-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_process.py
698 lines (620 loc) · 29.4 KB
/
data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
import json
import urllib.parse as url
import tensorflow as tf
import numpy as np
import random
import linecache
import warnings
warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim')
import gensim
from gensim.models import FastText # another type of fasttext
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
import collections
def Delete_repeated_data(file_in='Split-normal.csv',file_out='unique.csv'):
'''
delete the repeated data ina file
'''
file0=open(file_in,'r',errors='replace')
file1=open(file_out,'wt',errors='replace')
sets=[]
for line in file0:
if line not in sets:
sets.append(line)
file1.writelines(line)
def Extratc_sqli(file_in,file_out):
'''
extract sqli from source data
'''
file1=open(file_in,'r')
file2=open(file_out,'wt')
for line in file1:
if 'sqli' in line:
line=line.split(',"sqli",')
line2=line[0].split(',"')
line2=line2[0][1:-1]
file2.writelines(line2+'\n')
# file_in = 'Source/payload_train.csv'
# file_out= 'Extract-Source/data-sql.csv'
# Extratc_sqli(file_in,file_out)
def Extratc_normal(file_in,file_out):
'''
extract normal from source data
'''
file1=open(file_in,'r')
file2=open(file_out,'wt')
for line in file1:
if '"norm"' in line:
line=line.split(',"norm",')
line2=line[0].split(',"')
line2=line2[0][1:-1]
file2.writelines(line2+'\n')
# file_in = 'Source/payload_test.csv'
# file_out= 'Extract-Source/new-test.csv'
# Extratc_normal(file_in,file_out)
def CreateDict(keyworsd):
'''
Create dcts for key words
keywords: a long string as 'word1 word2 word3 ... '
return: a dict with all words from keywords
'''
dict_ReservedWords={}
words=keyworsd.split(' ')
for num in range(len(words)):
if words[num] not in dict_ReservedWords:
dict_ReservedWords[words[num]]=0
return dict_ReservedWords
def filterline_new(files_in,files_out):
'''
This function is to extract/split words from sentences from the
files_in and save them in files_out
files_in : the path of source files
files_out : the path to save the extracted sentences
'''
file_in=open(files_in,'r',errors='ignore')
file_out=open(files_out,'wt',errors='ignore')
for line in file_in:
# # List to string
# line="".join(line)
# --------- Filtering url code with decode all %xx
line1=''
while '%' in line and line1!=line:
line1=line
letter=[]
for j in range (len(line)):
# print (j)
if line[j]=='%':
letter.append(line[j:j+3])
# print (line[j])
for i in range (len(letter)):
line=line.replace(letter[i],url.unquote(letter[i])) # the string will not be changed if the string is not a url-encoded.
# ----------------- end -----------------
line=line.lower()
line=line.replace('%',' % ')
line=line.replace('/',' / ')
line=line.replace('+',' + ')
line=line.replace('?',' ? ')
line=line.replace('&',' & ')
line=line.replace(';',' ; ')
line=line.replace('=',' = ')
line=line.replace(',',' , ')
line=line.replace('\'',' \' ')
line=line.replace('\"',' \" ')
# add
line=line.replace('.',' . ')
line=line.replace('(',' ( ')
line=line.replace(')',' ) ')
line=line.replace('<',' < ')
line=line.replace('>',' > ')
line=line.replace('*',' * ')
line=line.replace('!',' ! ')
line=line.replace('#',' # ')
line=line.replace('|',' | ')
line=line.replace('$',' $ ')
line=line.replace('^',' ^ ')
line=line.replace('{',' { ')
line=line.replace('}',' } ')
line=line.replace('--',' -- ')
line=line.replace('@',' @ ')
line=line.replace('\\',' \\ ')
# Enter
line=line.replace('\r',' ')
line=line.replace('\n',' ')
# line=line[:-1]
# print (line)
# file_out.writelines(new_line+'\n')
# line=line.decode('unicode-escape')
file_out.writelines(line+'\n')
def is_Pure_strings(string):
'''
check a string is PureString or mixed string
'''
number=['0','1','2','3','4','5','6','7','8','9']
for i in range(len(number)):
if number[i] in string:
result= False
break
else:
result= True
return result
# the old one
def Find_keywords(file_in,file_save_keyword):
'''
find small seet of key words from statistics
Counts the frequency of all words below and extract the top num of words
----
file_in: file we will extract key words from.
