+~ zt4PzMFU{4o@dP5pDcIbWbjXY1Ix}P6(AgigWh!C6Q)?U)tDG9K7*v#6&f5-U)bPHi z4rL}>kln;ok9n$pw_Sswa7u8JxE6YY8CJ?JzT8Y{(wW$)vtn>mfu6I+-$436IgKtB zIo!{WH+{GAcxeqXjtUc%iD}%g6J{mHPDVeZ*qP_}DS(mh^9r5vFSM zK1PENEW-lbrN_SZ`_7TGg1$QQ{ixD0IJN>BeL+eT1qm}U&NQ|Z)EQ)$m22%bQFA|r zyS_=HHIC`SUo97=iUF4c!&}&Kf+QbEGP$Gm7xlyz_`1mgpNiW}k52tYQ??96nX@6e zuiFJr)hrJnK0MY;uGupY|DH>2>^T@BkBR8+B>+~>TJF+MNLB9fx+9K@+*ZJIn>BJr zBIS1rL7D36uhW)B{^`IrD0IDNt+WBH9czqohKI-X?RAK(it$sRYY*2NjPThr+@_WN zS(V1x%tF*8UGo_$Mrb7hMiy{i0|!5v{6>Dn8W{AWd6jVVRg3+y`q5}L-C}jIU=d_d zM9lyW%zx@Y)e(BYhY2SGo<;=0GnLS&ZxDI8gsQ@LVL%&QCYA9>7yq<9!J@v({YTY@ z-FbQUa-%bmtiCf0LZByXh#Uw@2bK## z1!5>Wwsdp;@s4O~E9BwuJlm`sOWbTySBqOClTLd%Mtog#v|iG!YoRMWglWtE4e}f2 zu^!s8k#X99O~DC1fU)Ytc!A#RdDZi#YKT}5oP1J-zFvAdnc6Ip0yI#Olc!8v@8nsS za0SBpv@}%_{Hu-CY?G>@gyKPrkgVt?#6gy&`sk^vs`>~v?ix-mFRV7X*Aj`I=k;z2 zF9Ara#cA0W_s{(FB4KeAe_iA&>y6Femq9TvCeA+$gK0Q-Oo^3rW2@b&D8&S_Ra}$whEBNpj_a{$JW1|FrLpNZ+8qViSF)GmfeXH zc@6um$(ej1siOP)eZlFnCMSG@%w1gIc-9Bh!A?aP4@B)qMD;d)r*ri#bazEQ*Fdl4 zKjTk(TW7yT=GzdUk;s)7j}reN6^!aQ;b<_ziy^^whW1Vx{c(ATeBAezK>At-35)=r zb}r&9$^WBteh*(j`NC}xbaX=;o!<-BS0F&-R!6d}o4-nd186G^)rt*OOs?y*km~V( z4Pme)S`i!x4<}UCM6VejEFWc9>vhUs$zN1zj!<(WmY0k*1~OTh^&ZC8?`!t^HwaX= zIvMkdS6nT7&X7*&n2%*vO3`(_h)OT*j@jxUayGPiF1C0gUYwlmqB%9X8nHb(?~N#X zXXaOcd{pO5q}o`DYpJoYsa5cyVHrSLfgVCEzMHNFGqB+Vj>FT`v1PKG4tZ-Q(Ph~$ zshLe>eh2+L^BgbgYsR_i zUH+U!tWu;G6~Qb0TEmY4(<$GiHP6|{RC3UXO7QfLMhj0(_0xC@#7)KVD`b7_x_oAT zi5Shu-X_Lnh5X`Hel;i{4s;%ZeO<(&vjlnlygC)(+3GW*ORkKHCfP2|TYXFXGtX|u zuy(sthpAJNS4y^I$`-bN+gb0%6pptam{my5VbJ&-MXGD=uyGV)sgk0;FK*K6`F#FP z@Olqa;UG(@z=tY*;CV4Xblz9lHC<7mAmdq~d6xPpKldVFRm-;5f8jv0Vnz4$eG*wp zyC4x^ApuVjynlCJ2(j%nEUPMe>m8#Z89*5w#X6j<;`LZd|Co7ncQkE&cX!Y2Gu!5< zaXKG>XFJcVb&(v)PY>UgR31GxrUH z`M3*hsmf$$S0UAqA zB8#S32aRU+7Hb+`sIeN^iJ+`sk6FmQcKAfg?zmMv8TrL7JPNcUY1>t=ca}&U`0iR4+o_E|>AV zR8IpX9P6sy)V^>K5V}woIO%u!rjzc6jBSi4aG@p#54as&TRH6#X|~ETvri`s#%vvu z=5h`vE(ICWpXk5X@``|9-KjlqCcz{O#iT^m0u4@~=nI(n=*FXXy<&F9gYqmvWqmVg z$5{*op8+#_KyA&EEDu&H*Lvm)H3$D$FKKtnB@iFFy!TvHe3|8fZk6?<>-Bo>;vBX@ zftFtENm@j#?Er6lyO1}XqX4O9HdWnK)lQ9$CS7Pd&A%1bkyB914Gyu5sxV-C%<;d> zeu&rofty!>D5yoL9mI#(DTQB2MS&SuH)da3S2Nf6bvojjbOP!CJzj&XM}vA+6L zHU$|Vj_T-OV@{|{iSC|#Hy}?zFnWm`vpY|@rY)~kM159aH?A~RVO`!SPBZ7K2R0jC zAcoNReaH|?3+Xdx5%cbIVZHRX@9XpG7I(~L(_w5fHFcxrX%jwV&2_e^$Y@eWt?90_ zWMj#+F=aA^QRc;MwX_XRv`@S2%-7EIIUQ{-VEnALXv0_Yg2XX0to@D=%b3GJl~Qax z&2vT9pojd=tznsh6wMAB9!8!GMjp(pOnx}QAB|~(9yfnZ(P1}sQ4s34*gwBlU;|^Y z!_7O&cZU%6gamooRm%{?6RXcdWVL^{#7%s{WGi#fHpMo4lG9qtQPo=IS_!7ERK$Ur z2N`Y0C^U%wqMFTT6)6$iH=hQy1Z&EDVXsIkb-1^d9 zF|bNm6xLQ$1$B3Ftw<5omY$nrXh@0S<~m!Q9J9)dbJt0elnPwELTgQbi)l-6if0kF zKp5rJu43j19WkWz&N}cXD;_zHihN76r#YENi#cTE)2{!AA0KPZoKi=fyI|tVuDx=J z1ED3qPw|)tI7D;02Ih%|^s+QK$1=>k1`pOq?+wbzp=0Gtns)N%=lr8#+?~FG zp05wRn}T=ssmiWi=L{%doj1TTXvf%wForEkKcl6ri++Fm-E#_Z7JPKv`j3UFa4Bo8 zrm?k>b2YBpokKYgD)qyyk=*g`4g(Qm7nYJ-tw6ym3DfLWWLY@pTsk{#hVp{ zF@FLC?gVZ?t2jEDta!%1o*cs3296{N?$FO)N824zwLh zxJ?P6W%9r7$Rzdxu+#~F?{%1yX#57yi%7ZZcN#Lqf!yN_F8}PfRhOw_=8N_#R!+Qh*aexYFSZzN3{MLV zwb#R}I?PVAMKF#f6tsU)#5i3KvpgWCpG@V2@C1o|fX&Z$haX%K2`F_de1;UUus`{j zppWmJn*c7UbtZ7s(I3(fSBokY#f04OQ{Bp#Y4~T?5 z>T<34Tfk%SV^YY~$)i=X{u~5Phjx*Z*?4^ZpgPq?L@l0;@9y>dp5iFyT9sPeb?ZRa zYjolQ6W%hKkH^kL{E;xWDa}ds*30mxvSAFH>2!ftg$cq4iO;Nn0q>v}fmF_0klMRE z1TzQHlp-eWQ~*Od7%vnR_=uxWQ*j?KLOUq-pdO7Y(?r9NGce4U47R5dOmX8)G+7>cjE}Oi0nNVNKYZCJl)sO153YV=f6s+eJNF{V= zaHIzI9?tZbSn4fUCn!pa@H~(Ss z+SViw)*}?jRnTUJi0-y@{k6_S!G;yMm95Xbc{&^>T({BU-r)QIKM`M4pUzeHTJL** z-Z>a~2W_UJB1#fLey4o>9P?1Usf3r#3Cq!@6lt7jM1P2wShmF!77{c*OZnjF-McQi z?>pxuIvFG~`$GdB8hkH0UxhZ%xF|{wwLwFt0@wSl_Fqv`sn7n?=p+XpA(RIXex`%H z5V7kADwU7Rn)_Rtmv)=xQW9M%xAu^#$l>49i1dpYW7SKzLCYlSmWESfn@^IpTe7N+ zYR}P937UBBhE6Zog6uzaS_P#TgXVqQ3v;?mVrMG6)Ef$HpJ$t;HyrUaIoif)HQOIS?u@6_Wi<>LxkGsufD zPEbLp6{9n3PQ0)ev`?S~i_~6S?y>hbAI1{Kh*Ledg?e52X`F0X5Dhz2_dHB-j2MLT zh$*gU6=?1QMV(Om)k73Q9lez^285fF5+zC&quPcDo&qOK$g(BS%K}7HBAG^_`yj0u zr>B&H62vf;ielETU%}ObW@a2u!_(+&speqJP}i0xw|#Z)`sYLr&HTr-(5RTC*2{;` z{Nrfg8k*ZtmD!g4S%c-#3SH-kfX#^7qf35cA1CNV7|# zXmWhY=((3FHrnDY&$+=46gpMMDdJ(IOT6DnUSVaKRxF*XSYX2ZrAJ?j|61MTP<1Lu z#SNcy9HqA#FP7H19gR~0tD1d!b04WDE2=t5)i}mGK7o$+{);bLnq3!HKj*MXmAD*= zFUMz^e}gn5{jlycWtwB+w6kdT$ZWH+c=+oqg-sUu*l_~D3YMraVeLXCc0|(zxy(f< zmBQ=0=aD}t)ZWE-ZBTDX-LxruYdu~M8nusdXpfrQ6im`7<<67O?1)@>yc-#Nx3M8X z3Z-k|E+~7ngXU9Y$b2e-XI85gL}duqRHH)i!36USnqXrP z-=PRBBS$_;RI$gb38*HNHJ0bBz@i$r2(B4ORhWiS8AyCF4wH`f5-12~nrl={F7x;D zI+0JVq&bV(wz_xAt>;d9YTbbcx$gO`t!?Fdk*O=7U6gzNy;+Sr3PZ$0qH&08M5 zsQqW{@IU|QjXkmM4YAmUi@UlmZtLn&<;NlrxcBi}pf6d;tQtc!fUab+2&7~P#WZY@ zjmB&U!~{*Ua-8{JU`B!QVlp!`N>tO22qrQJ#)=PVPraz6i&xRbTIC0;R<5M4ucnig zXICq4Q$Nr%$_2RvLNidaiAY63xd839pe!OqiV=xIwwrrnb`}M-Bd(B_1+)v$FE%BC zR#-r>Nt-}~Nn#6eI;~C{3P)U?XvK!cd8L7@))~tdmR8<0{n}gni&rf6+36e0muvdo z=eGNVtjU|ua^Bq1&<#sNtt%GIDHJJf#W8Q@3RxR{WC@AoV~orgjvE9r9c(5!wqG=J~CcYNeZem5P zU)233Y~cl4 z`lvOjp3gIy%DHBa;|m$Cn-kais&H;#LP8hKy3`s^T;`labu+6AJQ39`rbnThz;zocb&Jv~ zJGITf-go~izgAv+b=hs#uG@)!{Epb~-tLiq_nX684nDGJ>%oJpJuP5!EKAxP5n4+l zU~Kpj#}>LvS!tnPDH&Wo?NYie^gYFM51p)`Q!Z8ZY*BvDPQw}+UZ_0Yr96)P(~xfE zZQ%f;tAW_Tc7IAm3&jkLU5nOx%m5{;l;5jwq(NFTFIEZc%-SZsi?eb%HJdq{>Kr z#Q<~}P|A_Okf|KD=W+o^^8zdWsGtI*dDUOr_anND>|AdGaYtmip|T3p>e?u-zl~+M z5P3(+wMyBzq*&&;Ayheoic{HM)3Wm95pHgISK|f#imZ!fEM4rc+%i<%4W^o}CKSn(ot(X2x5n`^v!|i;y3aSS|8aRamY8iUmWlnp&htO$ZpOwgyjY18`b_yyXXa z4^fzL-dmfG@nP>UoRElPfb)v5*Q6k$*p zs9>$Cg7t%fg&B~m^4M7^*VB3MjOw;w7~VXi3O@DL=?u$}+5PWxZGsyt_X=_&SQ@BM zvq7OEtgW1r(Hrw(1iUOE;sZ=-Im|4W39?SgA6sa4L-M+sM!gI1Nps1gdH>R4DaqNYJuVg#IA2P4n`{L}25(s4DV z7f$V%(A>IY@%(vr-#B`~lyeTf@nJ({prO99s-6Zz=hX#sEv0qASql@mPu_EyFTT-w zjqMc;9~eJjE_(mGiZi6`1-Y0>%%>v_83&MtvVv-112rbn$tk2ET(dU_ZD{QNFWY{S zhB&0{Rc=4EoZB<#c^Sh!Pe07_hCw#+gLyOr-KZXnrDN$3N2d~YQ}UT#FxhWC{h5}5 zXC{-c6k!sqY0pe7Ow6Q%`nmq2+df)!oO`W2t*=67a>*j=@xb#t;rUz1Em$!>`1#wC z&zD-jI{_VeUQo`&^%gsV@~x~j+n_bKMCGg&RE@LdGG0khW2F4jU;wB#mTg-8w`7|x z`rEQiGt-H*vt#Xy84c%ltgVVvMO#kI14?NUbm{;)*}!TjCRYumls!c$u#k$va;BzN z$_X(rRQ-v#S&fmI8U9#2UyYHKU?NJ7R)n3w`NTNHvy4jlR?veC!ofSfGx%F_C$c~Lj$A}wi^tNQ%tnPN#OE?0_cb<}QT5j6yzh--}0p3U6)Fl7npkkiFrFxZ^Qq-j=D zA$?{1Ih%jGk()7*z6AYwVQZXz`saHtm^69r+{u$J(7fQjV!}l?bhb{o!hLdLazatA z{=AvdhB>oQZgPZZtHAch8Fg`@nuCM~flEo&P~2=W;*gmc)RZv=HDwD*#uJhlN+CZP zPe+@wtKKagK%0U;o_a)%dzYWtx1MwNeZ*}%^{q1cRVvc0h(8s%P6>BlVt~HONeOJI zzE2r8m>;>xk;De`v7})FAWX^&%K3@BO#(s4sKQCQ!6wCwO%aGZ#HGq|IP>yLe2nA{ z&~O+u&k`Aym^FnZCXR?Drp=;*tapE;ba-g7-7mGPM*X^5HyC#-%Im{`jI|lo3^Mk| z?y}R%Nea8>5Xe}};m-Ol)Gy0-p?;xpZotsJF**eO3uR&&0$5*Q{~y~@FkmS2hqPtt z-=i%<+W?v%tqqFnk4z0D8UezXDS>1=zJPYvzMCfY?`nr*WSZF273}GBnVnD*>CH+l zYgcjjpluy22jE2vvop003}(p_ma{ZioI$0Mk(+8XU~1l~N<{-(6&WvJQW0ZFJ_OT2 zB&RG#^t4WlkWxtR)XdY<3j_cOAn7^1u*NM9!E6G6-F$0x=cBPq=Z)Pn8Z z0|T6BERJ*kOK^WH8)rnonv%d2K}=`N`?%G-53UQyJ3Z%v;Tr^9#N8#Fs%pzuVf@q8 z6*MAUUo|Ah=!0$_3{o9jMpI++trJ_8x&(T9KsUX{@J`&gav?Ld<`%io0bEE)CT|Kz z*Y6kQG%Z+JbAz%;wX%l6IlDE1bJoM@GFq6tr^(e8vUL`^)N?Mx0wL2}&Z-DO0CSpK(r$s;yJVX{s&9oo>q|A=Ls{^0R2_%XN=)^o zllA33#9%wEFVfSov$nxKlS>xEJkDG4z36vw*hsVT%-ueK z4%6RZu1@`*&($+iJbTFGWpPcF?j4NoeiA0DhNHYMD2)!wg`lkhp(GT2g7A5upNdr@ zqu7GGImD~gtLlM4K~Va#VjL8koBwO3`UqypnaANcXuUCGn4way>cILl)8&V!8!wc! zk|=+G?KeXr1`7YX3{+>Jt+Z7+(1M2+Wk0?gRN(2YbbgC+fG&U+_Nk(x7A@&tC(IPK zk{psGbop+sKw>tc!QSDvO2T%g(Yg)7>nwb zW+8A8=plU1BlcvHf=absP!{wl!m>@btSWK+I&Ty2Pzwer`YE_FgJ4na5+vx|w=7$+ z@w%HIQ2rzSgIkua(C5~dc5K~vc`KKH<@ZrC8CGui4Ygl3UnS<0`1|vf52d5Z@h7Il z&B4ni0ugebzV*X%_ybYp^}f6)koT64rZfM9;R0%VxvAVaBOwE#R8K<(ycb0HKM?}| zi4gerKnN7RWnsay<3rTY=_r-kQ62x26aUGHe-BR7+>!`Ur+D!T;Kf-Z@nX{2O5?|P z!nFD)NB)x||4tm4vcmZUPj&!Lp3f~DQB#j#l%;X$bEk)j{>iZaWZ1upGWVTktaB=! zEco$yVodIiIDjZ?LPS|yC#zLKdKsv!%o(G@!pdT(Z~$6X^W{SrTpqxeT`Th8plF-jiz3y(ZWE?9a${Hjpf_8-%A$r6pdWO}^`hKQhK&IrV}IrdIaseqfXL<{K_r9+*7$ z{K)}dO^t6w+tRfR{Z5}#Tg)xmHMjhUn?|=zh}OFUQ)|QZlb4R$vUhHK>-;&RXGKQW zj$Ke6oK+v45x8W{jn|xfok!SU(%k8huP+$ks!#|iFo}u*c z4W&ncx(9H{PkpofnHaj(WCJ<5mDqiTR2qZmC(MYcSsGMyfyaoJEBe^iP`7=IM|k|go4 z&9%$_=Ojs$GMojQG$iax=XbFR|3s?lA)R58^zi|G_K`#6@d5hmSLw45<+3L%FVpv? z(duB5R`JryvZD|(abkkD zbZRo!0M)D#k4_H=i6Mlx9ltxwK zN*<3p#-#LKSnM(RwTy+`)>u}_C=~rsF=oy4;F-f3a}^Y_g6KR%r6|N-#7RL(#i%6V zdkk3)G{@4IJW@A6^W@gI>7d4?{&WplO>51xiVl#R<5#Yme*Yxze?V)T;p^9o8?`z#`S9Gu zX^6-x+Adskd*`${7fdhP91_=jz}X#$j!enCzE2s>xDR(YO2UgvIf=sH($vOgnd-)x zF0;DHYe6Pf<>+~{&7PB6>}81reJ++$YF&v+oDtB+Pp`u{4UPQjP3@_=dgC3>zB3q^ ze4=q^@r{idnZ9GV)nFglNj6xF?L(2P3p0A-ZWX!Oty7oVB!KJO47oZlk$?6gkRC?- z9Z@L{cM`HDBKunFh!EC=?lVGIgVv`b!&tZO|8k-7^@v#3njb2+E0z?Vb$UP1GG6sv z2;IdaAar{Z2;JDjfZjh`SNzt9{JZr5F|an9urHl<1>BZ7hq#BWx_)dFo(dSF?xhsyF{kT}>HrBai6( zk9RWLEjZ$!^1-ChmNvAYbJTu&S%o6X!8?Zb+z&nXs6F@Sux3#ThvjSy3P>u|rO4n3 z^*Az6-{h*5EE%ft4>ai+r7eN?D-sGn7$2o-^azSY+`Zdm<^4#ZQ6e~yL^dFl2qTN% zb4CtG*WO9eq$}^!$+RLFoGM7t>EdLm%rF%DMM5?AJ)jbd%NmF~^dnG$o2~C+^+=i| zN?clfQ>wU$Ei_1#H$}wF`~TRM-Gy6@oP3Ahmvd?gVxYiH!-@NqC1MI3P1QFsG=sDf zCrksXXrvgm*wfXCz6`rpY7H6J|2Vv4uzgtuYMe6Y+15Bk#JLHN;MT5zy;+hi#u}$M z+@E9X+0$#B5LkYs8YjnJTjLZNRO8f=G`fD@Rg$!}QtRALUa9u~h4eZ!#^3JCd=Xc;nlcO!e_hz=!a0%L1~~SsI4&6{@JU9%s$k@MWO;1BL+mz;MCw_wg&*$;Ae%h8ojUj6fvTjU-0Jm#x>VE*>U z>A@>|){a|w-m!%f+QOHNE1o(h+7@_3x%a^8qdU(d{lEUDPU89u#_ z*vMVvrUBI03((C2E2$0Kyfg&ac-}=>7l0JWL-~342w<}Jz|n@bl6^7aZi#WNEAJvK z=D=-O3+F`#AZF#fi*VV=g2h;xbwQh`A`T7*JIjycy$!;no&S$_(@uxP)kIIP+fa4Y zM<6Q@BiD@)$YD@&bB067%}t=>9!8X0XZG3Q$Wl}J6wAUKic^*%kz!UwBkVLzkqU!SAS}B< z`}sl)A!~rv2v3%$nn($>s4`V8mJN&p!e!+-u}TW;2B}yC!m~iTtYh#5-#ueTNYf2R zdH*o^y5VTSjUSqP;mM_B9>0%Y24_Z~MudPijqBLzxdb|gWDmwIiRE-owxNtE6gQ|# z=fn`(NlHa=Ajw@kICb^3xA;;-Ht73yY-?j<>)3|YrlzV&dT8ZJ<+Hg>O%;Lh-1>Rr z#;fb9dD7ayj{j6s3o^z7HtaPjW|dr$G2n+$ushQ*;?PP*<0pVS=VAobii$NV`Ni=W zTHY)=oGyKSaazGu38?Ov#lc+7LNT71P4dbI7hI{x&|$XOJxSDCd8=u}&dRN{wuC}% zrMh3NY;C>r+S#qjH$T5>LF-le?3!XayLJ6lbWPKRcN}?oM#~*XuA*=JJGBSyeQo0L z8(|cx?llE2Zk+JTO+Q}FZS?$G-$~EEJ@VXDs(r(7V?oB+h>Oe~0Xa5%1mswE(wMYk zETIRxt(HHZ2}Bmv!C)ZSFe-x6!DIy?S?}<-wh_^7dqlefTPGPs5KrIHMy%u+0(R?T zj^OF7K+9}~;%3CnoW7&ENo_E=$t}rxk6{~~ zzNSQNx0mf39Y8%WOv|PGpi~}~T_BUZp=6c@y3u3j(QC_5h0vfr^^_V-@KKTak-F3s z?R3oJ6y+eUgf{w}+%keF8q(F%%QlDUwPw`m`Ck=Z7kJA`oWmjPx`HYW#@Qh3BG-(7 zvP;J!`<#xot2HKb!n+ka+cPn_KY)1V{Q+*=arEP%`vcf@vvd32xKjDkZ`cL_eSO@m z|J)$pfB6Oh%nw$1&)r_2>iz2v_lo>rc1|Dg$jlk4bMO4)vq1%#CkYPCd;h~d`BTER;B0i)AH10(S zZENQd4^k~|cEPz2it94W7&X%IDKlRbF~g(o7$PDxV=R*aXJi@-0d=*IE(3!H8eO;WZub1mS<%Owv`$k$yh1cIyl()EbbQHZPxk9v+ z`u~senZ~SqleF`-U2MOWN>WRHNMhM2D+|I{^e&Zzn8kqjmK9*eg+uYGtZeK<723>d zu*-wNF4csvSTPEQmGGEaK`nqWEsR>pJZ@@d5oImn4vn(L3^rz97{!>`;bakATefOw zXNfXGCrDM+81eY=OBJGQ)TWFI=g9H=K}Mh88`#(6<;}mW8}sspd!Kdm-NeUkzh_;} zO^@F6%SiO~jXxi-{CF=0!LGjUerE68c+HycKY!o3(-PsY?zL;X2aLbz$%rAJsJH1L zdKNLfXmG`iWDO!Ijlk*I>XtW#6Y(t7+Rd^c-V9daU<3$Q03(Ht#1iK-Z1&8Lz|;ek zIv)(TI&q+GM`InX#{d7qp2eg^Q^kD<{@C|%57h}ON#q&&UTJbr)*}aPWOtsZ-gy(= zSw9(b7}L(hAjX6l$#CaL0gIM@{F1QKBNFL&dSnn<-rw@sIQld{hs$S}=ggbX_2OUJ z=FjLijMMR2Eq(g(%agy++0WuP+FuO(Cd`ke%Y<>n3|>F_FT4f;=8~IyU`XGRMBap% zham6Ft_km09f{XZ<{L)U&*$G;d}Mlf;~IZBx4dxy)?@J#X^YUT-qRe6>j&=1sZrO& zJ#oe+u~D=-SMr8CR`cx}*Z9J@fyM<>;NGmpOL>*HkmG;-J)=_+_f(XPYki@Cdve%! z?o^`h4cL1rH=H1VWDOdCUZ@)PYFOcURTWTy*~ zZ5uiS;lbm<;dpTGCC20bX4_K32W^9MwQYlkGCX)(DQPCN`T6`3kkHjcvIOIT1_e&y zzzP!SiFgK+LWu(_MMUf}3@qbUi5QIu3LHLl*LzuuLSMtiC;?YGj(#O7%ji8K-J6C?inye;+@itv zf}136H*hbC_e#Q%&8K^mr55_NqEE*jQ`;8of1f`l6q2pzh2Dg8>}I8$(uOc%VM;fI zr0)f#bzylqT(pO92j8o)x^o-LJY5frwjG{%J!YO(Y-P2s-SGI0QF-lhIIdM{RPf-poxWt)z=>lbc^Xlf` zf0V$X(`fez9E^jD+(}eG1%oLZ2CD+x^-vNkRtv_aJ}VSrK?f}`AS-=|30j7}$r}PO zEkiET;&S!`Te{Rj8J9(JVtJB^&LSCtacA-a7QI7=C=tJ4R?BHHdLd#YFTGA zKrXPW=qlNWN2e1IJw^7H0AW0A3#nXB0{3Zzt*+^iq~NeyUvvJd^0Mmcvhpg|hGDnC zrcajE)cVqQ80HuamNOdU;!Z`30@>l@hTR$JhTS>Ao{}8F98h;W$UD8W*@;wP{@^YS zvzxb+BTDWwbacedHErO>&K%UIwWp5r;Zw(xn^Cgy6h4Q(1V{vQ(k}=DiIaU}!eItH z!4O3Ri{wBMxO^DEpd%j!uvXI>t3u`(jW6{BLtl?WkM){mKnCIsg)l}p(R@7Kf4sm zdd*!`{_?7-a(|U`JrcQ#5jl!P-tvQVCgN0z^I`fpmbnettD4dOEk^$!dX_5nE7PbS z7t1Pe?^5CoGv<;!A;w?Tz+cr4b7IT4QD;G2j1&ZuHN?Zwbbyj3iqIArIV>D0h*H(r zk<^nU=`b8Q0vR7aBlXrMi8sKq{~t%1+JoNw{2mk;8007bZ z+JpcA007s~j12#K{p<%62Jip?00;mA00000004N}V_;-pVE^>@2#^f?U;V$5U4#KB zf&yLw0HC}F3jlc9ZIe%E6G0fo-_AF?DIy{gx)J}>dT0xwl(2XZ2{{-l+Ne<^gdiov z;30Srq(u=cLBvB2L4pArM8qu>3F1MdhtPxIq0&>R2N4tx9>fZs3uXHze;||we!T3= zH#6V7x2rah1b^x+V6~}X`07@$rOO!CK-xYJPj4e`T@1F=Ix1>C_^CeP20#?4)PX6Ko_nFfFP}jE+4o%>iUSQub9M)mP zB!V^e+@i)sqa@Yfk3{iQ9wDiRQIiHT`Y1B;2^m#@E2}uD_n~Gr@sR6&$zA?mLe23| zGvhkJ`r}ltQQx>ef~0!IvxZQSA{=`LBQk~|DF&-@5>d5`aRsbVM|pnAigdlF7mFk+ z^XwnNrm0~MF`2|2djpr$3h(rcnE+Yiy&2E>@&)jAmaY}IE?f|p##!GnGV_;y=fx-%gMU2y!<}e#DZ(+W|!p367 zQo^!^QuRt44w)@7_u*v#0Lu{~iAVc*04h$DgH1Sbn;5N8Hw7w0@K8LlVXV%$~S z$9On+TzIN@UhpdL+VSS`F5*4GC&uT;w}kHnzYqTs0WkqL!6w0FLK;F*LR~^TgdPb? z2)hX933mvu644P=6U`D!5j!I;CjLRfNTNtOPkNd3AsIE9ESYVxo8;EWJ(8aw|4czk z!B1h4!X-sMMH|I0N_zQVbo)E z%h=Dj%y^#hITJaPCQ}E~d8Yr&Qp^?1*O;HP2(p}Jb;m}{w#jyn9gE!xdjtC&4jzss zjxU@RI7c}ja4~UN=Bnhn&-Iy`fSZHcBzFh*KOO-d%RCu8cX>H@wRkgmhj_2>Vex75 zIp%xB&&F?-zm@+y{}TZ&IABmfLO@2t5&&1OT*elzIRG0002$1-k$R0000000IC300ICO000310fGPk004N} z&0NcFTgMq5+3qDOYNSOGG(iiTRVo2A<69EPn?e$)SdAqMqGTbvPtaHBs>?1r^Zoxnw=<+JG0?&gc`h^a->);YQtG{xyXv-Dx$}-v zD?e9?uUAy2@96rLy1Vj(uWzf_$~Ir$QTJE=%GcjhAFTX~ufMPE-@3!sKTu!Ydd$~9 zRGnLY;_G+R2e)O4a&qThATq8MSKbyB&Sq$EXkW-*5E0 zT92NqT;Fx{XQc+J&|@;Sp;s8`ZwIr+U7^1V{ryIN4zT9Fo`0gpmRQR?&Gh|+{`?#( z=6ZgiPAwjpI#NBoex@D)>wD^n`c!?UzdzG-n17i%$G^6onOdQ(X_%-pO`E|-@aySu zWBvBIe!j2YOw@sXJJi^Xu!>KuPwR&P#~i;}%&oS13O+7}m8nhrIZ>}MS|oG%tPsbS z;BBpEOdy3v8v1>3>9UpXMJt8lGe{?coM+&uq5TXaU+ZTR&E3VC)3Tb=zEpFT>C}f; zgt2&ylqIa`IqOMl5Iwvc=G(M~LqMwop7-^dwVq?NHnW;+^t{yHuk_Ub8lFRb=8dtZ zG5&^_Q9`x^kKXoySH^lPC1a!^ySZ`jc9hKy&X z`F9`u5ndXKXPWm<)kpf@)$Eh`p1mLO{iDD$Y+G)08P_A`X{Pntr_hXK}Gt-|h^!JX|$1d!B zUp>=z&o!kzVDbXvdZ2Ve&)m@8UGI68{X)}5^Y`?33~;w_-@(c|-n$Lp8Lb2ixA0`2X_9pg_2+@+e~+o?B-ifQr$$0V zUxz87wTQ1V2aQw?fWa@Z}v{sC}31UI|jbr*9T&ME2$^VA5#^L7A}VC*4A zZh8Fc=ww^B2uIy*5g+8BR9+L(h**n5xna=j~ z=uPd5yUb@=;eV+S##3xU%lGvRBNegC4XkHm*a2Qd*@1_fuh}x|tx7@1zb<6G1VqdX#wqRR(tbIM^OULt}yBOoNQC8?#%i081 zoBH~QN0Cm*{I-U^o#ai^Bf0fMyX{?z^0Xv&;YAK%KL;$?LykUM;5k7NUlVdYT(4tS zF%fQy?R*(bqnEpwxdW+p8FGiM@6cKW`3cGw#CM0dEVJev_UNQLgek2N$KUs@mouC= zV(zZ#r|X&;F_zbdW~}QaDC;JubGm0F zyu+M+0S>uXzRy|9VjW50d>!kRwBU=5MKhP1NInO97TFI8+hBkBC|Rc=Q5n* zSqPgp2PBV4QF9M^e}pxBpCY!u3tYRFo*ihh!?DepymjSFAeM)C*iD;r?E{}Jeq%Jb zwKQt&SZ}q5Cq$2-Y!lYjx+Gg8jJwITw%LEmTBP0gfQPBCXS&A7QN3iSFsOphQ2!OE z5lziB)z!+3tDh+<`ync&Gag~;k{oqm!FAo3*Pv>1iYn+e*H$L7p5t8~Ri>%pxV9W#~2H?yY)_%p%srogYgdF{!0%K}DB1aE`o|)c)p=e}h zx$4)fqMv1Xsb0%g??UQU8(oZFqbl!8Mst1C##^Y&be-vb!(ncfD%(-|4!p4 z&+CSyW~e4d{N9I6PiRfUy)i!_DVa)iYDb+hb_Rz!sLBW6Va+@+@QKnH^T1JZbv=>Q zh4ukfo!h$BtS%iUL*>YWCp;`bd0Si9h%pq2pE6YHIF!J}aAgL#GnSjrDIeC5yDHMz z*vD#Tpi*$4`rqeMFVX?mGw?eEvZjG!q*~%isIIL>^{|%UWu8;#^b>r3iq9t=^v{ef zXKU(#*WWQT+|$_Sp!|aSpcS+#_i)*OX8PR((`mbaRb*Dna>j?|;Il5qT9#ufcGJa=1hoG`lUwe{jc^FpEW9f6z+QJvIlFG_`27G3ou3i_i!`t^- z%enQ6`PFA>5|(~f%z4LV|EP^fOzWS5tImt$cC=61|C4kKgg3x%3`)c9BvC(S+ZCBO z+iAw7bEeYxp#m#cfOi6K<4eNl%mgDy-sb(-+XE1&sm>i)W69Xk(~^D9h2?Y^Sj;(l zC%1CJ@aEh#BwKw5$$su>C-t~H;PPu=J#Fk>h^)fCqgd|P(=zhhRiL{BVTu^*sHCTY z?HFUpj}oU`q#Q-v&QtKK)ri+&+%Gr+&|HFFCL|EjRCrqGXAc!()EpMpS}>bt4J~i$ zz|zvNa!dO?eg73xWBB-nX_U7!Ubp5*~DF9O~I7!hK_{{{`;H!J8Rh zpK_;L`u1bM7G6v|4@O>VoY4Do?1+pS(K16uH-J@=UQ@&!HR5cz*RhOOl68`gD6xiQ zng#P~3<{=}v!|>XCWHML9i1&?`?aUHSFz=`jk!&oB+TcYk6xrlejauP=taQY#n`r% zKn^+Y;?+b`Az40I&Mxl@mD)bs?#NAiS!nen?gxv3M-~|o@7Vu1aB(ns=r@tI90)> zhtPmU`&#}UX3JW#)*BuvSrqAgWh)5sMinragGZH@2Q11mMv2VVXNEOu6~dszm8qAFL?1$*a+Ywcy>Thgo zj%w#GLr+r&8L4>AF}!*U8Q%mskju>mcrxaAO!YivOI0GLklHkrL!Kq($C@Etzlbun zCL|YO$nOvJnuPT@I3<$K8J1;?x#r#}dxluAM4RHgOKM!&2`(C1MBN(Fy%W~Gp5586 zY*k8L=kN--bSS&!(XX=c+eO2iv*R(>`J$mTS}1VO*YwynFlU= zX!6mKtwN-Ga14mA8Ee04b~RC-vGrllX#>i;LO8-9@n#~cyrBiu4H&~p+syAO$a{@; zPLW?ZnGZm*^cBWIbT6#MO&Ob1oLfwDsy@vV+E2b`4E=Q-G{N8$Jtc}{f}N3Qj&91x zTcJi)G{ySFk5e00Mw~;>qB_WAz9%N{SaPqDxRml8 zaeubWQW>XkOfn>@C?6r~bbh*Ijq$q?VvTRO4|cr zc~KwF?bM|0qHcII|Fk8YWE^pJ=yaX(oHtlAwN8v}#b<&`n|WsFHc75+AU)!J+;ha1 zitC@LJvq0y)9(8M$%&;OH-lW~+C;h4>)w@ic z60L)sHla4mi?4SAR=m>8(>Boz$>&G5Q#lVPow8TCh;{*5oIlK%Z>~cbOVDNE;x$i$ z?)>#Sq+xgPsu;MsY~Xd3`=GD1xopY~Qhmq8okpQCj@5oWZTxp`?KF&xVSjgk43)IT z^?iIv`mlWq6%U(VplEcIp_#Ye9iGV-t#kbd z>f;edns3M46^Y--?-Oc!j=|sKr`=@omxb-1PHZKcdcSU?RAnWWd2m{nXjDw2zxyBa zOLq90IY_+9DNCczQY^grqef4uw0r4tGNQT5bW>}++@f4>d=^xJC)S?g-)E$j5Gz}OhnFh6AMDuWUKQf_ z|65d?W~~8c#5Kv>_L6QEAzYOm#t0eV>mltj7G54y2e@;+rK`8YB|C-j&iG9uqU#gP zu=hogtnxf(`domlTXSc!Z|nO(A|F_$!}9$Ge47XT;YA+H!KaMnl=pwB|C!qeojUar z{I=@Ka&Dt`Ywqa__RfR*@hP?Yk=hN+6aCioX@TqSj7|bekUm_^(Ou4x)Lg~X+?_n- zGeoZvXWG)IHdcApr}Fwk?qmw>2e~()rC?%b9z>_nIJo zn8L@6IquAD4poq>}%86dd8RZO&#J$rfS0(%_*1V!|mg$;$uE*WHe)V$) zvG_dbzgOPL;kkwGa?*%jjP)rz!iaMZSKpnmPR8|^AID-#OvNXYPkqc8-r^IkSMzbr zU;8@EU*6a7bvV5r8K1VQtnSxdr_P-Lru)h}Whw8++=r|ougbHb+D2Y^*6efn(yZ<7 zdg?dMqNVO!L>8Qj$n6=`i(o%Et~tW9bF!;fSvidxXG*_|pEo_a#g;2FIfL}gF4BcP zasQh0unM|SF;*lgKVG)j4qkCBS$Ng-7_opncZ<(HxbO0;SJ*4sHL=$HUJ*X@6zlRgWi}nYEVYKdpt?NVOn` zN&9U%o4BZ&UzATs{VqOOq+Ie2`DMT7xIBuEt-Tn&zP1)3ztyj!U+Yi#|3Rp~^Z%uB z+2~{R$Q||%@c&pG+X}uwRC}mC;oaY-`tynYe1s?T3;ie2|A{bRI~@l*wX%bQ-!c3b zEq?Z_004N}ZO}(dlW`cw@$Unrg|hbs_a5*2wq+=e7N~pgEef<%1T0p?ZNxpIG0~I8 zby4G<(WnPC?iEMWgJ*XVZ}x? zG1!SEj(8GCB#C5FNF|MQGRP#0Y;wpYk9-O!q#f<)Ku0>!nJ#n<@99ntdeV#D^r0^r zItC7$xG18S5=!Yuf65rZKn5`wHy+BVpb{@b7|Jk)GlG$fVl-nI%Q(g}fr(6FGECZiIq5s zmjp?aBuSPONtHB7mkiExfy-Rs4i~w^T{d%4GP%hu$&ze#NRH%6p5#k`)mPWt=+{jQ zTc|#uX>LtfVd_!2$Du53)zCCesVfboL+Mnylts#7Wr_0NJh!Q?=IXk=HsA{dYpSc7 z{AOf$Op1@WcORYV|#7fe5v^dIU?dEymV_vko0=!SxX3ARai|HfyZ|OPVCKb>jSTUFg)nQHH z_y}*VFhKYU6aw`<#2U1QXjpkd4w2zjGs=sW1m}+E5`RlXC;yV*Bz|b7$mFP*A=7bB V37Pl+`?OL900001TdUiQ003jn30(jH literal 0 HcmV?d00001 diff --git a/docs/_static/fonts/FreightSans/freight-sans-book.woff2 b/docs/_static/fonts/FreightSans/freight-sans-book.woff2 new file mode 100644 index 0000000000000000000000000000000000000000..2688739f1f0bbaeb667259838a5ef06ecf9a5c1e GIT binary patch literal 25120 zcmV(@K-Rx^Pew8T0RR910Ae5j6951J0XhT#0AaBJ0{}t*00000000000000000000 z0000#Mn+Uk92!&`=rA0FOa@>8gHi}Q34~=42nvGPK!WsT0X7081BWIHgH`|pAO(Sp zI0uDX41y#-cV%K`23v_laRN8TF*IB14W8C4*1D1?P;NWnc1&O7H}@$}Zo2@^gQA0v zs!sO*|0gAtF*FS`X%SS$_wQ6TNmQYS3Wm_bnMjO@D@#PTed|dqu?wsD9Tt%flYBR5 zVh8=Se289f^Lw$eHgfhbc#mrYcg)iv!zhPpF{}DT?J!4ej8M)$k`qb#>)+__>l-TC zp`sNY(;ftcLLrIq<%86DK^1I~QnN)*u}V2u7$^s^53{TmL;UPrY0Ti}-P|h-T*2Ho zHBu+Yuzw! zEpD#w-@m(mV-A1K-l~67QRZLtsBaT43Jzd0dw#ZGvLxQZ>}~na@7V&vY?0!De6vZF zqj#w=Xc3ho_^7?^{n9S|W@+ju>U0!zC0a2C6@-b9%vT=ez}UCkh~wOWhwa;;dOw}0InoMA>nTu9Dt$zkgaM}T_&wEt>ZhZdZ^l)M?eHo z%B4gx9t%dd9eflO4{y7-A7ZSQ(_^HU&HKx7s20m@T5XHTe`S~G2tWL=Hw__A>| z`j>Nefd`;6FCQc+5XuUL+ElAeN|!1`A$w)2-={shAUVr-Rgcs;pBWp3ls{{O#0C+j zXLo@$0J#R#+g(x;0O}qLNf7|4djOvSKuQNvrtmyPjs~0%8yKDR&{T6 z&-|5f4jE5Z7CD0j-~lT1DOw51fBx|2ALx^Q=Q#oY#x<*V?zy-1vM8gnMRQXaCJ;pu zNJNQPSRknf|6Pgm{;;_u^c%4%Dpswi=%JTe@5KM_@1(o`b7>t_byP)+7%^gu5u+ly z`+lD&LfMkB4Swvyc!7YWj)TM4bUIn2YZr}y(1L=>V-Vf?H;k#^4M05bD74a*?sQ}} z%f9_T@BY94f7AFmO~_!><`&k&yT3WWw#p`UP)s3K{5*R?%%GO$wQe~>sFo;!=h z(>gC3y#0B(q~QNY0@CKGb51RXpFpDkg8*aoOe97s8tCDtFZv%;oDvl7h)t8~P`W5X z6pVx@A627vX_(zJ`p48boL%MPWXH|Mm-$#7n+3CKcK7o&-g7x8r{?xNnpgAD9z0E! z&+qD&Rv2nVP*g29-rPysV5;77R#mX&pHVoShfs-7@U|fAIxAAjt@#dS)ruvOo<}&F zjj}TFua!YiABA)6tes?X{)t%-$!YXIC`4p}k^}P5oM?iu^L4^_`97Yrd zCrljfDs=MI9i-X*5Z#bD(H88LYJV`(5qFkjmSy{gd2ZQ!2Y9a#D1HYDz`;bEWe=jT zID8FGWZA?DoIN;?nOEiA_$1$*3UHO+6yTKLs=%qhZ6BNE`iKz^a9&Wn!TCV(4d6gT zkPWWqZ=;0534;<2B_7UpC_AC-g0dURER-W~j=@=m@&w9LD9@lg*Llh+R0x$&K#3}- z-W9_Nf;AkZcs6is1yF7~@z8KEZu{T>#}Q6&ei$pB3mjMR+~BweJm3j0c*6(2df8PI zLL>D&90h?6AqD~i4l@u3mcQ{(*x)K4R6sq5&c`YltP^a1Rn2B$Fw17HdYgMVjYCOUKD(VLBOQH^}a zbvA{)Rfhu_qGa#P0mCFk>zHX>S#ztoAqGX5g3)xFTdZY(F(ZKoWQC&~0tpJ2fGbL- z#+(qf5 zRn=0469%0wmH{}>VMnLuStbIQI#cUVcS4CHl)#GU@1Wfl&P)|yp=#rf1>F;)7^H+3 z+zEKmaFX@83uFwal1O(kGRTLc^m?j}@RF#WBtp4d>y)hIXhUfHn5msfkJ@>PoY8B^jy2UImzX zYRt+5w*jYXDg+B5GQp%LkFP<{$%9`#;aEw!1&ga2AK^0|^#&lS2&?A0erD{cx?sY! z&tZ93wUjS-3k6{2)9HtuAKxtSb8-wZg>r&&Dbm{_tNZ1@&lKyF4v~*6b2XT*^>QVXHeolbRWvx;JKl2*mGv4ga9&xJnb_z;fd(Wf-2KDVrGgG)?B z-FC-vl<=|($%~?x3bUz|^fp=p69wFqD&asR817KbN|63 zoHli{b6-#PE^hmKcHwfekfTf=*$|O%v2n4+&*w%zKL;+|^zo7z(^eTaEik?Y>=(f0 z{1=V1}PV$WhaH zUjlo0l_NGrjA)9(;ECqp@(P6gDRbd+2&}C4#6GMnsPY`a%Ex$CSP1U|h*M~gnb-(U z0#wvtQUpHEa$${lol z>SmX&Kk$)bYRBOF^Op(uwWCmF+>vMYH5{TXITTyUev8yR@gw|#Id7KO=(UWj3VS`&PMV?KKIlFf=yW@a_Dwz zZcWO5zKDwrgP?Uqyy=8ME|N*so5UxUSr+tEg@MM>n+7)Qze0NDWCV~L7l8x`79upC zSU7jFLr02A5{v-EFk$-E5&xTQ3g!S(va}gM8rG0(*upiM)$D2Dk{2}?27fhZK*hA- z(dz+#NY9uNGN|)l3iq`bYPvon{c{+~m}FFksAI7`2acT9)c_fR1=(ck(yk01(!So}_f6&F^<$jP^-2*99^uDTHn zubV~Wk_JLFA*A{r911cN-*CtOzHMA24Xw#PS&-7%2`ZSnLuFnhZ_bxy|2c@9{t1}OAGY`7J=tof5v z@&-s?{>dGX*Plkn2*1m{``Z8o_RcPA34oK z%A_0$Pyq$0f~L*Gl!5%8U;WpQz_c(bf4+0fT}r2{u5yr%lmFJ?)zQA)-+!+ko_Kip z;Q{;YvC~E?43Y1_;oGk)j~VU$p2ge53hZMg3Q#`_3Jky$tFp3n(>fnws#B-i>ko#b z&8_X7-M#&T!=vMq)3fu7%d6{~+q?URriJV3=I-I?Gwz21x3JuTM~B-2zja4(ds@eSRBzmYx8UO4EIg&h!E8`Ea;%K$?x!ybZ*w z>4b+q(Jg0vV9wS;8@(;x>e{L_tIDr>ZI#g=o}k3KeHnI!DnmGCVk`?Nhx+h+%!TIu zCngj?5oyMu@v$qRJ?F#(Di8V)OnW70SK(<9P=321;DQd&C$5=mL`i9x(%LF_7aG9Q zOi5WXUd3xp>3Fz%w@+ky1~l8lH}S}S7O$<)(vIpreF&R zW5ydk_()j1Vd)KvrM&tjU28=zP6RB&SUUj>(`9IwF_#U!l-$ygbPg&FXvHxzvE8_V z+*_MI3oVcF==<v;fyz4YOqiGVM5LKal~i!8bGc>7Q*ul#oih0G?DaCdkw{3JOfLW+ZO26mVz2s zo{(oS;X9Fy3yDCy7VNCdWANbnmZouZqsBlZv7}>|&&{N_B-+d8Go9tokh^V=B5|64 zvce6rWMAW9Q9)w+?dsWWtaZ1z!VAHb#2?~DNSx=9b}`3F(P5!bl^IrAl^ZTy$uZ`G zy4D=ILgeM$(6ZLp7;2=a6_2zP`}}`e87<&6KAkW~_x}?cadMMcWIqZzl=#0NNQ1jb zYHu42H5s{xpx?DnZt>=KIxEz!(kaG|K!GE_8=q^8Eo`~)S(;;TI zaILj3IxV%7=1<_b)3svG&_w<`2b^j3;H`c)vHH3D>8ria^ndA(U^qk!LNKgx7gSdA zWw>jjC@PEE3Y|e4B;eS@azG6Rq@9IQMqG8r@ygUsFq|)uMV!UL`70W)qtAAAcerilFrAs7VsJJtKDOoblWu*m- z!xm{w+1yG&+RdyX-H;Rf$#>)h@!Aa&<9Xw)P{1 zftSTZG9wq5!d>~}N|lb@ae6_-U@$Dge*N+TP*jsmWHXVnz$-uPje1~qz6$~(&LKy8~GI}E`RTXMq|#l$OrJoA+ibO8jDXj89H=RD|~&UJ=e zQ>l+8ErH<-^`|XBT_iSD*tw`rTk@IA5imujEox_`Nz4?ol=#_vh9dpJ>Q1F|*upA) zsKA}LZ9D7$pwBAOLT}p(m0frvw3@Tfhdo8qMj6#*8AuQ-PvNd?l(AG+PNey11lSja zEoNH`{KXAh4Qp5?D-EI_v{4(@l`5+svxRk#3`HzMn?TdK^ekvqtngfa79TU+VJ_Eb z=sj~~c;shR1Ilpi8eF{=S81uUN{1ij3}lh&JT3Z3fw;OrEYBtt^uV>XMGIbDD|Dd* z4itGB49Sl-Ix_PuSN!9!RQ3Md7$W-$0s(_Ivi!xgFnJGA>)Ik)>Rm@1Bz4)F27}$i#YAzof>mVi+)p+}Q>#2m@9`EEPVj$THf$ z8eS$Y1y{VBZ1G_KJ`s)oagrnh{u@`d-4wNjEC0Mm!U{;;yY;+)jadk0j&+{M1R2FFR*ZrT7^)c1@$bT>lvdn)T-{voS&g|(v zanCmkx~Dw4%b(Amj*dV4mmYhe7BbIsM_ZNfQ8h6up=FiDOnol>FpDjWnw08~TD!fx z4MRKHQY%-W`zL4`N{)j&kg}3SXX%$ix-(A;WLtr#e`b)DB_%P2s1t?}D%f2Raq=F& zTf)VnyBEEYQl~HVX4F7KhqDvjJ51T6*MbPcs}f_*S~yr9=@49E;A&rri2c?m@FVLV zM;Wx)w&okGRaqW3n=s~?@eBkAEFX;*#V!$XTNKIfDgt4cuO)X8?i#xiW$3~wj3z(X zEP2aoR3r=Rev|YTms!%LmayHj)G9xUv@BkjsP>nm=;g0pugt$5MSVk=d5#$R4l4cb zD{(BoS#Y8|?(RQuL{^6))5qo3pZUa9EwS&H{(`-XvfrG*P=1S2yJUT=YoZX}h{ky5 zXl?4_M9`gH_Lov00wzezpHg05R+Y000?zSX*=J=`QDwn4vYZ_(SuDC|OHrF-V`6o- z4|^9EN-S0C10B)Q=Cbj+dW`2qS>zRk!o|uLlab`&)j#obLR|D7_9L)U_k9(jf8MUgKrNe31L2bjkHaxBmX`Vh=tPY^8gpn z=yw5y%bpOqe>DJ=bf_<8)PdRh9wcbYG?%3J(o*_A`o9v3ICN#$n88anfuujKO-Qpa zu-riXWMo7Hxe*z1_8%kXUuDMh1BqwM{KLRoL3;7ZF*O)5!OljomCipL7B8NHpv1fj z4o3IFah8kN+(;1l>zH+CGMVLgp$k?4N5?`5e}McYrp9dCXtt;_2vKmE#T&K;uqx!2 z*&7&GBlwEYs_!SoUb+*6kXQM3Pl;=})q$LB!5<=k=K=sg09jQ_hB(HtoO7*6Fyhfc zoDytoFS?BDTvwKly&$sIV50_aIo)V2)zG7J2 zEZwyEf^OABZ5pREr_%0ks^RiqbN>poccrOcZTPwTmWA(ouqear zv2Tjoif=a#>YK357cbwnuK}|vI2akTb%Mih-#aTys~sqGAZ^~RB+^zHo!DNBRH@Y) zCszIA!Sb2&=gT@$nj6K-^N@r0mjc&|Q&%T$vv08{Vx%GtPh6BPwRh3Hc8eKlqu^5O zTuUL@+J}kXtjw((<{reola=D$j_{hG%*Ai^iQ8YarLc8Ya9PK^<@GkIaw~?D5Bk0> zmBm2vA=9fqi_Erjf=i^0W~2>*%dNA>PFe>v@1?bM?S{#rS+{TJc{<2!>vdvm?UXvH z=xSXl($gvO_Nqm~I84CJ5@aRh|0*fDf?Qv{HS=~PEFS;WGvX z6FQ^~bk(8)u&nRHcV#hH(uo~ou`#7G93?o}oUBhn6*X5&A}1pcVR8bt9FNZ2apUZm zyFqfm*U#Fqsycoej}sI5Y5*oe;Y6OM`E8NI%01P^nWKuP@I=kb+n%?!W^t8@u4$A<=AmNuB1 z^MCnzIH1oull+%LwPsRYZ4wxCHy4!b)s( zxSL&j%Pp@fE!ne z)V~c_MtnUfDtj{5>6ofi;;t)mmjKd_>bYOEvQyH(YU&-o7`0eQWbV2W_tN>NCl^o~ z*(M@thfQ8Nqrh3R34RYhT{~`RWf)Py#_I;!FtfMNc|Q_dcUJbqx<9ldy??cz(Tk5=m=VANOt^D%zMCi6E;g$* zYU#@#eQ@}>NukYfk0ej9kTEYz%e4kG#M#kL83$sOxqND5tS-$;7>o!{yLo!m>{+0 ziggrE6UV0#zimA>fHj|9oHZRCbyS@BV(5DNAGp(pFZ$TqtGW(^obT?xFTejec}er% z58xf36F!R&5zM;gQ0x4D6mQ_)i{u@Y;p<+4bq4+#`ltf5e_^Qk@$=ac36 z>oYkH`4s2fo-ws8QVz-tuNjMpK?K4daI8}O0;zV{_<{EqFaDnd{-l&>NRBHjmEP^w z(K6%xOXqh_&7VFBioMkB8fxks*H9NXSsLM?dkzn!G2X)?3fV{qq+u+SPBZ`^0(eO7 zB_M=R@Jbwm^gn#pdim(b8bF9ZmEosi!$-wR({^CC1&j!&v=>Nl9;pYuOw#&9s?xMmV2VJRA#FMQTUCOcoD&@tsQX3A zLybfg;R9E{Y2u>K--79#6Z5hE%8US*TpnAJ-+u6^ zX2t60#s(vr4wwM-lnM>nOe09izT=z!a6A&k{ey#QJdV@K6f49=WqWo zKGL)QV1J|zz67#XEtoso(p4C0P`#gqQ)ho@R{N=gq7XTv%B+(9p)8QlM?JjW9Ml4h z)T1+OLC?Q}Xh@&%kc_-u8<@btt<;&g=~+asJWfw$pXL>l5NJrWi)`a`TsSi*$D+#IT8RkPk-`$|nlbjjX>|%!D%ix87ORuQP<;zsrSrU~nv#f5U6|nGRMiFH4j?jpjo{6qX zIj1C9nA)#UoC;L`^#464qD~-fPDY&siS|yF8m*AbMpInFI=6vhKXvP?8V$6HXiwE8 z3*W)ik6?Ne?#R}!Sb75zog*e4vOzu8dL0HHh^odjy^;9&i*@ufGG5}{rj;17N~7r| zHRJolaH^S725hCt!q}?gF<6UWgUXX;5+CJ{FlLJ)=59%Z@;aPbxu?bc&?-A_0`C5J zO4!J*fn$eGyc`<23cKe1BHXsiO@JtbOOiw>)pD_i zul!09Q_`&e)6z}rCX;6(gB$udoZ(f zwY_cO+W5@k@I6|*MsB$cWb0%`rNwz2hn{Ts=N8oPtVfygjZbp__&;B@&EA|Cow(4T z8gTFT+o;KL&F}$WLvpw1Kdi1aR0;Wmo_axb_D!Jaep#P!2eW3GUcN zY#+J&PVt?!oZahNsiZAw`V>K9d!5F5h4aIb=k3zzvehNHC3tpy{N1&;i^?h3er%H) zTNK&2?)B*oz~(O4os_=0c;~wIV2WRw9yza}yQWMvPBBB&XoVPmT_dcg5t;+R zFTngzTaG=^EyUi?T&xp3sF^5hIXZPibzV!@iQbMu`}o`0PGjtAL5jWL)+NgB|9)!M z)mwkZCyn*@(G8FDbm&+!L8uE$E9L!0l{{2eAPXNbGP_4Ne?4G%5G*^~C|k)k17QoD z3PEe9&0hK2+Yzg55=sivV0njOoTIR!q|4|2U+gRkHW!ozNfo67wJz#=TGTiyh>94s z8tAht%r`uTYamY0+1NHRR(!fw6gu zJQ$0=UcNrP;R!$YJ{%R(Z0h);KARjI2p;Am~%zN#^Gh zBh8Gve%BM>&`oLfnHG(h$McZ_j4Ph&$Te?3A3w?Xt1Mg(qgZz6Oq5+F+KyF?Le&}G zoSYrH&Mj2BXU^4ieyQebtJ#H&uQk;%FgyPQ?OLISw5C5hF4}m{We8qLr3 zo~s%P_@N;gfrd+)i$>QCszaqt8H52asdy4IkRzE~!=u7jztmY4kZZ5X#^Y@*;%}2Q8-Wecv$m}?Yau#}GyTvc zfEi3p=R{c37M0FHg>{ltERvbX=O-jahB*P(_!$6%iSWZm>M*$2yeL5s-ZzcPCPSV^ z)SER$;#_IolnhRgE$zJm9avb$Wz?>E6qRK~WbTwJa57__=Cbws>=BP_^V-`$Rwa*- zG?!#r{`vUXl&nKzpPvt^uV(GCXg+p3vqJ^*`yhlJIrc~cj1OCQ4Y$Jc$ zc^5hq-!OOOzk%&%R_ABO0e)xyNn21gjTaU*jwx!MjxkOM?r0`Jn~9r}KBuTYH#ZR> zp|?J{iF22Rk_~`AzcXMrIbr2Z4x#;x@zs*QMPDQkntUaBrHV(hQ0;Nk4G{kz%O#Ay zp;=YRvKQ!KIXw?e0%L=zsfm$D+G168*c^MFJjgsMR%do3+yQGC5&gzHA;y~I<`^#K z`0L{JsDyi4hGjIBkSud%X{lX*Ed)o;aCogvrR^Z)H*gm_41)b67lr#7_j{f;GN>iGlpVA?d=bU8t>9suIBBU-7LNEE6~DT z))3`Yeo{yp-hhKG&A&q(c-iYWz&_^r$h&r&aEFvxyX0MY%|l*a4h;kKygylJBpg=; zh3b0fF%0@F(H_S$sF4F(w4~EoYy%}q)I@_Ci=GZj4_OLwc%$2ki@u71`wuL_dOVVO zaQ;l7Dtu8?NX6Cp3ptaTpPHs)cEO9N^;Tz_U{CT0wKte=ZpHyxtn~KQJj~C{Ybb&2 z*83te@@l=;lkonFb-0U$B6+NferBkvKD zYH@8W)3YL?|L=gt!yHf9s*cl#`s61JO0M?bU$gB;>+tsnfC?2DEYxF=KS!`$xXxQo zW&C*pw7N>itOb&J0OPjlKvMDh>|yt8H=ETd{~iAFZ}qf6=}jIdE`mgxSde|nPp>uB zJNySM{ZaeqCVI;Y}%=f3AYzYsFNqxN0_hzrRkQ~nzQI&qA1IM^B*kdjR{vk>Y^ z5+x3XZtnGGAzYZsT^z7UUp;k2i7dg(&Z(Skk5hV`b0$p66s-H zKJ-XpU{v@V{(-Bft~R(hC$A`|-!IV7Qb2ItLty>%Sn#CHC1zP@!7OwO`X9BDV|*{R zcg)GWw9@Xa6(yA9NE&63?n!y7tH3_jJd@}7Kpo`K%_%hB+Sk1nea|pEpmLpLLhYM- zGaYPg-miUY9nDtEhmG{nw9V>oO~wvffq|KGw4k?P{{)d(m5#j;YK5NT5ZXo+EmWI7 z-QhHwa_(!6+bFR}wP{4R_Ptbs6xIVW!~HhhyFh)x`gyS}j9^`-T#ZM!7ebd0qm#dp z*XFPgOgLPPehNv79?v4r73H`4MGVVxz~&L{r&*jg{s!#*SZ;iTU!4V*MT(5P>8Z~i zv;%J&+szxx^E{H%xFaIx`AYcTtd6&@o$U+{h9mK6Vj`M+(I~m(xgd+$Cn9A zn|>kgkRAF+oUb%yXWajEoWDKBgL(C?n$GE5rX908tKedI0P}p=9X0sLY!-&uoh>bK zi8BU;`!ml;E01Jlz^|;#2 zQB-DgS(sUaYU}+}Zeh=Kt82yOXY|GT7s`w8$f_$Uke{u!VOKUz3}#bocS?Cq?k4oe zJ6SHnFQcJwaxnxSL+8(%p-34%S#_?=J>N6`a#`ic8as@23c@xtM?6m-jr(M6%&lFY z=VN|V%N?gH#CnJXC%-N_rv~w8ysI!0nbC!ldpQm5A=P>BZV1dITcOXxoY_D6} z+_Xg**uRPtAR$gY^fP7o7A~bOn;*I$l3r@78PD{1a~U|&pz~XW>J6w98mSv|fjsT; z3k`13YXuXSf?VV-?}8`}N}91=wm}(%Mp3#9h_`o2YP51XFg5Dk1BraIiA_BbD?xg7 z`heG?0Rpo7&Z$FVU(bVl1I_6q>Q!30P+1k9xN`*@rX5(X4q z5{XyeqY{mWTgQVISa2NN-Z>sL!c-9K?p-3}rnGAOhpp0a#Mga~dnej;ri%kgBJ}hm=_GVE`*8cz%k9>?S}L^Ih^wdo^6sOzD9hY; z``4E*-^ggPk+!k~i2IMUFJaTJw`s+h&9AQt+6k1wlPqGo@CHe*?3W?#G2Mz&ypiY& z5#AP4c88d;;NoQvot01zmd2AXJLI(dV`b}df3$h~nyYSM%H)!r>g>e7ZhXGmv9E_& zk$jH47Y0p%gOm`vNd&mQZP`ni^sH$ry&%aU3quQFl!&3slLO$Lg?#X}lg(&jn9JO} z#r@kaHH_fH=nwhq%JT9IgRuwgZ)88*zw&bK%3uD4PyN|n?w$plEWuu#Qa#;OxzMxI zFnYho``0mr)}5Pq4(=4rH4g>i!bnzPQ^>vqUR~yGQDXDZW3?aLHkof93|26qmF6Tk#8{?y1bX+O)1!Q45QlDU zeyYdRXaZk9v@C5|09HiUfo$YdNZ+BjP-*;1wGJ=KVT2{jn1UzDQt(XF7L~drXNWQs zy;5ijm~w~27Xu^$wY;eFCT9+_=8E=hRB%}0Jmn*Icbpkn5GGP5APt7TV~LPkq8t3- zVBs2)?VvZxoF!F8|JaF@`Uo#3pVEYdqf4s={If^&c z1akXQ#4Kfp#p)Uz43%O?f)h`w%Ax)K@falxeM_ARaH+37wvQPJ5^@OM#){SPXcY)m zy2XlCZBXgLV2;%pa(Di(sSMj)e4@_TEYVW5pAm=>6vB1R1S>quYR0yMIOl!IkhNWS z2nD1$l~-y>e4uBxqXy}2Vb@bS4N)d{Jf~DJ#Jg!&ZLdmU)n_DDkR(!D$~AAieD8x& zvsqKUz468$U;fsj@%Fa*rA?~cjg+Wv>zdG%AG22>iHaySn-V}-nYZiioY#(^OwAjz z6-ibGG!poRnS+ZqlR7!IL-sNGDAuUQiWJ?ld^*Vy05uCEco#09LeGSOhF4vtkPa*3 z1Rp7NRxPj^RRTMkV(XqEv~oIGa(7avC!xdE?&*~EqKB)gV^FyD=~el}3}Z`8Z#!si zyjV3J#Jq`fn!98Uv=gQ*D~mwS$y>rkwOCA=>w@X97%L1djjC(!m^=zqkBva_X~1FD zTZMTV3dfXE1d#FEf@CRB#Fraxj$61C5fqg;u1n5wAm^PC67)V2cVQ_;V6iE^BqU7O zh;v2yqnZH7&P8bpQjrXJmIj=mmFX#Xh+4K4*jiDvo~{)>Y2O)bO0|s|FBJ`NSpA97 zt~=04UAWCUmoK{XoZ={#?`)*$6**glyMkU%l#1oeHqG351F$1$^qT3efk`6dOP9Ck zdvN!&|9D%c8T0}4Xv?geHCvnJmdE=xw@dZR13KL?{h7F7>#}+Mw&JME1v-hm{%-xa zJt;O%Zc|<*s;1iqLYl8!pL=O3HdIDwMQDR1Wxq_9#!U%IX;W@Ch88lT(RA$fUB{c^Kko25Ka{6py;zd zkB}FotyAcJMlk?UDghV?B2XJ2hhKFi*2x3dT_Oa5^y}>7m|Y0hLhF?xkp;!dcW3^om)w~tPVHzinL`>6F zGmOrJDB3<4OiF{4iB>{OkWls!GZjH`BL3PTmR<`UjpJlvrXo}m)+~Tnsc^%X9YK^D zP!=c(aEjbQ5h{ruBvd}+y!!)C;o(FckYF~jE%ZoWMRl4q^3kP<3t7k-h(3VJn}F0} zNMv5IB=B)0;wMBBM$j|_!HcI92({Rf$cexzV?a7uw5ft@>hzWoN114((5Nq8BSAwF zVM>zowBtPHt!}SbNe*9@8={3LyL8<*T6>)!NOWZFvB3pVg)VfxZ)EU^F+r z)BLhcN!@>ya}lsWDEI&pQ2kD2XPj58wnMnt;|KqH za2g6gdi#PPXZzhg|KESVDO)Mp024d9$QxPCm-=(F$2b4|=5iGql(s4(iKH6NwB~Ow zPo3$6bE_0Ywig5O?Q?!QdDD_{cV4wLH=c3bw2n7c>uaauXlff?2af0xSl5lJe8>wD z8)$7J9a`kZg$5|Hg@DPhl#P?J#oENXNf##2>;R`-yT6J6K}x~|ELk`N5Gx9(I8Re6 zR>%#VH%m7hF;N-c^T#0s*Nd=NF9AwI1P&V@q1{jkvJ2$}NJz#LYPpCb3vBhIJxbRG z1->E7YOCr9@r>(t0We+R-K1SbMPOc0%xPaCswlpaUB%!OwQp3y+cBZjlx9M{fojYHXhVd_k#|2Q} zwo-PLhf^J#e?FanUokKzLlDi9F^h;etHg#pCYLaxo}f;}V4ZN#n_5}UOXc5vpZMt> zeoea+@}g(Tzn53Z-YHN_l@uOt6>QE>u_mI_D_8I&kpC5L4$^Tf5`m{R% zlO%&v$z-Wm!3hk3hd@){JZS=y&z%K^%efFa(X|waBcaT&E1$HJANgW(v3DPXB#dEP z35+HZy@g%Yb{Le%?<7zyD-TdZjI3gNP9gNO=UFis0vNKBHn<#)e%#`&twN?u%{F~@ z3+2Z}JGMZ`Tx)1kDc^|`hVUKAviJtkvndYEMYN+`Y+<>{%lZCSt ze||cvch0$&!M4NBxq>D;cQe>_7jqX8n^;_9f!)@%^Ww~_XeS)amUJjU>hFSvrCiG> zxIU^JaV+H?*sqttnNp%%n8MNBe#F&LU-&YitqdB^%^W$>Ur+gN)(fS@;pmKCH68xZEGgrEcqs+Y=x!LWv{{DlLDRkPX*k}T(=|=^y z$n1CXo_~D0@g`i>3QD=yL{+w8-~t;LbNJ-+teOr_^hD#s zZ8gGuObN=74$86op@3zzCV--rqDepIECSf9MhAu&9F^>JkClXB1pzK-Z_YwqV6jT4 z%(eoN(?hPJT7(|utcER4g@}PC9eKr>4sW2Wu-{5_gkOFKmAj9a4dDsO9?Up+#25Xw z1@suE#~c45D+R~sh>_h_p(GQHXfIWA;{tFMVtoy#9|A?8qqIYlAJV8dIblzQq4hi* z0rw#Y-Yy=u^qMqF?nq%2;*z4-@)bh?I6==6%;kw|K6E+Y7n)GL%tcakdrw9R?q_vT zy{wxv^iDKFBm;d`YjXW}Tvqkw)G4#E&}zP|)}WNnqS|OdR3<7)lU=K#a()i0BP)uTyx)WV(8l}LBQA#rf%aMGDD!c6p zaH^uN;Z&tnO@q2A>;_wyuA4b3bxV|YR(S@E%tniaZa)q~MHr7$u`eJgZRKjTqD1@f za7{cU0-h3WgNV8hHVMrtz?jF(*+Ia}2zK~-wvAhnqq9?JaUbRe>!AAxH%ImZR+=po zxc*+3t@FsyBY@Pvdk2pmNiv7I_Erbz5_umcy}>_jeiN?Yl)j-Jc+>V=^M%JhKQnz7 z=p9>PH>$W>rCEtmKP_oY@%h?^TPmS}Dcqv>J>J3od_~65D@UEVBKK)6}N7Y>$ z^T0q0T}GWpokjN_&mo5bO6Hw`mFzL3xA`^?M_b#k-@O0oA6dr!eP#1+UJpR!h7%*{ zkvOewl!u^;oOR^K++5#%|BP}inWL-yrJ{HDPrOVvI41SQ&8-;kP}@t8;sDCXgpy*BQIO(nAjDxB!>NxH3e?uwMM0<0hobA)(Jqep>2S@ zfw3C`z}YI~XLWkE-OT>c$wNzz(Op7JjsUV5j#^FGGXZ6#J@GeH&mdqcSmB zI3P@eR-FRa6zwbahJ2%E`>$Us))~>M^sMV#Yq#dER*r00I|TJ7OFUVfKypEMJ3jHU zh(@v44DCVId(~e)=ai#X#YE0v>78LDdW)SXGgCmtAL<%VpM^_G5U!#~rz<8Q4Z6Ya zpt&M0-r#~T;F_V7FJ>wRZzy)Jh+xP0gl1u@lT7UA_{X+GU3QGE`=-CmsU@2B!YBNA zKtGKSi7Y#!8)>_Lcm@eWt?J~!=zL_hj@EKX=@259TMZ3~nIs@GrD6e^XsxPEDs9(X zT=dx!c3_z%nrHr_F;)$4kmIsCS;UUesN*IGkW|e~I1)&}E0Jbgvy~~-6n>ZI!(yb+ z*=@xvmLABG;**S&!%4t<%Uvnn1OmWmP!tIPE4-p1UCTbA`<1`^YlAvjYikz_dy6gP zhE2*UZ%w;FU^}lc%1dM&i`jWQQte0JQCGx}e2?3Asaxj!t;7-?l-hhG5$nhtITFh; zB^-VQ<`RNEld#uKkaWpqofV3dbS$y4O+I8+F+o<6EMu`|Y46*371LOD<3B-Hmnyxy zhhjG6iRrDaBL$d&T!pker9u@eMwjDVxHF|!78yZM5@+dDwA~AwDB5Q~xjLm+8sAT^ zyh~TF3fIEmi{xjWru6ay?Y-VvMRVHV3rB5tHm);{!!FL^a#3-#Qzu`ay@s#dA!-qg z;cA`mpM$XJg*;j8@Tl9$@t_u_+2VE}1r(Y+EE2J79L8qk#FnK3VdKK&f#yp$TCHNb zrI;Trwks5EZNdzjCUDGZ*B^DNMRQNK%oz%^SIR-RGG@(OpT>2Gv)=+65p#B0yok3t zpbGQ>mCutP>@5JDpDFYX!Y#=BEP*OnUZNkqd>8pl?#1{+_sPb0<P*>I}Oaggf=X=jD2u zjwl|hJn1ANde1QxQM1#E{>#+5`XIMtq-oor8qtfn-~VcyjA^_qQ6A-@inPnGAM2_* zH_8M5Wg$eDqXKZ$;2ir%1lcs zs1j}`rV`9e0XX3t!9!Rt9EbpxN&f0;OuIO`phygZ3%>*|3PV#RQH2$=&{Zu+5amYD z#5fW{po_8|&%IPkF=Bp~Yc^*lwQ5eSq>US$AH=IK6s_@47J!-(mY*4_AKW#lNYLw? zqGro?W!`Bmt_&F-VmOhj=`caf3|oOJ1?;kVHxU%{0m8H)Gbv0vUWVc{?<#l#imgxZ z47@2l`vq?$nCD`8j2r)g%<3jyPX)W)wxfgM?CnBSyZs~T$9l)U)5h+#^;u#p=u5;b z)A#x(AN&4!9e;R?uL93f_1ZT@-w!*H4g<4{Hf-CZte|qEZ$haaSc)X_S;H<`a@xJz zeG;S5bYcXzbH1fZHCUt!m99eNm0JpXk>ywTSd}LB{o%slvBZJ1S#<8K;v)?HUeaMv z;-GK&g(43rRhNPZ2wryBXM)p=b6&}ZJd*1ctBe>ARK4wwty(5I=20Wv=kGH=N&kgL zWK~Kbp zkSm2QdV6r4kNT2$j2P41a?Ub<5igJKzjNyd=Hk>#EVPJE8Ve}{#UW;MBK6|=CtKo{ z^m1v3=@^qe(t{fZA!l(+&2GKLu)r_MqOm$C9Z}4vV^kwwXSdD+(m=D$vAa0ERw5MipiVTza?fk=iSS!&fBsUq}%d@%sFQiuLMKZI4R93PBzE(!dxSJB(5nR zbj5m`C)c7U7*|J*^wP=xP3e5~ZlEhftNX&?#q4AGz2H2jTcXQ3HBacxdLTI?-d_n_ zC9cSFox@14u8^^FdD8&)b9^b~_IjPvKr3{xpj8^$^A&_;p&Je-94rH+VL5)rmEOaO z@q^tMzyY! zW}bHmusXiHkNH>;F6RLNqErn85(+`Ke{Oun7SIflS|e4vsj1#VYr?v_xrN^mP(I(` zKy6aGGujW3Stu9su3pSLDl$+ha*CrWJE2&Q8Lk@jh6Lx&rn_OZupxcNfMH#Kcke*L zV(cevwuTFJq9Q}6-clDCh(N46+Qvl!uixU6JKCONnClhEJMC+ zm7YbP>$t?aMwlf_YRYanN=eRvI&(7CtGw0}2S=N8l!JM$7(aa(x8)8{eKdsW5V%=xval>+blM_&!xOKt=#CI(B|iwc2*}C*>6tx0T2e&WWifg5QZM6~5563& z0cNtUSZ~o$3gau;7|#F5`m)|;?b(Ko^bh4Oq zD1#+5wy3op*|R}Wla3X??G3(qw!aD3kZNuX8wnhG%KUuDywby~CanT#Mgue7EclB} zl!`?Z$WR+va^{V{9BO6BDLZoZTxw^UKdOzguBnQfl4@fnP{$pn_cqHwk}cPBr5jQ> zL>{W0Llbmk3YlzC@U$fgd@`~av!-DnGeyABZBmqyV!;&B=?DkY!FYpKwf&$zx;|Kl zvG+7(SGovV*RtG1V!8tencV~)+cF00NYQuGwT5GV&uwk>y;?7mTA`EC+x9#bcIDBZ zSg43o5o@MFtE`cg=sbVmU5t>wM5EiTzj4D!N0D-o*ahsZ0qe6DvPQHLj(r6LBh{Ii zS>BC^Vcm|P!L_M3XtI$Bi1p;JGg$%eF-uwVQP`Edt)w>+JR5{3+_{r z&{^9K8O!7JP2&(zIrgm_kuRK}HXzhRR59{1m1a__gF{=$WfSYy2^C!uj#rtZvaK44 zu+*Ox0{m90atiuY04n+g>#L+62flV<|B$VDOTJaHJWo-QpOF`YpGjZ;vkr$ zP*M4$`wPQf;)Fo=iRRrH6vtI@K7Vu#nC%VLW-b#^RmY5bObO+e6O=;Q`r^%*+OhF zU6^bBzt}DPeRi*G@c9wg1EEmB_W9q@JzD7vb+7vW@bM4jEA@&OpjJaJLxowIZP#yI zE`3AAQJSa!aUA8&+tqnv>J-+4ToTjJF#3zg>Pqz1wPVGaj-f=uwIFp#HeYETox*lWVXy0$mRj}5exQ(Z_l)J~(R4mAOx*tE2pijaK9V2x+p zoTEWa2s5zyV42;uwd~xAJ*rQ2!Gp%B*VdsXAf#}lDN_L}sp-5k$G#_7S+%a5uX>`D zrWV<*Q57M3AsND@+y`j_8bgN&RH+GyZ7StOf1W@@UWM>5qV(K(ygfqgydkwfG2%5T zAJC9}lf+x=Vf>r%lrmd;zFC0RmIEvR|8)8dZU{2i{E|Cd7>IU&MB>#Ym`ezx!X^2o zLDwiDH92Cpv=AMyrIj41rH!7MTiWsFT18)UeuO5c{HZbwG8wshs7zk$Q}2|nJ}%cf zNlj4RxRx))8tsv2k*D>YlV{x8)8;JVTje==soi&SOD;xB({9NB58+QyY%nUopG*h# zT#hXFe{J8f2Dmq3!B+;Xh@>n}w!rt|5O2E;{6O08A5{q4Ldv7qgDb&3loLDLP7F~S z#M8a)y{Z$GXj0@5bY|ci*$xflp2Kb6#gi-Gkn!zHXHK14I(M)<0jAI28nO>tj)+!V z$Zh`wrMCac%Kf$zkITg%2?VZE_i4Q?mieU3r_#ERa7LLuxF(i0lB&$i2>8jXti>>c z5gcksUb_7kwG6NV$_QvIMa%>eQ9s@_AbQh0+Prjavz=~Yo4zr>+63Q!!P#j9T5x8$ zJJSmCTxe}_@14r>Ldam^w*?bcHh~hQhuWp+S&;OU0i6nJEroZH<(p~}8JX(;1vRC1qP*!2Rfc`o^@%4ogo3XBclj;FrJ z`Pty78b@$tsK1aH(IVt=t$XW3J?o=S@*(xM&RQZ!5V0R<|2-`Ll_)Vx#wDf_Q6`BB zt$y3|AbO^Pg&0Pn%Ae01yF+ZEOg;Bd1>;$kNie>Np1M$eFiD260^B+a2~muj^e&f? zb;#6?6xY2f6vVqA6p^W7obvvwM!bk-VV&y}fXS$yCtB+21CV-@M%qjKbF-`>eJ-q? zbk;+Ps|nmV3zJo8b3}&3wP~vYG>|kD?>2Vl00wBPZO~YIrWWTZDWpJVL7w4TtqiQI z$-%f|upHXJo3>{Z&u`5IRI* z`Vvy9RFBh6M9W8ORSLw!I9V8MPFVX!4WWXFB%mHVCz#yXMkw$>gFndI3(qTv%D0O7w(U zemKR7UQ?4HbhB4TqnmdUVC=vBiUjpH(JLlM5fIVvK7wLAV_dq((lYq$GbKz4#pDMj z1!8IBOFQy0XqF7e8H`mUSeW9)8A}dm&baCXl}9}3v7r<=;-<%gB=TwSn#@Fj!UA>N zhCI{>D1BiqIem zBoS^VZSfm(&9rG^xl|M}MJS$6h;(V)GpLxoCq;U|tAzlJqX^vzPCuKaBRLq91=*Jx za=%F;LBb>ZyAy3a@o(w^R}OGrf~2VM4-(EMCV6^8OoM^aR8GD;c-o%y!dD4VV|qFFrqtrVx2&1Uhx0 z5ZjB#X_bNCXR<$7>KkG&3!BSKe*8Dp$e zN7A}5c1wRyV;~t99j*Tv%-qKj+8`hi#UzMp)h+ojx~X`QP6S6IXsakx>C|Pzf;)=H zli)f%`c(fDuv*$diONXv0D8p<6`wn`=wwW0s}d9_s_OK?gZ`T^MRwfBTg0ptB5N+l zQ&2flwS5v8Ona@e#rE&a&`b~yh*Z+rV~TJjRY6eoMU6w8YLLh2t<6?rzx$bZV0 zU;kXEhgyDVUvjgumjuf*^kQCV|9mJ({&K=?hI7ghAWw;shTCojj}3Z`<})#H!XAXL zGh{-@4~kS&II8xdxD6~E+W~HZK4ES`b(~wjt;i9m`)bck5^@ntBJi3H+lchk1~fRj z@v2MF1$?MRf9`}nlP#N(#ceE5Jh;~UIjxMH9|)2v>R_M|63V*>AirVZiPRlISqywL zAr0ag12NSb0&kPkmp9{;>X}s^K7KOD6h;bKK{xA^4>ogE)hzreOaYDV`6hcW+NMYn+ zz7<>CCIO+Sf$Sdc@>8q-29-!*IQL4A(E)EWoG+_)8z&U}qMT&1iW7@OZyt>ctVOrg zToHOcAQu<_p*z-U$dxMLQPT{VlQ%G3BX)_|#sPDzLW%QJ$Po*ed4Ovs*} zyhE`Mmy4<1JOq3Sf(yUY>KiVD1P2j&`|e3Fy9h$2;xSyLU+;1H9&vF$H0dtP*IUH$ zx`|AZR;s}XGo41jp2WFrOg8I}HC(CmpOTalxIDW+CJt;Y)TtbxA3QcC!ZZ^Sd@h^) zg~>hv#=%oJ++n4P&K} zycVpNnL8>hZZS<~k1!(G*v%JFPAKAT=5isdr-%6?LyMz4^d&a;tFj;wsj!^GKP!vH z5R$1Qg13eLHlW~Q^MZyBEBGT=$~zIK2srarr`<4mhg@-_=+$?g)bJVN)o7&IAT;N! zY%(xbRqniuS1P95RNST_HBb$BI9U)Rt=2$u4OHVO76;YQC zcbFt&+l^Qp%{7+n&ITBVS;b8SD`rWntrUcB0R|gIcL;P{n>)EA*q6pZre04COzq~zx)1zZCl&D(*MlbLcdWX}X}8fM?S(W2#O zPz){tZZcW#3uSTCX#Ncvs8)`RB_rvDKJBvfvjf@ot{7Ci#Uq8Oi)XMK$D)IE>ZG}T zlBlRRos)KA)T+6c?FUoaH-Ky>37L{ek)6JD-N786f-_abU?_4{pU_l@gb#T);SFZO z;QIYZk-;i6m8ZZHs) zI!6(ehUr?AI#W%i7GIYHm^&?ncQdL%kx>{L>LF4G9Va$2hX6#M7I28_ZIJK%6Eqbd zTUhetl7UW{eRAEHI}`ZYwRJrv5OezRHURkyOz1;^h6J;56?1 zwvGs-$+!=mqxEeie$S9blM25*o3^X^?@sM zv~1jdWZvoBn=nm;VIB`EP~arcstePu=M;LFbq-n8F1Iur!!_yqonIuVI-#iLt?7vL z%TO*2r>N=+gr*MjhV==yy0VXxjqw=4O=%be(8VJ8x^Y?)t>F%DxX}D@Pd}?~Fr_+X zlm@xbSCsMfQ^7s!XyJWI=ltk{9I?JmN~>X~Dxz&J&cb=;K+s0qVGTe7XTh{$7*U~; z9v?9n^D-`S{zA{&>SHRftBP)$W=u;;{M9qplwDnHpxW11y?=xn4d)7M;%IcLbHrm0 zF#~SOqo|N=%3{vLLKRlMDfLo%9PS#&tqa&&<)*I@{ftV($+w}442M=(W#3y#XXd~7 zlify7Po;n>I%<{r$>zHJw^DIACbKo`)%(p9sF_5(FmRyB1$Mz<-Uw!MZ1l2nN98w~wI)%-U!G@s2fw;g;<;_?SGD*}A}V)kmgE zB=e*nY=OtmBysGI)k`(+GGR;&x29Sy6M#C5mjmM5U~thB-AeD1ux!o}o05D}lwfwJ{gPqu|4Es<95Wr1h#;iARtN9tZ`s?|X30LK^J~1wpQAC$ zcCkAMxUl;zbBzz+O z!zlc?Jl_2^Kmwu%_c8OKec(ZTU^baSFn=%~X7=tVcF-`7tK%3nn1a$F z+dNaHQJp@MMj~q6QmHlC(x5}N6Yj?KoATKwUmlspGwqC1c1p(8jOUybr=4}lc^6#t zT&im>yJD9#?`(C`bvLAY>9rbs88T(dl4C%wJjAD@|0dd<{*s)3q1)?+`9`&M_2$f5vd6Loi&m&impbf7SyS~D&0Dl=H4PuK z<~;82Hy_N`9NxRXa+)R*GOw}1CE!(baKE=F_QioX6i4D%oQP9#76~fxs%?J{T)Y3F z&lswbM;o^p2dnwVD<}$7Mry_JpmlW(gLe>(Xg}@M|2ql)lkfvNVegZWgg4d-m3T}N zv*FoJgblo%{~MbP>P<)(ikjmpuL+u(XW5U^@f1#wCuLBX`R`F=s=HBU7I&b^EDxYF zt9{g&dKZnT`=pwP;Zn@6hCmO$e-7K>9y?8dWxo>U$Nwz@SOcn^1V8X2{3^gG+rJTQ T)@X9ci+<3aS@reXfBhT)8I@;R literal 0 HcmV?d00001 diff --git a/docs/_static/fonts/FreightSans/freight-sans-light-italic.woff b/docs/_static/fonts/FreightSans/freight-sans-light-italic.woff new file mode 100644 index 0000000000000000000000000000000000000000..beda58d4e2189693806b79b00cc3c29575a308fc GIT binary patch literal 29304 zcmY&s;Rb$W{vRm* z;{7!#A}gZ+002V(08rxq0Nn$hj%kF5f|39L0JHF;`=bXexuDehETcfr1OUKc{Mf1g zKv&FKy4=7@&*q17_|Xgf!JepKQJ#U50|5Yl@S_4?`414fFayRmCRRV(j|^1%GoFz` z1AVcHp8bz4;>nNBkMI8hf{CT8@eg+c04Tcv0Og9RoWp~rMtX(-fT`(^4%>f#_pXFA z{ULw2oFAF+2PAO+K*mk29DZy}e_{hx0swy1$hq+iT3Q?Y=vn;44>a+EHCV;H8Y?}Q zAHSCW`6c)dz>vUm|MaYk0066>c>tFJ0N@$@Q*dlH*7iSfSvUOHz5MXk1@r@@Hg-lo zwzd^NcD+BmL~o`Vw6l@^&z$XkcmUXcSQFPM|7n4K09d?Ac>J%OeP5yZuU(!E8+BR3 zjgWxqAwU?+n-E@)H}ih_dPnOJ{0r&ZgB=7?(PmZ@N1;wyKXXC1+qE7HLY~Y+(&BoN zeCqkZ_X3y$2Z#9?$7O9ZP0dDO8FQFVqRujWkfzTPEENET*aRT7^b1%7Vc1!z&=-R; zTPv7InM;)%xj{;jB_O$Q89<{DBV;ubfY1{i!zFEicPy4+6%z|Tg^6c#JM$;EKD)-* z6bgq0w%ix~e%++rw7=%ue(k!>vadQ4j|zD)Y@>ge>Qb)bXt*Z7rE0+VvW)~W{UdQ zfzS|6U*e=%Ua70P-&j!Q4CAP)j3ODw?x%XItWr#BnL2b&C`MWb8SQJ%JfykhqMq)D zzG*lJBh(%V2EO43KY_^1VMY-^zxfMK;g>Z7?e-V{1bT1={;eP20t41ZfB_@Z&&+^p z+#{I+YC)(MOUUQzSc9h>kliP7!|Z~o?W@xRwgS-|Aaz640hYe&xB_h5WA;M)0r>^@ z9k6~w-;)1c;xR|8O)hjhK1Yq0FXDCD-(}sQ9k%)$&Mxl#H0m|Jtb!^xhwR30Ey_#G z-oIQ-YKnI$HJRFoI+WjV5zlXCwHX>bdH%t~R!AcATUH^Dgv5Wos=n%$-IXQ9m>;}q ziFBca24lm}`vXaoQ=LG2%CX`meYr?|j`6TU;BBA0Nh;GdZQFT|x4ltT-5dFlB_&CC z{%xl)5N^flkzq4_Ovmx4k+oqnMh>gqLYjV3#*DpFaW&I{N1U(!PBDMeEARUevyz2u zG4?dm@@l1??~DsgX0AHHLu&kJK0%{ZU+7@a_!Fl^qpMhGHr-B39Wu6t#=NYE?0Txf z9$(2}x+(p{I4a$Gz(S1_MQ+c?DkfUfWw2No)}`k!j`+<40S(PS9&DXzS#2H^w05G= z%1s+h@gpr#(I=J~DIzCncVATaij!E?2wrR0(`*yrJ875^c!Bmm+bgSz-~LL@HG5pI z+FS7%8{cQB;=U;DL9JsO!?(7z@9I}NcGmLlD&{9(n}h&TSt@En2$(^>hb$zvo_ph!X>m4!==;j@+7xoYEu3&CTqpTIE zbzQCtA9g)*#aMKpJ0d~tfYERSS41LufdiqG4v1KELd?O`{8c_616`Vk{136G{Z+m} zFJQ?4F$T;cpE<=8F#8fuJQ|MY2 z{yjtzJiR?c0z5(wyn$o>|9J@qg+|oHW7Ze{32F7B+COKB%GCG9O=}l{)z?FSUJT=> zf%&iFuZl6yw}ZzT68OIf0yMB%hW|~en*EQel}9wzz!ZTKSS@o%CjSM@m7Mj&vfxokMW`Li*eu0#3Frh}pgHT1M{AOr8IRflR7cK{uf9t6^Jqvb_cq%QHb9I) zySRI?M#Q`@h9cLJ#{3@MllgfqOx3uR%Ip`{*<_Rc7#MVW!z`8U)SR|b*r`>%(w07c z_omyzlaMgi82j%e*s0f1$A*II29*lS*o3strtG;j`>B7C6l7`*s|_R8CMdUz64(wy z%P0N3%xtK5RT_^Q+-)pso)?G2s%gbPlTkJfM!AMU4bZ`9E9hE zGeH#OWp=yJ7;_x0sF zHac&rLbs{n?UGr|QLSTwn=heA{ciX-dCyCc;bk*pms_x_4m2>ZU62_tQGG>W<^+h*j`LMNCWvlO~A{^(X&{>#pBK2Pm&FYPg>&D?9R z`F7(=FR4G%z3I1;+8;R`h|1rC=OtFsvzV9p1J5;4>8RZY){9~VqRZ&^ZdVl_mlsc5 z)X_ypUdJB=t>3%ZzIEx#o^y13OZNQs7JE%DLE}?HOKxbRR8CzNN4aPkkpY+ZyY18L zZW}kvEmB_*lJG_r?&^4r@>|SgVAs#uQaX_hv*yjX+ZI+f6ik2cx5(9g5WcZ{QVaF30<5U1TDX0p}xgKFO^sfjfdD?wKD%Hj$c5`w0E4}KA)=jNsrzHUrpnd@A!`c%^1^~=8^c)>3Zp&Vd9=~rlF69 z@AV@STE~=?Z1;Q%O<5A_AoZ$`1L41OAYz<*TyG2>vKe@qZ z8{6TPL&5%d{QfUKBlbh+bM5(UyvNQYVy(k!CP`ryt~*}3eg&`N5Q&XF#%%+{(RdF^ zg7n{_BA;mbxemEg|K>6?E(nF@m=Dji=QQ4GuBiv-rn#54vxFp8;9`ai3EugcRK<-# z+|Hk}vJsy*9Uq6Ph7%rb&v{jmPK?V&8aCy0+-8>*@2CiL$JJ3wrV%28?ZfL%#vw2% z^9>tXmF)8*j`rrOUgXu{{jJ*-;?0c+c&U4f3r!KMU}95UEGevDMOqga!Z;%N>mPnM zOAZk>M~J*K0X@csj*!R8`brAp8bO`qYFI~7cSIi}>14$f_XZf3y3si^Wn21^uULm;Y0tFinSstUK zoPSjZ_84QHK&)Xz{<#^*ZHJIJN?4k!gLsf+U>DbwA&_|xk0d3yjpps>#4UB9<|#~F6$UGEiNF3 zFywu#$s8MlK;0@T8Xkj2S0E%9PUL7{u5Gz59Y$26p;@o|1j54)kH8}-Gh4=&zSVOS zRZKB5=y8ASaX&fH3ovuz)(87Mk3k`gbMI7-o%5POtyqczNx%Hno3n{>0TxN5!H~*8 zz6lmBh|{{!#_fvr7_Ek%k^M+X{Vym#Jmhlxgv8L9qYX=5rOQSMTxg%gK$1dzl`4E1 z3tMp|cP!VvG`x9_c-is#!=Fk$%f%@Xz0$=aEu&P@qKK-CCJ8CAL7L)@Far#CYq8k{ zIT5bfk9MXZJ7qP z-uL0nxn~lSor-du-$vkhB>O}w#Gwm~_~3Ui;`C&=(MEbP@=%oC;WQ1Q^ES3O5K=a4 zgwwn8R+Tm80xC^^wjYB_ztE6 zL2YcJpkQENx_H;u6n;t==<0S)7J#E3Rt&yTMUFHiFkFi>!iu+VT5F;V>{W256GWTZ^Z&985FKC1wgNT$)K z^*B6hv{-Zg{ z&mBZ{V;FKAo zXfmBIdG{q$Kc@(b01VJK8*cgE0uu163={wm1F!@5073w1fEFMJpbSU@$O7a5@&E;Z z;*X>PQ2kk`VYMAN|t(M3H3cnOi1Ekg2GxVY-=r&5_E#$wByPc5bu zj!9zrHo+#@KBYw)>jBRN=jV|T4gTQjmc|cbj_+U4VCl07T;_m79&1W?Oerp3^@ifF z*$=3o_YeGgE{q12`Ge9sbOSucIt~6fCSj(!Lf57w>IRBx1&kYS~g!>b^*jdjm%uloT2#UegrE) z{i!B>!B_f~U19Lx;K@+tnn}iJU=g46%LgD3<8h!k4>v}?3jVx`A`NwjiF54-HG&Pr zF8AcH$<%*yr%PE`D$#vqLCpDFuJXJDo)ZZ{Jm8749&=;_a%McKPfr#izOh7;+3nD0}sEC4yn5gct zaK;($gQioPsNT@jh*qI)QTe!)?zL1NsLpS9SJ^n7Itl`oyS#P1^^HH7%4`zHX;Izy zl1`2uvw7#Cw|0sjwYROmL!HX`nH_5&fNEe^Aqj*$&n%fbaOxgv3LQ3K zD`s$!cu^oZ$KVuf8pf2U6nnO2Gjb_D|8gH*7ZRMV5SOl^o|ddpXSls#Aa@-@xU~^x zH#gO3%)t!Y)tv=xHz^P^cWEF{ot*uvaG%;^6{XTv0iZkA45NRsD zRK+U2^`=zUKf+AfgI}!(-s%U#>V~+l>Pxke z1<0l#{15jVV!K*J0j0*m4Al&bd^XB7FcOGW?8=g@FyzW;(gHX&?VJ=?(c!)^ist92 z;R5=lQf1^udBh}#YHmU%qF9jE=FITy9iOS0wuzW7jIw%&uXx&2NYZKpyF3Cadb2hr zsTehmsNgOpn8OaYLcY7GH_;BafrAf{I9Zg7$!oa%j~Tj+CdRMS7Es)BjMH>&c`yk2 z&fLQY`Q*&>s?p1pPNRoWewt|^>-#W@H>``1Bsh11eOSrs`Ls|r+EL~Lf6k*(IOjVm zhSd(HmpL|fWr<5mt8{-^GMKzh9j}UxKgjlu9VZC}M`E#h{k511xaMKjcXK~Q*RLsa zR9v6B^c~$l&oZUhe)*V)>uY+idTNd+M_ZO`%?qJ5VEz>;#oPytpJn*A7;HHkGDmYx9nrUO%a z)v@n13Lqb3D+R7PY51U;dNk^cuA; zK$9#RlCeLvRgwn&k(rqW)wWaLK$a;_J}QT;=lTNmlT8f#FKqE+m|j_G+~5o~Yrlo( z$`ywp%3WBHB8Qv_%~J|B4|N!~DUDw=MkXmwc^(?C->KH-h%nV3#)MpT)k^(wuidL=BV}8 zw+Ha#U^L0DqNa~3l{9Nr-m`kwcb^{-AG2w-p7)UY$~kW}CP)&S4ctiBCVEF$ufn@^ zX+HaWe7(Pm5522|b{mR*liR@S-0`pslLpgz!B@prSM2~J(jV8<_S|LcvRk(mm7bLZO4;H-uP$Z?*Yx1trKX@wC^t(@ zo5muWB_InEcg1T$kwX#thLG<)*x>PNlz_g11q6}=f7-Z28(Wl@5R$UJ5^s*2nqj?4 z{Cl$NuMMhJ+oOv$(z=Rpiu|C)E!}<2tt6KON8Y_UYVz|o&)NEmofOiff+D~egfZ3@ z#0=)C7Qx^m&cPF702LOrPlO%!pv(RmW2j6K_HwZU&coZjy_HKizCNNK>0yG+xgpLr zf~|4*Xvo~D^ZnzxD1CJ*B~<{dLZDfB8p9?bDQ5&P8Kz2m6iVD$w^z?>7S~)a4Qz&D zZ(*^DcdoQ_lG76JsAYmYuc79vM$oH?Ow!IPv4yr1VFm;*GSiIPkHq}1g{IIpQAYtOEI*g9V zcG_#U?je0=K?56D?G*ojL!!U=s1Nw3crL%_B1DZibrrOJvoPuLWiTa`=xYbqKxoAU zJ|C+<#In$Xg9!mdNM7z~1&VoO**#~cN|U$QTE~*`+8)}5tIf5Ua(TBaEtb)j=(8CP zm&S)tOwK?pjD`9mMiMmWtSP4!Vv|L-+;yijp|OIe*BUCk=AzxQx;)Lj4CfN4$&68C zTA$+Dk_w+MH|kqh+)oN(^UFGD$DJ-W+5-p;d2SX-OnacUCI?&^Dm6KVfbSs!$WJsm zQgYM-m5R2zenYB}*7Z=%5kqcJ#-4I+xI7H}a#7O<$sAc1%mwd2M=bek0zo~{3N%L+ z`?GB@;)c6Q)$Bb*pTTkXVD<&MfD1cw+Ytj+t0H>qDPPsZek4elCKvX~p+y3ZVb3S5 zf27%-AHH&dXI|YOD_p7X*9as_P7gE%rJk*9VEX--#KT+-b9mYAbQVushv#K>w8i;q zmCV!h$!Ai>)0Ud=&G79$e=L)YtKH@0A~haKeBEL`5Vly~Oz+w12$ebinQc!GEcG|# zRI&oaY>&UbE|v^_dEJUB**JZi1o`)#UCQlnAwcrbM@pO-_%TNhRkSn|TpTkGHfNr3 zebBGu#CCv*srP-(XHa5~P7#|QwI}{h-}R2HjkyCz+Oy2o`#rfALq#8p$LJb$ae|eG z>#~>iGW^wt?R;aibnE%NK9!Wk>1j^rhbJCeW0(9VQ0u|QJR22si;l{|b_V!5Hb&;#1rHs|z(q2Igk^2=V z_iyg4@StEvU#4V9n9)j;6!_^)&FiJpEd3lACA^#qt1f?%J1J0jL<02%9}zR1Mh#W+ zhXZJUrSSvS%b0p;Xv?PEbhn?Q`P|RLQaR~srNB~G7g?-&>&Fl0Md&ZDOtrqw46yOV z=?#b#4tA5owsoHFyO(Bhd{Q^RF`sL74VY5&i{e9DOO1aeVim|kE3QFpV&%*QsVfS= z8j`J)N~R~kJB>lUX@?PN7HuNdw@R^SQVMReGfFcf(3=sKAUiIUP|&5#yX_g{SwaJ? z_mP1Wrt(~;@@2P<*1W~*@Tm<-b8uhIW@oYP#=^37I88%;mPc=J92L3tZ>=>RekD3`u=iZv!tHc|ebP*+j9lsp(zHQY zA^0;5zeml5-vOnrB7C(FUc9L^ouqzC)For8ZXF=jH z?L5Q&-Gwc-y#3>HT$@W97o_SwNXSMBE=}l#fXh}2Cq3Cyf%sC2_U}9_jPvOjMnJuY zR+bBfV^Fl;ClnmBauu-zGvqF8k3UN|Jh($pQX{u;Hd7@Y;<|{PW`$$7f9n$-*LC-+ z`$Ng==<_uCa%IhE;wHglsWsS4U3nt%s-_r}Ik9#Awslk&8djLa-#%F+oMX7u`|nU_GR@TP11 zg^p+I4RVBO!#~=9w|L(Ty#{k(We8=_?07xU&)NJh6mTKrlW50MF?O$=yXJJ#d&u3>7y`W@ea4OST2yJ7DHUEGN_9 z_XsNP-DAC6llwcL!8WShpQgeIC4ZyzP{jnfRkSp>b|@*BgJuH7+8HuVpJL7(ouD3z zTu7I)<2*SzgJka0n=>1nhBl`APoUq)TDm=j8AuIlCXhUSkUWn?kmTk-T2H1QLhj+H zL+HiT+MRB%JSu-Wr&&f`8RyjV>W_ug_ zW?6|%RJjs4&1NKhIXN>@d$@ZCKr+G(J*rm_5{Pc}VZ*9w4$$2Ovk;+PSAxZFD3tiieVT3Ga{Z zAvz7)EB7X9;gwqCMAQl>QuQ@pfbSj={))eHLc7k zN3$SA@DngS+tJ(lwR{I1wjy8-VmfL#71>SnCE|?KkIl|9wa($T7I}5#nE%hs4=e!0F{2Kd$_^%9PjlYJbYxm{HQ8znbTmfXn6!Z zIxf%Iy6tYXON;%>qyI!ASO)iTObeT@%T>HHqup5I6UpqhvJ+m)y7TjuugXpAYc+cO zOkBA`8pl3)yE_pl^A>hu@ww+)wddQEFifpVI06SBFGQc^H&`Bq9DWiD3p{b2T&M|u zza&(>yL9$PXP;$=IxIr34MuMWm`1Yh4x#xhwyCE$3t(N1-#SEuCQ-=?$?1)gX3!Ss zX9)(dDplpT287G*+gh&;M~{ZjR4P4bq@Q7kIg znabCJ`yDyS%{_4~x%7(kRCuNPO;0xH(W=JsaNPzxEl%^-nd$i__R%)0*GbV-U~@jK z+Uz%`H^$yEjd96Y>s*8Rfq?*5jMQ-e?uHXw5VRTQAEE&RGWX=D+4g;2EP3K+w9e?j zKv7A#F>Yg_Pgro?&ezHQrX?MnuKoK>h0vQ|k?Y27ch#$S@BX67w|yCB>GU;ajIOVr zr2oPC?uF7IL_WUoZUyp=L12LKZ(F3dunHsA4!#^o8nD#YL*{`d>nrNJ_UZ2DVqEg9bb9Z% zXCB~sIWMLq@u+X2?gN`b2BM zx&rPF%MCxj29^_O;0>Fv@c73XGU`IqcnB70SUUd67%LMcCeF>zoHFa0N#!)fN#jf9 zR>G)DL3na9G*T)#jaO0L?K|B)bl7&MCW+g>r=rz)3v7GClqx(V-)Yszb-D;fwm1GZ zP;GQ)RG#T^Wj6^~=amj0EOa>?gy0>9SOf3|2P!C2CYkRlTJ*<76)--KIh?M9ZWD3I zmb#3g=U0X^mzm*KBhUQVL#)QW`Mo@NJ1WdnQKhw$CUm}xOWm?@{`+gT_HH6u8B%gv z!4f>>_NU;dD~YV9>kitGBvnRd3&~Zb%s>hka)4AoT$?bWlkEazwm;HCOP+Pb5vic?We?MruvWfG@>4{KiA!+K_NI&#>JC+2#CYF6?i*a?@RfeYE= z#;F2v8T~+p7{j7{)?OE>U;B+DlC#&SxfFAZeb)}QWD_lsE)l)9Il`oN2naU91vt?x z`UGT+WAt@S6);p5>R^M0wt7fQ$b7f?9m@3=sf#9C1`Vm>&i*IuK*3vk+X@ZtS^S{o>?RYWDy-icy_4iPHD3C+89uhGjqjs9m^F5dzQueCpBz|`=l42{ zS>9ecl3acZF2sJwbO^`|4r0pY^Uf{gzCDby@;Taza679;T&* z^{b!VB8Q;{A!SjSr({bCB8XG#L1DqJERG6=8z_v}qrQh;fk=}&W0(!8QnLv$b@CEA zL&uAg*{;{Q>aO=!-ReAz2R9kf>1e-=2d6VAzamRwUmgjT*`)P;U21y|{Q|!p#jkYP z9e=!z-8hHy24eB|++|$=Gh|3tf;Ld*Ob43kH7z`vLrRL!rIR8|yX(c6U;wL!U4|kd zj6CufWfO7KF-}jJoi}1K>A`8(LEK0ljYCv{N>-DDqU?wIi>5j2TO(0^%m2HdlP9-^ zD{nvxSthAV-Z_*V`>=iJz8`62_Bg%e)bFG1;Adhon_G~eqSw}{u4*q>Y7@x>h&G>3BXXtBA&jSTyW#6(ZVA}7Nu{bYZM zbH3;KWELpYBDz?poUUqV0s;;6HdCU+`0!z?q%u>Lc%GX@a^9J@r60E&i}>&wu2ve0 z@Y$Zyx<93?nYpIU`mL2`xbx;` ?{)rYg%aN&w}ky;bH8!>#J4RhUvTAPlljI0=S zD_Kb{y2JjHJ5&W_v-3nEjxmq+eFAH#Xh~bACqge|y(zlaAf;{ zpRu{!p?0y_Q0FA(U4y%A3w$3TT7GtVxT{@SvQ~dhvHONafbW8Pc4ll(NkMkC1mGD& zG7V`|=&=<4D-%@5j`ZTtrH3y@pz)uNspzqd77$Yy+}>8?_Km}vLyhW>)bD$+4AKeio-A5X{I)hNvK!8rdzD)>%$7Z_v*UhzGxZ-b( z&O6uD{g6&h(OHP3qziv7|dp$sNTwqT9E7(%|3# za?~z8>BRT>UU=)83k1(^!xAwf;Lu}^M9m`opgHjEHjI72lj#}Ts{6hETFjV61oAI8 zQ~L7;ip*Hvz^lV3;wJ6J2bruX;P|qX&r{^1sOUus{+Z^}t$5G%5y1l6jf5XsJ6Ys; z3<`rk&YuPzvYC>TE0;GBX_!AG&n$bAjjk)OapHoD;V`PJxCoG|@zVGZyo>){gsk74 z4eT8?quMIk`1ae#3fh4&i;WR!oa7Df!!5#_0c0*-?*ivlmYkAMhyKhxQq!~W!+d-A zLfc7tTaIncS!5f^$#~lsYK2Nn2`qY(LoJ@81b(_<+d0UbwbJB z#!Xx=5?i>s-vh$TegAxD>f+?JyRq~zPRL+Uz0AX{r->@=Pzyc)7MI1TM3%M~ZI2;K z379DYn?YQcq*DFmkdsy7QKW{Unv~ZnH}t(@TL16}V~T^L+!3SOZLh|S}0c11#lw~y>hPXUn`R>6h1|E%bNERSYNSZ-vdEWuLD;JV9Ftg5MZ5T}g6 z@BJy$V2Mw9(GRNMHvziFwclXjk6L&uG#Ww=n0>{C&Ne z5F&qLIszE3;e!{X8IrjKFOT`*Wcq*gI_@I0=dbIsCWF|H(rwZ$36d5MU4+(o^eHp5L1^v3Qo!YHjztod|6wdQ_L%_I~1h z`{P;b?eREpx^Fyz(N$9+4#!1<*%U!mZLQcJu({ksXJtjQD&Bz%>V=QS#(+kKy^m`y zm0EK!(<3NgY+{8On^#Xq^VE}{&17L!^PI=|ikb*W|3`~hBr)1*!KuEtlH=C2zv4I7>J zyZ(FpErvtiA(q{siZ0@DUavRA*M-h;GUe!w!~95h?W~oOhru2Wb|39R1K1hdYR@@B ztQj^VS=hQiFG-3j;DE1w%9sqME{xzIbhp2r3aj;-D{(>$w}8-@9bKmPf<DMp5Z%B$_-ga0TQr@W)}EBl!|MbvqLr`?sA6Ts4;B&aBaUV z0)PH!`;3K6z6hnOcCncY%Mvo26k{@`)kt!5+kY7Jb}^bBrpC7C$u*9iAeH~ z;EtJ}R8Y~ivZZvbbu)H=L~tvHFK{*{mx{E(luRxva8`>sb$}Kwrp7fXnWDq;aY%<2 zbru%N*V4yfVD3B(Jv2w5niAxXCs8Ptu_Di4bh5IXdaA1HGWw{0R+zQn6%ip;bn^3hFqaT)gJ$&m*R&(;FRo z6vx>PFJ*c0rZp$HgwCfftm=)Q@Z%4kA^vTZR|r1U4&g6Ej~5NBd0F?HHbrrV5iFY& zGA)`(b)bP_Z;-j1Sgb=DhEo-8GD)4K$B=kt;I|@A^WGW``)v={WK!KOzBbnu-)@{c zm4s-T@Yg+1l@xmIcLvDW@Y2_=$^JBVpuy3b^C-+S=ZFmia$v^?eT06Uh`C!k&Qk2} znxQuBS{4c=y9QSW45~NN-#2!m%wtv<1fq^b+O<<;ZnfTuzuu}L#kH}uR?h>}T?I*>lgeDeU;5#6K9G#!^oA7c_CG&)cDYUjl<+@Hr% z-mWd4nvXTq%F?bjIuC2d%G}>#!_e(d-JZw4CX>fZc-Puo_Ukpik={L)w1C!A=Gvr( z58>%Np29-zq4pyzyll8*mM+S%vi^;?dpQ|?J*>U|%c?irOx<Pn$nqNl)5B)aW#K zZ_X?3|6`-kOV*mgzMx(;d(f8#pXmaZVI>~52Ta*w*}!8psL@E|rDps2_|hEeNewzUI;gOMHY$owen?pP7VuIZg|GwDH!b)t6Dx zb#=L}oD_Y{HP946nNhow)rDhTp6<&D4syZIGQ4bRs)E(qCM7$!o7W*!3bk&kgdwpE zw*LqA`4c&t{FYy9c^@P8PmI)xub)bQz0ckZY0byc)#ieV@md%TOITbXuSAr3cZD*MyNr2F9pm zSunef9I-H!R$(Nd-!y^}dkH9>bzY87v!~X_mn(v96heh|3MXIfE(%BNB2Ugr=3DX< zTDy6L@CunyWYl4CFm9J*4>W^K1sj?K+hqL~H(a5O+MV;3Gw`_2q z4!433FQ;glDcNLcX&o@m_k1!lua*-N*y+Y7umVa~|Kp|DdeIo#%5&qW&!$QH-7XK@ zye=pL?~!hL*;|RA2@sME7{58px9t%$nVAZlEa%<3ngJM}Y{`^A9?-7{+ZcA|-L z=``wNMJW&ThMlQa$|Kys!NYSrF5!9XP&{u1jc z-fO56LYWqtHM>f9m2+f4j?m1eup&g`&moQYrdl~olmuOlI@6t~^lxPv%*wW{k_IeT z5_7k%SXJO?w7HxhQ~af?q6?xJloti$yuEu|2UoY zyYibq;oP%%lRh`}VvvW1=}Q_0;}KDi1BOzL)cbA$tNOWuZPQRO$d9l}0%(Kal%3E+ zbW?svjPv=4c=fj!{?uY~wZelJEfEu;8=!`U(o`X!o!uy0wV z1B=U^Yy(a9#Laly)lygg5=e>D9(=8sD#|i}2Dz^pP-Sq`yt3YIX_m>hgd#QA!)d~^ zNVDMz=tQ(=Mh+Q$33U{tWES+sL99bTy?`mdQ@`0P>3L8g{s2=VJs*!=*MD6z()WQv zcP7bnk;TyP!pWq?&_B0lOf06x&=xo+pX9YxtJbU~IEv&@2SXSeS*L(Uow8EP&j#1Y zwSQ~SPtAeO_+gmxZvdr&s0GV5IZXtnkh~x| zjD(9`uCBm~L+=1J`PUH{H! zoV~*?ApIHcn}L=5@>)|63?lMVUQa_>RWerUuSWfrh z%Q{OZV0EAhOoKT3qepwh+f(f#&9Po@9BFLdLMyq(diT{><(^jEsM+ig363?}~EpSocz=Au#cdulKHdHBR%(87ASovf;z}=g?@u zo%ho=y^P!!pVyvNp`X>zSU2e7YS>rDxM6>gGuKZtDXAX^d4WltQsK0iwc9$GH9%$` zX5=S2#{`sRW_Hv))8%o-H2%T4uDvq56?tWHnc3-!d2!R#&k|+K$2lKL7jhOhaS6~S zsYHyquSV=px7&+G?-XWeH^6_@HQsjLZz-PY7z~_lAiiFH9`B=R+1_CVw!6aeHPVgL zT`NtOuR!E}gP-T?6yA~4CRW{E63#O1jH<{cgvad`$l`!H`G~pCc8!M4FgqTb?(lzH zDkkKm1a||kMvSpmBL*z(;%3-{JKe2tF$>NyNo?I*GkXzji+p8%C~6BhjVaj?x~l&R zzJ?zoP55>?vLh=JS~@4VL$Ts7WVz0P2Eo|lP=YMTu8@%wF6=7^&iUCf&Owh3yWF=_ z1#9D>r~2JDFs?Tvs0&V-^P8a`j(#JfcA7WIn6J zh4$%U*ZTXzCFyBoIe>Hsyq|BfgNfe5*e;kGsd&ZWa(1#vQRY@wn#B~ zl|4V))w{D!BWqUIXlVUQZ-LeQoweqwl5(mVJ$f&OsWpGYAm%CYAhO9|0>2*ZNYYf@ zyL~W1dO@XE-j_X=GXU`B=7%At@Maknau=oYRqaC$GZT-&O%vA*CMQXfEe}M+pxHg3 z_@ETIO#t#v5$Avu7K+vyqb$w^z-3nU^1!o>K!P*n1^p9HC?jc*N^_&InxclMeWZ-I zrQKYwcbOi`oz1m)y7|ar{hQzIuA^<9$ zSK3g)u?Q5zhrubl1pL|enXiH4P5Gsi0rN+rQ0R6+H}_5Y7+>9o>fy|oDHmR_bib;t z@^|&fx&YSZv{ufAfKnJJ+nTSXY%LTFx7NY0#v2YE%{y&hwP8Q_O&=~0o8mt{?m`^% zJ>Hoba#_c?Odws}-h9)Yqt)QyN`o1O`f3q#ZCK;{_tN$2b|K(n0xaUBJ^E>zMUUco zj@Dnv*_An9%`h|;+R=tGe57vf1TvR)E|)tU87?Sob~lGM{q(#BW~ON-=XZyRy~D2$ zC&k0^KUt$&T=sZ$*jI@vR%CDUuDeMBX4P|&--xW_ZAPOX4EvFb#Q0PfPP5Gw4T3jV zLA`!!=lF!Gsgha`TjD_2AANW4M&Fh_(gUBR?U7cS{rL6249NP=GHtJeprBtzv-#C2 z2l%dolkDj2Rqg!s=6{8H3($JyQo4?!Fz=0#q~GWCxmZQEjG5DhmW+^G zQ#%rF94qBE(VNnY_D5r!@l}aYZ8$#?q-65GUuwSp^8UT?ecb4m?EtAIqB-=}XGYoP z9}(~Xr{!3AkQJ4L7FTX~>&;Ph>1ZFBv;;M(R@{$Z{dS?2V`qARkVk9EZZn%#PL^ii z7$2a~P;pDbMjs>bPp`s0fw_99D4?^J>e@u4rlIN=s$s!0=QIu1Ck|Z@{_wT25;T(q z?Xtm&sAo~P{2FrIlY0g+{cPS$O4M`D`c5SsM$EK5FMMx)WwUssmsEV(yH&UJK z&&pb9t!U}m@1Met#H@RF59BQWr|$SXAoc8Msiw(p@Zs>9xv4?E)oHG{byBXZy&v;^ zUp9(dRJ7mW5?gW9bT^5zuSMW3MId%sj!@&br=%K-?m4?%>RBU#?NN8r5ZUNnpNWBb1oq`L+9uapajBfbX z%igTSnkX7d!tXfmi=1U&;&jXUJ$lQ&piIY?r0+N#uDAztL6Qnza^wT= zbZN_q-Lo$3B$(y#cJUEO?XL2+{IrxIeB9xytMvY>%XGf06PH&K#@Ubeln=-kWxmbj z1mtbhz+7N9FpCq3yki2({E;VtKR&$VfM%B-7Md0%-)H>3nfdaJ%OeZ zcyaB89@mw3cm);npn>YuAj~)vhS@p-GO7O)h%tB04RG3EliK05+SDt}$MRq^D4%5< zC||%HGmoDD8YgNIw*>OTXw$^WSD`XC*rnhV@Ikvns`R1C`V|C|%sgKM{S9ydkvJ9! z2`HJP3PF)bX{meWJdj0lgSG}c)4V#50zy%tgTJ-#O(k3JjV@`MGFvBiPn30xb6Dt*`sFVPN~n2 z2FkNCc=&WAema7Fy5^4I>|uvLE7zH2PS?6gS(@1!o*aTJ-n2}MN9$sX(+%#zijg26 zQqFJS$^{3+qb{bFp__TJs^HW^nif*__R{*llD!GWUNDc?TqD_xG-bm^p+q6QFv+Kq z@<3y8abtiiFU|E97khI{`8RV)OLKC|%X9J7i+cb$W^MmR!XY6C;`KbHhFQnNO3+Fb zKulaj3mrkp&G(AcK`96}-W!y7UTN5a;Kk`?7V%}GQ?XrYQv_&Gx1N4LJNPn(fZ#1| z-dj)vL1U({`Bz!@~5j`+jsNjnbVi7xo_v% z>!(?!-SRNI{y9?9z3|}I+iv~3dto=JCRfOZqBAVz!dZS0S6bu6^=$V*!TjKfY9+<-(QXhM zgdbM$b3R)a=fiH0e4pA4Vzv3=-5_w9pXBIrajy`@8ul22&_7WKCUM80L8*GxdLp%n zjr3Yh18j;Ub$B$9d<)lk`n174dBMyrj$3YAzcy!hTBIewaV2*(b}VY1+AwcR`OJH- zY|LO^y!mcT)q?BBH%!>RLw#SMEF(QX0S|FwE9F# zTtpjx9cE>-Epm{|%->>RbF6YDndv8o$CC{+5hhlPvmhTVr8)u1 z=~8m6yb>uZ_d!Nd8cIxu$XU|?mr;UXI?F?1(1t;%R0Qve22GBkh}sjhI}TdhUVcak zTFoLmWHMr=142ngDt9Z51eJEFWC)njT1U6u!DJR)%uE4~pzg=@b6Pt`6U8!e!Kw1m zTU&3xWb})j&pg9!xqSXxYcDua&V0ZgTRDH?{7m^6NjJ!UBW)V4ZR{S}qZQysaW?*L zkcaPVd7J~#Lolxnq>*Dfe$*t|Ps@_ooPk>_WYPW7EsUs#NK&9XYB@pKEe&5{ax*=^ zaTDE2+pVGRXm_+DzMGbjT-b)Lp-tZBLvkXspS)qw9Z%l4@b=-0rgm;v*xtE;J9)#i zH!ZyJM;n*6&AR!DsaM^iU>h(I?h$S)&2vU7qoSRGqA@H9kb&q!F9X*y*^Nh|fck0B}I7Lz*)`p)fd0H1Zv7k@4fn)2*aKeyUY|okUU3 zO>7YI=TVH8sZ*_xU7$O~>8{({pr}7CrP+F=JYYkb9ybkpkqxG7#1FAp(-i%QG-?JT zZyd3tI`-YO2b!@P;bWzikq0No?O=HJ4PFye} zFnV- z;9jzB)~$CfzH+6ww&^x@PV=ZsCykrH*O%Totf9WX`Lb#43tfiJORl-uPsc#E@wwa# z+E}{~w=#~pcB03nhBb^Q#bb|s~G_o~t>aU?TJz(G4Uez`$Ty|-Db$fg8 z?uk>kG{}BoYu}cptD-p>HFKKT^=CRZP8wTx8QpL8RR4PJQ(k5)OgST(g54SwA<9a% z1uNq=tdQ#!C_zbMQWv`E_CBAom{RamK81g-WYG8Q;yM>(H-^Jdrn)iv;=FI7FscrFg2oDggT_HDGV!0vyr{^zWde@ zw(Zze>yPxEZsI179aUrY{puO+(up%S(q3SgZw8?r{L@k<;f>tAF^b1 zuU@J2oy6gS1O+bWz~6e6>wJa8ai=J35Nks;A%^xR@`73*P*H^9RcDGF)N3T}$0pp( zzc{M?%t`hTwL`mDp4%+g=-ON}qclFJ^K^#U`GHkc_rR*E`@g!Xx@-Q+tL}Sg!K>Hr zJUsILbyq)h$Tmgo%9%915D^7`@e#({J2%l)V2cZGKZL`~5%Y2XKB zwO7yV4u_>Q0o2wR3dPb~D2X(?9#I+TULX-BC%On7g>Z;zb@&Tf4g7*uL0z!BDXK=Y z)I_0z$0Y!X2dU|krKYQZSnHI;>vf{W243aV;l{`R_JtDAIc%bbZn-h_2wi5o34%Er z9^r#7r^AD7k$B{oL%c?-)0;erT9BR>^d_^->GmYofh334?uZ%ET(rg4l}1%r6zrlA zJHN0BPnANi00(LP5d;p>2pZz35?x9Y1Gc)u^LGYCuQBprgSM z=xDeac^1Y>c2!8(F`6EZxp3lU3ccOhqRLD&%_q8TR(fhv<4VJE$q$~=;WvP%%rQ~G z$12<*tqb5#z-V?A zS`ddc7qac#pj2p7Fj{h9Iv&&rc7rEd>G+j0GC>P14k@21X0ZoNswopuh+>3TE*2%knnYr(3jyu(j?xkPf$kIckj#9zvnI=jLqopCsk; z9vZfXmrtHE7P=ir8P9ypOgf$`nY%A$JmSzGcC;ZfErl(dm5|C+-%To#V<^TdBVd9x z+9g|qvJ^cq$g|eFIAy)->@k1dyt#1N@Ro~Q|ME6RYinE=TmVaE-@C_x(O|Uw7*^Gy z)4(4f4|6p0DGw2yJX5D zP4BX%;g$s_9>MLI(y*(_WOc?