-
Notifications
You must be signed in to change notification settings - Fork 0
/
Poly1305.cpp
345 lines (320 loc) · 11.5 KB
/
Poly1305.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "Poly1305.h"
#include "Crypto.h"
#include "utility/EndianUtil.h"
#include "utility/LimbUtil.h"
#include <string.h>
/**
* \class Poly1305 Poly1305.h <Poly1305.h>
* \brief Poly1305 message authenticator
*
* Poly1305 is a message authenticator designed by Daniel J. Bernstein.
* An arbitrary-length message is broken up into 16-byte chunks and fed
* into a polynomial mod 2<sup>130</sup> - 5 based on the 16-byte
* authentication key. The final polynomial value is then combined with a
* 16-byte nonce to create the authentication token.
*
* The following example demonstrates how to compute an authentication token
* for a message made up of several blocks under a specific key and nonce:
*
* \code
* Poly1305 poly1305;
* uint8_t token[16];
* poly1305.reset(key);
* poly1305.update(block1, sizeof(block1));
* poly1305.update(block2, sizeof(block2));
* ...
* poly1305.update(blockN, sizeof(blockN));
* poly1305.finalize(nonce, token, sizeof(token));
* \endcode
*
* In the original Poly1305 specification, the nonce was encrypted with AES
* and a second 16-byte key. Since then, common practice has been for the
* caller to encrypt the nonce which gives the caller more flexibility as
* to how to derive and/or encrypt the nonce.
*
* References: http://en.wikipedia.org/wiki/Poly1305-AES,
* http://cr.yp.to/mac.html
*/
// Limb array with enough space for 130 bits.
#define NUM_LIMBS_130BIT (NUM_LIMBS_128BIT + 1)
// Endian helper macros for limbs and arrays of limbs.
#if BIGNUMBER_LIMB_8BIT
#define lelimbtoh(x) (x)
#define htolelimb(x) (x)
#elif BIGNUMBER_LIMB_16BIT
#define lelimbtoh(x) (le16toh((x)))
#define htolelimb(x) (htole16((x)))
#elif BIGNUMBER_LIMB_32BIT
#define lelimbtoh(x) (le32toh((x)))
#define htolelimb(x) (htole32((x)))
#elif BIGNUMBER_LIMB_64BIT
#define lelimbtoh(x) (le64toh((x)))
#define htolelimb(x) (htole64((x)))
#endif
#if defined(CRYPTO_LITTLE_ENDIAN)
#define littleToHost(r,size) do { ; } while (0)
#else
#define littleToHost(r,size) \
do { \
for (uint8_t i = 0; i < (size); ++i) \
(r)[i] = lelimbtoh((r)[i]); \
} while (0)
#endif
/**
* \brief Constructs a new Poly1305 message authenticator.
*/
Poly1305::Poly1305()
{
state.chunkSize = 0;
}
/**
* \brief Destroys this Poly1305 message authenticator after clearing all
* sensitive information.
*/
Poly1305::~Poly1305()
{
clean(state);
}
/**
* \brief Resets the Poly1305 message authenticator for a new session.
*
* \param key Points to the 16 byte authentication key.
*
* \sa update(), finalize()
*/
void Poly1305::reset(const void *key)
{
// Copy the key into place and clear the bits we don't need.
uint8_t *r = (uint8_t *)state.r;
memcpy(r, key, 16);
r[3] &= 0x0F;
r[4] &= 0xFC;
r[7] &= 0x0F;
r[8] &= 0xFC;
r[11] &= 0x0F;
r[12] &= 0xFC;
r[15] &= 0x0F;
// Convert into little-endian if necessary.
littleToHost(state.r, NUM_LIMBS_128BIT);
// Reset the hashing process.
state.chunkSize = 0;
memset(state.h, 0, sizeof(state.h));
}
/**
* \brief Updates the message authenticator with more data.
*
* \param data Data to be hashed.
* \param len Number of bytes of data to be hashed.