num: the num of words will be extracted (changable, defaults=100)
return: a list of words
'''
Html_word='doctype a abbr acronym address applet area article aside audio b base basefont bdi bdo big blockquote body br button canvas caption center cite code col colgroup command datalist dd del details dfn dialog dir div dl dt em embed fieldset figcaption figure font footer form frame frameset h1 h2 h3 h4 h5 h6 head header hr html i iframe img input ins kbd keygen label legend li link main map mark menu menuitem meta nav noframes no script object ol optgroup option output p param pre progress q rp rt ruby s samp' # delete ''
Script_word='section select small source span strike strong style sub summary sup table tbody td textarea tfoot th thead time title tr track tt u ul var video wbr script javascript'
Script_function='click close alert confirm escape eval isnan parsefloat parseint prompt unescape join length reverse sort getdate getday gethouse getminutes getmonth getsecond gettime gettimezoneoffset getyear parse setdate sethours setminutes setmonth settime setyear togmtstring setlocalstring utc math e ln2 ln10 log2e log10e pi sqr1_2 sqrt2 abs acos asin atan atan2 ceil cos exp floor log max min pow random round sin sqrt tan anchor big blink bold charat fixed fontcolor fontsize indexof italics lastindexof length link small strike sub substring sup tolowercase touppercase trim document write open writln'
# sql words
Reserved_word='select update delete insert create alter drop order by group by truncate replace commit rollback savepoint transaction set distinct all desc null limit top percent rownum as having inner left right full outer self index table tables databases database column auto_increment view default unique check constraint key primary foreign modify information_schema false true where if union between like in and or not into is join adddate addtime convert_tz else from'
function_time='adddate addtime convert_tz current_date curdate current_time current_timestamp curtime date_add date_format date_sub date datediff day dayname dayofmonth dayofweek dayofyear extract from_days from_unixtime hour last_day localtime localtimestamp makedate maketime microsecond minute month monthname now period_add period_diff quarter sec_to_time second str_to_date subdate subtime sysdate time_format time_to_sec time timediff timestamp timestampadd timestampdiff to_days unix_timestamp utc_date utc_time utc_timestamp week weekday weekofyear year yearweek'
function_other='max min count avg sum first last ucase lcase mid len round format field upper lower sqrt rand concat isnull nvl ifnull replace trim version user dataset substring elt group_concat concat_ws extractvalue updatexml sleep make_set benchmark extractvalue cast'
Orcal_words='exp power mod ceil floor sign aprt ascii chr instr length substr ltrim rtrim soundex initcap add_months mouths_between current_date to_char to_date to_blob to_clob to_number decode coalesce trunc next_day lpad rpad nlssort abs greatest vsize regexp_substr regexp_instr repeat'
# ------------------ words for other attacks
others='data text plain php input phpinfo proc self cmdline stat status fd fckeditor access_log access log error_log error stats_log license_log login_log mysql bin slow pure ftpd purftpd mainlog paniclog rejectlog mailog conf bin logs sbin base64_decode utility convert sysobject java lang wget curl redirect shal regexp master ping exec system exe'
add='shell_exec passthru pcntl_exec popen proc_open echo src cookie case'
all_words = Html_word+' '+Script_word+' '+Script_function+' '+Reserved_word + ' ' + function_time + ' ' + function_other + ' ' + Orcal_words+ ' '+others+' '+add
all_dicts = CreateDict(all_words)
# dict_out='Extract-Source/keywords.csv'
file=open(file_in,'r', errors='ignore')
for line in file:
line=line.strip()
line=line.split(' ')
for i in range(len(line)):
if line[i]!='' and line[i] in all_dicts:
all_dicts[line[i]] += 1
sorted_dicts = sorted(all_dicts.items(),key=lambda item:item[1],reverse = True)
print(sorted_dicts)
all_num=len(sorted_dicts)
sorted_freq= [word[1] for word in sorted_dicts[0:all_num]]
num=0
for i in range(all_num):
if sorted_freq[i]==0:
num=i
break
print('key words number:', num)
# num=sorted_freq.index(0)
# print(num)
# print(sorted_freq)
# --------- save the dicts
# file2 = open(dict_out,'wt')
# for pairs in sorted_dicts:
# line=str(pairs)
# file2.writelines(line+'\n')
# --------------- extract xx words from the sorted dicts
small_dicts = [word[0] for word in sorted_dicts[0:num]] # delete the space
samllkey_words=" ".join(small_dicts)
file_save=open(file_save_keyword,'wt')
file_save.writelines(samllkey_words)
# print (small_dicts)
return small_dicts
def Replace_words(files_in,files_out,key_words):
'''
Repalce words those are not in keywords and Punctuations below.