{x}_`^xIB%PP?zU*psUl9bQ)3k30+)IR8kcCkW@Da zut)1ge(#qX=3n;F084I|K6=ch(_2PQ=Z|H~s&8Mls(r#z!#DLRQ~uAp^=*^t>Mw1h zc|x2GMeXPoba(;l4QNZ^7Nqfm6Mv_1mx&_b zm>{yUo;ZkWU7*eOX5%w>H{nKzM^`KH& zLXgn}Xbs3(%7+xMSPePLlQ+HNW;-urdxc(%qzZkIcOlkyA*3-~nOVi9N{EOpgHmxm zXtcKwEJqf^j3u}UP8zhYfXa@Phhi6iOFfFHPBp**J zcV&{II3`me_zlGNzaZL?El3Ll|5~&ooag5t9?46V9jQye9%()TAE(gT^gl`~!XTeR z>x-m)9Xe%|SYee?gGuJC^TPC|1rxg%{&n=~RsVY~e>dPRSk(g$B3$vmD(&-ub{FHr z_4RL~9&3Hhu#}<4K!V~0n_#jS>14qsCSjW!oi;pOC`e#Q9lq6jWlq4*$>QewELAD6!yCSsh$;tk7x(e)p!YN~ zQ&Zg2l!W?PLG0jQ6XklU?I(BIEB5@9K1k=$XYns z(vOJgHd|MgEfd~)@yI>Lau%yCGs~OoNu^9IN9yQPJDfGiaCtr_mjKM;d@f(}^Q*pm zmRKI9sCn|MtE?aIIPp9M&YJ@+bv4^Lk)6K&^wYcLe;i%GcJ}>E#n9{fY9h6Nh^quK zyq=lK991m{0xJ#RDv6OG?!pj<1tk-P>{q5jS(^1PL0OV`T!Apu(DvsDo(_-F-Hq0I zcr`hO=bx{sZAf`Vu(B!?u2!In2e6t*>cBr4!imgD74;`Icq9e$hUU!|AN41Ip@eON z!+w}06ekMiF5*NLpv6dm6jhiCDXK_Cis~{8KBdF{;=!VDE?*EZicE*R`$DKue5I0$ z|IdsAS5qzwd^H74=E@6=g#DRfPR|-k@p;Bll4>laNnuX zADF!li`e4S7ETFTTiOH*;SIw%&0r3&zS{!knc zL}e_l`xhDMNLWrYE_wtkiclE6D7!x9fX}*vB@HsXqh-)>#x@z2_inXrns2Ie) zA*01jGSYp;nDwcvmi|(^<2k}x?CHk5kkVr2!~~wQ)DsDF6yY8D8VG5u#F=Q9b*ezn zMS+E{PoFivn+Q8!zWqS^k&amly5(=~Idm_XT3Tvv9mD?Vrbm&VN7p}$+?~|2jWCn{ zwB>GM{l(hZ@AfmTf82Dp{Kc=<&t6pTt6`Wob$`vdx7!i{>x>aaWOKFyR%espPz7G z-@*Vjw^evBA9#?Ct6UfS8SDS0d9w2vSLFS9br0wNxB@VLO&(T?&rj=n1&l|PA9HO2ly zSPD7%??-mMe}ZGbBF!9kcQbX&AJmc6g_V^=a98+CZA7C_YoW2R3t|WQq(a-kv$&M)zzO7?I-3|h8+j)+(oR%Gs8G+Sx(=y> zap&gYvm@+X+H8LW&0Dpj%jznrqEnsqgW+>zvoqo#5LC9)-f7%8K8)B=i-#vZYjDtUv!GP^Y7(tn1lDfdo#FOta%|EXeAVSCdUb&F-v_N3$uMfBf=F%B+%UVBSARYSpX)aajk^RmFLfepp;!qSr>zABGs|t`2NDiWqyP#($LNMU;EmSgp?e-9cFCDWpZoS5Criqh>>{Q5MgYS!+&q)#4Fn)eyO2cw&p81b zullZis@(yb)v6~}9HqLki_*>? zu?b1Mjz11@FwkTmnej!Dg2FiPq>tTT$(+Ao+kMUl_FZ?cedJ3^Z|f@STh2doKixFE z`AD$+m)ES^)4pWZlozJC4SgT6+f-P}kH~n(m<_vt=X2-GT$~I~xoPRz>+e}GarUy6 zQ|6d2QIRSM)6w@8#YQb>Zf9a1bGH%PQjYbd2vbEUn{wxGQPu!@h$pSjITiLzBJ@V zztadI;QY1`%1UYHykjJDTFUOTr3OH zvbhg4dLup+vB(a*z~Z?hCU_lDrN;-i2#GpJ%uu1UE*tT|7XKulQU(j(#4sf3YL#EKZMp|Zy`Xp+tf+|Lv3wT=iN^}$?5I$)cONCM67*W7Njz)bR4^Lf# z3JT9TBV5+9Bhh2s)1ODs^KU+;IG^eoIeSdK_t?RBqlw0bRQJ9hx+qR5#1*}kP8|hT zGWpuBDlrN#sbtGCm(8ijS|>9<5?4vmMRplCD{RrvbmxjHqa|7-3e;cl3fmCV=b zQ{fQuvw}Vi70ZLJAVt{$0sCO~`II5JNm*BcJHt{Yl^A-#I??DQM8_l+AxxL0;wU3o z%oRt8Nai&;_8>X33qCgFv`J5X)+1W@gk!3r~e>%7@QNy}^P|oKvuCxF0VU`wUVbo#v%NI`yf0^16(C zwl@jO@`Bs)(7>k#JQbI}7EK9y%H4o_7LZonl%RF&KTm5n(3+F`&k&21z4M^6?oeZ_ z6!fx|L?1^ofBlGGnS$nmR5TYR(dl`<4O3`{{5DUx7Wq zF)U+NCXK<1=AbocFx~!f>0YzC9=<%)xUNeYmw%i(uA<~|N&azgmVF6K!dAQFn|Q&I zrk-f22j2bPG1*e{Fn{oD<5gX7P(BtiRm_?sPGVhB^oFG%ZO%wij!-fa@v(3|BlUi+ z#M3~92&%;7e#IGWnV7yk}8wV%I2qKgW-4e_n7i}Q~V-wvW`T%0(spvuyf%c?x3PvDj#&>2X zc4)sie*DMkCT+G@eSSFHJ~t(Ghbcb%?GJa5XgA16?a_n0K+}XnwVAX zwelc}pBvfyoK|mkx=1FStX5?scfJ!obz%SUL1N~t8MNy|t2{-*gQ!-H+Bi6xB8-66 znWi*%5T`1YK;Ws(H-EWv>os?@Kdqc>FPX)fE?uzp=L>eWEnWBef?3->y#B~NO#j}d z=RacMOn$KG5SzW{YWDHkJKmSCs=f8y8y~(}iDN0=D%d0JXL#*f5LYuVfVi6VKZ3ZL zqTM4k=qfsy6u_&0grp)B_^OZ=kMof~U#t9iOXMYGjVcAB zxTmOROV*+Rvm?N8{N} zCKadojubwIRWN-)Pwl|g|F0}D+S+Qeg4(i z`2GXn{vsQ^0KWe_Cyu7Z_wV|DhVRdP3%>t?8B0^(`%m88Ap5l=vigpm3-I3@ru#4z znL_GD5zTI8V!5ocGF1q3CnJUSag1nGGyi*tL&e0Fe{&OJkzz*+b80{Q^VVsPYxtWRCRGa|GoE}mDMR4PYq{|3} zy7eX-mNE5O1#Ahy1CsWP96#|p+NzXZA?hmdxqxQFDdbiLybQ*Z=MLg#%k+$-b!`)c z4@etm1Wwv`nO^__CR0zG*s!{L?kl9^dG2SHzBSjdIkvt}=CWHYXSO~gf3dHVWc_{5 zdvwDHTeh2Mk1SU=V{VjVpY${QoVLCHi07=IX%28NGxy_%^wG`p1^LW~eBx!T# zB3G9oJ(I3`nX&VTk&5y_^yvsH(ZzUj=&D5(LQaU~cFCL^Vqb7YD-m}mR<$tHzVl~+ z#@}wn^6hfrS!Ffrj$am!=p7t>bFGP|tU=U$_xg4B(h_cyj+StDeQ*7JNkO<*UCZLs zUcC8?j&Xq2Y&)kL4_Z`u=rwEDk2LBZ(ZA7raS?x`c~qPDo883xfa_>S$GzPmlJz^@xpG~H5(Fc-A z8Wg-Ssz7|fRCT3!=uF+ccUkU{PEBoIX#@A!Wsipom#nER$SxbFjA1#qh3plo;Jb@4 zhwau5d^dZ%+u&k~LHhXh1~yUghq)e5O@l_e{5AUB!ya13J+mFT_8&Mdhhf)p#?%OXFxFy%)UGY&Z-W`tFyi1tt% zhYR?ENJkb@)}5vdBWHk15Ie^>9&wv-(Ldu{t`(k-hh!O?t79I-&&soS%OY<%6Xh*F zhY8mKvcf78z|>PZ6Fe3THi`z9?ouGbRIZ?rwm4h}HGK}}3(q45(w5-dAdwUf5)Z^` zcgP>HB~(6H%!u>RhjO|o;K6K-?9YTHo1XEyVMz1Z{*F%S_=qxj7K|Rxl6> zbqf?bPkm9Fn7fVCIH@lxDzCcY=Lju@v#byIT@fq3PP`6Ht zmqbrk($N@*_Q`6FOX-H*uH1Bls-$f`LBy^UvqR{X_4vImL!ytisq*i?Q#^OJP0Z{O zB$lFZfb-@v5#5Z%7d82DBFv-Jrr;8WYgNGd0@N7_Jw7Z^2aasr}7^wBk@zo zVdHi_)qj30|Kg=Ku5y)cFg~oZEMFn>Ux8??=rB(Ti*7KCb6w}MRzF@|OqX3A$s33P zLokT8aVjLGLYTOd6VpW=+n@3dF%501p`lhl!6X5q)>G@cckIXJ9h@m+cHk!ep(`tk zE1}IZru8IAmr1ha0TL|-=p@+eF1lsK+N&nPWVwAWmQUe%2<=m$Dl$wb8|30v*}KN) zlgzupD;qrHx-^hW^2YC}3LkG<9v!Xb*d=lq)jYdUW!XY?8ZJ{qFhQQ>W?@y6R_++a zVfO*$%wRWP=(BQ2j>vG!<^(-E&wWB3Z@>{@eDpKCz5rDJLSS80Tral69~DTmJc^{Q zn0=JkEQBp3_Nqi(HnulvVSAy&Fd!KN5?a;@acu{fuU(qfeI|v?v^U9OpJMrTx2)eX z5Ptm@oDpfi7S6eu_^bQmqR;`8)VUz~Or$06M*44nq&cvGz@D^jWdRGu+XC~xJhgBm z35?MF+@x!`o(oLN;x;SPJeTr;`r&(n7q-%omBCV;4ec-7WNb^jEi6o_v;We< zE$m80%of&s!*om=m1aXyswnE1_YwPPBo2m{XOt@%R<#&%Mbn_<3{f&1<18jn$q7`l z1QZZh`)7M2*=$yinvy0D%S=tuklc7-{0s_qiAIw!sf2|%7-Yi|Jh?1TDQtcn*ke;& zn*E@eet5X?82z9ka5OCGU3K!0NqXEQmL}?uz|GFlh;uaJ7C^vAYNt27c=Y+NYq;Jc z!>{C1OWolvV8(>trPK@GO<)YXP416s+qtz!ZYMt#yP=&sa88M103Qed00000(fime00000*U^f}{}=uC2V@4{00ICA00IC200000 zc-muNWME*w{r3`()c-I3uZlf|A%#Jd0U5jj0HFH^M*si-c-n1~PiPZC7{%ZG*-elj z;-z4T5Jiee2_cAtutE3wGQP4-y~2P#j)q>vEuBLna7eg%!o1LX@l18ihB}RHQNknYgxth;b=`bXF_BdT zL|Bthw|V{$E~q-j^<+q~vnL;~-qVHHOj-+b?{S}!!r2kJVB+Zy#8C*_tHcAB^; z@6qET_oJuQdpoA$Vu-%y{ILo`j#}R^RoxNPx!v? zf;(v*+bsMX`mj0lRRw2NjsF3zmFyuBw%_GB54#;Sct5C@^kj{` zc1Z`BKZ951?EnA(c-muNV9-H=F$`@CHyCFzX)x_!y2H%J?7&>ZyoLDz^FJ0177Lae ztTL==te4o#*gDw0uuHJ7;1J=6<5a^`6g`iRr>&Ks zi>9)g71jhOw6wOYY^<0X79`kqP2rUiDIkxkb?xsku1x$Rrs~Fp8#n$I&s;8_0YPJ4 z=FOS8bMM@H=F9+Cbs`AD2`vH68lc$0I!8Smz>4!oaS-pEg5nT%obQUmhy`55F46&` z_y*ntii&UIAaJdC39;ac;$`P;Fs}F(vY`)(Z{vOFhvEpb;f~@cO!%YXJ6H>UR(uzm z;a`fcvFb(@e?i*q$N!3md#v~yqHeW^e+ChAyLgNi+PFdob<}WoUpmr zj=eJ)-8VOKUW-NDWjB9}^9p17^s$OI1C`r5 zP-lNmR2B7?xvn7=tB0nvnt0eZ{6DmTEkGH}+|(X`Y7srG=k9m$u?AxzAyP-(q)Hc{leac;6U%HSz;Co@lN|%4zS8 z4C}Nx)`SDAT~EF2zMZMHFHh8zom!DUQBzyh;{U^IH0x#f``6$^Dj6yzBQL>;o_2|S zTWZ-6+cs;+@U`gu`!()PsLGcrI`pgyCqw2-c*&VMZ8p!wZxmoNvj6}9c-n2zS8&Wx z6vy%JNjAI5ruSa-&i?I}RqOcN846(!! zPXdV~kxUAyq>)YrnPibo4!Pu!PXQh1NGCeeg|2i9&FVoq0yD##PR6mTSD>twc+V#7dmROM)ayk|axt zq)M8kO9tmS&m}H%n+sgz4x2e4ncU!}WJxwVBu8>3Px7U}?5%5V^l1jVf!z|U_uFi? zazmF*sj^#Fs(bE|cJZ@tiTE90KsHv`M@);%F zW9amlDuRKAzrpD#YuDp8{t;4F+Lew!cuAwRc-lqIu@b>R5P;#koLoYJNREOr6NTzL z1@0P+Q6)3RV^Gp4c@fPL|}&~uQvxii5d=IO8f++5|}p@#6SLx2!ZhY%4=9qNd%{{x4H+Z8gJK9Y34~=42nvGMOoF^`0X7081BWmRgIWLtAO(*c z2Ze78f=fSlWnyLq8wceV*tU$XVW^#;qKeyZQ}QSfHVz;ZhTSs}!NvjDGv5cY|Nl=* zDl%poG-(Gb98iBxWta+fbTAT*nJ8pP49GzqPKe}MwXrGg&_t&7xP8Gm^wVKH@8s+A zoxG22lZ?dW`wTUxurrB@N}?|`yVi9=L85}9f{4;qlx13i6%5}RQB#W?#2iGW*m&n& zXeu^oEjX|-F{AwOi!1vRhr=%$CaJ|kypRk3@Lk&{{xMV;D*FA!Ox)c;^wpU7TwAEd zF&3@BZRjx?=uuCDXwLuHyNeK_;0dxJ5ZXtAN+pFL$;%I(P-;}%(^6AvM)~bQ-Q+2_ zjgZZU=}}7wFD1f5{MdgxBlo_)D$RhbmFC{Gie*Y5G%|@sqLFAz-B1xtD-!?-o?Jh` zZ?i`oVr0)qj06cmLRut@B1Hic48#u18MO>^ds7$v&&93ccDdc|{zdOlRU?yrCtA_h zS`Ro&cu^^A`=+b z%g+%BkIV1jak+jRK8_z}NLS`)h()|Bt(Nc%boLV@l^v*{0)V=|Pgwz#`G30q{~&}A zLPGZDBpkhJ+4sRWzWbO}g;kAMWvibxE#sCMucsY{|9@{kn08J86oB5hMIq1bs7AbO z4`U*g77RJv8%w|0fS9$_;rrStghl9P#D3G2y2Y<=k5JVF_@cdT=|7|%wOEFt<0wL! z*=&l`PdE<#zxHN!E9Ku4l49DCG_$EUj#EI)2$&&P-Sb|LRJCZ0Tn5B|f990@a*jSN zC%gqZggv4N>mtPo^FEC4|Cwr){%Vk7VJs=lj`Lh=a>|X1&ba8}3zB;eRn>;wg$C5! zASrZ{)BvOm08t|VawMghM#BgIMGnRu<;1~`$>%ibAaCyL@Ik7YP3oCW$pFz3(Hw~L#A9^tyJHXkSm=z!=5 z)W&ubUw+yShB#sr{@(`96cw{Cl5w`qIp zxEcU6F&=@!alu>~)M~pR8{E^j-aj`MuN?UAAgd zgP>!2Rn^t?mUz0YX-l{UL+<^wdRSNW-oCvUL1<3$sIw}`q^h=lTc7&c>`s2NHY(em zyq9M{Z13JzW5esJIxrxv{_eB-sq8zEcj(bzF2`+Kh2#{gZv(kphbjfQqKb_DI>?u4 z5`_q)dBlk%?!|3R|F0Tu;9gV}RTeS2^yo8S$cQl$rp&CYZEWrA9UPsUUEDo9y}VPv zz@4ftSD=;4Scedb4}<3a99i zloVxiO`eKt%B{+gjL#F)=v0jxB`D1aR-ee+*K^O_(#-V1Z33AaPv5`M?o@l*XM)^Q ziMzBHWYn6p>2Rl>Sk@`mnNkQstb}lPIz~m6RvRB88hmmz3)9b%^1=y5$%N+VQo~edB}mH1&{UCUs-eVG*Tbf^pv0tg4dz{Gbj}0A z9$C)>00zBq&5#dX8TZ9o3w~HxYJ%=9Gg$v{;Fy5iYJXabO}tVM>)5(L%@{1e5?sLz ze26dkvk`w1K=zYB5=4SY2ni)&B%DN$ND@V$B$~vKSQ1C#NdieENhFz|0MGzw02lx) zKso>p01rR_AOd6nkO0U46aXp!4S){70LTPj0%QTO0N4N=04_i_Kp8+2X(lbCm9&v| z(m^^&7wINFq?h!OelkD?$q*SPBV?3l$QT(XlVplalLKUi%#sCIge6#p6*vfo;4mD4 zqi_t4!wEPEr{FZ4fwOQ9&cg**g*DiKP1u5qa0x)aunn*y%PznbSsnp=3Gf);3BWUe z=K!w&z5)0a;5&ft0U-2)rq--Qt2XUVXndHn7s^2~f1#X=bMB&8kWg;9`yf;(PhPy+ zK8i&N<)>J*Pyr@TkYFJ*)x(4e7b>2=WTZ-$Av5K0m8alXC{YoAh<1rYrTmq#(#2di zdi3hkpARb5CDgDHqsEMzFlowkno(?&#+Y%FX-cRStJbW?RmBZ%-MRO`qXd61_Ltap zIlq?Z7k|I;$KRTflu`Utg4GizlZMHo*@-J$Do+3a000000001di4Fh&0000000000 zzDhR$;{l6~2DYG8VAITo37kN|lKHWWf)`s6a^xzcW_T@cpC6#wu6RlWS`hW>NgJQ% zh?(4=L3H#6_|>P@&@CMqz!(Zq?_5XF$wMRp!;A0(VkFB@z8^q1qO6ravVtbh@dIVV@BYogZdn_xnHmq^b52dUm%Bp(C9eqRZnt3|917_pEQQocF)Fwv2c?r7zo z6LIXksq}JGQHs>~NHeLl=dzF-$Wf{)=d=>dNkyroT*EMRvvY16A3^II|Bn!zmXczX zFY%AWE4S~mb~)#A-{y`iSD7a5YWgK%T(v+y%2}1)^3D4uf+RBYLC4wG#4#@KdP1xO2JoCy*O2d(@dG2 zQZV;LRE+y?vU-Va%-sX-&U81Qe0p=s+ND6LAnV+&j^klKb%j}r%3&%I=1lSKX-5E9 z(~wV|x#Wsn+H*=I$5vBcX21QK>+*5~ ze+4s!F){VTMRoc9ULGUU_G?JCz|Jd!TxRTiO4EnW5)mrr{li#wzifZ;p7d5{V^KOCgcUO&Y26abJ6J{IdPX zs>qosaNUH|C&bmEw12dX&s4;r_c^y>=zpye0aJ+xV5)^ffOMh? zF9i@BJQ{|W2elCYh?OprUCPZ5)jpz^g+7_{1!zNzwN8)u!`!B<_u&<>lS4!%A`&6S zk)SuCUSV0}d&v_vFEB#%Ic7YXAS{Rg^V=9ga#PVnR5oHrv4-lW{~+ERAHMt~JF*Bh z!ej7UG*ri|XhM2Q`bmclgQo;AhU2W*Z^9U+)(HNCGcCQo%o4AlM?Yo5WozlPi?xXolr@L6l@g z)pP@xi`eB^rW!?79fx%M|NEA8^gH6Zb3B(K%nL?$}8JWy1 z7MsJ(&dJTo2Tf@2>>eJUSzK6JSw499=#gW`Po6k+`t1307uHs{HZNWR$=ekRU)Ib^ z#qX;`AlD?QFF*#8A1U!LQ1ynouoMIUI{Z~ZQ|s8y?xQcCJ%9XU9dzg@=&OfszxfuV zxb*_m($n1A)ju%UH>v^6nLaQDI(A%!QUHbk0Jd5HxsuQjS!|kFs>A|z`3e*&629(A zIg}}v!@{&wJPbTMExgt4;Pd)9dFUGY@xlm4hBN=fhC1nGo_j|68F^x$H~BWg$TJ2@ zfg?-j)V3*DLq|W#H?ljld(vs-IYYHNTAg-~3nCo6xu3Hz z5Cm(Tz#uCxn`uHrZ3vmrayp$*UasL$N2lo97uwQjda=PnMN^`TyqkdzZ9qLtj*Iea zSgwxpoIa0-{XJJ(S1TH2Cu_7?r^Y2T70||l631dnjZ%v?;BKH7`_d`(2%>mVM7e{~ zY@NAPC+eVWDymZxP1Y)*4XKM}yUeY0F6z=XrRi!m_(l^lGE8|Ug=I_k>ZwN~2VgfiR6 zE3W}^nyT|Os^$Tji*@Rr6)gurso`npf$185$?E2{(YZuCwL8)^`=y8UGHgPlXk;=G z%XTGNJ5f!u*a3A49J&h1Lub-ZAjIo4G%9e^fuhOBraD3iY{}Esynow(cB0+}UJ}*u zIL3`2xaXS+Y}u>sBarJLvjPA4fd1p?tENEN;{Z2#?xJNKst1%Or$jGPIVak=OgvYz zVSzgtNkpy;)1oZL;)cAc);KwMPOIl+y>?Xew3oR{T`i>LF`?Gs5DHjUFH}*nYw;*t zfG_3O9nGN!%B|U0*D&1Rtuk0|hmYRkqDZur9YfpE;h<1kIhLnMWwq`nmt)Lz|DLK* zC}g9RmUE4*p+<(@>cmI-G0&LMLUPR8)8V~xw%oQ5$-$@$%RbEDb!M%z2Xk5KJ;6v` z@Z~LTSL)R0|FiM?VNypfZ8YZ;zYWWs3RInb!j;n@wH9+FRcJKm@uX0%Il=@uyd%{T zNPBcJ4y4Vs>{~!1j-~cazEgR;2Tsz2)Vfs;kzfj*NiDDuFS>*6fx|mP>UfmiN^vX% z2H+wd=~+Pb+-L8s#Q|`Vl9JoB&V@j%8)0W7sS`C?QO)Gu2X#FL_>O?Bu4h|+jQ34pTGnEm^UE6c(*>b1ZOyDivzX<2 zt{@@RDntfxAWXK+iK;-aL%FD7HKOu~jG`Op*PQ;`O0&7D=i;z)m1*DX^P|rrnBquT z+;cW}m~6FB$8=d^zL>x9`0cZ!&U8MLuG}yG7Wc;@y!RjKc~3Ks?7ki`2ko(4APViE zJvqPRDp*M>FYjXVywqz)pvn)X!z}&o~=1K}0*@-w< zB;iPBTN^48b55d3@9_Tp#7ZKQL{2q!hcYt_;s!42YI3z5y{3xP5bp0-yRus_BNVMB z(Y=l(;+U0#HeG>k;L?+LmN9cQ`V;<_f!ohowrty?WAl#P$Cf*;T)K7P(Yg7(`}|d#=wSn(`@wYI@E<#QQDucqobbu0ZQOaSeoefWhS6 z^;$?Lo5ckV5(8;?Qc{?L>Xwl7RC11295Fm;3&xQH!(jxhC|m_es|YF-1}I+uvGDK$d(9*N?4cHxqR z*Wb0x9{R{c={eS_cgx%A=*E2GhX-}lp{?c;6;jY~#tIYTacqe3mT{yH($#STjO>HG z`{J#qvk}tZg<82l6U4}vH|l)oUJHe zQ=nTa%j)f-*H@eZ!?M(_eWWAkeB7nqjBTX28s_F``84zSRg@_3RFX2s>*yL{8R)GD zNlQ~6=(k1)Sy9Y*r_Amv>J9Bw#$+`mp!5kO8Jzx4YP({l?Pv>~<1=m)TD&y2AsLNB zaZnR9L-;0u6N9}Wd3QSo_0}C{+Rg1m*ft;>?)^^P0A!+QO-V|^r6|^q%!mzPBKhd_ zyAD|=Ce9HFLqZ7SoUx*_hV-Qic^=A{FG;*_DKUuG${5+jMo_MXd=$gn`a_D00mKuE zgGGv;)>f2#+ykOI1wEC}&MYIIMU$bdM)+FvqMiHH>)8K6J70x->qd{To_yj_w24pW zF!{-RzfLpWI0kTj`+kA|yrR(Wrp8?q-SE3X$WV6Xj5n%{dXHfIYUezw>17;bDC z^f7|Qf4YDwy*?TiLL7C(4y}joA6a46SUK)Kj_P;cZ!#OQw%U5-*8Jd)WAF8qy1v;c z6^BvvsS_72+&K5(*n{`xABGGYPn)!8(WZHaa)o{8cHJbxK-xF)6N3)mc!%}8bR9_wn+KWnA?mwu_ET7RP~w~ zJw_Fm-WJk8u(%<+S~~hFSrL?}T{-x8_kc79q(k7>XD*3W|I=1{+}{m46D^LC4y2x# z-S$gBiVxevH&0)0S3E*Zn~60VJJbWw41dH<;MapzcF;b<)oTiBP3^Uqrgr1gIov_= zE7%bWSMROTnsmpvx#l;2-9+KzAZbjG_+_??!~~xZ0T(!kzbj&LbfJ$6~tZSWzP z5~r>p>K33?;F5Rv?rew))mor@%%I2@l8oMs?K$uA6EtBfMKpYx-vAsZPa z2U87!h{}=o22;tN2m#l_W zM!7;-@*}Q<^pYTQ(kIzhdP<5#ZenzK#bOMXb>hU4BP+awUeY+>-x3kg*{$Av{P^y0 zlc&Ca=-+&BIfYYJe*c8A-hTK_l2GJsRiG%OEMQU3+nX1RV9XB~)H zk>bsR!d0?@DQ=?xsgX%A_dF7sb}09)rA0Bl7CLkMs_}>kM`)azDfP^o=Iphrm1B0b z0>R_^&X{(3l9?|q%6nEc z2GlU+5fg7}W@cK+(Ck?IMNf0kvA4oT?2C=i9eN$!c;a_1O{FXlT440t*`)%+E4^i2 zs}-O}Syyf>QI@vh^%a_IoIrpC#csh#dzz}btqIPLap`n*n{aWRa&zqxQS{&L6zUsO zE_&&lj%xVKg`O|o&W8;Py5qr;OYxMxqQ1EroRXq{#K^G~Vc z``>ZTf3JD=J0x-7EUP*=xXOuG${z4OA7IW$`Y;k*Jed&!+4MP_IQC}h9R%i?cAYmq z#fgB0*ZLhbOmSmGQ!@OElIMQhJ`n=Oe?XA_oT1e_y)M)zgOGv=oLK&M!>Bsn1%9X1 z97Y~W%Bv%Vd61Ftw2-*t4i`BtWLg579F?Fmcx~d#$K&0n7ds~&KAPw}w}|NxcBsX5 zhYr<=J5?pM2M>A5;N@*yXO@~CUM}iXi-g9XVs(CTBt%;Ur#XpWg$-f1khkxMo|MH@I-!4E-I!lF|9-g~E$TpOo{t-ouXb1`MQQOe<=42Wes#bhdkwhG3V)syQ* z^N(MuCaV)F{yr?Kie`DTvfKjV(?XdOOOkMJ%niZFj0g+Jj1;$($@^w` z&ahLG#hwepZRn&*F|9S8Xx?ivJ*l4lb8n4xDIqhsFT%1q)8K9OMM&CiDv4bGU6PQ} z_Upej?M$UP;5DVw^A9d9sE$px$vCz*HlWG+M9}PuA87nzxYD`OYv3QQGfu}MbEk%j zOpcy@JMlMjxPd;YLjMi!u6pH8XoER6cr~6jySqKG{>Oi-ea=`>c}AHG8t(q4J}NMDeYl6>&Cnr`wM6Gb^nnc zmW2uDCksbADjH7@i}GO=`fu^~n!5I)nBetz`pV`;|L5SWEN81sQ)F@U=9|gCGlv`K z?Ugi7^faG6B)8#Z!>9TSi@ICEzV$?uKnA(pV|UseZnE*-Kjp^)Z8@Izrk$=~TWDBR z%K<}O{GEzEU4F(NgTt&3Rl~B-u<38w^DHM~Tof(**H>w)lU`9!;Zxx&EMQ9}8l~|J zW8AfXne{DIihn@{f*HIm^vpy=r4}=Lw5wRT`9IE9d*6BJQ9nDV&%M4<`Olm|iC2s2 z8W2cYH9Z?fR-_^trnmZ3vR8n*L?9rt;__eFSJ9d{(4shsDB^^uP4dm!MvZjef1;hSK#b0`q%?W%7}t@}d^jH6~Nmxc%2kc(64{C?7_F zsYZOiM(bKg<2Pjl(`IDsxqhsz_UOq24pQr$NdYEKDa!+5>YVVt*LFtgc_({U{%?x; zrG0I*Ld6!0cP_o_ky@6=y{x>vIPi|zbaRz#O2T{H4QKU!C?CB{{xst0zJFiL4r0uR zgQzu~AVbXfTjj%6G%Wh}$h<<`t;2q$7rw;5>HV3sb)xvUsz(l=k1~SkBJL>ht@(z| z@^q&n!&U{JZ}SW5q>NZz>||hyHI$%pnw-VwyUoK$;w;k)d!)!VZU6sbX-x|?vnc6B zb1kFMP0K+gy;&}D)(oyKwdC;0G>qlArFWK&>m;Qa>U5SEdM@@jd1HGe`xuO2b3Fa{ z+JE!=hfACNYKm=(wJVBy36rRNq0YHa6d7U>1*(=)*Y+2zsg1osmljM0G)Y9IFSvex$!()wqola=h>F7PX-;(lZf1+!6NB?19x~@bOW=B+_ z$cTqRvbY>hYDcIL;c6kx7t)W5=rp;8T^5B;}yP^ z@NW(hg6-ck(LVI#B+sk}fqd#5R$RQ7hKzM0AmguMb5!ShWG*&5CwsJCSkqCgKNB7f z^W;R&eF9Eayu=ZVN29e5tC zt=%KiMLjn|XtSoU6#3{VMNANuaB;(UahxMW*Zhpy+`5YCP!iW9(M;TWb!4Vd_w``g z;d+T_`r9cuwQRMy_=ReGdb2)5lm5JwHo#B2(lD{b6`yDndY~0W)52Ai=u!3b;VUC$ zm9b#FJf`mKn-4Lhs$Z!2(NblND1hN$?p;qcWz-8N#_v9-Y>gk-tS5~j+e*=U<8Zv} zVvFF#1?GSVeZ59=l2y=oYNnbK!0FWq^PW0(brkPppL_dJKuJW!G3zS@^_R~V;|%i2 zbr5=!S-{m~pXVi*I1e;7iZl@N+;7(kjB)aR0Qw>Rhn)7_W*^rOR6rb^m116+H6f53 zJHpPXB|=>-^w=K^lAMK$-#$1%P4kIJfVqdUlV!F<)A8V`^1SGnVlm@fl@%E zBgIflk;W+REFQ0*ZLPoe%?-F=>H@>wP`wvYaL~i87V+H8{RATG%_U`6#fW3C(U6p3 zZ)}z3I@@zf72>3OTNyb(toacbysg{^o*f!`zU?R8fcN{j@2g~=ig{E$BGHhtz_hnh zbSfrTD!N_zfw@!i?si!h9)$#HlJ1sO$m4X)4Z8%HQcIJZIzR!B(>m7D|KW2t+ir)B zuDdk|97E%!;ocVjZD63`pATb$7oPsGezpGfQS+%k`IdHZ^61Wpa=W?ke$DjZYZ}E) zd*LI5%QJIp71Q3P{N|qF_%E*JM=KT8rSQ6@y@?Up(i-kgTad<)ZR?b~$p;ivnIn4{ zC6QyIER#U+pp!rLeRd;RUHptfae_!(}RgvUOSJTL?+cHO~L(O z367Xh+3|M8f%a@Kgo@L`t;)uwl1YmA%D5sCRlYja!#D{iw#F7`1-X9b7~%kyvXzwtF=mL^jqmj#N`+SmGf-cYZq{3_k6RQ)JL$82%}?a5JE~$pHFf=9nJNmY*gK%^tAC%X{@LVK@?wa z6HG5ZnbF3WV7Dh!jbTL=FB&=koxxN;kUTa*ZkkM3v2byCVz?_4hL?t8b+qeqDh-3- zU9%z*#X-r$3H+uBN~o&|l14{oCS#$q(0*uf1zTgpy*~;PC6*ix;_KA6Win~O!b>6& z!`^yj$6s;}S4!HJF+Dl;TXzS?$WovYZy(hz)8nT%S#BDSu+vmez_B;K(9Z1vn zS8LoY{Ce`59T4Ges7KdXd@pa<4ia%sn{9_n@<795+4frMsp>v0nYHw3<{#er;Aq^B zD58~@#1^AfwZH2jQ&U}Zg5znH?;K%6A0-y4;#Yq0n&{Lncc{0MoAzzjNxx#O3K%k{ z#WXR6t+9-`Hl`b?pa`cHD4BZ>(PhIz}MG#+6Enq|!)CQ9cw`SJ$RgVq$s4*l4M=s7x9|DCR@c%uaGD zRrz@pDh{`zA+KP3>Hg}!efs4t+`&ej@6L?UGdQgRU9wkcX6Ee_A zOSd1*G@WppXl*m9ouZc}@Vmyx){opOqp;(a@i5ee` zqY?ZH_Yc9~PSpJzSWrf2LP9|vOzhXP8I=`5W|XTVh~t`Eztn+jMHI&cNsRYcff548 zHEQE?xNv`d3cCGdtFLsaC?}GwS1snAynwGIM8Bt*@dHwyah>zRp@eYBNqU|-Cf2p_ z3d`|*^e4`n;dRs(-f40FrZYdO+Syf^Br0`r9&>eBhD+^-fMbBxD9@jYj68j={da!t z8UF7RCyW)foBG2|JQsQTR74CLJMZAIxU@{2XM_Z{&ZWnX(h3QE`|fm8R=hom5hJc1 zn(65nSWr|@Q;dn!xRwJ-)_T*QeLui`-aJAXpWB3SY{u5q)^s@aB*$3tpco{iNSmnB zF*QAjE)c;;F=RwSag#9cEqBm{>;15^H(}KT<5*|RyocB32(6nMjWJGjCd|8=2k-{v zQZOF6LeBcoUGlDfw=({}_m$hNoiZLSqZnbo9>6|odsN>>Yjo((xSjZ8U zxCaoNyN%~BRcnt`3A^eAH7iGI1f31ZC1gQ1gM+52L-gGB4TSKjN_4@r?^$d-l}ic}c6lRM=5M{~55 zbR2i50cA3@+aT3CZhSi!rT3kc=;zbr#n(3#<-;2r!*bsBONxrY)lK+l?Z}iee^Qch zBu_Cgr6`ydlaIhxZqgk@R;`UD7}Gkz@M^h%(?Nnaj0Ydt!6d`oLv{bYVHstlV@wr- z>yN1eZlnj^=%Xc}ScgCRhPDONz~ik#TH=CA5CZ;-QWkcvy{MPETE|Np|h>buH^ z@eC3YO~=KZE9ofYI>-br@hr$&hHuN)cUIyP?|@&Fo?~j>dDY}xJ2&uYG}iAoXz#(* zcUjaC_jhgQ@H6|ry~oA)QG4jik4Em1AdJ9%qT{$lJOPHYj)U zgvKNP7`ysjS+gPfdo~o*hS2q7E~|XbLxo@66;Dvl8*{6l2V>zb$QeIvlqskG{G_9< z-qvwH>4juD%f$HgtYzD~p|!pO*FKsZ*e4rgyBN9cv0F4$1KrXrC;WQu!M1J+m6!=f zA7>DE{dxa)@_`}Tz4R=W?gT6S(H7}(==%8<{0&MaC%kwx``{cQ<(zFKOi`(%v=mXT zaycTf3}or{I~3G$!j;dw&3@h7Uu<&v)V`X*t+mJy+`)vx9B8=Bi{I7{z!J*y>vz7G!G5>>9cTDWl_GVwS#Ra!p*!}}Z8AMT7if&T2ooFt)Nk{X}X{#ILS z=eV+17Va)f{DAXYM}%9}FHXqAU1*LA8%|%j`Uc_=i3BVH8JHc>aB#SneJq9Thek!$ zL8*CFl5A)~4joIwB^1W(cR~O3|J^^inD=v}<=lrsUm2gNc#-XSIR~Y5bn|O`_>9LP z)~((*eLX~NIIO^vbk^1zTqkRH(%{h+v;p=z3)D6>(5*WQ#{JAEYqIC`rUZYB3buDg zEIBa-ySbBAks7@IoiksMm=E9T=E7ISa3?+K&UrSoVsYQjN}cph)HMr>XtT)p&g})Z z&fFMfUspU_-#)~!z&zlzbg?6yih*YPvPN2 zxj7kY5~|FasGsj<)Mn4Hje9lIXF%Fsnvr5j+rOCZs3XILS_A&4-gOoBOyXSwF`@iJ ztbYsnb3%o6ZB$`?bwaxwc`usH&4)9mbv8%aZ%lP9`E_T&pCh{OQi9#mw5>|J_rx^q zx0_DWDUl-R68N*&T4H0f;_a)pj^!S~zM#6EyIQJ{6tfg_^R#z~vH1Lat|>A(ga0hv z0&^++ew?oeaaXx=xkz^E-5z6W^yHa=yaSm9{ZVIf66#XoPNmXMKL6>D65!{pK|zG- z-A|wOB}T_kr^zj^@7$sU?!QI7 z{epHo_@6D*#=8D}K_bT0r8DUPuXYuNkr_Q8y z!RR6M(|sS#(#}HVuBegua7<85!%tu|Xndyy7o2uN7rm~veP(BiC-Bh17NcJk~|pv% zHCUw{(Ax^Lp?{IBMcj7tIF2~*c?Z0X&LJbT_UH4gUmUx6xD43WD`RE-|1VVje*CDg z3-pyh)^%2`|G#)pf9siGA&^G#Brt~>B;)97~|ZP;xXU1m|9e(j=*x zB_z`IcnqqLcsCk}65;+CVp#QQ(KBLhK@6YXMi!(g^+eF?zDeYF1zeAzynm9KtpZ!9 zSq9CidBLS9Ftdo8`hoB*@_6&^<*(F{d)7z-gG`$TxkWqzL-0| znvKHeXOn50iiOY4pP!uGRJ^#Z(nJ@Pr~csR_Q`Q4Ylccw=)`m_Jpiuf{{GF&?=l>c z`i$uc12Lm~%T6}LuEK@r85k6sB~5o$<&K2scwggzhKqHQmL2|dMMkkTaLmJCj#4flf}4TSY+6;3rNBL*sKwu#wPE9;W(4>wbsK7KBum3K z$oqWS7qLqBN}irx4;$EITC{XE$b%U7=fx{Q?e50#DTuSJY&6{Q_5+O=l?-9u6fqT~ zV2-iM%a1_Mk6;>Og;4Q2PGI;FQ<--WQt*igkXR&8K!O3T*xvvt*#h>0gW}OdYm%J7 zfUtlA=D18lg=ujL7wpmD968o;oRI}3F}|gj^qx*46TrD3bAVhc-0xO`7ESM^p-fBL z(ndk^B7&P;UhK4uAkae1Fxe3sZ1AOUUVi_jfBt}i8Bxx&zI&1hz#%V2@T~P|dZt>I z{_jEQV>P3cEl=1+VHy<0_u|8wnz*i~)tf5jZm&wDHS>(yNfH5;I|SSSMT3PtIlmc1I9dFz22rEU=7-; znn?!fKf)NwbKA%OjkaIK3R=YZvJUiI0DhWh+V4B)nc8&nK?Pr`ei^=wG`I$u+w3%>Es zf8gW8ee#f*==xmVAAb6ZwUwU<#A2?Wdr5r(C&%qa&tANW2HfLZnw}*-8=rxmU9y|q zbUqe!%p_F4%XS;BMM@$!9WJ-iH(;G}0CjlU|-4d$-OAEnE zJZe^}n)f@q0i1gMBMss&abuNKp}5efh(g(wC^G=sDGjj02GxrNl657>-;qY=Y&4N9 zq$i+d$3PAdrlVdUd*L5^;mfdYP!^b5?FYD-M&{4jG75Ep0PGBxw9$AEt2JRDU- z<-=HX2ot7?8$r+-Zzw6gLRqy^?qx3$u|k4N0wAHQzApHSKgU2pu6=jme6CfMvq9Y? z5<%9iDb~9SQ?CjYx8)&vPG^1SW6@vz<9PCE!&z>rY`^MUWLqx3GF$cs@yKE@2fz&U z4KxX^J;xzqwSE`qm_b>m{RK5bjZilZ9!Oo)fC2)}z$6GmJCy-2L{thg$rt|K`;_*+ zeM1Ty8AsNJ>q-+1{Z5dtVzyAp|2;y=Ci#9_1vP+BpuMu*7XHfh?t|=5r0D1wQ5~`9 zb`kB+T<|?>ftn;&ah?~<;js~E=cl3uaEkT8+cO~bK8`k{Lb`))w!MGw85u-+sH^Iz zqn4Pi8e}eSD^n;1km;Q+DColuNB7sQ{x8r@k=ly_qfijk~`p4nQD- zAe482pz^!wR4H@W!O6GK+3d<-(r5mq7jpG3M@Z%GE0^W}&9I{+C$wqDhq*z^e*|Fu zUSIyPg4B%2!9(%HUMp1hbE9G021P+ruX0SJF=e+!3M<6c7^tMET3`ev_3N}iAY4PN zEbjI<{{v*v$z6K?C%-j~$uQkPKs4`_XwF};0#Qrn0wa*gjX)J0Avo+HmrJHQM_^>k zfkxtLIOCWunKQL~cw4GhFR(}RhgHnqOPCbXSC4&M6$~N7tnr#R?rFCmBX-BW^ zDEpQmWB-wm1-c>*dhb98pd^??g%qHPjyvU~qcxl8&+!d)Qjb$vjluC6wP$(v&f*oN zqm9aj(cFK*Klu%W(6)Kp(V~XHg^+d_G0)PS8NmzmrdkD{D1>f)e7KknJca}f!GT}# z8Pq3$*>Uz1_sibJcy08hxEbKXVEfimA=)K^4*)w@1?!v}3?O!sDhWiS2chGHFGiSx zSVnZcx@}y7Bg9A|w9c^g@8Lve*A@f4iI9pDz{rA&B=7pt*V7-T^jXlrBB9iG|09Qb z1Pcb-c0QLwX+wY`KQn-BX(JcJD?`x%#nUvfF#|CcA6p+Z2p@FK!&m<^W++MX6%74; zm*5l=Rx`ZN%*2%s@n2;~Lt6hmNd9Mn>BO{QnM2fmh?iU|C>0*> z+6I=DRK^+yc|_SS5-t792Ouj;2rNjE$`XpvBC4a>D=g=&e9sVxRUXZcfvOQaOEQJV zm4%e`H&Mgt%=hocA~^Xt0t69&i9jF-r#$3i(6Azc9C(Y4tuqiI5QiS<7neQ+|FKzz z2~2`M3=S%QooK#;p9gqeB*fc_5kLT<<6(I)ZM%aC2tf-<36M}mt!ZKl%y|hkc;(hy zu7*BQgyqb|Dj_;rDbX~~0>VP<(EPyKL>h@xFvq21yFm{hY))BuJEuIkwDu6+QH`{s z@Ss2x$9?eW^78v{{p&4U>)@QM?b6%?+fnejv|E!o8->UAsJ7zitO#( zP4at)0`({nS1nnye~{K0k9L_haCRC+im*?2eZ(*5Z9yceXu|bUR>?JFO`MIe@3-Cv zKv|IkJ4+*cq1T!QnMVMyX$gwL9}dS`2Hr>_iAy&bZqxLxPz~QHIi;lCZ@V4pR9u13 zS4l~dL}zU16H}^26bH6h3;_UV<3Ip%aq0cJhY1d1fM(qAu|OKtTsFQ`$W+U@F*|aa zlqHcArle}r*dAh-^NxZBDSAqd+OB7;>0~AG(b9_rUh6#OR&zN|H}b|Z3pD@=*b-+^02W^HkI-CkXuts}{Jf1n2X*I|LXr|4d^CBpow?&peo`|xiyJYq z!6fkU6fgh#-G--!dz>?0{=*Nse181&xdW1)8NgkYA(Xg1o^C(mda(R<`})JACRE5) zxKBE$j!!-x>=h!mIV*Oq{EJBiQEfOREDKdTvYFQ+cKb4%0;EV=3L+J7woLG9`pIBZ z$*bY;Wd=dOQ(JWD{qMZ(9475jL76i9U1(KZ)vz6nvU*lBl9LBO(?Mm2;aaUQG;E@& z#}E_uN&*oRELs=^o-IRgjr0V7g&@5_q(+)pW%8f>IA*Do5ZlWEsR;`ENNKW(BEo3# z1bGu@7XHq=Ct@;fnC9Sahw?I1)@Z*9R91C)mBl->Qza&Fx%OAM|Fr-y1zkjXLx~gC zWLlv25J}P+LX@bl3=%!B-UP(g^c5<&#+^|-?(CkWHH=$Uz(yB~xZ1b2R#58g@3?a3 zXfBoePzZhq4+&x0unjf)uA|8FWUU>oU|xB6okpU=TtC-f&slc631^ZP_66 z0NdXO!gt$yr^6dF?p%QTgCtvUF$!{;Gu07qty73di5yt4;(Nh6wb?(xcus+`@to?C zQg>aPwDgpqs*I9T=rvMlgo4IY)bzdv+a_pJrXb5l8KjNasPbrB;L8D2T+6PSPM&PG z07y1kJj>dSs%1b46(!7lRw}i{R|{E8xoLb(XjIF&v0men8r;LywiBqZz|PEqZWC=@ z4v=j0NYO}9fuFKcXy5~Z`^D7S4%RXw;HMwbVV@>?8#fLrYGB^oao@ zd0E_%AxkRLw_K*WV0F6PLMaqCx_cAPOAY)RbT0ht|IAWqo{_gd;*Aq(qa}pYP@&?6RB< zn*_$K55~Z%?^+!Jj2Lt0b8ra20Bl1=qtPZhZ*yb#yH?XcHMx5MbiG4STe0!_6)3>( z7{)RRS1}H~EA-3K2w3Ee5J!AWOa*?k&UJ9U9+{5zi`)Itbm8nHI{vtPJ{dZ~Wgc9^ z=_@U4kh!q|y?KGscp9!rS{o{`t0sY6M*fxemB06w!aLY6j@Czfxy}A>ZP_{S?cmM( zSe~Ly9@U69#aDf0x6;HgTorH@)wB_TAHmxPNemT4va%k%4@dx5;IRVjR~1}ly_w;G zSpyd|0}fomf%YsJ1#9o5!QURoRp6>#{HmjPK%Y1xxayTcEAKAqvU@q19C;={1v!~G z)+0~|)y+CN4@R%x`{~O-9<Yvi^HrV#)KM1tL;C>pNl5(WI%h4*Zbs*N0t_0lj zx8v2|4iBKcBbeRQ13a9wt_Zp3uOW1k<9~@tY9{=w&<&CWaI^Hw(g%C3W;PL{+eqx0 zWE~WCp_vb8x(*I?ZUuem%YVKW598gm;aN_&`iJjwjRcSOtHzbbCwsoyP3qmtpUqV5 zFl(D1UhyIHjlxznnfoRjJ|vAv+hj=e+w?eviQDmIPbqVu;ln!{zs=F^<<-yRYKF6I zL(0>fbwD?4Hqsg(PFf~-%|`1O83X_{=Pa@Xh50I}gm9G{P6wLiXX(SY_=fXg?dwne z|4g?vDf3C~^5B{I_Jo{E)nBOwFShN*)oi5nBg&`MYU&Oy4$$LuHl1JPut=1n<#Ons zcnVh#VQ5K7$mU}NEqC~x=0&Dta%pgi+{4y(`{P!3_F^!Lv1hs+6Gbo1a!Hg*Q9 zHl`w(S7=>9h|{xTh}q^ffhrh5cf#fSCq*+L@Ve5-qBuBWj0U#-gI8CX*;}+I zWD{$!@U=KZ@nx78AV?w~%rl>~4G(p$kD-?=NS4S-+z}^XeMjKZM0+4GPwc}t94nTr zr0IdmD&nV1Yim@uE{(E&?&oBw*u=Vl}9SID8caCGi)bYUM3NK$@Sl5oG)RBJXu17kbKN|+Eq zG~SYXl|U^3TZ(n;3lAD z~FA>Y^3agF?DO& zxmKx$4DvvD6srabbpR}Y9z-I6IDMsh17I6>v;kym=_VNPbw{~|Q7*eHFEuyc-{C`CSd;Ai>ObpC zS$G189Uqnr0V4LLAw8$8^avMI`ghD+Zxv;J)r94sv4dX@FQf-Gemo|T#4ko8OU6v& zq@o?3Y*Gj*h-I5|5RKhg{YyWqgA5{Lg&yRS!(iNGn(Lby!LXPBju^%oD2Vmn{n!5a zv$}$a=dQDKozFA4Mm2vTg)xs^C#z-QL(Ik&S4}I;{KWk;&}Ai!4UKl^NxK1&YRTl# z%5{zp#dezrN}+TPs~}1e%L*A$OAJ_kHc@PK00-L{#9BkMRFF@>Qra0SQ~jmu!O3Z| zLspm6;$>3@#FkkZy7~o$RA>EnY^wdk<1sf$P9bc&J(NxV?KW}=PV-n1E#(cUB*V^c z`|B-;Grs?}!uo7$IMclM)bzkX|%>#+vpeH7S+`|2^>6A)Zx!yL9H=x|)EbAB~>|ZZm zI-re+s1`RLd~jMxY(f0CV*|8P@d!> zkwV-*5*VLL$x6Mp6V<9nG;0SL(@+DJCzy+MIvE()9hR*$mQu4H4uD~tD0LetNHpT5%@`!ss=nd?>p)XR*V5Cz zD#g=5I!7)h?CoH+J-<}VhLW*=eeCbfk~Olr8g}j41}#_^rVspl34>ETk)DKXGIN&D zE^ac8l)8ap@OaQxXbKQzR%4LzJC%lCHW^k4W@1)@(B?+WMe!|-(~kOB;&@aLYe_gM zK#?TqOHqOt3)r6xc>z%@RgcF|Nr`x8?>__E?VUE&$jV zves`Efk6eA1Z-AlZkiJg)LC#F>`@4O9N93k=+|DF*-ok^S->}41t6AX!J#c&7vz*K z4_-q*t99gOFuQ}o`OqKiDvh^K#an{=B59!WTcxTe9Chq3TcWiu|wRC6W*Dx74Y52_8Ii7vvu2XcSA`blfiQal+S6tQow8 zaj)ff5qA9j626YIemlnV551f8He~tUB(}LDts_URdkm-^DFrmQmPQw$?udFx$}Z_@ zPp@{Jik*+M7MkdeFT$hK@rP14C|^a9#V@wR(# zu4@R4$Lk#*g3?iU^<`8J3PA5IPc?t)06f^XvAK_@e5Oz_Iz9Rp%b^O|mZzIvz0j7s zM{lO9+sLTjoFYW;DGX*ESVs-IBB|2KbkC1NfNTFsh@0i!8_?KdZZumX-JL&6b=fF| zLE~rUavCc`w?{x=L=79z0WwP21K)1BISJ`jvxSTu+YW!)-GpJUp2rbvY7~HGTiSkv z*#yT(oMTu^jR5AIJUS2u0{@ zcl4~vXWuz@x&0MD3|oaAs=ui)X5|=7vqp#)7<%%9CS8VlX18j zs9PP3#67@`zD2~h8fvruRi`R>)Rpw4`mwNeR#BqJl8mib-^o#4ge9>-Z*67 z^7jN!47ukb%4$EnRBTsXjmvH364uV$k3l^_;vwe>lIciXCFYTytyCKlQ)rD(-a3KD zd(GZA7dtszY>gk0@DRVad^CJDjy+>ho`#~;tDEcdz6V-4nn$ZJYJks1VT1~J9?ISF zY<0@q3EH*cD}%*{wy;Il40t~pQFee*V@(MzH7gl%(&lBpz>J11KR zaSwNUOdMK?QGVR!8!CYipX?l_qIh4dXQ zJ80k;JU77Z!&aBzA9m5nKiEt2)yZ|R28+^3#Zl^G0tH^2rzv-=ulO|~lHA@!I*@Y_ zVBw`s%}d`s>yj7ydM78+bZj68wzFO@b<@0Udgwkn+1wzf_*ncr&=|SXScha6d*bfg zOB4j81#w_kVD0ENo_A5yiX@hZANi&`XJkKRT@iJZZ6fYWPG)edz?(W9PrdJ@T=*|= z+;>yP{t9lE^~5Cj8zG3CO)3XgR^h4vnXBj(^2SvR4wuad0E){vxVDwlD9|P-Ap`9M z4{(wYB&ddyZuhKeGI$8#jx>^MsE|cov78hJKto_57-4%F5{k{XXh_AhbtF)m@n z3(IlpcosuS36+xobLNYwn9?CLE?@ZGhS)UNklNwbq^H($6VuqI9}C+Z@gu4Kg0qok z>=OT#zeS8#wE>si)OlnpL1)Q=I}1{zgkBeN)e3UaimK_-Pe+kSDk)E4s{5hiRahCn zVcj~sIZ76+8)}H-f#YejJXx&^21yw-s};xHK1D#!{sx)$1=n2{t)ToENPFh}B!J?y zyPslIewwH{$vN5=ptVG(kBRJ!l=W#y{W5ml6Cudd#%W#xLBU<%5D-mp7cGHK|l-E5gff^<)%?XP0wI}gvE=kFNYl*%3FMb-!xamtVS>* zgG#`BomE5|=BI8w=F9=mF8v~X0z?wFyT>n(eGQYB`ku519dm-h?hs-KWS zxeZ<(u23P%ql4wn_-fR}X`6Jw1?ch_JV&V^`AF91m9cv}Sc6BcY@hUc3ECo}xTZ96 zDq1(1nYN;2uyw4+deV|jk=EgoY!bqJxAG2J-r*bQ5p=sDA9w;rcY)wY<)6KrqJn0p z3xe5qC}GPg-m^*z*ulK=a6YF)@eADzDN-2|>{l4Dc4T8g2MCdp#9Y==Fj^K3m2J$1 zhESPOpXzvsD2+s+DdR40tL8Jt>_fZMd|2pcE?L zXTM+r>EU>cqBPv*-t1b;Z^1}q0NNl*g3+v2ovqp|=He33pmOPQUs#+n^AH2mYg1p3 z!mb&{wSFuZz;D*34BR=Q0%fubg{$vV$|L+HXZl^B+ZPS5Uo8x*H;NNI=$n$FAQ5Lz z+US2Te|`VQb!bvmZh;V#Y4QSZhQqjmXQ`#Yaovl98=1L;v9MbKB%nnWf!@CGJ~TSV zozc>bcOibc4cn;vjH!r-fY_|uD`Diz9HjEH*Z1JR{%w#o1h9V-;-6xmgIWlCSnDOB4=Mr9V76o?h(V z73%qB7c$?{cdq#gZl@gRd6T)kaajGFi@Obl|qf~tP!4K(Tvu{&K_Dw{>s#d z-E%OLgFNNbG%ot=KfmKMzhmgj%hCdi;52c$d^y?OGejdgA@_IqZ9 zUlYWbR|h>}R(&?TTZ?{2^jF089)}aLt2QUGYD>b*a4+~i>YuEg_-zZq2-TlX-tge? z%5N!_zGT&A1Zg#hLW~VI1Kh=UGtI{cL;h>!HoQhanzOl1@N$``*RVHV=>Q{XvH|@-E)OhOhIr zOaPeg1zqIV_fPb1Uv`q#F0u?|#HquL9UQ zi@v7!QnST6*2dBeNHtPdd}E$eJaEiFlG& z17)0dDu$epz(x&N+XIz(USh0goZJkw2y#{gxMpQn(mt;3AokGneJ7BBhZjT6iU2Jx z`j~bwnztXB(W()R^ZAgtQQhGo6~f~Im=}Qj2;`w~THFHiKA;s8gG`>Tx-cE0E{PQL zpyxBpq+Dkn^qgiYYlWPuA^vA7bN3-c3*3_P7&y@FcaGHtV1H(E*HOgwJXuJx?RO@9c}jzyY99h=d+b-PKe&Q z+fS13lIu@V?lzx;8wK^|h!RGq#5ay`c_j3YYASLXisvU+)l`7?JVYo>KvPsq#x*5q z!Oe*D6tqOw%pOID#&n#;wgegoRgQdI+%>idHtvJX%9p;U7(%CcsAn`Xd_%KrQJqWJ zL1=_7P6kjNIK8N&tvgOvZCr#t_g>;Ak1jD$ktvFdmN?PHE3r1UuM~yW0kq&cRhrYy z`B0gX%=JMpd~iy7LY9C{)F+3tyr)%3GI%8OtK^PAuu`b5lxz8__F zQfNv%lI7hSK$K&smcsIt3bxurr1BS-p0_~WbcQKgB(gn=m42w-fFh%!W8FP< zk#|ll-YvDb9WrCi;_j$j+pQfraprQ*&?n}}i#H#>{P+tHC`jxiOQP%qrt(IEk|w$t5nfF=EiNeOsZpe5N)T zbsSS^R-YGM1X%3Af1iD|+_87AI;K*-KGkk2bj=NS-E!L<-zu`_p8q+n&L`8oci#g% z-}~V0v5)&ygqh6U((mMJrAXlN%cdFE=rcg`if_1IxG-&tFM{CZUJEmQ(yAeqK zZT9_z$ccg|iHdj-PvS+qi4XB5eyFp_R@)r5*%n8Pw?6!_*S=5_4JJnb2_!)zm{4K+ zE(3dXh&eaKZWJf#+pS}C1T!DcZ5%Cq+hvL+&2d7C8mldl=9uQ#=D6ng=7i?N=A`Ci zIj*M0T`|$*fH9JG9ozTq)wWHm-W`tT#G11c%v@IAUfsim3Famdvxx>0G{-i_9bf!* z^4~%#VfjI9chnLx#aV0qKkKIRN~eYQDu|{Y;SA)35#MYF~sA~Ja)&Dsf;xFaLJ z1wmh(aQGf^=L*b7bS`@liO&_8klQ(8bsym+v8wJ8EYZYjS#!TRlJ>ZVeXYsTTq|YF zI12JFAR`7)tg4eA4UzJE#d@SVU)djdoUdw*JkR$qBd_y4vyk`sUQLis*gKokIC-xK Lkf!TzE&u=kDziPT literal 0 HcmV?d00001 diff --git a/docs/_static/fonts/FreightSans/freight-sans-medium-italic.woff b/docs/_static/fonts/FreightSans/freight-sans-medium-italic.woff new file mode 100644 index 0000000000000000000000000000000000000000..a42115d63b39e9dc66c33d6294a81e0115569003 GIT binary patch literal 19420 zcmZsBV{|6I6K-v{Tidp|wQak7YumPMZf%=eyWQHh-M($_?|;wzcqiw{Imyg3Nj@br z6AwiR2}LzEMGz3#Ef6@6|D^PP-TzlaB_xPJK=8OhK*%FOK&U&fEJ7tDl@wJ$KtxbL zKwu|8KnN%m*^O=#Rhd{pKtR?0bE5GdjIhDQ3{CBf9YH{_3qe4@0zp8)S;O+6wgBeF zX8-A*{sYT@;5=l9vIP7$`5%}1zcKm$07C_x2(WYY1OX8m_>ZgfAGe|p182(4*z-Ss zpmP7&K>c4_D1q1;+nN72R|5iq`3M4{Ui)_0Wb5eQ;`-m7iT|_t^&g0Td_gcgK~0U! zj6n8}zjzVvft-donOTO+AcLUi5ns$70lWP_^hML!2yzJ1zY!ontd0;3|09Bc{yP`gwap@j~0YF_!-FZ&+PwH|4%MJK>pj_f4wIt!$>3IpfEP{{Ojip5M5W#1UwB^ z3NT&N9HbL#2F_N&P*_~J$Dw$fRGww9%6s_0=ON29$?kUY5jB!u+dqTLveO$kH(5uJ zEKJ%O!zMV}Brdd(BK9 z|F`i>boORP(i0H$8@fkNp{iuG6hk^*<+HHaG^2ebiZ1$3rtkw~5J&;e8;HpVW^B<$tCZp*= zR~*s0V9c6qKB!y?pe1T)Hqo!ws3zJKh+KwCxFmXIcULb97bd0s2Wp}ywJl7Z82+5PtF%{G-Izy zkMrfA)Iz$fwSf{-k#PJ+mvR)SB(BMXsffcaJA*TqVw$)X8=PwD>pG0ac}GmXDBcIN z4$_i1#OqTes4@`ZuQv6BE6r@1b_#;GZ3V)@b7<*ETK-pYa+l=A`7)BSe|KX zFxmoULD??WL^QnyPI%t6-q$fbc@eqKLpV&Qr@i(;nrNh=L|yk}0)2=fMbzhge5I32 zelK-enK^=xO;_G#u5NB5#^V+o@@a;%vH{N6y#~$+7PNlkPfdvnVf3H8OJi(;PDwRF z7gQ?a^;eAMzcaNeBqL<;y&E#D!pvFe$!7BZu#6Fu-9*+Uuk*q}THo^6RlT%4n5(ua zE?G{6H}w~?YkJe-+LA7Wjz6|z6y<)=kX2EYiH-bgsrCPNO^nD+j3QSUuD3~D)D>s# zGGp6Hf^H0uvO#&REqVVO?MB@9e0}(J!WJr7i!=ZM-b+RPq|zj_&qlWXzV4KbMtwpR zK}h0i#0#yJZW|D1P--`X{M`6T3vr;UgsODV_mn>LtLf`A^(*gRCGrdgIG>WERWdql zaQ%iexpFFiY~hl!_@cc_z0H_qu~MW|@3KMC1*|&BQ{`WUJ8>v`7hbHG9wm7QJ-+KE zPHOCHVI1m;_|Rw2if0*sO1E`-dCAJLFBW`SYR$WLD1$d8^zn|&QPXLYA}rzaH;M)* zh8Mzo0&nYPFJFb^aYmGvoGXt7yT%|&#(TJyH_H>nzLnBgqAy*ZBGNyi-fyhqEu_D! z$dS{Z#2|p**Q>>)(KE@ia)VczYcBQQxr4-f95Xm3Wy)qf4A%~Jk$`jK0UCg0KGXxZV3Re|qY`QTema5?(?Lsim%F`Nm#>h?nwDfFZV4QQO; zi$%)$WFk|djG+)@VOVpI4cgLq(?z#l&I?(aetFzia=Q&A8H6XhD3|gcsxdDp40Joj# z&WShf=;rF>PQWpC=vMO3wBTgIC2On>aL!;o3zePmn#Y4zZs0L|XhDV7g$ybGufE2Z zF!DmTve9}{a0Y;vdo*#Se_SBQDIW%07YoR``p3?MSjYHb2eIe(i=IblZkv7Fo={;r zSa9UA%x%pYkBR)oKR88nfz-1<2?K(lPzmFdjd*NRTl+jpsRD5*_ozwUR@xKa4sI>9 zjz38?JvgyX1-$4;R(DP8yi0UL+tx7ctE9@bRH#ig;*kx0oFuju1&DxUO-Nr=;#Rsp0(dAJ+dTM?w_UFA5@1nn_R}IodEzSS>78M9;u*B_pF9tG)VJU0za9 z2sc?f`W5+gXk4_ec_2<=R#8Y%G5Hu6yZH}`RW^z95G6=@iLP(z-AWYHxdp_S6wL{5 z1TC~{nTEFYji;T7+2aUbkzx>k$J3bErQkrP?)Tm>aELoZ3M%(E!|lH%=~7ucm+Par z(mT-KPClkp#X&R3%?IP z4&JTZoF0As?uVDJpH=3uHTB-u16qqY+J*GCfR29pF`5sD+h&e#&0QppWByJ`?!B*H zjCrAi*}c}#C1)t%9fWDab7%$xiDVJO+{|(73~8L%&MWk<&Cbh62MC(2F8>lSU_z9G zqgAlSMglNh)lQ9+vra_&xmBN$(pDlp82?6$UJB-~t`i8JDI6lO`QmIx4w1^J6gBO?EZP3ub*dh#p%^1ND{wWU}WbvaiZXO^MT=VwS5d5 z)y)$|k=t2~-s59XaIm{@)C;OcPxkD@q|)*|1|D&hULI3T9j|(rgBMaM0?0vb)TYNLS$yeo&iFYTq;~fu zO6(4o_Mvk?F6s<&-5yGA!tEb?O3mo)6n(46cIU($!hhFbSO)my)KUi+EZzEU>w z2w8#@V)@`i%7>v0QcP=0&HNk+o5YI=Gh_zIA8>0*6~So`fzPbhJ_UNa+^yp`PMn<_J;;s5rd-j>+-`4V=jyq)|rAfXSzLSGfMpJxi0VvbLo*-Dy zvhgFf%DL*7*Wft6vS_=ZJUeYVh-}H6_+fj;I9vadSv%3J{sGkLB|`+8Gk29Q@zKGN zM!O`65!2UKpX>kasEmRy8USY^EYt}09#77s>e`KQip+jeb^Qa+bn(+2e~7!s}CT+!aa^>Q@ue>{nL6 z+$}xSQp-TH|WMh{JAL zE>pKVXq&y_&;kcenB>qiXybaX@xEr~P9aWIv{0%cx~8(+;S*+&roAWEOq!u`pjlv+ z_dz~LFLZ?O(BHzso6V)nWEPjAgyDCB`v#4z6DdE1(-$RErLTNxBbxJ1vyF6}n=%Wv z=SgZ&6j;XRg1gE%bhg z)ShbwP)sMX?8{i1SUBUa zVUb`N<>VUaAWYBVjz33_t3ONVaqQHGu1GJNeVb(&7S&J`=sJ`j#hZA{0Nmrz%5;;> zy3STR#A4?I1Aj>4yCRG8dDCEpF#yhHKHeCkgUc`W(lKE9TbupDU96k1f?7Cn z=yq-wM4N#EGoC#ZdUppD+Bp*$)FAsmFZO)`Zfe5V{e}a#dw3~mppZw3(!R>N&+0ZN zo7jdb5KTHo>tUR$inoG%kFxnQPe;zCTZwQ@mUCHN7AILkr_QY(5DEa|Q6xD}6%&pg zMIg#YkIuFiJC4e1!OgShK0&VF<6aEzW`cQrV(lQ&fxZ>TQfb6Xb{@+ zJ!?|JsFsKxUgqgmE>$tZJtjoTLp^$GjE#!v`?Lg!R!6#2wB3H^f*mdPe5u`SubZfv zD0Xv!@f!4YWb~V1N}g*3zcIq$8jS_K?sGo_WP~il-*9-)i_r>Ix)XG>-PvY0&v@K( zCQ%>jjSJs^qjjLZ^SOap6YhQuhV|%i>q!bFvbNCV>vxt}x&`utxd8R-n}37MWl#_D z=4yqAZVd!Hrq4t~ZQZvm0-TMwGu`Z6bG)2|9~{oTj7?MzqCe2Iwa2kxQp3p|D{T+z zBq~~4h2)PD{f-g$GVZBpu56y|_n?mdoLOM3M^>wcpEq7)I+Yv-RF}YIs8Ir=UojS@ zSgP+q^PC5L)51b#^O+;TnwSINy_#wHF>wW<^X%%TeXpu*wQf_6^I3np+ZZsycC1)sVLH zr(n3=IsTYcmKR0LSU>@g*dfc~#9-n{HLi}EAJ;ODkLOU!vejLF>}D(Do^0j>0JFbK zIb*+>t>koWo4{9VM|?{V{h5A}neE}6ehc<^)@4_Gm)&F5OzfUO)2z@tVY{qbuJQJ7 z?U42%-WBW>%4CiDiM-zJ2(x~FyM*w7NX=vbVguUUvRO5o|pdgR^k+MJ}}|@7GmN9Za3Y?p z4hHNV@Wyqy&?*r^Cq*}!IT4Zkci&F!slDMR2bQ0*k3lf-o>akFj>gYjo?CqDk)ydR zk#S4@Pw8eLfkRAn#Jd>Grh_)c;Pq_er2B2GXe6!Q>f`{Ex2hRyk6E>+3T1^|<%TT| zekEH=*=kiyHi4J1K?%f(PYlvU7GCDFnpd>07c`GxZ6Lpp=ID$TSf>yf=bh8F2|DPk zS@v$eZv)X|?HQxsnb!`skT!wb&-G}1o{3le!1{gMwv}F4LSG~dvx2vQJ#tlVC|X|? z*PkGJhlH_!&+6g(OV?Je?7f!DKnZubkfeF5z0 z{C#%#=;zUsGdzS4y8||twk$3T`h)YD-%gU6KZx?pPOf_8K_X5Cn%O;YZ+U|>V|BK2m3ZcUj8EOjwnwk;9=t6>8$ICad z_VYP_DOZTe6B_EYX8yAN37W3`dpM2P4tj&N5$=*8yzS+c2Gy9Njt$*S6WF;(RadpK z6TifO=3UIHe~^I}>29PR|7sdx@ea`Vv|{L*aI0(8+eU#yG2=p`a>MocXd@1KG$`g6 z0@xQ8vJBOEmW$gX0j?d5Qs^=&yj#O*S?mE`?s`@ITPRI8@5@`5yw@3?AJ9vP5N20|T zSvbJGD{>|tbMfk*t$RbFkbirk{o+`w?x^!vjMZrypC0vr0_GuFLT5>stw-C2;k5sv z)oh0B+O1KgEpgm*FjdTPR|%vYb*%zF8@<_Z%1Bd)#dvS$MTKYzxh@W3%^LwuaE z^iYvT^$VereTRYfv;20007PH;-y<=0L12NYM*05zx^nM=AIm4)#Bz+ghHTi zxz}jQeWe9ap29!9Du2QWj^>*QOE=@!yfeK&e$Icq?{77kPP+h>&pY>CMC&|!X)fQq z;1K_v{l-HLM}(kwpI_*_>PwUGMAcP`6V={bmn2G8H4=UV+<9Iiv=1r=6-WDkT=}CZ zD5VCk9adK%m_7!`+V>}4JGp08TNFr-aW`)0lHJKC;5F{A$7-FylRm$f6vCNPrQ({%rR{x)Jrg{b=_uR5)1mX)Ya_tLuh zcJ*cYO?YJ}#kS4yU(Vaa$jB(%NP+@N0tzJ&^Z{Ggm)OGeH;4rDC`hc_G<}Wj6;7_+ z7JrW~5G+_^h_u+`04-T%k+sSB0WMl*lD5kF0ykS{gSX5311el%l(Nj?1T$S@g|p55 z1&Kppma)$MhA`h?N3hTT8#G9Gkfg|XA2msNfu%99?Tnm!k~{YB?UjJ?0ehK5s8NrVX~>QQV(Bp%#S5w($7P0G#AH^ftrlhHIn$u zE|N#;DU4|D+Qq95a^9$o-QyW4E;b=vUO`TNZf1IR6B9Ed{hF@Y=8`djZ4uj3fSa>y zOYM`HCa(vqinszT5J(y=i|+PoD^%%gTQN@lE6g0VlLS_$-ukGWtIc5-7Cs?5KBixD zSH;rK&gS;N8~S~Viq~Q!UTH8Z1gu2hi;pC(dj(* zhzU~0dxAKvVpL6`(GVXaB2?ln()6I^4*i4-cV?$xlBu;A1k5nLm<)xCqh~;buh(9j zPCv=jo?@alw(82HfSb4{?5#R?qo|O2l2YfjXS=%);Xr!9>xSaZ&Q!9g-&a|XgeZN^ z_HVb0yTi|E4i(Rwc^w#%-uT`+rs4ajhyR^}VW2L=eXP-9B}IV}Ept+E5^Zt?c{qTT zMr2Nv@G(~mx3VOk5|=q8B1|LOYEXvCu4QSEtm~{Khw$V4_!lGs+W@g>&pzyNEZY!u zN-T>oi|RDX3_|l-re%=0K~rd+xrUZ$nzf8mV>~z&-alfO0yH?9LylXoF-jp6JuZV_?wVM{j4qb-EH`SxL=A|do|X^OKgg(KnElc@!PIFD zvp@89HyVH-4ehD$x|Y(Fq)v~Qm_i=8P>pi@3rmHjZ0W&^!<0ZZOQCrKFd#3ui7L-t zGVY?wwRJRM&(PrNUWlX7K}~2ag#)P5tNf0MiRO$riwC5B=llUIO7l!KD~JMSy`jVp5dpxfMC~dFo(l!p zV=Wd)o1@N6Br=7rgkLcDCTb6zJ5ky*Y>s$4+kMGyA54KQg>YRB;sA7e_>dvK{q~9| zbCXUjlCA@NCkWL$Y=HcTT+Reb1Cydb8;TvN9(2}Qe@*jK}McPyYX`HOI_9=O1 zIe+?uam8cU_hwR>DwS${jqFr|<3Fr*JsQo+zR$(p+Pz8Q&EZWF9KzMBC#^qjrJqlJ zUDY1v9#7C8@LwU{s)n4-v4;|W0UUL>=%cxfMmOwqGvF4rUjJNY=uQ|O^SyTQ*(~{+ z#_k{lIP$6T9d;yc*=_^+&rG#*ZQ;r1Q#rhI?9@=HNKw}QphQdiyIJ8W8JEP=FH(k5Oi;Ih? zD*|H*gDa@Viwg^h|JRzj>CnU=AkBm!AxJHL|5j7OP#d6N1nB)8sgUkriPE-r&h{Do z{1TwteFW~ZEq!UME-w33DJ*-*nJ#zfp|zN8Nd1WuLc7(Dh%5HXsz>Uf!2#xBH|>1NK3^u|H_fQ zk>&V^^6}Rj36E?-2R}|G z)6Ea@YBwn^(Jz>{3~U6kvpswtiJi-rv^k-8c81#%n;BVIOiqbM0TrmzS$dxWtBiv$-fXEW_7>j_TxD_~LZwcn~x{!X`R zujs*DDJ{4_e|FKYo{_Jf8-C#uBn)GOP*@bC@KEIlj3SF>NI-%rv+TgOQG&t%X2ncx zvLjFZBUxcD0{Q@sJA7gox)EFx5{=#rrvV69{GcP~@O&aOC%f~9!h2wZ|E~G%MkHCm zF=U|li#_(4IuN6l)x-P;F8f>_lsopSbk<044xPJuntuY--A!9|D8957?c_|SxWbU2W_I?z^0O!Zhr77`Z>}M|5(U6X} z;$(2^1N8wARU<%Q;XwtYv#5Q+4c-`(r~xHM0h)%`a9eBZU& z7d4S4q8T1%uWDaVoO~p8%nvWF|JeH_Lv|bU3nD|+9>EtP$rpN>JW(8;2)##`;eI6u zBU#_y%p>jXL7^h=Q0~X-5uEn>yzzY@yk2~7;B2=L(n$#qcS@Jb(*9TH!xGBy;lQoL z5XjrnYr!DGhr&hM%Tr8@9_969AEXBJ8!tiy^X_-3kpj#|5g#QSQ`-ZF57KF>lq4Rb znjS{IK9Z~Jle-6Y`Z{(OgkFxIqnft0JH7sNe}q3 zUhTrRe6L`czji#lh~sT)$_=k-k#U#6z6J-jULWK_oGgjk3&}_h&#q?#&i*(FlD#DV zBuah5p&UL>VC@ZZJY+57If90njMUl&r(ms%F=6qnK#hVlMlB}2AJEukl#-j>NvAK9 zC(;xh-5fpQQm?v|4q5hDHl81qf6q7+U3FLDv>4?_{;uTf);h0M5KyUgL4PCoA~6u= z?Lh?9?sHif5@D1J^|e4`>IBzij8PYe3P7ft<2?D*DwT6FF`D>a!i#ivY;FK|YY??h%oc0mxkr7W^ji{_(8n?}6(-I%R}!PE{%$LwqlL zve*6VoAs&T^(Xa#52tIOJY=BqOWH}jI@dFylm%%zRS3k(ad57GED9}NiSMyU2@E$A z4F32&$169S2uTtTR{qRG=Iz=q7H_Ttqv4u@-~TN>@wDYvH0)K`NCJ$-5)=&Syh4mO z40HjtTN==uTa-Dbj2ksmO!E+;iN*K0jT!a*UVwPu@6SNL(ZL9v)dJTMeYi3p%9Q2d z7TT@Py}F@F^~5N&Y3+(94B1Co@NrlsnCT3%g8XITsx!NS}SMrAV*`^m!EYj4LawdGjo18b!Y=3`JHn(IGwb%jA z1KkMu8?Jx&B}5!`Mh%;)V97|8ef!c6b=-SwNU#AkMM3-WX$sa;yMaieGJowH-k&2> zbp=4}0q%i_mz<*`&fYfgSn`iB(A3Q!5SYFSEv? zY-aYjhqKgQX_SN}fCbZHrV^SI*uRT|ACwQV&SW^NkYmlBVb9r#3mEn1HluVLX8d8u zJ6R|SI7sgnN);G-^H>$jMXebX=9#5)FPcpgj?so^&6<^!jZew6csCaWY+BHecd(d= z1vI>a4D*A(SThf3r$rddD&>v9-1lL7-clcqt;?+}!G2ePt zV+^JGHD3Fs)M}fF#vWV>FZ%g4W`YVmyl|2HRb*_}4j`AjD9-Wx7C&d$6tV{EO+v6W zOKro4ff|%~VIrTdN4x7n0uA{S=$wz;S*d@`W>wD(2cX$neEA4I%vrVVP`7O6piP^Y zHVM;a26|S*3L*XZVzk+izATvSIi7+leU(hK#41qKQ@yFxvvX07E*a!}u3(3a&JtD) zc6H~C{FG#7C{?3HUN1wN7L$whtW?cMW_eL#Z-ssut#zNvOy0+8y9rCo;b>y?RZ)nG z8=HG)ibadMuyF)y5A?|t^?KHwo30hEAH?fqGkm7rXrLa`Hv6`Ax+b11KJK6QMG7_l zVMnZw>EI<0IjA!<_1+C!!CnV)ChIqS{w|t7+&nnD?51SbvX1!px`G1AS;yzm3Q@EX z%Ic-&XQd}Gx~z3%8JB(s0C`7^o3s7DZ}0=0_nXmYGUx`TeJ_pAG(m}Ep>HsRX#B1d z1&OWXCXd)Pm$2(Y#V#uny&B85NU;&C#Aw#`EJEDnLlMS9mmy$B00_k0XD;R& z{$=i(=50|f;^eH;%85%QK;OR9nS|nJm8|4X0(3Z_Pcknbq&M#6f z{Evf^w(gMj7Fgz3Nf#UF5sIU1_Na&9)x+>Hsg=OKrHgsE+bscYRQxgaZ`iP)-ahnV zzjcldp_n2Z>>T}|&C>TXC;e_M{Z58X3C3FzalB&ZlE1(E&jzI42fkjv&}PG&&R`^G z7H<-3@A2BkqLr23-5~$_aO35SXNHO`+}uyXotXX;!M)^p>2#0d|LXp>hm@Su#l|6? zx!8K)K6BsuSw(KoerO@$Nr^0(S_t!^LL|nG{ppSskTAsm_9_kJQdW(UVa5?(fHGu? z2uL}{u-w0Fy$h+*-Eyqp^pRe`<{Z@1vaB!# z9~6)~V6vX4_7ESbjAy$>4*d+WymtQcm7T%EaC##I)A5gjor?gfg#SDlD#FeMj)<+( zJSd`pn0~}RClxiBKqTLxTJa$pi#wo+`9v84VUyBHYqz9o?`PTpxT@xE_ZS z_gB!v+-a=ZjR0|rj712dR2<@tm%1FTEmrv&u4TB}gyaf@GdSgc~`V-z?^#*-ZC~+&#?GZ*( z)%uNhUrr+{4P3Ev$}&lpiQ$am-T)KF50tQLCKQ{ZOC+mpArvI;M#3NGC+6fhPGcW` z<(NP%(iI)4)op5On~dm^*_4^h)DWum&ZYThTPw$xT5(B;qKT>B;$2V~1D!DHnE*i) zZFPg0-}(hQ+R0;Rb|R%mi4Z;pgz4Ip)PMD;S!;CGHS4nZmwkU;w%(o6l>Db=MjNkr z(GVlIo`1vHdHqjXp7v`~UAso_Ge7qL1t%+`62g5oK##-{%ZzAEHM4rEa!y%0muY)R zVm{}jbD{Q*rhp6yPk?CV@W?KSFT(+z_1M2NbCNE@ zCjv#Wsvl?%vu|B5%!14YsA3z$VV{Wzq|=WmNE&NF6J*mns?wJ$7e|iLscgtA&Tlwp0%f^)RQg$XMJ3;q&*boXL`MBI! z|0k?nN>f-{J5Niwk)>6S@r%}SH^1jf?{VA5{dQuKlOaY|8=rh5;$wq+vXbpCvj$9MDyh5JZw=T&Cgop?DOSCX;*hCC16$<*(o<>_wQa)M>K?&eV5H1 z{ou30bR36@rry}bACbfW>$l|2<1R-UU#KX6Z^KRa+gC~3E#4whb=mUsL0!uB&=H3J zNc5UIjf#lz(9WChlDhb?jUs&9X#ze&GLjvC&*41fQdg=b3nKtsC@&QO53F-z!N z9a(PeLER0Gznn*Dje9|8^^8WNu8abOp*t+qFmv*sAh8CLRd!F@>lBG3bHH$h{%^iS z1aTIl|Nc|hIJqur4HdCn)gH+*?Xx#9W0Zx+uPg^-SBAZ(@wW_wE)uaoUZr3TskIPi z;mV2P4G{$WkqIDNnYa4*CJ*Crpz5&4kj*(C%vY+jfXaEW=dQ0Sh_N9F)vN(XKrbL` z$d~Ah#6nws^(mMel7J&CKK(v@UB|TMG!U_L_=V3msLaq?N~n;3W>yhIHTVlny_?WK z{0oTRBiU8iwL44BomKpt30onamJcaZKQ%W!o6+et2_bb{P1>hOorXlQeql0#-F=6M zcZ7&HbY&8Hc8ET?A{%ASG+Z^3o#6(JJQ;y>ZlD2g&D1I2OWqvTDu5#g?MLLxl&ja8 zUP;PnCaCs=Q$zUS|2X_Jqd#*aTpJ%@%G~wDrw3n>;%kgA14S}|>r2kTwhP~IB`F8_ zDaMo;JB(m14Fx&`aop|FW3TT9INQjKj3l$c#ifPErp&x%&CSIw2cC~(wD;O%&b?5V z&Ax`*@i=_N+~yP)Gd0DOf+I^=Sj$*cb$Gho$Eh-eVMQO$F2+ami7ah&jl)^JW2z)8 z5u%fYhB~~+B=Mu`o7O^T6?Qn7;;T_psN&eF%3NXhuxOFX7~Kw_A_%Iu@~bW7!b40^ zm($-oA6u%tcAz*2EpWXbtTsUt^pv|)T68*fVO$#SHgbHCA5}-B;TDTqUW9QZN zbZH!5XdY)ls!BZhHw6c!;US*{pm9Z``8NbQ-6_!Q4-#15%CS=AN{?m@az9&xiNilf zhXCaEJqoDsOjm59&`OHo@q7jzMoVzLXj|7qbDLY4PgTq!Zq~j@(*#AN>I>LZDRED< zZuy4seV|iApeK#i1`jddCLFWQ#?BQV?pU}{wB$?XgQm^J6JRjujX%89h%A{w7m#R) zWBOHdb&}j|4P(51!9WOd^OtycVRw)+2#PUkNg*w-5>=q<(j5Z1Ciu`{dF3AS&sJNW zoL%h1XOwwzPX3;j9+hVgfuXB=B%^CmNk%R-nlHOa;tkSEo-_@$gWz1n3o&J3`3qP^2BDSXr*nEY$+(h?3G^{y)aY!pfhB3o*Yaky3>y6nK zLm1lUhQx~F69k=kt^2SNU4uPffzQXeH%XmYxeZ5B9hbKvgHnt4>WcV z4sEnluvOD!wO#3cxD&$>iw{r#@Pgx>#)Upu8%PX(fN?|V{6SL7_EJ}=%8I6_Q0~@^ zWW4KSkV{Q_zr|Ux^2P_k*eaTL=*xegd|A_<8sk2F;z&pviP$~wH#fn^tRM0X>g|ov z5>C>7@467i4kQpPz{pD&uAuMK0=}O zl&n_<;}MpU$0O4I-`|(ue+$Q>Rk7*`LXtWk1RM`_S3c7Dq6}P8DA|}e%eSxBYiF5m z4bm)DcOyMkl#y=*a=n~a&vSU`J-kiJ zJ;L6bRh4y5Go$H6H4(tQ#YEL6A*y((i_2?^e}g`20xm=>c@jmFj6XFaxkur|@sISo zjsO+5aYV^{Pb+N6O1k~;p)hR@`)t^xhbV86W6N4{i&O3DMCbK+US;?ypg?OSYO7ts&a z&KReS8HQZ?HtF}AnRl|67dQQoTyYl@SGxdCVaB_LXF~oz{&d)5naE z$}f`oT!msC`>{&&>4!;KY;UohDu5-6xx%f>_<0hYO(o)It~Neqt*O`wu&%hWY`( z=_!~qOcK`3FG9w~f97aF>fYWxxTQz;|6$QZ!5@z{T_eyB3d9%jX%!#4hKp{z_t?{+75x z{P%Vjz}e*TU)WVO%{{MvLfIgIfV2;0fc0q(06b+!MrMzPhga$3L1f6gF0>XEH722= zs$WDKsNU_YFhJ0Kw>B{rtY2s*tyelZ4IXrs8LaD{i0{X6B1y>Wc zS#-l5+z);tvd*(>?47CfLu$w>$KG@GgLkvL(tR1$Lfqq_&Ysusg(bX}A z@zhR%SUPnHVL>6=@4F-gP)nj8&#%F+y6U8)5tWs)?HrXb2jsgfqbvB)$Nm6M$AMXQ z_V{(B)_unV;m7^+w$&%?j&MR$K=5qFOvji`DH#hsTHI7O*x!DW-EO3Pp#@Yhf zVha@9LlkyzBWV6LU=?j-?eqw3ItMU|4FGK_EC4pUr`00LL4X26i@RtEhF~75x;y{q z@oj`h69cz{MT(To2@Y$0GYeKSdg5o!@i2;%+`-7tAeW2k`0b=Pwcb5u-A=xO&9Bp- zaNlN1t3kKJNlQB_(-#)K_s3JweEV*;K)CT>7+Uf#M1&-PHQ>9dtFw-iL~W>Og+KUv z1pg%%Nj<;nfWIpGaa3d*xb707r-2_Ym`+>yswt>(6Kk|P^d1L%f`r!^{091cy2#7I z#lSa*!mqc-=uV>FB1)O^;l%$8!_lLe+w+GkYhGo-$!prGDX|aeR=}jx%b9~-_32;^ z1ZqyHMQTi`@fTwgXTYRYh(J_TesJ(Fnx7cue8K=of-wXXPy@sxzJTzC*@E*=L$x&L{hRY7okku zsJKJP*R2RVQQ}n>XI2&@8q~wqq1m3bWe@ptH#8gAc{el~=zswa4~`UsrMgZIwPs^e zUYxv&XE|7mQ*)k{yAHvrp-$vS7||OpWUJ{tkPY2_diHXJN&h#jnKJkj!c}rkm&=Ky z3$MQQ1!6mP%!g8=o7lr4^R-~ck%*z@n~L_eovfa#x_Cve#Fir$vfVDL34%ud1Gwj1pfmW60#!EU&=w;>d-Ey~;EQdsL0bG8o887C3 zoqb<^d$@n^o!(HTBM}vuukIzYnRZqN_wYOKIB!SzH@3WI^Q*0G6aV?y*lFK|ynbqg z8}IT$wLwf*Z>c3k8$2dcv0YQA^TrwBGIa2U+C4oPZ7FfaTS>bZ+)rpUeoVQh!Jc5= z%*;(_uJ83-Z3T=MzG&&mdwS|UT|`D_c6CKt=YA)B({ zjNj(beL=G=E9JoVKim?Ol*Qn5eP3gLjlt-W$L(H>8m%!AL$O}VyrB%e(I8014h3<8 zMD*pE+#N~ZAaHspnr)z&!(-gduijGu0fe7pzKN7KN1|&glveNW>`s!_XI;nD_S`Y{ zHUg*Qllm?6LrqNAM(h>oX>{4Cj+4Lyns@nJZ-cOJgU@6})X&DHl9urJQ0d zmlB{~Q?F@Ky3+*Tr^R<8uH@Em2s^ckH%9a?AoBmlA4olsC!7`B(X7k!c<pGF#iAb|PB zkkK6{m)Z)ov!@WQj30XwN;jW1V-CgEqSSf>tz1jHp*T&C6X39rkuOQU8@+enT~t(8 z)7i>n?iQi;9f_~s(Bas}J?NE`clkbE$K7e?=W-xptgSTE^v9oK3{&b}fxPTXWYXh1{9l4796Z)!cM5aLoGPaU@zRLmWv(S-PZw2t>E5R}N)}RApGZJ! z)7P^C4iF&0Hz>|t?df5qpzXe%AHri^mMGl3yd~yc-}Zb!aDR1Ny8Qg0*)FYLC|Ow^ z`QwZq1ILFe#z@LlPV7KmVLVkIG)LU9#;w^`UAA9pTpXsvX5+CB$3Ue7(2;zRO~)E&73M%On{sb%7$3NfA;L`9nthphCgjB^m(HGj{D8|Jf zY!N{LB~^~rGXZjkJ~9DdAv@K~M58U^dx)8vY}f8k8he;y^N92d*1SuU%u*#w&tF{3 z47UlNQX*z%CJkpNF8A-7c>Q1ARmP&WY146^W4A@eKa|RCT9q?_ z`YTGhl+WX9Tqe_5Njr%-7Rl(fUe(Ue&%KazY=Mim1WSYpe0_r66xDEKRi0Fg+|Of6Z9;<`&uY#`kex@UmG_1! zMskkP*R|H-^^1?XeXLJ(|7%jaz#mBpw&MxUQj+e1l zJzm#;^(R*8x#_(}eCQhLx+?43MJxW|cxDeT&YtS9q)gn{!Y#qYjLpGIC$?NXaI5_q zDSA3|VxiN1HfW?=F=59mC^bB%(^~|;8n!8@Y%jxc2F$%VYGs-+CyBPTdk+k*+05yjkSS^ z*2=){lwK@jj&Lo8aXR=g_z|To3o4hi7U@)dptU%G!YB8L zUpf2;?tM@J;qkwbI;`)>>BD}inx)~h>A~uRfKcFO-RwK&_w-kmg+Ui~zt7wnx%jV; zjst)TsTU0mrI{5K$(bJ?$rmNb8u~w$RWtIIJz`|L9I%%|Ej?W}T_wwqVAfvUsZn3dv{k&a-bRg90+ zaScz{qgZWPPS|nNe299ZPH~m5Eg8h!B+M{0+lR55Y?2Xgr%X`bN1^f2?Y_GBP9X)7 z+SF?Q>p|BFsvRXL&*5emHJnabpWn-@V2)Lkz_Nd3N(=Kbslvi{fc8%em?x-RvZB-v~vBbiAu_hWGR2{4BN%rBgTE$%I7p)#OS@|n69rPh84tV zLb6<=`#HoMMj2nz{yesG=x;V?&%S#zdiVr(aXSt=<2c2;CBqRM<8paNBj`m62Q=5v zWgMqPnME4ilth5nB24$;X+|jpkJ{nWYnkQM2qUAsl3O&FubmLWw$GJzUUGJa#`OLr z`A+?)*IqNtpqa0ujc&*@nvn?_m$%f5^>~9G&7i(trE`zdU3m0MKJlRZ!bL^2Fo+NW zZyz?pkMF#5E_ZPcDMVyYA%#ilJk=c|om9e4%GHT-?sOM=go*&OEJC8A6g01%yrSre ztwfZ|S%XmfKr|2!%mqt=-NBSSZ!g$O_DaYXY7b2~wsXPx>ilNASPMJBI@v|m z!|t#_mSSl(!^7O=jl7L_@GgFpC-?wQ@(KQy&+$dR#8-q*a8W9%MZIVhCq+zL5^-@` z42f}(5g!XG3+l*2mi$8j2!fZ2$e=Q)k{_r>{-mhM_{^4bTY9 zIB^JCP#;FNB9FjP)NODadgVOz;nrKwL_vHxWKa>+(K>9e7}i4xY=BbO2%De`@TbkN z1p$YcEek!B`$b-<1`aCiQah&ae8<2pT z=nWu;;VvZM9*n?!NWlXbg@-T(k6;`g!xMN46YvZs;W?z?1x&$9cm=N^Lk_)xY19hd zdyxd`crm~HMyCAoe^X?TjSS(19VC-~i6e_~rWDFiS0F1Pg1Sl$Q8ltgPEr(HY;Y&; zJcb?oYsY?mSVkm4NY&GK&i!%k zx#ymH?!E6#%LpBEN4}3U;WTY$@HWok3g(PBj|DBSk&B3$N{yCj+}g*mbE1M-LX5$5IJCEvq>Uhk71;3|HMYjPiwi{wwp>$riNxP>L$#xm}p z7)>7|i=>+I>u6wGyQZ=h+R`1eYxY^B?Q8RhJRqmSwE32B+FXm?KaYX(6IwhAB@8eT z&hfH3ztiD+p@gzoCf*%LzZs^bN{FRey_4vXpNcgza>d%+w020+$c7TitUGW252R0p zZ~L9*?Gnn;XVsk7`mS^j1LdqtG-H6Nw2u-*ZRDuE^rPC!}=jpliG}hixHY*aJ>-kZ5%laqtFSC7C&7AZ+u3-_$$#;{yC1RJbj5~VX)%PBa zE6Libe~2d9{M{kDWKWwNZFc4R#v77*+W%hECVt<{eXI2X$=>lDB!5@C9{AnNC(R)1 zIU^l=i>C|ZMO?-l=COclSj6>YF68Z0<0^aBP(f8$jjW@g-L`z357|NoEHDr8COstg zwLQSu)S9PZMyf=X$qTp$r$yXh`Mj(HmgVoHmb8^e?b;9YACljVT4&Oz%hqHeUzcQfl{# zvQ_CdR8Tdqb!?y}ze(1~crV#j@&!~r=vN9i!a_e_oKjh|79jkpHhB@ETdkM?P zqHcwbRq?)t3aVJg25Q(u9b0JNA)08RjSjkq*0Nzh-;mr(=52o+s2e*)()Ap_o!(E+ z)^3;`BQ=i=k%ZQd6an;w+8Y;N2yh^U~ z<_2ogn`E8bA{%sX)ANvQ>f1sa9dy~j`s@@MpN0B;I^u~$UW&e-Qe!r8CZaN0|9$Dq z`e-?><5ueHd`}#*ABt}PsUQ0o7VfFV^yEoK{)8VNr#tj<8rA%m-L52GvZ(NmVm?>( zO(Q(NVd+|N>aMzh*HA$f57d2(b?FV%u!%ah(7?9wACk?l{~lU=(?-X*U9v}S+|}$G zlJPrK`GNMcqjSdDnffoc^s0Q($~#U1(f^;`EBR{54^g~V9{gW@3IBooUwsXq3|G?K z*xljyB9j>VxVp+)*ki_nZ7R?C-$eYMSF)l7bc|QZVMks zRpNJ0ylu%cncaD_$<43+o_6=;d(u17pGtp*Bm(;K1O0~5kCc5U-A%OfzB#1tsODi! ztH$4z@2eXq8%m$h%Q)!aWXzQdCFf#PPf5-2nAv3C3fUX)3vb0HT`jcH!LI&&dWK}W z`^QH=p4X4r>RWL=&qT|oodnUtWZCE|MtJ&^XM?bq*6Cy;am9Gn1*UW3(L~~0Qi*bpf7FxM;cG3+MJ*$vw20U!)%JH zqb_Qaj+*qzZKElj)!W&cAF7ETQoB-ZFw>~9INLKXb*3{>+fiQcsz1z*Z%)bM|7YmE zzT$sH#%|)4a7G(W!|60 z-$#`d|M`Bs|A?MQ{|kE>SLvm$bBv+Q>}%loxkK*Pe=A9Ef{CopA<>)bJO4^==Pz)? z=&wBYP41I$7d?#SUTYLQ!4W5@vEK=Ac!IZsQ=<1R&&euL)WWu!X85`L{+FI=*zx>~9lKimD)hA)cxvHu&t@39YwGTr-`a(Ho@Uthw8DX> i?aujQ=(u&hpzqI~p4;ck@C%mzBmDYb*-G0;0000+1zP+7 literal 0 HcmV?d00001 diff --git a/docs/_static/fonts/FreightSans/freight-sans-medium-italic.woff2 b/docs/_static/fonts/FreightSans/freight-sans-medium-italic.woff2 new file mode 100644 index 0000000000000000000000000000000000000000..16a7713a451ad09b4351a550b1d54345ea7c08bc GIT binary patch literal 16000 zcmV-`K7YY?Pew8T0RR9106u^K4*&oF0K~`u06ri90RR9100000000000000000000 z0000#Mn+Uk92y=QtyUZ$24Db$5)lXrftMuoBnyLB00A}vBm;*m1Rw>0tYHU)6B}o+ zHF(ZAb$6>01TL_zVB1XU-43pE*grTMVZp|M@j$wk{r?{m=olh&vq9$7hZUe|RtaN7 zlR5}e<*$1ZogA&I8E^UN59!z^=8So%aH>{^Kmdxgg?s56KV>;B%`m6cXTt1+uGuAu zKsZ_W!ByT%HnKe4P5<1yUXEqIa?%zH=`aEhvj}jfhe)xD?uq{xqwV`AY9WC~8s07x zOp_;=PSzC2o~Tq3@ghUz55YD&5E~J7x~Zsu;!LDfEFw}HtU!C4+0*GF<8^8N(naOx z_KW;20RrUyH>c)s`G>nYwAWbuUy8shuu}>YyuBO^6d>6Juw=s8-V@LYO~NovAy(l3 z_r23xwLB9QL&r{hgfP3Kc%4&x%2oHC%V4#CR{N&|rr7{q2R zc!C7+)nGw(F}tIo=%`ML_G<5_n%km7-lm~C#Zs<$8xc?7%)|}J!ADx(5K|Q|2wa~Z z>|{K7nVg)wR3?>5r4ormvgzKJVac#-YU4X_t}9#Kcj}k+c3}%ppOL9#CvgLC`Zas) z+xx$5%DEya0wV}rt6cJyvhVF?;T>!a_j1g+4-45n%A}zJqY4xOT)!}Xd~y7ZulrNw zswA+ju%=UZzNRVFn;YGop~e6S8X7QqlK9g3SLWKLa%*aTDa@Ojh!1&4!o zw*g>T7!vG@0JHK7T?7$FK#XzFQ&#}=|>Z}4Jr3LXgJZC`9= zlbo2d%yhrfpRJk2EJg@ngb>3-m*f#40KZl}Tmazn#*>Bn2MPg90+s;^1jHX8U=a#D zJYbwJVL%>Ut0)F`U;sTy&4XKIaSQ+?U^d-$Aj`{G`Cn-V@d%z2Xd*NndXe|p3T1WE z>I-E9L&5@K444U416u>z1-s~P`vY>d9=1MblWcRq7H&IYd*4j_#|~+?#-3xJT6j+F zYwdr6#^I%7fa60rfFE$Gb^2tSaAqM3k@J!3kWId;Ps%Wd`5PP_o z)KRh~wvY+2&s1Xo?$c%q`JfOLlTufMz2pKIcYIiWtN>OJD})usieQ0qAWDol33!sE zNRuH;F3oc&99(pz#G#B;fi(}T4(w_60+9l!2VtOrMw)1*g;v^Vr-M$q=%$BW z`dG*SgDhf*VV1CzWh`e!SPABURViH!W`S{?1k-x5#3^3tE9?OQEKjE9W@&P)66+S= zNU1Y$rS8n5{(2g2B$S7ysF@tHEjbDKj)Lr6YMYj3wFSbVa0IVNGc9mt#fBXw^#ft$ zny=@96kuGZ{DlHVgP(O9LFU;qi(=4x2tQ5$5k!O#VVnqpMR2t!B8G?~5(pkAiAdq3 z5g9}lkwfGW1w;{1LX;8N(k|p0dT0YO(s2t@W;)L-u3iEgv>Y~G&|<$@gKnH{`Vs{$ zJ(W~h1%{l?DmWqdBC=!7Od7MGtn_46RRCf*jd)n>02-*8CKCvDevgdMO2Smy8*@dc zL`&ZXx^(89S;EZK3wmXSnrT9VT+xXQ;Yo=SG?zlYQV>d^4BUk!A*igZ6U)>{| zj?t?iefU?KfnFC_vZJ;-?R7BF@Vvz`}2aFBq`9TyCLv9!2NP=XA*4s0R1@uuI4dHVwGHXp6z4vDz zS)gDUL91D7q@Ie=GhOXXT^}YAkT9}PG98uX8rd3*C5#hti1$?n#C8loI|&m}Q8$X0 z-857|_f62LYt*HnC==Il<=!JLzy=vxC6)Lu%U`$Ni$q^(GLX*FeKEjxL?n(I)PJDZou_s2bqQqH!;D z%B~s>@vul%6yq|ZUhh(7+7jz%pUJ}VTF6L=avmLv$ACH_&vfb0XTXpV6Q<0VvtXI~ zJ?OEmy;OFkJzjEZW!*;E*Wp>+G3Vgr!`?U;T3_8#-Y7(ONf9uI6h%=qP0=PXTpKkd zQcdFgJaxKUhLyQZ+uAnz!FcW9)AH12Vax$FQ?rs5hOKFa%XL=^DyHyU>QZ}|z7B-p z>``SLOmw0R@sG7b^!wq-altv=Yp8itaK9C4Y2$L3(NkgNGo zOx7cjJTD#0noYBPAS?{)#?NsMb>$&PkoSCF}fN-LNTLhz$j--Tl8%c{PS8Q3YwUdy${Ua;>lq+PcS)X5{Fr_W) z(b7jF*@A7DR)ZRKM18KhF1ZQxb#P(0uvleexwa{)Va#m1qRz+6_!l6;~%pYI%~;GgdJ5 z#!X;g#te@ND&RApVFH#|#mpv~In=Yueuw>%0+$6*Loy&Wkb1}>=xOK!^enU& z+82#Q2cijRI+}ytg~4K7zbMZ8{eJzzF6-=Z$k7nPj4J7=N!_mfPSx#QH}o7d3XOi4 z8y)fErvJQC@8mn)W8K&FOPWgy)Bf-OzuFvg)Da_g+iVr;qlt%CY+nq$0P(z$VUTtz zHD5gtU|`VN#`Z^+WYP~W)2}i7pMt^q2jBwdmgM<=4*LN=LK1SIw6WpeD96Oc#V0VB zEH;PB;|qi$u|z79E0ij=Myt~sjEPCfDXD4c8KAkPtz+TvinVLjZCJl?^VTifw(s1r zYZ-R$-M{a^p@WAdMudx2|3P4V?J#_{qaZFJIlQx^eqKV`oEGdrxm)_u!)E1Iv~#9Xor;GIRby z_2rA_0FYk=0FD516UZiDxdGUD1pqLw0qw23`B0lt(6$fhFcC>)0Hu(al`lCar{s1T z;Z`tNw$<^2hyey(u0E>+_Z~eHI<^g$jZ~1HXB07`V>Qfu6h*K*pI#z7I%j@pf@n*2 zVIzBNr#z$DWS(UF+zh5??Ju$$s^kW zNiYN6KYDK%eR>4|rGRMPQa_%Iv>Y@jbC%H+5`U`|T_ zkQGrk)r|SLZh@DHoWCN;I^Pv?=_VvdFzi8l zplC$v7$3!ayUchMe1uN4_O;*~mQI>Q|iPMNo2J?)eyIMw) zRF&G5O{J&6W5+R5%yke)qN#bjBS=tE)6T=hh0OIRt++}plNcUH1(Pb5#Fd@^fzd*N zf4mdJi)___&D#WC;zVR{bzXwc@V%mMNI{8;Z$uNb1IUT|KaCWU&TpzDD!0kIdIO}Z z>&r18V{dg2=d(#N4Pn41y?u{>%W8dekTQ+P;a*@(8-Fl z(I9eK+0?+c>}Pq_3M(i40-f5mPfQtp&kF9(+q<`UW6`wkTuT#6^x2|HJt#!W941pO zz9=)gl(4Fyt=W{G^dhJ-f;^Ige*G%It(UHXM;Q=Gssj%*KB7}C&#g82-u+?-Iw?@f zX&!;DO=a{(pDqIl9C!;~COY}&F)-S?%mEjjFT zYMjEAQs=7*A5mSNMMCvT24RG#aC9}`xAr$kMG2w!XX?aZto|^n14XP4!4qZ$%%Do; zue>Yuxv1i}APX+=i}SgI3eLq)l4Xm$Lh1DwV=!FAJ0I!9(nOoqBN-iV z1IzwonYrY$b8zoj-bCh8t7i3XNMvN5v(PEp^}^lUWDd2FMVus6-r!(!{{~*G$DJmX zkIG|DbrTdx?t`>SGbc*;Ueca1EY<#A@Uo+Q;-;)Ovpxls=kI@PmUdS|NS zq&Hdt6c;<-vXkj8S3AEo9x5IQj)qyy=fNL0C(Mce(^yCAHa)<)m?*N05iq5L-E;{F z3SG{=sJGHn%F6?DQcZ8wIK>f${_#3HHZ)9-g#4b35iu4br}GN8w!{;jpVM4D4rkph zLh8a%r}ZK3NnXPW$YtHPg0{K0uHGqduEhS`JyuuTeCTuv)D5wS5sKTONI)B<)i0=2 zKZ%Be=5AU-BSZ27zTTJv8OK%xtk5|0?8mTqkRnDJ$!sY)5z;=eooYnNDL?G6hpVpL zlKYTgfWg9izyOK1056u3EOkp({Law2~;D5??#N_I{6`Z5!eifb#_=d5S$jLN+9-M)o=jzB!sT z-8REo1y43?s69F@OXPZ+0EC;iQ@UVwO|*Y|zYxCro=cCkk->sR>BRwnn3bdfW6r2K z-rr%$X&rGa5AyqNdVL(sg1uqLs~3R!DIK3FS&VIydbqS#%a$4@>GeIv-l;4-V?w`m z{1kGG@5zz`xQJKq?UH=a0 z5PsT>LV0;44UFv2VZNTn)jJEqu?bGiJE(&uD7G}EhIYC&01&Dtig?=D3Wt66?Ti_6 zr4Tw|rz?z(ddth=Hk^LBLK!_AFyc429xh%ks<;dXE+yFu1p!DY=W>eId;!mZ^EpLi zp|(x0Z~$#_jEU{>yRELu3X!`~2Y-0Lh*DOeHkSX9PuKF#JVg^(O_Dr;GLT^)rj((e zi*@&&x+N3tiekZ1*G42&0Tq7N09302apZ!6(ni`>o9NcfXgjn$nylS%$@PQiWJl^a zl*1*3n~Y=3fysDJ=wnBxr_%|FT%4Y2*o4~o+J5++lXsCQyvSSF0?fiGJX8#F74y05 z0GMn>j}z=lu}`KT9|O3_Ir_AH9N8wARqxbm%$Z5*A4pDus9!+Ri%G`so}2f z(W&xUJ~EM8`*01#cII|h>P!7T=HB}E#jmqyH_@PdJcBGY?6!?GJIjiCnmFo4m#TGk+nB`?{-`}yA=Chf)X3`dhK9_75F(Ma%$L;EWa1 z8`b8m#_!IL)fPzaD4^~~9^ur4e7EdaMUzh}eTr)uPjJL+N6olFLVqQPI@cMSITp_E zm0ZlBd2_wH#3(&u*x!XixJr&#!O<|^UvX``hVh1{0!O$`gC@MALIXGBv|SVPa*bYh z4vLr3r~}R^aZgUzFsr(SYxpv3)@lB>gmVyCS-!V$;lcT!Z32o?;Nxlm+?r=iv^C?_ z4;(yw7Gl5yhvJie6-;?lb-i*!DJTaM*HE$g|Mn)E$xQYHSDsHbCgR!nH^Pd&6bacW z?NFZ+GvFiitI%f_GRj!I5v)VTy!!+^36?E74C5`S=;CALlMH{96C7`^BuNUYr1S~(MWqj`-tg)Zp*uu(B%`-vv`9Rdavb8g27vNx`duP43*06IR%@(N{ay@D;tD-v^z@;N+CVIK!}M_O1c;b;|XS#E)p zZIrb_3EK!%zLXjR0|Lq~Yg-;;>#po>I02xSZdjlJWDxdc}i7&r?a{S1D>u zC1r!bnDjH3toj6uMM1K~XxKdcJ!vZ}Vxcf7v&?l7a8`9hVIl_9wvJ0Mz~j^o-j3~1 z-j?mW?VF%HV9$FRiJ8F0RTS_rhuXAK3<~(qNIywIuY^YR_TkdlKHebm6y3|JjSf6r zE0^yoGdGlFR4z;Z*J~_O=dlzrmNa{Tk|me1WZAV~vU|ZCN8$CbwAX3?b=L1U<*DMr z0_?+?f>39^BwQ~`lf(yx@bzpFeriMo9Hqc&y^JZOCJt7l5exn9`Uur@WsHs!9q6_$ zw%SQR<{+fLpKu}U;NS##2!bbzNEVb!1&rimP-%~wR0mFm)-2s5mMzSJODmEghznr; zO&AiERGX4!=&VhlqMOlWl>_lOLMh8Cr%<>>h za;wiY-h=Ad`jh3W%qvo)cW(|L2am@L9G3^RI|R3ZKn#r6-)-0V8;sYgg9-UEikw?D2?M0@t<41GEP~P(KNZSdEvRMgWU(mx}sQaoA@4#l{42?ZG7^2 z)3RHm-sS)*U1EwS7lnjw0<-j98{E@2q*RrpB_!?ezXy70dDsj^t*Q22jpg^GR6RRJ zsBo$aS|3>wFkK{2L}H$X^GHz@xap2XKyGIW(bWuZtjjDf&5)~uT}7;d*`ZCFmo;rT zcV%r-E)Jw-3&ZM+Swqq3lQotlO*?yZ9pjH-TwuIvsai1r{A(<|2w7CX1k71xg`0{* z$iPZVGeV9JJon96_LXF#1zvLub90-vENj|u=F0k{T%5Dq`{oTjCUa$(iPnr>x7k_t z1)QY1$tZ5x8jF_VEF(L=6o8|kIX(~kZ2_Yj(r$Q5STsh8M~(KV28?p!LkbO%&!e(# z20@~O2(;*sa=e$dxxRR3CD;H#e=+FZm3}i0Su80(1AbOzS@eKqQB_rCKXFd8S65o{ zAK8J?q@i=S7B_5K-!gpm#*&6j>vY}b%G&g@zRjhXRki7*eOrLsBp1!SJvRfmUpn$wkC2~qWR5;eM96{aL6a+U z=GP1pbe@3ux6xSx>{ng==DIey0=;c?Jv6UgzT~Jub`;Qsq8B27uq{56!#f0M53kx7 z(ZkqiW57fUJD$T0v=Q@g`s~CEw+!@3%XuFcj@}y1g)mq`x>!z@EHDNCDVd{L);Fu^%t1Zhb=v!B$mxLl^3Ia!> ztKx|zLMFukX4b3Wt$S3d7)hq*kjGVwgCeusK$W-{iA6c9E>LqtEKROB3D5rtq}EmB z=iYrg!NKuf1|q- z*I6pk@EM?ZN3B$tpRb4;8+3*!Qf)oMg}M0(vhT@Ar#XQP_|w&X*}P_5L0+|l9?InJ ziS|cbSsxs_ixNhmgzP4TQN=TQtS?TFXK>{q{^UG2y({3*ya=;J8pcMJLDjro1E+b5 zIl?$TI|eDHhkmD#MHhevBK#$v{c9QgJMwP4hBEVE_kv7+Q$!Vn`E=hI1ucL977v z!u$;_>0e)JwA3UO_iwT!S{A5Mm~2Iy*swsvWXt2l`gve{hs62&b^YO=RBeYeaDhc? zXNG!Bw3Y4UYEd1Nej+SfRD|c&NnFMY3ZS0!kaq-gBBemr%F0rT^x9AlnSsc`5z$_c z-89>XjC2`Wr(Riz=m|{h1r&0{>c3lv)mwqbMPigFGSbmReJ6tX8$3KrGLPI&sBj7O zbDDERyl)+tI9u%x!&M;BpVP!;#+)z%bBpbb6M8up}zR$P|z<_Z%^x%m3 z-dIk690uek*llb;A7jE=f_)-dLfJ)e7Fd)V#_`8`<7HO=%AgwQJNx(`Nhiad6;MPDnm5ABmE{g>D1j^818ai*C+BZw zz$Lm0ekKnKdimatIubIq#-vJSM`JlR__=dxT5Oo()G0fDl~pq{fgRvQIp`)ZNC)IV zp$cWyA>H8-Uz-+}+lh?sfM*GmDrUB4aj6(?v)&xp{5soLdLlUqhXadV5@W z0l7EEchuVzIhH=m+#mZ&K|o%+A20I05S6xM`o{oyJV6VvAie}~Q*7s~ zEN(Pa!uHbj@FjHut4#`!fG!A$tpoEtuRCzSqCZ3hSrWEF$r9w}h&U<*g@bR4AoB!d zeC0s+0=l(hogM4rbadWdzaxI>@zQu6$r5j>5bzUTGPLBjbOiwa+a~lL$^lDe%_=RZ z$TO*EIN@(9UtBy_jF1g=De=~0kwhmomlkd5+{Xude_Da>pG7Rr0!&0o zR0@<*X+^`A*@Si#vBAi7V_9ROz>p?1l(r=D6HQDJg~lMp@Xaxl5@IYb19)IV?+rp$ zcg?!L+{K9B==_}9V}o9;cTENLLydTBHS?)4I{nxigb2c#D9~8ebIdoqNgI0jwQjtm zx=MF;;?R(A6y}toh+AiXdYo`3`j6!f^$siO#D6U}hrHq>dFm^xP#$~KS=hV41T|(| z*uw~POrEwuYUG%EVvo?)#rII<*!BA?os}(44ug<3r{=nSc#5GDs1hH{2pUy_!kp@7 z<;GH^2~;ANN)QQAIYK6-LGQa5!VALayYz>aBTn_YR)~_lz8h|W5XTZk=b}p6oOPqE zuKNuX1*F2Dc3YK=%E?J5g?ohK1SPS1LWdv~z9)1-Wlwuoch-)V;xl6+*pdMo%-T$q zjVJPx(lg6R7ak5gQ&PQrpl~=+yC5U81tBap8+ts;0 z#;%hrM(_QfV~O{l??i(CtD@)WQhop9y7$D@3(LArOE2m@o9xxpd+I%S#wocJX*`X{ zBS%nW3>uM3m7|J%(5L-SB`EZ5P&3EFyZfZboAx@)5LPM>t`q&u;+nj`8TRADC0io1 z4cR%dG6makL;+R^KTux{PTC0&hGK(9$`YQSkU{RaJ@GzC{ac0bBq`bawh?#{r2g|( z?w+K`K|;PiqOTV!VP*i>ORRLYxM23+lmYuiA}^fUh1N0%41HJ?7#^+8`=CGM&MziA;)Li9 z2fygT-36&$aRPLQnZ3MG2=V*er2k1FoMtI>N2?yUzcOC@Oints9M^^(C0MD%J1bl8 zZ`m$Fl{=lJrFlVxv&3$~En%QZwKjq0D$#lX%-;BPHE@}b=@o_gEq;l3aYresv6=R-Ik@v5bI`2aYO$jhx)lPgt0&SGa(^?LQ~mOITx z5;vpjWUG$A^SRB@c0=Kj_0WQQLLd+TSK3KMw+(sn#XnU&!=EFi;~tk1^>P` z2@9>S6}ck>2q9BgdjJ|quXXA6MP2QMbE+ML^KmEPEU|#^;3_iMI|+cUYny$M$yfL9 zlU^EgRyRG0=jHjIr`J;oSX?(yJ%Kwfqap}w5}wyxD7BNg7{fGT z95prw22OWi8)640`P2OYxwfLM`}F#K!hwA{;CC^kFXRK5Z}#EtoJ3FbWlVf|0slK9 z#fo!Wsptu8-m#2LSA)FEFu+D0*zcS0;Tas-eKjgwmK6bvD9%{SBuoCR_3b+IO+cNx zA7~hjLE{+HTmIP+fLz;VncuG|YWryH=#HozAQnu(K>4=VZ32PD*4VAvuTP%<*8K>X zYyS0*ImpA^9Q@#Muqh~P zeoUqK5O4DC901##UN43081Q_#a!pMI^|6G$*x9L}iRcgGf8mFliq5jDrUg?v*~H^VB~QlN;`y zMeFTL{U6bROLO*g$Nu|rw0ivyJ@01!|FC!7A{_24#z(&QcY%iN8s|OW>a!4GQdP>8Q@36-&8cmBshtP>k9C`qN@+?vP`z z4(Vq0LZ1}YVX{*pfVa~E;KzFBK^iN_hkY_@;LT&+Jm@Vsb5`aF2-8C1l3)MezZG@7 z?doqD%*`4^ctk|2&|KX&Jkm=t+%Hvg=NW}+E_QPh`+dcELV!Q}y`OmH$6s|n_m+7e z-3q#mZn}^-oXQbkqocbma321-@cwfA^~L|FxGw^?#c?xXqW)E%f~F-fG@EIbh#f%p zwXu6f?37~}2P*OemTG|kMF471Ne#5v(-Hvk8Lbs0;?m{KdW$7Qo)#6fe8DBBmoB*o z07XFZ9!2&?v8M$9H!(Op4p%6X2J<;d%86(*O@EQ zDm87L7ofMXaGyBBy8hiw#1S^-aS0m45o7C{c7>Hze|U?H$E;e=-LT*|v)Cf*MKS6FW)@$V4`YMg@<0hs?83@^G85 z*_^$$>qUWckwv>``u5#*-Ms=OEa+&z(?XZx{X^$p*bIH=!w=&~DC-H5)P>Q0{Qv4| z53wEd=3*~}@z%vpe!O*I_4Eiaer-ZAcUs2S>X_-#>@9(iXK(@!3on!x+?l|Y}YWkuLD-)?`FldRsqAUXJA;N5f633_?=b2_ebksT*rye5}6 z6=w$L7yT21Q_7E^jt(>{rLv!EDb!sHe)}K5#?mMjd&RfluD=1=&P_sI^#5}EEee>Jow0m6vTyZhXmEqU^3fvMAh+D`GJn88! zk-HLbX;t!-c3Gc*S4~|PcevsNQ2)EuMi`IcdGAma#_KJWne}K#O87Qnat%?Ad*slS z&u*dMqvUJg`G9x9mS>L|!6$>HiWr(}rm^m6LhlrsH+|F--WqI1Lq(MG?kowqa{_sa zcVJVSoCs1gQy>x@oA#(6Vf6KN=Rg7;iKm^~pQ)RtEg&O^0$iGh{Gn$B0eS8>e-$84YW2fGw&(FO5+b^%3wO()h}9d?*T9J70F7G$fv^q z86Ok6p8DRP@St0Qu^XA`jkVJ{vzT!73Z<(Z!`QaWw|RI*lb@X->u%v|Df{YpQc4+q zqeuC(+qeg#*%%oZKlDPg)K3sKSn;84JA!GWqbl&73A*P4+Td$uei4u5GW+M&4$1Vkl_t2+?!Wj zp-pCQ7>N}R!dAgWA#ZIT`keY+;&3oFP^Oj+T4SSYwSfBto&Y%%r6n^%I?D!5EnM5> zy1rrRD}@*QsaY%z75X#{ZCBs3k_8ZW1$6t>$HJ<$O)Z<;)E%` zE4$FxG;*2`8oYcg3ry1i0wK&ztQf{=$wBYbvW!~ROMTi*e+crgh~g(xFW#Pd0K4xv z-w`GA{g&du(^YRwWkF|aTZLLjJB#&{l4l58ScZikR+UP8CnTsVmq4~qN9 zv@-o@P0%#bPBR(;w2Cj@(>2W*St&}4GZ`K=UIyaP3ZG~SVQuBKj}eUu6qg}x>1zjt z2_uEOFc+F;(BnU>Edh%QsFe?H;LcD+sb);siweFPcUZMJfIbwHq zSY$NaxFWYyqc)V-c)EE@fKlV+zSkw{-*UHS|1;jNRgGl@=v3cY%gVL#DSDqMI%Pmk zfIceW*LCW0{?zr*MU*izmbt{ZqOc5=?jdzk7(U`QbYw0GQ8H$^1=dRkZCMP#pwlZ! zAfi&gvF%KDWU_&KyyEvYphyiiif?QU(_Omnhh$syxCBug#yrTsa!iw)#dq1In*N+L z$L;TwCTk(c##c54Ugc)xNK4(Z6iw9=yYx$9n!Cc?7fp}ll5n{+Tf7A1U6teku1Y zrc=e%XFU?~_Zzo1W{WwmJ!D5*c@TSW_5Zn0T(E7)TxO2OOVHhN;<>t3ft8^Jg9&XtEsbOJ zTKebCg577Hn6}V!w`yPF7Ohudg^8V7`G=Ug1Tw5mdc3JISMCURxFgygX=`;$!=Z(( zk{1K#lL$UXaNaDjj4JR@M33&u6@=W?Gs`Rq(#)llUIlFvP|$$*&&#a&jVH5;m>-MZ zVitwhnBHIStoy=kDlRjC#a){rKBTVr?q9@? zzc+yM(g2PF$*-gy+zM<9VDaK%`@#Q0zeB&&U`}_FX96{EwLv{&11P6Mk2^FiKY!