*
* If finalize() has already been called, then the behavior of update() will
* be undefined. Call reset() first to start a new authentication process.
*
* \sa pad(), reset(), finalize()
*/
void Poly1305::update(const void *data, size_t len)
{
// Break the input up into 128-bit chunks and process each in turn.
const uint8_t *d = (const uint8_t *)data;
while (len > 0) {
uint8_t size = 16 - state.chunkSize;
if (size > len)
size = len;
memcpy(((uint8_t *)state.c) + state.chunkSize, d, size);
state.chunkSize += size;
len -= size;
d += size;
if (state.chunkSize == 16) {
littleToHost(state.c, NUM_LIMBS_128BIT);
state.c[NUM_LIMBS_128BIT] = 1;
processChunk();
state.chunkSize = 0;
}
}
}
/**
* \brief Finalizes the authentication process and returns the token.
*
* \param nonce Points to the 16-bit nonce to combine with the token.
* \param token The buffer to return the token value in.
* \param len The length of the \a token buffer between 0 and 16.
*
* If \a len is less than 16, then the token value will be truncated to
* the first \a len bytes. If \a len is greater than 16, then the remaining
* bytes will left unchanged.
*
* If finalize() is called again, then the returned \a token value is
* undefined. Call reset() first to start a new authentication process.
*
* \sa reset(), update()
*/
void Poly1305::finalize(const void *nonce, void *token, size_t len)
{
dlimb_t carry;
uint8_t i;
limb_t t[NUM_LIMBS_256BIT + 1];
// Pad and flush the final chunk.
if (state.chunkSize > 0) {
uint8_t *c = (uint8_t *)state.c;
c[state.chunkSize] = 1;
memset(c + state.chunkSize + 1, 0, 16 - state.chunkSize - 1);
littleToHost(state.c, NUM_LIMBS_128BIT);
state.c[NUM_LIMBS_128BIT] = 0;
processChunk();
}
// At this point, processChunk() has left h as a partially reduced
// result that is less than (2^130 - 5) * 6. Perform one more
// reduction and a trial subtraction to produce the final result.
// Multiply the high bits of h by 5 and add them to the 130 low bits.
carry = (dlimb_t)((state.h[NUM_LIMBS_128BIT] >> 2) +
(state.h[NUM_LIMBS_128BIT] & ~((limb_t)3)));
state.h[NUM_LIMBS_128BIT] &= 0x0003;
for (i = 0; i < NUM_LIMBS_128BIT; ++i) {
carry += state.h[i];
state.h[i] = (limb_t)carry;
carry >>= LIMB_BITS;
}
state.h[i] += (limb_t)carry;
// Subtract (2^130 - 5) from h by computing t = h + 5 - 2^130.
// The "minus 2^130" step is implicit.
carry = 5;
for (i = 0; i < NUM_LIMBS_130BIT; ++i) {
carry += state.h[i];
t[i] = (limb_t)carry;
carry >>= LIMB_BITS;
}
// Borrow occurs if bit 2^130 of the previous t result is zero.
// Carefully turn this into a selection mask so we can select either
// h or t as the final result. We don't care about the highest word
// of the result because we are about to drop it in the next step.
// We have to do it this way to avoid giving away any information
// about the value of h in the instruction timing.
limb_t mask = (~((t[NUM_LIMBS_128BIT] >> 2) & 1)) + 1;
limb_t nmask = ~mask;
for (i = 0; i < NUM_LIMBS_128BIT; ++i) {
state.h[i] = (state.h[i] & nmask) | (t[i] & mask);
}
// Add the encrypted nonce and format the final hash.
memcpy(state.c, nonce, 16);
littleToHost(state.c, NUM_LIMBS_128BIT);
carry = 0;
for (i = 0; i < NUM_LIMBS_128BIT; ++i) {
carry += state.h[i];
carry += state.c[i];
state.h[i] = htolelimb((limb_t)carry);
carry >>= LIMB_BITS;
}
if (len > 16)
len = 16;
memcpy(token, state.h, len);
}
/**
* \brief Pads the input stream with zero bytes to a multiple of 16.