`XyK4H*^_R|IC;@;XKjTm$I)*HyPVE@KCC)c z0MQ$!my2bkjIl{XGPIf2#l@1s@ofY~3f@35QM)-uW%}xgVnT_X)XFixB^E0RPp62u z)vHb82$OVCS;EqTQ0vHXHHtlfTsi7^vIB(BLRuKi#ABwHWRLy`2iR;1afEFoLD-9STbq`u&;1Epuy9>hzRf#(YrlsyI6c z0Ffni;y^omZHFsEn5nWdCt)c_H}}gxwsO?v27b50Sh35{nCo--!rVwqc?@MOa9f$$ z>~PKxZIeEXcU0JLAj5kK`spn`_dz)SX0!!j*w0CP7%%;(@ik0effHOyg*lTv0hNjr zCMnmA1rU$&LK4OSEnhDkr2ti_0JjV%$yTo$8<6vwPSD8UNHH}SO{YL z)$iGs+_XCqtOUtMPYDsQWHouLQPgL1+i>|_K|ui$kRV8u3gCLmG>Y2LC7z6 zY=(|GMe28IcM;6`8Pu{7?2$t)+eUyELST&=i}q9e{pdAG@b%{{{PM1p{s~0L@(>Td zes^+>lW+*5;mf9}JB_swtx_G*D)j*bFzVJE@Q|!~;NvCxZ;?3F5S+;AsCn>hTc<^z zlr{WXr$%$gP<4ZMZ#`^>ly>}Q#+hyp+~7+EcbK_f{*Dbi-h|=x*Y*9? zU5Lk+PAk)|U-ezye;rER&%&!jNj~K1bN24R6HtH&4rnRjXacCMEL$vG#*I^s#Ckks z_y|o#A@HDsf(bA;UBCm9OM-(8mcOL4Weh4y8KO2i3f(bG$uTqmCdvebh}0Om?SeLM zFiAKRMJcFbrA&aO>L6xY<{cxTl`z@n!6;gBKT$PTmdWknxjKLP`^*};*n2^=rx}2V#viLYNN5M z+;ZqJlZ)wWe#wB3BiOX9(WeHeXl_oM#l@^a=>{$XS?%Jp^4ax|Kju$xzidx}F6<{m zu&Jn-WgFc)z*&i=shg`JTLsy&5F-Op*CDK;13{~~Rv;GJH04Vq^x z@Z;qT%!8*iSK}u062*Zyn>)cc7ZGDbX9pqwf-Nan(&f5^f(TWErxoCsQ9(QQZpEv~ z5B>zRif@Rtw%5o`7E$-2gfQAs^;{?*p z2>Y_?C+wi34X1bK>h51dOu8D!at;m~7nxUrFWyvA8x3?Jx3vj1O2(=5W6|;fYzY|^ z0(0>}SvED)qpQtW!C7kJnLfih_i5gTy;ix-oIiS$7Km?c4m3aqGb^LAY91gt-r3X+GIYmIquekdJIcT29}2@-kPp;4v$zF{ z#-Fl66|dn6+JOrhxN}FN9ksT(W>q8)YiWhb`MRNLn2GIvqxF!aQrr_c8+2fu2D;}# z+fl5QV6cNdS#QLH5VI*owEnHtW|0|MoMSzM0lKsXw0f~YI0(w-TnUuXK@WijM^5;v zA(&g?26yk^#f;+EyP7_h4=>V~wX*Ttrhsz#l;p&)C)XC{3oQ-K5`7M7;g!^bnW%9f zPhkpyw6ka=>n-Nen@~~2b#yL1?hBg};S=jDqqd_;QyhI|w~}(FaD4GWJW)Qg28K{SUwbAV5M1E`$jTlH>=_>HT=R!V>RI3?%jI zlZj9HB+{qOSV$FZ9%O8hh|{M|s7hilI`r{kgh>P$C1IyiYQV+nEJRgXmUO%wh-REo0*ALAFgQODzPxX{1{yuSDV5jB}2ofl9%FK-vT^t|2J za59@+Cw!XeOEc#et$XvdUdIL&g`A%B$Un^xzzSJ&3gqA7+({8EF|&f}aTJ+y(DAge zmkBCH804OIs|s~pew%xhhBA5CD7Ads#xTCarhx9AIVjC)5+e$KhH|_lg?^F|uJa}w ziYz-~0PoxAyc})(L}5yY-ARi^D!l+4Iweh$u+j6Vwz|>>@TxhhIFM*M-o8O+`pCwE z1urU7$(o5;hBWAz;qz4if+xM8YtMjCi+V=f)gshrw|@-I=}R_6gN1jBrn;b(DrF93NP96#xZXB?ZxsCR(OmPRZ5Ir(shGN zzRcX(S{%|w?bCW~qYi0n_IWGW#+Pg?z*AZf^Q?f=Rn(7^z39%;`m>HqJAsM{Y%p_b z5@`TCqH!_9xiA8bd|(d%n_N8y4}zM%42cPeJ(#>vLiA~(M-egabQFP3>b7z+?(le3 zMp>uUh$BmF5Zy(;>=tv-)g81=qM1>!xz955+SY(ajmI`N=gXl@c&$d5Zk|abE;Mo>tODW|k!wqQl6P8& z@Ubezm_K)yH2VvB?2qKuM|5=;ypDY^=i4P60&&l`HhhjjRu3mBOBcpE#LAPyY9ih8ED#Gccl=oH4V&tZeKYoLt;IyohrbE?v3C z@bL=>3JHr~aiU`45_m}|X&G5Lc?Cr!WjAi!x%c3aprWd#u0hn)($?|hSyxZrz|hFp z#MI2(!qOXWtp->|pf+mN=7c3)YuB&GYTIqn?XDI>`YhFH+CyvX@X-gKY_Qu|r|n^4 zHXzfCEN7f^$$1xC^hUO8F1uo{9B&P}>AD+o{poLA^5rQ|q)@SSN|drFQ?62lD%Ji_ zW4?J7s8j2(^%~S`)Z{P!IO>+Cp4n%==UzDGrB}AN?TLHtd*HD<9y#Ek5u<*0$Zt++ uHl@Q(r;HhQJk#r6SEEdr3}rYYBadhFU<8xQWk9nRt03g9qlHlRF8}~ScC7ON literal 0 HcmV?d00001 diff --git a/docs/_static/fonts/FreightSans/freight-sans-medium.woff b/docs/_static/fonts/FreightSans/freight-sans-medium.woff new file mode 100644 index 0000000000000000000000000000000000000000..5ea34539c6f54063a4a89213bfffebb244888eae GIT binary patch literal 32072 zcmY&eb8sh3wEe}ly>YU!ZQHhOn;YAZiodENedCV4~5@O$>|y0OPnH4eNhEn5_F{{zLw7 zqdz{u4@lsLz*^01oZWx8lb`&;002mt$EyI7wVlzA&W!q}?&J@aDQZ8(Z4BIh>YBg& z#QpjYzz`5}wgxsP0DuMNPwhYeKvX{dLy_Cw&dC`7@XY#&yZXtw$xg=cXzyt96YKrc zAE4=n=U!s#iE}eC{OQ?;|Azzr4;xill|S~Ue*j?VD(Ue*JNLde`=4Ezi~8-pju#~b z?N5(7IDeO?$(@#4(fzHP-%2kIY0Ll%rQT#wl0d;JVQSjU2IUIhDPixp)(VmTAlgE91NlVKbbp`9obeVd>5JMeYXmSXCI0P&cQJi5IQ^7EdP+Jk0FpZR` zIz!abyxZcCTb>fSPoPP{!ij3VDgPH=Q*wumxm30CZ=wk)d}@`5c^M&8i(>vv%OR!a zyNw4fv+2p{i=oaIHw-sEA1Bio#Yz*MJ6qXj=w2IZ8N{Q?n=4NN!YM|&SDXdp zXU12!uh@6(Ozlp5g1`>)4zyvkT_NkiM!`^8OAw1O!(c~?vk+rH0g7}nqy6RX-MNjtAiOw^sK?UO^UR}AzdL1nG6<- z_Z)+$L~2wMn|;TLzh#(A^J5$n=LG`a;e8?^JSCIQ`A$;T|EO> z3wt_eItoLmziVjE4P&vM%DiER=rl>QZFD9ZAPm?T)3rx#3h_!_5kD(= z`tJ!a_PJMt^%L!p?Gfl1YqE>COXMS`OJKOe8~zOZAbqWAvZM3rO6S>*;!9i^?Tsruct3DC za}N6O_dxOP8GC4FMaYZvU6ZNZl6E%lVva zS|rlpr;RHQ0GH@wMbdQs$LJbW7|$js0YvGBpT&Jq@{UaDu77Sd1Ez_!TL? z2uTze2o&T7bVaJ-^N#9*$1&*SRS&+mMWL>~&KsCk7v zk4p5DMddd;arU&$)ORNrr8H^ghD22(_@WY}YJD45sn%iAt-nj+a>P^p4 z6st0uu@P|$dnQ<-Nl`?zYuQKF>u+grMk}VaU33@SeH1kwM{&+b#BxWv$BdZbMk~H{ zHfQxPI<7Q3t`yJn9AbUi&ahr|BXwUf+c*VWVzh+K3lYzYmeSm8ci_acHe98PYD~cI z<03sZ>MzDqjXKV+wH#l4WUuA5FRt6o$fIe#PiU+KrN#3d(;yE$4K}-nQi+Y6bw?)6 zx%G`z3!$w>uXg?sFMkxB#t|KI8Q0R7)2g|`=c~xraZ-g%H4oUc6>%+bd1@DpcI{+x ztyX49!`{ zSJk6I0=-V5eXE<<79A7KttZ=v4Te}^m5=FyD6MKpq zCwVC+p%aP248{j>SGE(_>buEo)c^N+O0h;hkNX-aLK?_Fnu6fk!)sC5b~j>KYw?1! z!rnXrnfZppYwIB`^RKfwE+!21cQNP-QNba#qX?@aZsK!7Nn$UV&g89V)E3=hw{J&O zv>Od8p8L^AcllR8JSI6P0ve0L&NZKAqm5hbnH=*GRR2Ru$k$CH1P%%**Gxn@owNaQ)k1^93;&=Z-lU{wx;u+)OY=w6O=eLm(1p40=5 zq+0p?rcF1Ve5wV>d%v%;*6TGt`~=7Jj*H;PzgqKU`@UX{ajgAeDVcw7HL8!RQmgp? zOb6~!P5V`gMq{KY+N7x%<@^@FT2}dTRbhm1$r;;{C1>7r4V==HWnTQKI$KgnvL42( zS)J`tO=>zek6xbyxB3Sn+}E1K+dV8TdTJ2b8Of>c4`g0uT4c2_BF`YQHSyUY)+u<( z)(HN#4D%k6A=bpXS>>R{PWGx4^$4#a+Y?IcE<*vF9{He!t3%40gCPq%3Jtp;cNBTp zyF*f1EP1#GyD0TvKt1wE_@6NTkDY!fk9Ezg;1zrDLgnu(^~Y)j)6T52jWa!Qy)KTbYmrTo}C5)^Ac-OY~X~7?gh^m4Es# zzPE9I66B}k?iDQ_t$hQvL1_MbWV)}r$WKTP$RqMRmn5#DoFPj|IZr51Z%^ zfs9Ro55LZfE#{Dm*(4XvI9zh?TNxvzr$umZ3EjiJ{>bQoXli5?Hb; z%h^6%=a!gV%8n^xD|P~zt34Nxr!a*J6PTjaep452(^MA=Ab*?BZ+%F2-Kz9M6p19~ zwmKB~4bLmH)O5sxGRtN`T9ITD7>nT85q3k%JBXt~)P*dxRxMR26w;Og5*{%>3af4y zcn^)A*~(LSn2Lu|GEx6ZA3}87!SMqc*`~CeL z`%Unsce8VR{oPxOkLzcD()R`Nj(_1>x8D~6F+sr0N8jsrvMjY+DzAnFhPj5hJC2p^ z4~o(OoTsLtzP8H2-rnZn{`vw2`X^XKcxaH6q`1h$`0xM?H91K|d1;Y_xw*;3`SAe` zHabd1dTNq}y1L57`tkw~H#P! zS10*QTC4k9f{9dWt#-HN)cWH&tMz7=%R~#_#`DE?XKX$NDa*a>P=DYBxrqiWUL$4% z7Uuj!U(H0hfqH!<0|&z3bai*?;v(ng>|W)H?N*Pk5&1wLF>EXWxA#+4{@oE?NJ`Gp zcFh+Q%6o~dQ5vJ!m32tr2y{S3g+C@BLMqJnzeOAXqyh{8C;;37JOQDAI6x904Uh#W z0ayac09$}WKrW#0=coqI0O$Zj1DpY_07F0uAP7(ghy?rr=mYEket-;sFc{K*&xnpf zr>vF$;uahNNWkFgFOGH8#`L&huY545!KG+JW3E4kkQQu?@sSQd1pEQQaO<^LdHF@+ znc##N;@*P1gvd-*VFk=wT#ZiC=}c1N@fB{TRx?V+Bys&);8U!hvf|B+fajv~^XRCi zAP7xs(}!`F_b(Xm%()~kOTZzI9VG&m3|D|=Q|Z^-2Xx5$2f;lTW)t(m!y+ftDIw@l zrh`<_HP%$e1j1Y3(w-qbeNkG;KU%&L#jjT8W6O!U=J>g;ASR^OF=l=xD;v;^uSLS8 zdk0jhxQUW_*0i*SFA|i#KV!}+O3jlm>wP*6jVJm+zo!BqRtHo)VDaG*$WZ57Nye$+ zke&=H2O*IXaiKX5H^;t;_+Q15hr1*sx%NYv!H45l{^qgDHGXqv%GlW9^}lG~_PO<9 zNpZf6hOA>E8FCp?`a=l|imJSZV9#_@gC8iq&+sStAKu3LWkWVytqOCeHoL$xs6u-B zZfxF7M0BdQPe%&6*;QDU%~MXj>rVHKfaKuA3kZ{c&Ub0K8Oa%Gge|58 zW_tfo+Dw0I;Ft@dh6+exA^}igWoDvZ$iji*kmY9<@(x0qL4%mYzQdR-;hyBS?Y`~d z$U)d9QQuUlOp)VQRKhv|7_*@&gc~3gOq-zmBGQlR=bLk z;+$`)J4*L=!IRyFUhBdhd(<3?6=5D{s;_O#5+-y&`8TY@ni-0QE+bAyF6pQ)wzT_d zYuiX@Zz@%6gWBGL!z8K5ppar z%J(8;yV8~oQsWvHAGWzMPvm7~PyZfDGNI8vzfGh9 z?FbGVnb*+#Yt+X-7v_@2F^E$T#O`Ax@eI;LnX4!wkyB&zZJ986z+V}1%3CCa%H42x z(og;+x>+Ms?{NzLBX0bUX}z|1@5MmvRQd%^WVhLVXHR?4{v?M~wAqEM1$?Y`lRWavr zTQzFYgLQy58AEyNsx-}2zoC2E7G=9WEkcoQZl$K0n$}LND6wemjJl?()o9);XY2-I zkpVlbu#}GNi%Q<;Zbb0;xuw*Ep^u-llhC(?6Zpg1zx0Gj4i2tmX6i1M6$868E$wZg13`z4eaPI(nvqgizdU4!;EDQHXRlVRjj$hu6wfwyAv-Is@phfML|JhzHqOA zcKsSqT!HrfW#ngvm!**bwbp7#&@U!VnlZCC}+1D;{e z*n)nU4YVpgYL)+j*wZ3>Cwm4jLA5DpT$}W2^mlfwL+yFF15UsBGrFYv%gNP%nyiy) zca-0dUljwT2cOKR(3Y+cJ1$mqvT1|LL+*0j=U=%FSFWz(MD5D?1llE z=x$?!v@?F=4aXO9fI|!gSl$j{?+Lf;gR7mY1ReX-8!kn@*&)ssF6_M-igJO(iHS>oTv09%*_xsVe;u#)q%WJ*k zX|0a~mxWTAg2D{hq$+pIzi?`gK8~MRp%sqHx}wD6jwVt-k5mL*4rLAlrG8;Gd46q% z9*-|PsdVb%6lcuqgU*_SmU&5>3kC zEj1;#>+C~&&MHpH`E%-oFD6V`kAJCSDsi_AZJERXGWnULK+)ja^fpl ztpJk~mOa!NGh95jq0{P&&J!W+aBxm+)>xdD4>dX~u~E`GEqluW<5Ba;5IL`BN6mUX z_X}vn?)R<9GuKvc7wtkg*f8pPo0~*eZM>jzW1+`wOCGzwMDzS1z*kE$5X)F4&m;?a z$|gqMCAmpOQ{(BFIsyj2S-)kJ*7|(FHA}jzR(s?7DfMvP2`uO- z{NNTmuV!Al)`|#vb9VqvuE33CQF$-XGzq-80ov)H*`F6sxa6GBTq%tH~L0Y3p6gX+-OXYC0F=^Ls zD#*cGt{I155lma~yZk*gE78CvFggRSyYy_P zG?}J#-ig2}aJ>l#A`c92_AeO|rr3_eWs!I7*V~LI%Nn z6R3h?N(#_GVsPXzK9~zKC&5VJfd+-*n48sdPE%k-0U~|plgXVk(ocyT@ea%1C_dxE zzk%Qv`DFOkO1Wz{8csWV&qAb4_XSM-0ozawtzocaw?swKK=Q+XlIqj<`U2vNd8xc~ zXdLMFZEFeIIx(ZIwE|9}5@GFNsXbCDp!icy0ENHlqA6*Yu;4_~08EB_>8|^ENFwQ( zHF&Ll^50UrdPy(zPTD&@3wC7_hs)_&dVK1BJHcqgrZH*i^}EY+aL#5EMwugSOr@5ihp0p;2{AP3;u*`)J`hWRIt8a=SG*!pFfPO8WxpBIhum|-YC&`u zs`eGeZadpQADue+K91nj;(e~>2@L4vQgwTs+oSF>mx z>G?j^`EnT+5^VK+#8<3atgsCF5g2@61v0!S+W~!##}w*II`|J+0>j6>gjpLfh6f6f zrcX<<>I33Vn6aky)+7qMw*BR`b~R?#p+uoyfP6p~&Qk8cZ9YXuI&zAN z=glRvKp=4gy1uzI9qkX4@@25t0^wqd?d|2HPwt$UeNr)BeZlztnwn6{jku($?fpDD zXGJwdw- zo|Zmu9`q8IWO;?yVSeR&46gW??(~#;Z`^a)YB!%IoGIe+)d60D=zYP{`W$=`oQ(U0 z)S?L2k{m-{F&D&mu>qumY;EhZJmW*o(eEue8x>Z<8h;aS`AZ8u`P2!MixAR9{=JHq z8|rtz#aWA>P!EUgL;Op#msRNt(9=&z1%#To)54f9VaN(s{6%f-xR3NYO~2L9gWU<2 z7(G)dT+`Q2Rvy?4oEthl$Q$;?U(%chH5#85n1hy*?Ymtv8d0Ouye~aI=5|)O-eY=O zipA5IKh6-t_&R!icdKnbeA<7W(#)aUVli0GhOz64hR1i`dMRu5J>L}bMayh-eJO)W z#W-4u%|gTT+4%6S#mi_lRoL&UHZf^+SYu*KNn(*n+i(WC8$Y=x2&z?&J4l8t^4Fhr z76~sW-J6)$4N&vO^8mvvhBOU?nFNkjYX~@T3;{$bkc@XBc#zIOlxmOik``Fow)SZB zdKhW&gbRi$ea2dDGQOcCvni*%rm2=uJ9+kwlXu$c^`!UijroafrzIF;RhUuVlk6ul z?qXixES!E&&z{=e1S^eeJBAo@ojD^g*@&|f()+*zlb5e`XESr{;MYt1ew`bWQ`vB; zw%i5Jow&epui>_%!}dy!`YNefQ;D8VKjhS2*F1n6RgZq)L-d=7D%Zy5lSR+S=JVjw>-rFO zW6vXT&tqfpSmd1I>o|RK%64O91?)+wG_>QH%1UjZk)O;-i=R9-o<3dZ9}ByzK=yD@ zF?%C1Vflx3fhMUAnP>tiod*2KQXnq>{m=%{%D*aVh?sq;fc=W0eb!cTIzIIQQzHw+ z6U$#Ym`44aD*eC+f#!E@>8bp4d=UjYdg}&V7%>?)Cj^d?;E%M~@k*-N3f#Uo(%-wj zOCm$@)+;)E72{Y7HiPv0T5 z@1O8z-i4?0Xd5FkT^x3EM~|^J?vEwqkyjb}So9W``6hC{F6XX?nWd@td3`8s+gF`l z_d??sGjw}xhicN9ocVS2wo5_}wY`OGA3e9n5e?@lY_>QIu7hXC*ScO$DH+&94pR}a zx@#}TI*DrCMISp}Im)_xstlaY`&Nss274V7Cszf!y}=Ikhy@$q9Yc^}$t1F~T*t%} z;fC}`%!+X4MVdkl(Wf{lvxC5>Vg4NWyPsVXGg>DEdL`FGYOUSf9qGKcIXPLx&Rs-v zbnP0_&wrU09z)F7!%|Uyt)Q3|-_um^QUSCE&y8a5{uM%}A4~!Er!i6(l{2@XcO2tr z9%|5|vc@^|>!rvrsqI3r-Jim5RDR1F4eX|ocKa#Mk$ws4KmMv-XlnA~<9XO4NYU|{ zxXkqfL+?yI;_;L_$H=_iX;Xa_mBaTlf7&|y<5lBz@#<5nyU^ygrowb=!Fc!~)`7$C zXPf{;a%HqWP%xzp!^$1$aqMbtz?vWlNdDD6_XVUjd?I+Ymz_WuV#^iqv?mNY(hmZR zgBpm?B(z6;L)1{~WoMl`#+QAcB6wwp2hyTtXC%V8vD&&O+Ick9y)H9EcWz0Lhkn(Dv9CF>j$1=_osd9 z^pq1*t9xA3(>jc13DLPW{oJM{BS`e0B@alqH) z_3P=F7ifkhQQ*vJBiCZS(JaG#Df{wH+Wxs2LX(Tfp6}XbLjvv3LL!Ld{(ucZYwV{l z<~yzD9xYQ?{);(HUrfs7iVvpVa}l+76y*r+3#WQ4Ldbg2drqnUfMC< zPvUn=h>8m*sA`Y4OX*$#Y&;k8)fc!$5`TqcKmu>VE=^QI7b%M;J4Sn*G1@G!NbeHl zWD+i$G^@xg57INiVGfUDkxgArQ}>WcHnFzOhDCA;#GXwcK4}o2&1O?rz~sQzO|jh8 z?Jg23<=M_rz}Fx{tI-+$Q;cy-h^9TcjxHx*HHR9JRF^B8iK0vQpmM4>M9$N(%zcs|~24;@q<@$DjoBqBBihi{3io4wKvedB4LLMESQ zw(R#!HtDCnuEm)@9_c_#PLSbR@d>oMkj(T4)RCNcd+ESY>3JD&qc!Xh-N4+V^Ns$Ax-aly8-5H)xhLmZ-KmJ)eklb*pTJQ7Z)fnrH+xn1{>1JTHbeqJGGNlv{y zAizeKjm$(;&y;pNm0kF~XQS=ixs-kd90Y!%PDye~j@aP1%+)C63$*pKIBaXm;U<5` zI@J?tW{s`X8|ofV6IX2y*rUvglCq}vmrZ7=vBB6RZ-UA>I-|4Hc)vIDQQqNyi|KEB zKTK{A++{H)<5cgrZVI|YnU2G}Rr51pnD2*Y5F9XBF;7^j_1T*HXBLxSPRU=Ic8Zua zPUjd1*np!>IIKLKdw z2?hAnzQpenKo1pN|3tfwPR2BB~uD(@fAY)1+$Ki!aN>LzKAg?yda!k~#Ur3Iuh^_1j+ z-km^d11v&xNS3?NbY@v7$W(`o`C-WEnvYjs+3+spkz)y^RF_kKIxs(Zr~7T_pugfdQ9`A~_!n(Xh$~CGaL`=8uYT-A8i8fZ$BZ+D06Y1_|(U2es zZb2N8?biQo%mdyj`LZh!w|TSmxSeBsTsD32fr@@w>~B9k(mdC zngv3)J&cvpvd(WVZ&wc~pCUYG_KTz5s~+e3xjmZ8#(jg(?@ruepNE&T*XjYUyTS=_ ze09y<57E~s=ux*Dxz?Pamk(?`l$dt?OF~{le~Hn)EEENd1^z7CLN`)WzO;{H*^`iL zqYo}b+gmj<7{8h|5mPIYe%obfkL>)_R7S8e2y1}KDCVW~YhfIR%EOY-q#0SDG1uwe zDiF6j;ejbV)?JP6LA8k_raq2P>#=uLIt{rTc9-2qy?QDJHT8Q{*IJqs&m$|FAf0x|_-aQzc9HerR zd*x@}!auOUn772NRTf_==1Q%bw;(c!n!s0MW?QD0&(QA+HJs2T6WT4*JD=f<^S=#u zj{6=G+JdyI*3b5~+E{6gajf?YYm;&p2D~b>RNyV}(wd_G65ALHM30J(hKEg5z#&^E zg*F`iM9vl-$yE;VcUX2!%iLVAI4LVww@$-w&s~#P%J?)pV1b*gl!dvM<}YMCg_Vsi z^900mLWB2)zVQ%VUA9p4_EtxDIe~m{f5}v%W#~DphdW%K9tTyy)|;nn&jwluSnAJF z8w1h5{qszqwl~C*Q{lI?oi(Uwofm(mWH4G9w%geeKY2wN7p$pLvW=}smQPA|%y#rD zJ?rf#_>XAk>FM0WkNU17dvi(jrIWe<`picdNbvDb=g&j%7GJjT0YFRueDb7Ml`cSX z&w_G2gnikXdgEbQKP5eu5m#TPw0_%=o&Ih^cnIC?5lBHf()g3EQcZ6JCB;IxRliIf zy7m{yciwD-*UB@QtGY7pJn2!ty2)_+e&IgzWktP+n9E|~Tx%6bYNR4Y8bFab^j**5 z$6__&YA&YS3-MKw#Xq7LExrV%-gHqd?NJgGU#lH(X|`=Mf348M;N=Lpidwll<~tAL z?e89-s-a*wI4ZFz3l+IV(sl>Tl_r2oHXUgF61hpE82>9(f%U-_5m?<^AsA&iN>wg> z)w=E&Ew97Ps4H@m6pRR8{IK8x97m4T{zXeVdQ}7+J_4Hbw46D2W&bG;oh1-Y9-Y3( zlI{%G84{zzbEqyC{uaUas=};PS7BEFwhcZdBW0^|PySg>2TQmfP8xkMm!M#ZsKaUXvp|C``+B_8$-K*-DR+psI!umdPZV1MUEAn+vjwG3*Xc7 z?R$r_v(WdbM~&F6@=vF)uKfN}kv^Sb{!^Yf7r|2*lh<<6I_@8bY#{GTLO7DE{?~)Q z>M(bWV+jq1)fJC18saR{R>=EBu1D*45 z2Ihih7^9ZNqK<(0Qfe7>W-}6xixTaIVA_i!2$w?1N-R4~9?5ZNwV5O6`7B*I-g#Tp z8fSBOn=7zN-4T-W6Ta8=y|^RfyjO*KU62qvVMJ%!s-4E5Cut9QyBri7E@KIIK=S&> z+A2;Gh0opGJjk&K?>Z}r-b^+;0iDe~OGg-WNH6T_rSYQB5~&%s!xHE8HozNK>azNm zTiQ23gE-C2!BdmTC1-=F)Aa>W(?EWkZ}6C=LQ~{e&B2In|F@}5qk-9ZY8POAD*xmK z!+)7+l*p0TBc-ln2yeCLT%cGEVJ!NFfsX`3LzCXC4HWI8BCd#!N@KvWXO>6@C*=;z zf(-l{stNrfJ>69mw+$DfZ+o75q;nHBsWglx0W-xeF!9xsCXj>%BbKXyOvWy&7ZGCY zJPAxSjI&q4dAKw#oq;B(6LCT)tAUq*H#Mw*5`wqZja5rWmt0kov!oHJ`t(xC3g$eq z-9~Rwt;7^FVjLGW(dx6Gy{F@Wo2~OmvJ%mrx})MWVy}?w;|zms=jD3Xh=bJbx)u*3 z42@NHZi-sDvhyI;HtPlIe`OtWj~JNMcH}W!c0NG^lz1ZW41`Cab%)~wD2-lQ%7)E zMQS(xF76UPVkIA6vBw#f|lcX9t7)1%hoGY}Z~EGI%FpbHrcOe}NZoa+n%CjYrS7#^fazV~FPrM9X`18`qbbwf7jj#c&+k592tg zm^lW9I?a(Sjc+S1gQ6Ad`@&@-^NEII!a2M=@fbF82R3{~g{|Gy+OmgkNtrHrHJU5) zh2w}r5%HP+K) zG@#`n&@w6)){`Q$^qkz$f|$-!a@iegX40?Z z;=z1Bo&|4o_BLNQ(s{T7TTTpvxqxHSPx^}Q#JPaITGB(tXEjVU zh;U1dw<7+=yRqas3TFj3$SUz%b7W!0yc3&LL+Y1c;40TkG#F8^(AZ8Vq|w?S6tX{0 z;Ckj8K^~d+1okvHRftD_Dic`VbdxmOO#~31Ou%5YEq2u@ zSTB1xRn7)n9VRg~s$2LaXJAaDWtLM_rk-g_rJu5VEp;?l_E?#wsYQN5fWLnk4+dKW z8-DxGC#)t><|jULJDSly@qf=PG)91n1b&vtRC^rujX65Ic}#_Y>sj=SST#ZxgW%xU z`k1d?_0Na!uJvu=_We$R%iuBJ@55%bjkzaqICnmmKwoaHRKUw4RVpPzhY3HI89S&m zwnT`Or^MMOY*6thq~WHL)Iice7%8dC3L40aI!P1eAf_q-7bOzyotx?8v89PpQpK*W zcH)5ba(;(v8qDiTonx-3*Pml?gKrP!eCZO&U%0-oeor`F0rS;n_?WLILoriYc@EfK zpC$m;!+9wEYsieW=3mU8bUI(u316pz-Ix;ag}VDUKt_tJwl5ed z8nc{w%h4R$b3GK^2B98gh$32armKci@%Z}9^q=+TaPQmFxQV;%a~MLgVpI_|f|B+4?x)ie$GMzu zm}m$V5Kb%(DYEkhlejyS*JMv#OOvTZoyegQ+MuqjqQwoxWdI$5mhA|16-sbvu??X& z3b@+=$}*YQb8(o+IqS1#)-HO7J)mgilr`2^>@NX_Ovwresxq3***krrW)JzfcB=1a z!M?A%?H27~RbTmM{gsj9Jm4ID8@*1wR`34zJ5$v=-Obe&t*&;Yqg$mrf)%IQn10e` znvXP!4&v~C#azToR$Jx8p>vWSyZh<;g3;HKao|Us0@+!d>M)rRZD}W={{7yKLNBK# z!I|hor=2v9{{#FIiEVScTSOOA4mEsdN!hCT8{+^t&aXXiQ|jeuu>8Ddb9{AFou<8l zwD1?qN2|Hd*{hvgm;8qZ=E~T>scDeHb-&2>RKczzSZ4N%Z^3u@%-5)|{4eHXv;!hk z;GTWS_lP^)U-ElAGI{+X+G@ENkpnXGDVqbNZ9L=a0`T2^kV=bxyllL8F$W!GRD#2UgIpw!aUn-OU$MGW^w%R>MB;-L0=qDMi2 z@8(6Qd>RQXZpbrO7|+Py^Z6Ln`Pt+7Y`y7@;Jx`cn)|J-)aZ!f;}+;KnAE{VfZO8H z{RqBs)7OnI-O=;&o{zG<=V4o{&SGx$UNuQcKGJH1^}3nvpb}MgsFI_AIYmrCd5TY( z*tapDv)QAB%tvu+s$D4}0esY>y%Z+IkU1dSg<@b9GLoRYP(Y9U86{A$4B-J0?F3yR zOa=DCl){V&!FUM@&U{5Cz6pgV#QVLAv37W~U>VI&^YPCaxkg~TW*GWTd!n^1LaYg3 zg!}!EcNjCo(ik`BS8BhAK0cndx50v$D(e+^zJ}c_A-VNORYdj}V#Xg>B==ux=F?+S zAyRbG9~Vfj<;v!?R5TDZ{scu1U?0$YyNc@)ZB+XZnX-1Hh=UhdoAV8K@LjW27>?uX zul~xw1fUve>*_%Jx+h6ftg2~bTyX?lm<z^2BbSPdhqF zPREz6I~qz(&tGz1s8>Fpra=bxkKF@)U+QaCSS-xm8&6VpT^kpy+fMs&UTn*{jQy@b zDtIqr#8W6_>SEdf-VKMUOv^HJ=Pw$YoOkr$NEVFd&_Yt1%vho0%s?S$l5wV(b2|hH z1OoAf8Bs7&r3ME&N41NC5il~v-tf#8y+{<(_FKUW?x(yXQCNLz10%+d7@n+#orCI} z5Oka$OyqWJGfN9J3(>0&@5MXOW^_4)GMUS&ODfeHZ7mHoj@col_t0CFGe+*5#NnF1 zY?p7GIq52FTd>L~(_#vY3Mo9XNgwFmO{Fy{;dZ@+7Ca3tE^0wFHGrj+iLr4 zoj4);sSnK&ZcLxQT2gWLz;veJD zUrpQO0K*=Sl+(WyqrMOm`mcQ0;sD9mt*@0m`2j31o=328I!JJdh8brI95ILW$=2+e z)_Y{f{g#a!oc41B99$zI@@Ko4#|u&@-KA3q$pd&Rxmq?}?0FPx=R{^^Y7E!BZT?}n zgW=e$;$PFHNINmqy*XtVMWbJu5wzViD#oj#aAw@;YRA+$@(d2+Q3SQqTlVUsR@Ce_ zoB8LaGi}ELZ%+he&*2zZ@dPVe>%%cy3{RhaF!BTC8^zwTocZI8_t*CkJ^soGUQ5jr ziu6S9Q#9&z1^=dZkxhf@Cv6cVdFd~$`Sz)7l+te0v@Zn8dl(jK9?jurruBOdq$a0o7=&+rA4jrX5>(Rm&XUe2dqmhvzi0 zwOnbK_rse7CREt98XeB-Tm-UP46i*Un`S9BSoFN;csIJ+U;AFEqH*6T3-uqYTSN&$ zmO)ZYWV94fpMo%+)$&@`mMpuqZo8!Xu zLaOvVGThhTJ3ZVbQ_X?Cj%BH|6kP%>-O83?%bUmB1< zAPI-ZNBxEEi92AY;ur{X3Dkuce!hq?)=3v*>hv(Z>09+sUWD>PjjCtteMimaAK|O6 zDq;v~2%To3;6nJ#1?ODTFv4%-Iqw=0*<_>BVpo30W~tR-myX@Zp8o;m?B-wXF-fd> zi$Z$@IHbW^6{{elCc2Z3-Ej!LBfm1=0R7VSR=ZYm^JVel*At{AOkEfWQ$|X#`n%*9 zJiA{o4@#y64ns5b);EZn^qaT=GG<9%03S@}Vc=Eqn?n8o>Bf$jupQNVBRs>->uoW) z!j6kS?ky`RRI@iZB$xX(`Fzp7q-O+bJ}r@6peOlGHjsJ@WbU8Q_5W?4Y<$Lj%89(T zZ#-J{=e=pB^SYkd#<|hK{>_Yl!-)$&3^ipm5)H%vs<)ub_5mH;@x@SXCmk{L??(P( z8Zik`l9G$;&|eHUa)5vd4}p8LwRa>lJvlpbg?yP_|DWbjg%y+WODgLmn zQolxQ&2fh+v6{9#d#5!$L}S+XvwD6vD9JC>gr4f*GaiGjIq44vL|(_HuSLHc#5; zix3cdO?}SNRtgy?lg(b;CikazoXyZxVn^Sg z*eju9Sa~J$U46hD8l`Fhv^q3056^(b>_WzHJ^c4-0$k)bo&nLmy)rtFFfvZ%mKYyN-f#!vUPdcx@}-Gfc%6`0TC#ggQb_s4r_ zJoii8m{p~<+PwEm_++O#9MAh!+MBg{I9e$3vwT0=?mP_@{^4kX@qHYW@)fV$gmOS2 z{052XT62@Qs9|CIewkmYUs+32nNy{Oe`Cr-P1ItJoijJ@Gv|TT?fIVolss$0>J;!u zp%NycEZ{PF*&+$FM)06F_jvE-%i6{7jfDPLEpbK?K!0 z;4rc!n={a-YM&HpEWS)lkhsxkXs=zY$Ku7R*FU^$$nqO{-?{6?dnRqG$l~U%YFxc> zXl-Ox-rg zX28jwXF!EI0}wH-q7vIxkq@3iX*f|3W)}*2nh!zMW~c~DL4nyv0pNr{m)Q}_hvClk zu!Zr>c71sX&Vzt6?nOtM;lPvvQ&b>enhO|3sssaql$7JI!p^ueD-er)-;7b07aLsx z-ss^OmP3$!?~Hkh8aHm=8sENm2iJ6P!lb6}oiD9_;NHGz@t&yiN6MMMrE@v{)nGVb*;??Gf?RSCQ~NMQ{l0Z3&Tr9;UA!3hPvX||V>P^_5t@JE0W-uL zQqk!$JE7A#Q|NTvVkUKqGncZhq$hUleBz0n_dj`E)BJ@^O$!&S;osQy!VBB(Jay{M z#@laioV#%&&WYI|K=<<-p+6bqYAqs#2n^62Yed$=kvSaKvBf+(hdG!A%}FJJnNDD^ z*fY>{irXD{&5jXXOE~VZ<2PViwoX-4)36AX(gD1SuQjxuY=`jLzMa0kofaq`ZC5^` z1wij87vg5=hXAz)6L6K}e6-_2vWWC5LeL)B?QMy>S!~%|2y-leu5Nx|5{pQ-Gguid zKs&&o37K}R3xm-Rjz)a`X!%WjFE6QZjK5^g?5gUmBiG#BYwqefW*z_X+_}28_qn}A z3&NwSV&RH5<)ZtM0mm63ITw18k&8Xaut87CSqQRN?TJ~GsUI+=NAuOZrELaF)ir zk$tP`%8RZks+>FRj{3#p7H`PM{8*r%=Uo>AV`RnV2JTps>@ ztrFlj@`p(lu2V;^n7PBaNL-D!XGGwxEE%9V!(15sVVDAFL5TJiH637bYLY{XwqxXC z0FMic19i-q64xH89yv6ST{EcKf9O!r%3*hpRRa1=ZHF7C_Hr7tg5&DAsjZWz_itE* zE21fxaegg77<`A9$uxCFO3y_SFEXIG_=`+(zjzXP{T0^F=hy-T={Z4u9)|4s5F90l zdJbg4t1wBQC#i%s{~`?CDKv0#XS|_~ZzCN`=W~;Y1=m!VSe>A1_gTAQ88bACq~z)d zc0=Dv0hdssw6$=X$as)UMeLpoehh?;?JNUg!DXZdo9e06^!7y~jM?>NY!Voizpwt| zs*Q?dTXJnv)BdmDyK>Bv!D|ius(Y8a@!l)B5IwDL0R26QNP5t*pb-fZbA)R8TLXsk zrUSz{DxZI#12A0S1%Tm#jfex^Mw>m`A0d76h0S@%g zeXO+73JI03z3HI`*53S+-D-QlCfby=iK4WQM!^^=(LM*$ZOTdqm)Z7jTm@}X zHVTN%aFm90G}NRdPAZ8l)UTudmCDOcD6g>PbY!LSp8gP{E21I!$Z^5|0wlr!L^==| zt5Y%}Oat1(aW{iOb2~xDc-#!o*^1+k*>N0j5fjP;Z#W^U=!P~{L4DCip4&$VN1z8@T@5^PGjwdtjBWX|=Lt zwUQj<@9x)s`JMAa`hS(Y`OiN;pUy@91ZlETqe+lFaRG|-3d!X_4o^tVv8fA_yXm}~ z4|*csiGP&e3-m|8?^r1Np46dow~YRr_KYN+L35|E}&p_B+B>-^=mIuNBWTGNW7du{+4Gs z&@^i4taR%_QcXmz2WnP_<8}2&t-1&>SA88G)>oR7dYPfGU5rB3Alam7I1yHPuPUrU zviX5_!OD81U09ULftMclaq@NA0*g|NU$x#fg zSBlQ#228nB*CNmL7Ue*B5|uhm#FAJF-;V*_QjC5u+$@JqT|MMMVx&dl$L5q?(z~=c zKjLu)Dgt9Ky(%lv5Gv8YvU<-PHu=#%yoFHrWBT@?!P<$n)!qz;E!!LL=3i1(lvQ@q zi1JH<zq%)3nwr2#b=zE-xiE=91W^k-VSd#0)TXLbdJvQk%sb^?YPfd*MRIu!g` zHO`XHRhSNNg8$g*xkBo>CUgqg)8iBiADn5A)|P5oX@@S4{XFq`(`(#mZ(6tY>ynE& zS?7~&*a>YoOny!-@7#u;rP^>+h~WkbSK+i2u7qhhH-zA%R5}`xf5DpdGicV&W3q4+ zV%*K1&zLJko%Vd!$h3S{MI; zCm_6b!jj6Y$v&NkVE9;5WuzWE$|wtBZGb1~5}gU1oqDoZW+OtiVH zZ5i76_9cs(n#9fLm6y1+G}IZcZH9eGngcL-lb0?`;kWT;K;~M3;u9{6pavqBxgQq> zQA3;EjPX#m1xq@Z8VbiWK()4l*WX=}qAu!z&g~iXJ?*hwWP3Wd1GGb0I}}b;4O&A$ zGOyIuxT|eZpe-(P#rL)aZ24rt`30Ke>6tt(b)A0)5`Ctsj`Y?g7yt8G`!=z7nx8a% zPYXREgt5*55tkiiv7-w%l-0l?0H{-yf@W6vpU6|CASQ~P2%DARiFN5mx2cTuUU}Qo z8c9)?mvqr2vZ~XT@^OeU`h=j2fRsiUo(7|EV4kuNwf1woP6L? zO02w{;YUzY3;4FIxj z0<2cD&(jtGw}aC4P`8xCs?#N{t^bDlrM@nDkrrG}_reuZ>1cW#4LD|#Gi*JWpNOqj zfSRBSx}H=JN)``w0@(9w0DH|=U2Z)=tdIo=E7b1F~Z@z z#{Kg9I+Mc6N%m(a>(8@@zR?EAQ`dynkGy@EOdTbv)NfVoqlNnklozql%5wcPa-my`=E4JX=TKEc z4yBK%3i86_*sE&K%j(K!Jn`>Joo%6{UZGqun-GL1xB+37R^dhHQ%D{Xaa=H1VUyCte(NI9eBlj}!aWm6Y71cYR1L%!H-BRLgn8Juh|r|22Rtb|v~W0$3hA89E{D=#B( zY1v#P+?huAt}4XD?l0rkc?Ts+q;ST9zLwFCA#)W~8xYA?UOU4AEV{B6*J%hKYO z35$b8dM(zL1h3|`*iv3k5_?|e?BNvpJbFW3hP#I=J&bB($rI5a{XJq5(*J0p6Quu} zDyIKCv?&Scj~IaGKhRyL-%k3IJtW=_Ta<@RMvE_^j%Sn-3Qj)Z7(Y!_v(JFKT;NJl&(uF)&?W>xSKWzp}0M-6W!JIvq+n(xI?39Ri){kOy?gQ}@YB zqeET_QMgE@LTOorN(I@+YA*^kIt2bxbVwlzd4(Kqr_HI(w0S8>8w~1| z7+T^bET~ta1@#IssP`%(+H*j(=LGr16w#z*Vfi(n+jAP-)*zu?ROwb&vht=RAC)21 zUOEMb-O)=f!3bcU76H8Qtm;0R|NW$N{;!Yo@3`i~2-3k;Bn8^&N0l^Bkej_>3q98@_VpzQx4ke;$ zGOPjDc;u<;dctC}A=_Sw!ybiU&%|L5RrWCK-#66hNwwto(v(5l<46}LjoZ6af>N&< zSL}hXx@fX$WTQ$`etLUoF-6}mfxe|A1oVBfoxZ&~)3+)`-;z)w!YWFnSSV4b)t0Da zE(0=`2~rIbGhbc8ksnIbs7Gb2N-jzBdi+h1T780KuCKxJxa@*Ld#@68<*i2Js$M-! ztyl!U=jDIz#A2YSK5w!(7-^jjhub5yuiyH~7LL2~`jul;YKO)RzV!0TFC9FtCvu0M z-SDHvt8Q(5Tch^zzT?LAjbR}-%B+v{$NASluho$Tq%>Qr?T^S+K)U?rh^AHb;G3#i;nEyDz2W{GUkJeC-G#1?rVLNuk+UIc;k%h*D^ zEN48UxCSkPsMzex^`jXjc|h>z7cjwJRi>IxnPP(E7qg9YWkWsM5gDvbxCfm5WU*!% zqI7A8jb^JUu3Do>T3@tJK%J|txvB#Juv#jD$tlSCtiAgxyAF&39dl} zp#GBfb9>fY%_zQi=DSlOJPnIT=#|dEL(M(BHNc-yQWFp z^!#r+V!RKsrHXOFrLM^voz%+oKEnnF8^}#E!5X}wGdg&_sU?x6qJw8)sk}cO9Xwk@ z2gmv}3x@4Ii2Qw=w>!PQ%q*5+cJ=@hp2Zf}Pr z9h>w%qQ$%H`w-Cm-65bCX$a`pJ5OGIp_)H$hTf@Z#{Vn|I+}79Ktg|zMPz$|L#JC( zc~iBIhgctr$*RtM1ivVer}i;VpW;ickNH|3OVh?NUwoX6V^(gSI*{1a%x=1x$GTc{ zfv%=1R4*`^qcro()zgUb^-0StIj%ab&%L3~g`ly+6xIZ zgJHJf(sMSEqm`#%1+_)pjSNfYsvRv-wICVrbdkswkAz{R*oj8f+X#ywpXYXoW6#NCl5RrfMqqfJB$G*cYA=~AtR39d+;64XX5!doJ>RZ@*s+$505fqq}eWbGF9xR}+%1}~bZtn^1vf7D zT6E)b7l0eLEF}BTjeEQYnBOPh(}hg$UV*S>V#46dy>^*e-7M!XjJ1RR%DLBqx#M24 z0?Vy@%ivsg4}idY_vIQLaDq4d@2}423T3Qo=vaiM>amYOu2@-B##jy6*p);!&N8>} zaB5GL#b9|G8dri^!J0daXc8A2Ar>!ne@aD{{9IYHL`{FQ}RimLRE^~re3*CV;)8kCcCfj?6)fX3F zg|Rug8!BsWp1FNDRC{VSRD%Y%?bhg01A}foW@GW|IPbKffQ2>_CYq0rMqc)Um~SDryPn@`T7vu*J6e zvyvm6Fgr*FVt=T+6RAiRL~CTAh}RZwgJpsE4Q=m^zj5@KzWv7I3l8bd?c0@imy8`7 z?Q=QzU7yP*EMe=pc{2U{D*kg_9oRd5Qh}?H5UWcrPL4={ITg~*hAENFHpyd#7RIx) zQI9#jY=^vK23~aJ6{*lqvC)mYt*7 z5R`3y^U^cxU=+%>+bgeZxa7?GN3P zSqIWxgVS>QYMXmQoAbdRT-$A{Q5ly;WG~1cKggeoR2N(rAk0$5Oo#4((w2(xVu5R8Dabfoah45&wjPCSS4{1DRJzo?u$(<^|FC7{tAFme`-90iBd6_yYn9L5 zW7|JCxWo_JKm5;c|G;bfm7H7iJ9AjqY2`YboK0DRT!7jdyyoPLY39wM5k*1)MtP-T z1cALc=InkF^}w!Iq)(?I;D&d@xw|?~CyvY|#AwnJB7oMMt!Yd*k64!K@*y7_>%$47 z#etC}BhD`sLq~LBa!1?g1z{!QR)(-)HJkC>rou9@WkW^_s7|6T8^ZNM?F&N-iOa3) zN5w#qZZ2I&hw*=J+rYWnzTnoja>`4}{YRGBU9rRTvknQ?vYbmgPrN zKyWiJ3(?1HVvAf4pJjdw5g}NGAj$^ZJFpteFjr=ks*d6gkC#P!U72iEvXmjp9{g36 zGfw;rlB|~~+YBiS!P|3Czk}DKFKIWUZ+X7YfLB*P_Kc_Pj%29pwqFnE_hM6;H^g&V zzzpq%Weesld-<_3BeY=I(z)}Nw0lQ=lABBNT8+&nVuGW59Q_VeHqMZg8{EoZlv==`ng3dZ(w9i63% zR`_q(`NdJ4n8o(SwcL&Lv*BqSeT*ilmuY-0K>hJQVyEBBDy}ywAF=Y%o#N7 zje!#lBO3-U=3i*Ie(v~Q!*(nw?N?eiWU<-@A8(`E^pn+l3!#Lm{ob4!$<^+SlRFL4 z#`o(%6AdHaw&5#h58@|iH@$XT!}asV_rm)sFVJn&_PzJ@^?2VIR}cCo?Y7W#hU?3l z_}PpWe$o%AAr(Y4g0RJ*MM;|AMk-j&mIaT(CCMW0y{R`?9qQhjooQ8aLE6#B@#|3h zI-(m=j_XWW4(ZAdVRU8f6he|eq7i|?NE9XMfC)zz;!A7obXlRDqBqO0wX+j_N-i`G zbm^OeCb0&GXLKEvVGmr_VUU>r0OQ0DVdM0#wbOUe?Sygd*v?L)JT$GDa~UrUCgb_Z z{9KUq)r^s%52vuNZJ9Sb2KDq=|(EXDWkd z@(SoLroKL4;=}>3S5}=aESPjfz902VBv9gL-KjOh~_h4A_{ zi!Zxu@wkmD6kNTA2nTY7M7a43tIVH7&BpeabPS9ZGdu=V96H8R8mwyrmnA3*=q`b- zOG9v_WHQ`qUB`RDO|;v!-;3hClCWr#>277dz-6_4nvQ{{%9sl9_ukhRkZp*fxfO|a zySXL40!_44=9UDZTUXeF(yb8$nv;GMPAs{OooI^4OW?$6;KI9D?&}s;i+ndc{T9r9 zE#1cIWp9UuY>vsRmcZu?3_A)z<)gv*Ws%fISG?coXYleqf6{I#dA!&zDHZHem*$&IGs1_rHWz_s#v0e4bD2$)F>0tQiQ zhw9X98$$s=&@YCwD)?~ax!tJ(6QD*!s8WQd!2bfwAPMkOxi^(F>$%*FmIJ=0-?wbw zyzk!gtk0s`xOQ#ZI&M9@ls1VQ-^Ovv+YWM5+qSEGf`;8u{wU18WTukR)TWi15tOur zR9)Fy^o#f>trKw03h?$G+i$#p1ju%E&vB_R(%rV>MY!=(+TP|A|ni1R|S$AY_9NO~M%=%*CIg9wgwpODmxb+|(9aD`en?F`E$ zaH24bHM3Yx5Vf~7=hjvMoqEHN$KXt91?IPnFyNRzjr%-BIQYG5;cRt;)d6B9nk5@f z>g{k;RTJx$I??W^^?jW2byqqnwnMs4w0*>ppmP{OM*~3@E?wV=xX$iaN97&E3`XY= z*_otrB+?rP203Qed00000(firZ z00000*U^kB|B?Oa2RR1*0000800IC200000c-muNWME+b@pmJToc@2}{}y&j2A~KE zcm)8f#s`Z4c-n1~L1+^}6o&tuncawp1SyDz3MxixC^<+dp@cw5QEX5Pp#%vb)FQ=0 zL3=P1BzOuvc-TuL2wDB7gq^WK}; zx9{IoyGVnVS^=Cb>QyYL8M|-haM1t>_Xqk-3o&Qd?yDWls~!7IeLx>`lg=7Wt2v~p zMW<;O7`slIBu@$?MyAOGx!oZX)N^mA=Dy_BS4?{^kug;qHx<;(CJJtZ8beM0LCrnO zbsjaRg=L*%Pm_%QM$H>U+08M(#h+$a{!6Ce~rif5lOFXtAO`P#B$f^p$dJ`wjdHBu-9y#mwC-ZXedlT>_ZW2Mg zAM827{c)t!yI{|}uE4k@^y^ztx?-F98luca6|hRZ!1rHthTF5}{Zk^b2L^UmYV@DMNA)`KH(9|&?^OxC6jJYz`jUZOXkighKt{>~a$jiLBK45%S7cgQP7;)cYw!;u- ze>0f-5qPicFY!Wr=*4N-*Wv}WN#44nIM?;zFwz%wO1$VL@FKYOjQdW> zUYrdp^M6KNCNIn==il|=Fnm7sj(E|FcwsKnD{82SDen_&$2;Fc1PNURyaS-CD$9T5 zBe~KB->LVgcbTIXU33G<&_g6S_qcrLf-cd+5;ae%oPUx30QagUl4L^8WuF6~DsuV_ z@5c~kFJW(+>>>OgVNcT-c-muNV9zS|6$Q%Nn)ABa)*_JRgE=> zwTJZ%n-p6f+Z}c(_8#_M910wZI0ZO;IA?IKBxS%Vdhl z2~!2rCNnFuS!RFCQ!I=u_E_ArjIml^{mj?wq z0X6}P0?q`6;DAYi1%Y*eGXggSJ_zCovIy!4dJt?BoD+Nm2w#N=0pXTVwNSUvQ(-1y zFT(2p%X6ET009610O|#l00jU5000020096302TlM0RREF00000c-qZe+in}j86Mg0 zA#Q7=MG-VXTI^LS0W{-N65BVeCDO4P>i|)*k;@gil((ixc9*oQJV+m)cfH9Y^s;Ev zC+JuT-BdrGbSLMgspQ|tPUuCJ+E zYro~|>+0>=E??hJ57++6*WXhgt^J#?zpvWYWbO~t+iOqx`iH7>?Js=&p8DweHNL*N z_RaN=`T9rd!Hqxi^-q5D_QrR7eM>#)Z1VN{D(k%A>z}G0cVzs})OzPneEm1|K}Y8P zUES&Yi?6>^x4Q51^*_|j?yu>>)Ib$_ zOs1ab6-N5o!K`st=2Uo?ob;#UoQks;Ae_ z)O}!mTRl`?s7Lzyk*34^%hVbEwe`%@3T;ipM4f8d3_gNiPmdexx6k$Sef?&l*VzF+ z2m13wV>!ZVKGiztUF&=zI=6FmH^7jq(2kGfL+D;Gk_+9;(>CZj=y{+}J3#;E(&-C4MO=%C9 z>|tCFls?fjpXl$d_dLr!*0j<5U45@t&wdG5X8udF7T)jbc}Ao5zza9Ni?N3Rv<&M! z)mJY8vukG>tiRUZoAAYE)vo^Tf#bWN;}Gu+jTzo|^ydrxzoTb7(U4<&yQ&L(4dmxM zcNg%U0qz#=J6L(!d-nu*Mk@isEj-z0nq-|r{du7I-(xB|$+dg-sgV%T*I`O%E#hm; zK_is|V6elSAc?yf+YH&Qe*jz$!Obps-NjsobBa2`JT=1bydA(K7`up?TOR*9`n!t} zq>c5;OlNy~^rrU3UFI{b z@W0du<0&?w<@IU1F;d+@Hb7(d;JeBH`S_)z-&*LIzJkTQ1eZIIO)v0gWCP}| zhkULJ9%it?=M5WNU4z{`v9DM=Td=KN*1jI|rQ`X~9gK0>C@b`=Wo-hhO?`dDqev%Y zep^F-n&eH>Bf0fMyX{?y^0Xv&;6)B$KL;$?LykUM;5k7NUlVdYT(4tSF%fQy?R*(b zqnA6Fxecjz8FGiM@6cKW`3cGw#CM0dEVJfq_UNQLgek2N$KMaFmouC=V(zZ%ryH6Y z^jO#PSdiyJ>T-ec-djZ;U3lmPV~@>#cV2 zgy=DpZNl1G7i4RMaW}cvQ}&;-7HRiw;9=_PnXWN%R4*AS465HV)PDtPL{l?Ob+t0% z>Sv0&{sfiMDUUF9NshX(;JR+iYf!a0MHTd#Ybz63&+x8~D$`W_=RB*gE1o&(&J5My z32MX~b*>pxV9W#~2H?yo)_%p%srogYgd82A0%K}DB1bQSo|)c)p=e}hx$4) zfqMv1Xsb0%g??UQU8(m@F_$u#8Mst1C##^Y&be-vb!(ncfD%(-|3Tv?&+CSyW~e4d z{N9I6PiRfUy)i!_DVa)iYDb+ib_Rz!sLBW6Va+@+@QKnH^T1KEx}M1DLi+%#&TU<5 zR+s*gp>pKG6CM_zysa&4#2AXihYXcE4kd6gT$usxjOFHY%7=BrT@~qU>|?c4P$@W2 z{qOUs7wLfO8TcInS<}EVQY~>MRM%FcdRR;FGS8`(`Z+$oz~@5``Xgh@*}A&x^>+*n zw>9=TC_m@UXa%jxJzSnZGyQIY>9n20Dl)5OIpaffa<5nCU`;((( z5|(~f%z4LV|EP^fOzRK9Rp&)=JKCr1|4BLq!W-Z>2Bl$llBl1v?TSpC?KI=k8B=Ne zP=S>zz&nPw@g?DNW`YqUZ}Wca?FtCgROgPYv1DxNY019l+;X}MEar^8lUuo9cysO= zlC9o@WWV&ZlX~18aQQW`o;LO~L{?$nQ7m`tX&HI$D$remFhz`YRMJzyc8sy)M~PD| zQjVf-=MemAHR5#`_X~~yG?(C)2?>NW6`mIQ*+YdGHHU?@7R;tuCziK$U}Ivyx?2TR4Zg3hkCY&aNk<%-^2Ylcr)YcA$Pi^Z$AcX z;l;%BVC1#N3B5nVj>xDHEi+_v16U>LHAUP}BhH3<9m{wnStt335^G4NSunrGpkQh_ zJ7mo;8SH21=xia|uRXn8#g^MP<~DVbFrRxqdXXOadDtnS7Xfz{W7}E+Ipn;HR})Qz zWcg${JG?JcYWr}zBUkZdq1BVTr%Ww*5y}OPJ(`U1m|>Bf2vwh2EJz2}ky91#6w?~I zsR}lI0u5NSujTJy zwyY&}+EAq+}fnR?ks^d9snX9>sJ+tsmSW~nA`PVsqFTFJjH@^kN2e`8y7R6BnedYU@O zNX2uG;niEn_$J7KTy8eNlQG9*s^=+NsuDSc)TXH%@-#6&)(r9bMU=5MA-M=ce*Z+T zNm!4Ab0g`TVOhqQYwiu%GsJo&+7#zqQsdH2aM92r>ei6%9kcHB?9P5=t5Whhhb!dL zq3o7NzskmM7Y%dHj>lZ*i-yu@p};*~*JInjuocZKm`{Dq8VJq?`&UPy$wx=F3X$%? zOF(?hSo>A8tBLxItq+4v8&KXA!VwOMHxpUq4K1K=#zSV`*c*5gjT;fc7O?Z7|B-ie&c^D{r+6O(r=xmQVCO8JhsKU;fNK=NFE zN~^x`oK};EF^8HvvyNw}j8ix!84^{L_mOovKV7oM_}vJx#y8xDk=#|RYk*EteMt-! z(Z9I%n|t|Fv_G>BsneVm z>wr7$N%m0k`Cq}$ziy5?_0EsR_s!8YGP4rvjX1u=&(fI4=w+iuypI*$g(Ej?o-^Uj z;BjQXasD04OHL{V7Rc2a=^$zFDSOk}!kKcdRa;$f{;I3J-E-J!?3ow!@!U>L+Aivb zH}g+h(n-bHB;-v*j9WdxU`vPhHjJO+6K~n-p4&dY^k{Znc9@mGfv9pvC#ajQQp|l(7U|7A{_M7au~?Rqlhn(&n-$J4p2%7k3(k#yD2{^|bNdxwX?UGKT%#0Wwt58rS#nCF#TVEmS;g zzCyR&?K>T_M$XypZeH5%PP~1Q6r^!Ok6foHX9>-`{qFEgzG$86M^GP+IMRGO=B`Nm zMt+}A+j9*59zX3SlfNu%2X$gA+0^?D8>K2MvCMm|wEP*UUlURfa5$ zK1;Fi=8qaZrPA)D%gKo5F4I-5^_ihrMx$`&Obp0EYEygJ?FYFxp{JH{VU{Qo>vOayBc6x5y~Ou*ugjTxzxSFTf0)9@jXCbjZ4V^Q z!I$f6Xh{?HmvvxIZUq-jeXVsAUB&0*!AZr`F9?16i2bq4^h^cu0MZk`O}~GXnx`Lh zl){Q4&ge_qkqqG#?0DD6ILmZNJ=f!|UcdUegIIhX^xrG*xTXuNr(`D(se3z;s`Er!3|DnEQ}5Vwu4t(OBP-=Jw_}b&)wp)4>``EwYYxp`yYkviiJFA&@Asn2;2__6+cq(ASdFYNF1A4Y!}VZzor4)$wh9|yl?_zzhz`N;qP zc-n2yM@*A(7{~GN1Eqzs_XhVK@B6l8D2^7Wd+#j@v{eKwR>f_^J)$wulg4#XAI?m&=|_Lc7{EXVF&H-<%Bi3dFGCp0ForXNk&I$AV;IXg#xsG5Oky%qn94M!GlQAT zVm5P_OO;qSN(&pg!9G5+iCt{x0LM8dQEcNq8`vvWv9Xi=Y~eN^B$|Vq;1@sn%@I!V zfP0)~9`o5vHIJy_J`Z`uW1jGoPt@{~=e*zyK7O!=H@xCCe!lRHtt=qGLKaa+J%?yu zF^vRiBE%AwvMl`N<*cBYm8@nJS2@gD*07HCeC0dWILkS%^OkoKBX)_EIEj}8Nt7f> zmJ~^qG)b2X&U1mwT;UEExx`&Ib5b(7$t}r}Y<5VFrC zO<7^;QMt#VEN#`$G)<{14W&crRJxQ!%3@`S^4~nSsjlYgy1h2w3k7SctD5{~WOz+o zUQ1;t*wEIvyydNWJ?0%@4W&cr{0pp9ocjO(c-lqHJrBW96vpx1UcGHq^_4_IQt=XU zR|Bi4#UiFQd=9h4$Y(h<`F1>!lWRM_Gd%yd_}oc6tOI$+suAK@H+!Y4F~#+P@)M3* zJtCzql|`~BN$MT7it;5BTmRqytv*8m&Y9r?YQyjVcg^qtZ^>u_{(=zz?E#|$1l$o6 za=nXhIJ9*m_g63iyA#70j8=vT7|#t;Fqs)8gHi}e34~=42nvGTe1iHE0X7081BWOJgH`|pAO(Sp zPzQxv41zpAcV%K`23uxFaRGO}SQy<2MQYvJqx#9VVefX36tQ;+MF(owIDmosA7S?Y z|0zkw7_~t+z_hgd9tu`KVPv8zL_!6(q`-+x^oD_?y6&3S*#eyceR>;BLo0u!J;sah zO_paHI^eYRyGrq-_V@iy-noo?&u(N(EBxipeTf8_pWGo+JFEwy6wNC$A0s>;SGLv}^fG?ZeXv4@8ZCKL$dc+N05eC4 zBM14tuS$}SGXKmmQ0S};7%lvtPHV=t0{=_)X0c6q&;jy{zU4_)3jkK8k&{C^+abaU z3!@7*slP`L{#ksp76=6%6tH9gp`w=H`j2zfFG13znRXdomsQ=7PN8>rl4~{*%7?? z_VjI-BjDKD*&;@+IuOyYHDkeeWAWN-AVK^%O}V6bk(j z67{SaQ2d{&R{IAa#ewX5E3Caqm%9{SFQ?1hR+sxLD$Wc55;Gtr0-&@66qX_#2uf=+ zI8fo1q+~y8qjoPP?S&LYN)EKVLDq#3nkMA#iuS5L#B#5TU3*YwW7#4vKbLEp4uCT1 z|HgX0&K2q}?=eY)6ORZH5s`~rL_$KEty#7~=CtAZv894qR9=8U5(0$tChFdC%TTps z?#;Sn@ATXCdzgUv0y%s0KWoqSXXbN{vph-&K}1AEL_{QnULy$b)vrr0@Yz3=hYaAG z&pHQ$g|I(BauW{1srRb5Gy-b8SC}TqK+X0F(;OA3<%Ynt@($>;??D*IL?xK74m$As zQ-%)&LH3PL?m^(NXVkjI6l;qET(>yX#}LPD*mX8@Pc! zhg{1i`Az;&Dw98ia?7yHsb9Nt4@vm|{1m6?h*BhJ%p_2A7a5Vc6Osr7-aN3QototX z8H11{r`D;0LS;!6yXVyes-KQeBq5Ffv6w1S5f{ZH5~9Q)DN4?*B3^XN_24`=Rb`;U z{>&M8hImxT8UjM%*T6Ca69Psz(oNnQrmZ+(O?4M@XhBMNzp?q+pE~6FUeZ zxHSbBT4FLB8`yj#NuX8b3O~b#5*+cQ`kDX}ON4=Pd4sDgh%r1Oq%aYzM4~}qisc|q z5?A6OpY5gE0B=Kas$);lC@rB|v4L-Eh^IR9wKV5kB=XQ>S)O`E?8Okz^S?oU)A(Eg zFl&IpjI>(H_){8J{vA8UP|btz0e(aP2m%O{0+m2DPy^ILbwE8pp#$I;H~~(9GvEb! zgFb;D;1~D<{tI_tOobOBL>Xh8iBGjM(l9}0lm)U1z_y|6P`aIw%7n7WCgD;?NBGs^>jBxfgVJdMr0t$7~@RXQ>bZZhFRvA zXMshQSZ1ZLidtix4K~>>>_EHh4fdsVqH`LT;EHQ*xaGd^0=)hAJL-eRCzSgt5l`gH z`0;e0Di~mN5PS|j?xDVeeO9M4@_x`qQ46Q%U9pKs$uSJ_^coVv`8jx4_pj{b6=LPt z0<~J#K(3%GLSys0fYLepB7P}lQ$SHR*i=lI=fiaEwnAcxXjZM zbFyf6+YUWNHL4ZbHgr*fd}5L1Hlf-Ur&oav7$EuwF0TrM^C$&1lxUh`OproMpp4Ey zsTFmL_5u-3f!MyPX%wLk_u^nf`HY<-8gFU4Rv@W0JE?_sUB=85c^FEl`h>Nm_urWF zNIDUpD+tj0Db!J?#C@MYGNJbNQuYX@Znb3WxZ^%D*+e?3sWT&865U~$8nWSH0SCNf z)sfe`*K)~YKh6Rl8-Mu#sH$AT7-24T3zTk9BI%T(Z1}T`bt3!{tQ8(mYs!YB4G=bg zPp~AUS~m| z1i8m858LTVuf%fBN*S91g@WPDyAApnw0|s%hD^<`{0$ee%a**Y-5g_IyLz=-E5fRZ zU#)iYWs0VaLt8eWKcvf3hVG#6b}vJK__L-6n@VG?+D;?|Gva4JBG%i|Rh?4q?4b#; z(A^{VbV(EnPvQERa=I|j4K z$4>3~(?+m?RZF^I0wta?GDp*~=_YvZm2Q&RVHWPmG~4*(-f3OM-{3Xe`oYZ);U#Es z>!X3Yq9rmF&KYkq7numlou53KfY}gxr?xlhD5~Em)U0Jf2tAH65m+-XbDoVZMv@Eh z5tI}rq^Ecouae#~9s*PI&A;c&)RR2fc;cgbrqqzIVZc?U0sIV-F67rUo5ml1&L41O zF)&-XuBOrPQJHhjj66%0X>Hx`xj2az=wQ9msc_J^nzxnNOhhALHh!sm>ZiVSkC}a{ z+G6HfLsPNccxGdhJkiLbKNo$SNX7$P4t7tqYu{)hB-9?X`J)XG zVNe&^x;|%{b_D8-g2v{uLp|EsC!em26xE=v7T!Q97XyLvYrOUwAF3i5%d)9MC+q)mq|`47_vh6S(5h%vxAOqq?^ z`ae9@ZU70eAxl;Oo3Mdm%Wf#rZOsqt8nr-^r1+E0Su~6{uMfbQI}^qLILih^5&(c~ zjtM3cr9mf=$I;GQpt-KKfGt5Zrm58gEfo|}^_i(w%y$^EMm8!QN`)yR;E~M3W0VYm zn^MELt5D@sRTWfo-m02PDne!TfGVoGs;Z#?aqxL`MngTQhcr-)kyKM*s)=wFD?&9B zsS;6C61r-Gp`tLOm@KHaqEw`46(>fu5UXlotD4%V+TvA9392rRsv}Y8J%UGIp@FqV zs4&Ya!}J&ceHLE{wa!t9$MNW3VcH>ksGG4FvrNocM6@)hM=T4}(|P$w#s)&SOw^Gt*6=KlGjf}6a4wy!R3_cshDa@E92krvk(XI0vfKkNIfW&-ry0ugw?RJyI`$Kj45qjZ1 zZ4mW4&`RUm#5e8_JttP92h*uv+#?=;bu$dKmcd@;C@E8D!S z+rFLKqxNe14&?p~H=6!`d%lFh@nBAm4036kwq@iB8<@s82SBi&9!kKgAj66F6^foe9p!|8H+ygq**xXcg2C{EHWFUqQJ z+O8kQX`WPDJ9`I5CubM5tDC!rC&tU$$Jft4ATTI6BovFo6Nsd+@Cb4wg-W9{n5?Mi zm{@jPd;%viiOb^y^$m^9-2+F*l;e{VQzuW&oSvPZTUcCPU0K^$-`U=!(`oWg@6qR# zbj#p=A0>TJ+(QB2tg8TU{`E{hKc(A104})UwP5OuRp&2+QMDGAPj&81_U4D~fk9UC z-3wNG^RxwX7cE}0aK%b`?%S}AOK;Bwa4i7!Xb13!U#)(Fj&{1;h)Efyz0|FkV}~E_ zoF!XY6_OC>Q)5B1Iy_=>Lv}KJr@a82ETG$z`_rBKN)lPs%t*lQrpqtvEaAnH!6nNH zC*+q^!I{=XUiYabjaAT;o`JXNt|N%cX-~o0sOho)%558g+0g&xuZ@@zgUvZfvW<$M zI)o<;PTMLW(_#-Q5-uGSZ{-L<6mj}3kCELvvq`6fW<4jLkY_QNH^N1M=p@`g`!s^+ zN5>gWry%#04N*-JCm|+{%@TxVi&9i%IXNMpXo)L6gE}cV4$N(~cLc}besBuIokWSe zCZZ+99N(gC8sg#>af-XCByIG}<8CPy0xxtTwcWR*s^D!d3rK+Ja1cb3CDhNfJ6Yi^ z=C%f3+YlxE+B&E?GTdT7#)}5$`_@!ycsWfTAjduI>Hda%z{7~!zGOEQRL%rWAe{ez zWo;u4EvSO-9l3DaFmyTxArVq%R3IN+3JC3}Py2Oj(B{=_+XsPF9gzW&Oz(1==}Sm( zr;V1e4}xPk2)R~DIhjo4M2C!#SnnN*1CWeaV*45W2q3-$#6y6ccL2byH+nfd0OlU4 z$|7GgnoY-z1@y{Hf@)Y^Ae?~-*Mw|*B_bf+3hY54k3k04BZJ1Fn+?rC;x(Oy;b|K0 zkvR6E-e%r0_URn&gJ8Jv(oo z>csEI2NNa@$$_|Jn@g|m`x{XAGmh7YZhjo74ZMQ9re@#C3^gSpqV6zTqxT&li?SPv zp_7YD4126Hfg!PL0t;WM;Pp%;Y@nl=qUa)9la^VYl3y#r8xV@em#bs;rvRQyZb*C> z!iI(+XZ#9D%Q=Q_+KJ01*d&N<%S4pfS*cMZV=1Xrp>3_hy+_vZ8l6M(ourhQ4^g$L zXdVk}d#bB8Jx2126?ABlA5p$IXyK#Ic;l=_lL|4GLO+0Fq%jX|N=`t%gW{-wTMDx; zDl+Idv!I5^s#2m*s@u`l_Q;KwGfyLSsN$?&CNiO_TkoqV&GvZ=7q@C z@d+mTqM9N@holXXA!DA~#Z`vrQ5cmNXNPbb^dM zwzpsq-H!W0af`*QL)jX)qlTqQqMf8GtE#Yz~{t2)jFJYZ60<&*$^F$29kQQq9^}$lWsOE{6%18^0LEEMVoU?i)T~+ianO~PJ;DbW=Jz{Mo=ib! zpe-)xPqg=$HkNvMp$7nU6Vr)|u6?{7i443Oxf?kDOJB4JP* z^9~dIz9V9+n77scbo-d8FiEBCi1GHI-E3GTnjkoQ=v)}eb%&zn!>9&mRCKT)e|X;# z&dK#bae(8UJQ(aicz+W(eHu=jj8mq&OE`(K8r}speB6^*!BVmiM&&^y%BjU%Ku- z2;Dwr->F;IUc8p@XegLMG5p)#;~D1@0;XQ%qU$wt;nmr)1V&02*7}w+?w2 z-2ymy5<1h20pzk-g7t~ovT#v(*F(NI%`xVP1+)mJ`@Sq4@ltewUgkJP?XotTvx#xb8+04&(&O(Lfy*Xv#<@ zJYuuJDOS|$J(_zV{w=<6WlQU{3pwmsm{>Y|X^Bv#UCJ4D)Mvf*8}{AtjusvOn%HCQt$cZW1P6vc#NFDgYD=awWd=@`)Yp^WgcnhzpH+ z_U_3Sjvl?abFZ6(W8u+BFFC|BG&+!<6qo(uO0Ll5H$(>-`es?vqRmQ|;a*G8QwG?% z)k)tL_3eO3H@PYJq~B_Ff}s=+uKm+HBxzK3`7c=nZc%L;M0t4=)gmMU~$3^ zF8-9xryvs8RKrw31X3=CcZ&580Jq+EbvYVAi*}~rT*LbmNGPFV)6$AL*a5kh`7LF7 zHZc>;9YglF6WnrVZ#tctJT$r80$o&_iDJ^=I7;oG7OqNed;Rz5D7bHGSkfl~B0IeE zNdN~H(KiDWPPpKefY$>oB)YyO;})FSz)E3=)Tzgk9W_zmsKq&h4 zx7hRXfeVie7w&w5c@+rvnp^@He4aD1QGMILzdGXDY(SkB9YHotqgNq$$QcpY5|~2v z4%OGvbBlDqUII31T5Bqk>ETkF9}>a%TZC}XSCZJetYwgj~Z+T z#U5u_E_=V18iRl;xHjVs3sS*?3ZJrIm;zYxL`iwX!HlIPU!wEt#MIhsY*C?aBMVDW z)1=xz50F?^;KVbGj}Q;4_F26dD-Oh0;QDzKIsG;i1Lqd)&|!#t9e55b7>J-=(4MEu z3R)0DaLV#XmA92Dz$A65=yM9E5mDdb{5l7e-;G!g#V(%7DDv@BTl0vlQZTp;C7Mfg ztPSsv$X`Kawd2r_J?t9gYZ);Ak=&?5kg(^`WHdSxKUxCCBvktUOKL%k*q8D?N@U=-9%*BtjoBLpF<-UTsb{a09mn zTzXS5kz_xgu!yWMs*f*)3W2NMfO^abSil(ihrb5HgXcdOiwl~!uqH_!G8{e^n@Z1@ zS`FKESSx-^`|cqzt$bD5)G*<1Ww40Ea0ve*trX`wS`|}j5U{t%wiNgWhTG@hPyBRc z*T!I7Xnelcup}~|FAXm@1Wj&eq#R7WBeY2g##0;$2vh$)xoQh)T=t)LY+V{0+Pu`!wsm1}VEbZr3$MKXZdpAq zrL_M3-aq64H~3OOm7elG)KhDP_U5!N?GB{y%6#7vl`i3>^PBb7_w%-cJPJ8U-M;Mc zt&J*S{YaKmMrT<_#6|auK5br-RrA-#tH?iB?%qB%#jC6qpE>@`xtF6}Kj#TwMknWH zI&aWM7+IaoA7k9`_(_NQt%*5x4YE+huA&wRCTqS z`#~4PQITcp29+rtcYn%5xlec=(}+R&pGE~l4{A=hSz;Ks-}PTReHqM zi$$vN{3Y|o_3u+LUgDgld?5YsveFI!ig@|wMAix54_s_~R}a9oj^l%(V-qIoj&`vb zMR~y_632pMz_d@RmuJ#WkpK1X3h}?e%2;`If5yiknOf{iJ2o80EELf;=Jvb z4Sr19MNH77U;KD|Ve8Yk%lvb0brBKB>-P_=Iii;MoRoL$9P*UN2@2hiLQ);4mKiSfEam)!U*es~(;uEi~9U zi$bG$Jxs@xG$oIHee0ZX#3xDMT1JW>RwvNsITTD-n02Ceq<4)dWztV{|M}GuQz?Tb zvWmKNUdn1y7b+2zTVr69IA7ap&A2@v88f+ACX&jm&jPGw|nbj*Zuml z6C3!Q7TeZ=v-Nomy@H%R1o98G-l%eg(oFgj%B-;S%tQ^ z(+omUoZ>JyWJIXP>^;*Uhe4D&|0+wvoI!`UZ)Jo_{Jn7-N7^hs{V zzZ>5xdc@qs+T?PCFp-j!ns1!_%$MToJreCb?jhX&Py46$fbj$2Spw0^WR~J~&nMF~ zD8jX@^3RAtI;C-l*H7&Kpz+5yKdArz;|(9jxj8D!n{|{r?d3|6byWRv(eck)K4(G@ zFEsCaf2zCBF`CD@Anwc3I_pAQ(@to5aQ!|8XPcJEp*iP0=hNl@r!jk&;7J+i>tu1( zXsRYomLsZD6r3)-xcBP(Fxuy`1Q2unbDA`|{uPo7;kjNGhm$exB!{d5-zJQk85Wwo zf%F0kz(p{OGMK+-7y%#cbU(#8Ya2%(W&rrX9f!Ai2y9~6p3)t)uxXl_<$SER2WoM% z<)@^Rr?`L5kNyZTeQ*nE{O(7X@d|*3_>d2|;J?qWcOUA$`W-R_PDgG+k3l9B6|kt& zC>DL|B4Lu+b(P#_WAVFTRNMaqHQTRlTA6hT$>02bbxsGF7-x9L>z`*D9~$n%YhcQ< zeDRdHZznN4&S!K}wkzvkmXz4UpK|;q(IP7lAMR2R)^io_%*(ahz`k&|W$&1pN>McG z^m8UE)(ortN??;36uUbX5U2k7H~jr2NFit3dHfvbG{^7QGn>=u3o~b@2B(%5!ENl2 za~lxMFoPW9faqqB169H$vLG9%h^sV_I;Y9FfSQCkE|W#nV3Qf&aaj_{B9!N(ep=^G zAo}S8OcUVT#Vi>aH%<(7Jb&_0_@+p&!x~c&aCIxl*$HYkH`0v zE+;Pos?Kh8#{m_q<8^3Q%FzzLODRh?^g?m>7{(n9$J_rak zvD)F0TTk*!?QrigE=DH#JV8Ej+!yDJ>58D3K5`K1em7^FGC7=X0h~ZA2+%DZRua8>cez=T!r+9=uZ1yE9uwa~RC0 zbhZz#9zSt>qkgD>Vm>UVtUmu$E0A@!(8k!BG6rn&>6qgDea>v>Xzx~4S@Aj5>QV^+ z*7dJcO|P8Xxpb1Di<3arU`;3I>n92*W`+0yYI|Q*dy(`Ss+pB8%gk%<$pWEfi1Yy` zPy$PFWhXm9bSZif5Wbx!3742&V-N4Q(wWwxXne;=FHX{yVbc7fghaz|2SyLC>(<@* zvLehc`YIDE$dlH&UhNOADm|(Cj&(@$-?{qHImW+18ui!}QoR+Q+1#{1i@>RLIRK5OH#4dz}D0dCEAXv2jT; za%!M%nktDCa3dT1w$5Qy3(ur_wi)eae_; zNoPe40Xf%Du4Uv?qD)pO9I01hRM<76dJM*Lsf!~?GE=X@Hg?62^i!lwCvG&T2;WW# zafN?d8Upt1HqlO?Eni*@tY-G%-1frz$2GTMcbskP!!I}OY{1V~Rej|oOHQ?n93I}N z9-1AhnvRghq$bL9GJNZf8BId&wG@9NwS|TrCDYrF_X-zVF^8W@sP*4GM_@g84LN-C z`X`+?ub_HYul=Jv@n&fBLW81zcVu|v;<~E_&fq&<0PyB172o`8UAT$mnDXd3^ z)!523DS<|XV#K(30)U%Y(Rl)YvSgrpde{Qo|G0)PuRmEH{CV}%=9c!@+|bY4Z?}g! zAff+5U*CPixXCzccRBRy-S2YV=Adw^ZbPw7fj$(Lv&6SUf4^@<>xpV4mt4V0&{XK@ zzJ|O+N5^(#rRLDHW@N3!kc-0;IHMksPm0B$o6$o=#n%tsSF=cYpp}SqFi*8+nHP9T z+S_YY^lA~+u?SDaE9>nlhth`hsWv?U>~reCk|%);!-VVZLK%^GkMwatpRNp9dH1!gJ2} zdKvflt5>VzO|f>p^5}YLaaXA+Vy6?H(*P|AqCW}s8VU5Duzgl(s&-;+RX({q8kuw3 z9ayTWhv4&NCE+f~nMBvZ0xnl7b)s;1PUPxpKEJZkX?v`bL}G8-qa#!J7h~isLzK^s zNy}%j((+>1qC6=`0M0kM)7*Dj3Vq??$}A;*nfZ zPTiH0LoxH{5L<_VsgXK(%>^CS%jyf&r^)!PUy%((u44|&VYYQzvRyh-;q;A!B(U-2 zIS7w5I9{k{eK~C|E_o6nFkZw6PyOQZ!Vt(~o)}zs7Cs!~g^$R>MYxm88q+^5u6*j# zxaPUM!|~UxC_-s$I1ynmk$&#!_OMu*e=q8pvB5NLb^37=OO=bG0n8kDq`wAf~{(p!*i zZ4hB*F;7}to8yi5^7Kfwxp`q!MG;+LSH1CHWzBpU66SN%%tLyfH6S07wYtE<&U^sA zHoVhorNh$oA(^olUu*}KEg!1ZbrfffGGP zP}_z%0KLQD0kdK+Tj~}Y^ z2Se>u@^AfbilHf`=St2MOH)24ucg@?glFR602Bo0y&#%U!lks3jmd*q*|*AnhT?Fy z?@3~XIKz_ypW733^vx|pS}Z7rSX5GRn4MvW!;Bz1nxh1rn0th6H9Yq43947T zf=LDl7l6e4Hu>yV+wZ&^7Yz;2`AF_dl=OT*uy^twD^~0+y?Ptl3kpNpaQ8zA-JM*O zat_lJ{x`3wpUo2=!$3N$F?&3a0` zcDd4#y1Ply|CyJYkXVKeaSqm%aP^=#n^Cxf)iO_uR&+!C=a^p_c7GaN^nbhgBwxmS zA$a7Sd{Rv!_S3l>mj6J^qF>2p5+R4MAqbYj>uISiT-lelhrQOHGu<+KsTu> zA2Ur94ZB=&TTPq&S0)5jL?uJTAp`nmoFU%nN&;txt`Db~&__rMojL$+y1`- zm7Xzm>TB>%I$z6@*anl?ox0e48ve)yalDiC7SvGXjQPg`fbqN9n0+cP10W9^AcC#O zI|TrG3L5pa$(Pp+?8iTVZ^O^LZeUSOf%+u_ADbC~{|fRU#M@NwXwIDXR*;r0JucPA zksq5Y0LcOb0bL@d92GfoWvRv0D#qCcW8maSAi71Nqr8b&M-jGVYy9Y7Tdc!iW1=J~ zE)0uy3?sNlIY+q@f*g5)Xe9N|Pe_sjU68`yi8521r?p0+#(JHZn}zJ%biJl&-;@Nw zItx2Lm#%H(SeDhkpMW{@aqsrtxZLd_`*X(SjMt#RSUZ|q)0Zb`b>5bnKuzf1&*nBW zF$ms!VNQT}Q(Dr5+QN9VBg;;e{E(>P-S?WRzfn|yTrjCwURVIzcTCO^^81<}m5RmD zseZn_H4b~-nN8e#f2{6dnV45x^y&Ca9`y-ZjLO7B!7px`*G~EM)Sx&o=6ZH99X$x4 z92yJPLoFWF>q9-#-AoR6jhBjb6DJo+3vNFk4i6?js!%Is?CxG-Bhxvt>TAzx-&4mT zvjXt9Cu>2DNAD}kvLZB>Z%9G)aph(oA2#Mi>ESw6HB<4#U>DBJc8-+L_vUuj7E8f4 zm5&(G5g~Z{kx8R9+ksuO+8^%a32foxQK!kOg>UDnVht(;G{?&wCj>l~3f}yPV~xeS z4l=XSX?ZB0)E1IA*3CHVBoHzz8`$VoJUH)#<%^(F<|7$>-hEgSF-!0I%sV{G(SgF5>obIrIP zA67HMw6VoznF45(jZZet@&J19utcjRt90!6go86>Y@x^~xcWx#IU?s{qu*98bWY}^ z;W2|0!Qm?70;xjDZFA-SQ~O)!Ds`35Q|Z20NB6m7XW8bXQ zqDLya8*A_61Pc99U4;$SH)F>i)ZX#{rPNeQ%E+p+DoP zBO?yV)LbAA71Q}E2|(DP!9=PQoidV3kVIfz99_>{!|BTE-tt_S@>;mIe$AX=Q$?_` zX@~Gtq^J$Sc=a0fc3M;jR<`%rYNsuck1g}*t0~C9SfWKI@hA$3`_VeY0NwqeZ_Kfm z=1P`kBT)L6)wjS-g2Uqa#_yliO^ee9sZt;xU_drp-}vXhzw5ANl|Ve8fM~cahiWbE zhG|7Ri4ZJ;%IEh&tU(q2VMrodo&J%lFgw|kLaNCL2_dHhU9v#YQ%covt)Zl*=B7MF zemptb2Hm^hjf6?I>ob%7r0*L#6FqJ(3Z#1sBE>p*ZU}Kq*7Jum5vXxK_r$RAUADsY zc4F+-(iU`QmMQpk4R~3?*0ML4b-!Cb{&cL1dw8O&;nvOkt#%t9ScJ8;4jz^?HLFPeiAtJ2{i`S8)4jf{|xw!4lZbI&{=?yqk0Bni+V|U+>&z z(AMX|QH-eQ;rC#UT#Mw9ERsahm_B6E&W$IBN5?O}cX{RDY+KpA3*Stw_sE{SeE#bE z2KHrx_1}zcxivlmBQ7#Vj3bV=5BJ%yEhTw=ya7;if)$#@)?Un$jw7fig@{F}1a#Pa z0#_9$nOK$SO$cjuzg}8?4EM)vZUL?z$JO{s<s3L?n;;B-uKyjSBhbC@QIj-Lq#oVu**4OR_;;8IF0{{Y26MLZ_+)u zXa{O=E1_fAGjpx&d7m$Y+S=ZKM(-w&AtsOZeZB;#8OQr4c3N8zYe|Hisw=Hpnu1s& zta_X zX0f~>n}Zu?UbITKC`4?;)k&%hLyaZLoW4_!u*OQu`YuC&unl#Zo^pXiLp6QIGS(=^ z_Ff1Yo3zfu%9P3WmB^>(b3q`KXjbDE#ykJ^?=N%#2do1CM6D1IA_tEjep z4$zE6MFPZNg%&AMXek5#yeq4-@ng^grDk~@5^D}R&)5#QyFc`nmfaw8(RpPpkr+@P zqtw!lqt!8FNE~xdqgxeaSp)?|*{bbS6Ktdwc0+FBF2e279E6Bdt5VwJ$u6j3WVW7~ zV(>@wr43ANr!_&xrXbNY%a^|W=_8XKN)PY-#oYu$QnzPk-IH$mQOktWY_0}NN!rW! zD+CH>MU_Icij5P1slG}dFWdp`$C4Xxj-`Uh!FG;4L@T9TVBH;ohmwqJa#)`$071K= zM4rSKb(T82ZDAft zb{l&qx3kH^$)XD6ZhUgyw9E@vNE%(nVft7$SwBq-Oj1W?&`%Sv94NU^T!6k8O_gfO z1Bzj~0~d3t#{r*o6cM!|Il#?m<6xeL;(&|{p`grrV@qa}2_Vx|VOg@MF@fr=TG;1c z-MEy}u-F-y$ZbaHqc18*$LUQ%C!bkeeMT(DwvXIQXSB0NKY=|OF!6AHQJRZBi_S`6 zkC&=jT;G^7FPogN6V4Mclyq{tv_EK7$=$8|1+~+|3{7?w1%%^UDLl{2jbg=}zOd1< z_9G0jAIOz^-49%cs_Qgv>-r+DzVFSy{{I$L=c@KdI=29egl*D^LtfFf5RwcQtAu$X|s#1yaK>?T3 zRg^1j6gQswmSWMC8|=3EgmGI-Q=agG1qIv=c3Ov`@fjAA@xCA<39iyKBjtIKh?K?@ z7Z)f+*4M=yQsy9|nFfNeTwn#V2$TSdkYPD?;Q8Sbgm{*N&WsWP!F5Tm@Ch~v1Gc+3 z6F3eYQM3z`1vH~r+!q=v7DZj~Z7h}8p2S#EVHTD*m{UHvVLz#tZm24TmIW>jW6KiD z@uz68TVSH%TUDsduZRStdM-(`=rc(qL_j2RIPKl-Wi#7+Xpkzvp&>)~2r|^uVyv|o z2{MT^ydG&g(5?5&sUjDu8@;=%zzFI?=#IwZfb|61Q3bRG;u2wgrw&4)k{?z#mn%eO zF1#>e{jDZCff$Wdwp>bP8iIC!t#$Hc&<{X55LjD+zuhpgjI@%ll^Dr}N<^0fQ0WCt z0PqAFG$5&FRiI)k`v zg%}xmm@?9~N$bmkgIGO3(+&^XnV3jM<+h@9&cq0hNvBLFm@y(GHM#bg^u&E2rLYAT z7ZwUc@WNUq6<_&+$m!VzAEhz?w|aK{zQdPxvm@Z@uK7{s+gOzFn*QpfsflNx^1@J)AvSY0a#U z{AQ^%tLmmT6GtU-C1_YANsHMXMV#d$XbGRS4V%^VS8y$mR?oP=mt?&@m;_n(C6K0y zo-M?OnW*)pVzTyYD=+>w0FYRdO+w8{KmawefP$=y!8a@r3wmV)Wb7L?k2;~V7<&GJf;W{H! zKn97%?6s$?ch7|*MN8OVt&7da23i$kGhDO#ZlDJja;W^!(h5F*FZwJub76s%*qu#< zhhvZ+Ic@uWCzfa^N|8+95T+eeJfr|?!%?gw%y17&@{6&g)^VyC2GFiZHm&E9pLE{2 zah`LdqQ7ZilrpL^ri3LSW-&pj1`||d`$aqhg29?7H%L0J&zJ~DTxkj*oud>*u^nC# zWnn>po6QTriem{0hs4IN6tQJ(M%tBz&2q`muhJ7bsBTddsnGAWepb_)$#)v?ey=wi zF)JU}@P*a!NU}8ye1yT~Z5jdqoVQs=1o{-jpVfVj{|N%V0S7$xixSqU6l%w(@KVp8 z$9L}8dr>5I8gC7L|7WM;4dUml_QO|8$eegHgO6jjtl_h+%62J-@zoz6m>5F?$5>9N zl^k+>t44rt3b2h^U*VF2Nn9I3%%;Rb(rUqc0+J%`oOv$5a=`@~c54Fs7&Tew@iN4|7XJ0k4o&(;sN8R4;QS>#VEodg-LwJ6+oa zmkT;uS1JH&DF{S7tT4>hoj7iTk|9761oP)8vIR0BX-2Egi6O~-D=tCB5~4>KEf|){ zS5E05!aR*cQi^;wgc=$oxijB+9IsTuF$7+N15*$kS|ip8XY7CG?W-$g1H5G# zEM2Qpw_(Zvbv)i5O=DNT8WR^r9z~x%GDmw24;b0rv_Si9zjg}i-gLg*zD4Dw?f3-Z z)|5}U1t(cB_8kwLOW|d(6WQxDufiot7_e$vfh>qW-UDL`2_7-UP^Y3Q_K4Vw;;UIvb%4QOHJe3oUC7GvVcEd7T~4QRq3N<9>BW3*+puN} zZ5@wU|BVm6U%e-(E)SFkmS6*KDZzCG{|B>Mv&XrV9taLl(5RIFz=i)q*8i9-;Ne9; zC0Q1x7^ohMM$_u=ir3fw`1ilQ3Qb?NU9)Qq2>Q~xx;Pn41JpAGaUmc}6(fSWmrUj) zY63c>57{g)T%SjeO~_6BCi{=jy%5an8^`xqSq>*MOzrn*ab6108PClJE0lE!xk|-E zrsIdN2H_FgQ4CuIpqE-}r?#05;M0_~c?NpvsgjKVRCIc`#K!sDl_$28}GiX%=iXBSweYy);QJb3_!hjq%}9Y1-}8Qeb8_)uXq z>#9O8p;dSV5!Y-UjU7ROnXf0A=CBX5NXb86>|02r8NZ~T-zTq=?8BiP;A6e?gy<6i zOe3@0OJ70>4teets!B)oK<6b&hPkYnSga-pIyqGw2~FDB!+gSYgjxwvHY)=oi53<* zM2Lk!nU+xivJOzQqeEVmMPRsnE5G8n%-8BwyRQ=vs#+%T1q(F6 zL^_dv70J#XLsCI1%9yqtG3s^uYX-T}DQ&fbgrgtao2x|1XI9Z+6%`l0-B{T+3oAwp z)12s-nCuG`9q%1G&C$<%R)9V%x$EPTO-d7Kr=Ht$8~B`t*6(`7mv;DhXeT$GjwLI$m4=Eb;w@4dih24E({evLkYG) z4+idnFP5-#>YMkUIl?m>IAeOo!Pn>K`xcj0#*?-6H_Q7!@TaVi-(&4Y zOB`>pE+x~Ngl7z(+nHy0q4SILPtm3F*@ZO6Ma9RL>#>b!yujt@>01f54tQ{CAIeZd znho7Zqiv1l0a;KJdNp|2EgT`WxRRY)2t4_a%MIG`&Ew3#SAhW4 z*6JQsEtwCUYGy{}oGYily}iAA=D)|=yA9b#X8e#^)sI%j8);8BT+ulOWdTzy(r#Gw zs>M;V(o{jPg?BJHowUZg7(X~mScpEuqd5YDR_jF<#yA6CO0u5yS-&@+TmV9)#)?ps zH>;!?J1v-Dgk;^c@?|0$nqFHySt2J3tuAV8Lo522J$h1<_;RCynOnop-lS%vt&Mmo zu9yvov9~?=fnnV7W@B5@Te`>Ur04r$z~CYtN3g(Q$sCg_51|Az*!FXAas;P`{rPSw zqhVLnW3cbb)>3v(18k=%;uI0EyENi29K3BXdMM**0$CZvha%^&)A0sdkInHrH3AJ0 zsqw<8ov}^I5FFZ`D7EajS#O@8<#h|`ksglF&thXkKSXF<;BJfd4+oOgE-|McFrj?f4(Ft%2_peZY6Vla@ z2#atG8QK6-1BPYROwkPhGK+L2z_xe}K5Yv|JxjwV&D@L|b64bE_|?Ps0Vf`&aQx@9 zey5LBY2T}D+i(wl{(%0#1L%YMEAaICfP5Ux2LL-3qd(g`s5mf>0o7kgNW2$=xAZIw z00-l!5duV>ODg$9Jplu71}uZLh)zg7sK1MUMt$?^U+mS6(d@P`Rdfo;TsT(x0SUD` zevp(SUfDAo*82m<9DYR91{CsA+_VfK);_YCZi4#NMTIt&01@5c1J>_D{9tPe?vq*ZDyPrZB@Ly@`9TzEg?dajX7C3Qldfa3N34DbuoSdeYqJU zmR=%`gNJ#r=eYEMH2l!qi^D_5@dq#6KUH4?afM0sApaB>+)ii1-7$gvWNdC;Cp3GC zEHyknsNix0Aw%!Zv8IDKuY=<3Cj!qC#$jF2)(^C3CAXaf#(yHSnVWnw_D-zl*vUXsorba9I zl)~1^+v6sZ84^?u3InUsB=MQR%hgZi@EF9MgfUsSeQvgmhOt7A)XM`x2)vxnO~a$P z&;jvC3&CME^7wWS)sk>+W^DN=)Jm zuwp)Zivc%=*M2%+n$KyI3avW?$4V>-$7hW~s0foel{9UM2D&p0$g%(zjMJhAbd)io zQVL=)`>>-hezO!8iY75ZEevxju0Tj&hL+J{#Nm`m9jrScZ=|x<0h%eAGQ(jK%P9(m zI($I~-bwnJ<9{}&;y(ZJzK?V?`y`{0up2&iI3DRZe~cUzC~~ zy;t_Y`*-u>Um(XHXy+(@EUR4487JZ>*d(-O%&)$qt*+HmAoOS{@0PKv7oBZe9=(u_ zQNJY9Gq|-uWCB2`lY({WsP=x;RA8Xm&3Hu`S4Y1U5#{Xr@Eo~)x$lwvvGD5KqQgVvNDugQa7bz%_DuT ze7E^Jt*fY9pQAcDF4{B`631l!XrE~!0Gq$qI(?rX2k7gA!@EQ!!dO=>Zomq0`(c zwTs_5Z%AN_JHaETSjpn?gfqI3W>3%2O+zzxyN=xECTeF|W|1q@+TTWN(PDA|9M7%V z$&#Kg_INBc;UJhr3T89%iw*_4sl>-Q%aHXLptHN;rL)YE!)M&`s?! zDjV(Lhk3bc+zzwDxpPR}4shUSWmLY2*4EmbBEZQIqM+9_g$M_4nS*PV={v(}pPkN* z%v`u9=S4HP!0NBIU$=osO*WhPmRXS`s3D>Q22Y1wX#m8S~N0&6tJ*~*qUi4@V zbBvtfrQM2SN4q}Rxnh&V*68T*>{0I_p=^cz$B=*`en(F5qr)k<|YPqRsG zFTp*wLqKFUcanAlMoj-6vAkiDKo1|OM$?oy=11FxH zE2IAV#fPki*bubFz*-pX8ttf)l$tTC4}3#J{L;gmG^Xmn;tBw35DFMBt$-g{D!nFb zklda2*+P^8L1D0%_?!+tLYA6SexuV-R^Nh8O36+68*T^v-3&GtF#Nu6L1H7*weRH` z<}0kf>Wk)y`>UXxBm6c@wwQePvL#3O^aRVY0xcY|6i{Fplky`GV?(y;tj-xG3*m+K zScWTTW9#EpljH_-2YQlYh*?R?s)9r;1r#L0cJ<|Wk+*JipIL`-&n#&yu;-8P_YU4e zhME(8f#pi~CHSD^%Kt*Y+y6WG`Cn>6{|^5S{pA78__Yl5&inlR7eArl7qoMzFZZon zYfpi?d_-(a@8Ox1pBGFmubQQMu&@)USRzj9O7Dio+(>Qpn`uYAqf^z^_KIY;>}>^# z8cp1A`u3JwOwD`5e71mRX>PohF5RM&$XHL($+4*;O`#&<+(PayBvvlD+0LW*e(nM< zi1JT%cEDgq7NM?;H8#^(G}z=Ut!a;dUR0dNGVM*0NIBA41Q7?T=@yrIT#srxwPj&P zjaJi!s^3_JL}YJ@rDfYtOD|8%shbxUNh`~P=3ty0?zq!c`Scrr+?LIIV_g9Sj4q)j z-4K1`TuYpqHiqe1bYES?O=G0&gfd}a(j?si%^MEJRzU{MLC2ak2Nf0mZrUpwL`23j zM;EMtEw-vqkz|hwB&9GnYV6#WVyFdzu-B$Nh+C`}ARICz;gwajv)V8jD#oN{;~Yhf zQhGxb2gV#VM+(*euM0T!cFnq`>{9uX(^-p*^0{L=QHb_fAv)m2zMW`O3I-)hvwH6; zZ&yy2PcC%7qz);;4B|-_jUb9U7hn%szP&Z7v=Mz*K2Zi$LJ4=;nA2s|)kTSViu^%N z&6S}LIW2#{JfTeBH^Hx;stE5iZ$JmhA3RuPYCIyG9O&BKe(6=!OS3Gu=T#g_x@Nn_9zU|g<_e{J=q^B zNidMu%1VPNLHWG*{CHb$X>2GUvf+4JgxY97j17+3Ig!4#5?T-KlL0xj6eUvw@vXm zw%`zDid$+Okp2$__Gng|k;f4u8?e7qlr{IW_3RxXW3k`z;(*UNqYpXc=T(jS^zl?j zW&U1z_lyDi^qT|UDunHecDxcwLF51}8tq36#zyfgr44cWxR(vs{ZSaUH1ej{ZeYam zyF@_^b2wRRfLb1}KY>||)sLQ3&`z{q%aBWx;~u*^FhagNI>&3Plh} zm|$Q#+VivQfXnhaw6a$IG4Rbvvs<1hqSr#*E-Y_(fBFQT)a;cDd%nCDfs85Nlacg0 z48kY(p8J3~J_;Gd!bZXNWp{VwZ~qx)28zn+C8;_an3Rmy+TC+_d^$V}3tA z&pmn#;M6$JAZ73<@M34|Lt*a*@FLLh=tQ(VIvX9CICv5J`;su-&ChjhGM^Il$3(V% z>TMQfyDh0hnFpaM>tm`j-vg&j{AFjcnKgk8elO{r$vd`!^XW!b#Aj1YM?{mc?HnC% zRe;I%g5$O~Y7BbK5jx+S;cITG$JQ&9s9G4medx{_hHvP?gs6tG#UHauHqffu4z(O= z;=1CvIDT-^Pte)N=p?84`if3}^I&KZBRJPE)L5Jd>qavx8pu^L?gSD?d%-aQo;TH2 z4d9{hm%X9^+|qz!a7hFH|LopWU4$u=$nL(#yvw!@6x!zw5gde*eaQHSs za4Zf8@{IYd)o}<-nhRo0z-K`enwn6>AGK5)9aJ?c#bvcg$LC$U5*elrqmx)G$4u@) zUD5?ncZ@Al^(fc+)VJ%^u|)*LvNd*`?(h z)MwZKg=Yn%XYIgc7HYULtl3Q9A8=GJd4}6p8Q%c$X2ZG%5LnWJnD0VHYzD={*+OjT z`1B?qFo#Spq;9|}+7313mBUTo+fQ!* zm+{R*kx*#dF}!*%esM?U(b-^C9+>XdoDTU)v~{`Pp9!wc6&dRKxuC)3TOdVQ zVGShfeJ7Dcns-X5kqQnetkf$g#odABE7^7n)pANK;z}tBz>|BQmx^-}jwbmn5ntS^ zFjN}Kn6iEDG#rif3a9l<@;5ciw@=#yZ4+4V)NeVz7VLAJ!9>fyklmtF$m5px$jN8x zjpDeTTbu}mbP@X&_n(syq_iZ4$%Vp9A;uNa;KbiFJqaB$$wJ&mGRr^A0(*dMp>-h0!D zf1+EMa(x`IIHO@=sV+YOX?y8Wd$E6gR#~K}uy)Xy4`W;|5XMnBS~YG?%Tzcw?O7lW zBn`#8i9G~>0j**iZ>&AXmf$HRq(EjtnBiN^46Lip$;DsWF$jnClSvSAH+K$Cp*-Tz z6mMDzNN7&cF{b}()o}i+_h0SE zq=L|t6En+5#{^P+;Bu z*s8*xc5$WhV%*FMx-8rDGLg5mD~aeS%l`G1+HWQGni*OvROWm^*3<$aIqAE9%6M*+ z$Z0%P_pr38FQFbdTW$nHg_nvOnbm=1uP;eAh;a8|Nrg-ys#fqU4KM(GCSW{RmHUFF zTbjk2;dWw-0+b6Y0M%|h`mUNsAS=+f102mpR&jIa1}HHfMsLm>ZW^ZZ?}vkQbn~l5 zkDJpn-@pU}q*hn2*9MgYM=j$R{CX_Z8zh6HB8$s(4p3 zE}uM;*ne6x;UGJnw3UF5C3Hq^p-*JeSD0hY^4(L*^OpbMmdVV-@R){A@}0Jqfir_j z5j9MFa=X*954J%l1>H4oc}pf1ZI|c3>6gID;#6V}pz^C3woyt=iqN~h!ZmvLPJV>4 z|8chBE#i|}O&7=za7NXA2FCV?y0i>o7N5H-Ml}ZQPd`~qh)Ly38|G0oi-L6qwQ2?( z&2=d@$O+vhE*D*>124<5Rwk^t>GeP%dYh^=nPLD~fW}RzLW_=`pW~Rq`B;D?llz1z zzA5NWpAY~JMq2x5AO){v)suY=DMk!KN-Tbksnnp7VWs-85Q&cz?4P(Aqe$;JloFmf zSUg}|VNJ-K1lkq!;((r!6;(f*LOxYQJgt*ck~--d5-Vwhi%DDZg*hs1QtXzBMnVya z{0WgR*_(ih)qBy%3V7L2K;S6KRzlLR6@(=RgSH^oRzuzv$xe{)sQ!+l(Wm^TFL3Pu z*CnKa3jZSE>}rzF8!=4|dQ=I%JrMR0@LS_^{N2OmhIKoaO?B`_L}$ZPf+?y;9A9su zH3|DG@JGdRC`j0*-zQb}v=o&HOjFs+4atLF!l#Ch&$uQ_>{m&5Q9@fwq z0T-&71aY;tr5wgKl}OTt;OrDF6@x0N7&am}Rz#md>h$VmBS64vYX>8$K#B|46&xyj zbY{`Unaolxpg>X0rVsFbrA(14?%^D9CzBd>8I&pL9BJBK6b9Gcnr^ZDrxkP~hzlZ> z%h;oaz>*2cpwUfG3e+H~gUA=Usm%fU7_%SH=}CbuIo!>tDikv$E0dVW6|Y-2Sp!T4 z+RH)VN~AbeSf8G#S*ac}h8x%TS9INk-noboP8~CZkz%izFUjN<7rJ6sww%qLOMPSK8FWoC`-w283 zFB-hfa6vf(P$^N<2;1=~VuL+LGfzyM@COm|Oqo#f15zw1u&SjhZUP;?E@GDS33DB0 z`E(13LlRTt8d@L?K#-U)p*J8VW)_p!k6kXpxk zTA4dP8C-N6KXe6hM0>j*P`IQ#sez;# zagB7V)$|xBAHGvAhydF&f|rsqd!a7KUcPXJ_P$RS6wy3&%mu+keAb8!S3v?s#P1&| zx|?GXG98bRB0cvwof4Pqmx}GedOaeMw<$BpWu%&%aHi7;*ca*?yO7QHV-Ht?JrprH zaCLTtN*wrDXj9?nryRQyVVVgEe3a|@!gQU0U?c9T=x3)So#pd!3y`_&$Oh5XpQPx7 z2N}+2?Q|{>3pY=(u4fdZVPGQ2d#6@}R5RFS>~31A;zruw7>>tt0(XUbkouep!x@!( zO5Ccx5q7h^8vs%saG-T(ey{KsvQyd08osJ&lW$B%D3d?!(yB)TK4>CnM7?$}%&jz5 zI`kAJD}XmqZ>)W$_`>B}DRyNTBbDN{V!zDVQ4w(@XgYs{6T!!>f2wjpJKoJ)bezW1 z%lwmJi=%w{OKk2>W#F^UPDjIkD}x0Ql4YTKw1tliC^*gC)l9WbV*1CFW_W z(>XGZoYz%Xgh)jT$Ib!Y`XXniBpPm4@&c zfN-Pem{8dZW=_IkcXL2D=?YD?x2ztBy4{rN!h=k_;_)jTsh>)tDwyTd4nk~$q>PVf z1>6Qe(tTo+Gt*9n;+X_a$L!ZITD2Vwn!#1TO(pAVqbwOUx_^TOs-0tF%Sd`*OuH)m zqE5#(6oYQJYFO@d>zLlY0c0#1GA)s!IQ`sp z2j}=yoarJaM47YtL@$j1ynY%dVsi-q^6Lb z+x&-Ial2Q^AK?Nmh0r2kPqX7wpOnQOoktOs4bznv^*}S3UVJ+XU{0+RzM4@@ip;{W zP!E|p*l}VZYY0H}a{x?KUk3U4d+5@DjIia)rUIREi^*+rcNXw%+1B+~Kn(ZuL9jJa zhr>FOZI5&X;b01O@Xn`BgJRK}T@WS>?z5`(#SWYBt8B%uBn(YQFijTB5<_&&hLZrU zRBR=4srJWe7HHNlf0Qd!r0a&8+{!>Bt?0V@6}e>$=jy?Wf30dAiGNW>yzKLd+_<-k zrt0RSx(Te*{iZ{KmA9f>X##d|>cP%467>S3*i3@8A24ms*%}Tu)Y zokLcw%O%aua7Fh1&~E}o5Q=%;mRMw5hI(n>qG~S?S{AH2))$%W%D#YdjK>UaTEifL zu9nHSDQHc$MmW6lX!FN4{mpz6n%yz8G{}XqqKvO^8t#Kw3ty*n!H<2ABi6@BX*KOs zRWugOS$N(#70^cDsw8ZtEp~GXH08q{4G9L zR9#(epxL+By?>TD8qNW1@@T}>8REHwSO9m*qhOFRRWTP~p$V(elzJ)k(_Q0n>k9r> zdC}LX{(w%y>9=7Q86H|?(|wOEojL!-zuax~^eho(bh9e$lRb3#Sn0T&kQq1Y)z_P; zP;(OT%D@9n4saJ7){Wq7jvKvf61hXatJD5d?O>y6DTkbepV+#eN-jNRu*n!g$$oqu zbHJ?00?2plA&j)#enXC>LPM-`P_FyP)QMz1>4#X5@vF&x?2pk4b6aK7m^yBiUM>@W zW*9FTlH6c$*%P~!z81#^(y?z-gY0u!N+PFNerfP*o+UOF`KBzv>Q4Wqz>xn-a>U=t zabOQhf>4t3sdn(&^hd6~O_kXv>-nlbSflaBN;Ljhi=Y0BEacD32z9_U{5}}~7dY>H z$$DS>9xC)L`lINFBB<8XtvssbBb=nZz5jO|zL>oG=Roq2-;vCDA|(etjS@V85-7`~ zC*+Bf8090odin;>VdT#-oXg`2grYQw+50~^zBx#+kZ%y$;ozr2MEZuUIRaVa6FXdJ z=osJ1`9h5rBNkhncnLTXCE?=X2aIiM)!EhOJN4Q$8+Fonz?tir8r`8H4i@OAaKZlq z!A3Ja`s3fT0C}NZbHyA1p$^GzNO9G5cieQ#ZQo0^@2-31rTN7Yk38^@$dBG@lp$TF zY*}&~CzezUH!IlM!wmtDQ)Wj_w`CE1V9mFpI z35Is)gl_1?;n25a*_w41typzQgHvH(&zUd`BQ0SZCSe+8LHxa}^*>cJlnR0R6afaVfDonVz;)ySTgc7w;c_uTAf?Juha%FXq1J+uYFOT}m2ZWYF_3F>S z^m0l<%?L~Q-uM~%oNRzP(UM*E%BhUkTn v6YiWowqm00JzmtD;YYnwf~bE&cqxd6C>lOPJQgK+O`H{8r|$c{|D6H=72yoL literal 0 HcmV?d00001 diff --git a/docs/_static/js/vendor/anchor.min.js b/docs/_static/js/vendor/anchor.min.js new file mode 100644 index 0000000..1216eea --- /dev/null +++ b/docs/_static/js/vendor/anchor.min.js @@ -0,0 +1,9 @@ +// @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt Expat +// +// AnchorJS - v4.3.0 - 2020-10-21 +// https://www.bryanbraun.com/anchorjs/ +// Copyright (c) 2020 Bryan Braun; Licensed MIT +// +// @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&dn=expat.txt Expat +!function(A,e){"use strict";"function"==typeof define&&define.amd?define([],e):"object"==typeof module&&module.exports?module.exports=e():(A.AnchorJS=e(),A.anchors=new A.AnchorJS)}(this,function(){"use strict";return function(A){function d(A){A.icon=Object.prototype.hasOwnProperty.call(A,"icon")?A.icon:"",A.visible=Object.prototype.hasOwnProperty.call(A,"visible")?A.visible:"hover",A.placement=Object.prototype.hasOwnProperty.call(A,"placement")?A.placement:"right",A.ariaLabel=Object.prototype.hasOwnProperty.call(A,"ariaLabel")?A.ariaLabel:"Anchor",A.class=Object.prototype.hasOwnProperty.call(A,"class")?A.class:"",A.base=Object.prototype.hasOwnProperty.call(A,"base")?A.base:"",A.truncate=Object.prototype.hasOwnProperty.call(A,"truncate")?Math.floor(A.truncate):64,A.titleText=Object.prototype.hasOwnProperty.call(A,"titleText")?A.titleText:""}function f(A){var e;if("string"==typeof A||A instanceof String)e=[].slice.call(document.querySelectorAll(A));else{if(!(Array.isArray(A)||A instanceof NodeList))throw new TypeError("The selector provided to AnchorJS was invalid.");e=[].slice.call(A)}return e}this.options=A||{},this.elements=[],d(this.options),this.isTouchDevice=function(){return Boolean("ontouchstart"in window||window.TouchEvent||window.DocumentTouch&&document instanceof DocumentTouch)},this.add=function(A){var e,t,o,n,i,s,a,r,c,l,h,u,p=[];if(d(this.options),"touch"===(h=this.options.visible)&&(h=this.isTouchDevice()?"always":"hover"),0===(e=f(A=A||"h2, h3, h4, h5, h6")).length)return this;for(!function(){if(null!==document.head.querySelector("style.anchorjs"))return;var A,e=document.createElement("style");e.className="anchorjs",e.appendChild(document.createTextNode("")),void 0===(A=document.head.querySelector('[rel="stylesheet"],style'))?document.head.appendChild(e):document.head.insertBefore(e,A);e.sheet.insertRule(".anchorjs-link{opacity:0;text-decoration:none;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}",e.sheet.cssRules.length),e.sheet.insertRule(":hover>.anchorjs-link,.anchorjs-link:focus{opacity:1}",e.sheet.cssRules.length),e.sheet.insertRule("[data-anchorjs-icon]::after{content:attr(data-anchorjs-icon)}",e.sheet.cssRules.length),e.sheet.insertRule('@font-face{font-family:anchorjs-icons;src:url(data:n/a;base64,AAEAAAALAIAAAwAwT1MvMg8yG2cAAAE4AAAAYGNtYXDp3gC3AAABpAAAAExnYXNwAAAAEAAAA9wAAAAIZ2x5ZlQCcfwAAAH4AAABCGhlYWQHFvHyAAAAvAAAADZoaGVhBnACFwAAAPQAAAAkaG10eASAADEAAAGYAAAADGxvY2EACACEAAAB8AAAAAhtYXhwAAYAVwAAARgAAAAgbmFtZQGOH9cAAAMAAAAAunBvc3QAAwAAAAADvAAAACAAAQAAAAEAAHzE2p9fDzz1AAkEAAAAAADRecUWAAAAANQA6R8AAAAAAoACwAAAAAgAAgAAAAAAAAABAAADwP/AAAACgAAA/9MCrQABAAAAAAAAAAAAAAAAAAAAAwABAAAAAwBVAAIAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAMCQAGQAAUAAAKZAswAAACPApkCzAAAAesAMwEJAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAQAAg//0DwP/AAEADwABAAAAAAQAAAAAAAAAAAAAAIAAAAAAAAAIAAAACgAAxAAAAAwAAAAMAAAAcAAEAAwAAABwAAwABAAAAHAAEADAAAAAIAAgAAgAAACDpy//9//8AAAAg6cv//f///+EWNwADAAEAAAAAAAAAAAAAAAAACACEAAEAAAAAAAAAAAAAAAAxAAACAAQARAKAAsAAKwBUAAABIiYnJjQ3NzY2MzIWFxYUBwcGIicmNDc3NjQnJiYjIgYHBwYUFxYUBwYGIwciJicmNDc3NjIXFhQHBwYUFxYWMzI2Nzc2NCcmNDc2MhcWFAcHBgYjARQGDAUtLXoWOR8fORYtLTgKGwoKCjgaGg0gEhIgDXoaGgkJBQwHdR85Fi0tOAobCgoKOBoaDSASEiANehoaCQkKGwotLXoWOR8BMwUFLYEuehYXFxYugC44CQkKGwo4GkoaDQ0NDXoaShoKGwoFBe8XFi6ALjgJCQobCjgaShoNDQ0NehpKGgobCgoKLYEuehYXAAAADACWAAEAAAAAAAEACAAAAAEAAAAAAAIAAwAIAAEAAAAAAAMACAAAAAEAAAAAAAQACAAAAAEAAAAAAAUAAQALAAEAAAAAAAYACAAAAAMAAQQJAAEAEAAMAAMAAQQJAAIABgAcAAMAAQQJAAMAEAAMAAMAAQQJAAQAEAAMAAMAAQQJAAUAAgAiAAMAAQQJAAYAEAAMYW5jaG9yanM0MDBAAGEAbgBjAGgAbwByAGoAcwA0ADAAMABAAAAAAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAH//wAP) format("truetype")}',e.sheet.cssRules.length)}(),t=document.querySelectorAll("[id]"),o=[].map.call(t,function(A){return A.id}),i=0;i\]./()*\\\n\t\b\v\u00A0]/g,"-").replace(/-{2,}/g,"-").substring(0,this.options.truncate).replace(/^-+|-+$/gm,"").toLowerCase()},this.hasAnchorJSLink=function(A){var e=A.firstChild&&-1<(" "+A.firstChild.className+" ").indexOf(" anchorjs-link "),t=A.lastChild&&-1<(" "+A.lastChild.className+" ").indexOf(" anchorjs-link ");return e||t||!1}}}); +// @license-end \ No newline at end of file diff --git a/docs/_static/js/vendor/bootstrap.min.js b/docs/_static/js/vendor/bootstrap.min.js new file mode 100644 index 0000000..c4c0d1f --- /dev/null +++ b/docs/_static/js/vendor/bootstrap.min.js @@ -0,0 +1,7 @@ +/*! + * Bootstrap v4.3.1 (https://getbootstrap.com/) + * Copyright 2011-2019 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors) + * Licensed under MIT (https://github.com/twbs/bootstrap/blob/master/LICENSE) + */ +!function(t,e){"object"==typeof exports&&"undefined"!=typeof module?e(exports,require("jquery"),require("popper.js")):"function"==typeof define&&define.amd?define(["exports","jquery","popper.js"],e):e((t=t||self).bootstrap={},t.jQuery,t.Popper)}(this,function(t,g,u){"use strict";function i(t,e){for(var n=0;nthis._items.length-1||t<0))if(this._isSliding)g(this._element).one(Q.SLID,function(){return e.to(t)});else{if(n===t)return this.pause(),void this.cycle();var i=ndocument.documentElement.clientHeight;!this._isBodyOverflowing&&t&&(this._element.style.paddingLeft=this._scrollbarWidth+"px"),this._isBodyOverflowing&&!t&&(this._element.style.paddingRight=this._scrollbarWidth+"px")},t._resetAdjustments=function(){this._element.style.paddingLeft="",this._element.style.paddingRight=""},t._checkScrollbar=function(){var t=document.body.getBoundingClientRect();this._isBodyOverflowing=t.left+t.right

    ',trigger:"hover focus",title:"",delay:0,html:!1,selector:!1,placement:"top",offset:0,container:!1,fallbackPlacement:"flip",boundary:"scrollParent",sanitize:!0,sanitizeFn:null,whiteList:Ee},je="show",He="out",Re={HIDE:"hide"+De,HIDDEN:"hidden"+De,SHOW:"show"+De,SHOWN:"shown"+De,INSERTED:"inserted"+De,CLICK:"click"+De,FOCUSIN:"focusin"+De,FOCUSOUT:"focusout"+De,MOUSEENTER:"mouseenter"+De,MOUSELEAVE:"mouseleave"+De},xe="fade",Fe="show",Ue=".tooltip-inner",We=".arrow",qe="hover",Me="focus",Ke="click",Qe="manual",Be=function(){function i(t,e){if("undefined"==typeof u)throw new TypeError("Bootstrap's tooltips require Popper.js (https://popper.js.org/)");this._isEnabled=!0,this._timeout=0,this._hoverState="",this._activeTrigger={},this._popper=null,this.element=t,this.config=this._getConfig(e),this.tip=null,this._setListeners()}var t=i.prototype;return t.enable=function(){this._isEnabled=!0},t.disable=function(){this._isEnabled=!1},t.toggleEnabled=function(){this._isEnabled=!this._isEnabled},t.toggle=function(t){if(this._isEnabled)if(t){var e=this.constructor.DATA_KEY,n=g(t.currentTarget).data(e);n||(n=new this.constructor(t.currentTarget,this._getDelegateConfig()),g(t.currentTarget).data(e,n)),n._activeTrigger.click=!n._activeTrigger.click,n._isWithActiveTrigger()?n._enter(null,n):n._leave(null,n)}else{if(g(this.getTipElement()).hasClass(Fe))return void this._leave(null,this);this._enter(null,this)}},t.dispose=function(){clearTimeout(this._timeout),g.removeData(this.element,this.constructor.DATA_KEY),g(this.element).off(this.constructor.EVENT_KEY),g(this.element).closest(".modal").off("hide.bs.modal"),this.tip&&g(this.tip).remove(),this._isEnabled=null,this._timeout=null,this._hoverState=null,(this._activeTrigger=null)!==this._popper&&this._popper.destroy(),this._popper=null,this.element=null,this.config=null,this.tip=null},t.show=function(){var e=this;if("none"===g(this.element).css("display"))throw new Error("Please use show on visible elements");var t=g.Event(this.constructor.Event.SHOW);if(this.isWithContent()&&this._isEnabled){g(this.element).trigger(t);var n=_.findShadowRoot(this.element),i=g.contains(null!==n?n:this.element.ownerDocument.documentElement,this.element);if(t.isDefaultPrevented()||!i)return;var o=this.getTipElement(),r=_.getUID(this.constructor.NAME);o.setAttribute("id",r),this.element.setAttribute("aria-describedby",r),this.setContent(),this.config.animation&&g(o).addClass(xe);var s="function"==typeof this.config.placement?this.config.placement.call(this,o,this.element):this.config.placement,a=this._getAttachment(s);this.addAttachmentClass(a);var l=this._getContainer();g(o).data(this.constructor.DATA_KEY,this),g.contains(this.element.ownerDocument.documentElement,this.tip)||g(o).appendTo(l),g(this.element).trigger(this.constructor.Event.INSERTED),this._popper=new u(this.element,o,{placement:a,modifiers:{offset:this._getOffset(),flip:{behavior:this.config.fallbackPlacement},arrow:{element:We},preventOverflow:{boundariesElement:this.config.boundary}},onCreate:function(t){t.originalPlacement!==t.placement&&e._handlePopperPlacementChange(t)},onUpdate:function(t){return e._handlePopperPlacementChange(t)}}),g(o).addClass(Fe),"ontouchstart"in document.documentElement&&g(document.body).children().on("mouseover",null,g.noop);var c=function(){e.config.animation&&e._fixTransition();var t=e._hoverState;e._hoverState=null,g(e.element).trigger(e.constructor.Event.SHOWN),t===He&&e._leave(null,e)};if(g(this.tip).hasClass(xe)){var h=_.getTransitionDurationFromElement(this.tip);g(this.tip).one(_.TRANSITION_END,c).emulateTransitionEnd(h)}else c()}},t.hide=function(t){var e=this,n=this.getTipElement(),i=g.Event(this.constructor.Event.HIDE),o=function(){e._hoverState!==je&&n.parentNode&&n.parentNode.removeChild(n),e._cleanTipClass(),e.element.removeAttribute("aria-describedby"),g(e.element).trigger(e.constructor.Event.HIDDEN),null!==e._popper&&e._popper.destroy(),t&&t()};if(g(this.element).trigger(i),!i.isDefaultPrevented()){if(g(n).removeClass(Fe),"ontouchstart"in document.documentElement&&g(document.body).children().off("mouseover",null,g.noop),this._activeTrigger[Ke]=!1,this._activeTrigger[Me]=!1,this._activeTrigger[qe]=!1,g(this.tip).hasClass(xe)){var r=_.getTransitionDurationFromElement(n);g(n).one(_.TRANSITION_END,o).emulateTransitionEnd(r)}else o();this._hoverState=""}},t.update=function(){null!==this._popper&&this._popper.scheduleUpdate()},t.isWithContent=function(){return Boolean(this.getTitle())},t.addAttachmentClass=function(t){g(this.getTipElement()).addClass(Ae+"-"+t)},t.getTipElement=function(){return this.tip=this.tip||g(this.config.template)[0],this.tip},t.setContent=function(){var t=this.getTipElement();this.setElementContent(g(t.querySelectorAll(Ue)),this.getTitle()),g(t).removeClass(xe+" "+Fe)},t.setElementContent=function(t,e){"object"!=typeof e||!e.nodeType&&!e.jquery?this.config.html?(this.config.sanitize&&(e=Se(e,this.config.whiteList,this.config.sanitizeFn)),t.html(e)):t.text(e):this.config.html?g(e).parent().is(t)||t.empty().append(e):t.text(g(e).text())},t.getTitle=function(){var t=this.element.getAttribute("data-original-title");return t||(t="function"==typeof this.config.title?this.config.title.call(this.element):this.config.title),t},t._getOffset=function(){var e=this,t={};return"function"==typeof this.config.offset?t.fn=function(t){return t.offsets=l({},t.offsets,e.config.offset(t.offsets,e.element)||{}),t}:t.offset=this.config.offset,t},t._getContainer=function(){return!1===this.config.container?document.body:_.isElement(this.config.container)?g(this.config.container):g(document).find(this.config.container)},t._getAttachment=function(t){return Pe[t.toUpperCase()]},t._setListeners=function(){var i=this;this.config.trigger.split(" ").forEach(function(t){if("click"===t)g(i.element).on(i.constructor.Event.CLICK,i.config.selector,function(t){return i.toggle(t)});else if(t!==Qe){var e=t===qe?i.constructor.Event.MOUSEENTER:i.constructor.Event.FOCUSIN,n=t===qe?i.constructor.Event.MOUSELEAVE:i.constructor.Event.FOCUSOUT;g(i.element).on(e,i.config.selector,function(t){return i._enter(t)}).on(n,i.config.selector,function(t){return i._leave(t)})}}),g(this.element).closest(".modal").on("hide.bs.modal",function(){i.element&&i.hide()}),this.config.selector?this.config=l({},this.config,{trigger:"manual",selector:""}):this._fixTitle()},t._fixTitle=function(){var t=typeof this.element.getAttribute("data-original-title");(this.element.getAttribute("title")||"string"!==t)&&(this.element.setAttribute("data-original-title",this.element.getAttribute("title")||""),this.element.setAttribute("title",""))},t._enter=function(t,e){var n=this.constructor.DATA_KEY;(e=e||g(t.currentTarget).data(n))||(e=new this.constructor(t.currentTarget,this._getDelegateConfig()),g(t.currentTarget).data(n,e)),t&&(e._activeTrigger["focusin"===t.type?Me:qe]=!0),g(e.getTipElement()).hasClass(Fe)||e._hoverState===je?e._hoverState=je:(clearTimeout(e._timeout),e._hoverState=je,e.config.delay&&e.config.delay.show?e._timeout=setTimeout(function(){e._hoverState===je&&e.show()},e.config.delay.show):e.show())},t._leave=function(t,e){var n=this.constructor.DATA_KEY;(e=e||g(t.currentTarget).data(n))||(e=new this.constructor(t.currentTarget,this._getDelegateConfig()),g(t.currentTarget).data(n,e)),t&&(e._activeTrigger["focusout"===t.type?Me:qe]=!1),e._isWithActiveTrigger()||(clearTimeout(e._timeout),e._hoverState=He,e.config.delay&&e.config.delay.hide?e._timeout=setTimeout(function(){e._hoverState===He&&e.hide()},e.config.delay.hide):e.hide())},t._isWithActiveTrigger=function(){for(var t in this._activeTrigger)if(this._activeTrigger[t])return!0;return!1},t._getConfig=function(t){var e=g(this.element).data();return Object.keys(e).forEach(function(t){-1!==Oe.indexOf(t)&&delete e[t]}),"number"==typeof(t=l({},this.constructor.Default,e,"object"==typeof t&&t?t:{})).delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),_.typeCheckConfig(be,t,this.constructor.DefaultType),t.sanitize&&(t.template=Se(t.template,t.whiteList,t.sanitizeFn)),t},t._getDelegateConfig=function(){var t={};if(this.config)for(var e in this.config)this.constructor.Default[e]!==this.config[e]&&(t[e]=this.config[e]);return t},t._cleanTipClass=function(){var t=g(this.getTipElement()),e=t.attr("class").match(Ne);null!==e&&e.length&&t.removeClass(e.join(""))},t._handlePopperPlacementChange=function(t){var e=t.instance;this.tip=e.popper,this._cleanTipClass(),this.addAttachmentClass(this._getAttachment(t.placement))},t._fixTransition=function(){var t=this.getTipElement(),e=this.config.animation;null===t.getAttribute("x-placement")&&(g(t).removeClass(xe),this.config.animation=!1,this.hide(),this.show(),this.config.animation=e)},i._jQueryInterface=function(n){return this.each(function(){var t=g(this).data(Ie),e="object"==typeof n&&n;if((t||!/dispose|hide/.test(n))&&(t||(t=new i(this,e),g(this).data(Ie,t)),"string"==typeof n)){if("undefined"==typeof t[n])throw new TypeError('No method named "'+n+'"');t[n]()}})},s(i,null,[{key:"VERSION",get:function(){return"4.3.1"}},{key:"Default",get:function(){return Le}},{key:"NAME",get:function(){return be}},{key:"DATA_KEY",get:function(){return Ie}},{key:"Event",get:function(){return Re}},{key:"EVENT_KEY",get:function(){return De}},{key:"DefaultType",get:function(){return ke}}]),i}();g.fn[be]=Be._jQueryInterface,g.fn[be].Constructor=Be,g.fn[be].noConflict=function(){return g.fn[be]=we,Be._jQueryInterface};var Ve="popover",Ye="bs.popover",ze="."+Ye,Xe=g.fn[Ve],$e="bs-popover",Ge=new RegExp("(^|\\s)"+$e+"\\S+","g"),Je=l({},Be.Default,{placement:"right",trigger:"click",content:"",template:''}),Ze=l({},Be.DefaultType,{content:"(string|element|function)"}),tn="fade",en="show",nn=".popover-header",on=".popover-body",rn={HIDE:"hide"+ze,HIDDEN:"hidden"+ze,SHOW:"show"+ze,SHOWN:"shown"+ze,INSERTED:"inserted"+ze,CLICK:"click"+ze,FOCUSIN:"focusin"+ze,FOCUSOUT:"focusout"+ze,MOUSEENTER:"mouseenter"+ze,MOUSELEAVE:"mouseleave"+ze},sn=function(t){var e,n;function i(){return t.apply(this,arguments)||this}n=t,(e=i).prototype=Object.create(n.prototype),(e.prototype.constructor=e).__proto__=n;var o=i.prototype;return o.isWithContent=function(){return this.getTitle()||this._getContent()},o.addAttachmentClass=function(t){g(this.getTipElement()).addClass($e+"-"+t)},o.getTipElement=function(){return this.tip=this.tip||g(this.config.template)[0],this.tip},o.setContent=function(){var t=g(this.getTipElement());this.setElementContent(t.find(nn),this.getTitle());var e=this._getContent();"function"==typeof e&&(e=e.call(this.element)),this.setElementContent(t.find(on),e),t.removeClass(tn+" "+en)},o._getContent=function(){return this.element.getAttribute("data-content")||this.config.content},o._cleanTipClass=function(){var t=g(this.getTipElement()),e=t.attr("class").match(Ge);null!==e&&0=this._offsets[o]&&("undefined"==typeof this._offsets[o+1]||t=o.clientWidth&&n>=o.clientHeight}),l=0a[e]&&!t.escapeWithReference&&(n=Q(f[o],a[e]-('right'===e?f.width:f.height))),ae({},o,n)}};return l.forEach(function(e){var t=-1===['left','top'].indexOf(e)?'secondary':'primary';f=le({},f,m[t](e))}),e.offsets.popper=f,e},priority:['left','right','top','bottom'],padding:5,boundariesElement:'scrollParent'},keepTogether:{order:400,enabled:!0,fn:function(e){var t=e.offsets,o=t.popper,n=t.reference,i=e.placement.split('-')[0],r=Z,p=-1!==['top','bottom'].indexOf(i),s=p?'right':'bottom',d=p?'left':'top',a=p?'width':'height';return o[s]r(n[s])&&(e.offsets.popper[d]=r(n[s])),e}},arrow:{order:500,enabled:!0,fn:function(e,o){var n;if(!K(e.instance.modifiers,'arrow','keepTogether'))return e;var i=o.element;if('string'==typeof i){if(i=e.instance.popper.querySelector(i),!i)return e;}else if(!e.instance.popper.contains(i))return console.warn('WARNING: `arrow.element` must be child of its popper element!'),e;var r=e.placement.split('-')[0],p=e.offsets,s=p.popper,d=p.reference,a=-1!==['left','right'].indexOf(r),l=a?'height':'width',f=a?'Top':'Left',m=f.toLowerCase(),h=a?'left':'top',c=a?'bottom':'right',u=S(i)[l];d[c]-us[c]&&(e.offsets.popper[m]+=d[m]+u-s[c]),e.offsets.popper=g(e.offsets.popper);var b=d[m]+d[l]/2-u/2,w=t(e.instance.popper),y=parseFloat(w['margin'+f]),E=parseFloat(w['border'+f+'Width']),v=b-e.offsets.popper[m]-y-E;return v=ee(Q(s[l]-u,v),0),e.arrowElement=i,e.offsets.arrow=(n={},ae(n,m,$(v)),ae(n,h,''),n),e},element:'[x-arrow]'},flip:{order:600,enabled:!0,fn:function(e,t){if(W(e.instance.modifiers,'inner'))return e;if(e.flipped&&e.placement===e.originalPlacement)return e;var o=v(e.instance.popper,e.instance.reference,t.padding,t.boundariesElement,e.positionFixed),n=e.placement.split('-')[0],i=T(n),r=e.placement.split('-')[1]||'',p=[];switch(t.behavior){case ce.FLIP:p=[n,i];break;case ce.CLOCKWISE:p=G(n);break;case ce.COUNTERCLOCKWISE:p=G(n,!0);break;default:p=t.behavior;}return p.forEach(function(s,d){if(n!==s||p.length===d+1)return e;n=e.placement.split('-')[0],i=T(n);var a=e.offsets.popper,l=e.offsets.reference,f=Z,m='left'===n&&f(a.right)>f(l.left)||'right'===n&&f(a.left)f(l.top)||'bottom'===n&&f(a.top)f(o.right),g=f(a.top)f(o.bottom),b='left'===n&&h||'right'===n&&c||'top'===n&&g||'bottom'===n&&u,w=-1!==['top','bottom'].indexOf(n),y=!!t.flipVariations&&(w&&'start'===r&&h||w&&'end'===r&&c||!w&&'start'===r&&g||!w&&'end'===r&&u),E=!!t.flipVariationsByContent&&(w&&'start'===r&&c||w&&'end'===r&&h||!w&&'start'===r&&u||!w&&'end'===r&&g),v=y||E;(m||b||v)&&(e.flipped=!0,(m||b)&&(n=p[d+1]),v&&(r=z(r)),e.placement=n+(r?'-'+r:''),e.offsets.popper=le({},e.offsets.popper,C(e.instance.popper,e.offsets.reference,e.placement)),e=P(e.instance.modifiers,e,'flip'))}),e},behavior:'flip',padding:5,boundariesElement:'viewport',flipVariations:!1,flipVariationsByContent:!1},inner:{order:700,enabled:!1,fn:function(e){var t=e.placement,o=t.split('-')[0],n=e.offsets,i=n.popper,r=n.reference,p=-1!==['left','right'].indexOf(o),s=-1===['top','left'].indexOf(o);return i[p?'left':'top']=r[o]-(s?i[p?'width':'height']:0),e.placement=T(t),e.offsets.popper=g(i),e}},hide:{order:800,enabled:!0,fn:function(e){if(!K(e.instance.modifiers,'hide','preventOverflow'))return e;var t=e.offsets.reference,o=D(e.instance.modifiers,function(e){return'preventOverflow'===e.name}).boundaries;if(t.bottomo.right||t.top>o.bottom||t.rightwindow.devicePixelRatio||!fe),c='bottom'===o?'top':'bottom',g='right'===n?'left':'right',b=B('transform');if(d='bottom'==c?'HTML'===l.nodeName?-l.clientHeight+h.bottom:-f.height+h.bottom:h.top,s='right'==g?'HTML'===l.nodeName?-l.clientWidth+h.right:-f.width+h.right:h.left,a&&b)m[b]='translate3d('+s+'px, '+d+'px, 0)',m[c]=0,m[g]=0,m.willChange='transform';else{var w='bottom'==c?-1:1,y='right'==g?-1:1;m[c]=d*w,m[g]=s*y,m.willChange=c+', '+g}var E={"x-placement":e.placement};return e.attributes=le({},E,e.attributes),e.styles=le({},m,e.styles),e.arrowStyles=le({},e.offsets.arrow,e.arrowStyles),e},gpuAcceleration:!0,x:'bottom',y:'right'},applyStyle:{order:900,enabled:!0,fn:function(e){return V(e.instance.popper,e.styles),j(e.instance.popper,e.attributes),e.arrowElement&&Object.keys(e.arrowStyles).length&&V(e.arrowElement,e.arrowStyles),e},onLoad:function(e,t,o,n,i){var r=L(i,t,e,o.positionFixed),p=O(o.placement,r,t,e,o.modifiers.flip.boundariesElement,o.modifiers.flip.padding);return t.setAttribute('x-placement',p),V(t,{position:o.positionFixed?'fixed':'absolute'}),o},gpuAcceleration:void 0}}},ge}); +//# sourceMappingURL=popper.min.js.map diff --git a/docs/advanced/ONNXLive.html b/docs/advanced/ONNXLive.html index 3130d4f..99b7fd8 100644 --- a/docs/advanced/ONNXLive.html +++ b/docs/advanced/ONNXLive.html @@ -87,28 +87,28 @@
  • @@ -151,12 +151,12 @@
  • {sFLpX{>4?Tm#9%gJF&A-|k9aIZ0v7-OE!}0b7ge|i zV305}g5M!E!P1ZlYc=iWOXp8Z>Ut@$uLduG-< zD2dW2gYu|=%BX_ssDaw3gZgNI#%O}(2tqJI&<1VM0Ugl=q3Dht=#4(;j{z8rAsCJk z7>zL)j|rHJDVUBKn2kA@j|EtaC0LFXScTPCi*?wDP1uTU*nyqcgS|L_gE)etIDwNm zgR{7Ri@1WTxQ-jRjXSuH2Y7_Xc#3CuiC1`ow|I{a_>3(LKtd!&5+p|oq(W+>LwaOFW@JS+qzlt4+8Mj4bx1yn{AR7VZe zMjg~g12jexG)EAE5rQ^oiw@|BE(k?;^gwU)L4ORuU<|=Y zeLTP;JjPQz!%Muv8@$DPe86XXL6|B5!Xi8(ATpvL8lod6Vj(W#ApsI1F_IuTQXmyl zBOTHs6EY(!vLPpOAusZw01BcAilPKcqBP2&JSw0vs-QY*pf>8DJ{q7gnxHv?5R4GC zL0fb{M|43bx}yhrqYwIH00v_ShGPUqV+_V)0w!Y$reg+XV-DtH0TyEkmSY80VKvrb z9X4VUwqhH0U?=uqFAm@!j^HRx;3UrAEH2<8uHY)J;|6Zy4({Ut9^o;b;u&7z72e=2 z-s1y4;|s!64G4F%b)K5f2HF5Q&il$&mu7kQ(Wb9+{9CS&MZw z9|JHLLogg8FdAbp9uqJbQ!pJfFdK6)9}BP;ORyX(unMcO7VEGPo3Itzumd}>2YYb< z2XO>PaRMiC24`^r7jXqwaUC~s8+ULY5AX<&@f6SS60h(EZ}A=<@EKnardoio2#*Me zj3|hP=!l6}h>LhgfP_elBuI`FNQKl$hxEvV%*cvt$cbFYi+m`6f+&KbD1nkFjWQ^Y z3aE@KsE!(_jXJ20255{XXpSHRBLr>G79G$LT@Z@y=z-qogZ>zR!5D(!7=h6kgYlSv z$(Vxan1R`tgZWs1#aM#nSbZjo5^(*oGb0i9Ohh12~8yIEoWEi8DBh3%H0Y zxQgqzf!nx)`*?syc#NlbhL?DSH+YNp_<+y&f-uzsghhBnKx9NgG(<;C#6n!eLjoj3 zVkALwq(Ca9MmnTNrT~FLXqn}#$cCKAg}lgz0w{*GbjWHOH37Cv2n2s5kjX9W) z1z3zFSdJA~h1FP#b=Zha*otk~ft}ccy*Pk_ID(@%fs;6cv$%kZxPq&=jvKg*JGhSr zc!bAzif4FGNK?Fq9Z0^Aui$}0TLoHk{~%!AQe(09nvEcG9xRpAt!PnFY=)P z3Ze*#q6A8!G|HenDxfl|pgL-xHtL{08lW+npgDpNj1aUzTXaB2bU`S(qX&AU5Bg&O z24e_@V+2NH48~&uCSwYwV+Lkp4(4M47GnvPV+B@WHP&JsHewUDVjFf~C-z`34&We; z;3!VuB+lS0F5n`r;3}@;25#dH?&AR-;W3`#8D8QQ-rz0X;{!h93&PY25EkJP0g({} z(GVRm5esn<4+)SEiID`!kpiiZ8tIT8nUEP-kqtSK3we#z}XK?`+aRpa# z9XD_rcW@sM@Cc9b6wmMyukZ$M@g5)W8D9{lc7U)5j|hm2D2RsWh>2K;i+D(Ygh-4e zNRAXph15ug^vHzF$ck*piCoBwd?sm zM-TKyAN0on48{-)#|VtZ7>vgROvV&U#|+HI9L&c8EXEQn#|o^%YOKXNY{VvP#Ww7~ zPVB*69Kb;w!BL#RNu0r1T);(K!Bt$x4cx{Z+{Xhv!eczeGrYtryun+%#|M1I7lf%B zAS}Wo0wN;{q9HnBA{OEz9ugoS5+ezcBLz|+HPRtHG9fdvA{%ld7xE$>3ZNj0peRb9 zBub+U%A*1*qYA2{25O@Y>Z1V~qY0WL2*C(J8?;3SbVL_~qC0w^H~OGI24FCTU^qr# zG{#^&CSWqAU^-@CHs)YH7GN=!U^!M`6;@*{)?p(yVJo&_2X5&PUkrmmH6S{Mp0;{kZYq1U+u?btT4Lh(Cd$1P=a1cju6en;JXK)r5a1mE<71wbCw{Zve z@c@tT7*FvGFYyX*@D}g!0iW>&Vd@76i|~km$cTbyh>npqpju9A*F&K{tn2afyjv1JZIhcTgvWS_XLyNMc!Rfi zj}Q2aF9_2hKv;xF1Vly@L_>7ML@dNbJS0FuBt{Y>M+&4uYNSJYWI|?SMK?4b(;*)JFp}MiVqg5P}hcHfW0u=!h-|MR)W-Z}dTb z48ULv!ElVgXpF&lOu%GJ!F0^PY|O!YEWlzc!E&s?Dy+s@tiwiZ!d7g<4(!Ap?8N~b z#1S0D37o_koW%uP#1&k{b=<&h+`)Z3z#}}yQ#`{YzRvpfQ@DIf4+35VS#CbU;URK`6ST2YRCq`eOhFV+e+01V&>F#$y5| zV+y8Y24-Up=3@aCV+odH1y*4-)?yttViUGv8+KqP_Fyj#;2@6RC{Exc&fqLA;3BTz zDz4)OZsQK_;{hJwF`nWXUg8zr;4R+c13u#m!ZZpH7U2;Akr4&a5FIfQ3vm$-36Kzp zkp#(+0;!N1>5v|okQrH#4LOkud65qVP!L5>6eUm+rBMduQ2~`v1=UdlwNVH4(EyFn z1kDkIV1%Fz+M+{%DTVWd`QNEkM_pYIitgxv-spq=7=XbTg5el}(HMjAn1IQcg6Wun z*_ea*Sb)V?g5_9&RalL+Sci?+gss?y9oUII*oy-=h$A?P6F7-8IExFoh%2~?>$rj2 zxP$w6fJb%XMpk4)PUJ#fltFn^KxI@xb<{v@)IohTKw~sPa|9t6 zA!viP=zxysf>3lv5A;SK^v3`U#t;n02#m%UjK>5_#uQA)49vzH%*O&O#u6;Y3ar9v zti?KP#3pRTHtfJo?7?0fz(E|rQJla@oWWUKz(riaRb0mn+{PW;#{)dVV?4z(yu>TK z!CSn?2YkjCglQ5WEW#rKA|nc-Av$6r7UCiv5+ETGBMFit1yUh3(jh%EAv3Zf8*(BS z@**D!pdgB%C`zCtN}~+QqXH_U3aX<9YNHP7qX8PD37R7a!3aScv_%JWL>GjjJ9?lu z`k+4sU@(SYI7VPJ#$Y@qU^1p)I%Z%t=3qV+U@?|pIaXj5R%0#JVIwwSE4E<=c480q z;s6ff2#(?ePT~yC;sP$>3a;WhZs0cV;65JU5gy|yp5Y~4;SJv6JwD(wz93A~0AUdx z5fB+s5Dn206R{8%@sI!skr+vk94U|rsgVxpkqMcR71@vzxsVt6Pyhu{1VvE-B~cn> zP#zUf8C6gnHBcLMP#+D@7){U|K?p_&+Mq2upd-2<6y4DSz0n8#F#v-x1j8``qcH~K zF#(e?1=BGDvoQzru>gy)1k14ktFRhtu?`!t30tuZJFpXbuonk#5JzwnCvXyHa26ME z5m#^(*Kq^4aR>MD0FUq(Pw@;d@d|J77Vq%^pYa7@ngs}p@Q8rOh=OQ{j+lsrxQK@Y zNQlHpg5*enR7j0ZpO*sDt`w zfW~No<_JPCLeK_n(E%Ni`&gj3TBy_=JsUZ7(*}|BQP3cFdh>y8B;JFGcX%- zFdqxB7)!7mE3gWyu@>vF5u30T+pq&Wu?Kr`00(gdM{y!R;M2I1@)?}P1zf}xT*YYeLTP;JjPQz!%Muv8@$DPe86XXL73(N!Xi8(ATpvL8lod6Vj(W#ApsI1F_IuT zQXmylBOTHs6EY(!vLPpOAusZw01BcAilPKcqBP2&JSw0vs-QY*pf>8DJ{q7gnxHv? z5R4GCL0fb{M|43bx}yhrqYwIH00v_ShGPUqV+_V)0w!Y$reg+XVK(Ms9u{CB7GnvP zV+B@WHP&JsHewUDVjFf~C-z`34&We;;3!VuB+lS0F5n`r;3}@;25#dH?&AR-;W3`# z8D8QQ{>2--!+U(fXM97Lpa6GI1djReQY4g9+Or}mp(?7OCTgKB>Y*VTp(&an_Q3!x zrB-N-cB+52mpY*{x}qC;q8Iw29|mF&hGG~-Vid+=942BCreYdqVix9N9u{H|mSP!J z;&=RkHCT@g*o-as6Wg&1yRi@ZaR`TT499T_r*RJFaS4}k4S(S#Zs9KO;UWIUKX`)Y zc!AgW7yscMKH?L;;v2r(5Fi{PA`+tFd;EYHh>bXik00?95+Ny)AtioB8l*)AWJDJH zg6znF+{lCc_!Wgv7{yQ=rSKcdq8uus5~`vaYN8hEq8=Ke5t^bITA(Fbp*7l}JvyN? zx}qC;q8Iw29|mF&hGG~-Vid+=942BCreYdqVix9N9u{H|mSP!J;&=RkHCT@g*o-as z6Wg&1yRi@ZaR`TT499T_r*RJFaS4}k4S(S#Zs9KO;UWIUKX`)Yc!AgW7yscMKH?L; z;v2r(7$6)XA`+tFd;EYHh>bXik00?95+Ny)AtioB8l*)AWJDJHg6znF+{lCc_!Wgv z7{yQ=rSKcdq8uus5~`vaYN8hEq8=Ke5t^bITA(Fbp*7l}JvyN?x}qC;q8Iw29|mF& zhGG~-Vid+=942BCreYdqVix9N9u{H|mSP!J;&=RkHCT@g*o-as6Wg&1yRi@ZaR`TT z499T_r*RJFaS4}k4S(S#Zs9KO;UWIUKX`)Yc!AgW7yscMKH?L;;v2r(6d)WTA`+tF zd;EYHh>bXik00?95+Ny)AtioB8l*)AWJDJHg6znF+{lCc_!Wgv7{yQ=rSKcdq8uus z5~`vaYN8hEq8=Ke5t^bITA(Fbp*7l}JvyN?x}qC;q8Iw29|mF&hGG~-Vid+=942BC zreYdqVix9N9u{H|mSP!J;&=RkHCT@g*o-as6Wg&1yRi@ZaR`TT499T_r*RJFaS4}k z4S(S#Zs9KO;UWIUKX`)Yc!AgW7yscMKH?L;;v2r(93UJbA`+tFd;EYHh>bXik00?9 z5+Ny)AtioB8l*)AWJDJHg6znF+{lCc_!Wgv7{yQ=rSKcdq8uus5~`vaYN8hEq8=Ke z5t^bITA(Fbp*7l}JvyN?x}qC;q8Iw29|mF&hGG~-Vid+=942BCreYdqVix9N9u{H| zmSP!J;&=RkHCT@g*o-as6Wg&1yRi@ZaR|q83a63ZIQqPF372sd*Kh+jaR+zN)gAIf zsgQa9k)Gi>Ug0&~;y--AM|{CogxwP0J48T4L_t(U#}9~w*ocStNPvV$gv3aSWJrOO zxMsYNMoNzi$c!w=hV00N+{lOgD2PHRiee~V6+O@seb5&JFc3p96eBPaV=xvIFcDKQ6*Djsb1)YRP|rqgh(>6N zW@v$4=!-!ZieVUuQ5cI!n2N({;UB|soWg0G!+Bi7Wn9BwxQSc1i+gy8zwr;A;5lC4 zHU7nac!!Vpgs=F9?+ykChlq%TsQ4Z~AP(Z=NBo3DNQz`giJy@MX^{aLkp;gXJ8~d5 z@*qEcMIjVMF%(BB{D!h9hl;3#s;GvVsD-+yhlXf`rf7y1Xo*&6jdo~{PUwuT=!Tx? zg}&&Aff$6L7>1D;g|QfiiI{|`n1-2{g}IoAg;<28ScaAO9e-dA)?))UV+;PocI?7# z?8AN>!eJc4ah$?woWprs!ev~;U$}`|xQlyuh`;dgsAu)KOhETBM#!@NBo3DNQz`giJy@MX^{aLkp;gXJ8~d5@*qEcMIjVMF%(BB z{D!h9hl;3#s;GvVsD-+yhlXf`rf7y1Xo*&6jdo~{PUwuT=!Tx?g}&&Aff$6L7>1D; zg|QfiiI{|`n1-2{g}IoAg;<28ScaAO9e-dA)?))UV+;PocI?7#?8AN>!eJc4ah$?w zoWprs!ev~;U$}`|xQlyuh`;dgsAu)KOhET zBM#!@NBo3DNQz`giJy@MX^{aLkp;gXJ8~d5@*qEcMIjVMF%(BB{D!h9hl;3#s;GvV zsD-+yhlXf`rf7y1Xo*&6jdo~{PUwuT=!Tx?g}&&Aff$6L7>1D;g|QfiiI{|`n1-2{ zg}IoAg;<28ScaAO9e-dA)?))UV+;PocI?7#?8AN>!eJc4ah$?woWprs!ev~;U$}`| zxQlyuh`;dgsAu)KOhETBM#!@NBo3DNQz`g ziJy@MX^{aLkp;gXJ8~d5@*qEcMIjVMF%(BB{D!h9hl;3#s;GvVsD-+yhlXf`rf7y1 zXo*&6jdo~{PUwuT=!Tx?g}&&Aff$6L7>1D;g|QfiiI{|`n1-2{g}IoAg;<28ScaAO z9e-dA)?))UV+;PocI?7#?8AN>!eJc4ah$?woWprs!ev~;U$}`|xQlyuh`;dgsAu)KOhETBM#!@NBo3DNQz`giJy@MX^{aLkp;gX zJ8~d5@*qEcMIjVMF%(BB{D!h9hl;3#s;GvVsD-+yhlXf`rf7y1Xo*&6jdo~{PUwuT z=!Tx?g}&&Aff$6L7>1D;g|QfiiI{|`n1-2{g}IoAg;<28ScaAO9e-dA)?))UV+;Po zcI?7#?8AN>!eJc4ah$?woWprs!ev~;U$}`|xQlyuh`;d*WWg`Uj>0I0;wXjRP!{D- z5tUFC)ld_)P#5*k5RK3j&CmiZ(F(264(-tiozWHD&=bAT7yU30gD@1sFcPCM7UM7x zlQ0$2FcY&d7xS;wXjRP!{D-5tUFC)ld_)P#5*k z5RK3j&CmiZ(F(264(-tiozWHD&=bAT7yU30gD@1sFcPCM7UM7xlQ0$2FcY&d7xS;wXjRP!{D-5tUFC)ld_)P#5*k5RK3j&CmiZ(F(26 z4(-tiozWHD&=bAT7yU30gD@1sFcPCM7UM7xlQ0$2FcY&d7xSV2Teyw8xQ7RLh(~ygCwPkIc!5`VjW>9U zcX*GF_=GR`iZDY1ghe=nM?^$I6huWdL`Mw7L~O)CJj6!=Bt#-4M$!PGt&#<_;3;(d zj8sU2v`CK($b`)J1zC|DIgksvkr(;!D+-_x3Zp2Bp#)0eHsm3lQ3>dqAtIr>@@UgMR3bff$4# z7>eN-fl(NZu^5L5n25=kf@zqJnV5w+n2Y&XfJIo0rC5d)Scz3wjWt+{_1J(-*o>{% zhV9saUD%Di*oOl+h{HI7V>phJIE6Dfi}SdEOSp`yxQ6Svfm^tZySRr3c!)=Mj3;=C z=Xilvc#SuBi+6aBkNAWy_=+&Y0)$04ghxa~LKH+rG(<-X#6)bwK|I7q0whEtBt}vs zLkgrsDx^kQq(cT|L}p|`R%AmCVav{vP{(yYAya z+v*9P;yGU66<*^F-r^nJ<0C%d3%(-ExBy`h4&f0Ikq`w@5e?B112GXBaS#vjkpKyi z2#Jvt$&dmmkqW7i7U_@y8Ic)TkQLdG138f!d5{nJQ2+%|7)4MF#ZeNaP#R@W4&_l1 zl~4s$Q5`i<3$;-f_0Rwf(HKq849(F3EfIoNXoI$Bk4}RFbU`S(p*wn_7y1MU4IP~* zq+OSwPMtdhhqUY7s9lq`LCqV5wCftwu1ot)JthavW5Fp}-49$!gR{2U9=PNL=W4ZX tP@u`*YFXgTUFhh9|372%pw1yJ+cj#|xpSjt!A;t=3~D}kL}=42{{v91X{-PM literal 4156098 zcmeFa37lM2l?Tk8kc4a`At5X;AxmfJt}G-#Seq;mvYLcN0gLLY*Io5eTWaZ~11Km6 zXaOyhpdtv!CJN|?h%BOxqmJ8*qoab1!iRx{bu zde={P*B9MbzrNm4J2Fu$*0YV%CY@+Ic?|r_80Pfv2}%H zm4KCF$wJDGRjQRjDU-;SWAPq>9ZOeo*;to=Qm)sIDVLHA*pfDYp;@w!@6GhpYsU#X zWcir2{DVUL*h0TuDrHi38FbVp6tjg&yf2Z>+NFVd?eJywa&4TwuVUxRnL@r?zZ#?- z&p`rWrIhLE+MTG_`|7nBl41KQU736ZbTbClYg70i@noSm&{M5c3i*2NMDd&GsH@M; z>rMsAaiEmx%h&DN*lZ%-S55TU_1Y0OT8}H0D{;G+$reE1mE*d)tn0w=%5_#Ihe~VK zSh0AylBi^ov7((%X0n~jS9cZjed8?szcqU^sY-f{wS0APpYeOz&h(`#;zPZ5yo;20 z4r83j_p$Ll8snBs*VA)qR=QFtme<5$#R2wPSE1Aw!vL0JK%ysW$Ld>euD=8SR~tuc zER<52WTl>7P@CV_urE_dS9`iLg_y3WTaRJTOWAsQN$rHjrqpLCt1FLVl@rxerch5W ztIhGN&%Sz)JeIY@kOIe5{>0HoPrLD~U4Mq;q@G?=o9ovl|J>NNTANt0bHywKsT?mR zDrtyWZCqUaR!=~T3)NE6j+d*wy%|W`_+$YhnyfIPtc~ARO4%hlwT?Io$=*?~9n}RP zsc(h!<`QK{V;mz=uN|Gqr$|`G6iWpM%^{uJ2X@g&TD#;-tk;euQ7w@iVE(LFw&L`q zmZ*h^m8e$I1x)T~vZ0s<)Ex753}zE!LG9=jT`Rkm;g^z~wG(9sul!}Qy)T)qrfi}W zsEKKH4A%hYepkAh>nV4odhmDGx}EWz0FCC8dhEVTJ`Y+rGo*CpApBsR`gKww)t|^G z?UeduV#!WsieRp6I2rU;3YCGPZZ&>!j4_At&8|%>4)ifSg{d@ zwkuZ2756%;D)y=p_aVZ?B59+lmMhv=8T^jV3HWaj>?c)MpuJ0rt?bs;2gtZT*Toy7rSd6(VShk1D{>mQ1^P_NAqsK+w7KB){l z=~HJaQQF;A?uWLX>cSV}%%(3bpOa*dYGNL%1{-otvprEP+wpv&Khp=*4jpq_ZBi;z zhSnH}%Q<&zZJMqS-wSmb-)#?+>$ld9B|PGVe0BisCM5ES>;Tq>ay*lQF1cvemd;&g zUa{-+?K|t$+7v=DZD)(|9?aT&g1CRYnCwbPFl{oCG}gX2rZ<}@w0=(FKjAZ99NpjAd$*V{(anHIc1Xh}HNTV+;WoKqm{HX-1_tU0qLa zOKduv>Q6xznS5`7G@pUY^+?o9QogU>` zr3b6jPX3oQpKLW$tCFT3vmw*h#eO=PnE)VV7nuU=r*UNXb@pTn$=ztb8I;4OpfA_Va;^LR|h3O6a(Qjl4s@wrdSE~dD<>xAa3QYCR2r6AyoxWh)nh2 zWLUsCNJgQOFJJ{O*}X7Bu=GMpCz5vkHqmK04Pv?BP!>O?N|NXe#wq1sQu^FJ0nF0{9T&@761G->z;X9M8lhdd0ip&m&K$0CUSUHt31R4jXTqWL{O`u1? z#EF>AxkPCIgP2QXV8$O&gfOxmC*-kXf_1`o3|qI7q)+C*L0IJ8i=wb2k7(UVEs2wlnJ?1+8!fvDp z!*tW(oa>LIALXb|f=)=sQK1KR8Khdap2B{&_keX$a|l$&%NCeKk~iZj*)pwSnce~U z(|GzR2`MU7%96@)RqQ9@SOTyamC(xIX=P6p;-@%0)%9CE!KAugJ95uDTd;eY`@673 znbN^BDRx?H+8^O0u#Svn8&lYF;1l+_;6C&XP2##; zEZb=xRy&G*r`e93Ch2Hy+BhB9iL?LEm#O+oT+aaYSv1U4Fsaj<)X(EtD`Byxx2fMb z!jjf{`Xu#*uM)r_o57yFgw?d+linJnx2R8(SU=c9=PQ}s44T!(RP(#@g}wQ@s>5+9 zCz(0ttZ@@JmNl=!7Gb}0rgD;!v^%daa{ttainjbo;9IiQ;w!|Gfh-ni5{gxseMrAQ zeV;;!GgWRzjCwWBqDmnt1OETejRF)$oNddM=9$J&%O%9` zFw?LTuWvexx8ejbg^B4+i)toMCW&SwuYs8m=bO1(6+M#~WS8y2`PuN@WnndZpTgSj zg~b6)N%|g3`8aI$GVt6~V1-FQ>2x~7RiTsK&HpH*i(K0Zqn$}&ZNA(iD!b2On?g&P zWZaVFEycbH{Z-a(ADBdnodYyqaX zuwv!s;~7l8D$tl_l1!Dcru-W%zeOA77bIafWMUd$DY~R)>SE?k?ReUNz|4YLFP7qk z9=5}0jxIMjne@+m$l`7852PyOj@#&o zNjEoIh#<@(M(YfQhW=eSJC5qAkT=G~5JClWEnl`1%nS9byI-2fvaPTIIHuHD!w1e^ zhLF~50-u>2AF^F|KWLky6u^ez2t zZMOGQrp#C7A~tJtT%T$G#w=e6gERw{z1l2SrIMY4(iAo5qq_sD7l*H@G7y(-7r5He zZ|DGO9NR7u)_5|VC}9burQq4x$*!tc9bh0Ak}wRinH>BNtj07~4W{6vu62Qh?KWIl})!BtwRPh4X(}|pQE&X=ARY{a!-m?l;rC>o+!8od_>T$HMmw>IcJ9k== zVYC;`0}e1O$O^nMr@3rhyKdW-os1jTTe}oS*YIwyvB)LBG38Q{qSmo-imMzSYS_V> zES23z=0Z5i6)Tx7V3&NZAg7BJiNKCZscM6n#7$l&!EnXyz#^-B?Kp;CJn*!co6d2vm1At3Y)@cGf47=?-F;b?$krHKc(i zN5`T?XEQk0y9I^=WFAK1z}alHW7b+&wLNgHK_cut2A2fc;#1kmltCuUZadXwU7pEi ztsdJdCdy?<49O7dx{^**ti9las5uUlLE%)htWMtQDngRq~Z0KkKaP6#1BPE=-7@$7MI#K6LJ1#7QuVRB+*Fx1>{<5pexCRA71 zBCgK8c>Rv`ozn6s&pn?(BFJDPp-e~ui#c=rFm_kIn4`_=x=B#DB}+C;13>}JRp=_{ zB*+G1IYS4Mh+QDm7Q>u@r*#Lo*Cb#yIW zv~Upv3tfT{70NLHo}pH0KpRD6kq0`b8k~n-;DRW}|H`ZN=yA$76si~rA!GVuU!md} z049LON6m28H{K(S)kTF0mqkF9eUeCY=qhp&(HLVIbir?$sdOy7D!*`%o6}6j0EM7- zu|fxDKIbGcj|PcXyY4#6jW{m~RNX+Sl}SE_2_I;=(m`Em=v3DrsjFBmr#oED&ANmQ z*J+#sWoy9#cV~@w5Pa7lap;VkD_2}?g7%0FwWa@g+IvahdX-nV3@!=Y+WA!Zax6xS zd>RzDc35OBaL-95#1a+}%tj}ZXJ<&|4)+WcE#)8>EeQg~OUu$6T~ZYV(bUTv9}U>Z z&Hz@ppfxB*j1r@Q+(jLWtaHyj*IKx+UFdvvE3LDUi~|O?EEak!L0od6DxrOP+3dr@ zl(!r>k%`9^c6T^bOJsRF22rwDO{=bQA!m2=(;|xh09CfiyRoJ9NlY!w9yeE(r;J3jhW zY`zQO+bPb3xOU1O&787g8^h0m;9rEF6n;-Q!O45&+AVUg8#&eFk?#>*mT1g75PK5k z#SvQ_v7=!dBbTd)!{*(}-AodmL9*JJcS`KO$nTxv9t+wbsLdJQ(vXjfypHgpGh9z% zTO@MmGk-qYQ-BlLhtip;^G0}i+#N&Fq_MNX88me)Ja`Q9>2Y#9;7758gp;$9cHkpn z$KkcJTb`$gx)b8&5=8Ajrq$hk0C z{!WJxv^SFe>%tLzqWYvg65QG+7bkZ^ognKlSBE^IC}7Jr zYs00RH(Oh~x2(6$S-+)wb&Rax+#xZ!A>`kgVSPj_tuLp?Y;=@ zHgCQlo1r)n*=B+`Nz6kRVGB66n1bsZ1IfJB>Fd*PVIn$?*J7uw!b#45L0k%iiup~1 zFMBrsKz;)LR}P0BaBF0%Ih>p_XyT}ns^FY3B|Yb}c>PMDn6>+D9Q5-8E+`!!L*p=w zS7`LtxM4DX0(ajXkuPx9`|-RP`$X=0IL6@;q*m!`)7P=qGk6u3qe%KB+2`>BGv+}} z-^hLwP?^ivCE4uTWLJIZ#bO`Cxh+iLB!-v#RH8oSJ2R*oP7P+0BH$mSvs9VU^6H-x29`|tJT@K9aCUvE zWO6u@#lb-1hrNZ;ZUVOH=*BOI5`nuBnwNc;se2J0G#_e5ym?MN!K$64tCb+5(0TBF zz+=gKzvzO}XPIB0>ZaeGzKOLtj?S*NRB!=2k$%i2cEef4WsJ@nnPWuC;_+pOUDoD) zDCt#nu9aFfeQTOSnu@8yj=H@QVY2+>I;CeQ&5$2_1z8=QYou#qh6cq%GCnSqS?x)3y({QlK08e2ReAzIKKDA&3zQP8m_5stvZXAu=2CD+P z@_1^-KQKX}&`|kp7J0ggaf)$F(B>H7Cdu762QQ~3MRO3~kp?-WqO18m2n3yA@6vxz9Gd-amwPRIPcI0-vDq@jjEwP4fb>4o&VTUnguRo{k ze)7uF!dpAq&UYgGLsgrps|hIbn6GyDa$RkruEq}{6o6^^%kCcX-KMG(oj0Qq|4trM zr`k<6+OY#+_00v7wun$w=JykHTYlUv)!}Ul#4KF}aVc2HOSyO!p}bJunnx}cA~L1O zX9CU?B@bOV@;C}QaFib>=^n(PkEB^gBw80^U^N$K>n3D*k^o`y(%B>CvqsA`CaM}g zkiS~PnxSDa9>Ct_7U!f`wOoqzWb(0erdrA1@JnLsVw-}?+e}eyEZ?d3kP2i(f@h ztws=)U-T4b#&H}fqM10*39QUQtY}}rRMd1{hsR+ z+Xc~YtIdL_A~z#)Lp6zG1I5jefhwepR{GSmB@A^YC)Z;p=h1pegPRp-O{&nNYtAHkop z-A7%2Kjr%SY5eUxLq8CS&fie+6S7#F?%HeflO#5Vl2IZEUq;QdJ(S#WnL+&NW!ZyV%FL?3zFov_hxfWgjpY2B<= zduqq=y&a1H#lo=Za60g!-JbY`8wzv~b_{kExc&fKFR4uw=eW@KJQ{lpymMQY&~QdhzQ zLUq!5xlr{UgT0g_Ov#l%<{OJ*$9W|?%dXcJNs8dI2T3W!n^nNW3(jlObcmiH7Rv!_<2a*xQhiyGOtY#6l9)6yhbUxTNhd^pH2B0`)=?!5khK8)B)h+iBFLT}!-_#}PSgqG6eG zuZ*kybcHFI!L**x)P&qBs)eAH6Yw+?5-FhVYVMl6{nhMlY!+!OdJ#AZy7VaEeh1DU zxva($sRZw1mVqla5paJ%tCfnGdTojE4K6X}9O3aIG}o|saiKBSsEsj4*RU;U4r|sZ zadZzjsRC6QtZs_4ysm*GF^pRhbM_R?A|{W5Jl)|G#oIE*frq^=QjOTvo;c!j5@0*K z$H6>iE`<3~D3umFqqiZc`&m68aI%_LbUQ|97VNQUT}EVUZH~bec0Ge%?s4_8M8crD zG@00(qCFr5o?_-3vwvah*$Q#X_d!Z9S+$}{4^XUY9AO9OA&;Grl53ZMFysUUz1V>5 zXET1eK|r}^+ez}xCJTLt5rxu@7ja{TEF2fm)AR_o80VRiY(Dlj*V~y2G}1DoQ!;*X zq#&U;5Tc6>25kWmkLxDnG@}Wp#V$cg*<=Tf`{FAaMVfg4;Pw<$v6`$UzYtcNrG$q> zG?gm4Xlzgj_MR1GdyhLt+g0~8C2#}-TXuM+;yk{(g6I*%b(5%^sA{>_AGX~vR!01S zO&`R9w8dU1R?=>IM76H$cQ4g56m&3(tw;j$TsaJka@z9a#vtEilc*5qpnzp1u~;$j zuh*6;pnN9vVlkpEdXvc%Q`LJRFcmmzNIB5N5p#lK2@%e#iBZVO{`bNLi6icb93T{U zPrKi_3M|J0vxW>eQ}aw!mGaplzrt0oooWb;lSmeNG6?K}UlE!bf7ENJ=`vbU1F)^& zcX4wej>8u>qfb^Hr4Ue_P4x7yWWE+|r(m^J-zoAHrzm|y2ac<7TZBz0O}&Yp8h7p} zNfxX1+5!d4Ei*2g1sp{*KJ=792NVjMK5!XT%WyK|a*t$iB8TBtYMKoQ`G-jJG3G*%)u zKV8TuJt=gvREMw-rb;~d+=bQ$eR`%7_Hl}g?$6jT2DGqjBo%;}7vDvbZzsFMCjkPU$E?e4)dbUtT@}Z1jW#+PHGp#=w?KBM|4oz&Y>~m9 z9y?x`faJfZE!MreHYRdZ8ua;GHP$#Npr}~6DRZw=vvikS@_S(ZrLm8I2%8oZx<;^G z89SmvwaAum1<*x`@5YEte7;_CRREj87`6>N*KKzJ(Q1XM6l_AVUtzIiv<=0LLZJrb z28MJ2ERz`NdfXaEv_Z}V&Bv0(RB;sKkP7pscFjFL@9UAPR-bjlw1qxsb?_X@1|!glaw%zN83re+!-ce%McN67`F ztdkE3ZdWVjdHf@+m!1L{t{|NpuWrN5oLl++UZ#o|iY}(<9e5hfxDs`jvtgp33OA<| zdrxYVNl}AejBzc4dKXl-D{iUQI9oU6 z5Ik_fn6F@nBR9kJ({idEJ}ynnnBub>@?9zy1hy(E*G_}$fL-C$S1uv#{qY|6-hYNd z54Q&UVG=`T5ONL6R()u;Y-*Y*lXN%Gbq zmPae<@@|~PGNl7MHG^eD?`>)Bk^)tl)yO^2!Z)Tx>I8#IXiR7V+RD{y zT?*+2CdZ^bt-!>QRij=zLvmXF3p13|0JboU>+J71XHeGVc5Ga-rGu92L2L@)+wmjO zbRoL508T_N+P=%}t7>q^$Zde~X-j;W8OpIV9j%ZLStnUdCE%`uGgWWK8~M}V7318Q zsn{vZX4(?apDw4C>|`y)rRU;1g!Sg@!H(}CN3^+!<*)<7O=iLe+jc$3dJz*r7|aa| z(?5?nmvhf7(=HV|IE%vjY0b?Wd_y}}3J5Qms0c@dTLNiw^a8K8CtOyfNKTh<eW&fQ8y_y^dj4kyCLE;LBCoZ+b6O8ZV9k1|uZXskQ2(5?IQq$nUNe+T>7zJ;&4KmQq0K4z~~i@_M`A(xHhBuyg-SDm?bXJWt&4oa&1al<$prt+WF`s z!1%s1SJN;s=dRnU30Fve0{7Fk%T(F;S_ok;sG~1Etw|`PoVqyb*&3AhCg9xWyCAIh zN@xrhCi9+|j>IC4qRhe4eT&srjwh1}C<0SebLA);dwR%SZXYm~*@WdP0>51}Xs@qn zbgW)RAxO-obu&?_2=VW77bJbo##Tc54+N(V_7&DHjnfjv71P;`{X1QK#k_PcT;^<+ z5*sH^80-kK-%KM4&fUm7BF7OUh5Yms+}_P)3JdNrgVoKC9z08y5|R~iM#z7~$S{W; z1vv1bf$U-Z=NS@Ul#+gn4Ac!x+sWLy z7mIMB>dgvCG)S(p^f3Z)4QPRZ0XtZv4Kkg%U6|41p0=c7={mu|RRZFGhWW zEnnjNM}&s72SU zTW83@;*qyF+05fIGzQn)vM?Vi!Xx@wW=PFHeX7#iXZS_63x=$4<;<-QR(sOhDW}6^ z5xvC&=*wNn`lcglGaG+o$M*0&QB2qgjUO`-wf6J^fSqP&8;n3-N*YIeh{W zL0z-y%xZ0#2y`ZW0^5tHI6>NqsmAZP=7!V`$ZaO@!Nrc+STKd|@=+XJM{Oc$2#UeS zCWvJ?Jpysqwc~i?pHO&+qld=;p7+Vji-6M+K|~MS6$l(c=x1#Pi}uAx!!o6f1oAe*iIxKS$GekV$vk$5^qjzX$QaCW6Qz$# zfA_Z9aq>PPMiVDZ>62;`7y$VE5kU@qR%>H%h(MV?*uXixM;>~H6zM6L4 zsY>@Bc*!|gl|DG>TIVHQs?Ku0q)HENI@6hWl!WrotKWB?SKl7lcfIo)ReH21>HLc- zJ@(||PEwT~@BV}{QM-r4Mhs&bd;Ro?JW4*`rI(UgG3b>BY0AJAhUYYp=r>09k+~v$trO!Tbw)0k1`rPtm&Nx;2{OS{(Ppi@w z&iOB=u1kM;hw~;?`r_mtI32pQve&sumoE8|bG|O6Z*^YPrMEoo{EsfxfA3tVOHZEf zd{dRaR65G}TUGk=DI@?s~E4S})zM)EAjg50o z(WSfYawe$K*ScSF#;G2@_T(>}@2GEIKkNI>4psWbS?_diQKf&FopA2br4QfhY*D3u zocy=WG+p}PrOpCX`sQsJ=V(>>)(cNNpHZc6pE}w3M_u~w&p7W_rSGI4b6Upjx%rFVSZN$JunpLWjDrT;n3*{DiCI(xv`s!Px8bjIt_ zf9!BxQKcWx{;u=Sx^&Hr&gXUMu?L;w)cF16-v4wiP~U#?{QI5nsnSo+_>uFtE`8#1 z=Vn#<*_18LF$&7hKALm(s&7AE@CoN>UHafL&V8zM;DOhi%T(#$7e4L$ohluga+C8B zUD|ZI^C?~W%h67kD!sPqYUgdb^p}gAM^xz-Yv1o2t}y#$?qcUS_3c-eeaJaSmwvk4 z`I##H`gaBA9jf$iU;Cx=1y%Y@Vy1JwD*cD`F{fXbzIBXqku2SQ*jHY1zOPD$S8jGb zq)JC@{EM?zmtOg#^Ho(k@{PZDeyvN;!ndl@QTP4Yc~q5-dGlk=c2yd4_S>9mbgA}r z=NVNRd*rju&sFKz&T-Czy7cwOoyn>+Zp)XPger|+H_!QzDouFk&CUs`bX@5z&fn|O zpJL7@RB7UiPdV>WrAgl}Isd6jlW%WoKS_9-Xa;+(C%P5I_>=YCb1`rx4RoGQ(j zH{O|`+MRI1ey6IwopA6S&RbMz*7P?xL#lM*>A!X6s?zKgk2oi((n;NuoDZtf$@8Cg z?$o6hPH^s3rBlxQob#kEJ@-eaPnAwxdb;xqUHbNrbDJtzm;T0?qDpgq{%7Zts&v}Q zW1aP?G%uES9@C}Ie9y_K()}#BF>C#vJ@+E zC;rJyCF; zs#4dcW`f7{F^GB@yL&zyH)AT8{X`EMU~DvGv}P4N^73)b7rg3*~{PS zEYqbePdPWJ(k0Ja?i{5ga?_QQomJ}Frv0xt2UKbEmv%XhDsB10Pn=^^Y1?Ig@BCPm z-Z1}tPF|P3{DiYlm3IF4i_Yn)bm_}eoh7Pt**80#{i<|%=0Rt8ia) zI`dWO>JyK3j#Rk3dBrm4Kh(GQC8s;TSEXxa?00^vOT{akpQuveo{DpnD)sC+)_F*k zl9%1#d|a1);5gq^rBvYxXQC?EAN`~gSEb(1-|IZAN_{i8J272)>ub(fRZ7nra$eJ= z`?{S|RVg#$3}=%rJ#>t7tSUJ#_Bi7e?Yl3!-1)Nlw!3zm^G99!uY&WGDrMJv%z3je zz3`YbLzQyp-stSqrH}l=si;zZ?3bN+y0qYH&j0CBrRuy-mG+E((wU@7|MM$nsVbH3 z>U3UIrSj^8^Rg~|=Q3xrDpg{?bKam!cl_L0p-R8WPmF}6p+&NO0KC;dEx+=YQ-p$VC zy7ar*&bg}ezH@%z^ytzzKIL4YO7CBAp|e<*?)jthUS0bAzdN=n-M8@sr&E_w=Q`Kw z(vM2cdsOKIYhH48snP={{lNL0Dn0nWM>%O#dgyb1aE?|SeE5tXJO8V`J)EvP$Lmt< z{AvxU&ne~*{$v!Ui3lVCxgfqeGjr-cgqT23W7j;^Og{v7Z6T!BMhfmr#v;s4PCtL18)n3do*R^ zZv+^9{Oxw(GnRC?dr;m$aD;nTcov(M-PC3)ejCvFXbdvbtOCxa$Hv%g!8+aPn<5Z*d+uW8&aL#-J%I}|sYx0lk86RgmaRE8}} z%9{0}V-!^jn$t7g0<6CDWqL7kgQBx0AP1Q%ia4MskTTeKiz!A<-&RZ*WR5I?rK6zz z;|W_qaScV2#zM!P+SMiB3F43Ah|^`d%h=^0c5{%q(ppMoEr>g_M1|RI7UNE4e8q~> z_u>CpN45ElU)d#6IE#5;5pFp1dQAqQwoFM+;O$c>BAsnCVN>|6L8OjrU7@y3_9z9! zFH}j~j~4IA@LQ}Dl0x^-<&Tu1l1V^xh-iCBUie@HdG65T}%uer00oWma}q!TM>9_vDYbEE=aYL zC3eXA(hwufN8n8Y869S{vDNh~CX&s#u46!3!;lMCM{5l+$PN!$>f7^!AiNq>;eUcE zTo_d0o1%ig;3iJeWjKK=P>iupv${n^u_!fTwPAJ(FckC9$zm{>OboJfk{0Z9UC9#= zd;%T)G4`t{N0rWFTJ@^KAw{o7!~yHibEa-qkv)A)aQ<8s${`@~^THS&>df`fLxV^G zf#44V2!d+yvGwFx7Y;6|YC8ONCq{6CUmFgL+9~L`fnh-L8JS@~@rk<}1{9wO;D(|j za9R!<3tw@!TOW>}zPEbaaJs|6;o)+wN$i3#$W9nZ+I2v?B!<*zOLeJl$Qez<%vZNM zqK+Ib+G*)y5PLk$X<$TmuOF8qb zetrPj8O!ek@GBJ4cL*S^m4~Htkt$5Z7`CJ>L|1MGHt9hSf0EnwL&hAHn@6nfw*=6A zg1f!A_Q=<}Flg$SSO0sHQpR*3bd!3_&c93G>e5q;c(x>auKl&-u}e?20@02HZ3*Dy zMS7uNUHY3B<|QfrMf|)_koYuJBIjCfYUhUn(0Iw!4I#|nUl6Jn&)jf#<65L!@XUYw zU2q0jpbRM4%Oby;JGO4^?8)#H)CeI=WI0rw5(IJMMw&pzMbq0RC`K|t zL5`I6=9X5?JT(vy`m%){o=lH`lShd~zdMKa%viAr*sV?4+r z#X&yjsuh_ZPnPF#mt8u!0B!FBs578WTgI8tvM_;$Q${S4uU8d+?Oa zDDZ9;n=giyDYO=j3wwJxNvqoiDrS#ym?q)M8=^8rB<~}{7}Sixl;Avi^Nj&43enRb zi({qHzEqL!y&&Xo0lF?^He4HWSu{RI+7e=3@M9hNa$vH)}08 z9g3r8365^?(hi&gB^|e-D3OTEovL>aZuI;C$-8T~V(13ZjPei!)h-+!9h9s=&mFye z38uj{Jw%c$1!s`Ov(t#{vk^ByS5wYMDWKX*(z-fHUIb2 zyxvI6^YKC|1N&nvZ#iAG$Dj$y97H>F<`se6Mz5^#9a`|b;c*=3&4E1h2U!+|qyV7mc@kz;M+hU?6CWZa!@X_Fb!*X+(N>4G=NZh5tutwux! zi&*N+=R5n$onmi;65rKm<=IH8!9ls;hvA+!3R;6?F893wVx+f=jllePB+=ALGE}S3 zhVjz^Tb*;c5x$QYOQf2q2fgrw0Tvq9`vN!{VkigMtw549!#9BZP%%oZkVVRql-PkA zv4B(oZv*IcBGX<>LlTvSmE|(5ugk`LB<|j=)uzqyHka|$fs{3 zZ3^C(5lcgDNn;~Q9aW%LH(YJ9(v#ZNSQ{zWa5Fuh+M7usAsX_gRFQI!JSfg!=Q6%qxZvBQsFc9Mf_&2S@Axhh=zUsGfT$WWqOI)o^kd zAo+I>UlDeM%v$0J#YBF$;QzeFp+$HM6E<_04D*D#lkyK27WdB&vOBXhR}7CV)lK59 zXylC5?y6=3WcU%OWeTrcup9)sZ3uo3vJ1O}ilf$@hRjDz4F9%s`?(gSD3;?OyHrdV z>y@$*M*| z>kXO*1BU52BQT_AsaYrc@ZStb+TH5KGdLnz$Q5Z;yEr6#Zl!s0nY+8w{<+qu@^nis zA#(%K?%&ox5L_g3&bwRdfR2FHI+;}yJamX?Ye+s~>P9FmPedm=f1nG!>)B-)240ekRm*!efF$5sCz%TW=PChcjE{dr_d>Vn~s=>^9o z_7_HAV(XPi;?Ad7W13k>fLC2NsULd9xqbww(D`jmDm;opk`ZPcv|l#}C>xFb06KK; zPz6pY4<@!AoK(HGmR9Y9MV@2C2pcbB2>J(Ej+It&e`3RJwblWCsw0i*`3(U4--CjQ zjZC_Dg)}E#L_qHHvas+q|NYx4cbY%D7Z(*iImmo(rwz;ea3sb0MD< z`y(x%L8J(iG$f{id&D#2nJvDRS{n}2-b@9@W97I9H3nsnCE#f#DoSo+z6p8#N5@BE zbQF(2oOZ1B4~faBk1`1+#YT9u+cN~!y3`O)rig2?rg`f4h@SSXwLnBJN^1r7`ep|; z^0&DBX>zUGk(O(HPT3rTW(jNEIOxFC=5XXyGBvN=0K)KC-_vQ{i3|~uVQB6?!Vuf+ z{T3ITL6(Rr)Qo8%R5})oh-pOIe^U9#osIeD2Gg68w=kwq_L|_Gdb~D7xW+3rK@WMpLeLSWVQU&e;CSKx+&6P;96FIW2e(IvqgLx-rmBiQ7HsnbC@Z-1c~SE@ggM8(a&M(4Q4AU!rOv1K|1kaO6p()WD1uu+t==nr|4$+>%*3X(rVe|-s&*Gq!eE`g` z(r2h+f0!_O3QoZl6|7Y`60Iz4rKCXNn$VPQWEd9hN_ttR)&osz|_A))7OTQ>3K zpdY>eIRf-*w+p|0jV*yXos~Q9&;qVqCoO=rBk7bmIqJ;S`)Y=i_sx&cBc7e)y|4h(Fz1N))>&k6^87U4|2$N-t5GQEtK;SBBmAGr0VfPY%^1 zkUnbMh`(|}Teog|yd^NNbPuwG>@?uU{a`m#Mo%T+QnUx}VJ=ZkxylY8WL#$eS95kB zo{fP+D4XLoJ=pm%Vkkhbna?T9AJ&|S-|SM(PT|QqTRn5t8g?_C?ISUv z=${)v|8f(@eR1~wU7?2(8D{W~Jzi1PMshRcd}v?VaE6rFryn_sw+iZ0Fro{(GfNBqC ze8!B9lJyi&obh>oTiO8TbM`G;gdXEN1E_5nzkmnkL(l&(3~CtTpsw2)<9h|w9yGiH z@%o!XPmU&J`bHBnzZgx(+%}q!nIe#hV*D9l;cf${jCA(&errEpfST6pDItYoGC`?) zDFM4@GWjSy<21_MCk&W09=&6LnpP^|CD0_l0oUAo!$a8gkTM6=)O4h`=G=X@tmy97 zL#0<`46?^`$i|#+=y=~}=9$WjGK?J|`e>#beMZQLyDt^8Sw!oQFjPzQ26vN@_T$0& z5fD)ivwaYr<~{)E!8?U*;P}`G;CQ0Je}tbR@CwgK^0yYu*RNe4+ZhpgXxZw7Gcy8| zEH)^?70>c+jC>gn$>UvNWumo#`NB{DL)$996f}CI!Yh8S|Ehh-2r%43h>v)iPkiH6 z++J+7ac~%~mf4jrWD_tSr1ey3Heg<^4YC)zBKz^oQQt@JxAw<-@;DR3GosR%9R}@< zkU|U2X(KRJrYgrf()>`4URF_4!xtf+F*Q}TKdg2}?cxCXOx*F*Z#4;rINs^*sp56r zVzud*U?h38s}4d9Gj4MY3GnI9mr;K5xGsP)4>rTZ*yNCtNEUiBiF`Sp#%sUyhvbk+ znNPjYl$|Ijn`iI}_y6!ZdMT@AO2|PJ3t^Ufh2%Zhd12g{Pl0>8_oc^2q!oVb5&}`t z#J}e^%6}txVH`DKf1A(S*>W7~P(`@;;&dxGAy#MdhI@>8Lc8XxBTru8XhU1C;TO0w;?peWImW#;#882t{cYPaV&sDeD_%AV3x{1ji6^SIbNgmpK79evI+!P|s z4dZpgB=X}R3!U9$f8jH23{2K0S5br(Z))hChCbSEz({QDA=D7h z9{C~0>%V)%y$ zYO!X}Oa_8?Fss-Rd?0blc|9{csP&MGS>BX1k%3P$p{p6%nhEjVy(w~xaBR+Q)_}3v zjUAKTk}1AT5!2lXs+-mn{8S_iI!BE_V0=ddS#ClwaVZ{Ayl+x#U6s!ikqg8l`#vk= z;ubxVp+eDoRh*76nQ7HGcVYHt_WO&MnCQ-T{>u{zu~XH_$m>b3Bj zPJ9pJeAKb0j+eQE&VdnFl+SRRCRmUwg+jKcfV-^1+KM4hC}s#<2}QJOrd+PtUAQ)0 z3>U8BA;Zh2LB|;ZGCUo5`BgK$zYuw38l?wxGn5n6ZCsiz2r1dS<9V(;yH`I&9hUCHYj8D^W&)CSno+o*d+__`|u8^WO51{YQc`zg#wtY`<_ zHgH(JoJ&j?9G0IIe$>ti4|b(6X~LkeLZA>rXPUQ#nh4i&F$7^oww)0W^4-iQ6Nc24 z%fbt&d?(Sv7N0dNOy4Wom`E#@g&*qW@iu4@^oJQ5!R}C`326%hR&XIq)iyK)f75c% zIbA4rBjm(iPCHk`q!pLvYVC)Lt{P>3$*{T4GE?q9vYg4F|dnPeRD<+Zs!OYdFwSIfks= zo}36qgoNE*?Y3l4*bpHR;SxLOERn`)s zVgx+!d=^LZw38{U{!H08ZlQAzGcwG#T08rV{iA8Wv3xWkGiC&QSBv1Fsubu|jTqvb zal~3ov(!}aVr5TUJSEul)YwNx7KDN4dphRT$b-)G(ZudQk0xXW1TtNk-}HXXo@xRI zpgdR#`O>f#O%#-JiF}nQjFMR14npndf#PUl|C-T+O!lvX%zKVH?C`_re_mIvR}l<4 z-~Q`h6%H9oAQNRdouef?hpSh1ihH|p*M~w=`0I9IX2`q%IPFY|`2ln-ZQ56VBA>*O zBW}Zy#z>Z#a`2$@Yi zh{{cOlAg9cqv)yQMR?Hp$q0zc47b}F>4ETA9rr(lz@TP?g3uvPqJ$IvO0|cBIL$RE zRYaa-l6VmE*7xgiHih!@I6pAefS-Gb5r>#=AD9~rrAqVc7F!Zw>i5kLeitmfH1Us z>iD5u8BJ0#Z!{tEf1?SR_l+iGCXFU!mX0Q5UK~xxygZta**uz%dBbQzW`#f|%5q@D zIb|w31AMH%QpIzgxDO*!+Zka2K2?!4!iGiF?2e1i8f(OE`9MSluilKv?Hy`OdSNsT z&v~N>nU9TttXR?Os$MCVp0o=(@(P{og_K!@lKHhCVF0JX}}eQ7^o>ho`I)^!NpTbgxW_8M%_Mm4!zHsdwqQaJ?{G^S$W=l1P==X5R)nNVni3 zcx^Z!avbP&C$V(6p@a~)rcUhh!(jmbF?+<%r}vA(L1>}_Thie(xrQ&q3E@J?y1go{ zu{bLn9crm^V}5bCw(fhLdoz`ETs_vT=fJt)Kp8fT8gA!P^yCper)mhgmRcQw$(?E_YYYmsHDt8}OOk_IQ@@u#MZ{#IYl=Q3^w)Fb)j+KeP~p;e>Ao?Qr5yfJ~ezWm^6#hNFf3({w%$ zQ!%cRUCVz%pb&cg{~&;Vk4ANGYet$Q~ z3i&lsrLp}+K9R|mWA1i5=}bF^x>HAhIrF3>%6~n^ZD_7|JSbjJ?M&yl3+gp`Edi!Jml_Gn9gaP3I_*9Dax_Ij=Lramf9TOUR5spFl? zgU;on37K<86EZy`AdDe~pr+i7EP_|%xuO@8=)eW1yD6mJ%v6wzR^-i7NtuMyDc?r> z5JFGQD@K4D)1}JccxDTI{I1wcpWmBJD6b5AukCr~(V(+O)GM-wvkXhNoQG$C{C zXhP;aqY0T^0+}dQ)>-9JGA6zKvz`)$J#NKOa(#k_3P2P7j0@2p+>6}xK+CH zIOi|dYe%yhsK4k&s#QC-l-OG?RPkC#J^gHLEVN@bg*b-#)ph5a;|TmN8x#BPdTr{q zty{0KHfQ>6YnRBriar?-=Q~u>uR`q@y2+cb)SYjmO0_3Z8;1n?JU=aRHs@SQ%UsEr@He`47Br3V$`?rH>Zptm44Rw zE`9+q-^V|-1-mGP$&Srdp@*_4gO>6dYb|?5z)D!_)@{GY%HrtIq$_MA=O^gG`8WIr zbUHu9zcdOz$G_-)i2rkt|MMFE=a=lCs`G37E2%g+n2MR*;6KHQ;F%$7?UE(dhEgF9 zuUX2(yLmN^>7UVS6iiwl-brIzPDig}v2iPz$)VsHDG_elXgi|nX zd^8Ha6oP`G4?MvTef9aLhTi$$p_gB_81g&WJx}Yv6AukN@U8|5LN(zO%#29EMAA^L zW&V`4)pDhfV?^MDh7ZR2edJ|Ds;vfD530!4#B+`0=D^-?N$YVII%{zB(u`b7BHP&Xt&Q|e$x3z_$?M&LD z0OHiXIU=<)gQ@Lg8iRr!E!@N7V^*>t;26Zbz1O0p87q+Q;I-M7)0B-!(>=j7ZE(*; zHFGKc%(^sh_uF}EW4>6elr61`E@z0GDmZyfO0PEkI029gSl|> zRu;c3G?rZw)QUygBrc#X$NAQXIPVF@c@g46v9E_P>V-_;y|tR#KEQP8&SYl$fQf$_ z?Kmy>M5HAbOv}pcm^amIHTRpB-v8>$uNCmkWXYUg zCfU(Iaf-hYk>Z8H6whA2ub3?`>xJ(n?WBd6*%GacCP6K0a(w?aBEGd?d{>DP+R6N& zrjf$NXgw`q%q($j%}h#$34_!4i-{~~mC?e9#k9rTiYB@3 zX`rg@)|{@n5$UQ2)3s_RY4x2|Y}b&j8(Mv{ohY$AFW=x^y7NM-r<%!DtZESpyRRKN zOcMQpTJ@sCAdH5-l-@#IoIvmF% zj*DicPYA~Gn4y;*eC?Jy&2f}Jax5lC#9~~q))=RbRvPA?`vb@3l!(}TCzvN^i4En2 zb_ItT#<9<#SMI~Ml1rNL;lLeF9JuExlZ_GJa9Wo}q;*FtT08jh`7E5`;xIpJ!!ced zAsP!u=rHjs15pfY)Ye&(UTz#t>d3)F={I|5?G-vd5bsCYd*rqqrn`t~~ zXi|sc_@?0!E@CO}3dZroZNllY#yrRLoLIK1$gxdF#CA(Cww>#2yQsIS%=IO@fbVS_$F&Ouim*W}&`T2!ojt)A?cBQ;SIW zLOm=9oW7SL()a#g`X;Pfdr|jR>%e>7ckqdZ$R6_($LK2&F*>sqMq=Gvw1EN~UV!p?San|A=R}fuof>?`@+rM!Y9?Mo?d@y>J>+es7%N$yN zogMhkR%a*sFI&zzdc$9NZ*RqGzVa>-i-LtM{Lu4nAA0Fd92&rkvpTKIkPW1ubV-AD zYoi@!^>2sE8nHrO6->*i!Zt-*BhEOOG5W~+t&6r_Y8`s|se>=R-59c3U~P`~5fh{B zGkzD0_rlAex2;UskaIIussl7FGVu@HiqkPUA{{>srenU8r30V(_|OZF4L$YPtDk-l zr~IpzLAYMK%Xj-3vJI!%Hu>AR1J(*IQ6Frx$q%f!Md-{CL;a^gYjRy&c?a(0Ij_HwII4f}9yj%N}^_ZHHcIa1k}F#qqo>BA%B9<2mk}e8FM? z^XC~{mFrt7A_`v&M&V?&OA%HzGp*#N*ubh5P?xi9Peh#m6pV9+!g-xYlgZ+KB+}M~ zYMyxx8rIP8%{V1*jYvrRGwg|o*lrERcD%wiZyL5W;|s^< zxrq3T55{Mr!iPPYV$S-;j~uHnM8xWqV61|~>YpN_@Xx_0OuQT^Pdlr{H5Oj{!!>pz zGNkb%XUvZyV)gl8tY(Sfg0070<{d(JH<+v~>Tz6u9TC^#g5Bv;ho1TLfp^}EW7Gp5 z_~^m<2M^pjXmZi70>|!85wW`Z|`Vff6`hd%apYs2R5%eqY_hit=XI3Xepj|bB*R$ehP(bPY4 zOy)<#lCI@whJ-k5hySW>-`;6iP@=%M}Q&3BW&Tj$=?| zj&rr5eQ_a++fkV$ofjr;Y_1d8figTHelcjL1XSi&?~91_-vwhmuNfjkpL%-e zrMF>^ci@4BMI~GlPQg1OQt**r3WAhOJt7L93PvHO!YD5u=qY7V>Qb+@a{!K)eb%mY zsZi}p%SmraaNDgpYafb8S647yGaAY9bF4S3#IbxPB9?Cp#&YJ4!~k5oxOjQ!xtoVr zxC&Nk#ITrbZeERJ`f@}}9|?h}RBT)&z%TvALUmWQr(tQD*|ZwR^s5muJv?~XoazpT z<55T^H~lJb?EWPpcE<(t(Gt#ao-bbb$9dGv!NGSNdi+BsuEEtg<_9BUeoipva~p#% znjUk8gT4?7ZLlP1!FIFtJcA%Z-5A!TyFfxu{v^cG@Jb$!C1`}(jZyM<0k!r zuv*sS_)dw4?-zpcm0l8yZ!9k?;0BU)p#IE(+KnbhTUF%Po*EI`>w~eKA=xTjn11F= zvq~Jx&WKp{2V>bdviy)Nj0_kxIlgB{#P_0Ld{5q#FYL|QDICwx)xu0R%a3RL7TAEg z9OsP@asGZV&a1mq{RuphlUjq@)4S<3L*83jhXJW-+#zPIiHQ?T!tmOb-_b zr}FZMRDLL!$`hLh8<~`}s>rdmBVxNY7~8ofwsfa|>*nqJSZVtJJKs044%2{RUyg|V zSA(%Xp~-4!qTI9=$MeRBc>X#V&y_f^tJ3>W!gs~Qd~*RaU}w5es&wwMOF3%`(%qE? za9H9O&^0UwoW46F(syexeM?xLi}kr4J4JV4kymMbKFKpHZMOGilJJA!;uxY=JaO}F zwdC~NACaC%ThY_O<5DNFb3eT6B;NIEh)*3S!c+74hPYH75!2Oha3D_%KQ>&UrMdZfc z2XkY}E*obV$p4}uEKQ<(zH{6ziiq1Mf^nO{j9`}Y>A*d=;G7hCY%Py{(pJKMUykvyrAZj)iSU)$NTn(c;6q4_Y!v^C6+W%W>8eI@G?Pd zgVt}WC8y`Ui1a)cOwa5CAAR`HD|Z~Y|4~X*Bh3Ln32#}Gy2htqShVKWAs`*T&YQmbQEV^n^0aGdgQ zMWlQvm~!jlLSc8A=d_dwmhluF1{zx)?|ru5>KyZ*M#Ow>Fy^y)NXRys)Y{tGy^~94 z_davYX<3uw`sMkd+H6@RgE+ zrJlO?;71=j_`>7Xj;&ke{gub>9vZye&-xk}kembm8<7Ja4CcUj?Q?*~<_$3pn1dP> z7^iyt)M$I%JAfc+KAZwA{e_aU%SF> zC1TK9&nYt+=R@DQ8$y@+tcWTx?o zMmr5THP=R@W_>UAr>wN*xP)rK@xLu1{*MLYKbg5HEm)d%t_SHx8nVfHKXc6P zjfhz$7_)JBqr>7}B$I*e4;-6EBVzN*U~Hyep6Fk3nVno=A?@MNtw;(#<3Ft$F%Nu(w@npQ2HFSL=s^dz3ectl3_~2>Oj_@M8lnsHrsNVJ{OUu zZw1qIx|m-VBDE)Tt0OawHsfM06RwvYt)$$u8ye2_h6jRE_zw{&JS~{Qv%D1U%usy2 zwHC4V+wBq}BXEF?6a4L^LT?7S7=#C)fy@YSIITa7NbAMHv@YFi9f`Pzp+`r0kE zp+_G*@ci=!ZoLy5Z3~YIboXJ!Hx+s4R-BG8$4A>K{!K6)onkH`gHJwhXUlj%rHltR zcz6t5=b!`;O_B?@*_P8ZJt9pH1k)6B$>6kzC_EdC!qT0X&RM&2O9Jn_A=sVU95Q9N zbs-+wgmO#Za(1%O=xeVjXX>(u6#XTbq8ak_5_!SG=fayJa$!+07iQ6P z!b6Sn7{A=)K)Xdfj%zw1uKym4>oiz3on>~3u#+AX#LKvq2LAh3;TZNu#IPKU;VSMm zgUpcC1+7%ZLxP2BQ9dFgA7@%yEV|wTGDT>ZFgT4jMWpeE!8A_Zj{I3PMdY!iiN5zU z$Ly|%n0+`Hv-8C=EZ#Q5Q3yW~!UR^=)hJ#VPvGF8Ec|*Ii{WlUNMvZ7?gt~%Jtvs% z74(GTjzqcGW0w$*yFFu_ZoT^aJ4F($ryn?Q?{i4viuekvW92fdw^*Lju!|cG08ZW0 z5vluCFm)Z`vJ3N7!6KxMbnPAy+tsms`?f{C+3&(PMiPV zT)z?#*D=Akp1+ayl9WY@raIp*(=$*)tbu5$aVL;<_ABafz-NAGRd*)k^*=}P_ z)o&wG^_5_%-o$-YmLbd+BNtMq+d<-r8xR&Pizh%l2(qz4;K}!3bt7XoCIij@I}jGq z-Jn5V&yF~^j+hp08+%4Dw=NHL%=^NfL$}_G*qZd#`}ck2zWnp)JhCBPv+z)@)ZMe zI^)QoF@5rJaKYn^1M$`9O5PaTKU|{yb0~8}hkx1Ym{vUG7tv1UMA`hx*H%iDh>%eK z&22zk&fGhO%K~xL>&L-3Pd9M($F)fvj^hU+;+PM{ab}}v@(rAwG~}k%yc);!$%vTl z3&!*u_-J;s>)ldW0ChZZPX}puH&7j<^_B`bt2a}E+qsB5n#qhen^iPWoZ{yrQha(a z#p|O`Y<0kASg}?#n7|_hlk?z<5qYpAmO&gBn%{GkIMy5Ybl-^KIZ`9-vc zYr-k`c0>yH2UD=PqgX0b3YCGPt)G$=&sF2JyEoI!N7qh6PR-9EQnNgmn)%$iBhP}I zhS+klJ7*~i*R^+NaYL@b-5atEr{Uit(l932+B?TRA{(xN^EXjUvvVtJdjV<#8wTekJ{N`DfW5N*(5j;Bu?*y>CyJce-5U1d2@Q* zW6ARNSr=9D2!l!GFxqq4PK-#~Krn5K+_X`~MuQ@D)W>vYcf+%qZM5UGbVQ`37);Ab zgBCpvWdaw2G&ps<0e8cK!0B5Zk-jy-^qs6jVwNDkHwc8K(#&dYU6#F9~t<(3cGLA zol4O0D?j|-k|^)CQ{2m8j@tI1F6QzM=7t8(xs#8`o%zAsS>i_BO`)Z36E;f^(@slH z&vg;$IWpKTnbQ=jZJ31p8GElebRp_<+}{}y_x}hUi{`k%4O=Q_Dh;VTLe%HDzc(W8 zzYoU!G~de-TM@WKhtq!d^g^}Z_&*jA|KEndU!0$q${GouE@R4i>sAC?o04-{m=+xW zXCvbOlVJQ+s^qOzq*R8zy|aqvJDV(%L6teypO1+3QNdWtMEi91#FtA8mmf04#vr#A z^*FBo7!lWpf^j{=ZD+}S+X@^6vjj@!rpIk_nNl-sD4fn8MWplN!E~P2l1?{eo!y8H z(^t2wjyH7gYH*cA1;(lVRYa=48%*{2o)L9Z$_;=k&Ri|Sn-Cqxvp!3M(;Vf<&^X$6a%c;F?`(^r#=Jz8I{M-t@@~ zVxs-Wd;PuX0>ST(!*juNnJL$Dd<~RBHE{D`_)hzHs{!Ip`)>DiRKck%R0TJuxM0F) z&2*M4C7j+@OIU9^R;)RFk;QCIkI^s!@Hp*@hC5=y`TuY*?HxOJXNpCl6#>zBl87ZV z;4vy2^LXqukrgSK%<&7~j8k$(L`q`8l$^{Xx;K<;dq2^GofC5~@aSR_{eZe0=k*bB z9vh7FHn-%#pO*yUojpj5l|qD2)jC#1$<)G1K_acVyq zk=mz%sXcF926yOjt={g(MJl}8-O2x=IQbkx{dvv+Zc}le1tmzZ)?T`<+rkN*NpVzQ zoa(=gNcEe8sh*~vsAc20Aqz*QNsE6Kj^Q^WVmKoh!{xrtBX{I6lCUOs7YiBOBQ5V!z%6z;Z4N|WZI1V^BjQ~N#=FbS{%u9PnaA#j>9a9z zx?1IGksKf<8SOUaRQ)L;Rr7+W3VDofJdzf&4X5GQ6QUi={$DT+$I~4|u_G!Af0@aC z-x?gh6C&dGzF_<|2*;>g<~Qa=rgr15J|1ef7e;)?IaP~Q>CLY zp7hv_JYOIsed3}omQdKRG;$_sBLb1r-yM zU8&>4LpeT#0|{q=$#lMuE%Xgo9UFJ;T4Z?+)?TMRIFD}mf2ey8I5~=A4_IKKc&8i@ z5(5k31X?AK4Z=wo86_(qgTd0?-blB@-tMtM0e{$FOkRTFz?f(-*f@c)F-Zhx`#E6a zfN^?GI-P`bwx9j%uc~WiduMuPx2tbwzxVm~^QqaHsjjMjb$4~D8l;Y%Zmgr@C|dkJ zE5Ea5sw;Yt(8i_lKJk9*AbEd%W8NqFc0Iz3G4u`M?*oJ6?-PyrOHj+fu}3U4ra-N* z#O;NrO!bz^J^rSz^#$?&=pgz3c4Pjh%b-*1GJ9bq75V_mujS{u&U?h`^MmBI(3scp zo&&cG(j#?4{)51zG2}V%_KiXE_V>oTO~n8-A|g_ky)y+Vy{#@Wqw;Gp@-5=?M}y?^ zV~zQ&rupl?`p*9SPY*nJ&%pj0=_a9{)p{=yw}%JG?U2T6c9X)+4Ep&De}y>w+aNjo zOk;hH^=vYh+b z(K~5NrkA2v{dXUk0Wbe*DlA4;^~=x&8;P zI`I76{U5&_6May-3`wBD_>N?G+aP6msIe@wtFrj{KYZyO1APzS<(+#U9C+7LelT=D zA}O+ilwxG#;bdln6k(}b8@x+AUpz>j4>i{OVvlEtG(*w);NtIr{f~oD1#GGRfjc0U zUzjY0G)Ts)2Pxx^>dEL01#(SFtf`9z?l-1Mp|22&w+R-TITYMuDs=cz;4&zNf}_OB zm0vjbx4P0y+_3|%VQnwM9M<06l}VR^!`s-vb6*|aAopl|l1&i@D@x*QEiA)#reR+P zwv>HrRH9z0mA&3zck59@ju?XfyP(fG45z8!pI?c8%Fb`#U&kF=Zm4H=o1#Oc97a{A52oSy0RuN3R*z?0Ya-&CPa6yl)v-}o+Y zo#Bcq{o;mJx%}h(H$BpSZ9w0HqD1okd64ohZ7i?nH$j-Pk3(=puP?Ex$zc6P)cAGc z{K)Bpo6@|hG3Ud=vYUE85*OnJ$;CGsb1}xV7fN*L*H-W$aW!j@Ty1O2)rs!rCoXJy zd!u5Up*vootGJrqkPLGNDZ}d;%P`y9z>y<8E~C5pKG{1+=GVCHMfX}=uWUy&eZ2|*N(XZ+x!h-@@fQMl(rjMf{_ z>yP7asi$!o#}~U>WTf{k8#XOJYx~*_t2bM{`%2xooeNnB#F$>^NR%NB0;9`RW$svi za$^~ft~s15+BF@a!5t019o2i0xGfBl+uIv+yG$PNk$Jq~7CNRn!qf(3vHRR3_MB2h zD`lMn*HP`g*3vbQ3%*Ot0Q^!lgCI$N=^&-I8%uvGtWiKJC$AfZ@P#B^%2(QY>}buw&-uy5@J{<*q^U^7h8Ov{SH+GHtv1 z`3XEDo<1^2o^Gwn)AIHqL*`u8cS&D|^Ag_ln7jmxe8~<#zqGw~-*)&9T$Su|zE2Yu zF&`Y`f9jLLo3!n($8|?#=-z_8v#)Yw@4mjuu-<)`O{C9u2B?y-Nm6)U{bapbLdjJ| z7VUJd+yl{X`!47^`>2$E61JtTvV`qEYG{eI>$m#z! z)@7qS4CC0$_?ySX#w@hq$%RxlEP1>C5vgb9;5aH*MrFZ#N|_RxHuhpWk;U)gy2`a! z`Yo1bV(DL4dIn3QM#G;kV`&74OMO^cfTi=W^m;6HU}-Iu-i@X6u=EBjbz|uOmUd(5A6R-f zmX=}ZW-PskrT1g$^H_QqOGl!Hp25=B@wcyH=}%aC8A}_mbP!7~VCm0TnuVn!VQg{Q zurv-!qmarhEWL!k&Bf9tEG@y(RaiO?OE+Vw8%yi3v>Qv4u=H*$&BoHrSUL(z@5j<} zSb7*s-@?)}Sh@pCU&YetSb7;t*JJ6=SUMj|M~;C%f5Fl?Ed3lyv#_)ZOLMXGV=OJf z(g2pu!qT}|ItNQzvDAg7FJb8-Ed3Kp@5E9UmafOr8Cbd#OKY(75SG?s>2WNL#?lwC z^gNcnjiv8l>8Duw9F~5ArFPWcKe6;i{B7h|`13NBref(sSUM3)S77N>EDggi-iW0= z_}h9cJ&dLEv2-Vv94wuKrM+1CB9^Yi(nqn>hovX5bRU-HVd)Vpy$egvV(9@aeGN-T zU~NCZQak=OfTh=B=`UFN1(sel4*pz;rSVw$0+x=&(j{0*Vre&)&cxDcEUm%P53#fj zOCP|Jjiu#SDq`ttSh@^LzroUtSh^ZZcVp>6EPWJ98?p3XSlWT5?_=o^EcIjQmst7} zmfnx0BOp<(GY(5*v6RBnOf3C3mQKOaR4ko=rT@axYAk&UOIxvY9hTBq`XiPu!qN!T z&^xhoCjN#A<(<2+gsIq_$FYP-&K;4d9MgU~W&90OV>|D_5~hlF`muzmm!0FWgh`E^ zW3YtDeVu!;gb8n*8?l5bVV(D42@|V2AHfo)C3SXT2~&VNuV4w&W;)kk2~$ow0-XQ zVbUyT1(q;zlyfweF!hr2Ni1Q)BIh0~VcsC;F)U%e9p~Rz!kjkFWmsB^rBktlxlf!q zSi;OA&hN2=89baKmN3tS^Ajv#UJ2*JSi(#T&T&}6tOU-lv4m0mo&N_*7&G4)jwOsD z@B9`^7+2l71xpx<-1#b&FwVB~8Z2QXX=etOFebCJ081F{*trx-7(3Vz0e~^$uCo|_ z!+5sNK`deHSI5B;Mlf}TVF}}cIzPn{M&ERDSir962?bz zzKbP{HRM=W!niuliCDsjG>!->gYjLQKj3c|Eyej8mN4#!^Jgq!1P|wDSi-0n&QL62 z%n9c{EMZgz=TR(Sqyp#rSi-ye&KNA=U36zVmhj57b3c~w%CR#aOL&pj8G$9dy6POp z5?&j1j>QsQzjV&V5?)+%Mq&vs?>XWI9$tQPzJkBuRWav(u!PsBoR4D(uNFCP!xCQM zai(AiFT6OLv4mGhoD!Ds+J$ohmhkd|^B*kXH38>+Si+<7&R8tr@pES`mhd39vmZ-% zSlM|NOL*|tS&Jn+KRxII6(%FI~oSZqI#S%_~oNg@Pbi)xd1$5_~|Ha?X zmv$y%N%*jpp{0Df#sz&5+|A19&T=+um$qkN3f6Z^U(G}t=E?4qTD&+C-`Eb}BYGlU z>!^$^_CjK_z4KCCU6}5<*jE{k*9;+}*>*g{EoP(iS9Cw%tGC|F+V&KDrmrQO&4 zm^<%y11ee6^;&jaE{P>o60a5{oCWYt7!n=M;)o~CnNbhk81+D?vV9v~QqB}DROuW1 z6WhQu5^@KSD|d22cxWoL(w^7@yd*QlWImVM+o!1a0(Q-cde1W@aTd z5yZb|t3VgxlM`tQ94lI{2QD#LY_=3|Uoj;SJGdRS;MPFtMb%xmHnbV* ze@4(wnh}>jGsg#Q4UmXy8sY-?WFwIs&*n-&c8n>B*pXcbaY#gT6%3ACg%OXRr{M6E zucOAxk`PkI@0S{UPgtMMR*7yiUX*|&qM`}=fK6s{$yBhb&g6?p2ydN;rw-F;>}+wA2ePT=I~|HyS6l+|e!9?gPgyHg zY+P++^F_bM=lrF*N^mP1ws4C>sT-{l+{~^^v9cQliAeQEuM!yRcSQKCRQ^nc_ZV9? zO+8jdCZgw{kFsl3H2QFTjYb-*slB$t%(7r#REC7ja8kwJAqJk2X1~XlQCG8La0Xe! zi_$HAn_ab{-fxVr@eVO#FJ$M*!D-%F7>(A2om?9wpZIF^POUAhr}7TxORx<K0Lr={qhLs>xqI{6(L6YC6yXG=< z3oJwUK&#MCWG3f@n@QV_9ox4<7Om3u?ZLZeBfJMbqMjvmn(8S0prXs3*cBLVLHy-z zIPmBTkyib+R-QO)WLyH5GEpZik zB7|n3xoEsksNKdESr@hA6S-QRF=jCEob>UmfOrd=9Ri;n@#NlRCmHbT0eY&XN1w^Y*}vlizYj|JyR!MTFb zeQb^tjP5ZdAzRCxrX=LRNR|@kz-ZiNr{R_|I-;=E3In7_+W>hzgR273uaWV5m#rjS zvL#i3#a}CDmoSfpRqh4vAlQ3G zy+q3Y3tMbm}(4F!YYrX*ym8Y)OMeWT$d%zX-*>2RZ{JF^Q8 zBf*_)T*$-*kpV|Uq}PB};dd6bzak(Pvc=bIF_qbH_08o!S<8R2%0C`VN~<0AJT^-T zsHd2ch#k}uDZX{O4C_@rvLWs)=fnbu+tK+U)%=D4-O3hS7tj+DaG4Ue^N4rZKt0|g z;M~M!NP%;MDT&zOoGVTqVPH?Z_vdx1X^8efslp&5E(R}$DW1|$d7l!v``C)m1@{y> zy+o2oY*CUVCOyM25Fm-TNv<~8-E6)TjEkluV#m04D$!t$aW`8CU3}`#G45d3tLXo| zrX+&;H*ip;k4qkr0SU=Pzo}p5`nb=u*2g`82888XS1iSJ^}XG-Y4L>98_ZOlzk-z&Lc3p~%eM^vNp}#wJwN1ymA$ULJCh*T2D#}ypWdFhzR8y&yaS2$I z7e}<=w3Oh-Rgnw{@JDv#ik5$8NU#*)GKp23g7|Q>wKEV~M$Gt|%LuZ?5AUTOHeWvq1~DH2 z*j8lMrPx@nAYm}J8Sk<$#${J)A%-2vLAXRQ1vwXwJb8i1;JP;)$%nazP`X80_o=&L zNQ3(2TiIIEM5wYjfs47xg}62EibjW_eDTU~G6JVQFg9Jfkm(IM8g(<9Lj~6xO>s3n z$~L0G=dpkMRQq_pY9$7*pCz1&31ge_&~%AkPz zeKuPPxZgD;5d_y@0G4Ao^#%qcBo~!aW$-^IgBx{xb9{4Ul&&nGF<=pdf~g8bg8=pR7|IX?!d@no+=&7yW;dM8 zoMLuEO-X12Zan_a5s06<#99k6Xd}?3eKSAQjPD5Jd2Ai%b}A<>-6@*S)Y(zzs`FE$Og9Xx`0eeq>??vV-oh@ zYB*FH*IG6c3Ic0PNyx^via>1kfV~KEU&1~!wklY@Uz_P97aEU6`|eUfsL*f>O$ZRU zMYd9O!96w6xIe0B>8?#l4r!pMrajDTyHN1_QAi%c=bvkdR!& zG?t$%diK+nSS#r|HF}M3ao0bPhjs0o56Rj-z=lHC+B&FjKh3*+?Op`*58mOO`}^5U zDJFKeDTx+=yLgG^txcb0XM4qk3%Xc{eGZ}>T=uUJxOyKFxL;-~K^NSU3Eag=Z$Y~o zgb;Tx;7B6ejszjZVbN4?Ms>@+z-CK<_p_!Xg76wNf7yf3nvVeq$wiOpw8mZ06Nwt5 zLe51VNip_0XDz3L3wRg{2Sc%KRn7G7KLh9_t7~~f63v+6FpV#+$K)kxvf&J;T*%}L2202O-aZm zHARqUzU@!lR>;sf58=L7t=>PoihPS;TF#a)yh~PELS;%~5Ag@n;WP}oa842vw5#3k z8`&%T*og?cS3qbq9i81|O2DyNJop< zPFvA_=|W=LDmR4Q##A6Ee#QTY6#NuhL|p~9C%iy-y~v3&ggwr#SyAq%Oi4(a{{-O^ zW%H&BQ0>c7=?g_9LluU=Gs58~Y*BP^7z4+=iI-$J5IF`h1A7rh7T)PW#83XPIkFmDtHyy zd?=%0SU=POoQCCH?7$sT689hE34HW)xTC%iGGbN=7VfC>srk8 zgac^@uvH5V<;*?AJN*Eg3&mdEZ%QJFlmXb%UT6WqfP~~Cu4SI%y?J2@c5Ci#XX}iRC)?M5=#!!Tgr6oN;1YQ;)fcjFd&Jp^64ny?&e&>t*f% zRJAotV>71UJXw&4Y)z3X+NSfrD1X-1yG6Z3aJ-f+wQkcIn#gpWrmFc2c7=+XUu{Z4 zHm6ffNyrh9z#h~HNR8Tngye!ca03!j7Y)W?Q{!aZOxepuL)QrF-%Kg9>s4&AU`isW ze**}m70`aC0SU>)-%NL1kqd|{^5m;pn!a@w`4PDE@7e!L zZKHkchuL*0*7Z?AB62`!<~AKI^N*7I*#5D;_5qC?-(riWsmjXen*C~Z0Qm;HUPY~6 zH6iW}{v<{YJ~Z@H@V2R0)L zWWO~fp$(a_3w`_wdna9r#olPWU52D3@DBy<6j!(cvmBid2*GKyo8v4i-Bl$4M@flm zam*_xxUL5Dgp>JpHe~r?GMgU-$O(dkL6>HX&v^IZ1f0jSM57A85%Qe0e+FAx-S#s9 zdN^_S0gl%tMFR>^_N&>|E6P6ARN1Ee*W7AbfW;TOuY#w{Hrcx}a3K&+6 zN2=7v1k#t-0_lP@-Ww|ORgRR#^?7#f3L>8|B@sl#U=l9p@ibl=kdRy~5Q0Q5H5z+S zM^{I7Y~(AJuU@*|9pMA+RJ|9;SpLe^wXU(ukfSzmne0mMO6A?0piO z0Y&HIO-aZ`GDeVyY$T@M@1!lzG*;WtbBg@y)RhLn34MjYIg>4zZo8N)l6dd(ICGnX ziq7e54it12o05nfooT506&bw01~+6Q5sH3|P}FWDmLf`bcw z$dd@E1n|J2LbV0`j9t9~%1=y5#16{*<=uAr!rnZb(LiiyRWO~0RTOWjsM@R`)@LcO zUcmmE03F^Dm%FyYaM;OXxPJ#OfQxdVmJ!4I-*bCV% z5nR_JhLd<}dLTDpV7^%QO@i?hwwSu@@)$TX4E^(y*bV@e{Ze*eL8W`i7VpQxio$2_iJ*QMCxy95b?JyFwzig98w4`RuIdn6$6 zDYBwIrhfQCY*97U3UQppb~N~{;2aT0O6U6kyLLs<_nDHA&F&t;s@Yp=CyD^)Ru3em z%Rt}=tGAHH6Vi6kf|f$*1z{-l!=(8QVfQt*=(^a=hEOsP3_a=bo~-hY8!6S9h&q~n zh0T%z=od{%Xaj1zU_KEi?xN?SJj`O&?3*lxzCmdHjxCoiT9d>yUihn&WjTB{|7$h_ z3O0uYiO629>8r2vSGhTOiWno)bLJo+59DAHI8fGFt7uCe-tVQtYY~Al_z5B6c7; zR_;z^%dlo5(V$yM=&qLRV#&fW3!?n^dvN{F2)?V?3ebgbPQrF2kQmbKBXn<3f}|&b z(!{P{bEP2rE>jY*BRgzExdfw^A2;tuLgiy@=52uLN(Y7nbJGk1|1jplL8PvH z68MK34X~VF?Fo3c}m~XuC7^9zZV8^1@#s7}l^Q z)`ej*?4=NAkmne3#n^iQlaNi6RcsCvoi8^fA=}a$O-abnmXIIRXxpGgo38IpUD_o= z-+P8{70bQ7`9i?)ihPSKWglBZx|RY-3Iu=Eh6%^(i9e-*?q)Ng7)#NVgfx~0Fd28e zlUKuj_%5r{-j|2b)I-bP%|^UK7~Rd5O&6mniCxHBl6b2krLN-M!Dc~0=)HnOWEa|e zr)I=b$n=~}6$1@I{!H3^jxCz5c1I=l`3lgu_=kz)jkY1UDI~KuXXQ7Qu?q{;_|(R zW0F>^T`~1nvFlWHKE#wnQ0E5YxO4@m2Qwfcxu7w|fQ00NCWi(jBo{w6ou#JjfW8$9_orPN!n!9jth)D?CZs{X44*Gp_cb>TXi;6khw;)fkb^v(g(Ie6xpZc*>s9nW&6Gq?{|1h`^!>>X zG$0|lSY~QSuJ1pswZ4B+gn}09oN#B7w*3m?xMT{pE%sQLpF(U>-^@2?-Kif@y-x_wU$6z&#q-2!04!*lf^$00 z4*=KgY=6q;NI~<*rX=D=6L*dvUV4|erK*9Z)+dDKuw--GV8t7$oG5mjkaKUdRS(Tq zu{l!E9AZi$b~Go5q?EWy9FZC#>;*#VWVTSc?QSAvc!UE=^^!lF#I9e#mu z-7-SD>r@9$imfP=)p+nTd?+c|3u-oP$eG6T(<;G`_1sD$ieu-U&Zm4h=z z{-buzW!3$L?QB@XJ8aZSqy2{S*>x#ac&;GP!u^J}O>jLwQxLa`0*3u&SvpfZ0fme ziAs+MY*oR3*YeKk+Vo9F#6r##lMV{3n9jYX(#m1_E>jZmo6a!m7=1WbydO#RKWLKK z{M=Lv;b!BqCCp|RT{#a(;r>`xiWxh0)C?gj;HtV8u`1XerbfKytJG^Ee~v@eIIO?J z&8dpEPq*G-i_aTT@!mV;O~C+OYQuQRR7Tk_zGF(_|3t%>H6LdV&Y=6#*@8}ru^i)e zQsE85WlOhVL`V@+!