*
* \sa update()
*/
void Poly1305::pad()
{
if (state.chunkSize != 0) {
memset(((uint8_t *)state.c) + state.chunkSize, 0, 16 - state.chunkSize);
littleToHost(state.c, NUM_LIMBS_128BIT);
state.c[NUM_LIMBS_128BIT] = 1;
processChunk();
state.chunkSize = 0;
}
}
/**
* \brief Clears the authenticator's state, removing all sensitive data.
*/
void Poly1305::clear()
{
clean(state);
}
/**
* \brief Processes a single 128-bit chunk of input data.
*/
void Poly1305::processChunk()
{
limb_t t[NUM_LIMBS_256BIT + 1];
// Compute h = ((h + c) * r) mod (2^130 - 5).
// Start with h += c. We assume that h is less than (2^130 - 5) * 6
// and that c is less than 2^129, so the result will be less than 2^133.
dlimb_t carry = 0;
uint8_t i, j;
for (i = 0; i < NUM_LIMBS_130BIT; ++i) {
carry += state.h[i];
carry += state.c[i];
state.h[i] = (limb_t)carry;
carry >>= LIMB_BITS;
}
// Multiply h by r. We know that r is less than 2^124 because the
// top 4 bits were AND-ed off by reset(). That makes h * r less
// than 2^257. Which is less than the (2^130 - 6)^2 we want for
// the modulo reduction step that follows.
carry = 0;
limb_t word = state.r[0];
for (i = 0; i < NUM_LIMBS_130BIT; ++i) {
carry += ((dlimb_t)(state.h[i])) * word;
t[i] = (limb_t)carry;
carry >>= LIMB_BITS;
}
t[NUM_LIMBS_130BIT] = (limb_t)carry;
for (i = 1; i < NUM_LIMBS_128BIT; ++i) {
word = state.r[i];
carry = 0;
for (j = 0; j < NUM_LIMBS_130BIT; ++j) {
carry += ((dlimb_t)(state.h[j])) * word;
carry += t[i + j];
t[i + j] = (limb_t)carry;
carry >>= LIMB_BITS;
}
t[i + NUM_LIMBS_130BIT] = (limb_t)carry;
}
// Reduce h * r modulo (2^130 - 5) by multiplying the high 130 bits by 5
// and adding them to the low 130 bits. See the explaination in the
// comments for Curve25519::reduce() for a description of how this works.
carry = ((dlimb_t)(t[NUM_LIMBS_128BIT] >> 2)) +
(t[NUM_LIMBS_128BIT] & ~((limb_t)3));
t[NUM_LIMBS_128BIT] &= 0x0003;
for (i = 0; i < NUM_LIMBS_128BIT; ++i) {
// Shift the next word of t up by (LIMB_BITS - 2) bits and then
// multiply it by 5. Breaking it down, we can add the results
// of shifting up by LIMB_BITS and shifting up by (LIMB_BITS - 2).
// The main wrinkle here is that this can result in an intermediate
// carry that is (LIMB_BITS * 2 + 1) bits in size which doesn't
// fit within a dlimb_t variable. However, we can defer adding
// (word << LIMB_BITS) until after the "carry >>= LIMB_BITS" step
// because it won't affect the low bits of the carry.
word = t[i + NUM_LIMBS_130BIT];
carry += ((dlimb_t)word) << (LIMB_BITS - 2);
carry += t[i];
state.h[i] = (limb_t)carry;
carry >>= LIMB_BITS;
carry += word;
}
state.h[i] = (limb_t)(carry + t[NUM_LIMBS_128BIT]);
// At this point, h is either the answer of reducing modulo (2^130 - 5)
// or it is at most 5 subtractions away from the answer we want.
// Leave it as-is for now with h less than (2^130 - 5) * 6. It is
// still within a range where the next h * r step will not overflow.
}