#E>8S&tI8oqf%*;{HZmK(wUi*@gTjyQ`e*O6Ah~HuRPt==jBU zLFob_-t*PzbpdPRkTi}iV1;fMAZ}rUTJnXes`8$y)b3%1sr<5gm}W{M#_oYUuIU?7 zMG*$^Y%2!cxtlGbu3vL>qL+BYvl_@_5+YE!JSt93kQrvvzO<7=e=_ zeBiSqugibYRPJ!pUtp8d?HfiW(BBhsC|$wV*tIHM!BN>NOk7U~U1NG{GXT{>|$YTnw~jhdNms%_Y#fq3!|OrF*qH}2bl=Z$^i ztaD>^|K%YzTH*GG!ZzA}d5~R~(r?}`NVIbQg?GLC%WM%f)!FcR_ZQeTE6V+>DGAwT zo+EskxBo(m0h6}oy6i%BAC3qcAwy0YgTnhvx)S~h_5HtM3#N<84_Gw>sN3|nv&4Q#bC*e`ouA7^WYO#gZ%q@!{9>#WE)!=T|mYH zAmCnBL-ebYrY-Ec6)@f`NVIbB7l&AKB?w_r3@kgh`5uva_p(LQRc||9+AhK3H{>q_ zPLv*~%&u8cZo!mE&`+Bh#PPbq5t=>>s9oB zn<MCoMUNTkNBs)W8lcJXz#a&_%uQjOz)W0A-sp*GO} zVl$u^$d^n>#1754)o_h21HBV?dBrsR>mQ5M#{|mn*#hZ;GCqM9`;a5>*@z>h%lr+y zb_J1FOi2V0F=%hH$e?ewir=*}C39=r!9dn&e_s zfO9lm;RuDlLil9ag6ZNj*~3S07L87Z&4Gf>PE!&=bPT#r*#lGaG$0|luuKJUd*Ghd z_Q0oZgh)c=Y`N!m&)jj~+2;rP9)fKeSY_U{)*5)`w*D*MH*muv{r6wqe{%&Q$x(Jw z|NP1MXtghXkS%(+A)*Qz^~LwI>rzbaUO}QIeX)DA2Che0tph_v`;L-N&J!>?+{^13fXyfZg+9s%G~Z{kYZ}y_F~EI4IE=1 zE`IEo;~O2k0~=qjr|}NwOVa_gBYXGtRfhLMxErXs&vwGD$GSL#Z=#VXoCc_ALX{I> z;*H7|(IH9s7{mo)5s>nes1McM|7<;}>&Yj#(VjCUAv=}*gmCi)9@ikJZ?YlVm~g<* zCW{$Jb(#Wm30h*E_s9hQP7DT3@Pzs%Sisr?HaKFt_%*@^hn!l+-D{Q+k}z=?;Vig% z<0@R(VO8Nt@w;k%e=)TkX?}k+C82G81`D6A{Y`=1C{xJi@HD6eUTO+Y(Fct$>Ls$g zxxylp(*R?3?11iW-pSjGy>>cyW@(gs6x!9DR?o`nHTv*QjaZDwo_O?o@AJ+Twdc*6>!ge7fUDTLLv&OcEdN zASSm3-@>j~@kh3rl8_B`lPL-50u#I(V|4|QTr_>OqHU7nHrbGX8{)HP;7ln@lOPRV zMjRtw0-29(9NT@3xuWqt8O?QUt?3%ganRpOo?!x2{WgFJ`ocXo=l6xE$z#_z`UMGQszVkX9K1W-Sp1r6T;_fY&j6CAr1E z`aRG0iF)d+bvj0X=PN2TaeZAe+;i(h#us{Mm_Hg+ zv}!~l;19h3&oxjTfqpgRpKuEG>*9GBd=_;3Z0T*Tz& zO1l87Ce z$s)&{XwLZ_2o)2S96910g6A@}Xu9xBq5OB)jbbRaDsKuv?_jf_0Q7cK650S64}8;L z;G?)cDO}Bioj$8KpUtHG`=^!Y*9fNv*%IpFG#!UL!6CFF;xOrQs6cf;n+pZ1dj*Ns zjd$%;{b%#}UVpb0ct)E35?e-HO^=b97Q86x{XDyBMZKRfB_UhFv!*2ESVkcKUmVLA zd1C&`)`PAg)Xx+1Cw9Gx75v_mgtP+kB@7^}u>!HqZ9qbDahK^*IdTEfO>S!O-tDSX z8l$1o37Ykg83u!;VrCe)>SDveDGb7Cb?(E97Q0g=du!2N=c9m^A|T~l7lK} zw0Ap~U6*2Va|DUVe!cmLl_z;&!)kOHh$|5O3U%}A*&>IxZbiM7Nt7uDLUO^S6-2p= zC@Y=)*=z6K1Y6WTrm@>I7h_hG@(@Fl?B17x!rGllMK*y7?^8mvz}AE= znn@8eqLhaSoUSCbDJha5Nqv~}Y|a#zvxHI9{!a6omR?d2->Qw?Cj{0lY?bJOWtvCi zCN@V3NY|T^kZti=!a1rfn&v^DUCj!!%g)&_2IVPr8LsX}=7rJyh!A~(ExazGC&7Nr zE{N#{rzNZ0>tz#pjLnmR>7%A3V#jn&6;rx6XF;}Uh~v~S-4EkCLiR^&73d;+vP70- zND3MBza8$=eNA(&9^UZzmz5^d zCL{R|Ta~&-vR)dAPi}F4G@uK4Lr&OGP2#BPISkbc`xl#a#gP7CN+NbcYTtnSxOktZ z3`foVh7fp0Kqg)t)10F+CXq*8@D7jQ#nqxbu3@pOR)CmkN+Jk^!IV|bddXWeAR)Pk z%PF7lI^}TPtB{9eEinBoz&#H<0%7OUHpPE&r&D6m;&buXUz1I3W}~9pIV`BU<|I!N zc!o{Zsyq~orS2qbBbzzJ>edMoEu8pD*UZ=5i-v_$u8ouh(cj#4KO)RZY_;fOR^!k4 zI%vT?9Bc5h>!>~TMQolFsB)$xWYfHm&~CPm{+dm84lV`NPKpuAl($PO9yavujHwXn zx3krwi~8v>jH3v(Q)L7@PVOn@vf?ZU#$M(+tf<@2xxE zMX^4hvxY9Zl!4G61shI-!<8hkjk?pf!4M*2c!sScU1K;ClDCR^DBS2JDTOyDrG%r` zLQ1p{kg|5YMYV^g*nBGX@VF_7pgkB2`qFQpam0XxH@DR^e4)kshqJS8%>u-NRbL z1~j}gKz%gY!&=3zOR>M@rX(ctZ!{(0BLALx$VadA8}HM+wxbg+`OLAFrqd9O3pXg? zXyCGyo3;?*MY|^h_wWkkG^T>>2R`$g=! z6xefuLVIs`wuf0#C37(M6z9%CE=RH7h7QYDyw@6c&oDdvN&S+E9;$@%Z7s zkiVnxx)`gN&+fJZ`}zjo6P`a}t3(&ig|zAK%0xK^0y4n`K(|1@rHj zl87Dib`k6qa?x(KOXc7>JpVJo>OX8zbg^nnz+QeK4;Q|W6Qu+E7rSBwhJTon2*P0C zg-S=3#x(;Hl8Xz4Ad#04jNOi@Dr7V4!uw0vOfGPpH1aL7kol)KXQrdL z8I@@X$OB&G50F zD?zud&PwzWugOkW0>c%dPCL0Mc^Y-5w%U5vu~|{@c#|m!*=|-7q|J6;=K9=p37I8A z;}yjoa3%)<%5gi#?_BaeC0I*rMd-qsOr&Zi95sMakUxla3Tweq5~bB$#O6#vIcG{D zh_XQkEBk0_`vxQ=7Y+Jo(^Ub+lG6ihRqEPF{UxXS*!3z_aE~d8p#BXYbf^3$)tmA+ zf9Rb78@|~*gj3(;#+9J*s_YB*8)&EK$VR+RgSDGAwP1_+;KkB;MO*C#`! z86nRJk4a}V$B|UbyD}kBlaMxQ!ZDs*y#mS@QxdU*g30P>0TFu~aZA6a)9w;c*C?Q` zZxyET>jc^9Y=L!~&~X?KyvlJ>+}rm!jtW7%n9YrX;388J+6Wp?)=sHuS8$fh&SG>- z%&H8h`z?r1R?5J#M;c<80>b{zkM$)1dp=tay1>q@ZHvP6U_D020iI?uD2LK@p37!T z!T20OqJ`tq^mTr8;INmt$sHV|>bys&T*4M!7nP$E0nNh!E{{hAgNxa0C>ZQ9B_Z2c ziC}E@@HKG@rnI!SWs0`7Im{ueguX!l-NzP77obTATnVw^Fdc-LsXB@ZH21I>P@uWf zltk>%978^{ZHYsyRd-oTy94KH>%U51eUUAwE?6@mCIWi*c9M?UdU%O}Di%)Bj`4I3!xeF{!pD~j#|2=A4MJueTP$5<#wWT3Q}TX{x@!I=cI^r-t4&F0 z<6=C4IsVjnkUnK6>@Qgu&KCClL>db$TiJXHk_-k0ah(qcwu{(O>%wLwx&+Hfmu0&0 z1S~_IBw|@0I*dheWn%>%_gOwfm zUfeHDW#@S70@lHY?(4tjy8cI=>A&jf{;NM>ZCJnlEmr?ikGqMG#D8uo!x97Bl|1zP zO^5EQ_=XYZKh>p#UN)-X28l{(w3N`pu1hgON04aUXs`gZD2{;PH9|3Sw;(bZ#AOyf zuvNyr9MZn4Zl9hj{Lg9ZxRI?XO;joi6L3xpB@$N#X)PiTsf2Qr!W!;|Jqd zq5-L+dWFrMg5x!&BxEzb(v*bkOvsuB)tT%X3>VOuytB2P$?+@p!5w0lD0q95nPLwv zIEvJ1o706%uRmn5)7~~@2-)OU*pi0ZBud<2KD=8!A5^H4+E*RjBA!Mvumg&kAU^Q3_r`FodTh;|uwD_MBnxkLa9A{r? z9F+wLNIQZOd08wW)IJG>S>QTr1xjX%rJj)8s}XGG6u^%%B@sK|bE-Yr#W)tP$`@ez z+$9z+F{r5ckF}|N%GxF4JA!yVTLroe_GFQ*6iyOi9EJ?yRN7OqadHIww;sV}LJ2xQchN$KT5~dYNF{%obJ`##ssIcDrndby;OL z=^dScVOI5{HnLe!pj&53B6jFbsNy70TZadtis)*fC++pgegO48AsF|t1=oe~#6W8l zK5`MyK4Fjzuk%&WEU`IK(7ec$MC@oXmN@QY3!#fl{Uwgu+4U;=ztxmPQ2z!~3OOqw z&((m0u|6A`*vzr0*5!9wivQ%9d|? zYXAYlX5rE6&mkTeUXTx33O8ay!yfSaIL$@y$<6)QQ{ltk=Sa^ku?T1fzS z=mh4k!j0@T=cKabfbUe%{D!c;oGrR8*0bSEB=YV>xpV=t!C1ce9a{)p$m%cO{F+^_qW{CDB!c=kSbLGnH#Dy| zAR)Q@Wo;B>scInzlLztIBDiR`)*b30y;XyF3R zNxlUfG5Mp#F;BCh%QxCzQJ1}%t(frkuYgdQ?O(hRlRd$I((Ae-mTp$CSyHfCYDz*j z%GVRzO<%h4ve=-f7lx_09#%8U^R*s0VdUn0(*B%azL2dDU6|p7kz|RMujVRNFuc8ws> z!cKMk%G~ZuA)mu_aR{%e1YHbyPHO)ITUcGSPe|C3r>JNsA7@vu==vk3BxDo$5W&^# zPH|$jg^1oSWXU@84Fcx7Y_W8KnIzkT=))qGo?m1$pg{A2DTyF727ah?WvMY5kdRz7 z7&VRi(3&;unz7Ma0I79|Xhq!Lt+Kx+%NqKIm>g6%3CVdSU}iLrxi2G`}H4*RVy`MRax}M5FefRH!Q$NG=-m_@>9J=Ss6`(BUfw7EZ%%0jGoeTD!fpcrzxw*<6PGUAS5S zSG(5Qse-taE9T7B*3HYTPUy)?R=F3BzJ1?(wh4*2oghrc8XR+&2On;>y z(UL)EDnov4qgvvG*gbljAZUIB_Vs&lpxW>*%ex3jW3xp))1 zHHN!RC}E??#cFn4%H(2&AkmV^1$q3(i5MwjLD8M2xpA78mf_kGCR_4pwxaPqbr2c0 zGBg!mIi8}ai1k9)dc{*ql-?wns`9K1e>>UiDA=S;Nyv7#gW!!?oibh}o-9$UX&Qdy zBHkgiu4l`pi`JAHv}!h2)c*KdHVXy$Fhg2k(-){fe*s zSL(k?h_o-`&OUSznVIMjoYp`BoZ=KU{7B6xHYW-e!%a!ZMm5xwglyVm5&tKf_H??4 zEY?olyU1=vUBBhjd5_HIb!;{1nhk_Trfb7!ESLZQ+cJy?xb)%zF82_Zu-Q;-<~4#u z>)P+wRpkPlmcwg&LN>qRm8Yccx3T5aRrk2WPT~iy*%3dAlHba%Tv75{Oi9Rwxz&_} zY?uUf6B?!g3CRUb*$hZXT`V;nwvY?h{_8NBew&{AnsE5uPaVGhJqK_7#KG$y?!W(@ z{%4-{8NIW)I{W?r8{}|1M*$nnzTeNTOEK%aO-V>7?=U6dLiz5NLOHe;%ENbF>Bliu z#qkBURN*+Hbd7NQ8oMq9$FG=@kT`zPl!S}p8(NB^+aw3Bd8+@p%fgyuz6#|(*n)*a zi2^o)@~`Z=6e#~>NUds7lFlm}vf^424U95Dp{SFa06SQ z@MejEHG*(0yDkO7HKrsagsV(RxDYM_Nm~cu*rnyJOx`+t)%Az3y6WKjpYY@OzABCv zv!x2h5v6N{;~sWh3XUaH5)#LYOi8#nz6g@?aWq~kZ##6=NBXaQsQzi8J0Gf| z_#j)Ra1>FtMkwCTu1i7jUO^&KiOr9!KcoMd_aDCM#$R4~S^rhf!bG6|=E|Xm?;Cjd zz5RDS=W7|2x^L2C_zP?WXezrhG?D2#LtSO~EW1KQ-_Nd5(f%(?NyM)G2?HOzY@qKU(*B_*?mhJ6 zNBkIsy+BB`t!R!Dr}Q}$fy6=;iIMCY6(ok4l87CN$p`Oztp9;K`mgxZfv0bX=$s05v-PC{MBZn`&=J4%T9C~E`@1D7Xh7f8g9a|uZ zJA^`8U4S)92>Vc+10%}eJFkFG4nER%;HldOKJ-Y(n^Ng~X9hAoLGWBWuv(nsZ(4Cw zK&G&TtyNu9NF*T4Hb|b_4&Trn}Gt`Ji-lsB{aQ4D3hAQ9;@G<};(SqS&-I4Vy` z?`5`}x_Z}GCNHonSCpJLB_Ug5)|3Q#*Q7;)dQc10O4tiz{XbxftEt+k*~Lrj3Kji+ z$CQL@E8ilBnmxN1+5hkz2cEiS;L-hl{nz|XYX4uh2)b&InpgY}yGBLte={Yat#@PZ zX{4KA^wD<(6fb`##UHn_InxNGD~X&&%wpH5D1L?@(ZUX8R4zAf72LW8@5`^x+6Sc2 zWo+?uEqQbzmrL$+xo~wN&qBO`U9Y0n*P4=$_Iw5*)AW7>^uIQfg9~JS^^cUlllFJA zMbOp$DAazIcu>2ye}^fF*p)vVl)TAayVbAy>aV2uYuW7UDt-hizF=p|>cr+M zcBP8i-)%}FcD1*I+Be%5l`-8RMkW?KK%cfw*X9xf3pWD&?jzeccpi7g=u zmXJ;0&$DY(VEK$7(VEUEc!#oW$BymWGr3G@`}W`^$`RfJUti_jqI|_v?(kcb18i~( z;6OapK{>##Q33AfrX*y0`fov^ncIaygyEL#_U&0arvg0O{XG=lsjIpEx~raWd?&HV z>Eb&y0m7;9j%Qb>z&pm2L@VJPi}3EUOPP}0qe48o=2=d$R|k~bMR@Z{69rPzPfm9V8q zPkm-q;e1F#_{D4}bWKQjRw3tx_ONSI?5AW(B6j3v9lrFAL(gAjtw@zpc*PZNS{{1- z&O`TA$Q$;f)#znH=pMGPx(JOHJKs;d3x*)=NKf5wzVQ2Pd5r0ivB?r%Usa&eBS%GYQW=kM&g6npxMAQ3rna?XG=T$SOae7Xb?0Q+v~3%xA% za|or1!Cikzaa{Z9p8@*kF#Yo@@lRz~Z>j*hPkoM%Z#WbS8HmbqL0`xE%H&SS5tqx^ zh54PSVkTXjpMj_OzAO9IS562%f*budc5;yYdwZ!2QGIYf3*Srx--PH8xgz8O?kP5S z5kfcR@eJfejb6mK!d)VMfS=-VO4Z_EWsu&9!PoM=rA$xe;uOZ#^;4V~d=>k4|0{~T z7nL*V3yY;xp;Y^#U1`hY(%EvCy)%Pha6sYC@n^xB=n42|HvZ|rKPTg#x%g)u{#k&3 z7Qr98G6MFhy6oOkci)@-1OKZGPp5$Id=7LzbXPXt*>_E4Sa+tY3uY2mSK8gm+#jx~ zjL4OHI_-kp)ps_SHMrWq1jdVmuSOM8d!!w>7CH$l#&Errm5`UoE)?fqY!|!j+^&oB zxn1*Dm3Vx3KF{ zy1%W0L}d3D$1%d^ZvxNp;H~c)c<4G zWJ*Fh3KtPXQA^pz%cYb1KlrW#&)(|J%I^Bu!OB(r*T2^fM#MX=56_lO7Z2e-hAfoc z$*xfW(OOl`i4-(}dzW?J zB$Z#vR)DU`$0V}AT5_k$n!4iLA@JzQ_>-$mS;dhauL&j)7Jkm%w-?zfB2q(8-gcTeUHcn zzROmpt_|RA+H4lmF7#$8|A^WQUu0LVn8OREBw7Fj>oDuz*@EZ-AsS=IVb;H}YgDxV zM^h3(?HjZt*%-;AHXtFn_?@X=k6gg)=!MqKj@tU4|LEaM@9n?h!NczjoL>EBbzZda zP0exSQMN|&qIvAP6k9q)kZ7SZ)7JmMy9aK%GHiq2|A>0ZjcgIa8>phrsCm&kc7=*g z-(*Tcwv5#TOS7GnHaZ$f^ZS5%?t4VaFR=yDRlevQPgBRHi`X?P+RvGih+X@QR#z%v zFAx&9vxQLU8AD?ADWT~YTv-Yl0F)Z?gk_z z7agX8xIWsf*7|6Zsrll~j9N>oJp|>9gdK1)t?6es$5}%m8#!xJ*mWsJHBpdgp|dt4 zRGSCyz8r$D`WtTDH%Zy2vlS5DjumA`xpIry6)GBEWJ*Fdp!oz^vt79p0?_n7`N4yC zT{E!%76^4TaL2pDhBm!V2(0tjg6o16wJ?4zyG8}Ab4*FZj#k^iolipiLptu@Z#n)) zr2R|Tg0Qq7GUQ#tu2Iqc#ik^J+BX=lwqyY)Z#W+(z+##>6wL{)83g76nDrahS zjC+bLO}H(gRE@^C$Juo$R`e-BqJ?AJ*#4{U?*GtruS5gKfApS%mww1+%YcChaV?(`2LED;1 zH7XeV)s#f+7_^a=58iV9foJ{E5i9;jqdr2!Inn10SrsPG3DNU>Z;IEc9jYSuNNd**uhUF z!v?*=B{QL7D^)0@_W4yD`4;KgW(%&X>o(GLl6Z2}C1cNZvMW|JzTK3BwEFW2v}X7F zQ)}QLdIl|%E&}1Pf_F5q4E`Wt%_0yOi9Rwae#1%>bQ;FmGNs+ zJ)K=C%#Ivp$d!=i1jhJv&G8!*yRJ+~WCc%{2ifDvRjC|K$FQqcP#G;qM4Ecj53~C3 z?AESigJWKM+JzLnh%KS6wMVVo&1cuB=ya|r32EtbOi9Rrh>#uBKt%1$fQ00Nx>5rY zQWsw|?Ks@w@TJzSV4XpikE~@jM1d~IKBXF9fDYdH9vr;kp@X-5+&_Ar+U{-a>|q;2 zcq2eXG#Wii?79^5zetdX>{6P4{cdiEs#n>mQn_FktxV3^(w!+P- z+SQf8yUD4nwI+vmzs22ZU!$o+y+p`8%@$4_#UkQc(X0xx0!iYrCtzS|5kJyzeYJb_3L{RMpqoEv7sdqIXA-Twz z3gQl^n_4xXb~xe!)byp+YKRMvwV~a^B~46T1>JyE%3Hq1?<{TiM$D<}(JyxbA>W); z_(E+i3KY9GU{q^ z^9S=$%TnnJcNOyGT$c}yO6>#cNS3q3(^O?;bfQyoq4XthWY??oC9g9jAzSehLZ;cn z?6|GP)Giy{rj7fyVC(RspgtxncCiK0#bSJ-j2xl+)4NZ!SJm<9V%M%9k}@TsjfnB` z#Ecc0ojW1S3g&kZJs*Ix)QxN7N2l(a1k`nGIdy?LCeh{R6Cta1tx7Apn$3uU*%g9B zT9ix=)lG-rc|jsqU(CL1zJ=5|?0>l`}`R%tCyWz*$sxoDM(_`4q$#&?9$$4Iik z09Jvhw4OqhsI=Y#U(Mbi_L!-%!v`^9FNQ&^vLJzhlhDbBR4zir$=yQ1$+WBBq)>1j z!}_qPta8-*peYI28GOK$gmm@Dyg6ESTZrVM!60GWB~4tO@98aB3!0Qj*YbtgPk}F`>lt7(pmaS41c_F3J>&yVS-BSieHGE~-C4-@h?sRN zmag_S_Da-Cr1sGpnzLA~c%GH13ESf?iQK_Dg`Mn5?NT*Ag3W`X`J+rp$X0QrDGAv& z3I90Trs+D#_*LZs=)YjO{bzBB-$+89lYN}Y){1Vk91r(+1y5d|UQ{jPbaw5EWh^!& zAuWUYO9NP?WzdYtfP~~?jA{SmPSCGv)dZdTrpd5x2BGr7>q%M5v#DY+voiy6YHJr- zom6#hUSgvZZe}QCqY3au?79@A$_WyY9ewjBz~i=cr%G0;GhZ%Q7#Z>nK1Ej4$JBan zVT-D%*2=iV9^fb`ID%filu{e-P3+1QJzsB1LN=Rg396_Wv9YsrjI{5ZmFdChaXQ@0 zEA?L`q@G|)s*BXj1nd@zmY7WCAZ!9on`=0AbuQPUA7gW(!1gHVymjkCGZ)UYFkZKn z%5_;e+y%&HF1D@ZYgR4Yv~YpHtu%O-;CPv>1YJ00Kn$5w7eLXKtTLKRXLhCvz^DSo z_t<*_=nh6VEqT1B?Z>Mnv#ee){{=HfmOtE z@&YD_=IO>j4)_8U?XL(_Yh!cfEsDcXIZ=Y@i}oa%tYlunbS9f41=FKVNyLunq|@f% z*#uZ)gjs~;*>$ZmR|$WG&|1M3Ot%S6pwUfCE@+12gwkL- zCufA@BN>p8Tr_ZPO^4;NRnHczX!XWG=5FOFnaS;JrRti=IO)HFdF<*9$>e=2yK==S zZZ;(mI~>z%;pi!6OPOBS^afmtez&O3dj!!lY!P)KI@$-3$0K4DvZnJCn+*l5$4yDZ z4%WnNu*haxU3qJbwJQ$;<=#?Ysvi0V0rWGrSh@gBgxNaqmF&tVGs#_fa7_1xB>DRZ zyM6_kADWT~B4f}o%D$DBXADS4E-o~6uie$Qn_IiucC@z#xkTiyvNon*`joY^nPQKx zmvHjcCAaBsZjJ|yk~Ug$o5HS3v8;)LL<^VPrmX4d%@;~VF=>HZHmM#PPGJT*-KdwS zL7&bRJG?=lIe6>zj~pD_8& zcFAYymB2GXQPbRjQdEwl){C_tRcu37=&98(gp1JSk_+7DN|@_C!%|k`!5+R1_{@*Q}s$u_=kzQJA?Lw)aXd3Zmay0W0&~Sm1}H!MlXh z18h-sahjD#3tkB)(Tm}P4|_5kw^ZQnW3!?FcaJHF*nw-`RHg}gNc#yqBVfM57DX4B zF$qYtCT8IgE$EBvsudtUXG%gF2;*&?;hXFt%&`K)eDzn-{;%2m>uP^Q0`D)buWPr3(1(G$j#K zy8&_%e46nakdR!AGaWPCRh)ILUByYRuIK%iOs)(L z{<3VQbg|E$cP^^#RtFWl--_(lsm``L9V#`dHj5$TjTP0dp%WU9$i2)T$YnMoG4 zI^R1oUz<~ReWfOquXqb5E8D%gX(8KJs2+F zPU582_A_Js$7}qP9p}1gPcmsUSGnOm35wUKCmGMKOX*3*2ojM!N%K!-PH;~zMV^TW zdx7lsRJOR9s;x})&adE3dgPIa1?>72btg?p$np7PLagb_!oCc0zHzeB?teyTY-5X} zi$=qgaa-6`D?q&2ltk=6jKF)ly@hf-AAS=y9dsau>UP1()}k zk_h5r;1$RT42?$yBqSH3O$Bi$Ftc0hSPZ9tbpeOseN~6zWwtosriEfPawxvXu1hha zZwnGFbSNg1{vf0U1hv64>><%?BHp34`!}}GnhLH=fzx`qV!ijDit!FFctTkdL`sJ0W)Jub6jb~@*yao3rtG#q<}JwUA+Rz zWK$9?17$<6T@Vc>0+gEP1j-xOBI&l4Dkyo$lLE?X+0`qcoMB2r8x-T6wDHRdnJ%~$ zC04OSd}F^881kG@Nwa0rN2OEnltiAAx$pqsJJ{7Ls9YdO{C_ZRK=h-UNYZ|Nd*epn z9n$%`*+T2;ygF`_;MgH*JSq(MWo#A{y}!ehglr9OC+M0zZcMI$1!GjvFcJVL{2c=5 zA+~7x0M)>f1e9nvQBPnz$YwzS=zdcYL4XXLYU!6#^E4nKxght#fQ00NoJ#`|l8bMe z`bqBW;HcKl4#q8qE5n`nQh3-+=R?(L!f)7S5^n4$U!!TlE9|-ys~!*}TG-vUZ7kTh z_kfor1HO*`5%nEyTbtv1D(bAXCwgl+aWx~CSVppIR+Kx;l!R<1uM#98k6IXeI8(%x zUE+?LwKJ2o{mQTRA_4Gbw)naL%MQ>r%xFVK#+vZ~R*KJs~|`&K6Kt&uxhw z!ADZ?p=kC}cEyTjFEJ${+rh;IPP50J>6_u?FI=SbOw7u_rQ?uY;5zRSJRf3gC5F1f+-$4!@Y#<@0cTM(h4gaK!KSEba)1jrlN0_ht5_=Icmb`s(=2#yp) zUdOIoL1c+3i69~d9h&SDsr4Cwj#n?xT5rmm2k7*L0&AuFJ@WW zCF}qqlcOCd&3*}+83mQsn39kU?lc0n*#q&sts>u=*DTzfWlWLeg1DlP*)8%Js;#8L z{g}W_v6Z0uiaz%xSX3brV^NR5G=JK`moE_a2bM0ppxY6XaQnvw_tVK7k2v6eby0}_&p z$){- zlbJpLN!p7#z}obs(FvF+GhY zG~TZADY4>zL@o9OwuqYQgv(W#T27RP`ZadVigLeVN*seQI4w; z@$A+kh8!^j|JVJP^ZijnhFs8R>ZFVj328GhG#?sE-Mb*RTcBZ3}L0U;#&0 zIuwx8*p(}QEHot%1jN8YkWL1*Km!tziv~TYX$u{;Cf8dIM*Z@BBoo-hR-vv542Q8x z)b7G2r|VtpIu+zorX*t5`A}S(^7{<*6Y2XpHsiYbK1wW8sU6?d>>3qqUtvl@TieE~ zQ)3`SQ`YXWbES}@mBEJu!6R&GbRigvDVb`yQB411?79^&J}gMI&>Nn-O#~0DACWBl z9a8wW*h1?nd`f~s2*So!{fK1WV6&j;{i~)VWFz=8K^NsHn|AXfT|YS=xUN?7I|1=$ zwg|dFjPiV6;6X9^Kd`G+l>b{(60s}4eMP32hRfrbTng4y{2hPb8G$hEt?~K5T|QnE zASSb`R)CmbN+Nb3X8NM~(moufMC{323^PYRFb&=%pkB)sRkyXwg17_4V$#crP8s~F zdBsEKiD$4`QGk23DT&yD8vz?k;u4V`Bl$DIv4bsuE*vAPmu1wx>jHMIissKVB@xuT z!4yNzQpjyEAR)PkX_ivWtmV5LQ2mwAzlp6xUG(eZ+q#}zsRI7BrX*rlJ1h!do??hZ zw;DnQs+TjA#{|SQjpdTcAm1ZsGBQU;5fMvbi1ne7ARDxZy<1fTHUw!jeyQs z4nNGftnZS(4(BCU!E}CsFSu)&KZGADBgF1jq3mC~hXv1{;p=}kHGpMU&nEb@-q|ev z3Ub602g&dTfp9e1OnJqWb$QTXfOM$6UOb3pVi)%j+q(BzWjN~KgS8@mCRnDQFRU^E zZl!I<4iC*8JNg(fA1COgoSy^cXez&ie_^q^pZ*!3e-6_>zY_nrT}3#|#9jJt5 zg6cvw6M}Pz$cstAX~U(UESnPrwTvl=*ik!WD;_DsvmMZlBtbE|GhGnP!_Mu_6!JM- zCbf3sCTeFk7`C4EC1H9CTMfFH&V}>tvOBEGk*tv;DdkWa=1pwI6o{`kB@sKs$81jR z#zV-d97btLbz!-fOZ67J^TCd@{;LGy6Kp|sL7bT=3Qk34Zg9uF6=Rl$NjRh;S*%O7^Zf*X3^5W}I9;4&ifTf+56Y*pyuI!{E+1X*CK-GdW) zU2*CU&W&c^%m&;-k+LX2zszP$0s4EUBw`18JZ2Av)nGWe8M>?$@|*zs4_hQ%z$S={ z;>c4qUXSWw{)=6`0?I#3Noa#&yiGX4yC#XruyDP;HxP>=>;=LlaY1v|>y`N(r0Ih} z8ZU2(rsHy@v=)n9zXHrmK_YU?u<6H9#;z(CK+y$jlPx+uzdNryB|WcT%c*Ps;}ScG zAMoXgA4SPa*_A6we!VFPY5ixKl92041T|-x>Ix#cpjn;)3CRU5G8mAMTpTc6>Tp-L zu5Z=qmbQ_9@D_!$GVgk%q_BcHtPM)8DJ8k4dc$u|?HXE3Dhp zcHe>{rC)iFUAv;_`%Ov6wsbFH)%0~6&!(-SEsje2Z5uM7xi+G{}Gr$Odx+Og4!R3kaLsGwaG3UlF^Kv``aU5*s$TN_o};}x~p62dZQM6`Rz6^-Ktkr|EhZR>RswR zV)7lfNMSL7OSh~x;|@;*l-JnJ6Hs2&CE*1{BSxw)i$179LUD1Wt{_&J{djA`?9l^z zUm5D(X)Im3%GmeHT@YZa58r8=x9SpO->xTz_FV0X37JF3*}?UYPc$cq6XG@st_QN) zBIfnBM5TqnbtEjK%ag*Z^H+4+*=)i5-Ige^GD<9*lkF2{J%-&V(dH~&63R_xN)k;^ zlxM-&Kse@?14bB|ShY;7y1J~n(&%FZ>3p`ZVL>`toFU|JE5|IZ$}1gHp3CNiV7FM8 zMC91bAlQkZga^vG%H#DuM9i{mA;V$@H_&)7OQm{)j`UBn`5<_8>XL{Yufv`BX5njc zZMx4jG=X0sQa7{33yakB7%bky`EXGYko*N)NV9{@1cB*#T@sPQG~Ft1OGh%2-6q@~ zpNCy=p4>9{GX&~cwt!)QI>Ih%OAh0;99n8t)3(pBxgbdG(j^fZDea=#?Aj5TW4$ol zWLG|oOx}I`SS8#~5W=6aB@YYXajubD4d+gMG%h$NaQ>Lh5rOlEl0;x;*Ypg76x&=~ z6M2i8f0Hd|Sj~qh#r>JxI8pL{>XJ}C^Cw*rYIKHB4{LOWX{QDW#RU!}G)O32yfw@* z;(xbxjCg{*FV*SrAtZ@iS;i{3Ff*Gqv&I}q)#kdg>&)TKSn>Vs%^52Su^WvQ&tbPk zjQuQ0A~2#fvk+%3=sH>~=<3Ut4VZE+XHzg{F*~8yFVf#U?9%qE^J@4t#+=Jg4Da%< z3G3Dg=xpS?OTfm|zH|XuGk^A z;)F#jM6dU0cH<-v+^9>!3kSzwEiP1lgW*VngyP~1T|umxa^rn>vl z>XVNSymur_6CqZ}VNYu>Mvjgl^Q^e2d){F|uz+ z5-sU%tZ5&+H@CDLbhLr<8bj~z*rJA1YegMxU>&$iW9xo)<3!Jcx+Ihv{TiVPimlqi zzG>&>6ImnQ35%ED#0h)8WueQ!D?uM2Iuq74C&eO0Uzrx`0`B7ZPN+}9=@T}06r-_h z76?Y8C5b>^$V@%owNF9KfQDa^UKs(MIIP<2&qz^6!oL>MuypgX{yA-xSsi9qItR=gbluWwyTP{`hFm z$H{bOqHyXdwI7+4F==t!yttxOtTY97Gw%g$WzH6lbHwBC;9*uq^&~c>%-&LW{{?Tu z|0*Ms3D~j;hc2~M4(`gr7<_wWM0YxsGIRagDq}60)*rT4M&-&q9k7Wh)qf$xzEZjb zZRK;>KKRw>LSmy*mId7u07P!!sH~n33uOz%`J2sRx0&nOoX>U5Uz$&r#R}Qtd@+|h z-&SLBz9VnSG<(~#W}+Y#?X;hH3M{E=m#UvvC;~)cQ^lLMEn-M@HauPJ zMs~|Yxi{#NP~Ni*@d@h2bq|f0yuylO#>$S2SiZ5ryCcB&3yf}GWQ!FRlPNJfzQ*&4 zFH5hgu>Oy11_(4y>5_;Xnz5@2(5YQshNDAEUQj&m5RQLgixL)&aj?0jmKOrVPuNWp zApTjGL}(ziQ{6+>l+0ew%#-yu)cpUlc@L}k5wW6dn`r!h*i90R|6fU>g(3fpQ|G~D zG&v|tmE@KO)t%xr9~_l$_o{GrV{bO!C%Rr&2V2pkfjG@daMQ7{IGrYD*o9znL4?Q< z;jWbpr{NTP90U{FUqre9mq0p#5m0Bc`6HlC*CnCcXsRU9^f{ zvgY2!{-u1m1V_Z-SQ0LYgtR*=cEzmfD|LGhUezUn_%CKFCoKM_!^uabxFwo3Z4aWw zQ8XNg!flg6G3F7{CYE3=#u)pDu~W4dC3<<{692X_zWV7&&vJ)9#_YZdQx_AJ9T87DYED3s`1p+oc?cHFQ9B$jX;n@3^^*XWXn+!9VZL!=F& z&nUsJW>_70$?}sST68AF9?6pp=~*&Rz(Rca9{k50CA26Y`n%X_35))GdCi6pO8R&? z4S@hW{N|BdG7xCE-O~qco(dOPGmjkWgGiG(J9LwF$LIw>4RR zL;HB0t-!GMF#`5$ina;tzhE~>VE>seiO3Z`S{5YWR_KB!j@Q0G)gRaqRW^SZmLDMQ z0vAO8Z|f>g&6&TYOTw#v4WChNhc!P95{iqo?l9CU>i%nMi@LE!McwquH7;k*EOH9E z=QPROgvgBwx@WQ5A})T0B+!-DR8?4}72ck7Y}4McPW z-B;PXht+&wLHDcdCW*$sBuTU|j$i2g>lTEe0~{K9RC%^N}ea$OQ$)HTXK zs)B?Wrv?edMMUG^hK1Y5*a{45AAyD2huKXM*dNd(5xK%^>$5H&u6=>7`E9lkVO3wh zaQjVmyF~wA*CpZAzlP5!x5L_=1_{N*0^K2oRk$5G2o_NX9UmXKc0_x`e&SNOY(|{f zkbpJ0moI?-he-mlQeCpu=stS zYRnC3bE6v;?@L7FCbl$T5g8xDwL4-rw&aHRNrl}u0b{!)(Za4`eFn&!YXxC43>Gx_K7y1WH(B*`FULu%CsLtK$=~A9l6x>Q@j0FRQr$E?1xu-%4(me z{RiwuiQ2!XOTw#mjkH*0*62zaBor4BWdLL4*(K-0y3j0S!EVp7 zBp%0Zn}BhwBoWxbG(Fp$R5JuI+VZgd$+NHA?*r8Ia<;T#H4TRftKmmHC%B@i)iQST zMA=JpNvII?L0u9m5F+I7#y}XeJk09$es$#?MPpG3cD;)o}rm&DqvK_`$JP{9h zncX}=Wsf8g*ts>o&^GnFf@!Aupp2P-auysa;FCrKe1kgw61=HNhojl7lbZooTcpze(8nF9sE8(Y({iOm31E+OQ%kyeZ)cR1_=@e zND_e_(Dd|f)DjpvbdjV^{TWqx0$Z}MWO4l5gfi?|x+GKrhoBBC zfotGix*h-IbFF|bCUbJe@*M1VbB||zzd)n7l&zVtMlmI3cQoQoyBu!fr3SK=%>Xfw zi*-pT13_ps&{YP4{hkI1#YKb6P&@w45Z5Ha?oSgh5`=$+Gc0>xr(D4^@lo$Xw3qAH zx(;hEGvx({;>b;l%Q#ftZ7wa$)pW=;Y(9wDY>^}a!*uf#l?iYx+ z5S8z+g$j$xWQmI4Dh^x);qn^0eS*uYx+J2;waS;jQ0_q^YXE#WI_>C?J zFAy5NkLtiM9%_(KTtwA@9cdqPgL9E3xcDz%fl8(Rr|7#zS5$+FqnzyyI8Ry1$7`yb z)Oe0!b3%+~h9uF#Zp@jNbPeI0zoLp4u?6F};b~Np?`JniGr$WtC znr!wtDnFg7yo22!QF*&AiO5wx8LLWIRPwDU`F?@cznv{sSSY4g6(uYv1=f?cvKb)I zT&+vO3ynsPqB^mcoOQSMi05-+mV8P+7m!YU=; zBn}4<3r;K`)llgE{Vvo7!8+5ff&4}JE{!qFmaKXb@~(ag}>=4Pn|XLS6vcb z{c8j@6&G?^V!(A9|l6yqSIpVF7L}34-kPP->D&elg$<}q_69eXr&>|vkj?6GxL^} zv)R5i-HAfVOx3fb6VZ~w{M6T!{;I1Xe^dGkn_O5^I>|Dn8cE}wLPEZfCWxK8Jtz&np{!jK*^bTjgP0 z|L9nuHyQ5`+}8FU&V|vm>sZa^g;>x^T@uk_XAf~}ky~nRFthnyvQ}eOgO3rrKDMyo zv9oUKb0L>f+!F8Kz~+TuSJWlp#ZJR@mG|RVU4w+;;#A!}M{ohfmrLpvUz&PHo@lD# zz9Vm*b9tL}MMJUOz5;K4Z$8_X%lD+=raSv@{o>BNGs68QSuU3HJ?)+49NeA+CDg6` ze%Ic;0Ctes4Uc#3vb$AUm)%i)rE@8BQ_WR(r=#P3PS?^c19`QsfdrK?bbFnntYEaz zSSznfEXo7q9sFx&iZh#>65UVPGWrK6A#0-&-H+I9k>K+KT@uRezo$#WLiMjLMRksY zs@%>XP77&+i$-i%jb)aTx~IP~TOEK8%rqzM6k<05_-$R)s?z>jx+E09Z|ah;08X_O z;Nu;DVS!Dlkk1;+viXh1NyepSx~scnh+(R?7@6sJ;Egv4ULkZNcu!=vMf~>!T@ni3 z*}5bwc+aj2Z&SN%(Uhm#K8|+5xm<0Borh~;dt`5Ye4|gTJ$CNfaGl-_$fo*oiJo*) zTz4xe9@~gwE~vBr1SmbTPCPoqBL$CluG_z0c-=lI#@pe42s`|hAeQ#swvZ7nuWMS( z?(k=*$RQIpBWLdw^>hYLIniPZTR{KbUI^MKT3o?yi$sf0>XJ~=Vv{ZjD_XR*6w<>S zNWl|b8QWe5!zb7h`C}*~YlPwF*liIEAJrwHFnmatgoWW@EyZx0gCT};7mVL_VEidt zD1R7*aE)O65xXq{;}3L6C>Xz|OTvQjmAWuCwc{2|c{=X7wC}`g>1#W0xVF8wPj&=W8BE;JBh zmsbxuUVQ@K#mgZ4y;=y@$g5|w+ag|lj4lb~)w6U-SYG{=mcn?16`cS0(w)_p?%#ji zO>?Yb$y|4L`(F;CtJ(7TBP!%3kTLjS+x+D~$%XLXuh>krN0$0!ylE6g++N*aa zRiAos@cPdV-v9jI-A@el-#57JW;d1xjt72zIT{|HVoTS`Q0aW!Ubcfm}Q{ML`UU!gkhW{Vh7ovjxdriQc2{%6 zGMHW#i`r9ZI0495lkUoi(}3W3QkPv<>U@Xze2Fb$SbS#0I)O*A++Fe*F9MI^@E^gW zrD-+eyqC=e0c*D|iO^taho5oF#Wk+tR(GE>X1p&EmjSjkVR0EBOS`!tV7$R@n}G4U zB+_4JP56Lzs?;?@CGBTDHr#bj+>Nt?yCQ;?vx@ai7ehblPb`Y9` z+dMCUnX!Uz^zr)uv6#!&OIY)sY#lvY7F-3!o8#H-6I^1tBqGP?-yILT~}QVFJN_GENk!oKc3b(R_2#dmDa_3o467(5%yF~vt z>5}m3Ut`sb7}}u%vG>;?p}1&}H*2S2BUhWnau&Mk+Tu*b`784Ob+#768o(&H-5lE| z-uD%DqXhj|B#9PgU6U6jljTAp*=KAh8t3*F(^>D{PTwz3%Y$rz!)kd7+|z)3#Wxh= zro|W0_^;Uv5RLy*mxQwPe?!okot({FlMrdXu_y&+@E2iyKq70LyGj1dWBhf$M5sph zM3p)p3Hv|=pYep^Gj7jM({bWRHX{VGgLO%GA=8L&Dnz2IYLHM|GzgKpYs4mA+HJxW zA8>d}SKi2(n@XPBaD3jQkt}2@HmpBSgsX6XCpe=e-j$CFo~UKKm)$zCjMH^Vcrnp{ zRapjB^fX8)E=syXMyope!IswBk6H!?xtGdfJ0+eMv>{!z&a^hO?pT$X;M8f0Y_R;T zO~~4)PTR|Fi`Z6=E(wKdMwf(z>d&-L)y}kzTPx0fx(Jf3G%P}b-e>UEJBD`NAZArw z-nH-PtBqwV7JX=uD-X-ea^Ss}Ev!GhLg+^D-oJ`B8|wWHHtS*a zJ|YGOR6^TC;jgosBntn9E{Vt$J{lIlCbMPHKe)AC`vO&eNUk|KD~TYL!^G)vHWx(y z2eR8G`hUAw`q#)JR3d^gO@oB8f?IV3vAV3sTH9rfT2wCO#e|j1wlXI>z0&*H*!sJ( zkgHLzbPl^MVn=655-seNW>_mFj8ZpD5yLSQ$@NAzY;VjL`dlil)cX+K_cFHlAyr+O z38m0nF<&Ug1(#wIV{(1m=90McN7;N37%tT%p&V%~BH8Tz>ri_J+0%#B{2kHQ!WJPc z8l&N)Je(o+>C3KQH%pZNNnH|NHqfqAa6gj8*1Qp_q2$4`wz7QR7jTe4K8#++{tU)yi#l28HrO$4mj zeRgbFzOWIFrIA~A7lVn*|FGwojq~&Q^`725)GrXY<0AuZb_@cIU==PINx@kX$hR{a z9q*QW6DVVBhKS=Bx+Efpa=Ptd3lk z-N$a3DEDq%63S8TKzxEMT6YTb$gheqP6U@f*olvT<4oi;bbMa(vS@xp%GACbl^_FQO^i?)z1m!R3lJKIe z5m8l8Mn~2lp}5$rD~J`8ceOSskF-i@F7wPJ$J>$kZMHc6MkmB-6p7zrw?)k8O-Z7K zk$4&`2+t;xrZL}GS(Yv&|I?+;O3+8>*Ry(?Gm0T9u1pmR#szord@XO5*3>{|CYuAI z`02VNl;=#9Bm#G3=|<_XA2kbkxCar=Rq`HQQt`Y)JQlM>2{!p#4?N&K2Z;ZHY#)McdAD8^V zQ}RRLNU|FzaIDiM5gHEd#C%Mf*eh-V81=6DBkLSVR# z-7$A0ejSXA7@| zX$^(~(prdVn*SX(PXyD~bV+zI)yUCRnvX$1gM{KDqGV;vl1r8@vQJHP+mHJdTFKjN zb%wQ)v9V-1m9V_sXUg;~cFV*T-qa=GML`2dWeYfB&>*3>__OY~#TxS6)!HGSb5t-? z$_=RU!!#)_h&AB;ThATPnaju9Bf+ySZ_Y49Nb5?#x}PPz#~JLlh;=QHBmz77OjBo~ zrA+Qaarv{#I&;_Ir{)BSndr+vt(kW5NQg%g9`D>t^u=0-0)g4rt_*PI-fK?X zorvMJ4W!eaj7Ab@hQkUk^M}I)90mBH7KfMf^I2Gnl}?IN=AkgMD3^fC8`4E%V9yOh zdv>@wwah;_;ibZs(!VPc(l!b&+u3cA@Um5s2n;XHKM-Y{wGvxwUpRlQdqI1}`x0&M zakiKtRa$|=9dKQ^7#DPx5;Rxb$!?pd_z_(as%L%>Q3}fcwMWe3&ofJMM7O2{g>%!r zkh4PGA{^gm%M%uk39&BZCk{*GB|oG`{SLcvg2!v9%%J0xns4%x)|x%NdAMv0N)u*c zeJa1vvl`p)1Jw1O*y4uO^<-GqiCjUM!sd#o`}gejiMoHIOG26d5F!?2{<;;_$;(r) z<8y7g#|#3-_X|X3N`c#_hDBydEDe0cVIPoL51NT=1_(6cbV-DUMmsW1xX>)*pt2g^ zG4wT}au!>nu&7Lot(P3tgX9c$>jaVol0;yC-1J$6BP~5Ig?;JbW(sw^4%stO|5Mce zN7xz&tN){H{iiHW)dekrQxds8#O8!xu|}7Ka*tKIB-FqjEn--icSP~?m?in19@vPQ zM9YEyf>WLF-&aDZIGgBoCCQZ#-=h_6XKO926&(wO;2NG`O{BwfJa6$#Old2d9b!sX z>yl8W)Br^7NIPj!xl5e22G?mV$(P}up3+Ih?*qi?Nw!pBahe=U*jxcd7FPtA&$HVn zz&s{Nv@YJxxybB+?LEd~SX#3&oho%3#~T-y&9Z5%Fmqk-pZ*wx{~03lJ+@}TB6C8l zM@j%|QY{JMmka*mS;>DLw7$*eiJiYhbU; z2gjcpBor47>H)d~qS{@-uB{8TFVHaN6{8yd)ZZ?A61!bu1#@&sc=fLVp|S!jylIe7 zTwJX?vKCxGLG|le1yx<+njKV6tvOuvu`%3_aUu>&f;A|}H?h}h(+B*wy6PKAw&Ci;Nf;hUS z-SeUyPN&Y7ySm%0{YuVk2JAXaRK}#m0RkzrGo3Yy{g?G;ZU^loDx-Q5n^I*?dR;_R5IvbSh=$`nOfaS~RRbY_E)hMFSmhPExA>La>Qa zx&*ZIxojW&YIGs75mMp;Y`BEhEO@7!4--YJ$AYYSmpFJNCO0OT zragR^zrsS)IA20-EVH0C*7U&v&YKK409^oU@0D;32{St#5C0-tY<~|I;y3c}e`L2s zJp3t1B5>T${37y9uX>l~!~~!mZo70^srx0`*pJu>2&wGKkufy$xb5+_ zr-1oycKZaF|3Iy_Zl2`?xsT;kBQ9rbh0+s7Zy65fgDai8p|t57XL{Y+9M^jr@8z!mzxL2Rpt;RERIdPGS;L}pL3Z0)|^Fc8Cm@bLPF`FeZJKf`s0jM?l z7;(FnEo@lajzZi{cR5}iX8`+_I6 zgO&!kZ?T&vpnOA@MC72%6s!G2k|98Gxr`T{x?dtt|A#GRSfGxKiG$c|pj?gwd|LWe zebOJ;j1b6vt4qQQnMTc1l}&L_p+Q1%fulVQ5{e5P{cDg=Ts)yWz_RLl^IBWxndU7& z;PJ$+fR%a9spgznZq6u4NZF{Ga~iuXV%w)k5`op6<}R|AGSw`yZ$Y{AV<6uB==dI85~>@#6JZJ}z3NUj%F~04 zY(4?E+IiMJxL+X*-(U+876v?6C~k8?Q1}|VWrD(&bxA~y!c5pR-kI)#1)CkP&^l+r zzhvPbrH%Q5=i=46Um`}oWs4aWqa(%caEDJguTAhNj%|~C63F(k86l8WbxDMVOnW|W z(pnhzz}O-kR4@1Y01+C$p*cw(=^-kxSpg1ol3dlPgO6diPk=d8l4xPCaq^;6N{lw= z^oW~3<{IKuxnj9j#B5_@8rA~_pOD7;DMEA#TSZ}==%iReN)nfX#Nm9cxFtti$Pur9 zzFM5k7lH0XT@uQtPC)dV-5Eh}bJiRK)Dl)Z`*LMlmAYRdf@|4ghDA_>!5TghHaOBF z4wnu2l({cvGeRJ1(L@4m6pk#C9ON{PoD$StV{<}KdsUZ&7c~uUR1S^9a}5%Ti%;q%(N+cZ;T9KMR`snF zSG-y02fz&KNAl&hk6o4TY| z3RY92CM$5?v9-4!)H*9A4U2j6eWjY(@lj|A@6!cFg)#(YSfOm@@VP+u8x|LD>Glj( zKz&bZ?<|?L@4C-duipvRW5V8n>V3P19=Ouw|CwJpq4Wy2e*OJjNZ2Tpev;i5arI4- zM4+oTzjl4};I>Z>?0I6~h1~;tt{ixA+y1++-1q1f!@l3mbER>^uhF&cVJjk}(kq9; z?ojLIIZJnH$a5#VRiggS>XJ~oNk1ak>`KDaffueEc;WLyyRNM6xOM2xYX)Avq57nI z(@Z7c8^q+xY|+AE643Fz%x;jtu}7CgxTz_FO&i!jrBz zR0;kJL8-C@vih0I;PzXpFI`y+k{g)1 zUm`Y#ZfZ^vPI?ZRDV|NS8NqIlU~`Zp5!ihMX5zY&ZPV?3!T_CDZ@h0{?~cJ+b`0#j z+pX>3&rsDTvLz4e28TdWe(D0M>l4^55?#;MC87M_7+n%71x3V%mHb82W5MAO*i#$0 z!LxeDPPbL~eSr4xQMO)K_HY`thfCQl5_?#yOG4R010=NL;wk$dzkO);V*@Yj+5h0} z3kUCdw)*g$PKsv??b*8T`m4Z!@hfA|s^xB=_&-M&uV8B=ER18FG%%j%O;b2O$!?jz zxk-{}T__zLr2X0#sMq`0(uLLQ!7*QT-py{1sPhh863RPn(h6|ZN zX^>F5DC;I+)_{F%Yb&6}z}{De`ga;jV3&5e$JqDEU7~!q^MUHUHw@jpb>CwTxdKk+ z562t~8U;UlWMw(ooBT9>_6>_4KyPhiU*(q=0nn_b|Oz078}NHl(o zE{VuBK7Qy4C{M}a$HTj!?BP~Dd5aia$QFl%!RgfM&u6ztFgRD2MC2IE#`wMeuC0UH zZXSH_sp{@WF@_Iqf3f=Vmg?TmRPVaq4NSP7AX<60;4HMxplD^;EfTcSx+Ee;YnFx9 zmR*CD2O8nj=wn3a7Phb~gnTMhH?vzL2<^}%5jjHdLxif&T!qdw^vs^YSFRjxJX*(_P)Aq6OzoPwjhbYqfHlZ`f?`6NK#-Y{A3AHX)XjnK~Td zf;>~;e#UN`0QX~E5?e8%F6P8j<)l3J8Ls@Y z*QdZqDZVRH-g3rcQ#LneFd-yvG#;DCZi`shI7uRKJl5RZeNv{Hl@oK?D#tpfp;^li z=EKnuX13T@ayGTWDQ9h!+2lKWn$!E`O!B2%8xL#9`bv`23G@RqSIieW@`*yqOYI2q zG5WnlYYushcjpz`Q>NK#7TiKmVJ)Fgt^LmLN}jU;rp!6w@pt0!0r6NQ9!tdITzI^5 zH}otU&Z-k~(%a)0xlaU!R}|7U3Q_CXZIKYwElC81sOFc995q&7x_|$5H@VbU@xDZr?qG`s>rK z-O~T5{yCYSKw4Iryl$Pmn|YpdV%)lQ{h6P_D>&5o=i-a;p7*YfvHMx{>9x9QSPcBg zGo0HpYv5nokle+n650MCViA+!YPDkh&GoTYvS~Gv!5Mjp9usa-@d`J|5zhI<)sih= zR}}Jb{5YhAR$_358|-O`JBR97S8v0A_u5LJRiidt@fOao^ZN^RNvP0tKB69!*lDk` z8DD+jg?*20fl4hDbYX7Wg>Z$uMXUNWTb{5GiG{g7^RqXy8zhnB22^0{4){HEX!k3F zS3U-sb?da|@2JgxWDCd9rcamu6uUv9%_nq8D2x6a0up4=y6Za+t?qb!=&`4$+ST7t z?LT3Qz)`zT7W~ib28r7LNtZ+m)c*44hi>#!yYqKc`~R>-2&;CP;rc8!_`mEHiQfN9 zmqhe>-?#UP!5t5hVc?a)CHCc8zV_vyMMyn5%P6BZY0WPx3W z1_{MQRNeQa>b1`e?72-$w8Cok>-Iuvz}?&UeSikh#?~#%5q`JO zCpjhR3_9XsI=exl)2X^7l%GtJB$~d((OyjNx;e=HBP#p@Z01ASuT;2Cg7Q9ggGAwH z>yn6E;YY!C>YCUAd#VR-e|hNP-POBZu3qh#u5R!x!joi+8Wx^0aNL%&wuTlv*RdNW zFkPlgB665!4ehzTy6w5a`>%sV1Os~>soLuqabC_HrW$>WKwZZcHY`x066&+#`WkkF z1fVUtBq9fBs)NYjRXbre)n_WJ67UVe@i<$wuyDxY(kawocCuR}cs!y@B62*e#lY1s zR;t%3Z?Ukk7bLjdCfrXDt?#o1XQ6c}Me954771Ff>5_;Xtua^&+V{n426uaoS#iHY z?f)lR5SI3R25Ns|w@9@AdtDMa8Ktr&>Ein&uuN6|Hjt zUA~_=-5DO8d_{Bec_C$^;n7@nTg0l4mn1ZXN7~b_W2)Qkg0&ic>lxjz&{r>H%joZ` zM4v&c8P8`oNR)c6u2OYp{-*A~^QOVOEuBI+eCV+q^t>tmZ&1rww$L0c`xL~}>;{RJ zJ9SB@P?SWVnqIX<=IG*LsD@znLuvNBKS@(jDvuiSn=4B@wyu zC!vOMdctpIhu;SX#ItOnI6(LeX`W#>NPyU-OTr6;MxU+_UfHPs1s+L%Tlfc319?(T)b#n1r>XQ8Bn>TCC)v z3H}@GMu{!Gju5nNq0kiE9J0``qT-9M41UIQD4+i)sOLleA);IhC-!~Dya%#dBuai; z7boQ^Zy`?2?zX1mSyN8@1n2PciQvx=mAPykg|&WJiSQZQ9?x!(pc2z15jiT82Je2N zdiT=Vgnm>Nkp#wu|tpT5rujmQA|d-F zpK;b#*ewz$UXdgM>obArvTk&lBs!U!ZXeq7ESwqy2{PGp>h}TacaSYDOTRwDr(d&M zB>MfOE(vAo|E5bq^)`s|yRx@wEBCDGGZq)psV?^oD3vj;S7-y%u8b-p9~;Y+dwTog z9mt6Vq&iQ2GP`AB3lnrnC|kfjUjs;G3s{lWAfdR3=?*aj7jRU-hSpZty_@-PPTFS% zG_%+#v#(@hsEx|(E7)xj(^@V`1cveEpBpg3=h%gc{YUiG99yiADh#TuuV*(% z^w_OSLOF+tP&9k+TzB)iD?_RKB|`HVwwN4fe9G}Ru^S}NRCGy14$TOkP*Sn~hzfs> z%{)ipKB?gs*bNeeKdnn5a)pl>tX&-KGJf|fRQ}J|f^d}YlQ;g9-5^o^k90{yuKYs> zUb-C)s-xSY)ZbCYT`Z-u*@Qf7 z6R#|F#hlD4X9)TP8!dkm6T&tcf_{$O7BQ|zB?*4$*6t6-t}2)X^YU`Km@b(`mli9Y zcj&X#^?lEf`Z z;z|;N@>n)!1m)4XBqB$7(vm{HSd5$ESmxe7qfpLyu=M)?5j&kNR9N4e981=66_;EQ zTux=TPjH#1OCoYyW~g2~Rojb$D%_E=-iL_OhuK1g#c5`2y`5{sYq=DF(P()In-7B5 zYF!eM<8|bcd@-FfjVySR(F1X_C%qZ-E`nJ7PZ6`fXA2q@v!h~3$!T108n5NlAGJO< zCj_+(x+Ee;Z3Y}iZx(vYR60>Ije^-#FpF?txd?+EFRSw*B6dGp$gqgbjKN{%4wrF< zOMkrXVe>)ox>J`#m4a$M0t@N^MBwl4fe5aZzHu z$iJ8N~GoV;3Sq0zv8 z1iLL_`v*x9fdl*I4?It{wY$MA6w5_pO$oYfp=-0(SYaj#as;$CpUqy75#Zpfkx*%JQ zctOe$?-X)~JlvLpK)jsI7=d`1E{Vt?p0d2BH*5C5NEY+%wmd1+`G10-^|A#E3)<9J z+QnHsCpjbN^sqS~=wx(BM2^l`=Wa3!(0!Q;jYUSz+=v4uyXsXPspf=1@0k~i$kHApBf4$u|EntXZaAUM1`Xb)K6yq@+n!3=laurXcgwy%%urx&<&y11Oq%9(=2*?e++5#mWF)TvFQ zC(&Cx*~sN{@htpjq5!?TRjtl6i-W@quC7;&5qP1p>FOc=F7t+vf9ZOj+e8%y#%z4;szBZ@{k=Q{+b zg#8iX_+7U2VR1YGX4{c_7`IC9p}J&q57%(V15fGr7Mmvm>Ng~bz~MyGla|xZ-INg3 zn1#lQe3zJ5Pa3On+7D`i#^OX*Jl`3=G+#&+aluO(s%izd%juCo6#u~1SXdNKhx&t* z3bt?H6cp&bpY387tsL=6|R zchDfAbn!La(V0~NS#nTID#V_>bSpe^f@mg?7-1 z^k<|@?i=2Za;`|vWqapaLAt$E1|6ppS$QM-ajs8_uzuBqnZ_vK$U;a0>ZUS*|!W zN_pR`DznWAC)?TL`S-O#%tqm4E4wWcPOg?D0>eoJh1EG;g{~EcvHj}GJBkJ#E^lPh z9fd@p&z=7q@B6b8$dAy}cd|7T5{1eMVqKJD5HPcCT?1N-Bll1TM(#`wHG z!MQI$KJO8liCejybXaI6#bBK&@)QipICk>{l*4pMctO!fGt?LeL!|}@#l?NmcjGhi=0ZM+}_4+ohbSiT@uQ@Zbqz{otT~E)OZ)=47om9RH0TSzyqMTyQbGPlikKz zzvX4DUm}is*=h)j<4I0MHv#K8#G+5JhztrsQjDS$BX|+nZZ=;8;pcTpM2_&qHLD5B zU1H6rNbkgocnP;#M{*^hS->1U*_|jPlCYfymPBtbvqmS(e3T&@bNB2K&_`=|gRRoA z)^c&p`a?%0aZm}Gj$0+tY(NKcSm04f+);^T5Gplzoy|S5sbA=l@Y<9{zphdP>?AZu zC@wD76~synwzW1jI7!TD8Rt3`-G#=vxny3hqg!EaN+)4C{2H?-0gjY(`$FbnCncD1 zU2_IRLi9!{!Qt$-h^bAHBwCmW9Ce;ql7VO`T+L`29*w&rOoMMRTAa;Rf`7Ci3a`wH zbs?{?Jp_1-i+X=t)%$5B=S(&$1dr2nNhqf~1tD#A!Z5=F6;9dvBy;sXM93~<3mF!& znK2JYbrZagviTr*U8+kWa=d0kUgzX^ZE+a6_ZTY@xvp{o4!w~>A4mt>{ub^hh~XBt z;9)VG9fMTPo~O@=0eVk7YcY<8QwYW_Bvik91)CuP<|lPYL=NWrR4#|*7?H|(9C9J7 zrx7_`IS)JZY8Pp^K^`6{1pg7XqQZiIj>^!mN&|v=1FzWEWy$GUvq5d*K{lVnChpTE z;k5~kL`vmi*iCDYP+UyZ6~xNL9%)rBHYf8GWK(mu^o!~LpTHD<<{w3NWvvVNIsBnA zN_IQ*a_(9qEFSo!`1}oBNq32MR>Kr@o1BPlLvpW6av9n1M5B7`^8E9^i&rryqO+djDtGX4TsTZ{^U$fT0 zOWXF}wRPXFmxuQ5a%r;?@C|Z2dRuc6ZKB}Hh*(b!R=v@1GLqdS2`2~Zl2DHP9!a8! zi~i=IZO<9lbL0NI;F_5$tB>6P7g7&Ba_`Wdn}+s&dT7txe|%}%zzaL@UNyrFQuv=C zZu5}+CE#W?K3*BKZk_Ga>(=!%y!}jFjV=ZbsJC0}NpC;sk1uU^3oHLpD@OzlE)P@p zIm7rQT|t$X&(S3jz4eXsH7@6`sB_cbcE+w-m&?tAoVJ`by~cB>^Tvgw-B7~Yof2a(wl?ii)Ebce3k%9d`^CGjq?rGNIfrSW#3Cij4N zt?4lA@8mmQd-{d0R{ZVBVluov;SZv)CwW}F&#Bt~q${y9rSIyJh|rWUznW_Ga7z=V zMA0ny_6`BxU|%tMdsG>(#KY%=>yhjhX~L^ZB0@Z@gx5(fYM0tqoWELWp5#B{O;^XQ zTPJW72lAQ)uV;@|uY4W*OkJJ$JN7(eF}!2r4uLuzyI@xKh#Z5N)opiG_v|)0 z)1^6c4Y=XkfVrFY6u9V|xo$k_eu>y@XNwsYo3SxqFb=H61#1+et?ZTwMpx^Sh#aGX zmbA6Gv52i8kfnz zn$E1Zdm9TwYW3EIs67<=7hTQx_i)H)6dl$$F-pcgUqV!BCg0PQMD<+X)+NybGpSat z-S^P7o|4{3`>*Jl2VF1nPGTm*N`VfOG!vQd+x#r=^EVJ=F$x0_sqq4zYYh(26+qd= z|Go?D0yCP?)=-69cwPGfjpGcq9>T|M-`lPiup1Myfs?C~3UDc{t zRJ5mA=WgnSMeRny-Un*kQvw@9SGKi%*kxy#e{v=-Kf{L0-^PTrjV3Q|Vz))Ct0GCX za1q<=Q|B4Wb8vQWHY*p@%1e(5X39vJy(a8t&Lzo-QsI7rF8&N#B_Y*cITp5qO19;q zSDS5E-&Vu6rCyaO?_#q<5PDpfgz~(d2y(NRwar~H&w#B=u=N9+q$m%eHPSs|jg-6r zN1gzJPUCWx3gdSO>W|qf2n*^7G1$2T0>GK7C_r2aP;-O{E}Nps?GM>J5oEuwOCoY) zk3DT3EP#{YPb_+esW4c|ZUsJZmM&~wb3+>D2Z-gHY@x$qX~6m?!LsyE$+Fn9ozLYq ziH!|{W#XQHW-~)T{7+pHk%MTQKF?T_5GNf2grdu`aD?-s5>V`cxlLE`w(;i(;88a; zr<6`QI9N1X1a>8S5;epS4v0#?+2ejwu`}4L5cm$)B@sD%^Uj!Od?;NkC$j0y1Vg#? z(twLfU@apY30ClK9p(NQp!6C|ES%pbK^DNnd45HsvjA5{ zIA-7rdou{4HEd@qEvz+sQ0^25k)<_QheyGQaZ+UKxCq!gCPa=4k(JQ|8p&2Rv&2ZQ z)+G_SkTK$`+KF@BK=>IWY5~204eZ=PYW#t069o)@k%8O#% z$q{*rQ2c-`Pgp1>#5$25@EPQX1kLZU8z*>tTapMI{b!nb#GFj{YL1wzj7f`Y&cx-Z zS=b`GCRGPa=x{QwbG$={+j60 z=Hrl~9S4ti@LhW;-!9%c=g_J1*)AIU9yFZ&y4b0T9AY=DiX7GjG)O2euzsXLLV5Id z-4T>k7hDIGvS1SqDtc%Kii2tO?{%m8cT%M}gCikRqw3!rc3Z^%kCP;VmDg1NmonA( z|D3kUbmss^=}hvxHR(I@bjbzow_#jO{%*GWchVQ(R!i8IQ0Q}<62A019C8(CB(qvP z*23eRI}&nl3Dq6mg7`GO-y$ij3kmWT!T1tep0HqqNO1SE8z*?|Mr8)=&1-Ig zD;>C|gM0TRxaSY2H-VCz?2}a*d*M2?j-TlQq`DLYXjokeI*bMh#RbMh4HC+2OT*Cx zbZozFZO1nA+)Z$*syv@X6`QOa$=%WYkJHi3*wLKiR*2fDqdT147V-Tll0*wTx=}0P zX50;FbE8Xv74>KInzPxW`NveE#>%0wyv>274K)*eCc9Ol(9?8DC@(n$F$wD2bazD0 zxFlCB_ln6sSV*u4j$t+MY}$Omeb`W?-iL_JWo#kCqBApAR$Rst;C^w%CBf^XY(5BH zm+F#;9Iw-sl#6f#szM2i;BZhB+?WDWTD4OihJ~!#skA5{!duvC35)RQF}NBTmy`CG*M5wI|AmHbV(?;-HZ0n>>hSb z9n>*e`z4Q+@IOO@f5TQlScK=+Ls*muZP@!LvO{dH2(kmZBqB%lgoeoaEjKSG}qB1)9kF*{Tfd z`t_%^&tbPqtl%tN5~204oo$i2o(l!?7NO{1%M%ug5LLf+cH;z(k4qAPIZ<<~esUQ8 zuB`g4)vx;b&zY$T;6*1Kh^Dex7cCXN5UnOeFAWlk3#=AtkWfB6QMZp5TtEr%{??WN zr`QY826sMCz4wOdwylHr-s~D>XGTqgiBNek;7e?r{X>F~u~F^sMRr>x0z6kg0yKY; zYxXL$AXk~g{fDrXrK8-{B?=k1LKkjJ7i(NR_q>Mt39A1WY?Xvmf91Fs+~Q<&4!c<_ z&aDNxaECf_ZfRJJc7Dd@h=BBCT@uRWeuy|Xd$cp%LQF2i1m$c@z~Sb-iK3^P82lNc z_BLC}x+Ee;YTBv-tQs+FJGB?py24l`=p#fa zc2jf4CM2{~4hNKgySUArz5bPAWUzT47#*ccB65soEbjpgz($lFyc(z`;J9(B_aS0+ z9$Uz;9yK!t8`uPwapW>y%O&xtrEES3UW;@|M2^>V8!xd~->B7tYw!^K8Dh1bEnrxz zj&QIN9M(swo6QA5%G4zhIa1E}ZFSv6%l2EuA;!XVwI`u;{)(PD#Fi|i7AvDf1eNVux=@Mz0J~A5&Np<` zsXPBa@;oyKchP3u>4fuF)aIz0o0I1en*?okS?v>T9>Q*vX!Af_5-QTXjes{2tCqVF@cRJ4IGHU}Sks;y%So=pW>UD(W_=v)=A{YuTz2~em*aIwM2^d3 zxxsKvvXJhD^Gk9mIj#!TO``f>5_H~k&81U3oN`{UK0QJ-T!9aRE+Xe?=SKomNf z-6~P&NL>=jkPnt5nt1aM9uhZhDHNb`BFe)tEu}tpnDf3w6i#Ie6V|H7Lx6K}L$H{~ zZku3nk}iqJu^721+hukX5^fNjzoPapVY44r`=eqBt9_#O)$B%z+E?n5h+OT5!bzvb zB}F*)&8_&FzoY8=*dl~g{pc7RcM3C>f(N4f4eVx#@{778yvo<;i&b}y-HHYY#YI%z z`PikV*=wvY69t;=dETKde2%Tru(mJ`HhG%8aQnK&3$ces*-aCBcu10HVFy2MMZQ=x zmX&i!(aU>^hTfN`;cv0U46EVsu`F;C?{v5!D*gt$ZKC3@>5@>!{$)g|*+s7@ivWZT zxa2(m5&usRmp`xt3yaItSi<3~9y-5eb3oA9r%NJobVjd)6JvVd#60iLui6)g#H7ze zl@1>klQ&Z#7sNZpv)d*5AEQema{W)YI{^cBg_uS$*=@o#dZYpn{25|%CR@O;UUEdt z?i%8P!*~sc1gX>5To9yA(Iw$UN~7ObsRMRc8YC1KQKb&!#D!1BC8acspUBD2-j`?` zoot7bji#bYKjHNg^RU{m6P8-kbaFepNut@0>yl7m=OYMC^HM16{3ckd4gmu{qo%JBhOKOY z!oqN{xYdkiAXl>+Bp_U=OTr6+M)#q5AapVf5{iqn>YIXgSR1qNy3bdy-#PfqRn@0n zatAl}E3|><*!twyfX|)JUtl*#Y~X2BUC@Db!7EX9L)_6`|AGr(gVo&dYt;Nt*^1z3 z{&ebnKVmmXH2(u#63Xtshu}3k1kR~}XxE(sFK!>a?dhRAuc<|;dfnc^Tc38jMEIW} zXn$oZfCHM(&DMWmH%LJHZ(R~z&@|$m3YqA%8YC1K%@3J#$gQIz#O1W!qQQZ1!Ef!h z9=lX9ub-P^Tj2PY3Qm&buuC5)E+Q&>?;mphiq?of;OI20HI5ed)><4`JgZ!4j;`3M zkZ>G|+KLcvRhbU80>nbkWwbSaN2PugS@YJFSccJ|t08~GK$fDw`LLLM?TFtU)|cvv zp@3eiOG3H*#Ry2VdyH|8LCA?HmxEWlFVQqAY+=Is+c*aYWQO?Mc6QUGAK0o(B0?xE z=d`y?Ei^=jE&FeeoBDo%s637KF)W9DL032a4r{UW^U+W{8EJ^KBkuXE+rXT^*2)lt zhl^WxPd$rfgHP&8tbF_Px+EerDC|9taeRC5#>cALo*Vq)7ULvi@SdypU$>)r?K1;(Nqth%Iv12q1Afo8mOUZjm_t8@eRCIC1RL;zA{W*yU@GP+T-W0Yq~dfrVAK zP1t`#;19o*o9cxHeiGaXC+BR6@l<|ePR!>}E11G=o>;*|Nure%R%fYtZSGug{)&n{ zi!E7L#nxHCeg?ZyqRs{N)!E$hvt$9e=KL(U7G|zBovxA|yOL7A?0O>h+4K%Iv>L{shvr~Zse*uqvqSXYF}QJVwHk<@7N3U;f+ z7e9%53mQ#E?u+xNbJ_CNdZYa}c>&WI;eLZh?zYaIr_8K-`DSK;vm9nA zn18v0(;@jsJ|SqM&~O7rg;Ef!@3?mZuHwU~Kn9>ha=Vk>^d@tlxW zQJEUs2E9%dv+uPWZh1KmS zyJAAsc?-Ky;(9mhl2Flfhb{>f(-BmTWs?5wqmqk2__arqv#sEJygT$7aKfswJl6@g zOT+oTZrcd=6SSLG*~$xRH?dezb{la~V}mY3OmLdnIPeWOnAm(8O+BSb5@(ld=G5mPnjvt zwK?9GwGwiCDXc{uBP`04_EZz);RsuYK^me4bakU5{u{a^RET;VQ4cCL>8_NTrp)Wy zTq#{JF)edPgP@NPty!OqC{u%@h80?H(>-v95rASelg$J1`RTeOBFE^2b2o`&4KX^% ztXW)3ReK!TvV5T@;Xb#r68cw&;$pV=VSR26^!|c>^g0aT>0G?_*ffaff`1aqKfq>+ z!1_L25?)w2;mG1bWe3=yXpm4`M3o(^fCwOlV=6mH7}m*?1{{i-T;H1)hmpII1u>4B z5812!`kVE-fSZgw@$!}!-ii=5ANhcZsLM$q+scx&H-F` zHs8dQvyz0y7*n@%I7D;~o>7DKHw5DrwoqZgI7Ehi8WC=0w@B2uLzjf|#p@A?W_QMi zi2Tp1Z~PnT`*}9&;q@(YY^v{P*)0-%Kch>+t8b0)sUk2sj|K_FMN|>^SStcwRL+*t zunE?xjEPQuWzIB~!7VH9d@Rfl&|rqxx({nG&e*KS;u=%4qPSZ!pEKj)h81c~18jbX zIlUoCyqlunsN17TfW@{PpE;UC*bNdb9;iz~xx?ECM9YKV$!ylc+H}A!sJZM0iMo&1 zCE-=KMgUVW5M4)ugyJHq7`X7#M4<=jt_68jHV$$wDT>r`RicpSF-veXfYDii>$MZc z(sZXR{*?U2s>30KG4tbWtisyYIWf3%$&u2kX35*M;Fcp>%D9jciqI)r%AhgtN7#H4 zv;2@G@otKxpJEFYR{6rYeYUr4W;aN*xKWpca;p*o(ehaO0GoA=x_$Pv-OFx}sQWHm z5?*y{1VR-{(RDOPC@!LkrN@yGJ;u{T$$~g>Z>hN zj^(0+CTo-Ai(#D6SVb%{II5B?0X z_z$+|VX>Glhv1OR$HhUUVt6S2J=t5PY5gDBOc4G5PM3u8r~L?FvxBHV0)Sc=pu}eg z)U-RI8YTDx1)x!&CbO9!Kuypk(K?{OiIhhL14TYVpcb+PgRmK)sjE1Oe)F zT@n!jWzBYuw0bDF2RVO596llWCmVi`Shr429n8z+=83bx#P}eaHM8FJD^q>Hah9f#kjSZO!mE=-gczD_^DP>PA(DF;++0eDkBbigvF6#Vz41pW|eGcnE05k zLe!M!hjmGKt&gJ?%Li1JhP}E53B?6wX&NLH7q~b~gM{MZ9NigY!3C`MJG`~){VrI0 zMtm_G&xm#|Cy&;YdwLRu^k#X;@X5v+F`)}<0!qe`EZp#$?o21GH)4$-%qQiFS$h3L z=7Y`x!ROcp=I=B@GmRDqeu3Q`_ntesX{e=M|Go~H<%G7d#xgC2l`))y6+(*>Y<;c*|FbUI zsyy$7PBukuX-4OTA^!(kK5<5St=f zu&~%njaiUjiWAQxX9S&IHU|Wq9$gZVqjRkCnt%k)GZYH*14Qn#Y@x#<7pw6qo9lSe zm6rN=SwEW}g5#%kNkoq01eKrrc^G|-80}#T6c(e2v7!S_kY~NXZk-_VMO_k+BQn+T zteU}*$C(1YL2Uk=Em~M?rYZk{8z}98n~%%d)w_A7hIaQjL{EV|kkcOB<>x@?mzXM4^}Hl2E>}8Zl{JRRjmQhpZ`?y`HYj`Wx!} zAK0vi)%l26QMOGK{`c%AiNgDINkp#jqvx!I8^y%^u5*n=sT5pNB>vqvcavF2ri>RtR|a=#q#WywOYYxnvfKV{i+*t0+|a z0wMVZTZpib92QF|E{OiW#%`DB|I4~0BG>=;W#vMt+bqED7r86d4FY+KNc@&9PFN%+ z#5$25*oA`p5IFX+8z*p7bxC;P(8$eHdWSiI1_{N*X}W?~>D?Dvo8C>66SpOEQ^^>- z?YhCcpQvuzI`qsQm(689?&Ns0?{3aOLP*&t$2*4I7O|>Xl0;yR*Zi&UV_`b1U|wEM z7tg%_e``9s)i!DmR(!!!q${P?O z;kwL?hP>mkl&l`HR1A8ult1f9%0#V_>bSpe}siP zw(WtAj52`{GAgH(!PAyeo>Txb(lrB9*<2D^n50W0a$AV4>4lrPCGK`QDpna5$~Cs& zMm^Lo5a0K)#SZJouzFYUEwQxtmS_Us3SSE4*=&XglxOOah#bn<=i2V7yjYwSZoqi1 zWDhpnScdxvg1L?@cvvuxi#bjxh8VaKQg9v@oZG_+BD6m0L!nHxPL#DH%QuWQ(%g~e-HOyUAto)Rz~6uiYHZKaxHG)O2e7V4%0iVLg>4U3DJ!{GuJ%iqx28sAB4^Mz!$tnuxC@S5tw*9_gf z)wxy)tA20~;^2;5`|sN7ifoyTQ}}z0Z9)EiAVhCe_Bs7oSp zSdEJk>rE{80hn`Sg4|I~u7^6jtf+a8VQu_50=bqga9ALZj`aY?Sne~6ahVq*!}vFv z7hlZgh2YnwOCoaoMy?VI9dcdn4$Ju~qOpn1epoa{#d@vwNi;088zpKl=#ucNT_Z_U zc_yYH8YC1KU()S;t-0j?XlK4Se)aZ01H6lN@3Dy-D} z9ewtn*wTg6WMyD{L^N1_m)$H;>bL4EHE^z8_wdnaA4(U?n3g1rPIIG??n!ic zCmn-6LS_FSw$x#jeRynx%^j2nfV;TG9f_BJVDmsU|65%WDpKv!C86Ra;yzK#bj_Fc3tPn88jVZ7y(Nn(*@jYU(n5~Pj?s}}_uE4W`16Bwqo{8svfXxnp=6$*( zl;@tUOG0@r8pylSbEhqX3FK1Q@m*Njx}gnjNOP@g4f+VJrodKESgScaCZ@NMJ83kq zm8>MuIxohM=$Zg^Yu)by)c7rIX~SyVikYq{ORDXg+3gc;@6aWo z9P@fz63Q_V^LM3V9&34`k$_`Y)0@l`q+p3s8SV#xrKp8O5*G5g%_Yna(0sniR$N%~ ziHSw&!b9VUA{;;sTtjLmxrWUGHrK>?zr^N;nA2WK;{OZh9biivR{H^`C%?gNkf`@{ zT@uP$f1yi4c`Je(rMK#4WHX#wyu?&0-aza-T&njWI_H%8qsoV8!lESW&MtY5WVu*^ zDb=81(?m8O#A?Rrl2BIDV8Eh_*93b9$qF-35V?;#l+xFT%~@=L!n*E6XAeo%=7@yJ zGuW*YL>B0h@FJq&gvyVxI;25Daj|na!)cgc9(6FR#B9awa=0pgDo!8oyYczzO}AA) zQ^6@_m(gXmI>o-r*(mv&nGmv3u`kDNix|~2= z+{|W#0J%e#MC3q@LH`-N^;uY%;fBlo3PE|EEl5~U0#dAJ*$ooqKch<`a^;VxzH}>i zkz4KdA5r1IU^CBA_-S+m`ZIQeMBzWyCE-=LMn@+4Lgb;)Hr+%kD8udVPQc@vqqyFd+c3TA410{(T_U>csd%%~P>9uY*alb-mIe{&r zzq1f^R>nG4Xs67yPnB#oyJe!>V{}Oj5Y+=G8 zGd@oW=pzK@7i{6ef^)caRx@l?GGV`=;?7dA+AQ%iHV*`&AM26`jgj_3gd>*Z zdtm>$Oabg-r?IBjG*fPz>U@V#z0H;}EL1aKj>O^-kg^N1Mad&U>n%1L1g$qEiNJKY z=|z{(vZf064ir3>rq;edB^wV$G_a@~7L#>U*yIIV5Un1?ZkK3vhAs)^1BdI9P?c1~ zR$~CFxWH^&gM{J&2V5E?6c=yn4#usK^gXQ|NuRVdT`U#S9pw_t%ZiPxtE>xMoO{@v z!yw&jaWW4&qiT~4zkh@gqBj~HiUSyF~vF>XL|D|1;3|*P6LvzM!JZoVBYw8%OGWi1>VmEo4}Hj5_#>i3j(+a^v7Vk5sokZLI2(8~P2uJylOT3Haq~to*G_h}tLt z&#~JgrnO#|gaWl&k_a5}Ygb*y4Bqu@_2E1Bees&X-8Z`fuKN|b`7LZoLMpx@rsq$k z(e`F`gGBo~P<6pehNhl>zyWi&^na>(UUR3?;wa7Yu7zMk;JK*5gRR4wG zE2VS^n# z#WqVgfvfgQKTH0(Fr0M{V`Hyg`^f&!?(DBL)7Yi$ zI|lwI;KOU+nePe?rM2#8t+h^YG%wAxuO#j7Snprai2F*X)}ql?nM1xqLoK$aOtaT4 zxW85?TW!s^O{dRe|FnH+h(+&rCj_+Lkxvv--j8R}kFD*Dmefa(4+LoC9{JkO^bUC# zP#Y;8hl9@t6#cK&zW#hgevvv;V9n7DN>4i1-T{+bo250*a&YPGgZ(hc?sl=@qutz;fE#(BKNF#Kit|m*6*1Z> z$H;lI9@u~gXHU*Y`;_)kYn*=Q&J*~ZA|4CG<8*igA~_Cs_uDCHl<{LB@KFcDCt8c4 zN4o+Y*s%?R!CLLs_I%j?KxlB_cJ+MI92`5lial;3s=G@iyArwf&IFvG3+!Sq z^fifWyVK`+Ba*V34W0-D=gh+Fs$(@^JNbOJBfqJ(IX|OWDNN;J@mM1smx#xu;_(sj z_!v9_ZD@S;u9t_lUpMf=jTjE1G@=ABQpbp%Z>b@mQrUjNS^8X0VIJ*Gt~}9 zKXm1UhA^tCpVT(yXX+b-MQ;+1&EoO*;&Fv|Tqzz`iN`hKu@xSHMn7WzeP4jCFG^dl zK>KxU{p+o@^_o1}EJ26~j7_+{!;V17?nI%z0DYVLy3|^X+A8ko=lrD0gwcqP{kuQ6 zwjN-xgp2M-3|GmPG&Sd%(Doc;|K8z*GJGkZO;6lfiCZ0{L7wQihcr7$7b|$}mZ#JT z=x2lv2n%~iJRT8`$He1v;_Kw}?tTmq3-6iRgQCo&VmU`dPMk?ar1H~ zmyt$2tInsry;uowf71g?ney!gNL1{rB}Ga*F_GFJPP$Lc?=^F&a<<$9iJjTHz&@`s*zk27;-hZ^m zFov~TB*Nk76kw;0jr^sxHZsw{7D}k1Qd*GOS7n24D6Rn%0`^)zRb8Fxi-86|5*{wa1YA+Yz2sw$+(JoqGl{~|v+ z-1QMm+?qX5{ekWJq8oHKBI2bS{F&{d=8V6e>I75~X*&yf;6Im=zdpu!B{R%8?)-2T zv80QlQ-z|v^O>MvmnGqqpY52!cDlqPEgtK|qendQ;&Hin6yXsVXb-Dy-vP;!v1rxu zVw6_Z2TarnuhUy=RcE+Bwz7QtLY4MZzTA;D+dC4;_0ou35!N#llFJSt3gqM|Xiivg z{bZU8P-i)S1lw@lNtG?a!SIbrIN%9hlFGx z1>J({y<)Prklq00NeFEDoNydJv%66k*3IJa8S&^BkK4rKcJa7VJnn`^pxHSSdV||P zSAFKzC@t?n;G>S^&1tRW1$68ux(u?mFl_h#wLN%SMU8*EVV<=Blemc*uxUV5zOv-Sl(ALcg5 zG{G-nbJxuho7#KeI;wQOBV$59f%bC=PkqjZ1&BI5y^tfiQFr%tFcDoA2YA6`SVy_5 zJ=t59d@gVaRD>hpL9MBLsU6Ht{GdGnbs@<9y)|?-*|t8H-v~eI5_x8^l+N1K6_u6x z#gFGjgm_Ur_K3$`@pwf%zAPSJ6_2lr$2Y{|HSzeiczjnpzAqj>5RZQrj~|Q2PsQV3 z;1L*c#^6r$=m!%24qViUH}7q2yqO?Sv9=A&@6KDJI5o2&Ubp8rfUT#^jnX94%p+^&n`u^0j+>igWTJ{D@_^ZUb}=6$LSOujn#8$%l9^8=2vHCzgb}f9rMv`96_K zY!C$s_lMJ6gw}e18P`ntbX-IGCrdZO5uO9HQEQjXgZL?`r#FNp3{iYZ>%Ey`c2SF%(KQ8SZI z=irr}8~>MZyFZJ^U&P~o#N#dT_?vhf@F+YE6pw?&V}y8&5|7d1F-APbiN^%-m?R!k z;1TG-Q(^E~ec|f=$K02I$yF8mM}Yv@6S9yEFSI}saFMtDGGTb~jDn!j3Ti+R1Q8TO0Tn@ZpZhNE_(y#zGD#4{_386HpZ@Edy0=f?TerJU z6@B~D?=uN~@2yi+zp8WU)H$cl*rV5sJ@mkVTdN1|xqJU3mnRuI%ma3sxbk_Obmi*& zv3nmKyXs-J*>Hoxx<}=Dg8hcoZG+`

    ~|~jnJ2Q9022J53P@FqgoNLv zA>W^!V_ys=i64%&;(fQB%BDS0N=>7)32@TXUm79plC(w6Vudwc=8 zjWxYVUw}*?T27?x)J-NWFSr?*gy>7i>sdLj#c3xu@aE6>r`qPxA?oy_MHs;SZ$zD6 zI|2Di!Yf}rVj^ny#9_v77U!prdMA^45AwgKc(G&bEeq&JLpWh&J~DMqN0)!+q#>Pi zalD`wV3zD(-9mnf@4ZO%oOYmE(UTC zj}5S@>G;3;=$I42t?yzEca{mRJgX77%E`f~`|o{qUk-y@2KYZp8Xyy=kQG4Mipvzg zwVDDefAsM5U@usn;Dx$u8Ijrk|D%ukF4=CCQ35}1sj@S+csHM#i||4@^r(6Fzb>R5 z73rZAzG&3trdtsuY`e|;`a*&n0!#ez2YNgyTY8vMPt1}337HA!AI zYV^-+8sU5h_nYF~rNIQQ7QxZ67o3kXHT$1EG;<4gYKQ|r=eH8`TLFGXO@Cq2l$Yb| z1&g`fSUzX36e&*bvH&Q|?8=Jemw8BDrdhi8V5BoHZb+6WCO1uZSmkN$!u$l{Y@X>R zK3zC1%*k24VswL!&BFZ5Bdh`Onx9Pi|BZ*2XGnDFz~6%v9x^d1a$r?N@3qiPdS`Ig z0Ti^Io-Fah3|BnTDRig*e|$9bgmSCS1S&lmxUZ<(`FcolSKZP&KBq=9DM8oXXMD~U z>aVBdqiSSz*VD)S`FIHKdbS*7F9v+vHAA9P7ycf&D>5;<>#uF@dUiR?9xeXl;fz#} zlQuqXWD5t#vcHJ6*o(G=o_NsJBsuxg2#@L~4#FgIQ;IN=l!LGuA5sZ7Z5EzQVVDYW zI?f!TE-2CI0jQqE3_UFeZ;jq$Rb~1(N z&unTq`KYneQM;3oxj?Xf^&8JgqlH6(_vXSs_tZl?9 zV`T=rwbqGzTE{Ngt&sA5QUcpFyIBK|B$}^PDbuv`2|U`w`l-e^85^$cZaBU>7VlE% zYmmQqx0fz3r!M@pq?y37GJKk&bp&YDtz#DJr%`t6*t?azZi(i2Ufs$r*{xmjz9a5! zZ8+O`X-zwyZe0?$5<3w`NRSL{F@X1+-_Y^dZ{(EnY?Bea(Id>|ePq?PLVQ{gWhpDzpLN9vTNm|ObK;}C8KNMEl zC_SIf%By5G7kx}s-br>|u$_ON+0N>QgVw5JZv|Chc73!>i|7?jfA7X!qS&Gmti|C7Oaa$S8?W_pi&KdAOgUfkX9t+a_ z(n8m;i{Vq%Rq{>mVn}-}ARH;~a^ss9(U+3(gB6^6Gf12IwcJw3>>xhLyhVuw|koXwT1z>^qjY=d6L287lV79RaOLt>T=**h802fM7sB;+yTE(dY+9fRkj zV(st?k4=sL-ABh#n;Nn8)4P*E*|C=q{cM+kE299sR8u!V;!5eJF&!SJ8@7^-9%Aqr z)3b$UHoLxyBWYj|IQl~9xGA@ld1r*;R?P?DpowFL$(b{@CrUVThQutbviCWnU+ypA zV$RypYzg+S9mV&ca?NhDts3~?!3`2r?<<3Y)7=YAE1wJFsGuxmQoA3~^&?g{ueLKi z4InEH_xm~h{Ri8JwVPqUMtImkL=Apw&_LVJ&{XiLAFD~q(jmPg5`Dcn7=)7$(!s-_ znkWslxiSY2ws*F&H6S}2r8FRtvNh1RNK6{QGpsJG)L`d;X^aLtc={|HmDRr zhV=yQvPPf!+R!T&C%y1d2-VhcBL%POq_v^F>RqQqX*nFRAFM1+R$^3kK`5k3zr8g( zJ74k?#~Nn>oRfHA{B|$b7LDds|AU8H<&vM(I(c_~BD^*X3W3%RlbtN?fa*+R8pyOw z98FQ5flQN>sZweeDEjR&%%P_Ni>e&qpTB|I2&Rw-441PlAR}8Ux4BqAp;k6nkEb>E z5?djnJ0?33O4BO)Gw}vQW)J%ZpGLJy&eUCbE!l~XgxP}OGoA;3$jT>bmpilh)D#=G zZS`m^>JuBbiOr>AdTYXQsrIi-g9n>kux{$OHOPhM=c<7`}H^3&p^AHDMynYN z;QaasiaV|~sCPXjC0&%fm25Y<>+ALATG$$N*Xtu}%GL-<8+O)P?I9GbB%{~UQPN4t zTS+Jq28Y(yhil;oDlWjO{Ppgz10`abgY_nqN28?|o{o}EO5RGYtw9as_8QcZ>b3(c zBim|YNzPUaegmUDExGV?lyp+^S8@cE-Jr1DMmKo{=WGqzNH;8yo^At=H+i??v^+0{l7&O-#%{~J8&EU{TCWj8 z(XTbA4Al%e0gMy0xbjm_&&kJ6y^SV(ezn37)Pm2027Z&lSHXG%DoSqz@NM?AThGbI zPrW|4Ayi}=wxRlJ5DbHLxP@XPXm+6v5?sX*KJ~umgdA1yHKwl@3er+Cg{xzPeVNy zA3ycr>vUsnqt&f9*VooNYwe)ZhwlLBja}%3eXUaPQ&7*z$4|Ww?onv1L6~7}&{&6< z&!`FUtHEHsFuroVt~cQuygpbD)|$gnu(kn;$R!j$elboCrVN!Vxo_ZZV>c5C-}=0)YN3e@3>IV?Nv??&b%&Z zDLr?YGUZKy@u`Y&2Su_(g|lFA_XrL7I)CLM6u6r`q=^WvoR$>t3cz<&Kz?^K+mU^1 z0J#Q}F(wkNejh-il2+?FvGmuaey}qmcEwlqM^L|)v9bZn#aF9-!^@7Mgz`11l>#IG zgyKJx>Fn%UxAAB^VD+M?A%EjU%a9_#Ka^SaTay5;U`;@Pz_rnG%F6!)6JpT18#8`U zz`U>Ms7M8nUx~X#!{H6(8Qt8gqkf?6iv7XK!b7s4`K6lzQ2u2;!DpiZEi-+uBE~3K z5U$w>GXlW3k&o}<9PW~zvm1R$bGx@6z2yt`Kew@0>3|YHH-gCivbwc@fAetbcyEhP zch|YhDOC`DC4m7-Uprsk9uH`}M)w8rxnv4DF996}0c3vRc=7K3{@sHIclWk-h=uMJ z^U1{SiCjVI)ve@LIE*>0w0+onuyy=1R!X>XZjl&@GCp#TgU%=^MIIduOvw(QLuWEi+8u<-p>Brt<8IcNZEE2 zGG#kT2q5F|_B(qw5BHAl?d)vbCWOj*yCPSRdR6%qHrCJVjm4fmK0YF>?v!jVDO6B; zS^k`d&+iOYD$Pd-jrm9run$&b<_Xj4bRQ2Vcg9d>=+5}$^y1F=46bgW->&z|8cLTg z7`~l`&C!%7Y=2Cb(WOl%gvO?mAZ|YU_m8%3_HO^7QrD6~B_H{74%hm_{hgzuV=b+t ztbL?V$w&T-e12_rE$-+zIc*+n(++r8(yyp!!R-zDTV&`M$&aSvb2{CW9m$zQ!RJLT z9%wjb_G(-k^y(XQbEB*mNukn<ef9lIAjm_6Ep zBOm?79+bSlh`*PJvD}9t3t@z3>I+rflhg-q*@EQuf1WMe~|S zdFOcceKSc}OBx>yRKsosqZBszLIpKSVS5~vFh{deZ(%JO8XGDY%`!_C#MNk)`N3S2 zA@Vjf`FnZFiex)w3XKPuCvK<>~m&Jp2=c<4krh@98P|c27?| zp3`m2!(=*k5JtwA7a^45oxtV; z8NXVJdbUGv*u1_ug*1r3QF6kBpC7M5ZK-!IHImQUqndO4e1(j`eH zOqp0GQw|O`HSaa3%0pdFbO$ZaTyU?!C|Iyn_Zp1Pp=HfsdgbxqU~xJgQ5Pr}rcX;1 zOg}e!fP@B`D=t@soawXkQ`7K!RN7yOY(e>}49bK?9)IA%1FZO`E|1FlLn7Gj56N@r z4_&vRFL0haA72bkd!u>yXNbUSSIPa03M_5{5qkVO%k-vqP$%a+0@qlbYFAg6pGUY* z!8v0d5x{vIJcMU^a0lT9?wS)qZW)sXNVSre`5AtLIPMj`yPzX zgVQi$+$i7obn$|HM&Hw)M)&xsYxFn?#x(r(yV6dKA_db=%ywp=z|OgtJAtt5Xbcr> z&WKNxpS%;nf@#KLE_n{E>HN+K-0Ob#>+N>d5>jt(FJPxRR@tR zC}%9I$)o5h&IxcbTMnmC`-b$(gVJM%6f5XvOn~w!Wa`to6ul<`?w9Vfn?a zE?y{*vAETrMh%?n8S)YwXn+(2(g+odKX`qbv=K)TdSs11=@(EH=U(*;R%XLFl%69B zl;0GNCN3YS z;z9-0j6jtD29C~X36Bh>gU02fC5mLhHX~Z1Jcwp>Q=YT1Z7K*`0p&!pgL3j9QZ{Fv zDIY553%XP(m|;UD3W^__KXniis5zJ3qFO&42@Xmxy`@+|GGpm2pUTzl^KlTEqLSs? zU6E{WcjZB(>>Ow3Q@Ch(GSfb6%8#?LTtPQuoQ)qtvd)iOn3Q|rC3V#Du{|MG5Y70= zmC(6t3N+7W54ErH3T!InI&3N*Lz|ipJSg3CF&X0_NVxe4PwDjrXLQL>@W6u=K+wN# z9u^FQKo4hj5Rc)&b;AS5%bd@&FR$`B6Dj#Zi;V1`)Z@7ZkgPyd`2j?cEQn{!b;^TC z*_&jF3R>V`CH@u3)28CVyLO4n{eG#+ypxGVz%nH=eDMyGY2IwV=o8 zG6kvEDG*RH?<&CSys8y16-^iw+*Qy-3PP_D7&o79=Wud{uIkJ3;UXy?0Rwz~V)mEW z>iHyi%x{n**128Kaa4hV%QXc8n3xxn6WHb!7ui8w7>EgJr}_?x@iB-MtklJ%;i>FC zHkoOizF;3iIf9GY$C!99lX+A>gRIoaVs&c<9Taa@B5hW%kLfZ6saFyZpkw|{Om88p^{PZ8}t|R7$nq@ms}7&1^c`v zQm}bBh5#<+sY|?gTiiUOhCvEWT~wlA@{$AqBIXTB`P%a4&f)RBc?da&hXxUE< z5(U57O>zaV*C`lKvks^5bO^nLv|PF2R7ezbUXlPn#JsI0bitIh9;BR4A^!(1tDxby zg4=2tq6IZ|TP@>BY+3V;xOf51*+84lSK-b}c?GmOF%{eq&lE0wPk{r5=B+1P$bID{ zm1DuJCyRK&^0h4$5_nptQ)x-Oo>cssIAyu%)F553d{qSml5N{G8jH~`)h0~;d8w&2 z3qsI+YoJ2|=ilVv4B@vaF3@}DV#yK?@lH+c3NQDCP^GYh79VGm0d=fBE);jO_E>B; zHByx8acSX#u$qG+JU{&`juuuQr>`(M#B<8|xIwyLujZf_*>fsD-~53q-Z>qzOCNif z3rBb#l=660tRSp@;F`dJsX3ajJq$TQglNHNep;&FsYdhD51~I;SH)8EGe}ckR+5vc zk>G*_Sv4oq_#E=Jn|0X_=Z5LIq*)WG7PBS~Ax*oV@@FRjBpU1|qek=*6HPA2ju|(tw*6Ow~ zWi8-=thEC#@HWfdOn#eJ-GNQw1$9FQHa+e1ef=e7h6;V(C_mfxjgRM4ViCtk((O>L z19MiIe3ug1k*%>Tda~d%8S1fxL%NFbEAQkFP-G6rxaj zBd^*i0jRolsFvnSceipwHIXaSFbvh?F(hkUY{yTh=f!eCUMg77H7vI2bI8{^wa~|V zlgnG%S)2*ZVR23XEN%@!#!5b#Eatrit^8ju1gVP_ zoDCsJ{YkX42kYk5v2OPBvIY{s+8V~8YPRZi`uSTfjFT2Fm>a@4>1UCIu5D+vr7t)J>#TzaT0_o=Q(6)X)A5al5>We%F@@u3Qu>fn$`Gaeb% zjdOf*m&6v7w?5uHI@mex-P}Cd>9H!f&HcUa$XfYd6`R;|zzBPPoXrDlZ4Lw{(s%ZE z?;h^&9QJU7RMEpwrMF-pI4_n^=L-iT(8>Jep5WZx-r2vub=14Pck6bK6_6z@QgGpK zlP|cxV?YMJ=8_~fdA)mg?jI4-1xu1RK?L&;)66*spl=RfE0XVH+Cy*i=&*NZ^YGRV z;axC*oh@Aue(Sc53QWzbC!?(I(o_qso-E=8*S8g}0vE`dm!>IcIJ6Lp7F;M91q*_& z3W5v^sF{-wQWDZ8ESP*?mMqAW;q>BXk5JD*P2PL;B-wv0$$%ZCfDTYRdHd= z&Lc>x8o;M3G2DMuc6zk{3Fe<#9>L{|Yn`CH&g#_Oo6iPtuwPT8^g1CEMyT;|<^$PF z^Q1kG{&0V9zjycM?{?tMlLvG}D!4Sy6fOwAsbhkzU2_qC<>MKu1<(E35d`n| zj!fvl+MK7M$xO25473a8X*eJR@Anz+6h08&bc}_^n_G8}5APl{d$$hvc6av6!1Nx{=AQIG-(4ZkvKNFT-C z{_8V5Go)Ju__Txk~<723nIjW!dds>8M8r3fgM)mWf3B_toR-l>d z8!}EVg}ZYMBSq)-iWgd%*Ba$p!hsgIgyT8XY{S)c(lQU8mQ;m0ro4F$Db&%zs7ht~IggO?nYi={2zt zLNI^d_{U;K-{@Yw(Gert=!^jv-4*X8O0%$5uTj^?myY*lfC%;yYrw6tB92U^vf=XtWcsMKDR!E?eW*e z6`~#$T%kVuLY>bn>g=O7g_|ekV^`Nail=2akMuWJC_OevY8Rq(D4mEF4e&boC0g8E zY$N$3j9*}*09pDJEVhv)TTpyMLj;blXc>K@$2u%wS~^;0LJ)l4GyM%MYtF?mX#d@v zqr*;%5H20?jY)Cgg6o^wuaTxJ;7eZVH7dDdEW-#OT@ZaMh3d_;d8JI78B75cn7U#g zR6EGTp+j-$*hgBvua-%kAj z$vWpELDs;u{9Ht23z~08ngS6xI)_UkXLr-Uvh@C#DM{BORR)!kW)y>KH z1a9&sUHo5`UKM7b2<9K@%wrayfh%yCdYA3~;zcqCX|7(#|_2=^;YX6H1Qp{SEMQ3Tx;C7u4< z`4U<@Bl*GfZax@Oupa}J!1&E$WC$o4ad3eM#nk)8j1EeO zfle7Cn+c9LT<;+i4Z#{-M6IGDTMitd*$r2d>GVLkZS%xq1eLeL_29_Tasnl{p*rvR zY^v2F`BTAJ$PZGe{EbuPY|?&BJ6jCKlSu%0kl79$Q|*scHm!z}w`sN4a9quZ)SK)) zhdP0nPp02`P&9Jszz|CP%GG!(El|i~qF9X2me5$>qT_jQyr4a?%85b;5~?{T3jIB7 zu#EfylQ9?L>A>C%i|%UYMiZKl%8*p^mszpQktM>MlM_q@N{Dq&4tSgCRA;E zs>+FiuDg!KWVW@kE4)m~E+=z>3f=$4Q+G-nY;dc*4brC)&z^!27^<+sZ;D!hQ?JGh zY5#v3W?-mg&A_RH8C*+N;hb@4GEsyjRkp3FVcY~Hl(i1yruT3dcf~d`^yBtX7Z0UF z8a5=Mp*f^sdl6N1eMX7*PsgM2Nia2DLsj}S%8Vh@GJi&yUqOX3a_RI*LQ|-B*&qvx zqG@Pu7@^jxZ45GyE1_BQ>1ft0q*=2}o6()>D{He>A^$ zMH;W@aSsnXq3cJPd_XJLx2;vH^lR`_!OY%*so>+k3lv@V(f3 zaChtOHXN*f&@!K5sZc!&q*TxH2>PV!<0LU9{VFx=B9{I*v118^-ZSz5O)_>s4c`9X z)~&rGnx|WI2Q*W*!2mM7N#g%=_ia0NsxbAkXI;x3a+nAMerWv z1VEj^#NSj6N`GZqfP?~Xr3e83kBx)T0(MbJ5BzPhu?6KwhgH5Qn0Np;4-AXhqh2@~ zLC;#O2IuFK$MPpu6Q0m2I55}|1Yz}BXZs7dZZY@0?Dt>;UN5{*u-?aYgB!#Ox-Z8t znZ{IKK0BX`FW}npzf2H55=t+q#j&^+u;PRLLt4dJVhc~QY633 z)v~y;Hk)WeSNWEeVr9$9pOKR}r&X~&++}u#cYcql%?jqU8U+hp*AysVX0Dy22-w{{ zjx|xIqJp)P%#sDSS5+_|XTH--6%h>S4D`Fw9ds8&3OX;~zp?qudA}+TnZ&XmEWX!s zGz#YZTEq)}Z|&-^d0g$*d^{SBr+3D5F_tcZ-JM%6AkLDOkP0!~+lK zta@j*98RH{6qy+gN_Sc*R`7XQ{)}$tw9S6?wn357HcWgj9uKzZY54MOv=1U<9wh+d7*PYn5NY>f!~*xAfoV>YGpra2QTgZCbu>CV~aOYsqhrncIqN zjtVAQ;S>VC<6+fS)WpYD)P9d#o#RN>d|G}SQ6vk7uPVPna^{k=O7DW_Lu$Q(C1-V+ zg3yZ`0H~Nx7wfOxgKOiKaNy@+JfmHs;OSzUd_nPTMv(yLY1ZTMS!ntSE#It)WZA6B zuX6buK7Vup*LP}HXjel{NLI;7FtD6+-SHrx9#?+d0TKn7ze3@;NX+OZ>=lrhO=1!t z97vdFOn%wXXmoZSp7hucWb`UHW2U7FGOrONU}gSJU}e2E`n^$T|Ge|)=W@h0>PhxYstF$vxL-Np*gHbvN5`}I;51kc$Fth@Y_L3o`JK-Npy_Ml z>Ea^5qi6c$(98jnyehCh-{a!I(Q1&qywYF7VbfZFJPqb!*g^ro|6)8Nx?Fd|%!KgQ zmHjo40>WPYK9~&0JxwG$?kLJDUlW4gRRqgFG4YdeAO7SmUcSb~|LH&f!w-J|WIu?1 zyNM_zm%lxF4JV zwDSVU%f(L_(8npDRVf_+Ux_nS2-XcJR{WkY(|Za`{5Q1KEAc@tUxYa4geyW2hf!dZUm51;F1+ew|bWw|eKY35Qxf`BErs`9y@(^2uZ9dDrIQD4d5= zxch+s*PWUtFABJ8hlwbV{Hn4qPeeDIqLnv=><^TdRQ}5P&SH6vH+P1^-Y5*<^G(yl z-FMOg1nN6SQglsR_rWISYY7>mnA>K_iyT2tcrU^qw7Jv0a$)aKIWP0yX`j zqtagGzfP~n-7ToRNo8JB+)wRkIc%3C2J+GLeE<=wwN*tbxZc+nOC%6X7B_<7aC|Yo z410^m(~Hv(cHVpPkEHF~aR>RDRVG(9dI$177;NoG!lJ7-6d6z#W;_*LulI0#aoQVP z40>W-GjntYA-v@azF$BotJdlQHg0mjf(N*F?Xs7{z^#D0qDV0ip~Y7w zE$(k`>Z<%wLBT~)4{Hhag5^oP-Z$Id9eK{nU&XNg5W$?Zx_=L+a zqq~Htk7&X6W6E|XA%VvIRF?=YDSt%J1jSNHm}`Z z1SdRh61UCbhA6Z&gn9pDYNoR5VHdMF!RLcrRxPZ?!D15VARE#Mz)1IJ_(czDWerm@QxuX(;&aN0Twq-ANS|uA*`*=mV=B@-^UBg;smo_LY2VrpvG@8t0fnyae}uQ z6IfOu6J+_JG}Yq9+2t^!xBSM#MTr!_={jyP4Nhx2)6)Px^b&jF-fHb8M7zP>81Y6% zA0>>Ym#`c)_nN=;phU$8PG4^h2H_-xTjs)H?Q%Q}XV7tYx(YYd!GrCctrQ{nP_2TH zDkhr{JjGIcB%z%HM(FdzLbECKS~lF9S#5ck$skKm`{FKxu}uIfr=&odBue_B7pJr= z!RfQR@thbHQe+tQd*SY^EOWq zXTkXz#{d$m3JKN+Ad)lW1KOj_{0P(G6lnr z3B#KRtI+$gZbrUK5Sx*7;T>=5Y0?CxPdTM;*{+6WG;G_H&4idrZDy1y2!2EeDmK$S zZ`tRcb?!jVfsgI1Vg<+d;qpugUW=nln)xo|HExbU$H(O?G6l8I@v=QA1iT`~9QO4P z-xr4zUrY!0+<`~FBg=zuZz(}IF6-jSa`}%>PXGG!o8SGP|Md5xzk6~WHc%da15x)S zjr{v^DSY}|guW%G*1LXe28 zE~1wKdoT$gR}q}$^s)cz|NY?){`7yte?@0E059OoT>~yb&CJ1)ZM0DwrxKD0y?O;9$ z3~fHIz?`vUE7AC=m?_`vOSLX1L_|;xQCaKWEF~ zgkA+M84I>ij30_E_@%k6;abzJ;GBg_i5)M>H?|_$Mpbz%Ci|02vfCl_bfinzURJ_3 zmhGS$KNs`O@PXM97Tb@Tjmn3mSg@68j4oaEBcoZjkMXQV;-kirDPCO&BwC0eo@8Wh zXxuS@&57OFgeL|i+{!mJk!@p1I7q(cacF1%VDAVo5KV}dABVV53qye_shJ1!o#WfB z?JF6~70EV|3ch4&UZ?FW=d+_tYQ^&FG$GZ-P~h6x?d}{l>x~v^G}!8~ARof0=JKa8uQZ9G*5lB{{jyBmBTVlO1NEWhNHVr?WPvLtxjI3Vsq zA}9n*k5A#h7KXm__oZhW1A>)ynvc{V!ykghDa?`SVW|RtP()ifD-0xA^B2bMWIXtO z-m2qu4~gea%NtqBwb7K%#4}Qc&$8#%Da8tWR)}>n1Y~JM^IBtfGJ6O$hZ^-Jv10l4 zW+K>1GDep)GaPgB7&_I~X)vB+oH%Lj3LH}rZKbL(kYvqY@ViVR9|l@FLz$ntfiXlo;=0)Z0{q36_`sGl5QOSkch;dX&&Ah1GJHS*-$eCE+ z$?BvNmyZxAk}V{ar{eyQ!SoCg2Mpg46);UC+n6R##Z1jJ%pN{@5K@DdpJAj}7e_>v zjc%S{n51cVae-%^lQu6u!z6-TBssc+=9I74nslzNfMzV%Ml*gWwx+pv|31AoE8n}h zPzybQDlKUC#NWfN_r(}e7}RDi?}<{Zjh;l71kKaP@5dJxW5TZdG{R(BsUfE1^;6^Y z#$>=(V$<-=@R!mPohIGIRpF73b>~W13+XvnOCFN7`J;hZ1J|a+52n>v8Rfc|GHl7w z+>!3=etR#q&@JDQq*x0>`AF=rW+UQb;fz9e3=t(M^9Yn4yvvV3Os0hv$CSKy%~E|KyFVTdVM}BQLFam-ZRpVdUFi;Dg0QhR zF_KD{*KGT=MY&t%f%&K0qNwF4=@{!n2&4Kj0k0AMP zxVN`=d{0|hmJg&8**2<#gEXkQv)|j=+^@K^qeu%ohA2syN6CAqa4q%mY>8RlRgRLe zTpPU@+re=Xz#+d@w^KDoDc8nPJ`+2mdCB{SbeAr_;$SbpE)db2$v*7j>GWi z=$OXO%7>*?(H5HOW3e60{&;j#>|s^h*0Ed*&G?y^qj^v9=;nRGuKb=NNVM|0A2TvX z#*TLOclPemr9}D2n2>5?CUB(#nimvD$9J?8rSc03Cey}@VM<=+J_}2s*2WrX%JO}d z3$-!hsFIp_t~h#do3>{8g&~Tx(LzK?%KQm~k zIK-Mo$@Er1D>I=sjvQ4|Gmp$i>>-0S%a6>eXeUj2X+C%Rul&-`Jk;ZT zP_+j>``y@|8w0}B_Rn~i@z*&hK3`E)bBv1`l~3ZN|COJ`xKK;y6R2`@$mn?smN(x! z3!qdcM6_17;&gV^dCLzMv0Mw|_?dXP$mnw^($8Twcuwj{h9Ys0@_|G}vc=}gQ?b=I z%)L;zx*=WB-}XX9ue_C%rbjiX7o_?Y%&>|@P*jiY{16CKKb zBB`Qn3aH@%IX#;fXRs#5Lu0F3$?+|I@FwjI#4-24`)PwX&eX!@o}@&t@xj00H~lh#e!|UDSjyKO+Pa; zhEr#&Tk6p>weOc7u2j)BzA6L9a3vX=gHYuIBuF`y?cf|g7n?c5F_MF7Tk$`uc8plC zm2~PboOzpQcrjdkmIva@;k*#eC@q4E)#v4ml(|!l;CRgt4)(0dqd26c%O^fbv6gn0 zkHmgywkMS4#M4}>@^qEj`O9w#`k(4D2M|UlmxCT8kg;Q3tLi~4V%YMdl`7h1T+%>TR4;F;=#eZ(iXH?TDpOB`RI`%*+N-)Dkhxa!Qyz%^K$sdoYr@8 zv6%N)pZyUa^Vh)X*|6VftUecqZp^dm7!Qa*X8tO3i~}v7ul(#P#kyP)k!8O(k5rQB zMaa1V>F4Iqhc`CNE*(2bVYIaa#RUWM%vq5=} zkYX)lyY(nz@B}qO%`TFKP z@yTL2U46z$`{rhbWbFlfLS01`s&B0h^TLA@+*J<|;1dcy!_dj%}>Q2Q7#_r=`=hV!0Mu#?Qolkik|SqFB8r|5Y_xDc8nU zJ`=MwN2cITDRy3>w^&>>SIOB0wWF1vu~g9(-s)p9b@MuE(I2iRrx;YWuPiPmjr!`dKMs=7d6rW+4zl`OoC-0|M~ll-@Xlv@G{kJX{hn*v#u{BGRU%}MwOg802}!|}-}+yJO{lcl?xa49#;1?UAt01yzH zPPcak1=;STZ;NNQX4A`q@Vkp1+z=5ON&mOikRAZg6z){$!3`K;CUr9%sQ{V2bOr7N z^AocM|4^|86GU>WKndm2;phyCqZ(VGY8@7c3BSSY*e9YN4fwYw+4ic zRDi^_gd=T-(*>4@Ycv~1`hQoA7Yz{xdN06ak~dMwMZNoUsCRQvSE%HpzVTG7-raCp zy_-QNa|!4S@=3!{Wu2(RzAnv~sGEP|B}H`{}9C&Z$O1 zDZd(>r>90Iry2>R{AzTco*IVBevBhkLMgu*Yfn#&wVbVyP?BnpTpp9^51PF@Mn(Sp z70eu$&0h9$m5f$|mX9*~Pg9w*eC-0tB(!{#IeMDPEOIN8(2~lKoe<$>w`Q}GJGd4% zD)G1)_c{TP2}}9I>-fkCp-dW*G>J}#r}yB>PIlE(??E!rs9*p8rW)Sk80Rv3;xm$w z>`6FPu-`w}JOYE)d&#h@a{sTZ;eIv^7O)NkluVB?5Rtr1Uv2T@Yi8mVeYM5J*K#md zs7UG-lQ(+i^>?)<2NajdRU)}~o87!>-q}tr+P=|Ch)CY1?z|s7dH{JK$HqbBVMPue zJh}vo?ATn2gk)?QQub&4@q~?oFb|jliWLnhXAB2F&@Qt-35;YUdy?NIhm?eUt4D)j z>d^8ZDzbc{L#tVR(X5?03CJ_tvh_y()^> z&BGJ)tw#WKGRho<%ygszrqFNlMlVZ)io&Le2EBYL5JFN1Ya_IpPpJ`F%{+}j=tu>u zjnL|4X;5_|08%a$2%%g$wCnYKb62QZ2S7T@(HAJ8Tso{jH5~vcj}DZO)WJ00#T|M* zqc2o6-^JZ|J&zx$WF&h_Pxxc6(Ntei=Z0#%=rJO>HP8u39W28UyplDdRy!wv3ONQ; zjgC~n-Uws}zS2g>Gbexwgpkz1+6ZJ2R#m9F5%SClf9w%DQUPltJgqt5F?<5#m=iz+ z-#OurJvs!dtx$Du&NV0KgmSe59fGe?hg@^QAA6LL)WI?*z$;H>PI%nQHKM9yB>P{f zXZ6K5&|$d1>Sr`nGYI{g2gr0nI~*tvnJ~kJg8lm39WHoSJmo-?g8XCf)X< zb}mgQDXEER^Ha1*r;bgMp-4r$hN4LrR1Q5-l%yJ_ASqLWwYDiTP*ISSDS#k$XCgFm zknWhn8P$^RWXCdu?Gzf4v?*{To?bV0-iiW8!qDq3J0~REj9bZ0p*rMO%D9!iYst-~ zkZ?1G4q$TTN*Q;u1EHL;LP9b&g}07Qm!nY}o%=2;a$Zq*Yr)ZYjIQ^{7D2ZV^Uz0) z2CLq4HTu}X)0#diF)w}08w6LSPxd}RN}q(7hd#}WZG)@P2hcJ{CQToenAFGgm2>px zWf=a2W!z<`Qqfn=f&)RsS5(*Xf2P4+jaK-?MLm}Rkf>1y20sI%o7-l6wtLfs6S)|9dQW&UBgHLUE5`a zpd-EkplcWi+Lij=y>@MLvv>KHGe~4g%TAAvfycqb8zw9eh?pJnR6(t3?8+iP&J)ul z+z3`=k3fB@-F^(J-Hxf2fk4DQ)owdIA){*j+x^0_HG2f=Q|-mapxTQu)iMx>*r(dM zl8^?5jH>mQGz!($>=CF>weLIz)xHx`EdzmweX6Ys`d6e{|EU6@+L}EAb*gr_55q9A z1I3yv)yIe%Osn+bC^ej8 z6=jfOSHLfU7Zgh3TH7Wc!7`RxkW6daL=eHsYY88ukQjKv^$9*q%U(%RxhI}+-Ebdc zrQVcjX#hEPIaSN9&hkp)FW}3x4XQ;67w>7+azN-!X~OU#Ick^O!h|dLv@jeH3X|qz z?1U?oCAW`tIB?5u5>h^fCt){S$6cu$nQFL^U)z(nX)=&=ud9@y}r84-l zX6+J=v$#nz(37w$l%egR+>4G{fk6Q;CN0GMU%NXW?5TVNhSuHN?&X(%l4m`mW_xs4 z&Q)pxY>%e?6`A@QKU552zYL4o7cbe}*|~MA$I6(i=)S$>7ytjtF1~~^JDf~VJ`ef#k5@&B9urg#6$MrE^HkO7{aZl=);Mt)js}4Ld4)Qu()z0J zgpN{>?o%tn2OhQX(^gt=so-BeCKY(61abKhHVXf)aX`19waMv>p%z{_C?}_~IAD|4x#! z9aZqV!7kvT<1+of$ZdMJ{0X*?fJVt(Gr>BF?(JRKK7YQ)SMh1c`+K?NozDk?qu2}c zuO&wSqHLFgRt4E^3>Sq+zZ?mo%een;1;UOL1UoTIuyL9QsE)fqbsWirp(lbZJOuau z=gwdJ!s4?>cQUDrCZDwX{3*$!-*2O)l;Py5&8gq(tPxiLdJ6OF@W?6_2L5y{O56w< z9uxX1%*Io68Y{A=RtUz*uMjJurA&2M z=*sQnuTSMN)sR}svP|_PjT4hK`myfQ0Yk~>r;d3fM zUK51QDeFs5>#Gvb1WEYoymXcL{aLccUjsq>+l~;bH{9T6QnLS7&lso_nWB*98QQ;g zfhTgT^*-#6 zdPk%3{>GjD(IRk{?XUA}Ju{Xw!7^ME&)Pd6HWQDlhT3dp;)M-oi^n0Nc&>#I_N`Fm zQ*OcrGIAw7MRs%*czwL=PZq;Z`m#Q{&Zd9A`nedm7TW)Dp5Dk<*D1a4)d1E!fE2yf zRoBO8u;e=^@IPCDz)2~21H8#%lW@J&d+cJ9G1I?_$;1xhMX`4rIgXDErUpUb|LqEF zPK1vo42`j)A}+-gAq!9F)rmnh{HqnHL6$P6T&T#D5Xap{1=aP2pQj4KH!=ED;K7Y5 za3zyAsm12o;Rx^#S7m+R>@BlM#Mw|(I6V-w^6EqlT#V-s)rAv9jRra6$}n+vUQp;& z1i5+oje1P{6zpvkA(j_DZ$*R_A3}<7VsEdA&)*|91FsZ?72&|%RuSShz0cbtLYM!A z6yd~4jDcLvGz$&6)4G6}C@Lk+2fTdu^ z^r(|ooT>O@*2+qz5goPS$jcwQR{V8oAzy*Hh&>I+;w#Q1{V{80B@+zSH8Iu0UywpP zMK2$ocf?0a4)(SbwO*$Ctn`a%@QPLZ#W8qNk^w?TO)&|3WQt0X={74ZNy?j7e*o9M zkY|Tbjueydm!_y7xlNMv^c6_reEKRyl*jb~)&ud@R?3Tl98eRh@OP(HX_cghu>QdF z5SFW$(CqW{2`VZ`rXm>KPZHk40x??k5_lBv>3AwJ9=MDr3aLTz2Cj#2Pis5^8*tLQ z2zxlNKXmU!Mzj0a%z)j}#rZj&U9B_<#=Ns1^u zbgxpBq_M>JnqrD5k83P}Cka!AMc<=}@v-D7cw5m`m`B%sXq|wo6e!c>&5~tGMS!(P ziJ-8rqzS|yHKe^Izd+#yJR%SWg#x(_5O52@V%1ag;G*l6a4HRZ@Q~Ui)8jK0uXgV) z#<7!k4_Al1)$@z4;~QM>^#h0$dZyzWO6~rdk2_-XK`bAKl2oMF%Sa)G3p<{xrhc^oQy(}7^oE2 zHA^09D$>9c5w6~s=?)RbyVivYgMn9n*@v|XY|tpVtEM|hg!FhCcK&3gPEZLRh(@W9 zQEb=MDU8PM&Morth|ARfXay1<9Zu>uNW5J<0VvA(rel%X^SQ^c|6rwJrkb=i2Z4z~ zx=NOrkT>pJ+Pi%_HJ<(NE0B0J>(8gt*1;?;0P5ma%-}kj!1E6O;RSlvwNcDfT&7NP(O6PK_7#6OOr^qk172?2+}ZAt-DK(#nd&%CC75su(mCpmtb+7+XDmUP3iXA)y#QagC7D#&@=E zkCyYzD?W$HbZKe@aJDrS%m#6kgA_514=$$c0nqm(=z-)o~ zQl{*-GQoU%5a|pQ27>;v*MG#k3UIqSbEZO5gKfer%}wE7>HIv5KGcd zp3$8~a6%<$i5t*By8{Zr=7HsOzOhqIPPYcPV6*Si;bM3y>zzNNkUxo+{v8*SV%A?2 z1D2TjsN0}@Ek6sQ-d-tcle!y9&B}k1ZdlYz!g352d36`i~eFcD{eoW^~b{j zR1MrOXZM)?{z4c1Imx><>1?Wjf7b#&D?ceFm-~yu6Vdw(qc1vvHc5K`o6R)X*G#ZC zZ`@`&{ev#>fS4PQ;DUz!o&{k!S`7E#b%o+idHvF8csyZvma=nED2tVF{7}RFWea_v;p@Vm4kb3I^%VcY;(A^Z-)a z5Y9JDI8MtQbisoZ-GK0~+G>`9poL|#P6|>4y?B_ttl*^zo31`M99BoPnB_VJFN?Gr zqSZ|6?$4Ok+*_1~C;d4*&2pufE>0NKX&0j!ggrnF?&x%EX+#Wn1DT!l4k00YvNDw) znhG7jz}!0!smjI`9HWi#>+vToNhm+}{Dr;XA*_B>n2-2Pni54Sb#5iXlGEz)jlTFtaIS)GUI^;5|HirIYQrkx>E)Sq{j z&WZ>m?s;!k4tsqupV%PjGX?#)Q+8{PJFP$p9ak8wRPgbp@7CO`R-w*hsRAEo=DcPm zD*~I;+~=D@vsFdpO7^5J5-;#!hF7QX?c8e_<(^Nwauk1vUWJK zn&?o(oRKwKlmJp(BEe9$4nc0(5vVl=XWs9odAl494<9nre>sb8HJXY;Dt3hjC1A5b zBEb%*x|r?2jDSIJop(4%2Qd=_2-fEwJLRaH{c^Yf#0+f?_aL;xa0v#)`-Z2#?Udtb zIp-@RlMGIw=tgi>yb&Xtx>74a%3918*T?zOTl%vhz!XhbV93r@l);eggJb*}W zbtKmb_VEA~bB({0LER>UAbzv4hR>Eb2>jjQX<_xh)=L}?!a=y2JNn7@J-&Rcznss9 z{mJFgl6Srb88l3Z2jS9&TC*&DAPTrP>pz@}#b@RbvmAJlau_VO(nx&+^Ns%aV9;kU za}3NC*&s&68LiLmmLsaXF`N|r**$T4tG;wjiG6bL!wFd*o3I^qd^j*h1g3)(4wB?iRH7C&u=S;FkJoWSpM zK70DB`Mia&NI_4UYp)Oc$<9eRJY1EZRKyd2D-@`A-{h&XrIozpm^{^_Q{al}8-isk zQI?Zjg;!{-!LRkMgqM5*XpIDcvob52GPw0{a?Bz~>s5Up^%U3&2cl-{z!qJ13i=nb zbx2J=0l99gUB#E}RnGTbIU9Zg@uWZ69S!;NK#pwB#Uw!r0~MMf996E%IVJO*e4|fA zJOR2wfsn(a&j+)?3RXEPrAyigfGZ4$*SCUD(S+TY`Lqz_kUVVac2r0&r}qH6G3v@4}+o5SB-*=$W`BQBfp{>gowP+g?$<9ehCwNx%SHxnInU(Nr#cv2oS7q zrPR3?l4GS52}gjcr5J?i>s|Y^;pwnHQY#MP9(AVM9KFkC5r%FfiV4w&sawC=iFQN>chTuMB-&+la&^E0qCzo9QmG?lA<#O?F!;@EpCl%Z{%v_A}^D&gSoS zil)tdSE}zE^N3vg!0ZZ6qHyw`)+Q{K<;mF+W)*n^KKW0*KT9RZk@FzoV5h}Ky36|F zK0(a3XesI(D=w6H5IJqA(fiiBD0;nTOQC*AVziXhgeaKqHVNH~Jo*sS)QhJe@mV2{o`6`EtcQ&SEC)vdH{eXBpRrQUyKYRwV% zIQcl{8VTkEzWP<5Og6u0x64t#%BaU+6C8-z*98ULQGYzWTrMXAD7?K~J}B}ZLU3}4 zN@3$dX#&new)^rruj*gWc5dY6*n_6Tqo_3sgzT#p1**Tief1g}nkIQ%ThNUGmAnySAZR$YnlmMf z73COC#UGLSR`Woc&MjT)#GmHTu8U7piqOGjU->J@1o8SqeiA3gi~bh^?|-u z??zL7XX<;Jcnq#?s6%rgJEZ&26m+Jk1tA}UO`2-pz8ZM2oVgR8W8I-58wE;^UIzf) zxptWawM+nkYz&~_jNTeBy;u`=)v0DOJs}?jOpqXO-)7( zw0I!vP~7bLf=pQlrJpDSKQRtYL6vc62%~2 z=q??Yg;vt+ob)G?Vg&m)a8I>;Wl5%4sE=2gWDbnj^P^qFQ8|&dizFPE*ETgy%m>!O zl)lUx$1<&j)zlO9Pmj*~R{FJ+x>kXv2s!p8Ee>huH6HXC-yK;seMikij)G{DK_Y(R zFuia4LQ{9o>T>KC*(}mTs1czJ0&|keJB`W&>Pw&I9I!c`G;#PhI@U&Gk)v87Yb;7Q zWUnn~oU@PiiRM|2HmCG7; zHH$=PtYVgEjB@PKXN^%6{WSOr3p!Y|uT<^r3m&re6~d&66cs8IC7MKGeGGG@tVtAd zNEE^>!ii3k_D-OK7jQY7d09x-X%gjjvn1?G;u zzPdr^2`e=Uq+lBI6H|;4$lo>CC#f#LcZ2~(42`#1$hi7MuSExzaY2qnsfBsM>Zg5Y zdMf=h+;t5z9kw!Mi{uilSd1Y}by!IjL-^8@yM6zz=b`}18upmO#^fh)WDAVb@FFTa z)dQu=?gx7^xfmfIb1~9XyI7#&RN=2TcW4L6RLG=>$FS>$8hIdxR>+@>svF-CV&VOj zhg2hhS;O+{AAjMCUl9MJYR@z!cXEuG!1<9jM<`Y?F=-hC6)jWmRwxOVM7hWpTBvsd zk&6oDs9>O?WlCQw(QIC60@~kcF$1ea%tiH9I~6YLDk*YE6A4>uK|*;KwO1WYs3cjp zax{xHQFL=Hi|?4b88@EbUFX#9^OWx#rh1*;-D6ozRoS4Cj4p4qBk~8~)%1rB+DGwAvUq%GD@Dp|>#H~g->jtMxNhKklrvB=k zAe6y(Gei}-xC~El0bdhSJgEgJp&2|p-#aS~`-@@#>)4L9+s}IqG=%-QkfkOMpX6i3 zzDpoPH_-U4Gjuc~dD71Hg@US4ZGG}V_+LuFrJC$k>YmFlpj zjyhY`DN@H8ztGC05d>IO9hE2RsvYH$)_dp|y8ASci&dwsOfJeLO)mO{ma9R~#)>s6 zQr4i|seUfB=}W)vU!`Q+|rfE4LA9EwpRQpe$z`7Ozi@>PfGp&dy z(lO|W0LPI~$c5tu{ipGcrcicS$y9po=b?7Vw6CBZB_V~N)qO=VL;1eb4i^eoO)F%n@BNH2;+Xu^U>bsWK&HlzvPM+E$w+P{Y@g5)YfX!+#p3H~k zWP@HILuJgAiV^ZLu}D)bNhqf=B~dlzETPPmk+myd4@CeQy{;ptW_S|n*?kY#i1m4g z7G)WxTIUo{i zuVR*cQoWZKu%D`qH{Y=4Tuhqwi-iFW4!;bv)_%y#EuCK&#|PVocn|edOyh&54chMDT)GoI-Vra6Brfv zwVgx?nJ{cT8Nq=c6(%6Zq9Z>6A%bUQ1fYy+JshihC&g$Ald_F@vFOc;#d0>0*){8( z?X&2buR%Z9PmQ)Zp75QCns#r2|GlAO5FI@}zX<5{#?H=c|@$X6Xvl~0FD_y+0w zvp&CuIL9C@hz1>3a#iEY^3j>;!*^l3;G`UU_D7%n=n=~@2mM7K+X(wij5_?T;44;mPLtO)vP?>t`+|0rYMpN$|HWTwFbT z!6XXbM1t_yJ`z#PY}AkVPV0fv$t5I!8w*On*2!zy#i%&A`x&L_x0BdE?+YVK(8B7BnY3K2dWiP9+o@(saW3g3(&gq!_6ijf)5P}!Pa&d z^(zHL9wCO;46Ro~Jbc1pxbdJI9$$iK-D37|YjdUHvt|;Kz=;Imv&9^(o-6xTyvm=n zo#HdZUu7YYQ<));lj-|de^@C4)j3H+aV zq|biZIqti-g~SPCL&@AJ+-`q<0(nn3d}i<~$|fX>2Mr40p7rjIhKKiN+vo3j9jp7S zx8@Om@5F)FJ$*uc^R^#)hCYETV#o~?2;7}-?vBd)u(G;&9tsvbi#y%tE`&)4yb}q+ z_c;FOA#`TAmtqL3!#)8rI6h?)62XH8g>a{$yOMepmbU%*bL&(7bpYgyVuCmkp(yTT zVz(>@p{1V;!?NNK0PnznsM#vA*2}g1y*rn^?$i3nfI;7n*yfLT*)6r2-g{Rz-}l08 zy^p}j`_Wq55v)6@fA8j%%NP8!+3rcbVh{jqBS6URr2hJ?KI}2|NALuJSIym5(I^)` zc-o2vIF!J>974Ym$McWN*~8wXKjuYD-2)@#lO_X4gHpIhRk@3LtMD74`>3i}1kj5T zFcSp=caN%)>ZDjK3a|fkA5{sH2zVPw1pcJTj<@{zOa}NhlK}j>k<0nr5$FAI9^5_R zC-ybd(L$8x}A37`gA;>0w#LG@V z>#UMAv(!B#~7JlTqNxIU-Cq)UjWv@`_HIFcK8wV=god@68`|y?*cK1A3 zk`Ev@xg%J2qzn&A-6Lg1-w)U3k9gTx3?0924hI9+ie18H)cMUfBLU`*J1>_x*#)GD zp+n)^8UD@k6xI!FmCzcC?ioJi5)j3M1to9?oDas6;qj8mX^CIp( zwAMTVu*Ktf7LEw^QU9=*Z(qEyO6;0P0K0DEa(4GruE`z2x|am@4vR@4rhAbbxBHTS z$tfU0024~%@s{CaQNSr(&t_f*Z>bmru-ga_vU|kYlOII1-+jbkY+~>oXd*%^`V*1Z z?(|o>6S+s(1cac?s4t)pZs+-MXE(Ha*WGy(13z#F0)*@iH6QNX-t&5U_fR9r2jH6A z5v<$O?|!i3E()dd&hDPh*!aP-W-cdj$4mHZuQ(nTa0z#?*tUDTG&u!D@nS-gxHH9H zUB7bm&MwR_yiU}8W>oX=OHj9QS%P)fp*oXwr|65?RXCE<6BmAol^a&^Id8itV=%Bl z8-Hg2P}}VEukpdWDEQ&zdyfgJWQ+(|7qt*BdWXx|44k|-U(AaBm}&OmW5a8~K=f?x zP)_F?R|@e6;tpJ2vo+X&|GeLy4H)RwnXN_LatNyh@<+7nNSAC47dBrWm528{U|UCS zleinJgL@q6wp*`xpaStQRKgvhG7lDl?-rtPp}75U)*lZCuxEY0oZWLeL+fH9KN~0f zFd`J>GQGvX&p`y5SutOZ7QLfcIqnT7@Bl~eK)BJIx%xk7+duuh8%P&~*-_+C|KZah zGJ}aCvxRJ_=~?+nF}d7d9G-|f;yj_Cb*X`yh1-x`BnX~m4}$VdaKoXzBlS*s{nBW7 zJaKlk*1HHE9!~fHEQp`IUMy(e-V5Sxz0zdRcH(vLMx5-<0!{07S&p3Q9d+sH5{4x0 zN69!NNS544ki~4gglZog_h>%f`cO9|>;`CXMR;pwI1O65^|dAfpQh{tsQ-$3L4=k9 zp(WFFHU%PKA3nwv;aQPt@8e}rd{SI}a5z-69+Zdz?G&kO7EZ`^Gem;m*<3-`Xm3#- zp7iHXUv#CIE>4_I+PXZ!#lQ{Rg92f*>HT8XpUgq9@qD9t7uX59^?HO&-hym5G4;$w z1lC+X2<$}NdPMN>2t&8Apu$=9=%FoAnQ0%gNuFQ*mu;i2hfS&o1P)5Ux+)>R15>wR zwgZX2(+I7*s+&bf00$BT?{lG@`oUi(`W!Aqc?97*upoY)3sKs{W;9mja3RVjRRjVD zrC`fk)V}7`;!a!Sc)mi++KbsjR`km2!tJ?W5-ya8oiia{nlFVp1^OEqI=96rWFD)r z8EM&wM#RApb)t%5=uK@d)gy1{Tpa`sl$48xXDcZwZ zA2|2%NtS{DLP6LDHf1pDi@Q6Z{1KgwiqLxL*U2G>-@<{&eXn9WZ9^&m`2we0|eufECm6Cf`obsSW-Nb>@-ELo`O6QWMEhjzwe=>;J(QP>t zmjp2kJZKKzv`(2reMRg@o$9~J=2WPzbU_FtlqEcHT(i<)DoX3h63ZqvpSUn}ThqII zDSBlW{v*`o^1lF`?#@AdrO#WeIy7 zd98TGUPn2_<)N*cMLGH#Un5pif!0t&_P zEmnZecFOUzoEIC#1BftC3p?d6FXmV{B3z!1M5x#^`#d$3lNEr-dlLB)RAZ1Yoj&bZL!zPs2l20V%&E0qF+>APVSP8`oV} zuTGJVsdPEk#%*S4qB)l6P_DpB^LzctZ~^P$1G%a(ftvkL@|8@ zKcG>^N(6pQ?U$qA$IUGwU;v+zZu#geytat1n#%VUnY-${_rw#8_=ryrgzVMpNxjo8 zcGR)8NfVjbmB@)7>IYH3Lr)`#PB#=6D)$chhxg#BDJIM>P;}D@4K*f6k z!!?FcdoUF?*%Y6CUCrxRFfgY;(3gKff< zH7Ot&120t8N&{v``%S>Gn}5s^|L1wss@#Ua+K%_TeDZi>rlt zaWf7TAS7w^;yWwV>cw{wpuUp?6>gtjB~&0Eg(@JRR@qfW+E?-6=_5E_QOstClSyw} z9zeni9^58*VTC+oR?NXYF4#WtKdevzlxZ`u>6cnqwk(+{tht8uFCLS;z_-1~0yLVKZLZl; zAC_}*Pnp}ezs@eK$u31k^BXN1+X1meyH`A%mT+CKjBs8N|0K7FUbYFMdcV~ovn@GG zA@3ffgnU^#%&5rs%J{C#Sx~WrG+DX~cx+U)n-dmgW#qjKP z}-s$o2=0%omCG4J8 z#KKecL4lbK<&+>8ZLZDtZZLO(Pe!noC2~hQrDVeWo80~yWSu5$06Gq)>@Edm$^z<* z4u^0%f#{$I=b4xZHEAg}G+21WG1_UX#bNV#%SvGT=Pn#}J%5SA=KG5)f$dMjIP5y( zio@Psy_0MwI>~keCwX)Au-{CC{bmE$7gi7ZLL%%74Pf)pU?skNF%kB~2C&~+y|&*< zg#DI=%{Gc$ar<MYkgG^JMUI z4c@g`?aAkZB zI-;oM7)pUodJ|DIBHnN3X8oV?%kSdZM0VHrTJCQC1tLw=i(R+S z=v*;Dx9Z(5hQ}uhuK(6M-zG|=9!HBUHELGhMCev{nNnL{mTi#@;#8b5)H;n`mdA2& zoZmG@a*guiThDv3#~VmKMzhy-wTyC(r8_~P@~~o zbtLYilQ`I5j3jiuAW0jIkrlovjgI>dPKS#g-##zn08^}vw7np)fkx=+IpaxRtlOUN z@dP*FDV-#Ynz|pQZlZCztgUgr#ertp9wp@CNC5)&^?*t@dwd$7SEWEb22=n@!pS>( zZk+x}q*D53ubw};!V*~p;#2iZVTscB>$Kk8tS9O0P5|ukbwjlc%0g+v9e_z4%i@xP z908$MMDg1NAFIG0F8Uzm+3xYe4|a#4(timf7~F5$JAwx;H)j2#MYR{rjF52TA;kzD zR$fbZ+Uri5CXQ{Bm5CEJj4ckgj%&#pZqS>+(T(aMJ)O5O<78U0c60LD#@$?-h8^H<|LtR~Qeez5dAx z>}9iTEFeNf+p$YUTn<_7@@>A&`c}eG{glAR^ofkpM8ekEUWtNS;K|hL1i9ePs~lnj zEVKwa81A*mg9SV|3x!b+-sUHP5?*j?XBonFEqrYQ=aBx@|oph5!1it z6Be_cfi@L$%b1ov1~GwUE2kAuv2VI+yl2I+*e-w2+q`&u#KyTyHQtPYR|M8d19lbC z*DZS{;!K6~oI?U+2_#9$+gmGEvS1KLEMXwvppv(HCgR*mmK+iwOCU*@-#mYQ%w0J* zX2~IrxdM`e`R$csmK@@kDT4XIe_4^b_y`2t*t3(#vF*r(A4ndyfInQkNbrHfnMR- z$W`kX#u=?l8@ZZz0H@fkgC&F%kQex(U0#qE{56eA3}BC%bnT7ml_0wMmT7MkX~*>V zb^^j}Ua^=J;kLh2u@V88$8~6|jb%j`SPrWYk`=J;JE~n|Bf6SIt(|avYs#XR$s=ra z3I=r>L2j>RhJScdzfJj>e#i-k{dcR$cU{0WNmJCah~eJ;)FSmHN!kTSQ7S{xnheZcC9AK z7QF+0*HEUF5TqT3CzvBbpXzv}bw<_si>w9sy1v?{y6qLJPS6gjPBM?Fj-O=Bs5<}o zRiV22)T&Q)7gwk{K|82A$vmbye)U;K)%hCdffDJ5?VAE0CbzZVk#cXRjTFy5Irh{ZUhHNp3K&Nm}=YGeYZCkjrI(9`r z2Dt)(Xk7_XrG@!6uPe=zAZg+eoPs@qbd?h*I*`!bc{4Ldojf~-JP64LP#D8vTdo{c(GK{7Vve5RN4U-Rjk6-$ z_HP@DVd4O`taShKAw21Au4GSE01&i;I+V;~IvlOg%7S(fp=2IMxH>D3z=#oq#LBL{ z*ZYv{)Egx|?vI)FUQHfe#AZY7pRVkSG=@!24m?vDW3WiUEulDFqMXh*4*HA3lVZ@D zjCt^H{X&aD)JAAD&>Cg)X4$BG(Cfp^C@f^QzN?>7^ngNseq})mam9KuRMen^5F!eRYbe0?|?PJ0LCgJRxWl#U009&~}` zAnu0gXs98xRdop&o*N#)U55g8&s62C6JCR|2dvRbBV`*dE~LFtIp@8%_1nT;@@beW zB4KZnb))5Nw3c5pM}ISW`-3jPfS4PN;NtB$Q@94c9QOL7;W6Kc>C|&5RW~Tw zLZf4|M`1+OYFd{3mc~w*8zCCRCb^>G*u+6Vn-$~ow5V=3sZu89W2aqAY14KCwcBY` zvQ24;*Jo;=~nc3D%{7}2%CLPU! zAHysd{yyiE@6Xx>$Rt(`#nTAUe(d#>AjjkWc+A&2K3$1ql21diDr_hdD+vzDbh6~n z-2JVUNCaFO$|G>0H0eET-d`-?;a|8UlLg1s^st&)L)q#NwTP?)KWMP|Nq;uAV#wcL ziPO|N2(0iUd!=YaT~xZ z^v1)te<`yNf-cB$Wd|AyS zC(CgUCccviym-wl_s{Z6Xme~Lsr|Ke&No=0L8Qq{^W`(7l9hqPZj9 zw9oe?TW_R#$)~~>NYDlene?=n&8G!CCv(cvn#`FrVUsKfL52b)45`!MNR$pNVDK>> z!pS_OGDgWlF?1+aLSLDd;?Zm~0%z_knn|)a8WoC?5V+u|zbQxNz*TWb6++=b2@zh*iZR1lSW}fnGzOqX2%Dj-@sE!59hG+z@tItg&dPtvTP^&rITE6P zx3_$nHwsWb$@0*ij6RkolNi@z8qWGkewj3%1~Tbyw4D-$PIoqtdFa$k8c3sZ6f{r5 zl;w2QQx?e}RfGx+!eb$3 zTu%H_OX=HSbxLV(L+03E^|NX&AK#4hO(mQh&Hcz6QwblV=7P~($ws}9Z28fnlPl|m zHNWOU*57LX^zExSHLG_G*|3&lUnR`0g{0O#rEickINMv5IR-fwlO{s(4a>xsLiYu! zYpx)s5LQjZBA;o8^ev}y71Aw2DqD`_R4=CnqEUP}xU-ATyo3AUs6Q6RH9M?DwICbGH^qtL%d8s%Zw6bE~l*igL(OPjpj=zq&EyPtCt75J%W$7av6`OR-` z$N$y*BFDCOjSfI}czxwZ{F7oNiy7G{k)!;`$)$mr5EnY9Z*AA$LqOcuo-z=N+sJDyh5b$aC4x{-rkVk)``@e7fkjupPi>X{W z)(-=`8py^mqVJ_;l6q}aER@0;CW{gIGf9(O6De^O7m=c%X%p9z64n`^WK2GZYV48b zpST*_8i;9psoga#Uv_Mu=FgWC_E5QF8{4R9BkxDk;+T13{*hO(XkZ$N2)!;XB-R_R zG<1BLJtS&A4aCvkXdm-!IdE&5`@%W494rnEh6 zk)r#hP0Pp@HS0?Gr)7jwGx79JJxZ1~F0-9#CR_e-nel2OopWP6EpX^ z(?l+7hdgZvhF8JhOgGdx-z#QNV#XxPKLi`x8pvmSsl#L15UjS|X}r%r1XoNN$;3*@ z(w3~~UOlr`{v|8QsU~bqm0rL+6Cc7p=`bq>69n!86Sb;;v3kCQXKjXCm zKTTSfn)fHe1r*w_g{gwqs{X6&G19}efdxGjbYw|e_|Sz3G`8el_&_#IZXWT$=KM}2lw26<{ml=v{6s)qD{1YF>tAViWJ1rk8IbSY@Be(=> z*1sPb%l|@KV|vNkQh1wc;Ou?~()?cWa9R#03!Z<>GGNw}gK%{#jg+md5v26psGht? zhXwQ2D{Da(LF^7h80-EF4F?s6qfvQZEc@CueA8~)W`uo!StG4$cCStabKJjIz<4?2 z=O#|NLDWQj@N@$Wja}tcL7VsCfT69v))x|)RDIwGUuECrqqEb8?@nPC6C&Be&;IDM zA3fq{Y){oehxx|--F1K}B%z$hIHG;}*b!G4w5yz%F9z?z`TLvzE-LNy1332EgNls#9PaNN z^cV0?Bj8_+v&HYKULr`YE0XK@r_Ua(U54M+)bDGM>#QBZT{h)-O*dJ5_UNoE&6o(} zeAxNDI0{naAial@dh~<6)doyiu;Y`^4Pt+K&4m3QfU$aU|j=P z7Xa1?fJfiG0u7)JY3+T?J=R2L7-i82fQ&i<@FnTymMefKA8b<_Dz zqzhFmzH?#1=Z^cMQ8DA%yxdfq!^xm{P#F{HJ^GESO4pL*0<=FH_TeP6@EaHl_H~72jiyy= z)mv2p?91p&He3kK2+1Opv3#GgKUboB!XWbF!E z;w*=`p8&|pU)T1?`_i(f+=lPVi4H0CN5XZ!1eX#rz<^^hoxgkT-1MPL)Hll6@i`Hr z%E>w4a4;&)iF*vCS;V)G&U^p>`_NXZ|CMQf)*p*v!u$Q1D5+$`!ALRU+!yPyqKd55 zkl7>YjRYc@t`nw@uH6p*V3T2+1Y#ubs3 zNT)3xh$G(6wNLw_Ww9ok3V(feUi4>&{L04lIP2;w$rh5VJxOEjcK^7Lv3_2R`;c=T z%KrS=Vm)%@v3^fs@x}V@%%>+0ddH(#k2zGY%0HO#dvU!m8kob#@L8EiFk1&^>!RU0 zCOhkj*`sGakXesV;#Lq>Pv%AC6xX)O`x{f9A|za7;RI_FmJuNcd|iCBuF$ND`Tshg zd351}3g6l;{POPF?O8DxLUe^lA+D{3yI~epHU=`U-MO^8UyZ;*_}@zqepXDEGuV$8 zT^sIT5&L5hQ{lc|u7`wWKEED(JW^FczK4FPF-qTnp|XpnZ%-8!`gZH4|oGX zXyX?N+L#~ChEwR@YB7N1v8F;2_G>;0e8+pqeV8#IX)vNQute6>spZUAlc;$nj2+9QJ(2 zaO+RINo3PcmyLY8F6UxW%CBR-D!bvD_yg=cR}OqWEc5&rrhUaBd?KdEaA_3Jpb{SL zaXPF`HpPJRV+hL%%z6dp(W^U<(k!b0vsV2Emi)0tDw{7GMG{_~ryHT9gaEQsQ{@4ry33Ys2^))D-F4r7F-KPG!8Xzlt zX2ARYd*yxDGFiJn8!n0}S1#{Q)=sz9>hDG1XsU&JN!AD**|bn|XrqNwH2}__LW|-RhR-N?9zt?Hpn*-x&Cw=kV&C`zOOqF`1!kQS7FK`(qULU zttRYiFe|Sn;^){BjY^n>Vy-k-j5!fB`o%wQI;7T;RnejTw|mYh5Id6p`m-ubkbf)0 z>uTyMmG`}C)qHkM{it$is!^ez%gyyO9Kma}z}=Zg|MwZS!x^=7CPqYR=3Cc^0Ak^x z)}+wLo2eS91<-x9FlD96Pt~`DE7}|ajT|=)+TcXL*l>F-Oz-1OJVuU1m(Qc zR8AtdVebJ^F1eV^!vX1zcjY$rJ!4$zQGM_OMcj z7MdhH59*bRECSbD){%?3>icrtM%08HG4;0C9k0o)OLC9C1%(`<4oke+EQD zKg68+H|h_dmRj#gF&OW4@xSWSO*KD&0x8eF*H?86fg5w798*;GQG*=BA$ScUx3@HX ze7Y3_!@B18=nb(-IVjhzOFb=S%frQ5e+`!*elFDYhNjb7PVUe8)2Y~)Jt$84r|=>= zf7xWRI?Ofi^_usibJy2S`p~;IXbbu zYg~L<>mqGsR{&TC0PED!ul)*sU4vh>*Ug2ZmXDqjRoa8{P}XR_#(SrXkxfnKAR!eA zLCjy{`7QpHTIRC(Cxlu*B?W`jwfxZ8*s3~VD!3W<-ZZKTPW!@?O+O#9)`Wu zPrCT%VW4D6FDH4^F9R-C+3RaejQ^yIJ^VbBB)*aG`+nSd?TW!nIN*>#Qla8i9CE=V zxmcZ{+V7$~C>(WG!hiNCRDbbXPBHELoZ-CH5~od8Y0zCo0Vy{v`?tSlpsqCqWz!3y zd4r=N0rSMGj0qcbn>mNa!Z7K&DnHB%;>|(rVCa@(O)& zb-{1PlwU8iG33ABUGFtz1v*w5@RKms+Onb|fT2w&qHjW5;mxtD|8_E8V+oAO*SJu( z)>Trz2P+5Hk~ZNlCX2(?oR~2GSy$Jph3hdc%50Hc^B+Y-&|Qsz{-85xO;^FRH@$zy zi_8xC4BVX#;B3+gpL=w3AHYjENQFo46m@p)?yL5(OeWtuartZtiqUWFR!2V9>LZ`> zY^6L@18YXr{d3jn!arM|7?#H{hevSJf-K^Mi+v}Ho;=;cki8#AmO@iuec`8*63Q_b zqvB^`8u*6yQyWOa*d3kO_2?-%9(E1G?2jGa)h0D@4yLMCV1%{ZS0kovVAWSY4D%NeN?2 zDqRKY%#LORsD2##x<7&<#gonRn+(?N?yAy+6|NU{^e;kPiNLllTwDz>AZ!2=tN_?= zM>RGZ^&OT>$ez3mwv;z0yF8NKsTaWcw*}m$s+dRKW*amAvTtWOw z1yQpEkg=g^w=4(dBre0yP*GK|oVhg^V3vVo~alBlJ7?} z{N9z#_Zg6c9n}Pq3dffvd4Lg1y575a7t_a4+2#zlew|?;Vovl?wO1r zsjz%mk_Q;E_+W?6?(sp=R6w4o7yy#(NDsa_91LK=dkIUC=QrPUbiP0A>_sjX3g_2c ze-n0$WjHs>Q<(4AYV4lj5XuVVS@Kg#XZ&D186Lw$Xw1)Ubyg#iRj8iFe+x*l_3#fK zzyXKB_3PL7ZyT9c_XSl(TY-Ct{g~1*Z|_{X$rRSTV+xWA&zB{6P*f~x-99N7<-U1N zp?lQQbQPd8`Ujz$D5_Eau$XUOyudV+0Tt5KsPG4YDwYKPzTN%0CxI1Fh38qt0>H!; zK<Kc zqC)Z|K^!o|R$cb4-n@GK13oBsUv*Jb6_)3a3E+th&3pSdj3SKgL$jo*usl;S03@;g z1$o8xJ8v-qb?;vlQHAAM#R9;@5~sbp?{OP-kI#an0`g@^9$>_#Gkb@{q!8)1BU9-< zoiV5@a4#D_r^LoRajKF()tSL|lBl*_#R8NTi;Wc+hsL_cMoL-%dy)PobQOgMwP7MX zfkF*FhtB|ykk;_XZz-nyaA((C74B}ziYS^=u}J8KAMV}WV-cZyHxwilkS|N}2`0Py z!A@Q6kaxR*l17u!--O9xQ3BfUkxE0RuEk|YCDF#*kZ zatYL^Y*$@IzJM30c!JtGm+(U(*y7lr#DVp%(v;S~au%yUTb%Xeu;k$xi~$d+r2BJ&)u#0VeNz zDSF0VN?wUuwq4L}&R5Cx4KFSb@=8-7;oPWrqkDSN6VD>{>}L`0xq^@6dmvi;gg7HdliVbtGD3b0W*yV_yD4F?maN8TFn-4`^vxT$Ss%F4HWCX|KuqEIlAsHmJ*#oD@p7~n?j80=#hvo{rP1)1->uhr zHO@_2;ri-Ln=8Qdq>qBs?L8;F*6AassbIZ8xBwi_YJ>jtc3JX$j@C&&BdNfgkzgbb z!17(c@4y|7{$s?=(;AnFgh(a6GR$gw+AfEW>nCha!mT zK>C0p5OnrFUKYhC#nlIg!|KdG>)xG$jzwA_d)4}b==z=tV4>i>MR|DA7Y~nKDW(hl z0A}k#TL)otob!IzDamt^S5RMf{!uufXHqM~9?02*>=j0WcdJV(#mFjrFR>p5 zu7IHjFsYUIzhpPGNf`}o{w@Fp3~e^gY-lHWG_>=N0v`nD%G>w3&=4pXwSS5I);U_SNy1cJbG;|PGdV9_BC!s#i;bvh|#}~F6 zwm#e(;-D~p!;1ibdseLkS@~wM7;EI9!$!Z>t5!B$1@bEfH-HwHQJQH}rx_&>Qy{)1 z=!Sdfbl#hl!ycRuH0F|>Is>Juu)Iir6QBYqlWICOr)-^4CPGv}I!k^MhyoMuSuutu zzSQ~cHrmeqi+~wOKIVFY*Be+fyiQrBNm)UB#r$0W^ki-I zotzt&mdEhgD+`~u+GcGQSq1G`#RLF(IwkvZQ9^rhVIM=)+OTfg3fkFAaQ`#11ALy5 z(oN%b370xNWGGvYlpziZ>#GE-VhxBr3n7Hw4ydx2?LeBvptfEJagtUTUm(nq%)L{N z%GodB;HpvYmBZYGHkzCKB>IOZzn~Jr+^wARDwWpxg-uuCdTvLtNpeB4aRciQva0UN z;^CB|%i)3+2XsN}4?>HZRSLH#2IuJY4@BClBe~YKk1uU7M@)E@pfLl5_Z5pV!1XN4 z5xBd<)57X6t(WB-gcZE!H6wuKnNEo=Ud6GH_@Fe`+Nq;t-6vi58!o~FMxG2o8yCDGjc%W9F9vwmNV{VuuP*dUx>x=Za zbO!(hPp2cEz~*uQMVmSRvI7-*?gt=Ftt5i%9ClmacjLaJ*7pMhStzt$bue#W_nnh+ zXdGS1XZMOYx4U8p5aW}9N;E6E$uSwINh^3S)V~O)^sIzi7P$)d_gjNY>n#s2c?I$- z6-dn#fO<*|ZA##la32Kg;jL@ZeAE@pmlRCJ5>TE`3~zOwL<9Y=G9(ujBu!r-ecAX~ zm_D8jRUf@q&W4{rfA5drendW9&5;ecm?+d=bNx*~PmT81?LFaqy}lx@psHxE7y`t2 zT2u-5!OT2Wl`q;$+6v%V$`0_w7geecpxUK+;Nz5!nmJ~)76*m(RqGGJ=&60{b~%TI z3o{YU*S9o%g;w<~{WDm#pSH#awJmSz|yxH4_e8&EyY4&8Z{8ozhXr zlW#;o@(QaO5%AY0K=;Z~-*Sh1K#@ELioXh=sfpEHSU-a2a_lghFR`L56kwHD(Z2}L z@yUDTH*BE2m16*tJwbtcRxtrU@nu1nVp{zt$FiWJs~|mxYyeX{wc9UYIw}_hnWA!} zb~R~*?1lOlVZr#4nsZj3V@VAOD`3y#zteid{%m+U?2pt`_*ZcFnCUJ@Z?IV?s9&}J zB0zhNp_BaZXgPrc5#^*m+UUy}a_?X^JU&@ibL7^?&=Z*{L0+{{fE>RY%};GPoO8W| zH^w`#QZl@(WY7peg11|cJ?@Xke3dcbIl#7j6!sSt_KG(EkFT%Tsy|tB*Uz!O;^d-0 zzo0-1zAe3eF7HCN-lSiR*VoJpudn|guSBT;O>fFNyL$&z_|VT=^=m)MU2dn5ma0zStoeP;jFOwfPz4+3wa zurQO$k}Tq84ht0rh4fj)4`4Q$QB|J}>?|qsjEeG6kYA*~3H>&jcF&FvgfGKAJdRqm z%+qd@mlEI=^Y`XXBKAc1u$jnZB?E=?nTi`=j8_StZn@5#S(PY1>8d4R+(Z(qH}#;6?i zJc_PD^<~K;wF^5=EM@A#zC%m#`3K13JT^poMvgSz!$;}SdvqyYhXjNnE`G>si*wW= zAz=manTiY8I;nHi$DF7pGj$G496N{pAvrIm2c0OwOgRxDuP~ZNtKv0+U;uIaiK4re zVcVr5t5D$qt0XjcuJL!&Gob;ph(>S#4@;Wah&pH2iLXo+B;*x3Sp|+90cCu-8B|?W zV_yoK`^vH0>|>;mzwSl>G9-=2>TA0!Cew&a=_|z60kCA3z(ZNI+hlYJMV`6@as+iI z%_Nn$w1kF&%`}s=xhTw@!(d4>p^E5EwId9t8{n=``WGrmte48PI#N?tnl(_%2URt&fwBUcEw4F+fX$X?dLIdp0-X?d*jDHz(E2lp~9 zk6BEVX5DA^8jQ^HIqY$JeEJ z4CJ5?JC05^$np11pa&Lk;fGmom^H_zToi1TxiU>72d-)SRlseaX?6mW zLe8pb%7ts1{zX7OoW>I2$TlbLo?k+uTJ4udBR zkB%eR6lSL3(dME6dya%BO=&)y48^N%`vqKBI_r=2mIrev!7*-P%rvF(@ls-Z!}oXL zB)^EBt$`p#%I(zwRnHN3IQG7n&fh(EZu(H(J-SiOj?bOS7w*r&^A883B56yBR!Z-JtoJwL@y@=-aHk*({KPd6os+y z=tNZ+>v(!K(ZGIKOm$&PvE%cy1*(Ozo#5 z6cRrY>?Su9m7|Ue5ON#|j&f8A@ZEusw7N{fk97?~rqyMGg+i@wLP*No35}w zH6Kk2ezS7^u|}{^K))>6flix-mx=Rkg#6(}^HG5L^$1COf~3ovHzZ`*6XYBeQoJOg zX#j!S3dGym?h94&2N08;LjQ{SyXbgL=PN+NSs#&qzCt)D0nA$;nvO*L>IE7*@{dG} zm%_i5l)SSqg^8N>63W zc-i>5&B!#fD?##)OcfJ_np}F(bn&F3t;q%8;lbsU7 zc>zY#gl1;nfw2O&@mzzk+i-jw3w{IghO zqajANedLFXY!EX3yN#A%GG$+;xdOK;5|))DtxP_YHS$G zA5v8h?)N5b7&n5Diig?8+fm_@Tv@@=NNo&HeB*fjM6 ze}EoomQCbO{WKpX9lzP-dc)ylS#9?N^lHDqH+OFMPqU9Ge#T0!Z~0pY^E91+h|7D$ zQx*2wOa2K6xblf_}q6*8G zB?ExsJJw!{uzz>o4q@$&wcCUhq~|rGBzxV32Q^Bjq8#>;RMB1)3qa$mlB;Ez!^OC> zVzHb}de(j9?W^Rx^cBLFO}0tCb${09cNFCCEkP80OELf`p7N;WVmO*_3}*fNq4`Sd znp-b<1@AQ%XF%&Iz9!`E6%VK7aI)a{O|>q*c2QOszalZ#`~aS3k(&^i7xHO)c?`HW zh5*8GwqE28vQU7(E&)3b0CG==smLCU%KKs)r%EGf_-!3x9E26hmpC`T=841=iE;m4 z0aJ$|zxkncZ!w4}OlN8?fX6dVRiDoLaB;k?sMc}Mq^c0TK==Tp*XyD4RK(n#EPZ5= z_oq!VK|%x>{&Z5VEryFx@iQ@2KQo*RiU*9rPvQ*ZM~dKClH3c5|Iv_-6hBTNS1MXR zxKbRJ;-OZ9s=4){8#hMgH<`~b8%Yk`2`+A&H^_AlG#!X2>Ql8F=b$Bfa z9{L@u-7mx|Op?u4st?Y=OXv?K1wXBFA(b6|t=K+y35eYSVxX*-6@94eJe?E|ID?DH z4DfTs;rSgPcdPgV$>J5oVo(&*QUBm{n;HA9WFGo^#pKKtAb6vHaCe&uGJy1@Fg2Af z2!4)&ToL4yu3l4u6i}geIE2?!Og8T(%R)&gRxe&fvWng74tA$oOnC`i(Md$H{0e1x zcT1@8tE&AGJd_OE0kgx&gmHW)SwunsCES%n*Y2$E+`1*0y@1RPIg`zFCWjM6{7bt# zlIB@Wv*aV5$0_yK5vUPYQQD>w2J=Li-hsw&L3u?tI)I@tw1T`FSI_l7j`e z;@j907Q+dDu|47NVQg8%a?xi`-qL2?~Zd8Mu7$tk-@?ba;nMdz* zyC*|PZ+q)}?`X=$woj6Wq2N$6C>lXf(*7U~FX-WeoO&>IaQb+40PL0g-wn$zaDwbt zTgwjH?BDVn4N8$+jLI!byxd_@9)BJSDFb3>*m8rUksC8&%BpgJU35ey5DgB zRfyKG-?<5y#>?LCylk=Gc^e2B-)&~T`FyZ_{(SHB_;~Xo%Oev?P}_4-lDx>c1NiqF zlN=2fg-FZnY>i1X%k6@I+|OEx_nlxPVXW;GdFk3x@8CR>D`8up1q+4$Ws`F|#60s~ z31ZCt4a9N=&_c(2QEnxOG3zl9%T%WYV!j5u62#kXuaJwiEfBxCdOv>Cjrh%$J@3Nm z5npg4zR(gekLWA$ii>W<7h58JYxO#Q%Z>Ogf%rn>V0pUL<7rG5BIpWzWFx5ig4qGfu--cz`dSg!sD_$mJ3Ks&k0XAG$O9_d#2_F_|B)0 z7)}n0=>lHXh6OGLF`?w8DSd_VMaC0={v?Iaxc}gExaje{%!G@fn$T7NpVzzqoZ1HR z6v9;0H^!5`SY$ZgJuvX zJFvp;N0@`lv;=P}e`VmQ1zwQgwdRwSTs~g*Cvd~6tnb^X2Wwh0mubnx%}ME<=Lx@; zVn{}h4d4{~AkPYmml*~d1^_ ^1^^ANcT5hybhf&M0fPSR32Qw*V?_9j^m&a_k> zVX4I7;Yin7ywljVs`cZ|x0xsj7w@%Zqy%_gGX`6>C*q*Vu>pDd4#RQ17D z?}0hHSVaf7Sz-sb|I#jM8Fb7{|1k(vr~hAdfXQL0O=BMTScJl5Lt7}ha@c%)F_g1q z%*h^uP{7jTegX_wDyd8oZlDl5lMi~E7mttFxRR+jjxkVxUt&KBtVv~(^;bO;Y^J(H z&OxF53jejaYPYvmtXjdqQmy3LShd?d6KrnPN)DE4E5424zIp!qn7eImxRQefx8mCv z?%OMeD>+zjE4~0XX@x}l``d=!W?CVk^c7UNnnlGS!Ly-WANDr4OsIL?KyfhiihKcX zlUNI%nc*vMtgRR*uo!C<*XF8SajXSgf`hGE$+xj;R~%~}!c;(mtySA5)&i*&$6Cd~ zQf;eP`>?m_SgSZ#a9hRNhrLzDTE)SF+bY%qv6aSJNnb(5SX=Rg9+tFMrct-yq#)2mJF7O4by!b9)O$y=zZh$Xoi%vAljHK$xnhl#mC0y*>hKDkV33?v_CCEPdt&_L3png(Op)LgaCR2X1$!QNv3MWi8Zpqp#+tAQR}j&BE@S2?W; zdSubP4RmvzeKpYYEUnK!UKYhC;(V;>E18yi7y}HV>__3;NlR1oD?UiC04ttFc!_fb ztiPQUv+fTkJ^m<0!W~uVl$9o*omYGs!Qz#-IbmVBZ3Ro#*rscX7l!79wP4zkx8Ed9 z*QIiyIGfus({x=ESK!X*A4G>}gpV6EGd{Gb#+P0?jS_LoX2yrc)%c`+f1J{l#Bn(u zND}TlOD3%B`b@@!g$eaMulO$tW=mRl}%RI z_6ijyXj6qrUQHCnkMCqu7#`Y@3X?~5k`;Dwg$fh2slp_$CJN&>p=4AT-hm<&CT~AU zR@gf$RG6Sm6()Is!jkqu<<)l^{yFzuh|M3u!v;XOcn3Pjh^3Jz;>0zdvMH5%xz9jenvZTr)^)V#;pg*3HW-27$92Caq zMHVMHwgSq#&?`_12xwuPf}L_6f;!>DihVT5eP!(0aRqLmFZkbp`wlE79mse z0&_P2x6Su7vx3{kEzRdEaKNhxxRc)IN;VAz7(ttAPV#C3ZnQ$P3fdH$dZQV zjVcbVGHcT2;C;9Rx!wurao@|dIcV}wU|%tR7rvO32ayk9n~r17lv@}q6y%qUp9SJq za31SC-uzbj{vLj>c%8WhKit5(d4I#?(vzoASRDJk=DaE@isNg)U!BQ<8=4t!lu#cv zVqDWD)ZZ(9FJ8wJ*K2p>G!=!^4Lb>GP*F@@uZ7g?EAC%YD#mNP?8||FH(9}qhT{B{ z_tlO2^##E%DVEh%3sdWx$-JtM6_aOg+_|)O`!;nQT zr3}@_D8tSEgS$gHsN?nE>HsyPo_;;J`dX2H?&hsad$+3V!Qrr$xaAyVTOFQQuVVK^r?1`io>Iu?Z>OU$3=lp?DQh=si`Y+_%%YYXXYv3wzZsO1*eNKU_@5 zIBceKm=6@`FYWDJ5wQW?U0rs^=%%~7`dZO`4rq((^#uK|qjJQCCA_FHnIFN^>cxyP z`dPXF1{uZi*8rp~EJmFuZzKvM{_8QyVfxV+u%5 zZ3qR$@$9d_m)2_QeyN=D<+$IDYZpF28-4(<&-dYdjk)LnU!5QKiU-9Zyk8{LHXIwz z3MSyTDWIly%JFo$ke6)0n?!;%aC{AHGn~L9Krrz?DrN=D!niaEUBN*@@q7*JBB`$t z>LPl;CsnNC%o3tU{iWjZJ>XH%5>FY4hl~14`CORzXZ4(s5cGxmxj^O$DJ<*P>P{Bp z(Pxj&;Ddfrh0n;>rWnzLSDmUSsw#TVd?+4{1C-0|MA@Ihx_I1@Z_^cU)tK(hIgl3J~t>2=jZ0~QLA(EL#eUv zSM;jai9h@3|M)9k`~s-wm8wCn2QPyh4Uc<0kmvvTzrXl}kN#iyKaZ}($g8h_w9R9K z5VhDHE#YawqA5G|m5-e!itN6kq#KpT$KV!Bw#zZu)JHDCkRI}Z*J;5h8~w3(hOkzj zv)fYZzy}WUf(%mrx~9C*UoOf+cwGnzMF--^n3_-2OkO?)QRMo1%@rP+9`xpLKa$KY zYMxhP>htrYB$4CuilcbetY&g4#^hsqgOKP{%*!|WrB-D1f*Sm?Azyo{c{m3}YNRL+ zK@sIZ%?UOe@Ur4;IGGO*nNZFv=6np-=gaA|oK>?pQ#j58A$$i_$^I|@P&6-u^!*^Djicqf5XpB9%(>s{1Lo>NT>l72aY9(%bi?|%FS5cK%pW%K!gPae z2tEkqyIv@Wok4P5>E+W;Gf0{rLiHOVu=cW%UD&_3>TqdZDDT1xW;VK^0fkOC%7EygSD@IFZeCJCYd9g~K z2=&i+^olzL44m_pCm*;bo~gMZtlx^j+88{X^v6c8BX6Q1UZFjWdB2Oer@lm|aR zvomc@o492gZCczB_U|TY7h!Msymiq;gp?rQQyfEpVnm(9H7u^)NsueTj5>+>VBd}jR0F3b{_EaMU7S(mWpCgcRLlb zuj4u2g4gk zv$9w*(7X^5k3VKJG!=u^Xhzx`n&ycRUCv%hg3aX`0mGTq*?kNVBwIJJOshdULT8?J zlPF6B`eR4va0qAi%|>fbv6$xJhY;7?5RaA<`9^VHyf;)2ht5mmeFJm@cO>i(n5X|@ zazRn8s{bM{g!Ch~u5c9fj025ymS9Z>I|Rt)+&rbl*FoZJ9O zJ`ouw;+zvFGV&31yS>0pcUNYf-|sx)#5=0-Wi9RqFb%q zwH~aboXg=H5$(sORAS4^>TJ*~&w%1$aFCML{)L(kOEE4e2sK&J_HTrQw6v}ayzJL* zFeeu6$}kk9lc*m&9kdstRl0tN(U4xET^D^2H$O|a>k^Pil+A~Q0uX?i8VLd>R zY$B<|WM#Q6om6y0q}ki1hh4Ql@Ue*V+th&~SvJSm<%>A+4C>MK$cC|1TTG<->$I{{ zZ1{4dPFM>erSyeCJ@*Q;Ab}CcVC!vrSE0w9YaX^>yD^n_S zh)9#wtI~b9R~)i0VnqfFd`y zWYH`aILri@k4rel2t_cG01em-R_5()<{Q%i7t8%hBtQiMiTr(PMo(l{9S&l}ntFD` zz%CBq;Si7pnNqMXZK~Z4=3992C^4nLr6W9E1=ZBkW*}OT-;}lV1dPN06GSU{? z!~A%+6YeNx3ojkvWoYiI`%O`1;uv{aC|}HYTTK?$H}wkAq~e)kg_R+o{%+|yWXj$CWVSLeCww|xcNB|& zp(b-rW(UZVW~|6;yb7Im^|+2lfuC7)h=n9lI1p#R&*77u5 z*!h36vQW}m9w9j$|Md_dcVt_E-9PA*OV>Q^ZrL>!r=V`Fp>_l`K~V?FM4=3-N#HeLWi~jeGK8c zcvWwgZjTi!9|hV9T~J6YEGF!DyNhRm#e@Tpk#<-X+x2m~bJA{$qt$SMWwAX`k#5M6 zT_0XuUe_Bwxmh4f_COp)a|^}hHSeOInWjTTn&0xtr%Siy@=)*FbxpQ^!b;b+Y&jPN zWENo~^?rfSZ0n_1?{sDhJ4B=zW-_`g{N;ALg9OG5TVN)m4vbjjo&;Vk_<~ky1u#nt~nzy^lP#sbWE7G8xu#@ZH+8TlYv8m zVL+G3ysBQ+?NKDFuXt)IFreFkgtWpqE`J&JFRH5s3XJ2Xfsj-p*_iEk`}w9m-ZV=b zrr-lvrIU@0h%|p&Pv>HY^QVO~HW};;Ysk1wZ|y{FE%L@cD^A42phd!}{D{!$aBMbO zd$GW({BAHL7sklt`^L>IFAUnytPhE+7)T|oebQc=-@w@qatNlt+NVyeJT*6z-k#w= zv*;P9F)XB($nh|^zHZ(?W;ix;r6pQA$18A1FpOkLQ+tA1)1$yhRu&H_rm7*Z;o-PZ zMm&pGLktONCAyhlYddwL@G9NS6i`SkozeK%IxP=p$Y>l4$))rEZePRb0#9mZ$o~j~ zgu+@98IXRCp`Be&9Gab%WFqrzF>t63ie%HJ)gjetB0fWDjqs3SSjNVb2i4&4poJJO zEwGF&fr50xY@U2EZv7XS&C@|LWZE9AFimMP9t6pRi4;b9cYL3h!9mUE?sfbz5RyrB zf(@D3^0Zs87S*wyFTb3dxnkDtDcuQ9KqAqwEHYANR^OUKVw5~lU|D1a4e5PXZ{J&` zuHjBRIPI+V%RiR&<>}fb3}(~2AA@+S6 z0?^^BmesL}!?pBCND33FCOXUQXG)DbsI>R!Mlc{Gm1sKIcVS1aQi4i1odgsTOVqFS zZ7>!bR#|V`L;P5I8FVti(DEX1k!m&B(I zblZ=>AfZI}+O@%$i%WN}5d*0ty4RvP$S9TW!%8fqmT;R5yLhy}wA%;_5=xA<(QKy?(*kk&W#=B9rUMq4+#=3owl@G}OS z>t;w(vqwFYfkxtqsrc}9*uLn0V{R`!74K1I8Zy#Ov`@mv{%?$I>Hfb*@%dx#Cyi1S znLEN@@0Kyr!KdOCnZQEpg@s8@fp!KgXakd9^VN2FT0mGQ;5GN9NRI^OcssQ6K`L+3}NV+rUodyZFH6?6UVBs52%VDd3T`NCED3 zcvJ0{bD{RL0&35QY=p-}{~q2Qu)%EpqzE`lM(9X${cMjing`hkkJHnrxrv$B@!1vi zeHW2s1-fkAo7-HBzt0vsexP!8U!DIlo=EeLj8N30vd(ll84Jo512t`1tr?TL*h@MVv z3bxtRTXBO&5m+Y|VO>MV2Ys_U&TF_P;>6d4XB#?RKu4(|vJqaES?o^nc6E_58$=_x zOpLd6vn`((tyF|`je2h_^Kb?m2IsOC$TsS|hz^4@=}6(XL^*cdKc;y0fQw$}BEnq_ zYlgz2##PqCEouCAUhP&&U5k%>S^j1G%-nr)$yEGu!e8S$xw4L+3njY!>(r>Tk} z5z#FY^1NtJQ443Q=xz&}GcWuFSBUKnvA5VpQ|8hi<@B_lDOt?;)Jj7bw}aijU+?z~ zkJt~V;I!fp=+{EwYtQ)LovjB`kidSso6weX{Sd1YOry1z95VZ5d}<2@DdS@#vt6> zxNLZ-n&c-ZPlIX?L1KDMf^zZ@%Jr435f8_GU2S;L%8p}n1v?5vFlWN$3LdO3Pe*Y^ zdA8OjA1c)wdFo@tRXgO-tXf|;u%_omD4LxDpfcj*NS_h})ZDGR(BGOZmpj-iv)RmV zn&uU^e|B3P71@`T1VonKYtt+h8FUdJ*?&SKrLm-0e14fLcNAbGX915I{Qe*f%py*6 zucl)6!@cMr2%r|j{7_$2aFmat!~OVy!J`Hr4)Mcgbz3jzutadtUb`HZg6yi=5)q}- zK#d*_(FleuRvXiVpEs}T{kqyI-uajJ5n(AJsMQaLXa&nrj`KA%+t(K#KZ=X}>-$hh z;efgfDm6Q^hfG!DUP=vzM-2vfgU)*^;dL+GP&lA2Zq*zun4~WGqFM2Av+UYODyVmz zVPTMw+bBT=5k_!^b-kWfP+Y6%s^#oPV=A*ZIf;lo-C7$eGtG0>GOpnscG{`jo~0}b z#snL=f6|#x8p&2dDvT{Of3C%c-KiphjJ13?SAVG$|@Cx01{?6Amwx9IK!*fAzEI^uf+ZqYi$ zUcC2>CDdux*COPyhcZ$j-FBc5Xa%KTViz^+ATRRsKe9V>D3Kr|W18@yH;!AYo)8D4 z=gd9X?T1uO#y)1Dh*f-MP|!q5x(=*oOV{k&t*b5U&0^dNrt1zwLuD z?r^O6Xu%+__BI~@Lw0W2Yl@w@>O$Kzv>uYDh`Rl$Qe-6SR*rF3L|du-2g@{yLgyN>rE|SAvd>YjY=cj zv=W@%89-(AW`;<}t2@KEx92zYdMBG#=gBY<5qWlJ7}!~N11l`$`LXB8Fa)e0y94a` zgWbog#e`a|w}S~7vYW*XHWGW`184(OOHq#u$}S^FA|`Tmdt+&A>s$|}(a(xuWNJBYTGs7oywA&Bo5liEia(j!RiTc^Y+NeWLLIQ5g7w{0A!(b6qfbt z)dEgQgKW!6Ucrt6g+L~XkBDM()3;!B3i>F*K~8QF26;ZK*VW;;;*GQHiUlg5+e0WG z87N&^_sR^4x9CA-hnC!@U$>uTI!+u0`6#U~_TtQ(@hMXFpXQp_qiG=;vU5i|QgdtU zZ10N>B305`;%#>-9=BQcbhqIViPmio;S1|Pl<{k1 z2%Rsu0*EuqHgDX=Uw0q(bSFZg-IRuxU==wu%WSyKPzO3()8SEj(+I4mSk#Au?51pT z<<;BGTvrl=^tB)V$`39nO>J*S{z+udf=%r%Nc6b7_LVv*^_g8W#ltdtfIXVG{dSyH zXAT%CE7Mrrlv@Gn`D+EIu?BHKU6e`1j2ty_6`WM;3y&Inkgi!p!GzOpmMfTr7Zp`D zhG=Z|YX+o&k@ffcvp$?IU0zTl=)doqVPZKWi$g5P=bgt>)S9WG^_TB}et{YK@3TpY zDi)*-(|`LesH|{A<&{~&RH;2ytF@VbVx72xvxHe($;RLGw6LB$U?y8@2v-Jv>Eyu!XdE|w|kgC@QPQi=tNAX1Y*;(Br{rpAK00J1+%c#_2%9l{$R)?cE>$ScFsPHoM;$r_ z&xnk80RIewXAvH9>=+J(b*N(8vG;JO{j_I|-NGOrWgZ`kRV!4kCdrP4(GuFP{2#oWaREJg5}k6a3ay`nlA%5!w9~FLx#$-8I~yE9vQp)huN^;vKbu=*>#NMw+h7#&NGbU zQz&HSPJ18)Wp;H~@@?VSBUH>6nYM!!ilEA}U@Jnl6ke1oo?bq3P=;;nJFt`m4$-r# zte|P&4yWH&uu_7@cEMqrEG}|Zny2<#WJ`C4(}qmJ=4lcSIVx*9>^E;<=QS&Q1=n;0 z0A%6LjiF(^uHYO!zMLa_hzk9_yCv$RBfb*h?Hi(fUNFMFeB|Jcj-xu@J5g)s56hJ_ zhJjp^l`SqI<1juSZY;R6CBi{YZu392kGSCUNja;;=a6yS$Rh<~bGx=g5^=u;A=% zUwG8O9dAi9gI!?H_zhZvXg|+1%~}ZLpv)k*Lg02cXc*bQ+s)3atsRp#2mUgC1!s`+ zz{pzZMztS@)B&dw!=mrC=x-P7Mx_CfrP6-WKC;``Xre3FeoNvZN2MdBeRH-QPC6K} zQ#zvR2NgeureH@j1&0ikxl8qvH>}VUoV!e*A-_H`xZfOLkp*wApECv#4>|U+;XYz` zP8+sp$WLiOMOHst^R!s71*Kvkw`BQ+NnGgA+Ha%t<_ZpkwB#fhvQrjXwjb!cveOr| zs_gEdNf>0L%nG)z^1~-|eg$U*yFrnyvR9$~(2nh}lrpHD(8qQy1Tt~=Y)}WZOzbg1 zu(<5BT~^x#X)!Q%t8!hd94ssXE#Fg7uz$lr zkd0ECvKMEU)p2pNh26W%cLi(H6dW>CYAgOp*jL3U7Obt3c*s$ibi<{hrNk772MNy;!b^d3(05?wS+dVO_8n zn+8Od$}Vf=Bhvze<0lt9{tE80?!-i{{VZzkBCh!K&Ur2B0Fh-siyG(eqT5c+Ytev- zT$OVa6i=8t>|cqwj)LbXbRZ&6rH>}QvIn5D>{zgmreYztY>g7P=Fe86@K$}+YHymo z^y}HI=CIIeO552@ShRbonJWvnojC}yQ4VzqOZFI*f``o#1mxk)I;Z_GI4p}1$ev-H zKV8d+L_}prxDg;H?+fk-NAbu&iBj{5TVM|hOO-{j1*25OLT*}=0yq6!gOX9oKr(D_ zRGd%J6lN1Zkc~1UZEOjrpw;`WsDKO3NHYxNqKu@N_sn1doDjjvPr;EC3V}?No#f`V z{l30}b8?$o-nA%r7MnmpKFYod^Jcr6-Y_y-d*|0{=$5U`Kh0`ZJ_(s!fKIbj_s~-h zWaO=7!V^DuG<%JVTgLTuxN;{mYX)!ljHt{LAM5QwOwAUYCw9_Nb7fSuePad(KgLU! z293Q5K^d!vx4ngw7LRx}sy_<0cr+-qT@Pk(Vmr$RXJlrekeO1;Nkz=UCq}JcEvI53 zH)YgZzQ5Y;PDiMV?cy{>vf!wBHz>00VaauK;7R|Cmb6&NO_{HeN*#`OVmVI1`5GMz z*(oa$;=aje<;L=PZ{#<`V(+MC&gOGp(U?!Wa+ej2TFbV9{rD2vC=DzQf7D?3O35GdD-vZU+cw( zpdcGHy5YTM3&)Vj6kRyFDGc(FYeTJGSF6Jf9IU&om-RyQi~7&4^s$+)=*kWN^xKsrY;*ymEX?s5poLXF*O#F`K(~lzMZ+}nYgfhC=BwEBMr6?thR96CEPC&m!|%k zY}3*!KptwXy?*t@d~wsjEeWr!-%d zT)_Dl3Z?#|PW}8Pppcgw*>SvJ``-4|+#cojy4u6OlUn20e`K*I$22VRRr?-ryW8=! zug#wCT5FUQ?t5r($WP4=){aUCx^RA=Fvv%@mpKNr!>^_7rNALSIUZ{RWm{jvu`zH? z`6Uhs(2i06(Xd`o7lR=;waugy)xvEi(I!wm2#tNX7w!nnCVe!dum?4`PAkDgM15>n z6SuIH90IaX>p{49=x`7>ffud^5dwLr@w|t5CUXs@-q9}{&oLNsQzHpqzo$sj;E z@_0C&V9o0BC5xs0v&FqqfX6^4a@CWS0;5~o!xi)k%s~NoOb0w+%=)j->cuRHiA>d2 zj{k}ebro*q5ENvimcr9^Wvs@`RJar(1oBXO|M5&l;od)=%}{&)ubb_BvpR_FvW0v9 z0R-)#`sGax_jIrMD0*SPAVfD07%Qswyl-2Yhl4;Kztqk&nc*w}{0F(ot@aybZpjHl z2sf4HUSFKx$d}E$x%`3^gX~3!8MGOZi@?s;?n^vS6HL4lQTJ@3sxu)Q3An&_1lm6! zWx~=C*y+mCK(?Qr(?61qBwStMz6apl&HS*s-d3igzH@SQsY@LEJj7tJ@irlzIsEOoDVI;>V-Vc~VHE z{3D-(X)>E_G(E}pbGRz4O=gUI_Vo55837Rq|NamUc%|pZX8zR&EQYd2Ax@wzagn?`e7>KxO+TD5&W^B6 zU~IvVrdvzjkLFh&*b0ni!R$uF2~<5G(sh#+l5RTy4X1`MBR(rq+=6T*k*GxNF%PS+ z;!;zl5@q6%iW?x6_8_gnc|3@e9gFPcu^0nMCG2CjiolU((Y}K+_F>|YN+Mq1TB#0lgRn8BH+yrKHY-NiHOxJ!IMGPK zjaW+x2WTE|palpG<+{Al+g^!ucUIj|vkZPix-1V*LcU?ga;UlhP+R6QJk-WR&YlxlW;+&ns z99(XsZ(B?x{R6#c(y2K{iKtz(TT!P|C&;M4cSk4?Hzc$BDNVltomf|+} zdx&(8i{#zGwOx@;0tmXX&6@YLvS)@3Hg}ANWP4N-aXgf-Cb;{1RIAqNmtr?!`D)d} z^sv_*Y%ju=K6hw2dvOdTmFWGvuGTBKH$v=kDAW51vXR8E_*7$ur&)XF2V;Battf;D z6EgO9?R@yr6EaL90*21PYO^^V&6!8@MFUrGEKIwXJ9%{HKo^Y^+~ojJUHMN$zsOd0N~gIwn_ zddkqrLXgnFZ6ElVOBi^DdAqvpRB}~E_ffhbkdoV#2?lrXyVGeniTu?%iTOh*6k*-6 z@)#CYhAb;v+Bk#kzEBXQHlzguDj&(XB`<-@61Jm3A!bSHqp>092%t;^4atMQ08Pxz zM$8zDP9C~wq!4O%^}X2wHp`eN%nqY#s|*H`3X{n0gRAOQ?ZykuS{#0m#OO)nlyIcs z*5QPhXlsDwzIr1P>`x{J1`~|%Ver%ubrn#xUF}Y=9!Cy_jUGHri$^MC~^@za)EhQjf1H!V1f}oG|wEzeGTX5M0@r|H_sxe2<*1Bgmi32 zz2o{IyDl-)Odw(rIx_iTw_ZWq$G1;SH8~TE@KLz6Z^hm2so_TDBDh-;OU!O`hb~53 za! zDNYSRCK%x(C&a-w)d_rrC(_qG)>_6>^<{!l->3o7zIAnivjvrj^r;PySUM7kdP(i8 zc4kJUGPRea$wx9_4Vuf+{N*>RMS7j~f| z%ra{p9X(Q*he2v#Jj||GU`@%<<6*5Rga~!!;dI&dANI8}vp>4djKv~!7?x@mdf174 zrsL>gDJl@*e%%i)!aA%)ZH6!ySbk}IV(=h{LnyaP;pTM75VE@z-~(lR!iW))<+Y7j z$?$<9ncmOn^0#?0tfkxwjJEEv(<)(`XPrn!V8W?5Kdw=|?7oixO8XAGM6zdV^MHNUF4 zNwWni4HX0;ni~-_pB&o0mA#XT$4oX$!sqkL(+c+NZ|As|MLXRvhCv>#%V%CVZ37dR z1DYKtl-=cE2oX7Yu}L8zCpQMZUS001JwF~Kn`hid3NVU86t~k4ZhflOeAhyD*HZh9 zieZHbh)s2PC1NQH(SD;qIAI9k`it)M_K((ite9l`4jH@|ll<5J@M}N!HS<4Y;i5=k zF@u8|q!Y87Ylo0Q0HoqZeKji4>ZI&Q&LARIJkoH3N-B+g9S<*NCn1JWK?tPdmbhtj zOpEGxvu{qJNb8Vb5$Cup>J%|$lK}v2wQloT=;yBwE7{sQP zk3?J!gn5dUoIuXzK=+ZBJe)X0ac!-QNb}hi5qzLY2Qetw&GwlW>({XKmSv-S_Djik z!Vtx^f(#0@%;WRtv#p?{B0(Nvxi((AV5vR(ezoNlM?Rm}rDgtO&4&C9Z%^0N5a_cV zEM8%z%?^}E3GtMke8Xa(6n73TB>>g&g3q7_i z2tl!~Ov7t-Q+zZLm+fTGFI6Za7(rcgoPBz^s(9-+TSrHqXW*gj0uac-ZQceU>I#8u zPX|8K3>%~&kUM^W0L_j!!j0MPY7VUxiI6UN!bk0ps_{k07?S$O?U-kZ6lAjPYZ!HrKFh8iru=d~BSxTjNYQPnPf|2jT3368YPa3|*K?3UMwEG;0CbW>uSq&g6oJ%E+c>RlW>6cTdXW1SElvBd0^o&1?Z z%tInUx3jRDpf6UmHNF`VeuFKDL_IVTcDph95uUkFj-v9*A>^|K9NjKSGk8>>J0!G9 z?aU#8kVvpQB;4Dx%PlO`7iE1A(f(GIkVw?sw3`S8{K}^Ih-!8_4lQQGsRmFa>&`gH zkWIyF_AKUUbSW$nc5^mB7z2cs{_OA%e5dwgP#D6v?skBI1C-41#ZjLzyK*OkNaZ59 z8+oVT%L*=ye9gx}vMaT+&?pswLwgp(^wMl3HRmU=+8{gYoI?&`5!wxp5}g+}FyUFR z4>zZ)D={_qESD#9_(C?4i1mjObAamO?`5Zd8r8Ob}bN3FJWc4yly_bYa!=i6q<(B&PJRJi$W1L_G@&Q+GM|4i3sSH z{Sos*r`Y;6D#qEVyPS=gWF!!4ysp0DbFGs#wh|FAjId##w-pB~JlQQEIbEGh1XZ+@ z*E>$v(nv(WSj$%1vRXQs2pW3NXj(i=C$0&z8(nf1=Aw~8oGy0Naw+FWCYM_jim-7p z+O2N&+GuhyVv>=7qBqRQl-Jt{MOe4`i=>ae7{ARfR>}F<2t>Fzs$sGLF8V1O)lMdY zhW#)N5}F*-DC!@-AVAwtl4?gLBJjYH4YUAA)pRK6dcIappcN;WB@)>-g4u7 z%s|=23e-UQP)P?8(&CPCwF2W&*ii_91VZQ5u*GUA>QQHxS@p99laCbKGCk)Se5HoV zFKz2}E*HQKnj=hmMh8MtAwyETDBY#(#Yw{~BRWqcKH5QQbNt5H;)6h-9Y{eAPccpy zk&*>jfkHxV>zav{_$@j{NJl&WG&c-}vdpMuB4oPJkY1?VP$W1E?KP7oAd-v1 zIw*ke+R10euv}QD(2!o3hmRcT=_$#vz&v~w4=K81XF_67bdu$7&^m_BypRAxa-ri9 z^dYN^Xj#av9(5AzxKfT2!9XfnnRIm_3$C-2Nd!VNZcRLM8dl7Sd8F+15ku^wU?H_I z&l_BZuZLL~>bXHRV9s+f6cP(P>6lp5aLeu>7-KDqf^@XBisW%>fm&%$T=lgQ0wJm2 z_3MUW8>L&8Rk3CQqyw}8heLw@w1Z$MwC?-`zD6#40O%N(Dws&sZ4_6_sFL%uH-(I$ zCz{1w?&X8yH1f{kUJi#g3)2B{{K-ma(8|8P1%eJ8M{QCPo$;7vxi)D8gVu4|!Xct! z_#foTAbh0`B)6gvB1{U{-)D>UYG<#vVRhW-$q*?NVMAGQZ@|=ay*GzyxFIH9l(UB_ zbSi5bghDzJ3A1i35m+NBPtzJb>&7G^U|5aaK8{u~XZHbh>&n(LhhAw5wyEJf>pQr8 zYY(SJFb|KOm(T>GuAv5Q-*VpFy9+V6kDpBnXgh)nqlrN_k_hcMNrDd$j9!8fi$&-# zD&gMQpSB!y^wbv>h;X3`+dh>Ebo5AV5Qk7QunusA8O%(r;kXa6vS(soalr^Lvlc8z zIKs7e;&8%=St|%dSQ$!iG3@otG1hrvC{eKp{R?e7sM&7$HH=vu%@=d~@nNxF?X=S& ztWX4Ub8F_eS-sykdtOSj*~xwwS3Fc6Lb>8$AK?LO94$L<*o78EBB1l1{m5Tov8b-D z>i35w!!B4UxD))QUc;qYX8?DC5!?;aa?N4DxIVu34Theb&g-Q*O6~#w-r3;a^J@Y+ zwC9d5sr~zX;6FH<_8;_t|K{1?zu5==TW5p+Rv-9ppAG)oec-=yHu&%Kf&cE=;J@qP z)r4!416MxVNa&w+g6?T>u6jZ6KAL}z*}Wk6_q^HNl6Gq}+je7+*=Asuv0HJN*WF?( z`vLUd^jn^?3x2!sm{f%QMb{XD73_Q&dA3t*FU(W=#rAh^KWvy7`Lk+SE$j7>pK+XB z{MiWk?63o|uA!+}xoCD9fDcH9s8pa30)g zU&F>>xPs{bCyK>;Te2%EP-L23HyAQ>)AK0K#URj3S}r>kjGD5p)8T@^=yF1=A+qq3(ymgyB{?E(k!e`=rLLe6p#RiOKPy zC`iXurc6$Il>tni-ZV>dRR0dPjqx64m1~SJc|CaT=MoMHx)vJ~c*Tbd2Ce+-Sa2#a zkb+x;C?4Y~0_LzmRFrI$!ayo+3{$>lJjQqoDpNgpSO6s9nuQ7pSSkUnLbD}FTyQyc z@nH@NskudU@^u*N+TCcE@=RS+*9nBA+~OAbuDz&3>C8=C2-byzl-#x+`Kt4sLMq#Q zW}-rOf?qr@R0twc$KRx>OW;SpZCq#*`UaV>eK7F<$9|E-7mvS@BhAtFsRe~XWf zcRSG;Dx1GmI3(!iTB+S;V8?hGV(Nw<9ifXxa|u`Wz(54coJDDP1f-$m?=N9l@YRZ+ z##}UiBLI@nN}07@d=X30QbsV4iWa`qk@wL2(BY7v7QXHao{x&gjYmKluD3|JVk)ZV zqB%5mU2GBr$!JYjWITskG+22m+Jt2&NXLyHFxrRX>5?~DvmG4veWn6y#di^i^IK5@ zeA?BGwu1(T)xO#;n}IVW?eL_kvlocUx;@znO!jEB_8X4YJK>oCG?<)=M#R-@W0 zJ4Kk%he<>9&Q6V_;J8S{a|S%Du3_+*0c8!?exn%B2}1}sU+rFh z1H;VC8(tc+gB%&C845*6H`2f%{abVp=~=FQlr*Qc7|O&y{V)sK6h(UYAeaUZE_w&ElTctXy_WNn%Bo)ac8 z%;lEyRGO?N?juDL6o)9Ta9dJyXzE3a`9~LSE)wzFN|ZQfWmlr4?AD4B^5fbiE8l*i zSd7;sZZy1o*&O8$2h>AXjRjhE{Z2}iNGfXO2I<0cn8Ja{l52CsOgvSR9ffY?#MN1c zd}QKAo7|f)jdZiA_WZiQY(0L7pS7Lal+9=UJ)go{D^H-$>RWSmljy=_M+v<6zBB?3 zTI0RelPNy4%XM`y_sl}hf@vhzUdXOeBc4<_Y6kdqtPNOEd+b00g*T>qlDKN%GA`zM*GJHXr#%p}5E zyjt`%vZIWHO~ZG{8uzxrx!>Lq5&>*BWbJ7YK~a^^YK7cKBW8y>uU zm>ur(5z;%m5G3T}4sVc=7~aGS@@V@pJ4e&k$uSJ_atCa8@N(;PlnVm0XG@Hr$I+0b z+X|g$8Q=akFBN^nhK?k^3eKH>(aEvhDaJ}ic36It5gicPFHvI;Yhd=~xJ~PL_|n?e`3P3`9RZyInLeSDKH5Kt7$(qcnR8M~`UpB=S%j0xokYq>AMs z4G1merU&)NHmw{!L6Myr7#7zp0CGvRy;_m4;j&@40Bbpa1JkK;o8nEbN*S4sW)UiK z{l4A`)49&9o^!Y-s@`A0E$}Q=Y;)X)nN%{4uu%iv+is4>b-k^{?ey7`E-(Fe>7J&4 z#it855!EVodD<@5aEJG5yE`3uLomB8DPtNgSyg;-13K>-a1C=xc9@|XnMg%cw-BrS zZqdLw!HeU(7Iz?Im;Yv9iCDySXGJ<($dhJZ#je3(3TKy9XONlTBzApkuGp4mS`@$z zf)U$oh-qn?gN2#8*-<|8MKYwVI0Rz-2>Y3_@SAGCY)2=KtIO4Tb>vqBOzcN=!5}Zz zma`w2|EwF>K*n==wvczbUW!J1R>=KJyOmrHkoCU(Hq~$wf)U&;G!EXkXG>df`?o7| zvI~odY>Q+74FZ9L+$#KTLgBk{wOmg}2{S0D$olKFmgA-lUxmN%?44cbF_mt(J%aU_ zJ9)zCYMT{mQIq~R8?Bx%eRa6*4{@NjnEevqdOp@4(T*wBzL zX8T36F=JPdTUHAm0(DnPp1_Y&n7(=a==OkqxvnlnM@p9J8h3 z0Owl4MSg_Px$tU=3$RE&iTyNYA@>b%8~;~=w~Pkm-SuTMP;^6Ki68cpIdm|g!os0;=S zWW;7=MOemcvP(~f6hfX0x?I-k=;mY2=Q0L^2I>m(_5-cDE?eht9Aws2Q@39nw$<)% z)9_)N30DEHD_3$}r?hhcT+f|))$eZ@XakN+|NRIcyLz$_3;v^y( z%OveHv*p&@G%V(*CT5aIHZov!BEEH6R`X*shkxpOlO|3pbip7m)@X1aw12=joY~;d zB4OfkSyetVVG|7QO>LF+#92fk8PVOg7guJR<`vJf*;6CB3;T@~h*<7Gr1lfJ$0@sr z96rdblQSX_i%lEBgW0;dhJ!)Oj3KYUCr%ql(TLB=`R3JnDemXZmh*1II*EwJ%K4^& znL0QM$(*qjoxnD+oJX>e0n6iX3`4!1FHalZ|IOy{?%YPCA}U*I-ah}TX;{(C&dd4F zlJ%s2!$%jJ1&8M8oB3|FcqMMfn>Y(j#iG6p*UUjT`^yH#iX#-3Ac||s{eWr;=E3h#a`r@1Y@R^J5a;8W}7OVz2-oQ}g^$jfjNUZywSc9nY zkqOJIuUB8OXvi)R=q_|d9OAIG2yg0&w+pj}b9P(W%0nc#MN6v&M{k}&VTkebt>U-4 z6SLR%a$PF;Kq)mw3`%x(GA}AyJbyGA0Hq<0tGf+OJ2uPf?yTpNns{*z>GYR>Yj^j1 z3)rc0_^bc=uYUJ0UD|!{5iG+vzW415u%z7MmW_r(`%!Dk))i8o(DOmltTm_~<_xMq z5m^%E?pPOtA+iL_Lm1~T1w&;ajB8dtgq=m}`u0(Cg1bO9y!p6MIY;0=XRj)6W6v{o8M9 zSYvX$l&8Uc^Hw$DXgDGd;m~77JJpV(JjSFUl=Ild4V;OoS#gZVm@ou#ji!scjj1VF zq5WN7WC3ApoRnCh4>-uuRK_7Mz}7z^`tfZ35YB8MtY ze-4sSf46!;hVcqJy6^2_d)X5@OancIQ36c-{L$#fazlj?AD9-{=w$iuDC zRE_fT;q#bAb~uMRf#fs#vlomkTvuMQ*zXpz=XWn&)K{#8XGbc{cL``B62aY8at-{& zZt(!7U*IH%&tNbQ#_bu8Y;!? z0(%%&P)cVXUSGqB7V&8o*}en{AYQ?rs7!=*!)z4#@oPA8oS8q{LO=usw3UW%#N7Ce zec=;0h6*kTY5!o@*+FZRlfverk%$|_rFvh$IqM8M+g#~@w!#q1jp9)-GbcQUonI$7 znSg<2JELXC z24=X~|BIO++ZHl%2tJDR%@$|#s+qxsx2r9zDS&NEi`j!`FX|_szt4w}*SQ9g>|ds& zGDaz6G)O1I56;5ygJqr}AZHjpgxi)MY~L%)5T$l8#CQ5JEbZkM{ryfG;ye8qmiBUs z-tA?4$1`-BHDpY;@0rpfJbj#6TBzi_w;cnF$t+vp^@42sc;01~-fTq#6lB{c3JhCP z-Z4ds%w_zg#KEpa9JF$CQQ*+gsu`Xl0*dj>``_>c^qxG0?~C!wd*1NO`~AskTUUGY zE~}a+^9*vk{2t!&_H>J^Wu}5w1l%xpn3+@Om+w*yKY*`@g+eWo?nr3cLL?4)@olrW zs1qjhMX6m8f$t29hxRLx6AJOoXM_h^k`D&hw{$$TR_Klge8=1O8|_eKcX?~Sav7SA zauux0-s{okattu{4&*N4qagP_F=DurI2p)Y#7aT#ed5J%CppAz?9RuG5;2o&788rD z+*}@U=ol@7Sc_OG#yTG1{5{o?@4DPV zi_??F%5AAwX=V3` z6k+WioQ186a_(p8{&ptWytti%?3|s$n?6gsJ%L(mT5u<4t>gEi$C1w@K0SRM6EkEHS(qkt&A1r_L5b{}j> zefqr-A!G`_XmAxy_uXAiSsnZGFjg56QiYZ28&;wo7^{p3ufodo4KYzcd}nZ&IcpTJ zGq9K1&nv~e+; zkcruke>J(m7|HKcAbNW!f03?=^UqWvfD;3ltAoPo<@V<|z_Y+lw_uukv zTWw(d75SEG^H=4{M~u`@tN1&w-A8@3!=}qRUmd>N8mFp!?@!be1}JQ$udb^rp11pE z3(p4UcShJkcW~7St@%GW~LYc;9R07KpbkJsj>4G4?0pYONqGW*44yGZ9fSk%<-o z$b__2BAc{!W2?g^FlnXfHgQOp&)M2(!<5(FjM2!oKCx7tnLtK{?)2agKlmOm5w1b> z4iI+x1Oj0sYN`-Ba{pGMKTqqe6a}}%EwK9r$1Q(&gkxyT{x8OKWX;fx(9K(6geCh2 zDGOtPfpfQ3ukF^YnIeXEd)_U@*x(X19xAqntu*gI7`YqJT-ozY-Urojar3O%Z$zHj zPl|IhrWOPzgNDE6BR)q}Pz&dNHMO(|;W;l;9%#}& zw1wZx(#{8fr%fWE4{Z?=WohSQ!_y`~;!ZJ=>GZMK_Hj8iFhF2eFc>@x0C)UeL}_yg z_ie}{>bH}Lq1aA(_>w2dRxO6~@EBiwAdcY}xynM9+>5GVfF^aP(@K+m^hfq|l8;VX zXtXrjiXW!(-%K@aB)*Gx^s*i9veB`oRZx| zSFk|u_uwolv7(&2>oCfhRAD_hiyEvb=k5xOawhdxB7mP%clEw}Df42xBErAq12{zz zjuyQ$D}2h9vL`6ElO(?6NhX@v$|&FDrfhPo&o@%Vh+m>7^;42|Y0r9cPl^ccG9r1+ zo6#M}Evs7N=5I4UUrkNP?RF2;e= zk6-XoGTFsMa2HMTns;%cK|)@ASg(0oYI1`_2=7VR@<0nGnye@}8rzxNWTle(5Vj1E zE!*@FDrPD(vhtrzjawt}gK`+UIzHZj8c1dn^w zr*XD{HqI~@JnFdj+s%z^!Bw7lWc_y|PYwtnEcdjL_b%k0Z|bGs$`7c_s$~U78osXQ z)$8l|4$i9;y}rMhT4i-(b(M?mFMTl?p`+*}o>j;0USpSzq!;PVrj%`C`nB%9|FNX| zJValw`47Ca`YR%QbPh%OyT&O(Jd$XT5RWWiy8&xOO-=|xcuy}_9)JDAul?ND%>S@u zl4!nCh&7yI$P}2ImZkK*8dxUCJTX>GWw-NlG#O7GD~`nX<<92{`;iwpxHS3h!8f5P z8Gq|XUKHHYT4vb;`idvn=61IDnxP-jOng?1E?3zwHH56TG1Ulh#y z1f!=8A2cB0%)iBz)i%$*0zKjDRUo zGPSxP2zqF-J!n%6LB|CnD({6&b!$5pVj8TZ7Xn02FN6=g7y2tAYUpz)(z}*MMMzDZ zPquK8T@5!IuKB=v$zPhrlD(|Sy)V-be*u6dN_H}Q7%WmyNm2~ zB%@i0nief@y3%%&jcC73UT9&K<7#Iag>Y@(@CC3hQPDmtLbSUB25@r6iymrtUXy>EUrTraWanQAq;pcGhp{r$lj(WQJ;o5`&PBDl*t zdDg?Ty~cd{LSf_i0ZniCf&6))r3^mqkSSO?V_4=*V$B){#7=Q zuCQ{vXu88!^Zz`vLtW9F-RBXz0N$q=;*M~3&nd|ttE zFZ->c#2EI^mak6zyGYDLq3Q&>}iGeAM|mDj7EEA5v*TODse zx5IH?!5R{NcYA49YJfvEm3%RJLq*=@%Fiwj^}ape$2gUh&c7+_PJuN*QSqgB>xaG( z-ld~new6rqx6{!l6O`qpop#4chqO!f3~+#_wa>k~|6q&-XgZ*Zzq`q5l%us&!b)># zM{9rs9Ibus9sO{Oqh*qy&VKh(S=i6aQrQBgyXrk(2s37~T@%{nEyTszBy3<{l9u&V z1?Sz(>(|wKe#K9^8#8j=CA^ES%pQz;I3}#%ji?@%CNjEuco&VZLs{?vnYvBgH^;2y@Fp)lu9Vlez}0TClUX_isSz@SvevZ z_5=l(PQ~bZ^dqlSn5W}jyPYjghhwwB0WIh{nnu|}`=ip2{121$>w(y*YLD-|*5MYm zZmmB8`z2NWUyG|O;Rfj|KlaM@b@B6k4Ko~ReapL8K^&yA^1atOEcNMj@da%CT2||3 zTR*i+e%jc6yglykSONaOi+j5Rd5{%4tkW&R$_&_Fq0-ZJ$=Rs#5=YszVbXy)+WMu&IzJssYKheCvI6T?-ksDxF+Z`ylpH zw1Y8f{YbA^bq>$#{llATyRFw9`u{)Wd`tPKu!mbBCCLYNSUIK#_OqtheWsPwF&pjj z5WO^HoY1*BMNo;Tw_Z*W3eigu`hoXIqRr4aC(M#Ar3G_xn;{F=OTi>p^jcz;GoY_w z;fC29S?|$UthSsytqa$7*lY)bWMHil}(J3@7ne{ zD|eH}$(_(H;)si-DY2Nxy*7u7m>9*$i+PCP9yBdJQVmz6uqto2Z+6wSxy<=Xm;`_o z8*|2Z%)Nmb`Q5}LHpo9Qr@uSCU(f2>U9&&VPsi2zFoPB5^?JTK%-dgUzKMPEyjTyw zP7QnTMU@k?FwRl4pDJS!lV@Rs@Ge!vtG>)81~xIiHn1iO>KCN{wEZWGy2%5Z-B>-8 znkQJIYaZ+Ec8P0pIZjqVGVo>0NoPv`zf&9T1Hp$_A*TnLB{7lF$;_o4%_Ng2G6n#T zHizJkrU>`^v3%(M!Dr{j-1DbO?NkEiJdt6dDToZ=^vC}{EJ_Rut#ylld)|pD^&C%Z zTF@@j+i22+<+?29D+g<1aXWRJv@5Hg(M zU*_&GXhwO=VUbQ?yIfvM@00jE6HI`K@fnmIRFLiXYbc>bQFjE4zKVn|e4)rRz>E{|E7N%p z`b-{+qrt*)hU(o9v4w`C=U1zN&CRdPbSe2f{_fK=cbZ5*pZziq0c4}QiLNZ91urRf;)}Ovls>IU&Oy^_HW>r z={W?*=i8mx`nP;^s@5;-?V;gY?1$ICy)a}9+hFTvg|@^~zZIM%=rCW`uWNo2)@{zM z(I(eU**Wfn1#-qFoR{lLrQLREJn_&MDjEyJn{asmoqd`Qs_>tQ#DYf;-AjhS+CEb6 z)9uboo2u3uz5zEUzT0+^3tA4V(@6R=I6bvqe)^fpe)#Z4R(?1Ahz;_W1mJf&Ho*fuZ`Dn-V=FN6~s9x90`O!8W_+ISGTm*Z+YYokoS`H7{V!xcT#qAM{F$kG_Ld7+0%xy`MeaLeq6of4*IPdE#Yr_{@H{a5cFk zcpz<=^8M>Sfn)rR&Bd|anPZJ!iG51rQ+^ttn|{m(Rgh8X5$etAIA0z4$keo`jAbJW znV0#S+t)`vk~}RhE5eZnp70Zeiu;CTji-|eg=c}Hk%Mf8`4{(gDdHTv2aL=3W>`vm zcR)!lNIq4N?OLSSr{=C4*elJbPcO(^cqeiGs&761BhdvzqqML81WvXQ9pBeE-zPi1 zn&=*s9S5|t92nwKpVpgpW$59<#ex}o_?;!PD6}SF2tDYt_r2L=WyH0(IPRgH`O<8L zWIBxRza{1O(15Z*FUYi|j8oA;hiPd`5sp0E+8TG#%K`T5EvwnZqvs#CJHwgvp5!9e zOCb$M|C^MI3|!*m@6GR(!tbgkOE}btB^8$-@Q`{4H-XWSjqK zcqdM0fmmpS-wH-BBl)KL6U_nqLCzFn4!~%}gdvz4xRKA>v77Tk|EAN^6!C|jKl%_l zuRDH!-XG<(j4aM%F>|vg-tjK)*<@fiJYS!#uT7r*5PGnS3K+5o96Tk|Ay{Rn;G?Io zY#2ozzlKgeV>Y~OcsUV~RyyMTJ>sUvx8`iTYONH`Y&Tx@6&DyY;dn^t*9awr%HW~J zwl1&qt@O1BXF|<@{jndmpBzfxfI?uNJ)hI4;mz zK~bPP`Dk{Uo!dwA=8DDCxa{m@B?uT4qO4oiq1XUD6hX$LG};HPwAq zo3yS#YHh8;%GJ26(h7zCS+<#G)*#KT;L(as&r;dtKt>hg4~4-`uzFQ+LC zw!4>?cz7|>G&^}l1(0qG{rN$AD6-F4ZiyUy$-is)d`N=EpEEuPiKH_iT4%%YSn7yy!SY*K{CR-N|lDf^Y@>Bwqw@Mj;_$p6Gftxim+~Ug?{&ZUtg_mW4)gh2tO(tDY&5} zO5sJlJS}RWe0Fq)N=PX01tYj(_E_^0W^bh;tfKSFhtFf=5;}Xq2<`@RsJVUyxsOHK z#|4~ig(9eHgHX_FeckL~&BNv}`*E}42fSw6APGTVfS^>Nmv~6c_2v>14Yg0?oc7fa z^AOwt^ekq7iqSy+Jy5imNb%!1hZDs`THZBp>ixyXk8GBnJ$L_t1GbL5H~BBKcJ7t# z#}Prz+;*Zwd{~#7AYtX_KI7L-SLOJ<^&sxa^Q}j+(nK^PK+wlsnte{uAbd7S?{|x2 zPLhH#=-iG+>eR(ey?C{QNISw#5qmcF6F7b4`Pv-P#fR2jWs41I3lXu2T9dq?01sk( z0V{Ie3S$b4jFrSsR7K;ma-F?;Ea9-cWj!3SbK@Kdf%v*~{qk(Cr-;b0+k!7(G2^Gl zn$MV>&w?JVA3KbQd-AV`Lw4Q%#n7a*x)L*+tciU>ST0E_f6|G}wLCKy@Fh1I-ofAw@C%05R zfpv8_?CQnrBm0Nqob1UV3AsH=jDkFZvrT>_vd$th+N&S>P$(p#V>Mv_B^bF z)O@}|8wFhC+ub%fnDH@tk}RyefxkY2Gi5*99anIpBnyV~)$3ghP={`tTM1XEb*lmV zg)u*$&0}2T>yBVfc=OQqae(f-($^WpSE`;RZT6W)0C(_$!Nq ze>S8kmnd=x7<9bSxg|j`U%dB?`0Wk2X@zH9_c3P9r?b z?NPXjqP2~m*rSB91G7X-YJk=Y#;EDzDU&StL`L~3M7NWPszCnUTIKxHdLP8yoO*3K zYKs|+48cgXxdPa1HEe(U(EP^Ac{Uq4abIu6B}#f86W#Z{o`f$}o87uj($01a#?w}i zk-XACR5dq#7b9KS<-g+zJ2WJz)K48GKi)SdzR01@W&Wv5TS%nqj`JjCXVyXY0=l>? zezW84Q`uTXBs`biY<&x%QU9$bH+S<#ui$8jzV!t6tpUN&Qhv)xZn%x#dZK&M z)5c~4*Lv=%gn8Sfd18KhoN6Eax97_x{m5XBQF=>QPr}J%+v8zovv{-TZB@6c3Q8wfKjz0iX33@7#XSm zFr8iOkxa1jeo-F|=AIMdIlo5d`d~6S9~;cBsKeqYCFe9T=U3&3ph6uPUcwrMo;25o zM{wvIE3t>(5hR$6P{b2J1-gPsz@Y-ME3(711zlk@Xc?di9}Wwur$jBc9hA8vdqzq@ zWi&3R*1*tuuIX~0q2&pn0^c9z7wCaJhvI)wx*>P>SV9C1R7P1Xf|asX&@WDxE`?}r z$xeb746&FAsx+Y7)MjTD?9;qit(PBFu&`tqZ|XVqb&?Y{Fngsapf(*nN9iCZ%Br9> zM!vikO&C0CF(AyG7N*QVm1(?k5<|7UOTQB}&Le^VYVwo*rQgBZKjv^#uW2359-EMR z$GlVZ*XiIBfY(U*DHKjk)BnA194e9r`cjdg{1nqgZ+G+q;6&JE{nhK{beO&He|@-y z^LCUZlHJ^lnUP4%s7l_{@ll74#;Go&fwhebGihyOl{F%=2Y;2)LvTP{I)?sKU1AM- z51$cvV?5C!BX4D~8CJ6d=Y@|W*j%}&Veb9$?Mm5rn>}~DkQZVWs82^DPSrXxw#rnQ9An>Tc@26`|Vy@tWm#am2Hhw_o%1YY}pPU=2hyd0VyLnDQZO zAF9WFl@G}Q^HxXyn50SW4^j)U zXN}f=d{D=Jxk$+Lxrpnk1?+iq(J)@9bH6^7m5u9H!KW8?DJzTB^VT8>0;om5-gzqo z0=c$<881yfZ@WZ=M-7xiF0l7;gl_EKZoxH$a{q8`?hsB{PO!-*T3G8JS)lH9l=|pN*tTd}zgN`Sv8= zs=K2rYf*tqg?ON77b|eO}ta+RA>htHW~Vuktm!`k=AKcVYfCS36h{iKdk<9y6J8 zAf)}^;q%WwySiG#fgh~3m)*;kWkLia2PI8eF(1JqP_wamV@ILPHfvaqbhWx>jIuja zvy753$WK{w?fG?4dpX%{hMGh`R$W%RySRaCq2XHY>R6e9$n{#>?N!EVDh%>d>PTxf zn?kZ~{o~2DOXDCzr7aW~O0&~M_jws|5(0TC$GKTvPgl3~5)#B>b%1pntQ2Ig-Le9@ zGK3J0Tv9g5I&iv;R0!myY{9cCy1-Yzr7rxF$u8_dLYB%-QOZ&V044adQUoOka!b`j zRxen@4(Id3;TG3?Da7=eC=!o+l=EF%Tj3cSO7hQMZ;=iAly#K-<($n$eKhA_@g)}7 z3ljSC@$%6=sgh{A8fL`r4P^ZLZat(jmElAxdK%YfX+bC(VXUPMk7V^uS(T{|)vSa5 zQ_gf?9AzX@dgpCPDC_M!vve&=`Q1ltooeqGA6u4P2Ap0SsSxN}cS$lG`0*AL6)QE{ z*=p@BTd6@xSxvW<3W2s#Ruy_%b=9eq;{DX#%64eUv@7P$UW0el2vIdl&3DFHJk?h+ zrL@af=c~z;LD}F%Y+Lx+mYV6DwfRrtQ7_Bt3VM8Z^F!Nxn=hgNHs84poUO^!E*B+T zrY2Kiummf$EnEd_JiLdCz~F4OO|v|$Ygj{Q{`J)UgY{Oj#kb?A_B;~OR2<)!(S+Hf zaBPvyRI9JVDJ|I%A)4r0nTf7d2O!c^`Uve;&zr-st#v+rr1Q*fmmbJdM?|7ZrP31p z<9gqi1DdwWYP-18sb&ut8b~#TiDZ>prX_3tYdrprg@JMoZ%cRwVbBhIo0~cUecf3! z72I!lC@XDR1;Ew~tR%wtAS$GsNR_znz;V|e({S9acJ+F-t!Ib3?PB&E{>8FcwwmzY zCz6DJ9^_*fD-BEjw)xlnQc^}$X2=e%oLhM4F!ggdXgI%qOqIc6(l3PG7(^EVYim( z<(&xnALmGPRN+!CQc&)nGp|0sd-0;?7tB7Mi0(upurd^8fM4tuPW{i6<6W~YRwE*1 zepNcsQTiQ5*2@~sA=y8N0^dz6+ZoRg>%u{b%9V*mYI|_er`xNBMeL^&-9^MA0VN9= z0+;Qbn^4_cn?~NYJZ#o)R)<=hKFaQNr71`X zPLv7xn#4!XD_LEB3d5kFhU+*1P#xZK5mr_%_fX>EiH{{h**U3uA}Ui}Hp6{pp?NgTATyp`B}aIApSv0`+xjp5#OP&$&3Q;aQ% z)wbEJs`c!F`wJuUN4@L!jBO$mBqc}Qt(=9KE{Cgh;T*}?!|-=TExSOqr=3z*NKp3X z9KqA#<_@@-KNzj-{9HHBdY=&~6-Pljl8`k|YY}Ld!!ifB%QN&C zV3~pYO+5@^Qz*C=9;Oo->C1T)K_8B{^75EL|3z`S4C=3+e(mSJX8wmf<+4oV32P-z zaEi`6 z&1JoweQf_=luA{~90AFw70OMuzM3y=`(XA7{9S1(l&Vk?P5XHVKc8L>YsWITz1gygCQ z>)7?HFXoFIIHdgW>TdSrCqI7Z{?3?X_Zarfxk)gjDA&%m6r1b0D^G9=vQl#Yc`3tb zKuAqaQafsI_SN>)+#a?1y4tUx^A@&MtS;y{?!aaK?ZeP*~0A4cjYmsN$Sg|T)NsfSI z)M|CttPY1}JA2;#$>@}-RwV`!k|X-Iciz}RYWR-Tr)PA62QvnkR%hgGe z@RQ~ZoCD^@7sBUsHa&Z**zkBrpdx9x3P6&Ewel;|&w)F+R@>DvkuqMDuGtRIluZF6 zb#+pQIP1Bww{GWBlR9ZMB$>;^aP84ewM&@w44F8>>r3=vb-ig;OWmGlAR6KICfZyb zH`VR^5tVpIRGrTw5pw|_?$)P7ldIHxUMC<@%@rlsf4F$1Tl5S?NuVLgTzYy|I3hO`CB`7uMtO6l5b+F^K zU6~%(?DO_d#;Vj{hr~ca@~914UA}I%^9?NcKFt2G**-OYVVtu2N_$r73JlUx?ewNz zUBWuJ+0WWP8K+Wqk{I2DV8XrHA7?*n|2z*Nfq{g6(alC3<#wD0xu#3IC~{sM;S$@+ z(-FK(TZ&d5g8W(wQg6-nt@-s{908V{y1%ZswK+Ow=~@j$5CtVa{}n>J&39&91Xvgv z)bIzMZ30#4wldQe%;MPvV@?*)HX|Lmxbafn$;l6GE zfDtpe8`Buyg=a7u?E;l|Mutq#<37CO7AB=E6Uf}ByWFswBLyzn-OLY|G-eM^hhww( z?DC5b_pl%ahGba)XP5stsc{;~<6tgt5P-sEd zZgIjSOS{qQC$KPvc{W>J^`;i&58z{Ndp;*0D3jyzz{}} ziApnKHsUdK+FrpZCp3;`AHkoH8V(;Ws~udOSIB2+`Dh{6Z*e{g?|-@l7CV@ht@mv@ zWsI`3v&pFLLO@Qx*|q?$PNunafOBV}X4i+gpuulR!o;7PI0X9@2X;HN35Kcp?JUeK zZBkyL43v$ExZf2+et#T-lN93+w=qqI<4{S6^UK~=&zdD~2!Cs^B31-S4qkw^Tb!vi<1$&2rB+fzx1so6BasTFj3| zA2VxOTr1aD05mAc^&T$Y*dAfkt4Frutp`}}zX=;Zc!&LOa)y=tv|(7H+znxg7Ij05 zJ#gLSQ>;Y&n=|O=a0cpz>`*T^8ctiAzzxKU$cROEB zU$=te^X&oJLI;_+&5o}6mUpa*J2U}0NZ$l+EWd7UJnK*+29{hOy7d1)i#s@hI@kajbF_fl z#h14LY>GQRU2UIMw}}G%AIs~nVGh$?lQ1~=PnU~z)$RQ9!LNf3(q0$g)pzq#S=V=z z`F~g3=NxR1y8KhGW@t6qUhEnA9&Y>?4B7URH|?RAwv%(Vj))sJ1yI=2jQvMg@ZtZ? zYM{MA!pg0Dd(PIB);{w*%0{V!zrQKRRs}=0q%}Zgv7*QxSvGAV+lOPeQ40F`|nC9;WMsOGd zG&1H_r|8m?>>55TW|%nXCic)r%rCWM*414jP7-^Vi<8c2S0@m|;qN$@)#bi|lk1+e ze=_4|r+L@zV>0Z9KcPH?a~Ws@hcxf+=4LHI#hdQgBOW`I<8l%7@3lH^8d!w~o7X?Q zzJ`_d0?aQg>yXm-{Z zi=T86A`nZCY z%K|#5u!?MUv8&!}wcdI5iUPaIkVv9F=>kE!IETQY?RH)Tmf(K)`ucg(tl#6ablIaS zq;WKf)I!>GZ>A)x_lvW7f7#6n5VN-Wpg5}!GOPd*S-C}7#GbGR&Mf+b)u}&Q9dDjA z2R`onI#;$jTp5c_STBCj6ONq=qZ5Tg&PzX#C1J?qvlPu-PY@in-g3_%ojTh?)gXJBnys(WZYPh`Fgcq zz=p{E^J*yy-{1ieDNRygNS#bX5uC^*DuhI5QVdm_h=MqgNmLXG6H*un6La`wwLKQ{ z4wWXoL!bHds4^+xoq!g5hd%3OQo=g{E%pw5=9#!vKPK9n?Q2nJo{i`vv|?g^7};1% zIH>TzSWwOMuStpEpu*T=K{YGCCc*E9)t!0m9EsTsFYG*cSUr}f7@VS^Sy2Ba>h&Ouc3eu`%6JDojwJk35agFw;85V;W{ojs$nzZY zNn(%CMPiwN9;Fn=iX@W=U8Io-=urZ3=p=Qx`6nozvf-cIW~7wJxZQ80#$NUbibePs zO}!-HW&gWJ4@JyBdr)070%M986_(;)aL@=LSASI7Er-c*s4=-(kts+iZ+LE@_?sOI zFa^h~Gp6`EIg*2ujy4J1&ySilACMl?{WL-(qLGVm#09Xr+Ds5u>o9&v7nF>0K`c{} ziQnkMP2`0l+@cKek>o~lMR3!{GFgmqlMx~;W96coLTdV0j7f}1O&~*pk<>)6Uhwgc zQCKe`ERc$Ng;MtMi_ag{YhKNdDP>NM)Xzyr+|X+MxH`e)UA2Ao$YO_7#I4yhw_P68HoI34|d> z`>;JchA|j3#)X`ze9+9QAf?|=9PK=4fh(}IvpGj0aM|lJ#NgDXOPffuipPG{;WhZTn zM^KQ!#-BZO7@Pgnj<+ppWin#S*en+(X>cs`f=)(s3#O8Z`UaFK=^*H2L~CFwnW!N^ z$&fZch|ixqd9-?6BtE?);T-?F50Wq%_T;??`q_wazgCREb+R!SLZNu_T$$@1Qz%f7 z1V;HOXc2+qp`+Mq8Ih=yT8nra4;@8X3r%7yv@@SvynM>4#4+tmBSae7$W@FCKSvF+ zQJOkI3apin(4jOvsqX51ktUFrB*8rbqK5|Ilj^HGKP4%~UdA*Cg}jIfN6YXLK|h&K z9Q#yzQUntA5hYk(hvR z#uNgo9}EHFf-rP|cJt%$qS%b-o+~mFPNAsioeploO+~mR{pGn4$8~TM9xTEw=}OOy z_%!qdjQwf5N4RuMUmzB#cvN7bL({~BKT8l(-ARcNZ>EU}XOT7r2TMX1%5_kf)-4r5VM5zQU1`=?0q8rngeN;~> zxCFM%oY9!s7h{~D2$iIiSA0~s!wVQav*{;6aX*P77o4QYU-MMM2!OR@g5j7E03lB! zM$pi+q2X=6zp1Mw?C>`u^?*Bt~*)|V(EF* z*3KT>t4!TkDFU;VjEG@9+w*F*hxx49Tw+sg7km}@n8jmKpyVO(kWyG7Y!;5eRn+x9 zN_t~fO*3f`8H&`wB+7o1m?#O*vt&6itoC`ny44r@k6GUQq(nOcMjG0Jsmn!N-mOu2VHLSRJ@$4C^9>=V>02#stMk*>EvJ?FJ zpgQoPIwm_gIWeY{uHr@$3nOujoEVo)D}=20qDWS>QY5C8jGBgqWdt~;VQGX&JTsJn za701)`P(df#-x3N_iY96+a58r1YXpzW5})=i+6;KX$c5<5etrn7D(_By_(5Kz=XYR>_Q9X6(#mI5P>2|RRJijwfzbV`cTC?(>x z6eZ!d>68?|QA)&dA(LD@7K5i_GKmo)9AxF9Q$lC$qW5W`W2z)4CjzyXp?TcU9=q5y4IJ$duiqHc9;3n}1B!#{hxVB0 z@l9<4adDCg@7*F9;tMx+OIeKaMJq>v-&D8W7hx>au!bih1C1FE^pbRJl5>RCtLcl( zE%s`wA%k?Zc39A2-Z$6Ev1Y@VWgaL_&`$Cgf%*w&=)HHQ?iIaRWM$X?BQ- z#8d;imx>#Z%FR;b1`Ly-FX4F7b)6dI9y1vlNsPEjM6{l}r^bdKdB>a)gM*pTOu?Ux z3c?QQU2G#J$UNk<&+&F0R#e91G%rao^1u7KEX-%YGnr1GjWAFvCdQ?^)k59<`R-6{ zAc&a8W7;h!NCKmLw04+Ca$mqaKAue@+Kgi+k~E<@C60^q!lJSu=@}fGQy-3k-IzsX zip(UrfQsBgp#E{aZ{mT6F@fqO2_F7;AE*(!u*U@SXmG)ylNNr2E`}2(phx2f4xJ1j zgrK!sSk2Vf?BdaLbJb@p?r$3tw3<-i5A7B28h0KtCT8vvHe3hXabJzVT8XbMc4`N!x?#Cb_mUvja@%* zn3;XZuk9e^{T#vNZkz(cDGcPm+n5=dc-+lM?PY*_*~ zzjm0Vz%doDmn8W3-@U&&L)#p#t3=V5QT8B8QVJMoq%5a)Ae32YET>kK!pUJEr_M^? zUe@Qi+r{)ij+X;5>x>yPiA4%4#V`1%3aiGHEO1|oe>zFr*IavN+?bhc=BF`3n?{K6 zjFpR#+ieE;_&#RjJI!F{_~>lP7&90l!VFd}nxUJ)eaz;C1Jsp5q2<|8lS*yAmX>f? z9F5UUMM?KLdv?NJ~IB%PKn+5A^yBLk`bz-cuS~hG7 zO`8N!im$}9N!CL5I(^oeW6W&ONWZo>~qaaFQBYf0Z!u=c-GtHPb zua_hlMYCPsY%fQlEh%%?JKRa)FDFs1m7o>W>k-2ec<)IpS`bdZ=-XGZn=j2-?OQmN z=`EfO-;0&V!lCW2+Z`&nTT_a_(a+4pYM z`@3-Leq41d;A-g#_B8L^PO@n4#F&AAr+#0UC>!B{FBW-9(I$%Vl$0G5EhV;nB95|P zCBNY!GSrwTW734J*fVdgUfd#!P2#2)&2wXR>vCmS70Qa{7*_^S!eZfpH&>V?#Xcgq z^7VZloZrDfB>HC~8bRiSmMFisKlZVKNaSM~METn=AZc3-jMfWwsm@zHU%wAI;i)kd zo-v76R&^P9>V4OToN(e~a;i5yIpWs1d$urz%T(S*ThY=QQ`CbfQPjf&Z>kI%;le3w zBJUv^(w54w5k8y3CUO_DA)fljQM-wG$~#xMY|P3LL?<#6z9VmVC-x;Oyjg^3(yg8- z@o!(E!qG*DCOz(n64%F#`lZ{l3$>uRxq{pgLA&H*w!KJ!!twI4_j(6Mxh#E# z0tH9;*mI0C@v^!N53oB=^p(S{T)G}s7%3;1I z&$su#duL_Yi2N~uO_Vhp80% z*@*5;D<(DoT@oC}@5-HHZHH^=;dmnFjM?4K#R+Eoq4&=Kh9VD5Wf&zR%8+EF0SrZM zn#wRrP?RCbQs0QO)QWo9v@+?J!qa2cXT&0fx8oPQ#|N?%UN6Bm^1NhAyg!hwh=3Ao zqbQJUNhHJ#uQfQ|_A;N^amJ^sTQP$?W|b?ZGflV%gsxY8NW@iFd#&yL-*1~_;;$i~ zRo9r+dMHTP34iuBiK|g(6XSk&m?-5kwp-ka5^M+tHd@1Sbnnvk%uj{Ovk}#q&V!#I z8dmIk4sb2sJ>SnAFMeG+65{G?>YXv$w#Hx9ov_pW-k}`#`mLSXj;+58E!sXdrs1r} z6alTg;Y(UPb=(q_S1?k4j_FN56apnh@!0cIlDY{vahDQnPmUSa6!HW+@zj%x=UA-q z;+t(4zcKYE?7if>NQ^)5^2_cm!LZ)%?f!MOM-^2uS7x7&gC0ZQ1k=& zP&$%`7d%?eigWv@KgaZdxj11T{?PkQX)K#6k{Yw{KK`3D@9;A%b7;ABH!dm>H zw^kzIMaKj%a${Pskwn2SdhRKH@c&Wwu1}IA$$i+tOkZRsBPoF(2oNA3kOVOg@oh?0>KOrpua zhiE3F%w&`(6F=!6(SIS2$neZ?508w@$f%y#{jlBBRq4NfaGdzar(#*Tb8jTxKMo5{?X&a;?VGkK$I#^GIOTxEN0fM-2gMVAmsr2(i3^pmd3ql ze>TRO{r6LN)0XCEHqM*9tQ6j~rTLjz-gNUVwoP&bDVv3lDJ7Xa#*Tg3`E(>d=GEE! zoK{NsS)LuqkNI{sKc}q{ewKgTd9B{R_EDwG!7(#Nu?NVGrO13dpQ7Mo+a#8k$5Lc& zo=;KmvrW-*v^%IkNB8IG*acin$<#?=jko)I*KC7qm@{XvalB~QSndn5VSbyz#&MWo zV|mJ*9@(ig_Hi?TeHK3{+G2)*wlL;2`=icp?(1WhTYmz-9ZxaCK~13(C-Lh(>=+8x zgR7TRF^Rju-nm)}_Zi2OypBXh(fNEjOV$n&uyoo3V`;UE(Y9pmBLPdNoiLWe?S*+9 zZp}*U@lK-0IJZ_#z=4?ypuT0((<^FuhHXT+m6ZCU6$aiIs}|Z z46g=z&%HfVK-8z|-V&0qzGMV>; zZ*(nm0#|0kBwQV9I$SNgx<`?y3kFp$*Ip~n%JrC~9Vm!d5dYknEkuR+HJ*wS{4EtL z_Cr*d+v2G>zG|sh4)Qlc6Yk7IG0m`(#9Y+JgBQ`(^{15`4G2QqwMFWA?OLvRrRdKT3C5$_^E2J@4WivDre8W`Lpw_O2}aNCvnYsaC##KzYB;o0*?WKB0Il8Wlf-Zyun5$u?^ z*G7(uPwrUra&SBl$w7!fU`FikcDMUo-t3D-w;qldBPNY^l9)NVzjsb?(-SB2ZoVdb zV&+RaToC4?q;N1)-09y#e_?}t3j$#llQ{Jb!1lTcM$G!8=5Z_up*ZlH>c`y>DDK#dsy8=rs`I+@Jn z!Z*4E*1vIqE+^k?ip@gZ;n9@m$3wAtFF)k!q!RUa5}&^j5uYId#ya%%PKAEHp?hQn zytD3KUM*sJE?XF5Y=6|T`%>3KbbQqIabw`moU!|QNvWeRi(Wj%-$;nW#Ihih*;x2S zXX<{%ME|W1tFkK9t&HU-#p>PT#Ra>%DP~33pmZ-^i3xTXv=z2iCEtH4nmD!<4grkg z-}6Bg`USqnL%G>6jFB3!I|c~+t{0a%hbw&=kxfRSFl9zPBZQNAt~pi(9A>yLp2BaC zZyyzh%bH$_786c`(q#=iOwbqofw8viJIDQ@-rj5K?W27Eg0$7Ecn4@IRP+F6`o+%F z{Xp0z-0gm|yU3VJS0teWBs<(;dp>*%-kKho`hcrr}-jLF$AH+MI{Cnl*c>E@)b{2iPs? z03|-WUBMz@_iLS<@z&5fTQ@mP64PfCTOovkk&BiwQOoh=Ad3J=m+P8%ioR8<<7&gRXxzx0)izzxNWk1)-r4{NJS)~}Bzi+aAUMsh9{1%1h22R-Sd*=iiv zqFmx0lYDpi0ItF$1SV(e0l`kw@ZclWA8!ZiuEcLxyrr1=+o70Q7jQyw4pS;-erOcL zFnx&=D)J|cB9QpEi+9fMzeh|w`Bg^U$sv@wzjjH+T-$8Ezsgs|=8zNY$#e2lmVl2a zsJpp2yL-;*cqbo1-aO*eDpPeehiB%X@?pKtp&Nz zt$c+39=nY{QEk!bP=7v@mRd7k9=01ZXVCtkmxf?O&u6Lh)Ph_+Tlol0+VitVXFE7- zkN7vTJsVL1yum;MRCfnH(#Ow~AOT#{HV8 zfeQ5TJoB8cn=uP!Iy-FhR~r6SQ$E(R7#Z7Z&EfWXJnDk|8bX1$&sZ0T4OC0V7D}|= zoL{W>i`(t?%nOS)1~yH$UtSig;|4ClxO1s4!&sf+A4sO2{K8@cfSX8$`JfF+hesbV zyE`8~BjhJf>PqB0(IML17rSI=c9Dou)iKoXR8;|k>T1n+|5jW#!A!ysg7n$Bv{Mv|kXwNr11yy}U z;=^Yls^)7QRh&k3LsuVBbap6qjP0ug(QC;L5VpSAarSpc`rBqB?^VHwr|670z!>&6 z9}H%HXY`~h?m(mE&1*ZMWk0PqH&wlL)5hf2UIF0&(u4=v+24mg zgZgC&R(?`Fg#*%y{7Cx#6n&_J5KzGR{s`mu7dWwCPhospc!0b8)sD6~Z&7fokXEV$ zX{8k#qS~f3j1W>8G`MZSOhoAb@9QAa#Lj8BCo6|c1^K|K~ehxvkx3QHKYwiv#t^enV(sq z*H%Ekz+=c}GRHeyE*dDrr?qQwYr*;x?F_lsJ}sZy3LlSkO4D}qDkVr_UCgKQma%## z7rljvtf^HbH;bp{mv{7;0VI=r5X_(`#BNRaHzpYIO)&%Ar;C489%v2^E_>+2gcxYi z$bs7+`v3;LhuSbsXagn~@y+X$j=cGW0Ecr1T2N9QB_g7k)ZvJ??|v^4W-7ZG%!@-N z7%jr%kelX&&M@Kk@|f?-MlTCpoYm*`=5DoyI3&OyhngUNq30254>3Gn>1sZ+^nx|+jVcq>O1srr`wwE| zp9>ioC0H$u2*a2%bqap{!|LFJd?x~ui9=BHF1qdXE=s<5D)_=*aRiTEkTspQG!dvw z3e-wNAT#6GE<-*qs^#T2Z(c0!z^1cxQ&!-^oJHO@L+0$HWUW-olL43jse8vtcbs=> zSUyPKN~9#kV33rV@#ZQ#D)K$-K-fZAN&-E&EMkJ0Yz(Ah2JD>9b68eMmvsi;gH9mQ zN=FK&+~O44e=qCpwyqX7b-SNAwRy}6dzl-|_7-_EOjs{4W_i#gatC}NvK?k&AxGY>5MmB52*jt3N{QW2fxCjGR+eOSZ7A!_rx zp}u4Q+7gMlX3@W;wfYh__PaAdl{`c=E9@=A2heEq^GzWk2WJEZ)a7!Kf$M3r>qrRk zIi99c5#6=8)U@VU9OWURnI*L>-oNd@@7hV`;S6uPl97emwxLj3zL1C1mM-HcHe+=h%fZ$m!Fqc?)eBL{Wf9Y?q-a5g4#>1d@+z8pXManG}<*uiYgFlJS z@f4McmT>b0vXEReCtsjEL^exsEa!E|#mi&6;1Hj&qxCdplsP;|VxwyiYCW6JsY(no zr=de0?IU-`HmB2d_QX!@#PE5YH><^UQ^I&-adzCowB5}|`d?&J`%9tn*OulCZtV|6 zC=4sJQ|8s~xVU@8r^151;uGtg7(3r|f9wWdW~ZO}0M2?S*ygXGHzd?n4u>_;QCU-f z_qghyjN%m?(oeoA!VxF4KrAF<8DUjimF)0^C?m9TIJ}XLxZmB*Xerk1Cs}<#A}=_@ zC)vLfC8H}0Bw%>~mI#3N_qP~&X56c^M{pA)lM;etf>sXK-$*ygA3yz%b~j(i59T1V z@BHd_e(X~->GJM97y}&M`m%ZXvRJ8i4#Y9R?hN0lSm{8P%3Sd-9NzAS4ZdWRU>%7Z z^5#$^hIAw{NEn7RX(3&S2x;nsJGGjweDz*^go!0TcJK|pVBrDLNWv7==9@aa{2YRH zf}evR87Y`eZy^KR3w3q^xFi!{O)D3O*{wV{i7B88A`#RqSh(LFSx`47y^`G)>Kd26V#5)o0bp#@y(eYtjt^J5GI=T`O(nRss zfzub?_JhVmu_O~=O%$uI{FEOxCW-}-2x@wxuYU-rZ@>CUKWOoTNaKD&e^qJB%qcvujLpnt3_0NV+U#rq^b{YvR%%_%j8Y`M>t$JNYJYN#xUfI;zc*c3S(zDzzTr{|z#$s9C_mjfIOo6HVM zmdrt;AP1AMdhW1b4K|&^X}zSmorl^puQvpNGMgR`DVh4Gm(VUmBYY-rec;k$G6o5m zm^E$u*=)I|Z?RYL)@c!y#34o+5m}j|50KTN*zUn!#5}(kOUMY5xF8PFFf%@e#+K&) zuZ9R5^m{ug|AQnC1nmLlK=fUJIXTH_0jDh%bX{4n0922xvQ{0zY^_98h;}&DISe%^ zTx^HaijweK3?x9aezhuRo|lAn13?nFk}pHUd<{L)KDNVAf&^$SAE9YGZeX4pHZkqp zBSB-^F_9>eu@R9KO}!1|>#`C^#im|cpvcL>LrSzY>@RaRb2RxJF%utJl0c$GKy*{Z z+N*tq*{hf;RuGAxW*IU029zX1pA+2fw1;w1t$nse*dDP6ZU#wov9UDXj~S`RQW4rL zrC?u@H4p9y5H$A+MgnFXkMDa;mz}E?mk#g$d!Q-bNKF^+f_+0&X`~-e|_w4SoZ``FvJ^rf@X2?@4>x$cc0yT z+(po{?42{gR{!=*w^c|PwAhzri(TX|iVQ~skOMFB&b3Hx;Z7bntLz>UyekkZ+~EFd3gM=c3f!Dq|M9M06*WY=Dk z{QFay#7iO8I$nXDp?+?9!1#^xN2fFnfsHi?5z-l9QmeUy1y1@P^;>Q=67F;}NK!gG zJeU#;B)0UbRG&fq-D$#Nkic}y42tVa^s`e;bUkR6e|8$PIH1!_;fUzeH>V}=yjts0 z6;=gdC%P)mkLwKoOghrvpQ|=X^?(hj8+f!+)8l3LadlfpxonFFS>4%Q9tk>4ZJ9UL zOJmi)Q0qRjm-^8$ZHW391){hych1~$&g zP5KYhn?Zn_roSMdQ`|H9Ll<}5i0Sq4@1!ly9{r(IAKD~!InzMierYC@uyckHU)jzp zWp%Z=$;{_O;o05RNYEj@M~dhi{Y5##xtO*#k(B<2b0d2YYKp3qBl_1gM8e^0}TR8X-*_n9-vg1Ca~{$6s|nQT8WQSaE^@IrM) zHbCr#e0@mr1}Fedah~va=fOZ~)gy+tzT94erUrb1CzGXC57-!0J&$&31{xzizE|fR z%33CCj55{~B^gVMUeA;!2EE4Z2CY&|*fswjrD~o**wLB~az`Tsny}p$=_@}y-cHtp z2LQ(?KJa)K+gSb`_4Mp&aZxwduwe}jv|W5yspBGx)qBT$V-^VP8dxDn7li!%$-W*3 zWoP1XPZ)COOl-B|9zNt1yyK-?!+z(DQ4QIlZf19Aj=JGNeflJ?#Ro+L?_*%lTTr2vva519S@!z!p%WrY4Ozb5*c2vYwk zQ#Q-N0~^@j7})3PXq;}?4ToF7GxQkJ_{Kpa#KsH9ll^TRnIk*Y&zyr|7KZE>YS}XU z@8aT+?KXLpEps@(k+>zesI8M_G3@>(%SSe*${qgp0&WM(oaLe43PnpNbTq9V2>F?7 zK{`>QHVcQ_ML6FxwZIn`8+x)OSZWeIpVSSyQUqEfy=nE-U8Jsx1EccKu+P^r7 zqn^)q8u)lUE_Sa`k03beVGe~D@We9Whchd zlBj6pU>4_f4@295FLviNk{lDEOECDEsRA@0}#SO{jEaVwQ_`&$mp9N_A^=%f#2_1}WGB*ur8wtso0>eiR4Q?mS;NCwfY@k`8IHLg9Zyu1;n_FB+0GH-Xa7v8t~HggWWNf;%>;D1Q|8 z6`saGLT^hQg-vKx>|mP`l)5lgQNzqUyVa*i)x<4+0wmHkGq6-?o9-HRX2P&7JHX<8 zV#w?SL&?>6sbeT;~Nv%CjWu%0{yZ7d`x4n}Op!fW*93qmc` zV8lg1QV%^111xo{kNd12+~0wNF55qjo1X~2RvRCYab!@%_h+f-tL%cW-BPP(6G7G9 zo28mm4_>EBb>qB-Bv2(jtEWfDs}ja&mm4@;9xnbgzYP_QspiJU;39Fe>Vdjl5@0*h zF2yernLdPxgvDY=dKg_~lTB3&4dEeCaqdA~!&*V<3%A`b)Rm|B`%qY<8oH0gMg_!} z_6hNYN2-_}gNww)nDz;f!X#BphcJ<_I7xC*?k|gGUlprj31@2F)Bilfe+~sqs!5V* z3{V+ywtZNXFL+YTwvR_gCCvIanihw}NP)CTlpMz)BY81Ju5&nWeQ{s^e<*lTrN|*X zBq|oa_Jh8_NHqZSVIe_tCm#(1`yt8c!L!V$IPaiF!a-tUZeABP9F+%^#^QeW+mNeM z<>oQCNL-H1j&4s}vTU;09Kb`O;#}|gxIKsUg!kJYL$*yd*E@`eWW^yaeN?h%sv)k7 zgyg;=mHT>H#!SDeGnVg!r_Z;ElIcijq;K~Bu|}&VvRwMUd{v&7x($o8#kn|->QZc^ znu`lSB3*xwRCNO@trsdt9=E>^wY#K25{5?l{vdH>*xs@SCrN{37#3;!gT#IQj+q+Ek^%~BV41D@2~Ui&Ef;=_n{n_D*DG_qXJ^l z>J#FNnN&sV7+fSSPAK>UNYRpNLLr1XNO+UOqJOxX`=R+c6e6hzhcJ<_I4s}~`$8hs zuwV!eiHbv3{-6{BsfMgREF}0e;VwwIvC@_Lt1sAyA|&z84p*Ed@ua_u_+q zNcEdybF8nMyn2!8_pMiXQ>x|0U8G#Y9g;5|sn@>dqY;twX{vxv!VH!FFrD(g*!#P$ zRdJgYD*g3zN=woETd!4NWQ58-kd)n)uMWos7SO|{PdLGL8u;m1N}9yj_)$0;(f=sVdfRz`#|Jbz37Io4SlBA1@=^p1 zR7;##8zB$PW2=*DVr>FEsv*8~GKJxYDlpYcr(r}SD=v?xkJ=5&HgT%u@qRQUDZUw_ zk4Z6*>dlypgyh8P3DyK;7o>ayA_2G{7m!Y0HRrM6d1eJRt^#|ibs<0W} zhxr?cvgjN>sHnJlXPjUu^ir+fnZ^K>5i<~+&|Dnq#nbl3Q0S$~K*NYgR-BjJ)#ZL) zSBt0S=Mddg)0`npBrMJz@`t6MNHu%t!$N`|NR76E-Q=&}s*iqEHB4ufhiC1d$E~aW zwL}dzmJ2F)XO4oBXRdBpG30;>i3Oc&rAf|8RnSGyK()lOdxSh+#gVG)o=5@J5$n?t zve4Uh@sz4QodAz&JRNF1cER$j%?(c`)h)l7xG6;uLRG~rCTOxzl6|3=YKuuU8B|f+ zVlqjp6rQQJm_!jl)x^^Z_J^a|cKUpAhQAEe2B}Uf2%{otvG#Hw_r+DJ+G`jQ$%>;t z_faWAQjPxnXh`z8l&|1enraWHd#Y=2?P;CG^ZtYP@OU2B$TPT-=L!Lr)(T5|k|pyPopqu=vRQycLTEFp;pBxUSj5zE+hgaSh=iQQ7s3 z=t*7g!9s%H+qQYNT@HK=Tei*7ab#EdolxU8k6Wu^T!DyaZtniLJS^Thz?PZwg~29Nt}Aj?~6hI1}8WN{A(k~j<&xcH}e7Bjw5XACgJUkfsVJsVT8RMA0_AQ z4Udku!vT4lH>M^|9zb85SIZ*U3j|+VdBTJNxKYBsAP0$`wBsM!)+tDfA!3tu7=$hD zI43n}F+Ob44g(}jdxwW*RpiY;aS)q;jbJw%L_{QK)`mgs>PuzSaocLnqbk*b8|5d( z3SMEt3Pkm18b`K$eK@(s*Lw*HWyT(FEG82sUxom_u%P1C*ZD0AZfGSe8}#57`ecF zB5VjOmjyNb-;9VSuW?42p3y-?%v{irBFBn7Yd4MH8=4b%!Xbpp{9rp)Y5$K`pcn#m zLn7$?kPBKNmT`Sj5!}pHw0Vr3?ZdXXX<8wbh! zNlwPGN$_Toi7Ye#!aFgtzm*v2Q5cc4o9#VyXZ)hv>mx7W=u6Vf-<#abC5Z_7CtBm1 z3*Yi{n$?3hL~z6Ra_q+3|Fye_?my+$mj6>C4QhtT^I?pK#}=AMZxH5-Wle)1+7}>5GK7+kM)*&t5#S?gfajrL_r-yd z3Y@|QmC0RxTC+Wv~(loQ?dS7b&GBNC(| zE{nI-imDwQZy-oAx{{C3%;u}r`F2ZO9&K|iN`_Y$NWgSa!G6tvA&B(J4krlJGSGT7ZRpHSrckUzK0oh{!jcYh(Rg)!8B-5iIAG7?)lylbeG+2UL z`8;KuEpV7oA22^e7Dk|iO>qHh_b$r|ItZvjFGd2yda(oa`Y&}&?1uv+srh!vSV}#E zYogwma=cYFwc^}(19=1HQ)t8S2H&6tn;UOR;4q`!L@ZmHCdpRUMrX@T+yEWGLi@=6 zs@Xfyx&8uqgLHc1$Z_73a2~qQ8t2BjC3k?I^{visX3GZ4W7aomd^Iy0q%C+H)83@A zi(j#To9kkbH$Y6GVaUl{0DOa*Y;KcO0*4v(CZey*_#&;?H^m@FB48~;p<~JOx~8wF zW9JZ*APHH?_jsYH^VKrnA7DQ+DV3tVUyfwl{HdASj{zQlUO7AUc?@sJWT%c?%YMIR(SqRrCEl86`-2(l zD@hW(MnH7tcQ~?yfX8NoB?ywS`yPr8A@PzQ0v|heLt!F?_A;R^{LE%7Q)A$hkQDUY zc7#sw?0wI$gbN*@)#0Lp%&s0zZ(nb&XpRVO%L)SacQI){77mXttr$}++v4v2#^=vc!pDeQGvv11KO zo=B!In2-;P#=82L_#`?SL6FD*VtjBm@WFb@ZfgEZ*-g(Xl|AJZs_eZSC28zAC0NYgCqg4Uw(25E(f zJPZyRgw7K1#ig;c1RzHQ?{_WoB*r!^#wRgx&!XDO*oC44P2YLWfRqLCHsGHnKQwQ!No(YEdG*#_$thORl1aHb6jJbfuVC%dXgL*m1jS;NTCt zu#KJ#Yh}qc&?smGRvWa>(LOo4D>TCVEc$-I35NYK&BkUhIf#-eC=9fN;|utZnqh`7 zlq@fW-U!qe>U5)Qcc8OWvA#fI0t@`eV~SO=e!I!jgr$)skuWIe4q7Y1jR3I7U{%tP zh^-YnX(A6qLMC(^v4S(aau`Z{LWjb!BaKM5i0wB)jtJks^`^}e zzMn5?;TD@JTTwE)!a&7o^K73=(>#qVFNMB&(!O$4=4)d8*uGK;lF*fWRG$SQe3TX2 z^F%AC6@gZqhlasIGAvEO(-)hZMq+fDGQvDWG>)G}U9qWxNbw(ONfB!BK#8 z#HC#fd_v6~n{SmMNoOVB3%w-qH3NDnLoYjM=IiESN!5<_wUXok?-i%1222HuNr>vP zsiqYr<0}lbJnd-Or>Fs9I~pU)OQAOc3;0)bg+g?|zmgUxz;!vD?kwP6vE>QTQ3rw~ zt(ANG?RPCohF2I!fL69(75I=JIu%>lcGA2w6cRFF4e-@&`xa>d(G5^Z zk{JL3qC1Y*zD2`-h9f|f55JED*4M-JP!)9caFjo#5#85Y0%bBi9@>O@L?88?#3Ndg zK%zxJbh;u!f7T7)360nl5mcm)PmhVjXqvhx>G55$X$s_s6nuww!S`uo#HJ}FNJj31 zllBg3`sh&5g%7d4gOMc>Feqqtnx!vNEnriEM09Hb8%+-Ci4C2RicJo!C=Wbfpzbb# zBYl%Fhrm%fs8=xq3?#r(f!e!C+F)#Q)(e|O{S^YD)75MGnQT{Ivk92k)oYeK9}|Oy zd}yw=o~JD`HdosMhZ*%P)Nv5oMl{1g;szq%Xl)(h@d=+%Q^d!o5+xf!VR$_PAHqxy zpRSqVkxrnOjKM=nbft>6m!U*W6T4D{NDPqb4aKr3Un>yZiO7cuT`2iz5Dv{&3B*H- zYXmOr6#^WZEf0u?uEpHB1^K8oYnbp6b$@ijRFWjOYXn4RiZ^+h0rdq4lCYJ0gl3Av zM~M_yl04vjoO5(F-m_PPM4P<(KgdRXnVs3(e6*blQCpCX zxb#K#x`2CX;VdxL!eUob^x`C&_gF}VwzYNfl1){{wlytDq@WNGox6ZGw0IXtyV2Ao zJc!F(aL8806=Cl>1Fb| zAJDNj%MSgBZnNT9A8U|~UZCBRvvD@Id-Cj?CEI3cx`55DtNmqDvK^4I>7o}WIKKa| zvjd&=y)5#pa?i&~v9rFNG>J-wgdU-N$0e*cpcQIt-=QT*3^W3wGdsX%^%^csB`G}G z4k*pTqD4X`v|_wW_pZ4WC2^qdnwcYRcI-WWv?G)x30@<3)K{O;v>013Uusc4{5~_# zG+2Itguvs-G+2H?00!BpHBE!%7pTgyX%OUyu)VT0*n|aTvDWskCo>qRI4xJ&52^C8 z<%*Fd8NjSr8{$B7&pZy&0J&w?kCAD~WIm;ah%K2=nAZ|8SU^+IGzjGIS2SRYiS)nkIG* z+>$p)XV^IEjaowEC~;mk8f(Zn`t=@RGtW3$-XNXcI8uY!9cgVnuR(z{FBgS`mXTr@ zKBrMLFNT%4AuhdH=zEhk=9*%4WP|3|S$bQbmyp3j`_R#%ErFUScC<(&21pGXY7gu2 zmNbOs8LAcNCP^`-q?tYK%E?ZeL5q-lva-cP8S;2MQq=CoQs9KVUuMiNORcq{e zxaexFk{fd0gjtaQD?poKM-`7Q5{xiWcY}lK^8j!UJBkkgElVWPq96yBK=#?v9CSi! zmFRY136$7aA9qo~60G{lcDE_$qLAnW+llkhX|d2g%tz{JcCt#ek6Kwi8s76&;P&$V zkPp&Wqcf^4(aVRQ9P($$x@BOcU$U3g8eZ-5n;ti@!#yrlX2+1xcTQ}V)dk!#Ql;t~ z)iv@)pvF5IfF?nO=e<{{7hheEuBsF zTAGJRi{xhl$G{|HqNRD5v`EN=ryciR&G@vVWr-~4t(vTt+`|g$k{whU-Afu_A`63q zreGxs++9MK?MIg=N|H!GA^6ZMb_q&6I!F@H6#}Aj7gWWXs~_)zR+!A8#qrVD)s7e9 zX|%#b8U_bxut~N(ye*@Hhi_biA-xQUk<}7eI~xuB4;-)bj8N9m&R8 zUI~(s`*AA`xed%Crdf5PB}w2K0Trh$PCr9ck8N?SC?9^WK7EP6PGo)@SyhTR3xjOb znuS@SB`6zl2@3qR!)0MsG}P76VFrREODp-PG7B^Ki26A;vu%_l54c}(cJ@`g;^NU) za9*fykBs^#mEs^tR9qpT+38SMqr1y0Vu!lDI3EwXpn}ea_fJ!U#7_BI@&@Vj#$m~) zJwCx+aTuL^v?z&1i-F#uMfk?N?Xnrf7U4#gmqKp@mWyh7vP*QAS4#)GY(P5d&Jses zev7`qjZO$klBBmrKy>DM^%;%AXxD2|KK$P7uKF|=&rx4Y#=xu3#;*D-9nVo;&c_PB zSD*Dn_4;ix(G;DKL6B_wxBY?lHud}r%fBrqWZ*QQI0c`fxCgt3X6d(H!zrB2mhV=K zPQSf8*#jLKwm~{U1i1m;U-RlSc7mvrCUY@J$b|Kh$b`mZbT8S78{*Q(C!JITMcQ-x zxMgA|%x!@(p&k$IOC+C%9E+!ryU>1NB9le znrHZ^6FAIhpml2r>i#yno|w_PQQiO{|7~$-;$*kQ*#d_d^(JzfxmJnox|`9=jkp0i z*8V#=q}2wwl>P#FgLHc1$b8ggV=4K7ya7H64V%2&#MDh>gwWh3rUVW%>P_U-Y$a`6 zGb)GDlLP?)4dNu>k}V0Dk%U2%#|YL+Y^T45vt4B~K*Mqah!fimm6< zq+(m(Frz*d)4e%Hf^_g`?A{zI(oYL9(N;e|7A;UI)LfU5$%4rYQtORI7tWy^ca2)? zG7lngfLDu%7Nh;zHa~2SXJ=IGG4yAsOD*G#U5c zjM%cr(9r_@gjzhLM0+28{6K8)BcDECA3i{5N8yul%TC6RogFo@L<6)as5|Qg3ifh7 zx)%UJ61tL)(5zh)aHNdS; zKoyiH6TweAKC}qj)>j2Ie|mvgY!QgUL?#9Y&B8(vXz-gDqEk>S%R|CG$eNBixBI%G zgO1oyrAE8-WIBpJQRd3-~ zKavEZ+d?l-CeooHAJ!Js^Sce*(G=Ylj4&S)g@ZKc@E?4oY0#QBcKF{(8z9mgwazwe3$^WnQ>y->{O9i1vaJCMl0N9xs@W6L|rp4G`(QK+9%WR0#LoXBDf^ zV$0@UoWQ03unSJwX8SKt!^E~(OWq)z-Z-@5fakZobd2pdj4YXlMv+5BKj+ktu?@D9 z=Ho#sNyj_w?LKU^)eP^TJeduC+C>X3tw9%I;QqQq1e7R| zfW|-q+#~8k*!96S%Eo)7ljo(1N|21)CuiD~ z!xQ#WOL|L?(!Y zOt^#0=QNeXI|#)Map{u@D}9BFo})|OR+dD=prAom=K{;zNUTP8E+9xm2l)ui)pu9e z#jCGnc?hU=e8_>d5jdF1UGyCtnJ7)7LtJ{Z(3vzCsupxgCw3-H zOOhyP1T=+%&Wi0B=;DDizzPs#^txHUr0F{rT}u*lZxMXx+hphdt!! zTFFOiGiZL;RJ7LeF;n_5D}??bvS8+A2B|AsUgmIU1uXF9@BFIB$ro3wU=jCAoqhh( z0g|u+2)3S)@NAOMYy}628ho_pj}A~(p2T5Ds?Tk!2%9rXsXEs9| z+ff=>BC8e!tw)#Nywqb$;kcRDAj~)xj z(6=Z3)3jEIeS2cb8>G`$4s>BBJP%i$XZr&jEkfr#Vi$H2i83b(5v@dXX;Z+lJ4III zTh>{A5K3X{k(HTp6u~XQh|MjshLgRau(+)27bIfhEn-O&Nm-wFLHv2rH#cwwj%EdQ z@gd8Xuwz)b$lg=*0j-xth zB1J?(COk)&&uOcS&k-nYh)drl=__716b_=8gx=kdKZ9|vMWXVoi_myf^Lt4E2Q=i< ztg&y=!C3M{Yx_ahoE(+mDXMaGuc#SFBes@;-v~Rn#)Y^!-Uv#R7;72>{Z3CwgkwhG zDL6I|vfT!5ZlEC-drG1s)l17pMuv2+MgvpPWmD|iEJsWgyH|sX6uA*hB*x>mL*bYQIG@AS^86cn{#~5LUDd3_I=KdLCR0qI)oVpQLsjQ}EukB-}vXmf+fs&7=U?ZgZ@Y89Iv}u$i5nLho(2sCs zyggQqeaq3*AW1}52#C(g9rX`n=8k&W6YS#1AG_jqUEpV7oZz5VEq6FcdiP#d6 ziX5QD?wX+6d8rg?uGsCoOlFW;Z#3G*g}WwVQ?B=x33k5(^P1k)t7h$;rXKAzB2qF9 z`9c@rv<6V8fs>vvwgymwL=x7K3G}_?eoa>}$G*1&ITA2P$41RmURQ}!20=1%ABS|V z4MrSIVU`zA4zY7>M5087AfiEN|GU3TwQWvI5?Lq&L}%S!x!%?#Eytp}zgCvSz@Q)p z*8R1gQkO(`e@2*}MIRn4GT|8dG>s7i$?$!nU@-tsQ1xR=;=PjO0q+%eVxT%_2L{cE z0VT`BK%rm^uymAY4>ugnE@JnV=T2vakIuj_wv>^3vpdlAhQJxn()EB~ivDgu9&Z)9 z-8(+sK$5JtbtRyq_+_GoR$a>2mtB}SieIK`Xw{`haX`Qz=Zb$qC-LGv{)x0yX%90< z9W?9vHZb56E1>AU&z2~8!T!8s#WD|^mB$ZkjLtl*ERjizf=*$XhaI61T?lQZ1=xG* z5Cx`teQ{7{ir8}i(Ym*?B;5@P>dpd^mmbjp34%m)tMH)n$@^X2?2AktCtzD3cKWmz zC(-D!&<Q1emWWr`LF>?`#em->IrDuK+yvhBGS(aF_G9`ATNfE zna!7Sm`Pj0yBv1#;U}TDd7jt7KH)*K77wJ&(*AD4>YM2PPDv68DFj4kt&C5wMYl3} zevM48F~yzPwP?kaBuR0NfQqw$KP+ZyXpa{?@YkY5e2swwSdP_C(GEX4$F{P(6#7oz z;ZPK;-=D!j$&xu}6tn{yVZA)6PpKiIM_5LfpG9v9Mgv;-YQ_57Xc|VCL<4cq8mz}Z z(D80`kAIL}KI}m{;<7xz?@Wr$1M-zgd;7*D7KD(+^EGXX(LvbClI(6!P<_^^wV!77 z#RW`Pk$yJ1QzIh%j1Uuvv3X`A<#5B^u}9A{TLK42X*{IFGAA6a$IjS_&YW75NJC>F z0oF#2=fp$NZRB_^L4$O}Wo_hmPP0^W8v#KwvNt;&&ks$`E=7*cPDYqap~XQ9&}C|S z^CUGx>@u}Z+5nN>AUpgH4bc9vo$E`ZBM~`Oh(l@#q@8yYB=+V$4%nnzH z`im>EzX0io%eu?!e3!psYf_^F(g>3*fH-~{FifNSGUm`w!aOuI4$}BzkVco6i|2Yr z|AO`y4K+D*qMKqW}9vX+k)rX95UD9blB zTw~0K<*^+!73ra4VIncw01xbV(bz-;azqNg$zk|D&BF1%5GRMVd{mi-L6v5X6fmSY zQuXI9?a(o!`iQC>J7(09WQ$vKq_h}o&(z5F&WJs>7_$XRTy%CZcphJ0v3TCcuwlQ&26z)?EP5eh2#A6ZERthm>t7UQzg2Z7~fEZ?#+Jnpeum|DujujmRAL>oHr*&WK zD7Y0RT1R7`Sy(Sz@8}DG=*$m-L~xLg(5x4Rp(xG3(Y>&eB!O!LL}$6Tfs-d;gB4{E zo$*kb%)%fc6Z)PAhRW^dv?PgrPt=PW;?j?Ze~^wr8aU~G4O`(F;p&%@RiR3yf5 z(N-*6o09H2jSg23B-8LMDThfWb`ExYxPl}Pc<&cSae4#L48^58fIz$c79ieE%OefV z8Hyi0iUR_AoKBS-nxlG$dc`LTW2Z_id7=w?G~~mo_nr?mN_6#Z2^?nBn}|E;2cQ$%-RT9gmJSD!TvKB*nuG(eC9uH<7d(3cKsew*(Xi+$-} zWO)eKJH@E|kFXkz?KX+Ee=AC0U@*`Kv?o1Q7qD|02B9PbV|&t0nn(kYkO?=%MZKXj znenDjqGS#V0}0S^<*_O+oPDsd<4P1Jk}x<(gWI8mH<-j7@pe$6WC{uc3DA>-fI57r zw$|;7<5T(Mqa1RF{6xZMLu{^B}5ZjCgN5+WfJS^*v_^EpkUu@zu1Ziq{t zPU$|2W2G{YI>N$zp&Gl-g2@zVQB*V(4eYCYb7XG|VgtJsB``4df+S=mA5~`1WkJt>i-rb4610+!(6oEKf{#*luSS-KfWLda za_4EILr#m57_=B@1X|r)UlweIQEYXmB?<5?f{gwO)|}FlDr3>LBmuoeKy=#P^=C9G z#u~pB<-_ljAvL}}5{z`DvFd9{0(^^r>f`Gwm4VON1iU!EfV;pBZ+)52ct6yIn)FQ& zMX3mlT@v|HUDM(Ad$VDc#6id#c0lWVNF{Ly5>7m%S$#I7mWYrzp0y3Tgm;j%KntEo z6LM%P5<&6ML;_lGcbno>wyKZk?0wJUxqe+z*+}Du&E%3qLx(j9>PM+qw4#xO=m5BG zg(jBy4$vYI6l+bQ`Hs%v+?lN}2t+`s{VtEIoLG2%WGjgXDP^lwe#o=kfi|ew*{YL@ z&^Re$n^%bIdvh&pWFjmMb8J}H1`8MF9Ng7B!4({#CQT$G1u2@<{nUx0xfMAGs=6f- zU9+1IZMRbL(BJr}toX_87cc09!|dciMWg0FB4jY~&EqG;22bWj92bs6@T@62^zgf1 z+P+Ol1dsI#MV>7f2@F{R2wYUBvIGi8BBCW4IF$4JcyYlFx|nYXOE40^0W)!h`W`eI z+N(d99Sxn>-~HU@zUy=9KV*R~Zfq87*d@Ozu3#q|iHEPvrD4fMc&Wd+%r_SVcy@oI zB_gEMr(UM+QBW6>i`srz*2ET4%;C9 zpIzKg(MUq7CEe3HW|wuXNCcHyy0a2~c1tHa#if=mEWMfC(v8d^O`WDaTT?9&A*FaW zv+pFJX2&xMMPQReK5X9}oDI!g#Uv4*T!c3s=3nFUS1}%zWCmdQ999Zgdlt)MY}Iwa zP6y)X6vjrm!&*DjXbH3?6KN*4nLpgAw3yfyg`&QHt{nsN@6ahPySE6w781r^!_tw8 z8H9PhtcPvH{V~JQLE%Wm;|yn7Erm14#G2`|I7v1Pi0QKgk*KYlUYzN*6cKMvu*vPb zn+&rxw3)wVUm_D?w)Qde*F&3P&P;UQD{=yKKVg>k&0N3j!`4$(U;0^KCx;7E`Sc zh(;2_7QtCEyICZ(2#QBC9*bDBWj2u%7O_Ml2{RMOZP(42*%V@C0=oH zKwl*i^_4T2HBD!ScY+LNNk$5CeD`y8HiHE5-3vwnW(JbwTAZ=7;bUeXJz^1DF1YA? zolPM@!9|555xL}arvnp|oOD7^PA|@sV1o2QCI#h|E=&t1Xz6TXP}bO)8cd)unH-ek z{Mb&}ktCBK&QUCeml@IJ^`fd4FX48jhj1kwEQ7t!)tWP~S%->we#D+5`0}vbn3)^r zGYb^?eW@L9n6K)KC_hneAQq2~n?re7A;tz6 zzkOQ9AU?pD5*T6QFP@e$hz~HP1d#DxmZReC_PkiF%4+QkjGMWE(IX7-?!P32$4>;P zzngp6|9Ud^3S^7|j0~FJ6XL_kes-fY;s@r`~*9(5jQ*lDB79=vXI-&uFSyOE2s_>6*g=UM3T>rCyuQBwgs;D* z=(LcL?@&fNuTd0Ta}4BK}3Ttyf33-1${}GEfkK z4s3`8D)Ci+B2$mIUCJF;xsf;JzODxR5Ui+&kw)keAcHDdgLla;;@$S2Fm_k}(iI|HAWAd%KMpA(ObLz0qz)VZT+bCX ze$++Acq!_7J2c5oU*cC8(~!jb&)-NB43I~gJWgs8`UdDLOFr_G?qLecCp9lK^4plC9L-y_5w0*VAZE8B9)x z^l?W4G|HWLqx6~9?%w{F&ww?0=4gfw;?1D4tsNUQ8UE|ffH_>*=}dERXU-=1NKzTkw;5`qq635F{94i?1HLk|A^+;(y+77FWxF{Jha z!zEYnrq<})P5_T$sZe&X5Ep87FddYoO?iIg2Q>U2pBaORs-T_Tona@;WOlxtJux!M zLvvdiGDj%ROVF&?KO5l;mc&Z+aFL!R8rVVR0ZucH{<}tlkt7pptU}n*$Q3x&MJ+6`$7mMriaGB-Jnriwx$$Uz{#^^~N=-Huie>LDy_i+gRjV{_9E&tJ*q$Q<^>U!4C z)R=>w7R{Z@91auSu;e7fhn=8jzwZt+7~||I^wA`q2za^FOO0{ZzxaCl*5Xk+3*cFS z{7>daKmc{X27xEt84^$L6p*75+Imx;=XArzKYe2rw+N%hJ+ovZG;ddqWlrHXdlor> z9q)JD0qKnxEo-!ar}hu>Qa_5b%bIw&k(3VNWOJPC86otk1@ zydve??0MAygJcl{FRT@Jv`2i~v0{Z-;>~V5HfywjXU9swBRD#+yUqXpjcp;w7Iikq z`Q^t$y>9Z=;vQV;+wIeF&I8#^*2^n*VMns}TU~tqkg4aKZ(=ELo4=Y*(}*2riP&gN zbFz?Y%#W|=;mjBF34+LBatafP{eaJUSMc_OwA#!0%#_SwY8n-};Wjt)tTAc^!T4dd zQ`^HJ7a_^6$nw%MT-Z%K!D26{>?LP>fY4<8ArVH$^4Q4AuHc*5WVx_Sojl z3)pJa9H^`Q%QrwTiyA71>qJKQOFymNUad-XKa@Jd%eh))`ZCNBz!L+~#}ie?-GU>K z_xV+kL6*{cN}cZeJ8ytXU52P8uB@G+rb);oasJnDl9osimBi8c7$wylBTO4NWxjzE z=Q35F(doD8D{DubaYsvx(i<#!am~8;nl)w<#rX9AhF6QVsX+XNcowrl=3!4 z=ea=UnZ5?eaoz~XiMk4$(Uo5s<4U)6+a67jY;Bbtu<^<|k9Pk3=}~G1o96Tx!$I$g zt!#q2B470E7knx|sCFAz%7QjusDlcePG$NDT#lw3XD|ivFL$I+9dCikpTyj3hv?s) z-+6GDN!lPMR0a>J3)+mArN8l-6|sk(&JYiaQEnM*XC=<+4KsaidcZuM>go)YfnMF~C8*IQ@_us`s;F z6TH~Xkm5SQ5P}EIG#v+fvM)_g^te--m=3V{i71$$>YS^f#SA?-x*NFqn9k?D?ruQw zK_&1ww_wyevy#)#EDd5ziaIi3`Iaxp9vAyVv3l@ixL!)onK?j%$~fP4Dkks9+xut+ z%?3{KVs{fyU*hAq$w7=$t>=fq=Phy_M9iLcYELk4>EKM$3|XN*-agsEF;Dg;u@(ET z=9eB0V3cA#J=D;fE*wB!`~KEzSIVw_y)(>?9#)-c`{=)T?dn*>&^x$fF5H6k!$Ngw ztC(OW%dzIPF!ZrReaGj>u14(gtgY$m&yg-a)Ny=H>11G9vQ>QjImMxe8seg`aMXrN z;RK_$nK3JKL|wl;x=sN(R?TU<^0!}m>Y?0FxAA=gFNj}%-(Z)-c=JOz9-W%_Z@qTc zkgAw#qTW`h{cpvhtjr|}?LXano8w*L1(9;U_scCK3@tu=*gvM4oBmf(srQJhg{w+@ zoj3q9tc-^hs>5?S#eqYt53sVkfm@E?IEu`#*z|1*7}BEv!zvCkMP<#MYTW`Hz}{Uh z9;+yXbMSI?(J>k9AEMikAX%J_7rxhxht2(W5?f~_>LvwKB{jrSBcna>QWwjYXir!^ zSi*3($u8^q1u^QcrJzd0hd7fjcjo=etpBrI(LDhB=p6pD(vf2xgD_eJWP~oj`vlMh zyQYR4qhVXo-3n^2W$|HEzC0F-eL)Wfj(36wKx(0$uPQD`pBEwBBOkymaEJQrQ0&z4 z@-NgrsbizoXk-vobPg+iUUdL%P@e!fRF01c2H=VYcF}0nVAhc@VT)g}Fn~BwL5CnJ z$>+ugAj@jm6kE}U@neDkyoo9@dZ-}pAqN1VqS)j+b%^tk zE^&$<<#=$0T9ls>D&y;o+b2IL8rWectWo}z*?u7aVI2sQN#xyy$ghh$U3Tm%BwE8f zDz?vxC2UpNzq4Gzh!ak&Y2%7CkN6kRG?*w_*cw>-)j~^AKQbsXCJ;t{exOb7AxbXVhOUns$8Q)%<2z&kQMN>je z#z)t#rbE2fA6<$O>M>lh*vSQ+QqCm#cz#9cw#I4A9$BG2zVhG2fyu;GagoEUAWguZxKVS_(ZKA>bQfMKRQ1WziQPFGtEhc)O2m2T0XKt%3d=bRvT zeR(o!79cYF(RQwvF>7CEWbOCWyC`D2;C;K%o^^4N=l6*`cXdsV-T0-G*-k?t8?#@T zSq;vR-Q=_`&rZh2fFYyr7ww}DsUg1mYbPWGT}>D9KWOo}dj&I_-8{viWLNRU`K%Sn zlY{_;7P9k0`!#(8Ou1WTaKO)sUCjE|qwF+9ilZSfJC@q#J(RwcoRS5EZ2pwvH+V_X z(4hWCaw07Ta`;|{L!+lCNFaZdoP+^E7G~?eZsVojlrF%28LD`WIp*Jg!E zM8tLVEwCiuXiIa4cpF_*E8F?@lA`JsxZ2oA_0QXZN2#jt5Ujer1*R4>5*@Iq{`OwS zD)Ikq*wn^Gs&S7IVrH0;1%-qJ8`)uIGdhKhY%HW?My@MZ+|u4Tv%)*d z7u~86GvFjmFj&^u60NAV|NL${Ty}ww+?U!MW$Qq>1cT!)@JBP`}ts;uU2a7-gc`Ey!LZk|DOKm;;H%9*#V~f7Fh;w z4d75~ID9!H%{4el%RoFW)@pt1fzhl^pfikM-$0!$R;aVtm}<9Lm=|2W*g>*6EZ%Ep zq94}z>M2YbR9whI1G$9^kzz4vp_tKwZ0Lgf!dfYG2^v?i$bbBtm4~B z3I$)gdvKx@a+sh_qdas5D{GjC+Vd4}*F%09sLd!3*FI^2L)oIZh*yzaJyy_gmeFNP}c7DSzl?+a$ zctlS#z6FlV|B74lSeCIp2h-v82F`gC8uI>D+5jUkT>~fuGU&$Dt3c@0Nh`h`4HyB` zU^o}q=@=F|zn)waAc2|;=ORIfl?Uu$_vv!cFbC9QI2YM6>}+6baJpRNLr3nyXx(bj z_S4v)oDE7ZPu8Bj@W_5RAK8zy#$+4+bgg-S0BT@1`+5@g8RT174gL(azQMo(w%w?k zGrh&dC#Q2nkO%5BT#L*4c$)R;MoU2&s7;_{6RSY7U1d(=IAP27pd)v)CuUS+Y3^~m z4?Xh3r3Q5ZWq>-EMQ$DpE&86AG5j}FJb63d7d3gLrIh(AsZ(Rx39jJCrbU5Ak zZ449C$sB0xu@{vDtE@`3lnplO;4Dd2(iK6!dP|AQLj|=mOQ(mm`UobjA@{aDH*rny z)tg7~=Y%qwHcMMj2L&x(8)6vK}OD_GM0Ig zWvpx6I!LoPdBz%Kf;x@LSVod3P1rT!$urh471SzFt+(BX5p}Ix;}#?*tk!+-$o`w~ zh2`bKlNQw+a}Gmp*m1XCyxYLc$1>j^)Se>slq#j4jVptH_hh}xEQ)9ab31%0D|k|2 z@C-~3ezO=uh>kgUDBtOWz{3)4F(KEz zcLOKel*>nO43IsSZfq^hMBh@b8%GQ^HaBp4EN|3U=rZL2Y)o6U?+D=F5k1+J?fIhL z;5jiKq;Ow0jtlBFJo3`387_{Sghla!KbVPB&K<=7IW{Lq$B+bLDtc zIi4&V4N^cY%&m~N7I01jRF2C9Or63KjXfOR03-Oj?H}LKe}fe_*>&B(kv?!*T79Iu zf`Tt;jr`BI@;zY|K>}40rnSS;nj_s57Th|NNDGCF#2>qPUnG83Zg-pFuI-U5-|x$H zgn>aqwb<^3dST0l<1tnH6Z*6|G~)Dv>~fz$QB%RxBbnF^zRHbnQyz3wVxYv;N6x}=56c3|r)s^(cV)jO zdA(O&+QVKA*ls~|8C^_q`GI1We|>-sDmUOEN!r8Ouhr;Q#05ua#d)AQ!r&JJuJ6|t z&$^EGeZ3*N(M?I(vol&JOL{;Z>zl(oP$%JK%4nUSCGpq4!G#^zkSwBeRWdYCBjJ_T zD2*UBz=7Iu1|Vroqtjd>g?bjK&pm&CYhk+HuHcRwSau**eZgs$#BSnTP`80vqGv9& zsOq@QDmYMMpQ$}`Je!Xmk60LUg3x7y`o*>`H7zIv<88Mtiw0_BE*_LdSe7-Pbzz4& zuqz|&SFfXIV=U2g9MzFPZ3YI#7Nn!iGky4YbF(nZaNCnF=<1%}*=T8-n2!=_I#Ak< z(iAtJlH~a7V~chRVut@Z9Xm3p-9VvXLHB-qnm2G3JuLp&tInC|6rA!*!E%Q$$M$3nPSz){DJuV9thozVW@50}QY-_83+AJ8$@RWAwt^KCjp=XG87*~;LYpcZp z#X^OEN*Ki=U(q4>X)7`>1=M8Rh({Eom&ubZ{InyU0TQUq48PoNr7Y^AC?wDX!j*XC zHAI-AfSL%4PlSF_G>Dr1AgYXhJJj^G>G)#b&jEG$qQCl4M^-kA=j#7=HlBIR*^53LVz)1}qK9XgGj^XQj+gK?Fx#gf%_Gx~R@X&tvIUkR5Jzw1x=oH;vas zf<`?i=T>z)E1X&b7b(EhIcWnY%&im@xeKp(hkekB*>yAjgnn>EZM*{By*tFd7L9Ga7nI$lzqo zEJa*wR7E)IM)!w{_xdyBpQv#-?7eIj&h7TW8%FGT)Kt#mDg0}Jle~6A{>4zw z*2(cieD}GFgGT)eZU>-hl&3e(o)s4hwcyN|>V6!eHBjV8vXP2#EsOPa$Tk;cqo*EW zuz$_ZZ2pBbqy!YCH*6_**W{8)WT{RzQu(n#r?m$%!LcPrI>G$)G$yjeBcUG|B;*?A zgEUlH!ARmShDo?v7@sC&(n?1xy7ZYJo0bwjRUJ{+p2)>X^!hYY4C3u&kt$PmF zan>;VS}xx0ep9=k>m6PGa2|?>F1EB-$>>2mv@tKH2Od1a+A4KE@BX;k)eT+!5S(b4 zMVTWb`2|Zse)6w&uw9lU#o)WGIgDF4q{+{A_0rtb>kRf}pA(|NyT)e_?EsPLXp8Q1 zbrKIDdP<8LIHbwby|L&ahn5BZlNwd9jvH-8j)J6k;^(B?82l(%L+?1z$m4x9qtvrR*&g3Dszgap`8zE&^(A%Ap#dxn3)rFUddIR5oiplx(`<2ax~;@Dfg zU~CoITZ$~)9hIrZ-h+ThmCx6q?coTbBb=<6_0vaSeDlYCB8j*C@wd|j4L_a$s=|-s zn5GJ5WxGWN*CdYZ>pRm0?1>~$C11-JXB?p|Cu|v$IG{rO_^4?evA*uQ4LjmqrRt$3vp}WhwIb|oY@Kes6(I>!XU0p#>2Cp~owSU2G%?|xkO?DJ8QWr}rkbrz`?oPdus;VBs zL!#oFF5iQac~iaV3SlB)vA6U-><$G|^_Brhq$>^we9t;vd#d5UARtl|Gq&%^u799Ner*I|WAThCqS{F4OO%HRDi~HSg7z1`YO;tk;;UQ6RW>S36jlEPelLK%_Q!GWK z=fqe{Rf-G(BGu6r6^4zcv?v=eiZAEa$L%>B3V6T$A;o5@m-8|b+E7k8l$;xn$x@C4 zgw(_}7gQTD22-uM@IWCwG5Rj^%|&L`k-QJT-;viJrHZ}*IHW0#ggnnlVVG(p6o5p! z;v~NBSvN3KP2vwDB3ZHT@jU8`+EVpBLwHD3907SA6x&p)5l{#d3HuwDI@A-E*1ivo z>v8)luWFMvE*TDK`Wu(~+{qi49}?;M8<+6xi5r&}5y|=+m;2~x8ZY~dB- zw!c(eaR3tOiZgw_XT`uyHPaUaMaq-n8b^}$fbi6DjhIMyQb-8Hm{W%Y8_J09zRKzf z<|T`)oj-Wc{_DP;aFS9-s&`)_VA0CrtI?t7-L{wN)o2(MNsF=k;<$ywclX!%_Ga;c z^}A%~RIwbwM8aY$dmna9oGO+BkVsdY(c0v@O};D^56w?rTc(=Pl5mjNk4sA@_ydx| z|5~EyTptz^6bI(cL#~5U4a_}INKc&7;LkV}W2z|)5eTV?+e7&iVpp1KQ==CQDUOOh z?8fY_^HkA?SV&OJi<=i8XUoeP4(NYzvv~Ny*Y4o&!h5k)c`<~EgvH*+`>^Q!RJ~6a z6-iICvQU|v+{&yp5$COyG0lMJVZDCb&KF3jGu6EHARyXS9NEfGx=A$Ew9ybA68*Z^ z6V=yEUcJb+ur#Q=%9~OhmeLvd`Wbxo$ogo&=)aY!znaAem3^8}S=Vj9`FeG238AXb z(y6M#$T`d9Z@pG!J4&c-!Z60p$nN-FZx|yZR92iR*_N*k#|F+cg1bj>UEHJgZ)fl) zvo4MoyQyYM#-pPW;vT_qVuTJq)gHk~1W*-zWVv1gF-}q!$ab^^&%__OJYpgRRA+`~ zgd*W~J;N#nvBc56nmG(dcVp&vsc1-5;)F2K_Tm8B`>@*wr5a!dAd#*(f9QKwjP+FW zhe1%JJjudBJfGUaEQ00SVijLlmp!unHc*fy%Pkh%2nuL@ajUNO9V;^>b=+`IwN-Z- z15`%b0y!hk!=P;-#vU5D3>aqDte^i+p zXsPO?@#v_8xFK(Z7%{+7ZOEH~kBY>4L&(9m=na;R#e;~<$k=3EUSg*@h{#1j%ZjVd z=+~v%Ce`XQ841aWQ?=|7x4osBsuh8dnz%%mKHo&TV(A0hz_QEw0P6|+BL$yS#ryRkbg*Em(q|e2 zv@^dCP7isK~R@_p$QI~>MZ?ct_6bqkyQ znr`vD|KL5maTZ2R&Y2&-oM-?PMFdq7hj)`D3LSB(;aw~jRPaF(-#N2Gzw)}Ar!D*6x$35pf{Rb6G9oc`WK;QOjXhQ(U7FLYFl_r^mVFL+e3IrbgVUnzW;>QWWBo>lh;Lg4i|?mJ~BT~ znGtd zRB77_h7?D+7*pvf(l%#^SV+)Z>;qXD?#b0>l{SZB^|YziO}<^6A1^LoUog2Q=V@s4 zWMo-)M+KxK7jyQV=iA$Qb!6AL2Jh$|O~nXDCMNJbOe$Dz4{s?1+XN5e8%>B}ATQG` z4Dx~(YryZo-4Hs6bmC6 zDabB3To%*>30$CMBJB5zn!_RUN9y|f^ObIeBCxFQbzV|qC(u{RMA+{&`o3D|WW30- zvMLW*Mm+p;L1karSD;)t!Vv8T7@BI?*~PJ1I-&huBqWuHxad_RroRQX#AUrAioQDs z)yNyhbZfnNn5{f7W>d5qpjR|{qcJUch>1xHZCh;0Z3*3c0VPPj%9b_5{#vAsCAr7} z8&Agpj-gTez8Um8vCzFZMC9#8)h^JXHYA*4+f647(YStXNwchX^lFz_{VZ{a_-9#5 zEvtRez#WG$y?y~@0#P%ZljQWkWg<5AKIqN!KGfy=&Rbcrn2pVVwmih-z1pr(*YqB8m@dp|ONs5(s6@p5L1tAr>R?&y z_t1lbap|bzZlraYNJQq@0l(HdgF?q<2QCw_9S`3?H(t3x9PMFCo)1&itE$yN6C$Z0 z7Soo8n9RG6bWbnWXOZ6JA`zMO=;mu`IJQ5Yn+YX*rX#XP7v&-ca~dp`lIFXs0xt9{ zGCi=aU}$YIqCpp&6avBapv-hNV_=Y>*-$4llnwPLt`$;Ny=Y`&rWYBLHfKP=w#v`h z^x_Azcrd}pg5?B5y3x~6B_j}-6C9bt*oQj1a5Mir>|Ume{h)%%Xa{>BU>fDTRtvsi zevIUY>DaPN#O_>?1ndX zXio3LM3IPW7G*H6Z1bHS749==$9n#Sb{oN0Kp>BH8#W0^I`a85Vk;5q;5)M-f>pzE z+q7#~+XeI5hAkDf?ngPcop@H9KFZ-yy)hkkUdzY7(F6Fk#L$3zq& z^_8Ojn7=H_uFJzEvGepwaX>J#=(7^}vL3d&6sBh-pH#$W5q;dP)GSD%h_<95UO!^h z%*;1*SwM_Eee~$cL(IOvdEUU8(aoZr@^%ZN>HUo$5K((g@k{N5F}Lk>O1w z&+L3>5A}bOHFZs=n!+!vcrQOB8F{!Cwm_2z#Cx@rcJxLM~ zx6jh%TTs*`nEz(N5Un3unlF_5Y*XYH+13r{>0>NeCSvzJJARMPe^2k(ZAo677sU;& zPNQ+OB*bxSxyuiiS)JCFOeSLYJ)NZ8HIwA^@ocM%-|Gcg@B;ii4A`BJ^Lo`RP zgG#ytD_XBs6e9KY3Q#fo^-OXX-=j{iSNw93L*IWp-xb>9^#0o?74iEj-~MKzQKcvn zk!8*8k&m6|=V@+BMSRkBJMSMb5=g*B z<$-p+|KppibWa(z{~*fKP--pJg#4~pmSBQU;H*N31LFLD{>IwDLmn-1H_9SvD)>-d z+?b_J)E58q8*2-PHd^7sC@VC@wuVD1n__jWRyn*FUERPMU`QD4f-h>7fAhv#C8!2k z$?RdCm^+%{x+!54sz%`OYOz{3$D)F_xupI4%Qx6M9{OmNuSCVpzTRBXGU^|{u_kD_ zqP{;fPTw=NEBJ18wSY5SA$RJ&l=}Q1rB=9uoX}Nv&k&lZ>qy`BLTbnaN?Eqr<@eq! zRV|jWnl3Mk<%_n1B@Ow_($r>&nwp*Bp)A(bN6Xe&>zyCo)70zdEsnF5B6c zwv7@!fB((Wlkh}szcoi&Ro%m!_&$TOzFg^_b(60Pm^HY7r7Of3$$RiF#A5Olaau?X zwAIM!zawUY)SHU0I{ok7*zho9QSYCRju9B@Icg{GsXKem3k2kfTHlM)`dFzgDQdu@ zI&C(w^gq0bE_WEC1wd?Ao-X#h5KE~XoHa>ypDuv^R_?;ERqTT z>6;z|iZJSLjs%+?1A4rFQDQ@&6RdyuW}3j^j8-^{%>_gv*fq<$a-PIQ@)2AYkTa6v zu^OU}wlU{sj*gI30XwYK3b_BDxp)7TBuCD}mcQAiE!lk8@|(6OkrZ9rndS1ae26>G z9qvreaC(+YuW6R^R^`2w-Bpz}Syi|D4j)>PONx?L5-lxxd?fh?**doVOb3wokO&}< zNT9NA_nx!Ub*nPt`yvnsyaK?9rV5wUQSBdKw)nTNm2-%6p?hv$u~xZ7YEhY{4|xXo z>(y7}JfW>QVs3ItTPb(vs#_nm(v*kp?^gW(UaRsRAq_j^wu`<A7|7};-U+@X4fB9N@xgiMs%yG_>YqnZb+qZif z_1)8)zErCJ_iLrD%op0{j_WANV61=ldX4J@ve5h2GrgJ?<=5v`Efx2_eyxhzBMNjy@9OkX zv;U}iIiyuAI!Z40Hnh&Zw*FLx&M|^4!H|a~Oh)^&=Ct@aZAhU*_D=O;MT;+dwD^0u zF3bfwwD}J`(kK~PnyX*3pm8lSJrc;6JuHgv(^c0TPVbqMG8U?zv#xK>cQhkU!%W64 zdBUxqVI#=*td&3qUz3+5$U9cvGHzW`njVdDk{S}s%mH2zW@soTyL&RP2+);+36Ory3upfZ~P)F z+Y9_}g3T->xS71YkehJS-ukLG!{L5l7PH!F(`?risUOj5782ZIR#OMt`8$fQYc(K( znc3$Ml;`SjW(G?hSsRbV6WmOpfsxsL5HdQiD@Lihs(Y;z95@B-fzfH*p8Xx^tE;jy zfZ!Fgm6{BDL|bV%aEitJ`Xy!3QmULcjeOmh?|_0|Eary`f7gxqJsw!atfu-$LW_P~ zt2vQfw8rIM?R4YCRyl&m_k-;?9583I> zXMB0*y8RF!f?2HA@_^%S7yZ*VW^%XOJ%T+QXmE|S&(5Q+Ij`G3JD}iajvWs?v#amuraMYsP&r<7 ze9JmKk2-n%@|JXCH<dT<9c_zkXu)ntCk?Op+2Ysj>3P8585^Mm z>lD`=p|LfJSj|#rgT9)%0v{RHGp7gzHS0+CJJrh_?f2~XGC=aC%ZnOB1`Cd{p6B4b ztkz$*=jnigpR?-OFKe0LacUW_fOQH&wkz26AKA$vAIWm#sD+d zb>|*?Jg|zzkkf;A&+Bz#h=v2F*euV>N1f$SXkcVc%m`w|7j@U_)_|4Y?N!}86ji zTfBQuCwa&RODDC43`c8x<%tEjsWy1(DNXdr*vZpVAVR?AQUU!FeGd!o>4*IDNs@N*Qnqv!oOsDg@>Z}B&67ZX z^>@DXLtj$=15OK4Ux%N6Y z*=xKR%z89XLcR4UsUx;Ke#%aElas;8z=4$MX!!z;5Bt@oqX^@r$7e@)U+_pdx|pD6 zf~+qkxK}B=qvcB+;l(aoGSjy^x<#v@Bwlr41Kp~!czUQ_>?yhrzgfS9QNZ6S~5_< zTuVCs7LA^Rm8CyUHM0H?WgKF%2H*k(Ok5=C@9u8u^;-FcJ~^Bo)cwzz*Yxc5CMKEF zj3a`b$>?xpyj2mweh!xf?Ch?%FEql<#RDxf?chrovs?DcjW2wRo;vB>DKF48v4|v@ z!CoYx?|&}v#c=LPgaH+EV4?F&kh}NU+$>nOo;ibeAYgOm+$pW(@%Tcm9J7Q4fgQ{- zkq!+ZBQJURZ7vIg0TO{N#3j+WZDBz`Bd`Us-rN$I+ZMn833L0_P#}Iv-KR6VrJF=& zj(T;#{p`8qt)rQ)!1CqHaAANK66L-%v-)0YTwsA9CvI*Fuq?PBLiQ7%LHgU=5z>Ky zBL)#N%ygSOLh{_UpgKye?A+B67_dT6AS!=M$gG>YKpYrQF*B4y?NHCeCdPk%=4#?& zfz;3;GR=;9a9G=MBWJP?pBXwh(kP)JMeW*z1|$#)B1(`2H+Mu~d2c~`;wQY#-JZB9 zZh^~s>#MB8Jh#jGSSXMnuIz*~wz=a9FhC-xH+}XJb|+lZO*s+>nH;|%y7Z6PPLj*$ zf1NqFcu=4eu@Ow^GMYQK^o)Q6LS`=Cw~-BZJmoBVMrDx8$5tOj^4mZwXrm&8=5C`L z7*H{5xPvBky+58vmc5uZNEhuCfds`MCJoPrIb(CjBp(Z;h5@`OZ2KURoHlLyoQ2Dh zi4P-u+-wXH1Whu@VETX{jrYT}oz2XVB9028!vt7hNtQAd*t29pWSTugT#z+Kyh~PP zFNwC@U(L2MHb|T7I)Sv;;zm-rKED?4I6SDw>;6v1SXRNVR`(4SNDVWdzQ@`C%Xnq4 zZ44zfUhxMwP#Y%1eQHBShn$O*oz*mzqy!AQK_AA;esX&ZbN699C{PMK&d(`wInC{H zJ{Cxsb+p0cEQ82plw1?d9J4VX&^?{C>SpX`9yP%msti;FkbdkhvptHyU9W(DQTgO0wj!ErS5m=>- zZ0c%FhcZ!qARXo^F7p?S!a~tr>4gvY3lk=dMkczeJGz`;R~?`85ShKDOctLc>*B+* zL#OkTs;hQ2?Jm@{I&4)+GAFo9PLTiBWwyvk&C23|=+YD$i;C_XcC+1a^) z;4yLzDEJL)BV0$J*Oh&=P!>0@?-k=Ebic04%j<**yxh)_JG#1vm(ba;1>^#bl%sx3 z=#X8Pm)9*D`az#QdGc0utQWUiy573p4~zS}Yf-`uqPg$mTLBPO8zR|L+E}T2XLJ#3 zbvVq?hjk=!Ud|5&3UtgV3RG{NQr7od)oHbPLdU?|My zI2H`gIEY7b3IXsQn$FK~gD!23Ku^=H6D3W8E0dFSe*qde{eqo=bDzRA7d4Tyk+>81tD%6^|ad#9x(oB zj35;K)oF?jD#qHszkG#S%Iu(`*%L>VToulCTW{%(a&?iRI%sx0#^QqY$buFXmt&Vp7VN!`c>)YUU*S>3Lw76_k*YL>q zcxK-aM2b$s=LKmFX3pGOcgg()3t&i%{rd_MvxOW!zpAc_M%_hfTS zZmhfnA1+CG70YgdZ9Tu0W5$PXd}~ib!1L;Krn3M9@4Yl;cmQ$U-h_J1^0SBvI=2j`mBNzkj*-t>*M}Rc)*8Gdc`^u@1JdW}gBqNOc$rzxJ3grkPzAp3`T9h6JG z2|BJWw?~&rz!F z`4r`v+;&jH)dvJwv#Bc}8{C@oVXAjOl@+@n$@D`+c)BXKy4$zMQ?ugPx4%0l6@~(< zm<1xA*3-J{lY+a&5g(bGCHKfrG?EAea&EBxnB4YLeX%87b)rs>Y!A!Z^M0lF_Hv^o zPZ}AeHVTs@Mm-@U8&W>Cx0`=HVgU?@xgm~O46J-k$>TsK8_Pui9g~T!WGpCSvbk+m zI+b$qepekfAM9`21?4U;cg=C9HrOobjEY-zug+mZDVDeVGO2%_stefQu{H;DjiLI1 zuY??wbZd4*PPk1vdxSBAHhlB6xutSUF5T|XZ_irpY4;0tj?R0&b257teGF}4nTVuN z7Wqm&r*RjLAFqK@Jt-(8v{y|XHO*^H_G;`H%G45a$v}w-m6EQlTH9E_ zTAS>-^%=C_Y@mjjTOX6JU!A%_9t1Jzjy@=i_8jYnS}7kYMr{8kFT;PLC2sb`WaJ6GlDu3 zs=jVFALu}I6~>say^5;O*+30*fN*=D>%A6VfBODAeJX?6Ge>=v_RNoN`rop>YLM$% zeE3#pCpc(vUfx-n%%1b}^3lKxUOZ@EyNKQ^k+Vj#w^utwBb#sn0kFr|b_#px@Z9Xv zdM+Rjd~io>7q}0{CPs{&y_@W*07q#WFLp}JcH*^90wc)(B-d`Y4J_9kJ_ z6Y5x>wP!Bz`~^8~p-IFUIyjq!`EkyYt=q?N6{%%4ClY#$hjL*-F}WlYX0A7<(aj2E_U)WHTR0NhiC*3k98x3FDYSaldpvG6tY!@r7 z`1?{2%3pS1U`zq9S>t*SD#=0ut z4g#R=w_Cp5S!3t2E}am_V9l^W7%S5;Tf0r2%eQnkAd|0eU%&Ox_8mNe#lPxGPVB(J zisr<79*lyqZ0VRfWi!^kno~SEm7%$F%dm8kGR0>=gMIjFrGyj&|u6bbv?$copSx6d@5-IS%wOp zd{S573B_ERrIWf!e8PQIq)$!iDlvn*umD!x0L7R&K(HB~)a}`LL(S4j-MEEV6UZlZ z)k{N*J z9W>q%+ECYZnDU9kOx6GgX>;<8=<9vFrYG#%t=T1b@b;%GJ&UtJoJ%=>E1VmZlAaQ2FN3C?TiI>7 zT(bEa;tI&3U}0H*-cVU~C<)ePF0T?f958S)w|6r437XC1exK+f;aCu04QJ4uAlnS> znOk((*HbgyVtzJY!7^-E`Qcmdz5jHy=`0+(^@0OdGTsO^uR&tYbPZ}g9;mSvr`N(p z9q*k;%q|>Ojv8_T1t`FVl_>>K!(IO@999R zXhU7s;Dy7=eAWO5Y1Z}xq@xXG;jnTlUxo{+Y*;B$g>tTC3x}0COaTj`tR3hD4UWU2 zTH&yAl$-+vLTp$GLf&L+;jl76#mS*%!^-}(p}}%XtZ-O4%49%-O<2?TMGDqn^R zs;p@gsX{rIX<^ft!xXR}%9_Sr(BL>MsuebkqvRYY5MoUu2+h+pCaA=k#{RXT!E#Hi zuxT7+G9bYwKjqFsf2<}A=mIWtR&*rGwQ&1DRCqY+7Jbxi(uvUan=;p)7t{8HkJ0uX zwX|8%)1al}t1jch;f*ABjI4tWuVBmNt~{@{6wYvSiR0Xys>AZ>2N{D?yT;p>%}5Di z$M_A{Fdge_etNCGW-mDCYsz>d)O<&EEm+vs9Hr*tfg0;;_7Wy^^jx-uea%s}6DU9d z*4IoafR@tbU)a|y}!rP8IWKTwx8;8C$v&7=feF|K#Ll60u89aQWYRL{yr+Zt3}~{Du5Me0Txh#?WclV ztHclzB8_Hgdv9Dgt$@e?fKBMc>7zJ-bSK$yxG(4foqQ$g6^Osp|2+)o9mQHl;6XtDiN5D={V7pAjA z-UuP5S!H<>AX3JW%7~ zPOXKlnch2*I9@vL95dtu3Q&NLI}-|^s=L-MZHLPEg8}ICaVMug1c8X@3+Kl^okU$k z2W>v?jMIj?uE9&ko!P7b4$^$w>62znm&>sVm7DwS6z5|u51ZY49HUxGAJ36qI&ZS>C z=is1Bq|X?DIqz@{9_lfN!Y=W`iSIJvAOPNMhR+c>xEgDR3(p*J1dkcn0R=xc>T|>d zjdS6wu_JPvnKM<(60RHpLtE+=Z)vY@@S!nc112oS*1@*j^0?a6>+_cK@7~^24P7w$ z)PA8Z-r82Q>wnv^QvPRUfq5J(&|>^?mm5@L&FJ{+eoO3@$iH|E)bsg4MK)L-SFyhY z#Vfl1{WZ|d5`$8#fgM-M2?1`A{nOV#Er%KuV>8WMF}la@RP9e6eyXpxlWN(Y%%Rf& zlc-8^YXWwH_u9jL+5OFV!hwMSp4ORuYKv%eduDt|ePcll^3t^DVuit{yhWS7v+ z_f@yRe(+jo=rcqaj)e!`O4g5E^=66Rtq+x3fR-Bc8tE$qV2*3Mn*HmS)=@ay~qZ(inz-E z+t*fkOBY)I{UWWM>f`GD|Gc((JA|S6$l!>_GFE$narFQ78td$g!P$HZZ+9P7+h#S= znJAogltB`4OX7k8WBCZObRFCH*t~F-PL`j;zOx(7Sni=L*w#z8Iu+h^BqL0uZi&F^ z@d5U`bY11Xzae?Vd;VgE`oWRLHQ~=nja|Hh&ENGK3b$y!|4Oy;nW3!W!)vaYEo4`v zKYOJrSxV4_r4lfg=DIkM-PI=l8tZUC$ANO(&LIVT;sN->YIn1)Myk*p0oa0!t6?9L zDo(se>}$SfxgsD{r6r4bLw7QuR?tHT^2*&jGZ$ea|h3S?U6SCaU4{L1~QC1t3@#baj}e zE&ySo4weYWkJJT-b{x>9KTBNz#zguK6)3Sf{pjv!JB0%%K)h(_$mTLpRO!a(z zP%%E53=pjkySmM>TpJ)|>Sl>SsYKXwi`{W(SFJgw`!7|?p$5g`QRCx%{Wi_jjMcI^ zx;PHZcp*6tN)1zdJ;r&__gS}q=2)(Epe8Hhb3)0)yFCtybyQcAIhJc3jLDihkd(is_jTyG>2m`pmAN;qf$+YH?Qnf-!I+5 z`6n}U7Z_NENj)2iO;e8onv-~2B@3#|3kHU zUftD;cbcwVQP#=BVpAQLx6QU@x%3~UdXJFfcmci=M1zFcrH3a!>B*=SzV1Y+{>x>v zZ%)f4qmtae2x$V9C;$kV5gbJL&#OIr>-tdd*Y$q&z-T4+c0%R^S{@9@neDm|6p-6) zmxt=KIWk_KT~Kmy1W+>P*2O5Tw(XHS(kC<0>7|28qUfl^ntHw5wQ3g$H_@C$=fQxS zxgRfPCwhx})5kNKNeln0U;NS!eM$Wfj7$eB&In$tU58?n=z0pEiGIkTh!-}K$xZm8|6aCl*H^435| zp5XN&ST51tA0COQ3kITQ#0kBl7F7ij(oCK)1-Uu)9H2nb93%!|KFMQsUoUT(ebw>i z{&!|6ZOoFO;>0>MO8 zaNiTUZF5!y0SY7&eGvWTiNYWAxH;;6*4vl#RM&N4 zy@-)R>pDS|)AE9<91i#^*9Zp!0xXrNeTRqBrrj^^>+aaJd~7*q?ekzj&P*-RagHhq z&|KIzDXa0+e$xM~?*`b_r)piDs!YF!M7O7d@5WHT%uF~>VYYmB^emTdd_X0WUJnJ1 z7}7zQr&oPX3u1iq`)RTZ23Zq`8Tnvi*5+astMz>6a<%E&UA;VY)r!aZ^jIK=ng9l# zCS@wYb64+Zo_I<3q1CkEol{Lu3FTAu@xT^M10?!o+$%~`->c`msMECK7SZAWWs_f^->=|0EB zx;a)i-Y7deAA1^&O3* z3WWZ#s?*T2RdeV;J=3)~pPKD)aYL)8n_bmCU%Xvyw|BI#w0?T3$Pa1hncD09nkqis zwaS%C9${~#E_)P*b|x%Hn;u5u?NxjBJCn&qvYe|y14R=`6BO6=)*B`y`;_Gjd$2r$ zDnWtwgsw=i2LnMf3iK`b-g&<|(YWtzUAhZeL~R>yExSrpw+tIb;6O6siQZc@QlzCS z)&R}vi82}}npx9?9cgs4KT_MiV=PzKv*Z8>qGl$-C;Cxc9ch+rMTol5UMjRhF5!!;hZ*%0)nX7f9Kn3K)Z_rtgQzr-}H+f#Csn=^ip(uF?#^o9e zz##uieP&Sx`P=5sUyj*a*V~on7*x>C_jjGg#XRN_{JjSS>3m1oH019jg!dO7!BGZa zkT=%_WH`!(2H(|=*V5!L=5ikgEQsg3O0%Px$;Wn;9u%bWtEGOQ8~YKer9lPlyp~hd z>s@`^FjHT-<+PZfY&N)O`1PS%uFl;(_mJdec$Yi2#Rc_zC+QnbX75LE5`zlb`H@6w z?;jzO02ajay*pUaeFX2;n4p{={O+4|{pkI|9u%a_9OuL;8D`lh$AXvDMV@${NA`Am z_Tt@@$@YM-thtr)<>9<|S1kfB>TPv6Ql6+90kN=<%;fSXQwN#O&|vtI0fEks_npt- zDN2C$as!hoQJFk?1Q7TMp8#zGYQ1HbZ>2i7nG6gBD42D=!3M_%njY@jJxu|#68X-| zJX{=*`7z%fFDh^Fo!ozvX$=hkc&9j?p1Qi)EkcJ#rawvqj5N03Q@36Q4BF6<)U(cz$Ubg ze(0$EhZWcS)^U*xpY!*B`0(>2(*P-Ra>6fAoW&{{G+SE7fP!-C|#PVfI&2mAZe| zv4#}`1NYDEa%&^h3zo4Vrb(aG~audney3|i0N z&(K;$NfxYLp+7TD&~?TV)^|LrlnAEqYf!=iF=#z4Ue~9U7_Z-@?&EK>a?sv% zSKV5Ddt4tD@13{Xho>9L)~MI-(C(m5XbqAQUA7BhgKsiBOiOgSY}sgF`>SCL>hE3u zPTjTYI6O-Fq$71cR`-3-yk9p@Pp5~7@SlzkCEhAhf_FCD(PCDg=Tcob4X9)~)^53W zht=ZK!^-qvREf~7s|$S+6KxCGv^*_0Ij5w=MM@xzlueUF>LCC%%`AY;Pt!#LO>Sh%;dfW`7XccI6qJEmaolKl%`$K?LEUWT z@yp=b+QuL3Z`*~p#r?wzP0S^O#!rQfimD^d!@-2|llh2f*`Q+5kF7;?;J=}RwOZ;^ zG>ftQT%bgAS695>p4?QxWoD7oVEGhj3XaA7t5Q^8 zpy;>!QS0j@w&ihC9XQiueZ9b#E+z<@oO3Q!Dt7AW-0@iNfuuQ_h0Bvj z_IvNVC8}g91ecq|(*lBOq#B(ns_66|njT+Kf<&k1{J(r9AB}*OP<-PtDZXK=k;&cX z1#_besI3@;pky)ymo!qu3<4HQ(ecC073jD@#+R=Tc(M5zU&E`HXGc4+`S^NF#(bP>S2+A#QV9n$Cpia_aad@_t zH;M+5a_2R8&Bg+^yl3mY#^FHIWJ~hGrpwW4wb)1VuCyh3_$&mVdZsc@K!UE=pNYL2 z1f#k7GoyfIRQmZb#f6Qw%+bM%#!fsWctJf5Pg4N84kK9LAo94~M+v-2-Th_EE6QQ}BxUabY zpz^jiE2cYeG$cJW`!i)>EQcZW+xE-1#^$H)=V~`C+%yhQ=<63L6x5;9W2>VXK$&k` zq>S6JxL*DTkFAqS1giOKe0h!+_R*6^ZB4BuQ~i$5M_pErj;A%PPqAA6==I2OK>56T zk?V=k_2pyxon--~#QBJILj!`%wmzxLdCaFE4$L(l5e3Vq=(np^rRcV<;#fse%-Y|L zK64EKMgd_>f7wh&88;G8nVW1a`e{*hcPiVOzNzSFd_K3GJodpAdlZ+9Gtr@hzhs;c zb5osGbdOB1jA0*Y(EwyRCBN9OLdh*;v#pM6 z<|-f-X>wOMmp92$76{f7m&5LAx?zAefvgtq+fTw8(_G78BXFQ8j(nx}0)LxpSQ!P& zr|A3NRVliDC@#=SiiPu2b1l%u(O^fh-z2?eec5d;=jx1%0)nczs&RLwLkqWy_xpbW zf1GRiK!C}i<@?~3Xt~}eM?q#Sp~E&?6qJBqF>%3#TUhkAxfWa^P@re7((&SbrM5En zYiHk}&u>ST(UPh5p4iiF>!&>H5!Yq}uZXDcg4ZVM`l1+QA{wgG&3H=dTtQ|O5H=N; zrz3BQPCD1}bP5xMC;i7DJkII_5xgRzSM^qb=rnH)U%axn#sFc{ zxVMIHUf)|sFhN*caHX3j>i(kf)8Yf?^M-DosA-!EUCDH!D;I_7vAGsp^B6!GF=1#- zRCla)2QRwKl`u2~7sSPQ91{=(jk)6SC}0^?KWto`sv9@N${15p^5(gkjua+rD^8ci zUKYd0T+?MqP*DCgX-b{$OrqJcdfAWhKj{DJCq&qO3ASXOyc}#|M{P1VREW4qRE41a z&F3cLn8k$sTKE`*Csf3!wyJqyzVQfzH6|<^X-J}k#kx3OLz2b?aj_wJex_?Es^g1l z_ptb;^Eq(jxuWwZU>Q~4g|AN4^1`aUS zY=a1tN6jzrt5I_cTAT>+l@VrX=9&nJK*4h2G_e1U=znv~u|~nhDYkb@GZy)UG^|pOMSD8Iu?#^4f+f3a@O5<-^qh5SUzkTHVWNO%|g+6p} z3aw|oWcBTz&6H3!7dIH-$$SO~>hC{%r8;Xm*HF`s0Iyh0H$;4AzS5*?uvg8ICgUY< zPTp5Lar9W`%>gx(@@Mm@uR|!^d*ARg=l;Bu|HKzJ%zUUNlW0F65ko?>)RTH?$;-WZoF&4tc2v!BNR%82`orirpO*3FZc zYrjz@1*jvYaq7;UIk`gj=FDg6H~Pm&&6UQPfCOD}Rw?#wP}S#}su=|YRdMDn_NKeD z&GnACX6~log19(Hi3+&dp7C)+kQJxQW3NilWUdL_6eb9ZGkCF=#fUN23|(t$PKA~{J1_Ba6w6l8)GLHxii>tRhw&LY(5JpC2n7yC{7G^ zb8TPF z7c1aLw8vDyjb`GgVS*K6{ld9M4Ve^B9%8P=6j?!Uajsm8$>2~yZ1E>Z5u?;x4P_2K z6cKaZ&5XS1ga!3@t|W5-CWn?^JFi5`t%%}kG*?4dRh?_eR|JB^#3f(;hUk2AE%`>E zK<_uD4jJv6U2fVFrN0k{;C;NWztNuFcD@nj4URLlBv}NYia32ZO;S*m=9)gtfS*GR zzv?}*8g7*oJHpe<5o;dj>ImnvK-q}R%S3TOBRN;|l7kOL#GcDEL1MI;tLKtQ0qTgY zCAm?3Y8RjM{{&Thu4YMq$)V*}*(=dPB|`>#h&I-DyaW>SDU?@M)jsw}Dl)lN8O>5G}VcO^Wan7HgX zSzyoz&$aBB#{kNR^H8CvPbc`>T=P)V(V>JmZ7@MhxC?%+X@kk&P+?-_56amY9YRLZ0`6abaU-uh@*j|IAlEU8&xM3-!lIO zfp4yHnFy3e%@2B4qvnP@vBB__5hnHLipUWtSWdhxD0oLW!C{UN9ubJ;M4l}*sEA=f16Rub_n7(pwsoaZ_VW(*IO z6l36vy1Ah%O&8xb{|4neSD+Dr@~HVGd^Kur@rrfWS4J$`x$1Bf4Av8mJbppvmsZ_r z@on?(_(rk0jyz7Ig0$?79_j0OqXd*k?P}iWQ**sh%yIRN9wf%Oxl(iGxF$hiO>x}h zza2@tn`_)O0tcFMJ@?Auy7fE;28ut{&%E5eT)f{^hs|P7p22TG__fqL3cc&B33-x$ z^S3z8NA3E&t?3qA?|$a5mw~zBfcRgEh<8d$HmCR2MUcHbVE#82^9gCTsJ7c>vp<|q zl;!N3_1$b(Q6!Lm#6#}xcqx9Z5KhSf#^5WO%JUa=aRx`p_Z3$Xa6Dc1^-F&1WuY!w zP6UI(8z1TxVrV(Q7<^u9c|29C=d=-%PSRiwnD6s}I3WI4y%#)dPK&3jt~s3Cis44= zWDvZo_xiN9wdslmBAqH9{HCilIGF*T_|Wo2bK3NGuT!b&MvA-Vo1@Qng+&e6xf12#6)+x`CK;^QYze)p5ErEs=etefg?-yToR zN;MKEza#LSR6#3&%k=}9sdf9PQ*c1d9O@jra$7yGMN*&5MT#MSj`7BT&W<{m+a;}n zo?2G(lh=q&HIWMdGA2DQLPkx^hfCo3M zr>~qh6c;vh%-{3HM|E|ie21NCFO^lBTe>iPe_Gx)cl0&y=O=p>R_wBeaaiW!8rtXY z|M21AYq#e;*^G+skACpe-#2}YrK*O+a=Bcn1gGtmDnhfr<@Ml6%AiIDxw#uDqOxJk zAMd@*dG5GrUoh`VHi1cKEfR?4>YL^A_N>neSuXC#ty}Wz7hOYJUr7TRS}%33*KtX+ z?j&Av`eYdz`GG|WaKYWUp2wX|m^@6TU8f3i673`;7>CwYLF83fdpa(-ht^gylB&Do z#LKNc2@;I|6H}Y25%k^}8v{UI?qrMlRsYM8lF+Z0m|{&#Z2Em`gV00j48~ z0XyH@>69Ne$~wO-S>Q-EOJnfM82&O&VAXQ{FCajoWC98U_BRtsgZ=48Zi3%U)%Lgv zl&mO)5hEO%%+5ia0*R6tD2%8P=*QWNpkzfUj2Pim&1M7=B{NVMQ6tcgvl&6jic*Lh zVO4uarj=I*B}!zVF=9qgKh9+YEh|c4FoGWvRdsb6gz}I`l4N`*Aow9MhzA!GK`b0- z3>1MtfUg!@L|_v$z$RJ|h}~v3A5gNQ6yiQmcegY707(+@6+)~C=r?YF@*+^8V)%pl zz7Nn_{KVml2&`fRR@MT3v#1Dg6O=cLT2_?8U<5x7&^@Sg`M}GAj86zrA9#7-2DqRI zNK_1eP(LVwmxtXO%m5b@fsz%YKqxQ*hL-3bQW5Ol;ATipfJOTzy|6foxG8S8ZQIRc z3N1?{(WAsnp?{sr6uq!Gi@_9rWVofZJZ6bu@ZD0q#m!LemReSn!e9j7 zEw}o%7G{QWx9o+9EDR1z@e|(YssEW9Be}CRT0M-k5h8;@{7^~fCopT2cbQ0%%zzMJ z2j3;=oj1PB@XK97%Zf1|6mSS!LUG_lae+%{VR05iK}e?Ht=46xklQU~q@m@KOyRX% zmzg5cdTADeDf~!9KflSGqC8S5QL)l^)4GIE7H@KoxTq}Nl-qE{ZPW;y!bL`iG8hQ> zk%0~jVues18Ay^?1_}YS()R)SZ7%hds2KjBzR7>F(>v-Mc3PvLdqJ5MvXdwTfg%|P z4>mDLVS)s1n&jOL(UxNXl`Z7_ZcECqEFCSQubGX?D~pyTn@6L-GJfFF?{TA)2d-XN zoWIz+G6RJH0)Ch}(vPzlLCK0z7>wXo1T~2~PemX}BECX^1$;kLGs_IVya<%282+HX zUj(O)7Q`8YazE6vWC|JuM(|q-{T??%c}vj?i?fKE;)}X#Ig4^rXjvkO9tEcONizuD zG=<**MUDoTH z-HzGp8`;We8BCjADzHq>0Ku=;4Nv0F&KWR5JTxs=fTL5YnQldJB*cePasdagSg$=p z=6i(_;X#p10f-y12a2}xljt#c7M0!C6!;Bln4f;WdaC}w|`)vDBtn+ z4;e1#QJMhEXPtMfPYc0g4n9?$Ag0$~3$@giN)W@qX$8W-oBx8+q) ziA^|*j|{RSE`nF+2#0n1LgajbcV}?+2!Q%m$L-u_vC~d!b$%%+aO~S07Penr-R3bC zP{Q1(BL!|{A=CdmO(lky`&|Eh+q9COt*q|S5 z!#F*LIspTaH^;K3$fI1wTjIb!H_@)=|qj_yFbUJnwG2g)y=l%(=OMq5fTHCH``lcHNt)MSkV<) zv3}7XUEO^~sX(1X8-lietYTlk4T-UU66P|BSeYC;n$Vz4U1%yZ|^+H0lVLIQMaYgm#V%1272d1Qks?oQX ztEPm6Xp(Ab5%$tjBN-l;k{YT;-|}3!l2TJbLbM@2Zg3KM@^VWmAtBsgNlYlwRNcBh z)g8@X(x!Nt#;dk>Ed|@n?kM(7zL$y!!4lU51Wt4UBb1SK^*etKx1bg)8JvlhDqvk+ zt?tO)K9*Fi?vAaO(^24iT8M|HL`gofjaaZkM;TLC=ou+ z5a%5r9_5RGc#J3HA;P1Iowjt2$7%TnA7$oOF)N4bW~IZD9`2hn;l9ap3k(~Q9>M*} zOt@bWaY;IGO}b5WKB*&$){7fDVTlexK4m|>SNUN)zg63L-$&^Ji~Bz5rkKm~J3lr2U_?VUO( zN|gf(XZP8Sk3imvPSLgxS~oVQBuRwN`-3{DGNAm$9F!g5DbmiPmiFH>4Z1akIS**j z((z`r#&~;69U3~LP0h10dnf17i_~b6=5)@;~b1vGH2J@hDC;qL&#po5S(+Z5kD{kYoHtLF>*iSa3~3s&ABIZDrG0Ji4%K&IpHtVLjq|FAg1Sb3W9@RvI^ zjA%Uksy^AjY(Wdm>Fjisz@eUPs0CWqYj0BXvlMe{hX^APVZ@g7e6wHmC;ExU9$sWi zNqWo!q-U)y{jQTe#c*fAl{mopUyz3;17CB1~TEc#(+dfR|_s7~W7S8!D?{tqK zjMEnw!C_1XPz_%wC4qJ<9M0N->EGq5I#f5!)?b53o+WC9IUa1kivWO+IcI!$oX)9T z&;gXoGugDhrNbz7wX$dMGM7kR4rRrP%u-O`XnLPkm^w?>a=hJEbi9ttFM0X56`ADc z!+={*o|@Zvy{E;_^+BB6y|6rG0Przqo?6AUt@;IUbp~-yixpz>%u_2XYNSB^6gIs@ z$w*gXGsp)U6Y{J+u5Bm4^%g^;ADl33-sdrA*^GPK)d0ClB zQUMOwiC%3DdM&RG0l>#x4PZ6X)}qs_Z_dq@r?)1jdaaD8b*x;Vi**VmDjH*kIu*zV z88g%T)6d}9Q5>){ zhZkE#we?h_eqMKbZ@MnIC}X8W&E-f212Y9--z5fgVmvurbze~mhChSy@ue}y7Y-gm zouWsjBa1JtQ;uAq|6MQs?KYL}2i?*v`a#8FDQW9l7ug~TF~&*dk6oFQ2mwz2oo}b- z+qkcMbeVm8(coZ)x7K5K&$pv4n_Ts)7yA_88#COY~KsaLs9cz<^_^;F!8;>Jge(bV2R7TAP@}> zzBSrIz26<;&Ul$MBSKVFnX0i; zoHwE#lbout(h{5)0vMV6fE(I5;_r@5HgNvjv=QRY0zfX{ejI_jqeaxyiFO<8Y5N2# zgJgdvgk{1wJp0McnwV6K8|vM(bUAFp2s}wesDJ>(Flc;fK~1L14b6iEHxng0RRN}v z!XP0T*8b0owVM;&4@vpb-U$%N{&)y#1#w*awN=(!$aG_%xAiR@_P=Rv`M4x`KYEP8 zAWtGP{A&4lrr5WfNUIz zLK)m-ySssM1WHVtpDiV?6kd9^C@uvOBvDZEVGTr{EzL3RXeMu#$isy(3j8Na1J1B* z)v7k#D8)igzB5=k9NbEW`etjkALFyPW|IJhyPD{J#XsUdr(tc=j&B42?C;PNC zUm64Vk)W(eiy7YSlj3-;b#_`zAWr52ERZpWL^*Hs%Yc&Ydk_Gu+9!6A7()O$TDmjM zte)%A052QpeAT1L>s5RS$ub5J( zZj5H-lwUm^NetHcK1AQqh)Fp8q5yr6#Li z&1{*~QLX>zqNP^3drnoqJ}htO>QcT7B6;k9-*ZjNm)S%C`$PGwf zV&=iErZnl+f2MGxR^v|1rdp9AC-(tc#Aa&NCDz|XJP2d_PM7fWCC6y`&snx+ z8P2lZQipemiB86IQ_Pde6dAH7EI0I>P|+y5)V#}|-*;lNL@qrF+{|g7wlzNxuc&z< zAwH^-3plgakq(^kM>pAf9eWuZOiKlpnIr0-qxDYjRMqS`B1ce&+RFzt`fvVGx%vG! zb>glwJ4YObO*;e1Gv>)9D9=2UXST>p`Y$0rTOKwKN4h_mZ~92Cb%fE|5#{3!7%(P= zSM7no?|93RKfE$hIINKzAa>oVt$Chi0b(zOBO1v-#E{?H#-Bgr=X?0ou>gRu-s0`v zFYp$A4zE5B04Ua5&eUDnw|jN6G;_`ZZ*fF%BRW4=HLWH2d9MYQWT(BZ+TpBMvm~KX zKUZhUx*<*1^?kGAz5DDXiBKNXHbjHX1wOPPxvuyb#TW7E<;D0IH1I)ploDs+Nftj?`OI5?nz>5i^F@(KL>=?*1=L28)* z`g{Fqsm^^{9;YATS z(Pa;?daFr-1+vm(vTZl&XeO$MebcSoKsm%5wvC7m=|gb_2f3G~`*=MP}=V*9MujZpw<52@L75pRHwBHDQlXH>08zn3Z=BOJOyMh)&RSIKYPJ z4r%Kvsdtos>(!0?PKYN>re%=8#M~3tS6Ib_GRDue!<=%qSaGh)i*t}DGa7!k1!@-A z2UbUl&veWKqm;eK9*C3q01GBE3GDsbCPLiM9;hW%*tIu*zb!LUC^e)OK4Zps0)z7Z_NH|7;7+ z^>a2_aYrL%e(s7B=%}%&8H1t7+@MtN4yOl7u%KPatj?7MB}ZC7#re&e<-d1&%WAK& zZI3Zc%Qzj1>YOMyU?)Chd192UoK8R4tv0mJ#><~bcHx7`ut1*7%c7wKeY?R2-jQ6 zcK#E#WKHs+?v>FQpL{CuNl}xa!~_hqY#79CuhkC?9XfWby}?CUd+mx7Nmwk9aog+W zu%gy{yRE&uXUf`ZM_Ne5K>`zIme{t+LbEvHLN3ma)-lXJnBFmHIh%C`)rk+MGaW3> z7tH^#%wOWtC8|*-Fr(W+r5R)65$eQk77NNcs9d1L&&2~JcVzvH?!lrN2TF%u(qStU z)0gzk@|Lf@m5r=pq63<-2W{zp+37ll4^tB8sWG>AN$mf!$PXsrOi)E)hk`&7mujGO z>cAZxUqYP&HLvFNO!Bj&WT63L0T=Y#c|UyypU&{1&F8c-tan)R>GiUCKUr`;iVbhT&kQ$I+G`Abi9_~M=$C8fwp^4 zkEls^b9Jvx&1mvj!LrW?mhdJ_3H$w zWBe>K7`pAXI$lEc6N4L!%GzsJT*%4A0vUJE+WXpqj^x}OmdAZ{IBvYnbl*-noR0tf zikgw;uZYPYpo4Tp6%+AfSFh;CYt)1d4e+T(ur_%)A1xUS^pFGS(i07p%w?KxC@Vis zA`%|*6A=f!29c5<@sI>!?(nlOynYUghlH}>CzBVWQ`$ErEc0q#))nUh zql63|C<*pCA1m+d#f$8t#l`6KSRjMk6;)mL_otT&mCMZ{Vt(!llNHbyP{6@0BmJws z35TXA_y(D>GU5VdHUl0gxi!m`aP|`H%Ido(ag>xo1S@yp_|U#kr=@q*g$E<(?%^OT z;4=JVX<#RXDrXgw)Gf3^7tf7A`8z4bg$Fc8c))sY#z^qE(BUl07>P(u6ZTr1knN$a zo}=p$2GmQ~29hIegXgSExRZFnAnZx1PbIFKC@}#KEgJ=jd{pHs>IXggalI}-AJr8l zf@=&AaOOXL`Y2_&%0VvYZ^&QytdlU6w}qX2)oRo76`-Owzuf3L7yMiE59 zV~k)-x67xru(R=ub6J;<$rBk4XyD_HOxgQ^o0W}B1DWHzMjcOB{VsRB$YQ+W>n+5) z17!X4>tUEoW=t-%uWz$oRw2*{@1W$IE zoM@R|P5z#}TeQlUIMM7M9A{YBgGS%HE+c_`825h8+>G5ET^d(*!=A=}_ah>H!m zfHQgi>-zIEZCdtI?LW!&-9ZiqwbFrWw%*WHjI5O3$_HdCvq~Ny%qFJbyrXxrG3dl3 zrj9y62`DfieYdQ4H{LXEz5%TqAJIq$uG#6Pw4?kEZpG|jA`jC7rM|y}&o3sszuBY)9Plzj^aw9Hw9?yjog9v4 zbLug`#~ijE<8xe6t}_oj$+^9JMg|3(%wg3LPITJ`r3z9u0x!JeVe8qn9H42;)WAdV z_4%1OKwxH;hFqIHr6GR3@N@Z-QQQ^bbgbO32g!gJ0zm(eI%uJy+meYg3jm*`8fX`9 zl!l7{Izlb$>GV66==6C$m7lyLWHK8E0A!*?Lo2V$Ci4}Ik_>pW#Oi9$+hTv-DMRpT zl)Qt(l`~o{Ry>GA?cn>ye0ETh0UvcyRhv%Du5Qn~IOcOv7Xft4RFP}WzF1yVUOr>; zNNrcfXpv~qAn?@60vqV~@mxB- zpm9FUTCrmM(^sh`2tm^eO7r&cI+dot20C6)np`T3=Z*>=xin=$MVjjM(Wmdfqbnla zt$m`MR%=?jrqx+|`?!9~pd*B!>H9e~lnZ8mF%AFV+BK6wFW6tUhafb`)Fv#2?YVO_ z$&P54)}){DCK&`MN$=Dy`$M3a?UL8-x$+|YgMkc#0WqQP z6ja}OGuzBnP)2lu0F@7sz6t>&8U!K*(m%C4Qb*0(n><&6aD*{B=TobuKPZ~4p1-I% zKHr|~;&+D?pVk^?mh26(Rx)Tv^#?Rmn(HtfR*( z#Gfl5QiCBE(1M5PhGt0@cI?;7hB8h0iCA-ZNQeMBLY2LteI(BhErqq&Ym6fr1ccG2 ze0D|BHK!B?PSUq+i!i5U;g@{?4L1*`r`nte*O*^`3PXWael={&_1)CESQfW!M~9~` z)mrFrv0fdPRQvS{bgqzhs`raz1MX0DAR?@tClVwIG#OM-3XxvS{~k$`kOVaOwb3%s z8*1r-kJU-#XFN7p(wS3*I z7WF-y%6rr;;*C<;j)K1IqruvZ3ozi>@*OF z{aoA=A@*>l&Xu+!E7~d*t_qFkz=7m1jgVAFC6GqyfB~9ITF_ncZFi)NJ8CN|G_r3v(=q zxyys8pIj+IK@Vb6YCBI(Bm^zro1~?_z@%9@ib6qC?o7cyo?5;R?SvCMPo}v*w`nC< zpH{C|2~H#gEq^9nf+~+h-M1vQi@!Iuka{7B^6`;CZlpuezf!+E(Bv=A`blO!qJm^l z0}hCpy;^R6LReY*AY~-?{fLRYQ*Om*h?-S5V9rM8lO2DneFTzl74B4pZ3MdVvbeC5CJw3oRlAR$GFVlq@H*X5fYB+NxI@QVwO1) zjspOYkqc?RT5Th2W-25P0d&k(bI);gAIfwqXp_O2HoJQJs*)phS7NLR9s32#00`uy z%B&X1nd8h-nYC2F3PrS|TX4uIln92Ue78o=QA8mE=m?AB`}zgtOHgykEHTI8_#heZ z!aVh%In>*RE)iC9(u?DBy0%#T=b*0489p&?$@8YH%!sqt-^Ve*T3CA;l|WPM%`Kg4 z1T}bvA~{cOWtXrIv7v?Ce>Wu91gRnK&(NG`p#T-e0z&fE9Ag15aZ6}0`X}seK)2G( z(O`JuVF6*7#-Efj{pQFAkx@YF=fk0`%6__~@T`skIhr-1`enVMtPt;PkR-j4M5=KV z&@-n9xq)B3sCvcJb9_#j1Hnm#$+1*|lrI}pgzlJL#F#NB|3CX$?&0LhIE-rgpN~OkrE8fR7lRHul-r3$;^}j$hwWDucS{%>2c?@sO&AE*oELgq{BwM+a?TRn&hGjA>M_ z5`NBJ?(q2$xC<1ZfIk7C+o9*%#q%v?yivzST}HvL4oUAWhx=(+l6hqiQ1XX+c)Fvj z?CDPXZuy*Nflr^2ND^`(KnDkHG(4j>|DcVA-Em9Swa#zOqoJ>wH8*xL%KPUb^)mPZ zixcWkqQ1k4sg-?ysusbJ)D2X&u*~r*{bfB#f>yg;&a&#i(eK{~mI$E*Aj zR3bQvk_kmjfT}y5i;-QUNdN;Od4MnnozN4!@11?niIU)ftSpL&8}v-G=fO6+F84A# zBqbFZ!Duh}6imL+ULF_<$pZw8_VVy1bFqA*kpvIqO^X6IdwJNs!C>;;Oo{MtNG8-V zC->3HW80k;>t@HNSbjZKamdtta)Fv6EBIQ<=B`V1!WFTfUdX(Eon1?Ts)X@iGo_hs(=YivkKSW83Fi zSJc{4N+I{F@-h|#g8|nwNNX+ElVz!z`7l%T=e;@%j7A3w`-v4|a`rdsLROw58JZ%_ zJ@9rtKh8bWEHscjK$t|q+v<6}#4&aH$lDcV)9h&jO?68Fo#Q7r1NhBsO1euf^{i!X z2H)ZH{TNOnp3FQ?6KBH5d9z0?ZF9=m?d@qn|7T8=oT3Qm^+Fg8BNyds4$3odye&&Q zZ3K_CXI3&0P4zV2-*z?cqa{-(BA`l;ps1D)Xs#@ucPdqOFM#fCY5qvx4>igjH;q@M z$;GLNwpx;a+#?A3ZioVNrXqcn6dzSf2IAiw^i|(;e|nN?$s}d97zuOeC3&E{T#G@2 zf>lh0l68EknZ>qBim#`ZEZA0kKZ9+x7ztCft$KO}+iEcq=wMsZCsGDcPlweed-%vi zN#MNVI3Cq#|8}QnpOm<<783w#*(hH#Sl3jw*R%SXJy;*)h_FKu`?$P}%W;DWq-`*i zvTNjy*fMp?jI6{2+G^R7k<|~p7L_Th<%qDdk=65a7+K2^aR(ziVM;yDY+Td?C@DUs zmJAC!#j3vN27XdfceEG@b1<*d&Z?(_UPVzm3rP|*>sNRx^Rg{gIjBF1&rq_a^MBj$ z1J$!T|0IAZNb*pW=!^D48|FLteNi($a;6B(kjcWCIhEUO!{=?X=TwvgrjwEgrOZT> zdS=@(ow6sQdKo?vNfofpd;+ux>&&ibQRpNUSm;;NXq=L8)rnY4x%__hAc$)?$Op8U zrn;qMMh==iO{GP6a3m8zsOAbtEn)d9D*4sikrcoJ0qF2g{| zgi1%VIcc~{Lihu}Hm~2LmmA^$Ixh*=FH{hH|-UuUw20pfEh_gEK zjG5+1k!kcvZf>VXanrH^Y7&&R5!4S$+Vr`+ueN7Ct9nxmKL`xW;NgK1+F8YQqjoY^ zyic3o&N`9;5r7RlC)=iMK?$4WU&4~5Jvo25%ExHz%_it z(sNzw{@EO^MN$F+N-|u_4W#$GibFmrGJz5kVk+4HwSiRKx2De6pv=P6DL7a(*(7Rn(xKJ0GV?XaM} zs`j)ohFW;4)ytc<-7e{IK0f>RDOy4OF2ZERRwTie@mEc}NJ*iLd%CZz*{eOD-eu4K zYIdbLSeCZ@)p9k@d)gtx0?ifG)L><5_B`Rq=D@a;C$DQ-V{T6M_F;KjZI8TPlsus$ z*N1(y97X+ia|_gY|I~RMz}XAb11r>1^F)DuZCdrbJJYeodM`93!f$CFhmI#<&in7? zuA>rSj>6LWws0r9@uoU1Y2KKQ3Dc39YdpIf`)E1Z`tMpz7t_jjLq`*<^Sk;y?&1NqS-ma!(3T*)A2?H7y zL|-n{wK^m=dS+T+Zd4?+=mb(f~lcp0tmM9R#WqBMTeU?9(_mh0AZ?( z+Ad8!@`_FcGzY>m|H_^O59M(J0UG$2D#hMEJskL`>-SUc9@^OfRN|s+G#1F1{enFi ziX*g!N&5t8l0)CCrw>_YW;&Jek|l=}<>zcsI&5hryE=X4%_Us}LHC{0saW-@Ino}* z%h|>x`)p&+{ot?u$1nZRm(>4YWHWuKjI8dSq~28B(Jh6i4c#-c=EIci>C1>vpR9xn zdOzN`kB}tM`c6r)D@-Fyq5~YzFjxda2uP5?4OI9@LoaIkO>N1YvicU``PT~PwG!2kg?Timw! z%@)g$yBo$PX2oSg7nrLXL0`~~((Mao*6bA*F3VMs|6*g5SzS}xHzWetOI(g1jy}kT zdCjW8rmpTO7J9p(pX63yD~7>Z*#I?Ng$*?uJP9SctDr?NFf9{6(2l-T_jmCx@p#yAyXF_765%0{%s?r< zIo!?6$nJ-4sDln_DqmVA~4(GuZWh$P&z1i(Gdkr~qiG@>XR?kqaL0XO#%% z-C8DqOsm~|nVBuS)o#A*LXb4bH-WCXqh`Be7}+tQm%(s)slYNluKqdRUS;>VjF1p* zNS!npZ_Tc{V~S;GyeSC`NJ)fJre&nwPW^IOc}>)lR3z|6l2#1Ev$6qdk{A1@SM820=tW)+zyF4)k79h;9%9^ybu1cHy!1j{PXm zeUQY_hwrVMnSj&KzGU8*Wd|HBg5xQfP!pAOPiH83tI_$Dv=_p`dbxmuC#xl>-C6?a78Bt@=3pfNT`Ky^j-p-N`#Ly9BE~N_Fm$80T7Ac zKuRVwvL&^r^9wzt3QDS%;=%Qj1H?lcn6Ut{m%Cc+ef+j-SU@kwqr|L>_VcqX7x|#V=zx53-b!zH0O_<)E zgEgXUZnTR@^;wC?u#ahav@Crz6$=Z$lH#P^b7rF)F#s?%NBu(gl=IUav;7!Sd`vAF zh>l7s3(vcUCA&4%m|9MN+DjL3n>*Ukz}t@^++L24Yor7BNBjP?;;C2kZvC`~?9~(| zDnM7Oh8hC|Ok%u#>qy7McMV-rzULDS$q8zDn=ZN7Q~u>$O?SGPK4Jjw$_Kt#Z87*N zEyPDp8hI>ers%2ikJ`;%>FM==tk44Z#YP#YimCZPR)dSGn3Ce-YRS;r^yU>) z7SP0Q+&&dV{E45aSf7)O4U*>MHZ6@Da;LUOP@otFAk0vQB9@}ufTsAARD8i9c16Xf zr1%`znRZTu>}xBtM6$9-<<-jxP<1S@nwm>gREhM@FPmFR>kI4aZAoDSB4su%CS1iN zMrdL*OWwE6>Ofms4!`5uEuIxo3xx*c!bhy#%s5TaQ`X`Q%aam9T8vMjmkpaZQCuF|u_`LHHn6k%*N&>-U7!C~l{BS#^LKrx|XOMBaeG^6a$G05=|y#ymOmfp^=l-SE) zczh|*bbq(aO;>df3%%QmHxXY?g=xI&Is_L7gPKkiUZ8DyTgsnn&v%<8T`oii#j+^* z(FMSQXpk^-+909w5mqO@T9T~Ucv(;x@&IS%5b#DrYbs33WZF626tJ`~0Ga*~9#_9D zs~gn~@mBYe6EYAHK^&w4+M0Av%P@=8rX^Q@&U-%D%LH@^fGdo-F#pNcSCb>{y-6FI znZdJjq(gZlWE2|AV$vt@e(UWaN{(v%uCgOYVxZ&$+In4Y#Eve`VMfTFxdOJ5B!O!L zpd)bh-Qvbehgv?0@yBnBD*=w|K&%+Jh4 zo|G2JS;9Tris>2uEV*Z~@gYs503@hy&dRaso8NukyeT%sAaIP2>zO>rZ_mrnF-wCy zgvnI6Tk;^*Z{K3hQ5wX0Q33^nfui9-jDGBzmt-eC=q?RngE*N8ut0`)yv^I{ST1Ig z(vG(yFHT3Jfe-gv^L}{RZK>b70^^K&JWvu%M8^*CHO&i6q~yg3X*BTRL54OTo|@&_ zOTjJ;GFF)A$; zgso)B_-qu(17n|l=m&<eWdn|wuAX&ny+jSG5&1vO5|@DSZudi1*6J9R==aI{)}uX_;Wp<4M+(}SjzUgo~V&?HEL zR`LNo_?2emO*fYKm60O>I|rtDD!=rAi&Z8;60(vHm4~?J<-e4KBcA+1ae`z52<>2d zH%B{YqVpeAxRxYPb-HX8TU!Hkg4r#bWG^ZCtTViUzA zP1@ymSBw;9GDwESP)z6Lc^}-wl3z>^<6#=v05vskSMBL!ns9q-c8zlcxxmiXwj!7= z`mQ=Yuj%OAaA$9J51EPL@Gb^)H|+?`kkKR%i>=x1NH2p!YN^075!KAb`R!$PL>=UK znEq_1X{pWg;k06QOYKS$u=zxy>96|NOJ(<0z1yYS%caalHu|dBo%tMY_C_`%gsaud zMLC)=#jf_YVP$tFl>`Q)BmxDVS<^~B-@cabnOX)%(o%tC0^P1YZtl8<&z@ulI!NJo zMlulL72eLge6Qde^W4k8;1zVX-sN7=3t=i5xzNZoM&3z2*^LoD#>Y9s2VO_ph*_M< z_d1fm6j2hPg;}QA(H#pkdZ(jY?w0kve=J)P60bW6S@>#@2*|%pK&#CH4|KFM@JO3( zdfX))#I>f>N~ZE}r+N^OCE!QIgN(Tu9s4AK69oVvRL%Cjrtrp7RPw8) zk;04LNCqP64L!SVE{&$W5Fby;1)MoJXm_ByP0k(dmDl%-v@6<-uwL%!UEA@*yi>~B z{zS)^WJYX^0oeYeaaMYE-8FQgg}M|aPPQu{8xibtjXY)zYnBd_`t|N`dZ263RvR8W zvX>4#VLl}n2Npv_AsQ;xbT|OgtwPxgzlsPG=Tl)nN;Yx3qb`*qn>fOJBF;~ihDoAP zN>GlKx}C7Y2NvkoCGO)(^a=UDTUKVan6aWQejOjaWzQCe@}i7-G{JK$=i{m6GlfN- z!^DlSAuNzV9Ht@*4gkuJ!$yh^ttA8TXNFLt4k4pEkyJw7N+tLAVUZ42qdYMG^xZ!x z@tFib$a9k;LqTh2@~080>5^*VURZJy^OD1w0?dU~GiXi(V&-m>fdo=y9ZG{`qS1v;mRl~;C8fdnvBNFE?eb4^dsJx5+* zes*|)6c4PI3`CQ%wy$Y2X}zFJ>iSR8;cp+LYM~M0G|4fsKsO^i^H>}@+3AZybD6;9 zT2ov-sC0q#yjllhfsR;LzdTj9{@n^sQdSOP9mMc*hHQYEuFihHPu%o^BH%&#; zN!9sC3tHRu1r41#+7!n7+uzIPGXa57o$$P^AZD}|)#7|m1Hf(VogkJy+M56{Ne71y z3c{TK#So6`LnZB%-d<#UM{1O;^Ncm}-|c(F#86#otvrQp7_Qb89a(cvH+0{tqf6WE z8+-xej|-@di}yH>Kb%Sa&FhkXlcmHa3`tzz8`CWRmFtrKN)CDAGL1Z~7+%wD2JsWz zW_UQ0{FU4Wd?vZg@Ng#iE4dB$OmdsyVN2ee8|GD#TRNn)rsIjdW!C+LQDzW3;wHmG zmZTZxdL*}pO|@Lpby@A1H=5ZC8Y6;7h%$Us!=Zg~Bc>d*OWGGv>IlgJc@jgfip|7u zv}PHGP8=S!p;wP)VmMlT3_~Z_iVSb6(`plDu3yM-kQy)L;TcTb{<4z0MZOi*waz@EMF%S+AJx1;6(? z!r7~l9wRMrgj0{0WaY)t8CZ?QP-O=venxHO#m*U6jm1sH%88jKg(kGOI&YHp+R*Xt zURl1ptd=NzSN3?Rx=-3#FoCmI(z9|-mHEKgDg6nYJwKS0bIKzI&W>*k6AMoNW~Gi< zr|T$oH}!h0R;}m;03Jq5CKgfvV_qWhK`8hssZlU09O1vhg}91m{N*yQ%IGB+aQ z%zz1Em}_P2rg_Kpb+vLaL$X#L_YAc|mj@dSlVk&~w73 zNnPRP;P=t8laB&%ac@&tC`z%%NDnO8dd-DBMkQ~Q&eHM`%g#0?jMRl?XN8V1LnCJC ziGkNjTHbiq0$vz+ncxXDH9ksKY@KiE0_k%{6VhxN#La@Zuyqyz;?%{*t+hqxyrmQ5 zm>*o|oJ!sZL4`JMQj;o2>p_^Q^J3toCY1n27)y_5tKh}S`BfN;naDnLOzOl>vCno# zD{@EL&a&K7!c@@Zys*y}2#;Goc+^^6bmluh?qBH4O5O-Lg$8F9o1r^zs^G$Ah{TPs zama`h+G-|yd92jci>$)$FYAptVn@h1*sz#5e|SfSHXml6KOCfvQMAZlXm&jCzQEm? znlZ{EY;R8#pqM4IcRY+q9%0HEfURgx%5_{HHxk%<`nl$A z*Ur1n;)qRfG}ths*k#hvUNlF3=<9`DCMz^SP~(E0H~>_V=!zfC?!o~eWR8>5sNfbg zoqCFQfoCwC7Mf-^bcV$#_YF;|jLxro_p9 zpRpBO?9bz3s4%Ku*q>*D<2>18mZ}(w^hITdc1v5@SYY2@<^zt{F`ATzWw24=;w1L- z?Q-4l?BWY2v3rSeY6cOk#Ce|W8=(_kIL~85#(4n~#Ka1+tsba?1ZQboSV0D&4bS$D{cEvU=f&ox*X5QhQFfRJgRZvp?3MA6}TWCWs&5D{ujMF&?Tt;8I8T(sCcfj*%U(K~k>ZbgYih zf4sE%SgE5FfeeOX7ifEs^3E>o0$HIW{4DMidfqh4JoLtNXl|`S2c(O;P61i0bpDXNp*EaMNIWf#Kew?c~DQ(%+ox~V?WH( z{Gj{!lXXX2Y|$#nmUYLY)=722 zm}1^qg;D9;k;1y-DX9p`XRX4hfbK|PT?rM1fj7_I5uzOn^d63qDo0Guw(Gw`-1?k$ z?2^|Rol$P@OlK~?S!a;r8J$s{?@VVd*I8$f?@4#)Y3#7r(j7{8HTg_zlD|ne#VH0r zrJ3rMZVJJy(Iu>+E$Q(#yFRhxU>ft1$SpnICGZ-xw2f8i5ZQkFOc1_dkjFjpNLFe8 z=PfHa2`VvU5>R^I6^sk15Ro7iG~BFA%Kx&nq{K99r6>N#B`R6klS?OCmUh9cmMd>K zZOIWSO^18q_*8{0$5alqMxEo8Qk`@r;0EpPNpytjmd*qVSuIUCMObn{2b=ViV`$3- z9l%u!A}$e=Y_ev((Hy?vA>2WU3*NVEvP$4}LSr2w+g_KVMm^$ZOf6Bg{)B(t+1yJHQKSEfLA9eFjO+kV{tm2(!Qm{veuSi9vZnu zqgEi>9=K+)Xs6i((>zX4|63ko5}TwaU~HLW#~h-i0uI0&>*; zSx&K7az;rxF&nS+{*NtZl!94rGs7y{l3q~4*?pjqN3GXqnMGlx_0U%7Bf58BJ;KbW zBUaItZ2d~XJ6m=WgjcP}u!){zZqggO&rOe7uPw^Wqz7Ypf;CmT{#uO=w)9{)&>DS? zx88vAnjVmDxhUZD)r?C0JFdtj*R60nA0k1keQjH=TP5IYjGE9Q=KWb}7963QEym&n zDZ7~ekL|{cS+cbgme485Opeu8lTvv8mSc5BtQKq;MOCsPUCk0v#9KC`f?1imbzg*$W?I+w<>uZqEOoFLgkym z2%A7O-=!`1ES!+pTVI51_-Lr9e!T^i0TUwMj~Ywd?_ozSb`-PQUUU9-3(go<=>0%L z(XS?>W2_2j{@?9@-vNsNd#yUSGOSyFoiZUC{DwjV>LpxUE3H`@Py9KB26lna~utqEWKZDkxq>&)b{RP z$xBzX!fE#Y7OW0X2%{GFVef2Yqgdli-KNEjV1+ztDC}EKW0>e|8j2WK=%d#6yCHVM z>r%B%>uceJ%nvV5r-RjaxWN53^xr*qpA7$v&7l4J53tVy3zJj5nP!vWWfQWf!*24a zn*#jCjiPg(V+{-?jZ=>U(sA@+ImQ2XuBewz2%T87R-3niw_)NdP@En7u|*j>pifHY z_P^{t?IBmQ^oC!$H2z}Uyq2$L*uq>Y)&J+8E}g=+Sz6_5m)_3W>0MzrYjr*Tzy1U% zE-^MtbLo4R>R)Y^YG=K$75{I4>XZxXHmMg3XMwfbG_LCZ`fXYjZ!;@Yp*TD2uUir@ zKI@$h>B_eH=KcTKeQ~IvZf1=dAZHLiepw-O4d+XbM>8Dc*&CF%Uu@zqOo2v;NWJ3Z z`H4{KH9gYV#9^33T|=N>qV=0WVyv^?cohxtCmWQOG;Btr<(84#r>@vrG#qs{oG)=A zKOF?ueK4eh#N7={6nLiHD&KFeJI|C(O8z@nNa|Ae*}q!qDwwjVtN6~P&WBZV-W{(n zaWrSu9ZhhbWOO~zCSlbTxJl(@b}3^%1S^5ZB}}izZ4!c24V_mj8bq*P%MMU^A6qwN z+D+E7E0L?^MhZl&ci|>6C2`?UWfK=}9r!w$MTf|aONHx`7G2!9a5n6tWl~;{%}YfJ zIw?8zqN{E`bev6LU!IS?GZVbUp7$6j-T%CC6IsJhCqJo3%-)U~{1V4v2Gh^sAR$+r zO344byM!o`_0pm~ahdW_E;(H6%8B_OcbAxeV!fmUAGn10klMI(4Y5>!t4#G8?It0$ zRlph1j$evUbwwENjTX3r#SD;93M0+Cs0by7toT@wq~f#6k`uVCd|FH$SJmNv+d&Dc zrpl(vxz=KhlE8TIM{c~PsvuMwY8 zBl_c6AzNlNpqq%ILuogk6>88LrH)tR#j`?-ghq+%ppClutS~~Y6X=*lpHwSmFpVp8nv+s(HxJ5IsM~Fx1zXiJ|0dW*XdOXM6JEl9?MLj6|l8@fJUK0@jq-? z!Aj^gs!Q*>F+jR;uUehY{)OR^>J~WLvvKT8J79vF22R^ zkE`LNug`+oBrdKVJ}tXSi-?b1C{BD*_2w>=5^lX*$1XbKHjVKHuyOxBc6_+^!$Prn zn^u8dqq(d^l*e9B!A?q^Y}^dTu(etpw}^~8I6}ke0915 zBC(4QI(@VI<~?jBep+v(8nI{Gk+GYM9A-l+epfgJ~ntZB-SLl&fu1vfQ8rImCn3nLw~V#CfnQ-K08_o_)G^dA1;@V zXo8D)WR=r@*pYxTizu>zmPQf$tvJce*fCM+Zf&ilj4vweAX!w3GyvnfP~W39T!+ zbxfknPUegWu}gZ`$J#$CFV026|8^1TmTF1tM3(gBzCiRS{s9BNw5D%%Qov5iBqGSJpty{p z72V}c8am(JiI|8$gnS&ANB)c|*#Ti}`eZAWVi8GpNIdKJFz3OG(akB@ zQD8ic41mJ+I(Y252kUV_u{cF*t}1k6kAnqKlonS~`ZU{WHln!6h33mnb4tmyD2h;! zg;5g7hjDG0Kn78K7FX!(0D>-6*s{Ad5SofGg~-m*@z$ezz0=d4O4(tq`jkv5FcG1} z7E;MR+z`7Qoo$v-o@Uz{hf$Sik1Omp0KDF&@$&Oj|Tq~Gp*|rg0XSh6~9B$mT2}+nOdFBe2 zJ->sWe}@W%T{eB>?IdzT4;rV@q(LK=mFVA{D!VaUsp8_H3Vq{q5)*)xnk=7WePpNs z+)?l@l%rfXHdKh15*7aL3{_GkXX{5dBW$6{Bc@gP-}9=X^YM3}N}r4``3v_C?hc@v z1A;U0?I;fWsXiSHwZAsoZNxR$f`k?kTq!ViNPwPV%OL?FXd)mAiygwzJLTEpVbea;nYP8U zKa<}LWLQIq@2<;Qw~|t03a{-_>{k>JF+%+BVi>JXWXDmJvekT2Fxerj)|J-k8il35(9h#h)M_HKy>|ArhsIdc%WMT9T zz&$EouR*k8ahNOpiTi%|`ouh$dV>hdFFAwjfxF^6bQ{!qIGx=5N z-h^6!B5HZ;sHMS}Mqzr*8w?;QGD4IDN<%wc{_+!*wC3#}L1-SrED^1uvH1o>fY3yQ z`CmW&vw!nv^nb!AZPN4s4R!k3TXxvEO%fQ*EZ9OS_FVii3Pft2OoC8k22+S^@mR!d zP~+l32qBF@6c*dk;86Qzybj&CrLiE2%i;>1t?Bm7Zf~HcagD260F*Uf>z#0>LtLixx-A&~#}q zJnm7WKc3>S8H8?)$N{*}(F`ZKR%!yD?Baq34<>~AhdNe~Yd7xc4_y=z?G@-nBl2uq zR3nWgDiM~nBTZNS_3c>4Dst^4G<Rvg{xA8uiI^?p@3I$@!Ks1x>3E*cx7dZO{^Cb#mVZFCw2%D#)i-m;0IfK~cNK%sa zVK!clR8X-7&mpD=as-EdPP)DEgWe-;iH&k30Ei2j4oL*7r99GNqxsVaHBndvugTav3Jy)FLA+z zURG&d-_xK`qLaKCd1H*b;C5E+_}20)Xq`Oa6?t~+3t2R@_5d3Mm6NvMREK zycIUH+38=YOVxI;m^B)ORkYa^yOOqvE}M;mKoWqps=z0b(rpfIj=&sMRhVtt9EPls zWjRGyIv*#iNW66G+TXxI!nRk?4k(=A#jP?;V;O zN8yGC6TM?>gW-vHgpc7u;Mo##D-8Rb>R;# znNmEkzjH9uqn_r)gF!SYp@f&v6|#vQyY9r++KaO6u<`JNWke-k z9=go3p&^!(FI^kZ0!PF@*pOc#CJdo|cdEnz&vH}Q(%b>Buu@8*sv2pS!O?zC&(}BB zz*s2_mPLw$4a<<+S?PALaae}ONpS;Rc*W~$Y}P$m^z9}$)jl@&`o?f&6(LuZnE7tS z2wYN({OBxWHvqCFF{?O*vvje*j#nFk9Cje%&FV}UH6g9coHkc~I!#I2H19lIQj_DV z5VPBY)OTMh? z&_^GKD|Zo|(7Ckp7e`cR$K7vr>_&DJQbXtwGn5xq8h1f?(dBSt)WN8{Rc;%j3ZA6U zjkDOO@EGZtW%gRd8haWrA(Hq8o4LdJu`=SXat%!#53qzLPS5;U&zZJL4}l4hOk{j| z`g-i0-KJBYBA^MC>&9&!&2i$ynX+CsV7i`*;DjtT;KSLcifStZ5||Lh27EY+X6suS z(4bXQo$4yQB^A(wN|uXku`rc)6wTYSS0L8pmID;Rs8y8Tb*bN`iSmd-88uPng|YUM zZPP>vp3u1wBp3gYZt%155J!DlspxFe zrx`FIit>+s)8pZ7ssy76Rg{0}Llw5kKaVJsQM)o*=(KIqMiQ3LL`IxXU zJ_bzE9t|u~E$%i03&9gQd(5(A*J5^pNL3U8$@ge#dAP+CC50_AqEtUb!+CM04?Nl? z)q*EP76C%6yU@;p<{bja;E-fPyg!V=drVz>E zN4&)$+t8MHq8$!ugM$Q$V}JQvkKLLFiW>}-AV!rG$?6f#@E?As$(pYoF-XK_aD~q9 zr(D4MSaQ%e-cKngicpY+QOZVXA58PIK@f_|U<#2e^)2lu*e}4XWJIJGhO6>C#jG@-x&^k*u_C_3lF5M=N~(2 z$+8E%S?^(V^iK0EvnYyGkR`DJ<6v~Em&!I`B$SxZAPb|cm_EXtW)#A%%Ku?*#8GNG z1V(YnLuXiN^YH^BniXa9HlIOaLc*0ahIHE=*oUK&yQ8Jvwa1TAbn!~~MyUfxoI1iy zqz(~x+Zz)gCAuIOC@>~=7i~`mkeH5eC3QdGJzSb7JJXBHrK0fQwsTqH2zix|#+?fx zgsCuyk_78Mr)LORpW^rr)Ii18coke@#moVVXs`|SGU~G%_XPmZY^5kMys>5c79m6= zK7Pv%O%qGSjfbX;p_t4uw65&g>4V*;R36-CXT7Cj$j96oq%tppe8Qo=ZJC*U5LLCq zrY*CBDf1GxloJ~yZBIGg>tTr#C)^{bvOk_iXOCvvG64zP5b`L-6?*HTi(V^pXFYU+ zP|eMtLTvr5^4TfXRW_NbsM#UA03>)rOrezqC_enIc>@Flm9vBxvrK1tBYtxhASf0> z6c#(rF~=n~Gg_&d(20wRhaNa0sTerTW-*IPWsW<8DyRA(+`z|K?&Y9G%Z@^oOV@6jvGZ(83IAmIJHr`|wqiOnxNs=rzVm{L6 z=QJ;?K!_Oq(HqjT;~k7Z2Z#mMW9{ZGdw>+PI)-u@SIWYhq;VCotz4e^G_IV2FiK~W zG&-c1)iFpK?X(TI4G%HgIm7J+DyfZ+lL&w`x5pQ1S8H%ffg;Ve-sOe}5D^_Pg~*OY zRtV9L4pwPA7GaE#%AyLFZGTpi<1w8FqR07%O&dK2qZtKTNL>O)aI7g)ZjeC2&~ye> zxNIo#YC=yDzc*P7`?%6CYJ~1KPic%-)}Yu#k9AYyZWbKUVp@rzj<0FFQ9way6(NTR za5=tUucos9VRJiJ7)>nLLTY!kuNJ7a!*KU|Z+ve$A1zNJr^K?cjv8bot>!&f0qp_` z-~4Fe;%8G#{P+AnmC>>{B>3-?6r4@G2rz?xIwc?TG_^*Fz2~#EAu`*oHWn2!Nxpto zp^tW8djfmP0^dNUhdBLQMthW6+tm_^T6-L~wdQPwJE3SWj(zWYmsg|l;EMdIvNwC% zQC}eiL-aL>M4DZ(O?|Qd^}(gIvh1$(M#?mg2(x#SC56pqXF#N+})2r0R3NxmHQc)Mo=P zGVB#nRWdM|9mm`1vp%{;b(qu$i-^)~v`QQ5!RYvr&O%d5l);X7nv2z(B3M;~L2udH z>spKAm_r#`G?T4TaE^NY89v2E;R;8p-l`YeCqnV`pSIb_!XR)K1F3u1_AVtjz!Bl!)WR%u*MKD6k6`di>ekaZ#yeM2Ix@N?T?Nv<0%PcHc5Cw z&ti!Ztiwkdx9y=G#;ej}*+h@+_2_%H3)&4_SFeUKjeETqE!Lu#M2T&_=-c7x4DO>vQ|`GP9;W~8|PGdlu25n5vDz$z?7EqNVoBET^^@o21b`m3EHd0qe=f{ zKAoWTRK;|o_9_4?DF}E(hMiKuT{zYLo5nL80})a(rVv>>n}<8NebeKVDAnzotK!Mo zqt5VQe`t=e|NcLJf4;EGNWIl^O6MEyxkC>3zL4V%ugvFDeJ;>HHXU|l;X~osmtD(Z zD|3G}=sK% z{+Hd~Ub~};^vS@C*fsw2MSnh;Sw~h1ws`u|o#CWKQ->ZtSbV?y9{i`Xc7L^4PEXszhxlV0 z%_*{1*JBe3uJ^&02tMKO+4d>m;{8h~y#3x{*@D-zwQqP^^o+`K>nfrM`O*d`dzJub zT?;4qVdx%ReVKLA)X7q)Me6`0H!VqPG->r(*zA69JZ#bRlyuz@)I3RQB!Q|}WW9}b zN*rSG0Y$4AQ{ZNlQNMM4^l&(6-IVK5TJB8|!v|>08b-#}iE)U^)Phwp~rf+p1h-2a8ID z;bSI zQLScqP0B9kxlJJ2vQxCwD6BC25EXkcL@PX+%vQ@*>5{E%$ZlG<~ubOtaz5uhDijs5p?$!mE)zuY-i=R^grXJ(Q ztU`xXK`j|qyLD85_Gwgt8&tcz>d!u1Pc`0y>Q955-=q+Kvwn-Aq~}ZVp0@lt#rOqE z3=MKdSSxAK=|XX@^~<&83QSvIif3s8V32QHWZ3U{qD1FB9FOkVSW(rY{(NmhwDciJ z@ie;QD*-CVt`iwLE{p@H4IfQvC*I=?68T zBW3*ts~WGq!+p(v$YnejUWH1sXYx54*8mpvZRZQ_)37jwDze8amQ{pMsdD+EBSj%j z=fa9Bv&n~eGmogsEQU{U;FJi;uVzhqx&c_Nha*M+~+ zIT;ObO=9Qnv7N)|(c9SaeK|7bzzOmCzAt7cS!)Mg~iktL=4 z0JMK8@0d9ckG*m5oSE`qn+nZX%d-KCqFUU1EmKzDNGTrt?}-NVi=?oj3Z&vKLFi!5 z*b*B>kd+kj*utb^6y1~9P^bk&AtXSW#Smce;(n3{THf_q*aaXN-l90MQE6c_8~-YJ zT!O7XLqOXe6ipNpO0fzEq3gWhbj&rX_fTz(qoOx~!N-qUwAIUaC{(uQNBJsS9dsK$ z5d6P^ZhPqB?E|{QwT2u@-wBkOJDRB`@DO0!do*1w8#V+2#|E@v+f*kEW?L|eR}T0} z=rSEdT@aMc@pO(GAyE{jgQ1zdi;{B_kluNGa9Ow#6 z&C8FxeA|fi#;udlJ%sJF#zSmwZ1raPB+aaIP7v9wQXqTdHp8|JY@1+<*QH3tq?c}9 z)9OZ(_6)Zk4qN>xLT~y@x{|wPww38jZ>UaS+W~Cb!WOSzt09H$K9H1l1jhOq=?>Nw z8c5ogMn1=|zt67X2`HOSkTG*34<;eEr<1lI7jHR@{sp3j)6-C^5;}(SYD`snwCEkt zVBD8z3h`Sl4S|x|u!LF$6iLhAt5e8Oy#LjDQXt<{C90GiUQ_j&rGkd$z0#~FWJoVk zAd8o;_a-ZpN@)#R@{6i7xUQE^<@E2F!V?dD8n%|nPS7uXpxzwT5JTZ}Qiw1;nI6*~ zI+dvnMmemdJbmR0Ax4=(z+BUHIku;J zIUq1oKS@Bvxl0b7drx`_+Lvk5!*DWKba=~w{Hdt3!yWmG+aXmX<)`lp8{gv|fc=$k(f8- zNkU9?i)XeE6R3<%%(s>>vcTfC?%>YjaGYn+*GN_Jx$fR>Gehjqr8OlT2i_r|ff zCF9uVb&@a^nnX)eJIODLTasj-L(;pF?Qs#pW~=THQ^e?wxx?IeMeyp1QGi|8pf>ke z@Ehb+Hi-|1Q(eAy(j*$xQj=(&Ld+{9(oC67rqlZiEH#@`T_Pdb0dvZqQ;A%>a@mr$ zz9dqtF$*aa{rm_Ex+kZ-`F-B3+;M-KIrG9TeDc;V_p2)W*-gyuGrJ?&Y>HDIYz$v~ za9M=4zNWobl|qn+7mkiEem)-#R{i0CMk%AxDG6&X-)#rO_$3tt_$zqw{^p&(mhsI%nq47T%u}}pbNDp&wooT+e=4t z?6{|OeT>`Niy@n!2H=)0D=>jv%C7@V*Gxp?8ublyL? zZNhk3MjZLkV1-wY9t;qrgGEb@0t}27%E=CvIAemcTnSseciY7M`P^ttk6Y4|z}<-h zFO9Tw{oZW3nh)VMm_S?)#|r7vk{w*fqEdjx6YwQEcv$3FnOmAo!Y3mgdy&1bfI0CQ z=Y@c^;Z=fb24NP@?$hnTYx$(L{-I?O-1?~1*FMBuq{Z^JJzv|fwZT=qee;oNS6W{U4uap2H#h3jV&W~~jzshey15}D3#KS$_YoO` zu$Vsl)kk>RLTu`=HJ=_~wLm3snX5>3m>UY%Z4e?DA#4HH3i%{@C}W1vz z4d1Us2LHScv2#2h;#A7X5-Sb8#eH;__zPoe3}%$ovwPp_NLaRKY8$4uXDVL1>SbIq zGXBQNfXzRyL+@bEEKLSlC~|W+jg{`~{H_j}bz69hY#F|I<_k-B+dhH9OLaJ%5rwT& zUu4E>!yb)CvFJ2!9n(tmJ@mZyw7Ii;4C?4ucF5U2ww!GYADI*VFF1=IT??gM4WwOV zX_x6WB(S~|fowiKqoh#xfN<;HAhmCL2c^g{q3al+{|T6i*N_-1gE|~UWP2G%!f)z~ zMtNkvMZ1d?8w~5r-1z;Lv<*6o`rEfdj*^;sPucc_#d|(U=mY#at@mA{WU{BeBSnLt z7*rM6K}U+tK;swB-k4CQqDO^3s8j~Ksr_Lif(#*ZK}n3so1wDZ3? zj&>P7AdzMcI9rX!=!4AoLJMv%mo3w9ad2Eb1tc!?LYAv|g|*4v2o6lV=STjw(;LZ$CVBTcwFc_n_v~N*;Z5+Y41mB%v5NAnG5} zU!Q&T130>0!bFoLQnrHuoWQ#h_RJk2^a|gv%@^MzhgQ#SJ*>mz(&T}QAKnQko%J(4 z_nCFtkmH1^fU2E4nCUql>#lJ;#Vby&_0-%D2`J?6`h;T_&*Te; z)iS#t8so9?7!*?=2Uq_hrggE?S|R?)9Ky>%^9bI8pAZWR(RRTG z%`~&v{zIg+FSZ>Mhxms~#RpC^Y5H1gx*2Fff`YL|DM6ohusxJU^_-evZ=rAHZO~|^ zlksVr@i`3!zj)J&2mfv6ry|k1Li~{YO`L}ace44``m95vBI>}8M{_uk%&tz{nN9n@ zTKzG6`3UL4eKx&&Lp;H4259EzsR_n^TE87kr|mNuJwXVXJP6@U86<=Theik@O<4$@ zL_&(I-Uvw1O-|8OpQ6i@qHB}ZzDdznlA>!d5Ull+vbC(smUXvgCnH?sHJzR4%)POp z0T>*fOsb~s0K9lrMh^$JW_e=h-1j=YZ?^-V^~dOdPtja_Y&`Ao6fXM6G`KD4aLt8z zh(X}Dhz`|FL4%pEC*+C-R`kR~+NQu|;iMQ};xrE(XR!xY-^b{hy~ta`_H855uCE!9 z7?83^BsLg1dv11IffNVaBL;C`*Km{0p9UjmPr!*Y!x3RYKJiL1+CJ<4dCLs$Jmc&HS2aCBF29oczH{9Bqf(LG3Y0=&6$DlM+pCxUCK`PQnZoDf zjHwV&>1)lVV@!>sUb8_%?x9(N#i!y!_-%(@yz&KB{c)ZFc@PctO`(QqK1n62GlrW5 zQyf){TIY`j$73D8*m>@zQ&fp+69YmRzasjmXtmB?KDhdoS<(9-shQh^%5tAw zH&21GX&G6U{O7qviOYW4oY-%H-HB$(6&Y36&9B#Q>SJ?yirA=d3BG>l1w>{wHTEEt z_Kt`An5MhvK9LIEoMPH!`Xg)&!g2J;j#475w)scP4pyBL7kuJAMxl`}OjB?A0@4{Z zQR!yi&bajws^5GTrmum|Kh7!35-yy2j^Zupo4=rj-z-sM<@CDSYKJO&H5OK43o zS%2yH6Q8GcK_>O4Y8C&><~b>n%pzm5zEh{}CE10W)SKTIzjJv>3H&P6LQn#IVL$@O z;goulTIn~ERz!Rt!q4;oEE}YrLgJP~;EEsIw!mP1FZF(hQssuvx>;zj^cWX5psLB# z(|17Q#4!e2FcVwAHQ${c4i8RtHHD>fop}GV$K0@j?a4X()EK2w{Gm8Ua+xQIcYPR zv7cVNa2mym??f7bw@)v&3A}jnlHt03@xt|+x5;Y3+Fl}cW>Yck>S@{A++@F!9^EzY zHYG@`3E=@V`-e<)lG{#%_`*x}m$C-v50(ZJ(4C67rUu@-1S$*mK}?V9c%@*jmH5~M zjl_F38#LSrNY>Nmt(rfem=U`zGl&FBeAek-{KSS!Q-^5$Dlk4Rx?v%%uXnB=?V$RC z&un+*>A3LGiW~D4Z|`RmA;S;rn;-mY?xI_?&Lh6HbpcLkv=V&!9R50fD31n@aF+E{ zm*e}pNTdj8gC7ob$KF1E$bT|3W>ov~YU})Ouib&LJ3)x;h1S(S$fE zQ!za}XfO#&VB1orCt_$)l2iLHGP#5kzd#|bR$H^--$O7w6~PNF-dUrwr@>sIT0ag4 z3z#`a;Ll^?wruqIkj{d-87ee+0}q~4c>Q-@9ULB-d1j_dL;>f8xhO#8a0kUL#4esV z2$)bG;TFgno|T{zk<4WI<(IdamQ+r7qD8 z0!b=m6D7vQhO+G_ZNUa3mSnDys;gGjoun$fmT6ho`4WEo3oQ!b*9mQ~NLiUs z2&k*N%x-ofpl!u*keT|6g+NwI2WFXS94s^^M6B)WYOq$6py6thn%b`E^vaCr#-pP- zCa!$CL#110CusYOla zZOdk>6_a7J@K>zmQd$erk||TCCLGf4%eP}}ex_5hi~I<=Y&!T6{C?Ms4!d1H(t%Wb zRG%Y!V;w5~aBxo_x4nxlj?vo&yLjrlxseZCSBMMRewEXPi|gQ)JjE6}6G?`S&R(cj zK1HLqgB}@9;Nh48YlINt6Xy0nrYl--2t(1ne*ubags&h`pJx+=Wvxsd&R?bNg4QZa zzx8PIQ81wow|Is9+6fJipP6`=!+f#+K&w;YDW-Fe>DEFz8zJo3cQNsZ_>7M@hzSn81%>Fw*$2-b9@30eu|jHQ9z8ib#wDowz?24SmWkAJ*DJWi z4-S8S)i6LyrU9gL&ap$8!sQ}G*~<=UD>^G8bZok|=*3ev4iEp}*`O}dTG;jnHB0i< zJkeR3zeYaaT6iLxyXFCwRd2}ssj&ix58TR$Jn7(>n6#(^Mj$fYgW+jX@8Q78rnrPUVJwsBwWTes<0PHN=`~cZOyl5iTEF0%JsD@w{9%mzzfQ!eB zpj-IonpumE@=TA+cb2sbZL{{a;en_i^rF&6bkL_VQiITo1Za?(1{qPc7g=HgD9v3Vqm6+-xq&j)ck=Alo@X! z#(pq;pnHy8bZ>%N{NNkQ04?v-*4xg*u|E4Mf0{vl@Isiyzx~5km&g_`fFJ8-54*D9 zMSDP0CS;dv_|yXVo~>?C-RhP>E#7b|To~z?i6NL&w&)oA7Y-D3*^#r#B*mOPNhktK77)Zt?w1P(jVwaZoj!8ThOn6*lELJl^M zCu$RsiSq&x>bN2*-ZzUAc|}OfpCd9x@An4Pa<=GPxM1fZd(-*73$$u<0o%86wkIZ< z6MM&|`L;N>Z-Q&at*c|4sM4mGzyamd^Yn8EP6`+zb$3+uativM6Aln0Qb5pf+`OhQ zi$cQzF8mLoe8w%@i$X%^nX-EJ{87(nq1pt6Y676jbUsBt;~qcUToCWd`E-3-y6=m} zt_T#2h`AiVM-y`tE6!b_Bbv-OXm2`O?C}xP-RT_uKJ%tZ?izDBF|a3SPmi6~VIgN& z8v<*F53j8)2Krxz{^QZTEP zit-zsWs_~s>2NREuF`cSkOerz;+31c;{|7`Vx8rOdF^JPIw+ICt|U<(56^ntanHu z#_+?3H2gWi!95iCO{*OXvzhCokCe7-8Fp~2%VC<6`^O7JZL~2Lei?%z%Y`Kg%Y`5) zYRR8+5EOQ$*gwgYVfU%cFH8aX2TXgpyXI+RSd_M5S=v678BGW*#;4u`EZqb}S> z4Rtt1+3RnHr2!*vT8>do#XNvi;J<`wUL;_ppRX%b77JS{Om9Oxl zw9+&sw&$-Jro*9`m|o=Lb2o9|C+`I|(;&{lA9;Qhnm|0LDF@EnM7#8Cx zjDF2st>Krh#Zd)+p3`E_Je;k%4mP~QwbYQU!H*k65s%^EOdf{m@k&wTUP6jGXq|_> zQ{F6yBh=!98}kDq+>>sOM72OBe=Sh){OvM2w-zhguEx>J*$dF{0rRQeonVR|nmjQl zpo8QMb5tgc3zyR_Vv%Vv48akz87h`;8S>qVx!u+u6iH`rGBCvL@z`YpAS5>pJoo!N9 z6>{;x*Jg2?FATzkNH}y42XzVa!nDF&+gja|8N><^Dx*;6>2y@ZzEwsEVDakLSb?IyFsQdB=V(Q@f|;tu zBCrrY7|c-F5V+9O^UcjfM1aNDBw{kz!ATEZhBty!dH+oF}itvh~;WCQ7 z{aJ3n=QS`0Zp>a{E#xWgn*~yA+<|L>uDC+YOps+=1D?#`SiWa}8v}#V^cx-9g!v{` z^oQ(#f9!5-v3h@)T*7?cV@}XYR&)#R{)6Jk5{sGj_ z(%OWHmgeyH*AA{-!qki?-CV47{_yvA{$Qe%%>c54AnpM?w(RR~@t*#8Jd*XBcufq~ zX1KP8D_*|EM2BYOsl_J*5E1g`9b==o4Qic7WZ!a1cWP@BHRx9v)3-l#SOG&~03A0% ziV(714rEnMApUCoO2J}y(^6&z@rx<7u z^XY^}QeC<8N{{>UTk{|@jS~!U0-m<#DPA+3!WA!~C0A^jVaCtM1ZiyUz5>{mhYdUP z|3BqF+sB9r=VQQ)inFkBw7tsB?3BJd%!tr%Pr&Nx)jKUBz;WM1fQ-f1Y=J9ON8iyH zn>>W^05RLz$z5at5bX;wK*fjq0sI|)%7b@ovu@D?Y+Ny?9g&!qO;`+t>B(_GYy0;$r|GINW*YFQDc-Ju5;7AL(Kj_Vxav^iYviv!bx zH58Ro+1Vn8Rt5?qXj(s@1i#=i3~2~J)$j@l&84k&RmMx zuyLd`vqbno`HJ1PV8RLp5{)DIsmyJoxDTU5h#dVD;dJPK#G)8tV-d!1mD|y$(nbMO%}JZa77^?F&%; zJYg8+xVxc6-HR@U*;P5M1|V$)DV`#70=;8E!SyzCnaeT5J7UGAs(fYpwSbrrgF9gz zV(}VgN9GDbm%lCxsXV=5B$*Ks)-rJ-^&`5ikcDeQG^mdnuI=E8m#@(nFF^z)9~vb# zGg%{MndFw8;P5n)ApA`)DKj1BdR+Q~OSlvii`Ay05?~vh2%M7Qa+ylHm2e0N^7jEr zfMC;#;a1XFoz=1f0x!=Y1qOTmdKn(n=jbaLzRK)8?BKHF<$#vQu7XlLZM_^ftrr1w zTyASx&yc!7xmAcJ)l!);61l#@B}kQxwJ8W4^l?iH<8CizINs}c)NdUPPkLvg_}1O* zFxs1=1c_;cKo+mxtRaMx|Gh(Cu?;}&F$T^6Hz*Ia1 zZ7eRWyQ+fO^CY}0OE&NHSI@PsT^o-f=yCm9zE2+MV z{IQjskpRUn8pUy6s4Uu`tyR7Z-?d@`eTf0wKQi18rgL-8lUbbW^p?wc=Pr2$aGz24 zc%pmb22w1nT`6R|_Az$iy!=f_=$R=0j5Vlb9?p$-f;A{>WUsdJSw;WSU|9ig1>aB# zC=ils7#1p`t@YVL!=rN?$LEKAR!$1K`20E+;;BIMOD+2n0)%j%!=#1dwCO53ghH|) z7lQ}8{aZL$m6fuwHLMMvS#9{fcs1~ywhl;%cuy&B-p0#_PB}g8nj0DspLu^WeK4ji zlQcKf)Q zOuA^AQlwIyux-`{tC6infln&^udn{uzxgxzzv4~4+M0A!2>*$Ohj24#$;!_6T8Z*% z!IPqk*AFaph0+U=QhW6qHUr|UxU!Xhtx9k{)cH(S+ie{qnIN=o0Y;Sek|{L|oWMKxZQ-a*&Svr&|+oD+)$#-;k~Y)>W=Dbl|_aVetlZAysd? z7AfufQ$=r(ofS&^lLm_$slcTedMe-cty87D^4A&NK}#F3R5&jGJ4)9J(iUQMXMi)z zAK}78JtD}KZ*ob{*J5qca8pQ!$17fuMwK3q$Rj6IC=;K+VEJ=U0PI?Q> z194jf9mGALz!V$0eZkB*X8L%|tS^{RS)&4`*q#hbcQ{ z;E=m6O+4t<%^?D}m#5?R0=VKyp1trRs{ZE&){kX=;Gj5Vfvl$m3xk%&y30Z&GZHp_ zvftv&G>Q~-Rh!sf2fG!EyHh2ekI%MODzf|Cv6cHm0OodrIcb$N7+-i1E%L}xm4Hq< zV4p-jAK=1awumpW&aN5<-~nxN|a^584R#SUxh> zF~c)&7J^<4^tNGFYyv?K(Bm<>+?Tm;RIN!Hc_GbHB^WKWUAr~ zv&;%5za=HKvOr3%+n@J~Cf2HzZn(dE+qKLPKa^`HcG{I?+>1-?Da6nVxrPdH{iD zMW$sAncIS2yn2V0!CMFZ)7BNvBWeQA2b!=W2;rWp@R}zSX{84$S+`CJwOlX*=;EbN z-3@n02?@LvLUBLn0@*q?6kP(_MvK#Aag9DxHeWTVXc3ULJqNA_A`&%?zoa(VgxX;w zc87!7Z`vp8YKKWa2u#wsd)MSWcEq@{)ind?yV@<8UnKMZRb|TH!aI5A#;yG?y9d{9 z-???|^4E8+9CQz^T>jb|9{EC`qjLmrmFauJ>Yoka4iH#~gDD=nEQm0}N5PAZ3c>A| zBVnFBBs%x|}O#G?)9EsZwv3#V}oB}Nz* z1MQtYX5F-aU^bLahD++{v8<25@-gBIXq*p6hcZp}M3exYO(Ps;FRA6gDvRZyF+On= zKi*$U3$itAB@x{x;djA)u&^}c7ph{TdB|{I8m?|mFhNe(K$>7fL>cC%osAku7j}p> z(*Qc0H@`vC{YqxY3;CW&3f_1%#FzyZHJ7p6CvyA+3&#nd&7I%{0fcXw67CX4Cm@WTZTCB^xpmKiDV_M0fVc0Xvq{q z@!pjn%1&bCVja*PPAxn4=F?Slr9kt>-hvc=@dcxSj|+D95~t_=?}wh@~!J8$b?RH_AdnN5c_c`c8X|5>>TO$$7^(&`E{{a zu7Ph8d{xKUx?vO??(ct9p#YLqA8!^WY20G|K|@L3{;Ldc-p6Zb-OMAh>?XVnbX7r; z88XA!EmmsG2EEEU-)MGgMj$D~;@nN*DcAn6_r@)v(_>uTYL-5w)YKR*?|O~%*%5@r zQs+$Z?oFp67|ZRe?1K?ijmG$$Zah80?j2r`RvFy9Ml)VJz{7TG=D6%Rpdy^AcM#@E zjS5VNc)~~6f^`~qC}CsX$Vp%_mho|&s>3gJYwsY8HlqQmL;qn1XB|G6xHdUdnBDmm zv=H198Z6)7KZWBH18gw=D)^+ccm%&G!tJLk-d2FyZT*9wS>m-bYzxwZ+P(U4NJv($cQ8 zKfg?y&s0H(5;~#_;Cf?Cxc;OpAhbx>NqAZQ3F7xEQi+M{kQNLO=B2sUZ+AR*0EVl~ z_B}Ku-B(7P^nP#EKY66d*LQ1$(T0gqzDXk(qM;GQ z!GHwr%6yd>?yqp?Z*TFScN#T5o0uU0gBgD3p~(z>%B^epxQA^o{h`i;?70SsGH8Lm zhu4WA>#~1*|644#;Ec%oJ4kl`hID`RyWe7k#z2z-KR=DqJ-s)=nH1yR!{MM}Y_R@9 zqi^ltdn?0Ys{=f7qvb88TWfp(pj7qTq&0L7b4y2> z93^L5>w5vbs2CBOpAIcaI0LKd_fy4slYXCZ(C_C9EC#(N(`7JQ(@pOtqs|f}3ha%^ z@XP6P&1oQlIfl!r7P5&M7zbuREC>MW`W<+X7mI1M<7|_D#{!|>f!CQJiM6T#);IW@ z6u=k}1u)gjf1-L!KMJ&;mvT_&MSd?(FzK>BmnvkOuVe)#i-`A@>8iU}u4qeIG+o`q zNg_yalH6v{JCtR9jZ_okpb5V7bT|lYs11}onJWC$8mI!8qJli-L15Ur;*4!ov>REg z+N3yJAQb1X8IoA5GUW^>wTu?Sg{IvkQv?Z_^84xJI)TNY8W+X{-RtVrj{U1;$dzTY&7A^b&U95C4qRY5 z(-co#;b`;LB}y|{;T?q*oZU`GUzNpWtFwY*aoDH9=fRt>RIB8iImXYNY(z{>&zlOM zGorJQXuEzQKr$N=prBYwj8{B!EnJmaX^;TvbD~ z(DR-`>pY;NeFoEeSSU8Z#N}Mdx_uNN%M(D;C)3N0KDtkm&vm?#w8J14#Q#(CBqg^UopqA zx4yIwAn2{+=N*oxi=<>{ZAmPa;sA@sI5dyTOocsod1B}GVA#MO*Ud6WXpi&BG<4>4 zQr&lF6h0!>3^OU)B_~nYG9KCsd;XT^3o=V~09_d3KFj%{WB${^SYp;AcMoRdp{V=o z)_z7~HQ6TGIHy2qZ;{*Mk7@OdG_^36aAHur-j#&&YdB5|(NhDC!7(S+MJK^!Z-CHv zRx^W|I2!>i&LM9d)js+YJJEX0A(*;gj)S(Ul=ZS}6B>t=m>3EHZl_VEq< z1y}mk^ypihKCJum?3hU-F}JDgZGl4{O6hCeu<+o2QGaC{9hK<+uy&C###^( zBO@2j+_WdaVsb%Sph?%o3JBa717{P(0<%$YI;K6OODW85G^>DTg~HJmj<#?VubQp6 z#LvbA|2KR{8L4(d{Xeco{rd){W*)9LD!ZyQYf5)~V#K1OJh#;`dN9BZcj0m5A*7-4(%KDG=xxt6)HWeO-Eo21w zhiwMOa)XiPP1HL7m8FHP+(6%d$TAc2#@ zb}R;z4v6;4x<5eZe0W3{?3{FaGxbn!Z6BWF4lvzrObj+(4EJCDzK5HYaX7Xa;kj7| zDLU?r#)xk*w_a)`YtKTQ5{qSSyM%(Lu3GHtxaHC?`vM7O)Sc;^?uo@I+&Bj%ni8+y z7)iD}Je<7Ec*S$@A6kw>`wTha`vj=KMJ<>WEpYuD&Y$T`?nN@z?-N9Z2W$%6{$UDZPWAuV6|7ToAs$+{)!U;$x^iS z$gvhbHw&TiWdps)nCHTDmv7q@PyCouSJAq$%ce$)oUGSd@cE>+r-wEHZ(K)m>SltxflM zYU_QoUXh4IoP$pnyI)9V*o>4v3Q{I^3I}UzHzQ?a+p0KA3w-gMR~cB}c~I$!(K)U> zF=ti6c|(p~W$U#)s0N8;FkD;UaG4m<ihtSg^rcDca z`)}6Kf+V;hEn4f*q{}B}Qip*x&&2VWYY%BdI4+##N!wx;Pu>YBAmn*#%Pz08m}^YK z3|^a=zh_R1*$yx(mU(0#*)3P`l9d0rZnl-Nv@HL-c$N)UWeX?k<=xP_sze>GD=kFO zqB8mPIIo42jI#C=gTJ?&W)X%H9jvW9O?%_!%e~ROOINn26y_%r>RZcWp0!7)CxlnL zX$Bj6Ow+n{t99Gn48v=XD2}gb2_3Aytxgk;mb|kgAtwaGB3l3r<~Jf{?D!pbk14`d%#ihes<1nHNg9#Ffm6bLs9p<)%5nUH-RbupR zZe;+?6{fj%i>l*u{6?pT(;_*5L6PSt-v*2ggL_W}qj>z%1VrXGMxwE8X3ah5>sG?@ zk~OCQ4$smh=;v+XsMY-M{r*qeSRo_@(daZKac7?EdfLcN0_G1;hhrGwrDY1=Xh8v$ z8J-oPl_CF+@lTIc$ym2on*4H*m;+fzw*=4yeIy1KVD2L)gW;*gjkk#*B$bXZh$){%_X1Vdu1tYBP5xqyPEg>aQuTC(e_YiY5- zWkEN&y|RLy!0GZ3|ERR1D%-sx2yNIMO>A-Cj0wSt=dLoe+n#1R*K^0XbHogM+U_nH zmHg~{r2dkj6nt^+>ZRLv%mA+CNs%3|A0ICff3R4h^IXv>!7aEEc`vrE{Mon|0Er2Z zJd4&2(2AF@63Q#|xz6WH?6W8CWaqN3!jm6TmReSBBpD*)JLSs`bX1e0Yi| zO|jj>zf=xnFI#n7TQcZdTLy`wQ zT%Ck2M5?+=v`S94Kqc!_Eqw9JRc7Zhb?JZ(ffA7&2S^%h!foONs(9ZL znwn$o$2vvB(#Lk-V^afh$eeMsLdR3bvx}d1r<3mK=+jR=Q7YDKS|+#+2&1*$xZCUZ zS91hVT2%n1I1UCb?%WyA-(eHea9=;D}oSN2kTuDk0f;Th7z|YS8o2 zONhmX!v)iv9%5fm${ zTzRBdFowQLe3+aNA6;UMgGZPTik_!;x<@N21B>ngm;dNyE4%8zX7Xa_Uu}zrU=zYC zp1*nt9O>U>tbaDdmSW1R;*63_Lw>w+ClQa&hc+oJS9vSG?;i@M- z#FuCdCDX!XSCN_BjXm}V)7FbLdht;-jxnF`H9fASlKzBj^M--MHZ0T+Uh}EyO0&y9 zg5(8KbyR)nIiYUpe)JvrR(dvQ!F?qogtXaliYgr0F^<3`YAXGN+G%?|;wib_ekz}L zXcs#sXt<;neT3O#L0%klLp=jbCVSit==z(DWDo`x=xEG*onqra!?z!CPd%aQJO?X^ z!Yn@edJR$6?c2!V*9_MYZTIccVNe}=!}Iaz;RZ(aI4s>>=1gEX-;wWarawT;rPY7X zq1(vNhg|H~cuBL%+5Aqrl$h)R>`|gv3=_03+VDxU-`V3AZ_%x1EPz8PjeyH!89E$` zG+&5tMf0Z}o}HX=cS(H*{4CL0O!mzE2waK&lwC?pVD2zug5qtfx>7=osXy!Ru$26u zA1u)LBB>}^yEFA?JajX0b_=Ms_yz7sHl_{*{J;P7zXuYa`n|{=V(g!GT0>lqW5#Go zYPMI30F{A%+9psl4#O1Q>QhuHNs=T))FN$&H;xKwcJq5ulAt1-7O03i2C6v;#bggQ z%Mh28Np2j?n_Piufdsh;zbDQqMRqnkmOZJ+EV?WZ7h*9Xht^z7p1FtS%IkN{_opMc zgUQjJ?KjrTG>6A|MjYkdL!O3R6f*6zlp-pUdl-=5K)+!ZVYtg-7i~B$)?Of>daT!m z|B!QjX@WqaDfpI!uB$}6G+1y^ie)K&WHjf*AQ7gb?m08CS>?MKu9Z+VA-jT+Rcs)O z=afA23|h|XuLCWo2w!l~Aw9jSl8rdlsIe6Z+D!xjUA*eG#kA1)GmX}9mg4|k_bu9O z>sX>k%81#xSWUr#9S?^XJ02HPY|?-T{p(Ug>IESwagCbLCE?WD+nYZy{!qF%s!?tT zVXpuo(Bj;eWcwTTBE2hFE)Qjm<#6AW=O*xzQB0p`v%lXOAgr`{t1p`DwxPD5`d^} zh>CZklvpPpElM~wNXX>`iQ7+Vmc>+dV6g?)$xh9L{uu5tTurUBX1G>^r}N(?iuaZB zT3nbjmeZUmVL34blx?VMYD7{$NF^1g8VxafZUx0r)rjm~>;x#M$0D~w?YObMgt=*z z(v~?>p91dU^XpFZrKD(E4r9@>moz$Mtke@peUDkt4MM&0P=MuBt_(4-}@$;FrS|-!+j!%bCl1{^0sZ4>V zdN4hmAoM_4J{v@tz+$lhAR?wbdR49EDYCd7Xg;r%Y+h@5RxHRA&`X_J#D{sk$zbkY zwe>rzhn0=VdfltWV*{-o>UQMmum8{rA_J(jnepJB{ls;Y=*4B$I~N7ZlB>4BsirICk=o5 zQs+kYV%CJ&I5)mMo00sGqHQU#n+LyAcKlYq;58se>QZp_Ev0~kI~MZ8(;62C;Eh|*!^0U&o{l6jl=67grH)%iqZHw&-o9F7cD*iFMhDNmD5>}O4dCVjTnP|*YoRR$(KWAJ@;sS!~&s?6k;AqcbO@c<4iq3lDH)A(I@3yQ^nT9tPBR`du*)1h9 zX5=DFb`6k<*RQ$tFO4P;{p1A6^JQ^27=L{HkoL(TjKQ1^JQimCRM|Qk2p2&rB@Zba)v+PP)&>zDZ1J-QCar7_ zdpwS&<59nBTpl`edfApt(&Fi}y_Pvi4dWl$6HO5w7;?`} zwCsEk)k9X=Ya28Sw+M|QPAppS%B7Y$r41n`Li7a_LCCWtq;j!08<`4|m^KCwIH^R| zixXQaULu||oGfE{#=-Dtb?;sr_nVCtb!-9zKcoN^=Pt?9)`5G96ut}Q{>iXU>$>Qj z=ZKA2(!`wnLtOK<#q-UFO|yWaadn{N_z}?J?R}x$_iqsGb-zOVA*n+=2y%ZmS{@@x zWns>s#(aN))r`{?8qE`21{*CL9GTd>VZ)PhYB5*E97f1gF%3`E?K7b$ki zz6gVULXz!S(PUGMZu<0JUYf_j<9F}Uqv8DS-Ih7wR<#)U{#MNEDQH+j6n0tu1j9%} zfIaZoUyBg`eg7^+H)uKZ0QHOCh5jd@pUX{b)r;#|)qjq=RZU?dC}6)GVweR^zgweDI4cF$~A;UR%Kxui^$=qB0F%>v~89EiaQ6duXF_ z|A&Uj4sTp;SvS2!va1a*h&vu(eP(^(Dy?>a{C$wy?Qf<{qNDq<<8e4gq!a#^0tfIP zeOh*Yj$=(Cz-HSF>P-Ml5d#Lec+YOQbM)9B>F96Tx1jVzC^el*bzbF1BvzQgi8AT= zbnd*Bq?K)ly7A6CSS$Hu4Xek5dEYV_H zt{J;Y`%P8jX{f{2s{U|{y%a;efjvJnwPp?ha8qIc2L@_|XnWM(QKv;~Cg`(dVxmjd z+Jh5moQV-3mW-)c zaXm-5FIsz?Y0#4W&?^{UTB33v^t=%=efa1C9h_x)XjQP*PA?py4 zSPYA7rO_rugdo_vvOQlrLm3F2t!cMybAIkN!^f@p$Hcrk;%0I_lyid2*l3OuCNUI2 zQ}J2ta*k7|MgvTexs# zhM{<=f*NvvQia$Nf0ql|QcAP+y$aVV#WD!W)4=6FHuaVXq3_34I5?6Hsp=xs6(`0i zX<4sM6(mbDxb|o|Ot%yb1YNB9n(hl5bdOLX5H7903fsx-$@*3BRvb96k)Aks`sjqd zQb`ZdKdnMlqTyG-#4DZO*|_v7hO%y^33C4RPVIB^t<_H_<0@)#3s|4VQ!WXrTxX-=s_=spFiD$8oO-Od z8SzO0(EWZDF6%b2Gl&yYTC-EUD$GEu11_F2`rO~p^g-44tO=9P0Ub@FLtnG24ppFm zD34q`ZB+ROxhzH)754LYd%SI{YbUqLY};osleBvavx!P(g`C9|0-*b|s+5yC{bz`R zUk#JOvvEvS1kSWxxMA_iU#pP->F-t{!%GI&W)Gt%W#a4{unLcrdQeSZg5`b8hC@;6HE|$bbq=qE8^ORF!C5OL3cl8)ge>OVq;tYkk9-eGD#?zul z$8BaPUaFvm-0Cr&{sv(ps)TMi#?wj(ym+om2z?({6{@Jb&Zn!1wq@2GUxl11t_)wC z(;E3HRPI$_MJg9q!i!z=*$Gk=c1ouZ6fbI}@*G+}s=|x3mX68E#>i9wr-T~x;(4vo zJcPt|s*vnST$r7P!?)~l9aV5FOr~O(R$no*vV+SsWvm`X98bFBmgwHci39ia*k;RN z#PNg|f-ExJgqjMnsz+R7oMA>YNIDrvtJ-qJMZm^MWPppOG!ZoYsLH_bz(Uh%LU%-~ zEX#(URv~hh8ATShcp@Z$n(8J4-h&}dF~9+)T?vs^sZ4Zb7DI zA1mgg<|H~*2DfZM1R4HGIz+a3S{_)cT3Og#fzwjE$5^VwxkS5^#mMk5Gjj2CL=2m zh>&g;wyb~#n3hm+h!AcA;!r_H1WnbmDRVXy0<*>le!xO?%GtZ+Y>F7*CKm?hO?|0? z8gi?L9$4L&a})e08F~;rH~HbvBSi|8KT8Y}&>rL5$~~TzM>BzhFCe?gIY*J26J&h? zspeP<*F)2={%q15E9_w8=?2+}v2b3aLREEqM;e&`em>*EDW1}V^#$N)HNq{+xcyN1 zILfo@Eee38NR@!hH2ah4QYE@=TJ4|8x?gYL<=1d5*_u}<%vgr%jy!;Y*AN=DzhP0` zmC!ZX{9oiPTG85tg0tIhvn*`c4O-m4tcIpF3xw6P*FU*{5vJkp=B2|DaT?Gz46yu0 z>ov`mQc{bDw)ja(;>lX5f0M;S4bS@5nj+SeZ_%o;cU2LUscl8H&oI}CI8hOQRZ~3R zDGBCro#ZSov~Yim5~8`RrJKzrf3tp4#15KO#S+?1iC6e-CbIo z$&6=3Oa;eTN&&8>nd1uAizlZi^0I zqq1%$Z0nz}_aH3MSr$Wh~I2$Ag(jY)s_ z78A{og2jt7yv94euF-9-g&eBz?9}MC=qNJRL8_+}9i(xz;o!o_fTu&bP{d6d8PCDS zHZ!5-@rb`n^t~Qh$*-FaW$!nwr75SNG%w0UCjM0|flfy`CNQkO*$uw6Oo^my7NeNz zbK{JmxmazW;wF8rCkfKROwFd)sn7=x&ROCj3Bw%NB=o@p2dW)P4j~R&V%+p(qhW5D+|Ax$Eo^O z8G$|6U{=F&6j@-==I!6*4H8t>5Z?P!rKxd?cx986)i;gb{>c)zSsR%eEGG&`O;fYU zU^&4M6v4VSCpADzpw%@#n+(tr6oKISRw(5MOW;LrBeWfeA})uCZsG?^u(5j82vBq7 zC^JE$DOXs6B}&uITww{SRD#xWg{4*$68KS4;_%WX|iYb)_p{of}t)2uZ^e7#rkk!p60g5J-h}rs zz85oFU8v*rdu-^orQ{Zy?Rzo9#^u~mHr*+7DLcMPq{%!=ChB-(2Lq=&CTb$LcwYqg>6*}#)9zr@yEmEQF4F#@JEyzxE*w7`e)7pDKkpnr zv_Zb@a6m9mV?@b%VaxIcVE2Myr_72H^4 zPW6kj{y+U|nE*=YaHLQPu8;m5^xe`=O#%3(S;~Jw=9^&4939DH3Orl9^ju~CKkhc| zzu;mY%HUFOwNUPdKjO$k&it}U*-YzV7SFF8^(}cDV?< ztS34&+eMU)brOnkA6s?pq{8TbY-aRNJFAJ`;V1w{MR%T8f)!oouMq;Ve>S?tmYtkf|Oh3qEYx+s1KT+Qo5grj95%0Z> zm)RP#>B<*}`{y1Ww@1XcF0OEc7#QtvY4hy_69&xW;d+jNkGXU*t;t8HSE~De&a1j_ zv57klcC62DjgHKOA*faI@zO%`yE@H(o1KH{dT`txccqNX=>=Tkc)RAH&{<_qDy8Lr zKChO)O)YmpjCK2M-;oxj!DVY!qkZx~kN-oR9={_NjJNnOkT)J3d_Eq}GOo<910$Sk zTqCf3>Qs7s2BqEq_q^KuPO#x#;IX2=BSzet3sY*V^9q5X{%Bpm&Wqe#K5laOuynOg z#dQpdrWMQth2v%_1xMV`$rcv}U+MV-SK&=AcOI4t1HMardqu^fN=`mT=s1kXKvsWv zDq5frYqWEd6B`%7KGctNR7_wC99r?Zcj#igV*-wxwo`J`bxFGjRrR7`<)y%&h?gv6 zF**QdC;&%3&;@!W6(eJ!r+{F>#L#uXi^^ z?cON$4sVeG;id)eP2N;6b$3(26lE3Pz=r?vn?Lo_KgIuI+Zf&h8fNY2Gh-&UZeyNr zuX1%GP-%O(F@sVGE*WIT%s^DUc4J0@f~FCgG#0~+nH*a2rpC;~-NuX*)1r2#O1;C4 znG9O+PIF^s>TY9Zin5BQiH?Wcu;I}TI<;YwyvK&0YzkU_qAyE2!G@n~ig3Xow_yZ! z+whZ3Nx@GxiGEM8VQ^^0o7pfD6L7Sznv9}x!{Y6WMfKjksI0i+9CV3A3uG{9GLs-A zqK$l{Cqz=IEeVQdySQliS-#u4o&sR9)eaT4Ykf?btM_g}87)k9-A- zR0}G%nG>Z~IGB|Abiw~pIZJmNzFc2p$I<4DniLbP6hFKTH?)et$vbbuEpKSOy$v@> zN=hfiMCZfXaLc6wd1f$V-_wSZXkkoZg3qY%;<&^z$=Yxm+^g`?=)`0_tHR486obNP*!lF-{B)|a%jbyjM=2&rsSrpp(f{yKisjOQJnb}X1}Z!{j+d0oZgG9PUd(cpy9iYqDsB}i zvnhcWMol`bl?dRE4#1QN7nJX^C+e@bzoLaxrwl*el8J@T-lbyqtW*GcXKZ+v3i4&p z*cVH86Ofiz+q+cm^cBG-iXPsjl0z%rwAE)~0&X7`B1K_0fuYK_hYt%$ss(RhH^DFl z;Pzo5Qzq1|dmijtZU zd_FakM?2_D%}h?z?M(%CfO9P)P$_wMQvpgPxMYwu6$}K{_ND>}3JOMOqTk_71v#|h zO`8fPCgAqb2QHXc6_x=_uu|~w(TAZ`giPM~8j0l%)a|1Wlcc0*QcP4meDq+r5!x>Qa8O0-R)F;@nNqN)E|Bn3!FjD(Euf&F zkfPjrHQ@&!L@%T{ArK+M6eiMxlZqG8B62ATj7B~gMH5GEA2XQ?;8>bcM7@2?W(oo5 zHDVw54ersqnhw`&c6oa%MPWV^hKhGJV}c0`u)yQbaRP#gUZeI=)7j!Kpy8K-Q}G(L zBAMVZblu}A_n>z3-G=D)AgdQliLcWUfk=vobYn#P2BO?-XS2AxpxAhPT5q-_mtbLG ziPtvXOkSUaVv+ zKAD*>RV)L{))3KHEZtxv_8W-uHf8BecB##^zD-$bQw2TWrrD5_0o?|_*ixju#At1r-cuk_XErD|vw*@K1?Rf}D zTin^gdTQA=A1jY9a{Hl*z2crbH;_!~rv=MOq>JA1YCaVwpmr;Odo!?2!1DsG&B5`C zfm^ev0PanL#1iv3qsFy~I9@SuYbx2YQ^{1A+Zl@eskB|~Rg|)z6{JSu_%xpgku;E_ z;X3mmnWUXK8{F759G?K!n#Iv@ol%fXViISA8yke<6W|_c49mr8KG`xip5>6A=QW1= zhAz#)b`}wz<`W_EC}a3=vghjr9X;F0+9eCyis>fqMRvgwQ3=*JZRfV!05-PW%N6(t z*dy&WXx2Ap=eFAbHn!Z$75E5PYqfuzEu1CYPykEI?dtI^tC!UZtZb>L4VoQ3(k!xG zuTlVS9+W0AkuwXR&BXDG1+eB)DS$T_5=_kI%mQfBar|NdtO@mY-(o^m1!ipLv=L8F zPwu|O=4m{!?j5htUR%9a!EWzj&I&u$xaiw=;#S+Q9#dhj@Mb*jrM+B@`4SrLvC-eE z)44fEwM`h<-p2-xE>|Oi0=Fb3$&MPevRFeu*4A~Nr5HjF+1q^{RSbs>UY3fAA^ARk zF(eGE6gDs}h9nt_A=?^D$C)1*rTm>SSM(!2Tt@zn$nhSvnQ9>j#%#Yw-@|JX{zFp zv^K)`-+k{brzcWxKEeR%sHNF)-M0aSE$02=W75mmvbRA|6 zfP_*~;m?Oz>VC{A!facCQF$&CMu6<~+@J@O|9H0e&anO|kY>{uuR3vY!8B0#0TVb1 zTDcKF3$%`={3vMU2K_A1q-a?e!`Y0dnlujQl_R#Im}4S`Z7AA? z3%)^?LBsX-aDo4o9St2WWW?Wm$1SUqL-RBEJgVW1uubRin?Y{=RTxihc!dc-y$a&i z)`e5^F&9j{E!!%g+6bxkkS77^J3Rktae#+o=VPLCx;L^O{qlmQE zG=0v?Ndy)j3h&9L=|R0RaR-%S#@Nt_6A*ZBpM}d`CVROJ9|wPvZw3G4KI;uKd&6D5 zKXL79$`RN9>tvK8dd#FSx57GV5CI;-lg)l{Hy=;#uE(48dWj)LAxw$(_|y?_H-Bqh z0%8PUBMS@%vm`Wvd$PnBd}L&k0myTeSjHm)!b{8{ZZ5GMmqbs6^_Ou}wEm|m(Tb!M?3(`IWo znW$GEmFnf<;2MsYvvWdc=j^qB%hUIB1CA$bW>J=a?ewe`aCuUHZopF8h?6zVXxP@W zm--fLqFTmEme#TALzW%J0NU0P$fWrh{tKhc?$+p_a5LG?+?4_s(Qnl%T%WO*jd)n( zQ2-Y7;x9<@Cl$IjSsyQO+|2({QcTY+1$jj>@DmQ`fjRJJ7d-To1kUnW`23;JSKruj z1g8Mruxma}?B-{s5y7E;zTK>s*yz8Aek%daX+#kZD?=0jBZ|KuNlo9roKGG-9doPq zBK%ZxoU?BaEUXyj8}Ev+GJhgOvQF1DlkJNZ=WHe|7YE$h~u?cmY!6%0i0*IjXy46xiPN(3 zOO?Yp8&S`}O5i_vipMjrY(x*69fpcH=_EfC`g1m-!oY%;FL;*vpMd_LqW_Y7Pu`FE z;Ty>!f6S@*WE4$xc6(%Dai3-IoeT4?!g-oU76`MfzhiZ2sW(4sf{3bjn_N~qwE6ge!&gPMA|PU*m}UwuZ!<1meZ>i z#m)Y9`Rkf_^J$fYrS+G?WZTf$Z@bbWsz4>_zkWWFzHLzy1lCZRpL24n3>5#3O7UlW zY}QE~{Z_(0IDXe@Ks&cfmxk z2To`JLNsmT-M%L6YVv4qyIY*}x+hYHP+u4!NXhf$)b=gVEdvlCjfsqy+V<19$}~qy zk*^1eeAvxrYC4v2#Ag-E4_<~gaMz&B9{Q;Yyxspc2GY6=9Xq(+|;|_hbrcKcA=SS|OCQh{Pi&*XXfU=x=LF_^3PaP_@ zCA}rO`l{BI%6>uxy}|SI>+9|0wp2k&kxE0)se+dHY8Cku)+1;>mw|$yKdcjUzDkQW3sIupombS1nU&QBt8)E(mXyW%)*xv` zg%^&dd@D(}&qY#UrR0=AOhHmakg;?EQ_T*-*p;Jce!1xRMf{)K5M?*mXQisR4Rm%ncMXp&RW0~88t;~r7Kpc z=0BZTHDvsjf%Wp;^$#w01^sklYkujCE)vvK@6zNID2#8{v%_+}!#RWSaS?wgHJrRO z8BRoKUdU9`iz?lD5meSptk`2TMme*xXD-Kgap1d}hp?KA< zroC#Q;e(6(W_i5;59bI9$tiv5tcY$@Q|YO{SWHu}ae$J0$jOOr{%?SPE_90O8JfN% z;jqHqZ0BhDw8VulCG`0V`)!LNm%9X|`C=hCrN8NI=hDKa+r(_LT(9P~0>QRmXSh*e z`}CqCPHE$RI=PukQN8O?y=7V&YyGbim8}9@(3-DyWT%$?qEAaQHuB4qv-#!WdMv?y zdaHw#PX4=7bt24KFjzIX85gz^fo~*Po;6>RsaS##!e7-3|8#}x*{5!=RG0)M6r+_g z{>SqxqsTN-icRBoTLt&C=9j&4ibQB3^-3}>X=68t$}OcF{hXClW~!BB(u^GL$b!6* z%0#H7e_3rwVGT-3!&^}vrIhpcXSbl7p;nBKkCgHiu^b=iOPUJl-LV&`eVvv7uLcQF z!k@fjFH|$WT4YIvu2lr}K@e|KUEYPIG9l%uLNN+vwKCWexNtkS?WUXv4=<_6aJc($1CFIvK%lLlJ2 zSq&i4m%h24bv`0QXrLtR#sjUD+7=fpMXjyXTg2 z_RZ(Bq?GZmk8T2RmA z68YpM24QmVt;OoC$rD||3FGE7IuV8XZ;vipSy!5Gu~DQcUv$JNasU0qz# zE#xjp%~w0JQ!D#nT0vLpw#U2l)0RqU>VJDantFS_ebqW9^y;h?X7ig$du=4C$I{W` zavQZ;uQy`L7x9PE%8*l|WquF9PgfSjwE0w=piUGK!>ql>AJ0h?5hEw>DeN93XKKn_ClJtB7m3M@XmNRGHd_GG`8G9W)-J;}$`>Vt_ z+0oMxb!B7MMd9cvynwIQLDHoi<6d6D$lnU*$qtec6NPm|PR%EyXzKL!zFM-`t~Zlw zUh4m$U4$J2dK#o8Se#lla{3~O<2!Ota7H0ZOQGKH6>9&|{NDV@W{s!n5BtS(cMr?V z@a9|W#x``0W8G9po2itw6TSa0v~dbNBi z1?;D-E%8bZC;OEh3Cili%~k2|>5z|zJlMmp$ZR&GP_ofFdR=}}NOrZ_g?jC%P^FWT zU4A+NXieB9c9-E<^IwVl8XctmQD2?Nn94G=t@c4~9j+w*SEtsB9uSG_vXX8QMr#@F zLQk=1mU^%ALCPA#4)5jb;=B$DaY_#-J0BbYM(YBI{9>TX{H*bws3pA6Nv|hZ3Ikn; z=+x^X3R5~b+4H1>xt1LWLJROksR1!A$lBW{bg&!Wy;Kqx!Ajzj`-E-?twN80BkZk3 zauXm#@AaC>_$F1}#VcV?_L^#8nn)>C+aE{~EJLcaEOC}PyF#3j_v}@=z);I>6C@p+ zuhNC=EbF72d9#7`;&;YLQ)%xO&BK*0&eqJgfUtUSkt2sNRPmp0$wv8)uI54mTlRbI zB0G~W2P^5%R?W-2wD1;Qko`;LOcedmu|2#Y;Wvc~hGdPPD}_?Xe?C{Q-wQ0#jo%zD zR+C@tB}I)LJtm0z&$PmH#3?PEtpVv^X!U~xek_nxp09Rfr%rk&vC?i!jgba9K3RYA zBvzRG@YTq{OgJ?kbHT*BKGN#Px0B5Vs~-2b+fx`LNW9sy>WEim`s_@WFUd#G~>ZafC7DWa;;6+Y49>&fxn6f;bBw>L)TmDY&*Vs zBA&kZ`J9AN?5s$R{RljpPXsJ9oYE_l#gYYJ>l_Uk=q;NHFys}=K1LQjxf$pm6TY?T zm&H;*4?mxu`U4Lufcv)U50O;=_l~X-P`_m5)G!joekyTRXR8_+TP+g%En3xQG&YJ> zddHz$;2;ueIzE&rL*8*{Wn;m+Xq>?3Qu?Rl)2!hmpmd8@PSISCV1oHeK^}59mSXTj zeKkVh(!AiKj#u&HEjkk%_%meOhr)ZZiVdhASvHZ1g;(>bI01q8j!t)vCmVMTQ8x;Wz8U+^>vdyD=6G;@_oqcWCP_LHOFk5Z4}(}D6&RwT0^^s0Go-*sB*&u)%Ee8ci1%#s^OP{Gr*z^$wWDZZm94k3G3Kz=Y7WYgHyBNhk2)P^bCRUcMAydMltjp z0ki=M--Bx1?Z%c&0?*NIKI_rB5P-`^0=vm}J9+A%nJZ}F*KV`1{gPG z9OzzrpU>Y)8TB|wLKTal>2a8^Vv!(5ECfFliuxh}g%m_65|S?#2_k%v@V5dnNENzB z49!>-rbzPUW{-=Pcl$AJ8F!^;10EtoL8@J)Ki4^-tbn0xFbA4m|PP+7@=GVt`UNIiqKvQp09))%oSiWbF1!S z+)^(<({NSf_0#l}oGN)2IpTG?!~nk=r>-;`?Vw$TtM!)I$CKH;*#S3SF6Vdi<0YkxPZrp53niQwi&7Gjw(IEcsyn!TG`%VUBBi0< zDZ@8KtOccla$my&q+8xWN(FV<4-;9{D7&e@gsKZbpEd}>XalQS?RxO?Py@L`N&&!O zwLxRjs{@;?poMyujBXHpdayv8CVsPB6OmlhMZRd?3Ik6n!yxPc`NEQkgOm-d&QUMk zH$^a?y#}`LnQ4JlLV?;+15>t<=lm*mjqpON1F*TM_Y>3Jd}lV9!LToi0vbseomWc z;Ei<{{8&coN9mlo9x~fQpHFG~pUU$as9pE8OzwB!7}D(8CK{SK4%f&k&zX% zyQ6enVoiPLem$88iOntWOw&xzfl_W~m z`Xg-}%=-lP2%2AOm)a*fws1T8Ae2Me3!SBK`}!f6vFV9A3YYQ6N_cnE+9W|j#Hu1a zi-aKBSDNJ8Wxk9*TEY)HCH&xdNccg&gy7pLA>tun?r<)3ghR@-Ghvu2uX=~`n0&F6 z43FlENhLF(!24&da{{KItKt0KVr3?^7&Pz`W7POl!LNT5K89c7W<~NW>4gZtzt8vp zlZT3b?Fd0QNibrGCr}!ogsH#iAr~fPV8ubGnPCKvp3kKTDN=qzUzx!zURQ&M({?`L zy(i-Nb3u~jC?#h74Sh8zg1{O|5dAA1IH8309*-qCy_ruR-SfXn^(#rDWFOw+d6t2B zYwa@#Oo5wU&$1q`K#b-8SDhxE$Ti7H)q zw^)!I0z;yh8;9ITDb?)*>ZF(erB%bQv4bai@5;EDeJau^FvIuD=FB zGc_WUYM;1+f%8$5iCSK7B1S%{Kk_{`a}{JvrNE?B;2Sz2jwzRl;eq?9UuL`DkKvoJUQ zuI~7qR%Vq3JB%ig5^=b5jiT*H7tK@>j?Asa4nyW#BdP91;!pv&syA^`&J=)0WN_xz z5+1W;v+m6kH%Ubi4{c(lkKwgf^H6ZQ)nYJ>Ec}syA5M21AuE-%J3>je8q1Y{)0^%3 zcHXBgmFFSu3S*{{+WzVEI`8yX0@$NJi_%>lh-*OzQWW{kr1uP^q-1lVIfH;kXUA*w z(fsKcTeQ4XIvZwW?2s6~k}kEfy#H`M6~>5;(;ae*JgVmR`ji$kp#9~yP3MN|^u3!e zug25OVZ2|^{?_~4CooeQ^T7Hx2bdmm;a_G`+B>5G77!k%L}nZT<%l3h7Gu+EfCY9` zY5ovSt4a+gF{;)sK=)fJO_4CL=nhvbJ6;crhaP|M|e zj*At*vuZvr5rq7$BOznlg=gh2>>ma9ug(Pb`-X!B>)13OwSfeh-|3#(n3ei=erro+ zHu6CzXxDM3tM9fO) zO|;m>FKD}nvUVEAlU(HpQaT@O7$8)FP5P-}FbrzX`v*K@@#uE4O8N&EdZzwC^H7jo zRMtP}EM=Qsu6ZhHF}aqujsf)cn_MgX*4wnFtg(VT{PsZI+q6$eguj&8bQlWU-YQ71 zRJXpjw+ajBH7_`e#BXrVhTWH2Jhe6DvE$v%WaB6JKA1I$;R;yw?Mt4Vqoz;_0@NYH zsrizFED-_$_;F2T(wX^0_MnxlP$eJ{8vbs_2MnoR*QF{CHM?mGyTLIbN*jdm*iu1V5B;g|oW96LLbWgcn{Q1_9oE zaJ9?{Cz+_$yeW}HyY=!eM{hzE_WGtoaVR3UTzpfaGL$Rx&0!@w@l*a*5bG;5NoZuG z=_|A00PW?C%5rimj<-|(J`o2=C>(~S$6>yJBX3leivVMxQPejoAf`cpqHk0XSuT?0 zdgbkhzfV;KNN5zK8C1b9s3LFN*2}}~iVqG?y@i+{UbTfV1*^Vsi>NDfCY)~wgM)9= zqQu1d`&pl~zQxK49-CONWSlvTf=-1Rh-;`JJc1ep0&2F%2wWR@HAr`1zZAggMMg(5 z!A35AkFzOx43E%xX|^`RTq2{8B-FJG4n~Z2!anvKYUvB3+cxh{s14WYxCF+tr zbm>&NR^R^71EMUuK{65`Ba0W6$MwIqk_ciCSnxs@|8OZSd{;=9sXf9F&2SgChkX|3(@!zZgk>H>(xD#gdBWsv5>-~IAYGUO3G@_ z!kk5lr7X7qviBhn&d8!^oM&M_Vd|#6XfaWUZaVPPT(A;)c+om)MG=LQA1F%EN(A6% zdww1#9>lc2u|Jm9%>^#B^pQ%E>doOIzoIyJ2Q%=L!^_3&ESDd)+AIV!PvfkE2qpP! znl?H2)e}iket~_PxE4YzwL1?OOP$I>;j;rjKEo2zS#z<&eC01JP?7f92ga&$tv?~|fso@X722~@(=&uyge46ULNmW!X;s0;*M9BD1* za?>zHz?XtKXru)qDL&GbYfgpF{@LN{`StYZ;-b|X^Pvz`Uw&)}YCvS+Z_u_0sGw0^ zVVM%g(e`0D>O&N)>OBt2)sW7ynP9)i5hW$cd`h68I-DyO3 zQHkA=`yXY^!RBypdf4)|FWka^xA30l@B)VNDXefhbvW>J0C7AM z7mPe(uOx8Snoq?4D$38v3}enGiKW*jiQ`t1#6_V@@)c~T-s%A3UYL)VhY#jZ7vV~Z z`iY4rXQ`z!SOgf-l9Qj9B$-$eMf?~$Pwpm*WjwD!UQS1R`04m#E-8LYLIS54f1HW< z^A&gi<#BGSfk^uZEY^kkQL5sQA_p5^2V^r(WgzN&<(o;Y-8E3zPns*I33(wJP zK57FA;a`**6PqqpT3+L-JuwKz63%pGsf#B@NJxPB@~)?YamOBK4=*fL_oWQ7ekIy# z>{UxVR-ABXK5g~qk`U#$i)wtj;xUj_*oHTvg;0gH+E+6nmT5KO(>PzvBum)_x9go> zH|KAKvVIqcBosD7({DMLFK94dLBNvHz3F6n!Al( zuOLLU18Mt9iGy@-GB7aBx~+j}fB6&BT#sv$g@usaUfq&mHirYSpPxlUmGm~1692Ax z0VN_HiEl|CA-}^Q2kbiKp$6X0Dv$+$n@r6}VhrbZToN|k%yC}QtpvLi(wsvFCJkmm zNTkHy4ivw{y&ya;A2lFH7Qo2xmz%qgEt%6lnN|T-PEu_OZa{`Z% zsef&$kcLBBmq>{?&=M8SK)Od*40;8FZiHIMQ33hxf+=$5xSs6s_ElDvHdsknKZsA5 zlm&B~{2(~VMEKbaTA^&V^VtEnX5q9+CW4JZ>oL>IX|v%58Mu{YvGI5q1Iuk+i5qij zI%K9y*{dc&rX6}(96QSda^b2_sy#_FHf2eKmw1w9*(gKq0ci>k|JZG3X0jW-@o4|8 zLHd97{nuW8(_Eusu4)aWn-_c(G37f^f@!lnTwim_=bQ2iQptmrf~!xT8BGz=+rsZ< z8NXRow=iwKRL(@9vS%L*6X`@Rmy_KX{m?8pTv(aS$_aL25RXenOadj_a!^SW*yc85 zyY3NLj~r*YdZrCK1!OMs#wiO-4B4sjuaS+xAAuEOKX&?kEJEHVI4utr=U$TlSMZ7L{|onnk;t& zjyUd3@xPQs59RK(!mDx#E#_1h&h1;wf? z8rY2tH^0e{W$Z3JSEHws4O}9Z3;$}4=r}Bqgd|F|;iZ?cE{bSVp*jn|y!0|c6gj(0 zLnM-AAzsFpm7gVr&BF8&!C`Y6mY_pNid_O4j%rSmWIn1KaRz8J-|iRwpr1$`$}uE4 zZ#f3KU1Ek*t>qXcK{;mEqKQOfG~ZL)GC96lPOkm3vonAA-P%}OjL2vuYQ2w?R4T=? zD5gs>vRu87RFOb;BeTWgHT-V%Di&-4Ygnsm<2;|NWDRd*JgcHeh@~SvxMhuu&qz_; zfb8lyW?xc189R%t&LP%`W4ekn6_w)IEf;%;XIW7x0+jF1Tjkqf!vyvG@^Ec$7uUTD zghM7B;J795zX0>yYp*O35@>WCm+@@3_04)E7=dgp!s=Ms~>|Uv3ySGBR{5 zVoS35S^KxW&U0~Myjic8g}J!Ni}icN7H8rE>wL;GS20tJ$kxxo-NPnU!6^Z%H#>7{ zk}g&YHJ;$NvXcjc#(N}_p*FPTk`vFJ*vhjdrpF6fR6Fo-s)}@$IfstCEV-}yxb}77>wh(O~<~0iw&GS zx|FJz{?)K*(T<}ev%~DxJvbV*nEl1xeZsL=%WH4Yo3mf+_Nzs9Dj|weQV(0*(Y#86 z#{AUkj?PMP-YfQpA1p9o<$n9UF|KXLs9}td@s)Srq{W6bC{&Z^AyZ+jrq7rh1{H0f zt`TJ7`h+73VuXMZAgEm*pD2-s8rU4E0rPCcczxJ!4*Mh3VY1+29+Ri6o&Whv+9{yx zSCz>$vhcj#z7Y+4a=jJ!P>J~&JDLb5wc~4Cvx(UNx9|0YhOrpp^FmD@uc}A=8M`vm zOcCTf0%P8`U~z>rc4ZQjF}u>=G#BO(ZZmMfsY&=_8+SQ1ld&&~yCiG?T^c3pFc*a~ z^GseQvu6qCGc_|$wln6SZxvBa>BIO0-}iU{0DB3>elG7*1y z5g|&HPH18o^4ZL=MTCT1moRoF^OdL?CYdQz_6E2!#wTOk*0|o{GGM!%raPnC$rH?7 zOai~6myG#VgBm0d&KMVD#Cynwxh&^_w>%%+il5S!*AF75W=UH0yGm3Wtt#BGxkSdY zOGw96O-eHY6tBE-871X;r|n%wSxN#W;;=bsfo+$Np0nDxED)ife^~5mVG~&C*<+Y= z<=y?+3?rONK@`FaXRfN zekFmBAg*fe4O&~(61WsBKUxqmDpWBiRiSnbTgGxKwDj8Kky_<$cZ`K`QIMqU3*+dE z$;NXP8)c5Yo0_JqZD5mcH7wlP2%7pTTM2*8-I0Wq!skVF7A9X3B@*< zB)%w?)a z6w1X$DM5x!2{o@)Q5-)tCDd6dPG^}Mc9Uzh<6`qa9GeIw%1LEn$h8S#d8KVM%f!Y& zi2T?xHNU#sKe@*%5#p-v0~PxE10jk*2Ay2Y?FZp@HbqS&ESXKin=;&g{_)-aO?ajHOuHNpwEPKn4-ZQdoBDN}he zfhqL*%GQMV`9sqRr*TTCVO{?Z4*MTmy=5B1?3qLIRDbymk+!4Agf&UgLX_r6a`{a+Nh+i4#GS#gBc(n~xbal%mOAVpO$+~i9mrr$ zuHq;vAPoDuq~FXZk7SOTjVug6o*bFrc!6|j`7q-Y=`;Q<(leb*lPv;yrqxtFtICWR z%f7rNm9EfayF3pD&G<IjVILIYWaOcoblVW2JF}7_t!hwAdgr4ctm(tyQYR6`m^NU3qa^fTXMo zTfZVza$a{gqX1$6={3J*}SXe)KZBa+t!O*QF}mTD@yhB2e}8pxCq+#HkwhD~=B ztD?AISMu6W87WHHYeOZ=s~O5Th?Cd2VGCp#&u+PF9gH{IGXmX}(Ro-#i=`kSyN#-h zhK)`L$MPr&Vx#5f)O}QQQ@fQ%F3N z80IMcZshXnh{gxn^NWp418p*?+H69Ufz)4Y6iDYvwDjfi25T5L464d6SPi7yG4qaN z?e7n2Zmr_#&b60M#L?L(IoNLChhU}GVLLw&lU%tGC*>R-Wuirv;qT#F&fV?9RxM;i z!DoOUQOn>*aoU3do4L^7~nB;2AL0}fE6bz`wVDJer`So;%TWm##{VVgO zin0EBI!iLaLoVTZI-7)uN@a!RNpE1c_)vI;s0TC>IHVe>ho1mbSm=h^0WAK`ycN5d z|9HKKbmgM(1_%7~Oq@bGVBIL^mf&_Q`M#^;7}kyQ%*7&~&97hDPDBj%rGQr#xg!!| z6}oaGp?pKj+0`$z`G*JG5FD;62>}XM_0=zdj)o@e{3AReAyt-Lvo-VAP2!h=^h#~Z z0RkEe__?<(NE=_jlD1ya^F-OZM6Xrz$J;{+fO(6^-92c?148!p7bC{=+e^O@%z%eB zMCqfxh&<&K)yVJ*MdTAwN!d+*1O%^n@y(P^1+Mz0KcSLBBP0Kygd}Q(wZ?fY*Pbyg zKTn56Dk&^OS#J9CtbjCgq>;$6KFcn_n8w&M?h0r1a7xGtwG!TuaFXFvnyIBqT*>8$ zv&Gewf;pf{TwQ5speT0*8uCzK)^pAl*Aw*dzF^Il0#e_MT9O)zrR$qfo1{f4{zw_F ze%9^O0Hx>$aSX+v6p)8f@`iFD_Yuw(C*DU00$LH_K0?w4_iX5Z@Wo7q*7idcNcGUc z(nw%{g&#UNCPh{FE%6y1RE(#e^?inZypi;LpMl>+RqQr6jwi-xJ`{#}RTvsd6_%=u zqGtB93?_QMV}_;Wt#?pwvII5x<_X#k+ zns)8xu(4p_(PstajoQxLkW)wuO}X>TMAKZd{@ujj;OQf&JtlxhQ6K5kM%Dd$pq$~t z(Nj>D+xJ33BFt9pZ8X+hQ2k`=>Oi_crMl`>dqqEoDm)suYOj(La5f;p{nEJ0gb#eo zE~4KGW%Yn0B4jbz0J_*>cJ;|9nwY+tncIhAYac2ce^za1A1W1n_^kQ3o%hZ^B;(x9 zG2)gn5C{8u090@1B%u+Irnhs$0XVY$X}*) z6ch|nlmW|}A4P+BB7QAMq5#wz#1r+-7U_9|z;AHRtHqPe?TbMJw=XIL_0@vp5*>i1 zuNI6hYvHMH_n+$azFrGY)j9P!=y@&RH?;6KX{&UFLjq$|S+fFQb_(%);A%Brjwe^J zR)NN34}ChfP3Tf$6Uii1`l~+L)dwV2Ez^z!G%jA;jvSPcL(=?~Z4vv3QYC-YuM+!o z>=7EV35yD;_9V%%D;VASut~i-oF_>SNophOO0TZ=_wc{874oSHySghCDoO}E;Z8<= zZZC-lE1LnjNLPQ|mjYEi19U_RnEcwQ@ByN1%gM!EZRgU_M*<$i`J0LQh0X1v%|5wSzO7)DGpNVtG?ekrc}_M zVd|gnixX3WnR^Wr+~A+MMwo8}@f_ilvIvd@H35!e+>%TC=ocY&HaXE4ICijf#_> z3fZ9IB$W~{Rh))ZTX8ZnE>82UfDKkzR-Bf0sxniYFJ_%L1Y`QNCGlYjWA#jxdh?`8 z8gz|`o2jbgtg+eli%CIyjhmB&2~bF@=l+3k2GdfPxqnF5+T0mDu@RDjf;X(NNv4R- zKPvCRbt_L<_ft4h}dD0IV>mzS=ko++=r>tKesaLu=ZH%NJgOsYIfJ8lPU z2$WasIv5+3D?b&oL0t!_lz^$O!>|IZ;y90y$tYQZ6ud#>JfT#AXa~w)2*XiH+}iLl zL2P~ITY(&0x|!`++G*(;%gdJ1t`_1@gI@|y^_l?)C|!Y`tQn9t3NfF1VFwlyOffC{ zrBKw*y(|%h#L<=AH}3m_D-mUjdspGncK%dYsu#0JK?8{%Z8zirAzR#I#B%F(!Vd+b zdU4MZOo4!^EbiF^)JGA_L00OS?x3%D8U*H`JpUcl7z~&I4DP;94WAUJo?n5=@{e>wzYkI5MYD z6EjxZsU`?#4a^p+QdoT(Nhuwr4Bg0aXrzsd5)*4)?}BIFRqEGQU+)sHK0{F!k)3pmdql?y*lga8W4 zHb~J!;0GY&^=FG!caI@m(XX#RB&SiBRsB!8?wirXkvBKn_3e1J++dU1qgmrh2^*v| zQ{UVK+8WyWcI4>$<|ZU1%-_vgMaEw({IdjC_{J?-2v86oRIeim-3*|i?Z+3AjNq~@ zX@VKA;3z65*eyB}qTtn!y*=d&pQY}{-aa7_<})iqUmmWmLZ9LTP6ucSrvPoJ-!rF5 zTo3@}jl#j-mwJVt3RHcg0165YDf$}8kD`eoBK9jFj)GgkgK85Kx+x^*RPb3>MI{-* zW!}A4ht>2R|KTw-Tq(s1s-(W^D0_L9QsAr}a?VYo$5pEVjkzw%p9(KQrA*nqHc7(Z zQ=3O9ajFlJ<@7p)0StfrZ=R8Y;Z=3$Yf}(4}~`z;RbAfnl+q) zZHz}-#&?tD!EaJZ3^w3aI8AEe6ynQ4c0+K1SrPjP3`drqT#sN>t+P_s`IMNbZ*WiE zV&bP%QINu4KirEbWxyTNu=NooCe(b3iwQoMOs^jMxkU(3Ks2X_aD2-%1eR)CdV zm||45#K!+*n>1fOP(iG|Fhw)SfCes&dqG!cpe|>{CSg0@EGK;K44vNPWRGVaR_pC8 z@9aL{?YeQ?x45L{^eZ2>Kw>^JzQq8{C4V?pQvUs*cB2PTCc8_|)3GB13XhU+Z+Z7O zCBPUmYK(hmQ%!Fc)nq(CotWy9dZT9(D_Y=z+VsuE4+d!>XPOCbk~mrA^z$!80_P;! ztJU2Hs#@VwmFBQ&1u7Y6QdZT90Z@IpL%qA5Xk7SKz#a@zF3IM|NZSwgS>u_E*#03i zizoLmmzr-Ew|MXdu6?_wx0mbXVmjX4;GEMAPuQ;ToH52{Xb{Giyu%&I{YptoX4p=i z8+FZG^3ME9@c+A7@D{cut^u>s(vwjv^+=>1S=<-_2B}Ac&E#0W`6FkOg8)$fkE`{+ zUcm!)vRL5-RJ;!>4Ot6-pm@o~ms62XDg2+$u5jUInN?|8vf|}c;%vTsq>3eve1MLAOt9?G}&9@k;Xf^6B^rk76BdxFH|bLzq!% z_kTaPdH&|K>9~5k-7`fQYlF zc)MybrFibA60Lr)*J69pEd%vymZcX<_%@#ikre0sT5-(L2E2k6itQo~QsULSeS7J`B|F~A`H+WST?gVqZ5 zt=pVR+h_0GQk*rKM&1#jx}h;9phtFYDN|~AQLW*{ig$y12bMltzCl`E8LnMinsb{k z*^o<>B9R^!j6)0ejvE~alR>75*Iv*BVyz4Bw{YIlQ#E{JVBYO<8SO;v`I=^mvqqzf z9Ufz{GMc&B(WaR)rG}r>nr2J{#X3yEw1@a$^4SMo3Cf}BHFkUCj4WYE<$hSJ+|6W* z^)H@3TKPrhzPc}Y%(}nQ>a%m#e_=&S+$g{a+vC~+$wX#U=6bL)gJ;X}x=cJ^ z{+H*bN<27qv%g*bx>3sLs%K$Flro|>&5M}mIT&u_Jd^veCpB+}a&3qaSFk8Zv z3I62VdV9x$dEbCZhnj7OnxAjUMt!_os}HkAHpf|3`Jp7fI=95{aw+lkmD_XiJe!Y8 z#Gpboi`&=}mz6)1>mJW(;|e}3dgtLv#IqObyN>C*Zt)f6N-(x!v>|GKz9k#=F{v(8 zLcm7DuBebggwn`AoW0NmPPp5{yCOv9S0!{u~2Db&nzxKhUXn<~dNsa~$B zYC(jis+^7bm{*&|)7x=4X4^NUL3@Vl()6tx|KZ#w0w&;5RnMN@j(BqS_l~Ssh5^;} zg8}L?J9@r{bDfO)R_3xlw_?g>k|1b4n+@YKLP(LKOq)dxw3?p=b!f zB$ML|^@cE4Q=w}fUvL*x@;A8uvD43d_WQQk;1hb-@R%Hy{Cl^U%08QULeIq%-zli} zI?P#Vb@7z~0|b8w#Csj)87WHUKBy3>L;f%My+xfUh?ErmW@(mkB`_? zcu5%}7u*C0KZ@D>@^DR;n?#@}4GRc~jOUFOuDU($;-AYIVL+(?0$p%Wa_;GsE@G|H z`=CVwC>7rOF65b}kUlx9iP#e}gBoXRQ%+6;2)@cn ziLN@n!9wJzR~=g#8j8B=*fA+8<>|&>LVd&ECn|*`6cR(zE5&>PN7l>(fopTM^zSU+$X?f!xbAPZJ+y6`lueRI3h|Z z=Dv8efNr=Ve1IrBAG)}mTuaH|r^51DZSO#03J596`A|l(gt8;Z=>F$V#uMMrnQ!c& z&-8NEgK9KFS3zRnh_t00_Us8RJA!Our)z%%*`Z^IQdad5L=qhQ!osHlkYKs$7`_ncoUrb=PM|XjGu@ zyFSYSIP&&wbvNI77kgX*%`b(ezJ0SqG#X3Sw{MOQ5asokZfLigwmvi@ZzL; zzn-$fMwc*4-Pd2AkY)E<=`_fCD}5j)2FFb7hkT&0)ho?7-+hn)16{8)n}m?=3Xt#+ zQM7b8SzfQVi~Y^*Zv1$%U5(c(Y((3e=6&4&aFvP28YLH|N5}@}UgX0p*j$URE6_hx zH%vRtF5;GBOcbGT;+&(v91-P+AV-3+`KFz3p_EjvPIgpkwyX>aW)Y85-pv{-U{Q%n z1TQ0^r&~Ngsa{sj7$wpRGh9qWUb3v5Wup|?svA;qK}O0jl7YeHvaMcqOPD11$taYM zTXjpa5c~atSua+&s$;&w`CP6q7o_kB>>7Akpw$3l^@J7YL^PksEPn?ff5jW2PocoA#@=pBXo2UghD++C_zA& zk4<-Ddxv=h&;}@c4+a>7C6mB&wEfsr*t3AMca~xErZt`{A5Wg{3dU?3T^n7tmnAtsr zwO-9<*t5AhM4SI1nv)X7!xz9LP?(ps-D9BZ$U3U2iY+uuHOLw_ei7QU=9ld-uZ>8n z>aW&Yxnz)e`KiPhq!mk7Lv2F+SV^7SC>~$DV<32F_BK zkzGhgy%hm2u5q(X4A2Ig4$#s`0Xph2Ko#aGg+8|9zN(S-p>}$Y)6D zpFzIQK>!q5lWN=TMy4flZ?^i?GuOj1A7S(cvLB5-)27Ipl6Z|ZM z>=Fc%db3~L^7J^G82Bx@S$bqeYnK4+^m*Xvic=botl9Ql}#n}M};0%%z69)#PFD1*M*?}VG%E55(!_`l#Bt)6H zAyLK*wIwD!mr`-HVbqM6V7Y%#L47zFs^d~b z>@FO9)_f@#LJW=gi;eYRb=djsNs4O&6y!mTwWX7Sb=2b#tP29b;;iuT#6Lk!c>Gl0 z26b|zl0q|-<4(>509NLq`Dn7(&9~Zz&xRGf_^O*)ML&jVBfKZy7j0Rq?=g}PvZ8#nzlpCnmQMwxx+sN;g5wzZvm!nQxVEx{^!# zt9`4MYUl`R;#-BEV4NA|a=!KQNl%Jmn2cfpf{YVC7NvMKXy?>k#Q#cKGJk)HtKa*1%NfxT{k9v^f z{#j9}771mqU&E?C;+CKRy$%_0BdkB-mS?0S*$7^et^MUTQHaug^$0#9RKg67{%-Op zDN$xaT#4VVLmhXTW{|>JJ;aTPmw*}$;(!$=Ce&;!<`Td~M4JQx6wLZ2zzPgH1(2jJ zW3hmM0NZNaY%#g!I~NH`7pkBRt#!hpgje_^wNA2hsdm1QdA^er0SfO>)q+j|Dyb)` zWe`-`R+$ieqt(g~1#xI)BB3(Io3t_+oc~&zh!!=xF zc~)oWvRa2PS1;*l6%VyqVbP8os&>9c8u$&7XTC-*%?+->oTIOqVZyQ5Vw&mwUh@Pz zd}>mta@f>PICH{6w;)@D4+l>zcUjVGC)8C>;q<9%0RogjL+dH%6a*mkq@FSeMUu_? zoIHrmdTxYeop$xSPth+!HC?rv_o?IrEH@eWGxaXTa<;_n%u|f?v|0V2b+O#DI)fj)2$$S;L<`s zw}0AJH-&OuHN6N~&Ac3}afhfpsaYPJB&J^eg07blPL{`a+T|(LO30E|%AwhXePA@pqf$Ca18145g+4O8Ymv~RMc3I^nO$Zo$vL%eN$6Y^~rPf(P89mqDJ zHk?MISA~Z5O@U7tJV3x;uwL}@%3?w`3eh&9cd7WwQKoqiwr?^i{STecN1WQ_AdYlG zA7!K@f6`+4E?NA@aVSb7O8(gK(25-MY8S>meyl5Uob`x;!Fw#?-jqngm~$2k>9xyZ zxHVrcS(u4J!L*GOZ~@JJF`oIOxFQFGac(9#mOHeI@LWnVkkyEsl97VX#FA*6+~#$| zSZVCZHFR=ILIu3G7P#9EoVrX{2g(h`@wx^xL>b6Xlq6I@Y3R#od56-30cG1z=EGzh z|Dk?_>cPN{^+R=Mm&GyyZP^TU=nw*IZOa3@<@!2X#Bza3k3*LS9Ib*Xh08zw;!pkb zPw~HGoj~G&zHK~P==Jj+f9QDDP%7az1N~$?YuN&7+Ze?p$i`bHG#hFS9is@3Hqd5> zrN=0eg*K9%H*pqZ)1cqSGg*h_B(Y{ELWovoQ|(pJ!n0MRh_856w2+{PZR@zZJMjpV z%y-%+aOffi2$!IPda{Utgq`*DZk8|OAhyeWT|1v-Hn)jTA`BfRM)X>Ru-uZtNR*Mr(>BSt!#)1~ zxVRI}hAH?%CmEJh0lDLmOfp<(7vA|a8#&#Xu=C(Gq)K=#j})&B1>Uy#1h8R@XkK#F zhGHYmIG>0(mGJ|IdA&8APed7MDVe_qtYWtbZd>xH^j+=mAyg8mhLQL8kVJ%)I~)X8 z?aWQP-r*o|(YEf{?x35vX6Jk9>&wm5Z$+68rIq@}WR~_5`p7*{*4Hn} z#X1|^bf+JeL)P(7)OgY$ol#vsdD(K3TA+P zT)&hks^x8dS`NtElF`n!f$ZT$1m$^+--xEkVp+KKq;es z{Nf2GDiP{_{NfW5U_J+u=uk|Sf`a#;dJZIHi|E1}NRkm-K8sjiPY<`d!)>&j6$L4T z^|OeGQUcO5^#|@y(?TGi7FwZrnr7x~3f_QLhy)X0#=qcGZoR`Y0hsJcM4;vK646sh zE+l^lsebw$XeZ#v(mrD(iv%Gli?r=-1(EzPJ?0tev8$5QKSHI{OpN>BA;DMuwyQZkkjR)AG%iPNUeek))P z2DHSMOp44jt8q*0xB*-4(duicF0^`&R$U#z%iT%4G-Z`D_S=klf3cpi-dMzrqA)(t zNWPve;Jf`KX_<SDG!vn#%;Yd~ zwEd!`BqO-2MZcY_aMy8sLz@jLT+mkC5Jj|Oh&I?=&*nOwC@EoPjwiR1-J>}k$BnPO zvtb0vyYQ4QtLNQ{z6MLi0Bd;2JXR$q;B0h({Tb{EI8(GA3Ssr=!qU*t$l{sIaU2tX z$@)V?=`BVZknb&4_lJRUg3RwGy8bXEq`I;j7+rL{>n0fU?Y8QHV@$n((`~SQ!PezC zF|lUT6Fg$&%T+rmS5HqsO5=eWvYVbDirljseGtC5J;*Mr`%8PaAmv#Q*XBVdLz>FW{clNv&9oC zk=fcWg`(bUEfJ*=M^|oW1TtgBK$MMB{6*KvE!WlK6n(`t@3(g26nnXKUSGoVF*r4; z9o*{c3n(ZJkfN_I{3x2}`fiSPM0}WU-KQ##dJ}b2G#tw)n5eKS8VMq23*WZcF9oXJ zNGy>Q6S#!7&G7-EAEsl<+s*FY^svQ!hkIOCxm-_i3VJrao!_pva_lBb!uvX18k~GJ zi4^*M?Mxt|9Y{OMN~8_$Otmm^7pH?TatP!NoGxOtk{^_WpKTYoDK=v+9U#5Uv}_My04mcgoItM`{ZHA^fN z$*><;K8@R7PO_AnSwg>qwc39#%x{IXz6N=cuN%VVfoDs%`B@W0B-xH1(W*CbB9rNQ zr>EMzEn}4G65K}7dp*v*Ez8zw3ensolEH=+rb&ZLA>xt3w^44o6q!Plh0rt4R0@dm z2v-Xn{FEON{xnJ%$!th%O(~{=NIXwT5Y@BhE1`Z$q#$jzDW4FRByDAlL&<6)lsMJ9 z$T_`MVJtVY)Asm$ysJ+YGt+sepfHf(pc83cxL1EgI%lm|%8Di8DiU+=c`_ zF|G95@H=;@l_mY%kc!a*Czo|U0wh)wB68jM$m3~#N8#_1w6zuyQu=zDRcreTYJ<#A zF)B$~Zkbg!N|Bw$G-#i$rZ>260heAyE!!@HsP2-!PGK`NWl`Nk6Gy&|5!R=$j1>E!)=vlzOND^TQnHSL-{78k#TuX4)%q5X zK}gxrz1D^(H1+F_flz|V)0Yj92nA8*jT}jBmVT`7J{7+DM$S>mz=2ViC$|D!l{M^+X0L=Aqr!GRcb)P5d!%IINP^2OlF0&y z@ByN1_sYaY>t_C2p?Xl;<9RX}F1vvCS=)R0WX0A2vAFwVwZ||ql&FL#eATT(L^?s} z=}YSnB_+yi*%9&BfeQffp|DjiJ6eJXEK-$4ew&~L%y#SFfLu-ZaVi+n&|nPJ0LFYm zGugJ1<&S4r{G(4cgfFusuRaYZK(aN2a&UM$2J}M#`lQrZ){d^cb?NDRbvwFJi*T!O z?GJu}an|?ZesM9I`H3!0Af?m*deZkIirlkS9O08a)^!2|^Qp|Gx>pmT2^dRRT5(B4 zSb2jqf3lxk;o4k}%Y7?g52_m^A*+!IZP_PXNit%~)`V88dz0A&7nou_^X_`HUN2vq zU1T8&=-*TWUEO=x@p$>}`fbC*V$K;gpU;vWiTkAt_e21V&9meFW*IjaWw;Rr+}XR~k)6P~Ww*ZCW9#fO-hIL|96N6?d6cr8+Y>D3{`&e| z%k@X#dLLZ12^Cm3UlCi%Gxrq^q)RG;4^bkWVpMNUo|Gy>U=#|+Cp{8(R2dw(Ggbx% zCanyCQHHy}GPul9W$+>A)^}PN0;3GKtqhsp0V~6Db2FLYq5AbR;)M~@%TWTFL$*{zczYc9;F{3A%f$p+J(I%@-Z0DcW2_!+ab=J!Ft#OqXw%}= zc_vme{bYbly>L_)wi@~LBf`gi0pX7f{EY+@W^V~5u~Y~Y?G`l9}7grF)g}h5~Yvo{lT31 ztHuOgp)s3{8dLfsJdjZ|6@x(b2fK(-^glkfuU>dC??)~GKyx&bs|IA`OHb_orFxvFD4!#vt`(c z45jEZC*^n&GAYTJc!bQB=C2hR^vmho%v9W8Rf=y8DaBV`4|5P9+I;L48_bd`O|_BG z&Y5uJ0GAeE=9GmfWJ6{bfM91x60p%A9P*9GC3;v@ZygUE`it2sK-jHiP!T@R@^WsHoFulRkXLDRBdAPd5 z+O7UnP~IN`#ZrIQQg@&fN9>=xsuB@szB~z_i|v$GFKi|=G+gRS!F+cJOh@}|(sn3g zc5pp=HBNE_Ml@j&#-tHD5u-F?nt{S-o3b7~qA`m|B+c207^Oke3=~G&s1-4;&68St zSJv^@>1FMx#bvD+0Ark_wX8!XmUaAfPK>^+6$6E_qpU+FmUaAfPK>^+6$6FQmi5<4 z?cREI#|mx!C{(WxsmX?ntHPFK^HG#1Sg;`50N4_|ORDKm08yEdqy=D0sSSWFp1Y(D z4h0Yu2uWH1wg^g74eB0Gui*LvJU#5nBKlT^GGwYj{l6FJhti3eG@nh9vAlZGx`OkB zk`g=_ZCsQwlLW0T++MV>tU?0*gr+Xq5~B6zZ#7FUC%+x zIbqX$&Y}(pTOsq_eXMF?Y4oYpcoJ|rWDH}Bj$xIs5k-P zmHNo5`DB0K!|KsSSs_e;9nwd>Vfnz`Wu#> zLuWr==q{KjN(&xWcp~D0|0w=L7Chbn5yzb5nvXD`wfLNy_+;t#buYwKI|@^v1{I&@ z^OoHXmo~D*48@lxKUxB`pc&DmEj^0_(yEr26(q1N?cWsIIC<`Mvh+?mV=Ru3oo9mI z0WGA%xwX4%c>fz`8&ydEWXBBGPW{|k5i34QE5LH3R_rLDRx2?4BejxLhjVL1YQ|Ao0hS}RQdfh}o*h?%knp+I zpaA5E8id40)}TPPrUpr_-Wr62Rx8h`1_dA$TIsJrf$R{i^wuD+mFHB01pZMq2#JlY z^w*$3mRkAqo<8X63Tp=A=ne=hg@o4r-o(T|GznCfvpTWM34A+D!Xz3I9PaWcHg|yx zg?-Q?EXS>5nd=nkF$Heux6>CTaP_J1M3FJ?4w0E`B>Wq9D!hXf#V+}Z#AVnsyl5Fz z4Dl5ya_x{d8bbVXu{=EV3OU=FJCQSKaoUe8_OR@o99MDOm zYKv}8YkY-fhk&wU-~3{!S_%OQ_qTn*;WQ0yr{L=9*sb)o2+D*wbiUf_BLin7XqvB=)sYjXY980C2Jh7GZ{Vm)M~@0M@hSWL4Ly9BQ7P?zJ-^ao zkaY?i5hk2|4a(+Q$0{>sNX7nPw_=SyNr`smV^V$Ff^LFHuU!Gw1;srelxL(M*-aQp zGP8SIv;%HjVq-TxFIs&QMu}O6IF_T_gi*?Tq)06tG(}4K<}--Y)h|1a?IPL!_=r+! z>5IuA>4wiBQdbx3IJS#qyWaPDY7lUb{WdDLaf-DGiEwf`>~1S-d~#a5LpfsF-F7*O zQ8d5NhBhWhTdmSUht)<}NDTO_TIe(7paq~fMhn)wtF+Kz=#dr@n?I`-`m8@_0Vs~q zf~^sy(G2n%%Dh7?ALlMU_b4s6#HqR8k{(ffeVJ=*dgbB>WsZOj}Zct?)7fz z+>%U7SLkDvIe&1PIeVh*^7$klyq@3w%2zv_08zW!Tb% zIZjE}bsh=3`mDgWQ$pKIy?m6F7Kdw&kFwCKvsh@aed0Qc4(nv?%dVZ%eJVXeN)%FW zk?MQDGB)k97-tf9BV(40GGq^gWvRw(LOdL+Vi~e!9rfWrI_{C9I4fnoBbq`#jwnkb z!yYBkiPgxn>=4WIEmtE?f)e)h;6Ck`emF(L6K)TgM2UK053YD0A?}F$%NqrX6vgft z<2vse+&tU2PvTPYCf(KzlM~0dMKJC9aLIAAuG&Cx_YdltSR_sT^sFlxx1EwTWUf3X zt}BsVhp5KWr&xmxkRuA(d)$m=x3Hz#5B@H=ZL(#T_|$?ff$5OmCm+e4C}+Fng7#@6 zIghCbdA^oGLs37;5aRs$=^9Q1L|#9@bF_Z!Fylwv!;EX3+~48c{CKtG4HPXCVM&EO znk8P{$|k`l&h~`72hnabl5_+hZaz?)?MXUM@`y&^8og$*i(rK67*1>yNUuXga+9ll zb#rHcpi$@=qfPYO>Q^gE{U_ax@MA~WNjK%v_ozxi3ZcxihGC5Cf!I7L^qYR5~J*IcFTS<+0J%1+r>&= zjjo$Dj`8^W zX4UX9idW6o>a^+|k?oS#V{37SjmS{eKkIJC9xcbSh1|`qd)r5ttszc{c%s{a<<>6U zqvePk%WexcGi7?ETc+iU?R9hcVxeN5xc=?V>a9o}43 z95k5dLQOoe-3eSfBqXw~p?)B8jGXhyqo?C-+mw3AXk1{K&a6+B({t^RlW9hVbJ?}k zV6)Irp5N~=RL`+IjEDqHMiN8r+l?k50cFPyfl1_KExO%DR9L7z{!#9psnWu!jXGyT zV<~o&BfJzQcvbu>9dIC0&v7h1Ten1E1ePvVWEnicpR$$q(gS1M!8xr zuF@8d?iI+gpnFzd;MXZL@NzS?#_>g&Ajh7ItJC_=h;Nth*I{yAw(0<%!uHI}!F1O# zV-3;Dx=(GXJkw4=9k7;}c?1n&_Dpw{o34X(%T4h#-HFpx&$C0wjXyb8obPxNEXm_U zY}o-35zp)S;P7>MJ}j+>+}!9A(Rw}{Ct}MchKQK#Tb!p9yY?!ah}@s(64CBS^fbx0 zlkN3lHHJ6pBTNI^$ALB-+GLxsFep5+NiG0sw_}@l;;9uf=c4 zZ|Nnj;$foqrK;qYs5!WxKF$k|efy_`ucK9ihX)flWzQ^k7RDW|Q-N0w(xP4;po zRrySEcGYE(la;wsPFtJrcMp(3ZG2dDT#8^Ml@zLr-JCXwAkyPwOfuA`89hiA(&#u|ule-1VPDUtb}>s@UV+U|w2; z$A}qFw2R4C59t-dWCejwbZ^K&bVyDl@b(}Or-Gt;Lq?LiC_Ob2Ef|3)C^9KYD{{qpYYU3udGzkvZuESs5rf?(iAgv=<7e7OT64c& z?CaVUK=t*sCY@eHW#6F_TNB~fu7ltyRBTOz0Hy2M@8zoPWEtN5)oblORyF@8PQ5(Q z4*3LC%hb!0poBfk?rR+Uxmic=4@GqfaSs`(#5-}>-SKM|4hcr&S#~>j*(q3$OB62Q zE-qvtT*-5yOBBep%R*jdmngFhbnKp9i$pdRH-2m~CE$sDS%#rY zTnhx-K@LaxU{*$wswh4C6WQX1G|S>MMoD~mTDxmlbx3LWHNQ}5OHEcv)3ZmrSv;Xv zlzY9PNQo)1;%bv9@lM>MRlGaIB!H3dFFUC#QWX20?!MNhKdg=r+$U0^-pM(v(- zpYT2*-sEj9BTRKgNl?K1JqlPacDr?t@9oAW!iGc9_4dRAxsJMblkHG~#SuB)77u5q z1dplAt-FMqY=7|7%1nYCGTL3ia%DDg{Y?{-eW%zonHXijCrV=owo7CAm769T2Wfid zxlGq8jFRQVc`g}si_+o~&5Sg%Kk2S(Ojh2ZWlXX)J2|akF}(VODH@r{c|?`jGGVz~ z7^4d2R3jt74q*(x79%rpD4QM!79&kd;gCd9I@1$Nha@}p%nh2BZDos;1qA=J)qD&0 zqFHeowZs1Gd^Vn~_v6iWJv&VIWB(RnvD|D14BFP1L%J+DlqK&3suKOrrzxNdTYEv< zTqEEcIe6i9N4&~Z>JhsbQHMQk&kp5O))gX@LQZUZ$f!ebax0(5U`7hkbC$PjcUd-g z<4yDvCsmGQheYB7UG!xVL`M|RqOE`san=F?y)JRu3y44<$PasJ>+O2Y%ep$8&UPjV z76(htXD1#^u(XAJhoA<-$h)HbTCvh8StxwZC^TJ7Dp$GgwXG9Jp(%t86=bVe#ZhQV z@R&*p%Gl^>l^$`*q))A+mR+}`*GEml2pfoF$Yh=p7| zM-!-l&GJybTTddDWGAjP3e9fO2nkOG6l^-9mW`={oj6Pjtw04B}nc4sBU9de5`ykXIl}tvs#Lin;DrwmRBfDl#3} z>wYC;!TaE!Pqa2&csb0YHE3@96`;;L;oIK2VvFlzN$vI=H8`wV?`W}6sz#o8rpZ!l zSA^qOK5F11AyUtX^|0x<&p;xTSSOBlgl30e4pPf#M+mUIdNwB|=~!+QFE+E13U@8Z zz2x!2$BCPhLfsSZ7kuP#ls6|cl2k>{HLE@k&!@~=_9-P1_H}G3Rq!Xyr-iuCK0*(I zqI}J2N|0J8Jrpa~u3)dqcv~gkO2#1%#lGpTt9fw${(T(XwQ{9Qn$IT5h_>{2o4N2M zyWC~S<85#HhYAh3<|7Os+tTBRyq<-Zpv0E{rvn=KH}Aji6u|YbpTQ?N{#K#aGM9AF z59GrCQrw3;j`$|;EO`K$4g){Q;#u>8k80Jx78=-|K?CoI20#oNc*kg<^jaXe;S%>H zx$>`)e#mQqVD&2Ki0qbV^D!4pxxZd02cF$`GpX=XVR>tS9emeQwQwTR%_l-6LH%wU zD0lwJWOb{loy1<9}3O)2I`1}0vJQK`8ctdpMdfQB`CZg!QTpK+FElFf(lab{&omFa(P`Y zNDM7*fmQQ`?`Daq$5L}-E-^wFOR*82m>^Ly?x2sYdD`f|de`HW6<3{V_% zh^ZuJ8cqc&M;Q_p8mK*{(5F$HPKc=_M-fg1Dkl&U78OBMK# zTJin+uPyFEtq6ph7km^;_-h4IT)t?)*gp!%>jO;h{)+*IBiVe^1`AAG`L+(e*Dxt2jwbf@~yB98Qk6n{Z}UY=}lZcQzp%4 zlVnGsMGaMik}7&KTB)NclLW1;rMvtK(BY>l z{~_bJ`=I)&p(@5HT%I+b2$3xCE>Nzli7zSUQ$WQf>_`Vtwp_bFxgurGq%=%2E8pcr)L>A(SCZ=*02~wMhnH40kR#X~-(~9D*-Zcg~NZHVkAvlfVdxc?J&iz^Q zg*-70=os+Meq!*6`J4lMY&{999K5xiW57Gpi76(Qa}Mya;Uuhb@YZbFT10n`4$H7` zZ_dyb@xHkbC$un*v~3Y>B+a2X)Z#5h^ozVO7Xlf-&3OJlXsAV+@62V9DiFp{OQMLU zIQBH6TojZuXzUp)#@!n9(V&p;lm@@NU`OuPv18CQL{;s-88Rd$#dq8tKGB#oW7K^9 zewvhuD_WPoR^}qQ940QxLDsdtem7ppiAck`d}J3WdLhBPiaG61rM{t{EGcL5fwTqX z_&`&o#hm5F-AN!n6rdrK{`+sgyujxfkOsglEEapR(142|lu{#Pk7>IbWz1we3;F+ud$T6VawA=gV|TdpMmE`8n_F^t zXNJ7PD6*Rz>N00zuViz&t82QN!&yp7Mn;^>jP6*nV#%s%8?!63E7ODQnDkO(b|3Yi zM?L6Crk|(J9m|0`94GQ1f)dTxl>y+mf9`Mq4!{8j-PCkK@9|ml58M?x-4s1%)P6B5 zO1Q1j1P$G{t@xL~Su>ivH-4P9u8wf~Ow8JY2Mx@BrdrqmctR8F2uD1wk@e^Yt;~O> zn%Mz(LObgSM?9{jSvvqI>~6<^3!D5c>a1o5;JxwV-};+hT=Pqbx6dWnRCB$^T-`a8 zs`d^-megM)o*;8|*o(~7qWf6Y<3Y%hnvBE~WaWO7uO`W^A*ty%-;3KMOs@T7N}#H; zT($*Hx!|n^_m4208kg-orsl1N|9;wj#w8K}%k^=br?bh{gP=bJkQy(;@q81cQZP)q zeYVT&2Q{bD$_^j>c_dKpf>a8MNe57rNuaDS8;4|bhvpyrAD6J0Jw}{3B__WG)|xOI z!Hg!T?{Rg$N6Z|0&CxBxCB;aN$A*(0NV|XUteZ;+joWqIZ#?HU`S=m`(Qs+ODtUCF z@D-xg7#KYR=Dwrb4ptuv1=Pf175JGbokBRKisJnIr~Y5u_vr)-zXMR*kN})*7mGE7 zB`NoRt5ELl;sUC6kZ=xehI7nA^~@ybPE``i(J*xWe^pGa_9>tMexUl9imw$1-`B)1 zV^mxv5UP}$;gxc+TGtr7|IE<+e>=YJQ;fs(?Z5Oo{@HDHoH8W6{+D{a;yn6LBagbp zw}yiM_dlG11K2tx<7=dwZzbLmlqL(G8n~Bvm~~7zY1;{-O0BkRMV9pyBJ`Z*Oh< zq870lN8d@@rgx4{$=X046T<) zWpCB|-^Xt$k$En{u-b`)tO|PLwrwU-$>C5PS#g}W`_V0gxqpRoUK7Xp-u<_dMK4dZ z{j5(W6xIe5U!{1}jB)&COQB<{E^5tr8j7gtFJtM*HIVFGVGWX+%R zMT%~b&*?K>``0B30cx&9VNCDRjgxNaFwwNduKlw00g3UZ)mkG7x1m5+W-3u+h7e~~ z(YQKv_p!B57D=&fzh3%~M6-fn79?6%56-r_-$Ia@U>L?@;!l{gUr@yet<@w$tiS(P zpsQ(;BDOyeZ9nUi3B}J0a|pM{h4V?LIziz2=ZfmT=da&;6O&bXQOh;Pj7|HZE=Z8A zS7fOBo6np19m2exo$qj&3?1kT>8FKsAxX{s$$`Ng62&uq6O8W#Kv&zv{QD*D?biyQ zk(^cpCb8pzlMh$&U#K0QCWNVpz>Jjc5PZjn@y86DNQha4(dtcN;XAwKY&qM`_@2+{ zIZyFVjWmI~rZ?$0{x;?KI&*ZkWwC8vGK!N_zcCv{(1;)vSxdoUvXE_6(NrR(I|A%I zSwS|Yr|nnmk4VTneM0imZ)BaV{@$+;BqHt>fF*xC3jh^` z2_yOjXrcv^Q$1xC``g1lv#Fqa@;Oxj5_QV%|*1bH?4b*mhLEMSa$|I3Gm% z_lUl$P|c+Mf+}_^wAhLigw%HA!Dz#lq-LVfx~<8*y2bXSAf&b^4@MidDK!&?)@@f> zR!HXeb6~`OMXlFZAz9qdLtPWW_S2k1^=gHfa0AHfzhk&TvLFf{! zo``OeJf;7L8mQ@s?&IXSQ$Ley|Cka;WGiN3(>&bK0@ipA=HX8Pp(bYHek2uuMAHBM zn@|1Gr|5s}vt6l@S>U3r#cDP^_5TW7HD)1VSOd}avp$(nm{mi!TyFG@mQ__Vi&aD9 zP&G&(ww62YE`{`m@X{Yb4K?ogeZC1?g4Cyb;zK;g!^X9<%30Z=9Vpr3NpM1LGbKSU^j!gaYbs9-Xx6gK&1j_36;*EKy@h<_XrrY~4+(qaSg`Zepjah`p zikIbMb_j-9H0#skZ-J>MUiL#eTj}U}R9(W;_PHdRkXf5~37Tm$SxqHCpCoYBZ003E z-gI0txPevsrMxhKf8AKa$-(oH_Eg25ET;=GE-Th~a%6mLz9frd+J3F@*)6K1S!Pw@ zlY}e>R>@nAOD0BOC91?1zD1Sz&$B8?(}frZR*6SuSBYRMswDl4q_WPU_Yd4)QTxTLDB-?qHjo4*-C#)DTC{z~d&PpZ&K2@(su~OPcJllV zylLZ%cy}A&{Q%l;3pq6jlG*C}aUncyBaqY_4FEe(i!ku_)AlnikpNhJRJgwGH2fhz)cBdd^%p0481Wj#&xH(v^4Eqv zdIY#DDcn4WnTeGsAdV}n&m#e+*Zp0KVZLIrYrkxLKw?}*5hkRq?QkVOHvvEx$d>0{3 z&E3x(*^a3nbi&=fTx3MJMucm`e3QGMEfOT7wf}3CP40f~vQr_CaQkydxD!*~{>)`E zIlK49O&TQVyH=}Gm3cFs@0wmoxr7pRQPIjYOviaoopPb4?RO1xa|&}*NZL(VTHK}5 zthZ6O1*4wMq~zUZ=UE(CpR7Y{O66 zL_|HkPDY$`RGuhy{YVpH(nC|Eh}jUJo2ChUJUl{UX+peu;F5*!h71?P`_erZJsna* zDDV1KmJqHENbG^fq{4syc+gN!w{O9WbZKo_ z`Px|Tmdzas54*-+Sg=DgzgkUCvlOA7n*EWKAH}BKbNt?8eoiAf)Aoy5QIh9(W!qqR zCcDjcwK%(2<3Ee>Cb@MaMd3P!sT#QV(w=I1vLc#PEa+f@nSFm=Xz}Wdj_`9dbo2)i3BfgAYV|swNb9nl0!{ z5+vcT_n0TSQzT68)jAQ$q2qiZWX-djLa%{qpOkRi9OqWA=X)^&5t6gKp5_YURqoW3 z?Fyx5xzkcY=9<^EQkfNk9?9`Ew?L7+rqx4`w6L!?oxhS2K9xU(w1@Vl@4oWeq{nl@ zDt7JXWg!ya-X3$EFVFV%qjM|+cV&c7^(%tjh*Iu-6}TKF2wJ@&Xb>aWt*|0d--$v` z=gAKtV@(W8%H`eV{WwthYD-zQ&!+_l_AmET8A%Jz46FFtF|JKspXvkwzd3M_yXUyQ z5x6-KGL|@BtqPJTelW?T(P1R{@Z~fW+-|r(Uld}_-E!Ao)IN| z?DK8>N1{*Zq2ANE9_rf|NcL+b#a;4k48pfDdiPmkC_3S&M*jiZrEa$wOB^9m1xXa^ zAbZ*&I5MfOPV*!oPR&8~l%qqLj~@ox_DgwT66&=*osyf{7Md?ldxb<7hc;Oz*=LcC zXZuaN`M6xjRo*D^lXbBKtmO-92ceL$f?L09XaO)Kb_GWPgkQ1!zLMM`M>YF?v1a`j z$;xg?epkehzJ9GXXWl2fSgZb?EqNjb$!)!^?HUb^reXbY@-dc#rqgD6=FVVEnoN3M zj@FK-AOJ0cuU+pnu87C$6O%5HLSWX!$ukZCv@SM?I5;SIJ_zJzzKzNIBg36ON< znI6s>Y@2z5XVNcrOTKFbtJ!#RC=1223L-`gB}F~f&-5$?OyAZ(z&+}4V|yHETD^*0 zButtqd)zL>hr)RLK322NcJ5pm7nanO5(=sJxGeytE?hwhOG+?gae5Xx(m;8ECvj1A zD=xa&HMjpeza!yhO6l^w#lNg9KKYnrvJSj_(yUkLWO0vB{7Y0+&4HJH0nK~e-9a7U z_L-Qq2M^9f_|Me+C*TIk;nWM4VMESA1jwr{4o@*vp^h{FekanEi@>2^7B>j)I8@+xB$Z7rZ(9 z-#}z&1aBONV(OGhg+{{T#!S&Ss%I1OfbjiXDL5|>2L?JkAp8Db4_67%kQ!mC?eiTJ zFaenSxbSLwhWSZ?XN&l7N)Xj_cQ__bSHjwk9PRcC0hupG;J%k>YPV>jqUdjd>FvRo zh=jnyG~4Gq7XD=!&1%_%F^m2bCM0hZddjw}SIgz&J0H!q8+Z=m_4dhib1Hrbh=aGRnfh;L+xtxYLr`~E zC5!e2QG{^*rM4%ggo8Y@3x6fp9US|*zMA2b<7xa$fc=-DHkPya6|r~+EF9{NPy0;F zBDC-9N1H-lUDJ(zn^PlANU%Iyf`3dj_P%55WU+X+FB!#2zCX|81F6LwTU zPDLyW0wPaC4)1b;QWg;cJt3%zXS2R4#OkdTSyRo*H;UhOPB-xBly?W!u?;p>Dd!S)B+NE#GjvE zTy9SJzk+?G`0u{{_OI?c{*Gq*X-*;p+2q}6Y`#9*P((MLoLk?ST+#OQG$x$t1OamJ z9+$!K4af0*gupjWXKdRSbwLs-ixw~#V9yaGfzy7% zs(rT0B+zf$J*BLN)rMYIUgG~aQ*_DLRf-Vd57qg-y*S`#x z3r}n<@HF%mUd0BrBN(N5Le~Fsd|7`79C$vOafJFSgK591jVM)7{dj>q!Bp=5i+*zi@G3*lx-Utt%gbA?aS*Rjr&^&GI-n2 z;KTUtgO8BGGsEk&^l*vGCgisn=+H)~FQIDa{uH>6G0?rgY^eWe0_=oU`)rpxxxX#}$GZ~@X9m#^cVpk}Z`UB?h?g#HL?>U}s#L5}BU(AZ$wp!etCf#O>YDs?xX^v4X_j&uAIE88v z>~Mu@Qh?y+%M(2P5w47DMyI|trDws1FHhvuU9)sr_bl4axI_Y2nCL8Nrgh5y6-uo1 z^zYKN#$j+Y+fQ>6A;`|wxaPqB#c{MXX63ZIkC!d5e!SXU`xR58ls{rcm)fA5z&-eE zjU)d)>C*z?WZ|{C5f^p;rJ^I?b-OlLl_nhFY|S2$x6;LYg)58T`fZyte)hzz7COrO zUj|F1u;)(29&owi>Oz6&(*+epEGvMF_+gfkE)+@9MHVQerQEBAk^%+?3hA2bIQPk( zihYt+)cet@IzlAz-`VbMSFhB53+7K*qL!z1{%wk_x$YMa9NU*mf*}(kWzjNDm7Pem zCFAymQbID{-BKl_TOKN1PalP1FW2f}g|0_^bE+c;M-hCqJv=`{&s(qK-rwxaM{wr|QY9m3xG@%Xt z7uxu?-JWO#O)sFmUT05n{fw8-{)1mV`-=i!3}PF4JaTcmiGK|** zikkh)b+cYT20tkIUjp6W{>2j!$Q&2k2kue%-%wn(lXE?z>+$fki7)DZ3QU7{asp8S zDo}1euUG+A))D)+x&kWqP?rETTv3jQz~t#hMfu;BrDH-l4wlY;3p9gUK9i7GKtHxP z#{oEgs5?jGJh>d>uz1vs|1I#`9c<)*tit4Y#m(f%oywxG{Mu z5}0H3G#XQ21z6cQcD;HOl_fW#29IMPC2?RA>KSj(t4E}iY&#IcYdCvMe+p#`-iRU! z0sv7A5eQ5k5VF_Kkg-@{4n*7gAsWJ`A##rr1*(4>Y&+>Fk@@ z$m7_i2DV=gMJ7iz8qz-JFu3t7vtUHe;GLg&u;B1hsAsSR2P&y%LRz%om;imemg$3G zeS(Wr@UA-c&#;dZf@|D&pU{OV%^KmTE>i#=JhurnQ+7G{PjCYY=I?=HnA=z%Qzd89 zHBk@`gm2=-cOl2i1Fai*xI1BB|>*+LUMH7k)?i10sn1QRFluP?ul1)~Xxp$a}zdCI$z0UnFfo`yS=ZU1o z66gl^F8l_fY?LO&ML5d?M` zI$MUbEL0Z14y`dJqEQjuuErc6q-0wI9)s2xJ~x#1;ZS2wsT&Br>b~SUjkGXnFI(B7 z0?Wj_~PR8;K;j6#4ZIG_*0;Gb8uS&1p$I6#_p1S07AA(xNash zOkxmO9D#%c0cW@=N5T?Rq}~Qojs*!|HdDumc?8_?Ls@*SZTv0Z-5stiPgbJyiE*ah zaRat2OmyAQgBekA{CY;({s)JNI)V}sQw;|hTme#47O8=Uo}2L&CnB-yh3pjG;e)WhV3?^ZFV!e9AAqNwAsp;LpeOjO^K|P`<0?-bJfWXeN zw<~M&a2;KH`ujj75eb2ZX+|aSFUxK>UEfcC3KWCwmMEkkm}0P7{s9PCH;!{qTZ{nS za{Vs>WNNyn@cM(~VBz&#+Aq67SbjjLf2=1&*kHzs16X<7#tTBzBmsEv5SdaEa1*9+ zh)fF;)T~qAGzr8;R{ZeB0b&voD8|NtOoEVkjT_vPFbN%n`yn(m*lTn&BoJcpGv8}u-`85 z5V@ip%q#fq*=Hn0c3p5<$}Rk-?j3TIT5`HZ>y2B&aS>3td6&Y(ir(Fmmum%hYbOYh5JCx9T} zf@qKPX)1k*7)fvTI2ZHX<_gtGGxE4z0zKk#eafMlc3DEusvbwO%EbdaRI2Be_Bisx zVq0DA7H&acb$v!}wvVS_N1NqAwqGz<;gTg^KuA^9Rt>ING!${G2dnE*;2Z8QCzCZu zkdXhK)vZ$5l5l}`ImC4kVwNm{Py3awze#Wr_Uz;ek-c7H4TU07>4CG+|t67{=xnDw0!)JPqh(O}$h6THg{|!XBhd=8Sf@zpDf&SSfF1oewgw82Pe^w$ zxHq;)_Q>XWhMS;Gv{Z9{zsEL{qr#ZKoK5s=_g29 zcw&_5p_8@$T35OD{J}6 z6>do*mmP;u<`;q-jZdkn_6;r{k7t{1wOmT-@`OZ(4la&lk4&CtVQ}%ew=luwZo9?# zXuG0(rjYDV6ZABDL>cbHc`tWpP zv-ZD%D7R{Cq(wMt8+mxc0x<~$6l23eCMhM~(c=T0bPGaPH%XFE&+r|+gpz>9>9k); z)#ig<+__SRgrH_maEAh$GxrxC?8aSbF-Ra5K#OD!?r1j`5rPb#(s)5~)|OZsyk$d& zartn!;~u9pMM5NU?(e$dOe09`H!pBLaJez!s3l)x~8=za^P zL;1A*&K{glKz2=zuTu0WXB*d$LVIzzkb%nfO)T|shcCuQf`Ohh>yi{W&v;ZR0wYt3by14&8A*{{ z_3Ww&t5FN=)owQEZOkg^@=clMb$w3G))1{@9VPVd4VSR@Ro7&-DoMC9MXNQsj*%(T zDhlJnw4*QqU#}FUrZYKm(*ZrNE=!7H)9F6zmm-*^>HsF2<2D`8>yx6?bh^(-iY!KW zgS#H%bbtNVJ0WFOf*B-DQ6RoeAd!Mzh=R&!)Glj_SJ>HhJ81Rtp$WUvJPiJ z*Kx(0e+Xp^kE~-FLK}{1jI47%0VbbkKioCVCkYz*CEyI7XFHM#57UkFN>_x`lbs6N zpmC=YI{#B(8hk1&5EY;TD| zyZ)!ZF}&4yDhdoUikDez0xMf7(XUnxb%j#oq8Yi+{yLTo{x-Sa#I|yCXj{3FZ3Xlq zcl-_Rc`*MCj(CfEsx~)t$om-gRDn_;Br4}-n%z^C6tykq(fE4&INlYr@jnl=98X1n z3zTDv4hg0~BXc@i#CfFuc{nU0s$o%DXV8HaU}a}}Hcu9aqeOgZXzNc9gUAU2+113*M*LsfSTjaR@BPAc3xc zTUxG!E#c?kkU&I3BDyIg`i+!tXy+qUEy-}0hA zh5UmZ3!;z;&lH1W!9M^edk%{-5ZbvytSb5`-?%A}0zQ$7i0+wOtQx$sCRu2Ri1!2= z+)|7Y*B`f%A5d*&jw;@2iCCp64<7nKN@D7^eUU}nje1*#Jy#StaL<(}C;;7_E0YI= zY-!Q04c!@^hcT>65N0%ZY4Jl|?IXeh6sL}m8kZKkf~2F&LFw?Eg_??#ADjt{|1h+X zb*#@yApJd>Nl8MPn}5W#ns@hUcGx*pfE^t3+(BSsHekmm#5}7{2zeGEuQ29HW|B(N z|5~qUCRb3mNACmV75X!RKgzmWuXqH$Df2*zQ25}psDVESS;{8*;h26>lu%|j9|R@i z8?9g@Ddpa;RW4C4BK3Q~2~t*Qwq2b-jeS$6W7$Uy-mXr#%f5;^jK+`veO3Ms9&AvJX^J_aP-b;s3)+^ACI`DakZhr^l$!i>dLH+BJ53@@03949)UgLC8!GY8 z)y`;0tJ%3=fh|`oh$-FvuC@bU3bp=C% z@*>?$TgAEXd_I}4;zJG{N=_Aet)2^e7M5at)>Azf4(U*Bv4LR)R1LwjCYlZk)eQ`U zEVM*lH!w=;MH$y(gKn{sdL)!`NjBI3(a%u2rP-oKgKr>+RwpM4tkrGHF))?txahX! zKIk31@Cb5-F{gi5>_jO^pQAqbt+5pi)LQx^ij4Tbx#|Cs>70I^{H>*6L{`ld|AC9@-mlslZ#D zR&oigU`|vTuAWvp4n3IFw9=I)B^P@IE~3|$T%u5Ob+6!P6)|Jk#sYmspo`N=N7Gcb zUTdnJR(c+Nz|}m*f3e4=aWpxzX`~5dA7IlUWkV(&xlL1QzfGe=u4p74&!&k(59Z7~ zsQezAMv>g6DN(5T0GlRSMa-5>GxL6%rXr@Qk7(1(qYrpy)BMFAbz@WO)y$|V@mT66 zS~hCtl6N7T+^=pblB=6im1!T)g)omk;F-Gli#=Tk%2?VK%08eA0r?_iqYFXtJzWS& zn2J_Y90E!y>0b(|vgJVf>P2W$E0sz6}zo0$ytvXU@P|_VO+_ zt9br4Or+MFC=l0=h)m0dOssP+&oM_vaoJ*h`RJ;Nq3<1PP8G1Lmn}RC8@J<=nX^Mh zy+`(3LBNQ!v)lD-8gJ!|>2y;ZX9)O%&%u1?m&hX@O8^|r^}NF2tL!rpB0Gl~!JZ*j zcQPMu^c)P^q)}VkM8!1Vsw0c#BC>4-maLJ+aRI#|| zLDUSj>hZ98(Szxi;i@eKF5RnIjMdterljMjmMB?RnS)j>C&CJfs-*&2wUnkzwpz7J zzYJHYmP_|`11O=o0i+1UR(As+Q~;WF1H`kh8$iCHRHf7EZh)v4k*c;uW%t>t?gsG9 zk-7n*R6v?{1I%`ht!CW-eWdhyh^^XAF(cCsCMB|JOTN!Jj(g#b)Nmff56K}_*lexu z6Nni)4q4ijkLl2K$<;i^X*@)@$cE+<1@2l`)6+6xyU-uC8W5NRbZJ4+7g6obrz#Vv zojC;_eZb|+DSSa~FuMynm_)N)u6FbJOes7h3zZMPPTBie=Yg7qJ>?^avsv5{bDaO zTTbxsQ9LN&W)G$=Q)1Y46@z+EN`R z;;On_9ZlfADorIm*&{LccKcf1G9LEQHH#ckqldOU(Cev6;#O#Rly!@ihhn8#Lzb$o zLt7p(+b50P^5{zvr#O`Q7P?X)X}(cEI9ticwAw|d&|$5t__WZ2fR|cy>OLbOva4{V z5dmwdN>(~>?d-tz16Dm1LV|qVY%ll@lI(tvU*4x=StHW=mO+WS={NVx^ixma4ErJ4Ir)Pa3;Zq%TRFQfy{E6IF*&YJ;*s*g{P4Iy^wNi%+C`Fh`?V=PBvM>^TwKmN>f%0!l?Rvc$PbcFI-nU&Te>>#hg0Gc; zeO}v&14R(D;D_uH_=PLVgYy>h2uq*RpTsK$LSKy(fxcSlAY`E?`daCf29%|EvdMTi zxzYi9E>X3=+KqG1!NBWs^roFJPoPVdf{?vAE|r+#8fUd_L^<^S7H0`v*IG)-%aQ>M zM}eQRl=M>)r?i?inXY!{Is(-v3K?owvpg*ezGI!$flux+?@2RLeF~)rxV7d@geJ|)oR{sK2`zVAyuHQUE&MGOvH}6UXBl+kbd7TjNG9NI^LTG_jGHkaFnTE=4>I# zN0lSE=Gh|>`e(;Cyk_M`a!rCne0`sYo7McLC?IDF@dm#*qOmc_KH(hC@ZyO1ISE#7 z#=B*B6yEzOlPe?%De9XsD4F1iL)MHbu@CAT_h~EJqNL+MB}x`l=AfZ+BA}MGtr5|( zxYh#?rKyppb}P`)FT<7F)~+2eSZG$bu}J#=)y;}1nMjF4W~-D4tro|f)fnSWdGqy zzAP5k#K$C4_UKyzJaW;U3lMZdsjj=JbzD-h%>D)i61l!vmWz9!Uz9wS)p9$#+^u$c ziX78LE!D2nL(!g%T}3|g>A(NzQ-Aa+`kz{|@4ly6D)#)V>uiw%NvcY!dw!yB!oS9m zLe=wAS%O;bPOs5G;!C>G%v`F_d3|^4h!r3c_soq4Y)%LA(xqS%UnXk>?o*}g+DpMA zmtOSpQn2_H$*R$F(v?d+lHwgP6T0V9gI8ltW?YbdD?;Pp-!@%2vVw;JH}&eAHVYk)`s zz~YL*dZkZmOejf!te)BsB?~5V&|@(t0%~!iV7+=2b_0}Bk#ppYf`peXz@y?uLGo#D z2e+G!l^947dav%_K*&N(^mPYEX;6A`A$zyT&e=^kO(3ma$YxR|R^pp2WIN7#@anTW zgjb#3IRvkHe#i4rVcR|xc#GRbJ3RHYQXz@>j1q;0tGA0BEnCIRMFl?x<^Wv^e)dJQ z7vVUmv9C7xIq>KMt`->_e;x#T%o%Sv=w`Q|_Z^OL3=^P1%7#ola`T{6Xu7zg%LH>p z<1?k_>K$Fjp$D@(3hhK>C6~-&I^K@YuD5EJhEg&A-pZ|-+F4WJVc@2$5%E#Zd-#O( zU22Zg=JM6`ST#qVC@iG5IeJpn%$)f)z>a=bmUA40tOw1*nLJalswVyDd`Aa z#>8wgt5rsW!g~Mk(5lNOu)=T4KJQElw6u*(?hBXEm8#5S|5~1TS$q% z@ZXJsT4P|2@c8OT9-x@=)s0kQ1>2a^|B)^S~d-OQ8$_q*@X<-sc*p-7bbep&ss3jfU@XT%`V57 z&*`p)6NT2R-73exgzLDdSks`q=UospR}x#4$vlrsW`P;Jp;oh@)+W16=}%xXAY7)7F^Q#tkoe6sbw=ztE2kj|9Ug9R!51t_DPWhfTf*?{G$K- zlKG)J3z`cekw^Qi=OlB1{d?_zKha?l~#MsOx}h{JhW5C#R+fGbLJ9Rw?%+e zuT{Hd0F8lILA{JwdCsnUudV9Cfzy?2Pt~?+o&_Z8+E$U&X9Y%Bw-2m7#>$Z+Wmy69 z&8)zs_Tfz*#17u3d$#&0c(Vtx9goq}@z7T5Qh~R$y5G#3MS~5hO|}f+bKs^SOEkIK zV*n{HL*+hu#QfATfb>%`mmd}aHkyaB!)P7~HrbP7P>5rvCUe! z-$)QJYx^zGu|R^l)+Levur$Vkj;`(Xg{tn_F_vhTK*}+eN)pP_GzR$-)nJe!6j|#~ z5osIbM0)~Mlu(v-`zb$H=0s_;cDJ9Y7m>=qB`!-)OHK<4AW%M2Dbj>eYn>KH-UdrN zRQK=GTBpTx=)o+V7GIt~7aRX$6=&T%mSNV_jsLL~Wlhv|<3|zz z790O#9byd{N}tt@AG9rH5=hnfQL@)oA75v;vH+*PkEPmHnUoEcZ()(~^`0}dTAIDO z5@%x-i|LYakBkhSsGYq=E=A-ca8k3^_z~&5IJ`c-Uc92Z21*h=L-p`Vlx)c0pkh7% z7m0vcI(oqcbgw`kDI=~udg17o;bx|>c!f>5=*2$1Mu0x{vc~$PA~=N{g}wGHd_u9% z5CcPf>N)+Av|k$UE@pEr1|=!{wc{OAH&jpQ+EBPGK`ljobAh;UDvg`+Xdl!qSS$3k zk>8SGK@4n(`c-muq)UEHf|bUYidTja>e`7%E99ODoW{`GFa#G7Og})LFX%?HO2TJr}hC?LQ#UC9n7b2a`17BOT-- z(k9mYAQu%SlqFY_^5<%A#ia?w)(+o}Q~~Q8Q6937_MG?N-Kh`{`f4Wwt`5PwvmW#H zJPf?x47{b`+Biz?PI;&6IJLtyQ!u_w5Tsp(W1rt-Eag*q0 zD3Jz~#hDAf(bkJ3Wwg~Z7ou*~Iw4hKCY9~2_VrjTeO@5tIK~M=7EGeA6-sG+3PrwF zD3Xq)P@-N$suW6P32M<_T4R2zdSXfvDy<&th?0qvIOw`(wt!l4oiE2*yjLT!x-GT7f!hpmuW*lr8lEpImQ1 zIRaRU2EA-niw4gW>Fy||tLm=306x;QQF{jXNY>SUcrqVjSC|If!W}&L4cAZ`_+%K2Bp+$a8f)&Sf6%cwU!`JTCj_Fn~ zC}`_3onzOEW4gYs{!(93Up=OqcheI-HKx0p=u6#Se*0v0`DAVPM}&-8cUMnJw~f;P zy>w0uw?j@hSL>O+Vy{aV4Y78h>ByP50|xDRbf1x#mR|q4YQ{IS4PrFqU>TEz1hre& zk(wny0HC+7<3|L)@bi)RDJPoAINrc&}wVxz-`XSCk~wTx}Ud z$pXt9)U4mJg=$MH++0A7eVnF-yxJ9RN52eLZkV~!eM8&qC(;aNKM_j3TRF7Nequlb zZ8fwZ1-dK^ZL^;!Mb3Vrv{*Z|fpP(#9NJKh0G8U3J1(RYm>+zqZAXs01=JsVl9la> z6W&rFo-3i1%EXjnYXk8-haSu_5YLw<(4~oqE20JlpD1j#c4Fdb6)|IYut4*YYH4EP zX_~6m3#+vglfa`7xSW`TFG$@bcWt)N$A&3ID7w~NBSIEfqOWGF%o8X}VS2d8zj=Iy z$0b$cqhv(sP382ub_9-GEY!qmM4Z$J96us0|5afpE*8=j5(Q8VvUa7bW7IE$eCn|K zii9Yw&bU%^<)2v#lp*Y<)@kne6lGvuYIUajjD#q?G1Zl_tAZ%2x~P3)Dq*!p5P3Ci z^4t?#s zS9kb&a9N^V)CO>*yo!=|eky}qlJRn61}a0qsLMS58TaENdBSJ4KC z?V+*LIJ*%01pcn}PX6>F8=$IgZMNJC95Q#EU?zz1_NqL%mzFn_WCxM@CiXL+ph5{3{Gj$Q!xT}z3nnB6SjZ(MNPFlbAT>( z@td>o1c9Cn;O66)CGb~w@d+ufaQ%&U-*Yidl4VbYooFPQ1cB&(v zk|2(k_Tu7aBt&tcflBFz5}X9;v4m<%avVz7>B$6TN$vweUD}hIaS`(_evduek)N)T z*6zs(Zbdl)N3|y>KHgUoxCU0u2*{S`a@bUkLuvxF3K9?(qb4XBHStbqdb~M90O)u- zTV5ir99>tAKjc%iHVOz)=C!MqnyoEVV2vPj;@o~mIzE~R3EI;uaDe5R@ z3F!{#ydptcu$Zk6mBHM)Jc!fN?&r-|otme%L#aZD1FVf`+4z}DZf%_0j~Y=&MjN5j zW1%KmHfrXQqvm9wF3vAEXV>H{8H1in7s#vUmw}6o-E-3O%ka@2(+}5j8Y09jA;kfv z9|_um#B9U#yF64!X#*KeWP>Oo{URt$Ho=|dHfQty!R?%qx$Hvrw#U* zEqik5q9zW(&s+-lIWJqUfNovJ9{hMu#l+9)N5jw53iutTygks9E)9pb_UZq6oIT3O z2E^${!_U+T_#Gz$zsrFBi)$08BrbF|+33j+H3H6q-?5PglMZm7I(B`+jEH0IK6M{c zqbSaZHk0{Ezmqw0iK0I0$1`SN3cxwJ_vDfRx^x}sY=iqjX8KXYC2k#-{^$F*IO< zAXL2(!)XF_b!Y&SGBFchebRB}IQN?K_9B~QAxWUEZ+W0(f+Y@_Ia4B%i#ycYM#WvB zuaj>)RPRuOkcE@z>m6!J1Il72jQsq*J3^XWbywZ!Jh1{|cg3BG00{hhkbk_rx*5-R zDvB_q3WKOc9*7ypLzeC?VmgqQ)`sU3Wf({hcx%^&LC1hf)YaNBB>`aR2oti^whdC$ zW=-u8CZb&eDPv)&B%v&g!gEA6s6%#~Bve`37ceCYCo$E1fny7(rEohgpjAqglu~QM z?Hv6wTp5AoN|S0!k>qpLs^)TC{ch#L)!aHA2HGmz4k^G^3b&i<(_!;toel$KONH6# zFq9*JrH+5zthHGpMObBR$4{h9h@h`Jekw{ROUIKbUt1)SltI=WPiE>xr1CT^m+e=m zejg6+OUqr#dWD*=!!i9#q2Sr8(2ai7lE@rQp`dOm6sVMILTuSWOPe=bz&O(5@aE@v zYBz5>J_Y3AB#(@l=sqKTmm;FNQkfZ()~y3PwGmMXt386q5S-*YlBDE>&pEVJPJ3LM z=rn4ba7W4lZpP<&&cIt*K6fRw){hyV>pApbmb+%YJSn;8EvznIQ9l9i zZ)ZMTm`AlM6xrB91YRnRr9($DlulH}Qdw8w$O;K+x5OfoJ^}QWSp10K_ZX9V(lejW zuP$Sb5TbU66?h^+TaK8mcUaR;Nt&WJx4OhLeOXN)O-NAf%`tf!JMqYe7)nKY>B2#;zFp zlEf)apS?Ni>nvlvs7oym7&BPA=FOI#8D0?6r|^S)AqPVAbh@5+sYBDrT?IJ5dD-6~u7os%b?eX~V{<`Ha zxnyDP2Y7srnvL6YQb9QAeS8Msm#4MMY#O$d^RW79?b4ozfxceRT_Fu9i@PA&c%|ju zt=$DN%@#PmAOdvfY_P>$kjz@Osn%XPFt_a#_~iK#l*Xt?s1c!dd4Ome zaFMKA4wWR7r6GAS-hA9l&*<=}v;vp$fOCYJYlq~7lL?)0j0lGwl9LZflG2UK^|Yqcpf8&k-v{oyVjQSDvRP@$k5#x>)Pc(oYHDOuCv$U zi@a06b~WF=QlD?smtK&+P`?zIjqKTCr^3B_qA>H?z-&*;)GxEvf!TpMv|94c7mW@X zrW66U);lLc7FMFKymRIWl*Rs|!OK=Ew0Xg40%>*s!K6&A#8*$*Jm)@J)lVzvmldjQ z)qGfis4I`1k^r!1tBA(WZPg_Tl~&uTqh;yTb5Y030GJRF=+Yc*q1%>>q`X@@wp)Re z3&c^%IT})ct=NuM`i@IH#2{xE)$Is`EIkr^-Hs>?D2u-OYPv&28_uz+^KAf&3>=C? zj;Q}?U%lgGV+Xqtb5qM_4v7N-NlLNIi`7ko{#Lz-8B&D^wX?cF%*5}w>xkg+NpI5w z^65;QvP%@WtDByqRe%lF*)ZXmL*1q2y~Sp=Rx2c&Bmmbg?=d9{E-}^1dyXxVi+)1p zXeuwWy6@dtw@Z-^tNUIg0bp@jzta~@7ChIvDAz=z}0Yl(`ytr zE{sr_wog5dQFvk|TE{&zion0mD0~@h6h8S_MiIF5qL)Xy7vURHe5qT(xj-C9KU?Z~ z64L2FI`+BY1E#A{wNvYkks$&yaVC94ywudX`;4S0O|839sv3|H#ZXmIyQ7-$+9QeF zQBA%hQA#rb6wBv;K2cOetvljr+1PpFr)C0yIY5`T#JEU4C5*`ec#Z~$~TbDt1iKz>1>n(+_Fufvv z+$08WnWe-JdoAVs$+l6mwI!z=NApa|Lhg8I&AU`+zBHf51%=wKY37uUOttfQB5fh% znVEFbsVHf+6wpff&2lqaskN~#T_CO=OCy^CZigWoOXFuGL&;5Cs;$|jTs65{=_W3% zH51TQZX!~Et+eyL)aMVE$2xxq%9bv(^M@!$085iy+*hD_vqpwi)J}Fm*uNP@FwBkGJEC>}APiNInvL z&%}i9^Ypq}2cg%7{MT8Z@6%PMUwa9D1Y-}fQ3QFQyZeevsJQB|T2eJB-^C>g^;fSt zI9itSJr}*|;FAHmI48i_GmUtCq&Wddn^-|#E!@)yI8trt#I|`<&pf49`=XNPP{2#4 z^W=$bU%t0X!7&Wuk^(*{lHXBK-K7LBCiHE%p+NaD;UmIdT-FSQbep83F4pw~)r~ST z>X$(^%J>xtQQG9ga%iJAdpJon$l6Ulret9zrh1dlvF(SNEs5+FYAxgdsMk+ysI>ke zj~f6g5__Po)|U^}<&&Ir6siUimd3j4X1zceIdb?!0k?Ln^Rx`Wfs5*pLoz^@997(+e70y7tF@Zn zApL>Q5ZG%S)sBw^f3_Ss5PE5;`;3gFG_6M||72zkjx zyUR@Bx5!QR7Dhzi2(-Yc(9kkB{V{MtYWu8Z$HFiRgNb2iJV& zYeIC*CZ&oBs5Tx?%+$ZTJ~hM(v^?2%AtJ=?EAUB-NG{1(BT@ z2Ih`Jr?rcMM7so1E(%gfLRoV6uh%OTB}XX&WbGCJ5wbuMedX>m&pusduc777pjGSA zegF*&GL-(&vv&(eHXfc~%sHD}jqy4Ft{=z(_a5TSj0UG&eF+@iM-idwW#v9V&e>4> z!x6ZTJo6FrZoexIaO7mjbne|sT$~BP?O?J=W&*oHLge*PM0SMt3hnu~-|G?Emx18_ zdMm+citpY+*(W`f^v|ZqYX7&R=pX^IR}oa!J)?rl_WrC#8wpXeh0=Wd;TfwftA0)u z^CeU<72BW#TOlgAfa5K5WeuuIUmnigGZ6J=8rCQHL8;DPaLQB4Nh#XO< zcjM)Drmm2!b&moI3wPk7+@tUbnL