Arg:
files_in: the file of the data
files_out: the file to save those data replaced
'''
# words=Find_keywords()
Punctuations=['/','+','?','&',';','=',',','\'','\"','(',')','<','>','*','!','$','#','|','^','{','}','\\','--','%','~','@','.','`','[',']',':']
# key_words=Find_keywords()
# print (key_words)
all_keywords=Punctuations+key_words
file0=open(files_in,'r',errors='ignore')
file1=open(files_out,'wt')
for line in file0:
New_line=[]
line=line.strip()
line=line.split(' ')
for i in range(len(line)):
if line[i] in (Punctuations+all_keywords):
New_line.append(line[i])
if line[i] not in all_keywords and line[i] !='' :
if line[i].isdigit():
New_line.append('Numbers')
elif is_Pure_strings(line[i]):
New_line.append('PureString')
else:
New_line.append('MixString')
newline=' '.join(New_line)
file1.writelines(newline+'\n')
# -------------
# the new one for unkonown words in test
def Find_keywords_New(file_in,file_keywords):
'''
find small seet of key words from statistics
Counts the frequency of all words below and extract the top num of words
----
file_in: file we will extract key words from.
num: the num of words will be extracted (changable, defaults=80)
return:
smallkey_words: the top xx key words appeared in training data
allkey_words: all key words
'''
Html_word='doctype a abbr acronym address applet area article aside audio b base basefont bdi bdo big blockquote body br button canvas caption center cite code col colgroup command datalist dd del details dfn dialog dir div dl dt em embed fieldset figcaption figure font footer form frame frameset h1 h2 h3 h4 h5 h6 head header hr html i iframe img input ins kbd keygen label legend li link main map mark menu menuitem meta nav noframes no script object ol optgroup option output p param pre progress q rp rt ruby s samp' # delete ''
Script_word='section select small source span strike strong style sub summary sup table tbody td textarea tfoot th thead time title tr track tt u ul var video wbr script javascript'
Script_function='click close alert confirm escape eval isnan parsefloat parseint prompt unescape join length reverse sort getdate getday gethouse getminutes getmonth getsecond gettime gettimezoneoffset getyear parse setdate sethours setminutes setmonth settime setyear togmtstring setlocalstring utc math e ln2 ln10 log2e log10e pi sqr1_2 sqrt2 abs acos asin atan atan2 ceil cos exp floor log max min pow random round sin sqrt tan anchor big blink bold charat fixed fontcolor fontsize indexof italics lastindexof length link small strike sub substring sup tolowercase touppercase trim document write open writln'
# sql words
Reserved_word='select update delete insert create alter drop order by group by truncate replace commit rollback savepoint transaction set distinct all desc null limit top percent rownum as having inner left right full outer self index table tables databases database column auto_increment view default unique check constraint key primary foreign modify information_schema false true where if union between like in and or not into is join adddate addtime convert_tz else from'
function_time='adddate addtime convert_tz current_date curdate current_time current_timestamp curtime date_add date_format date_sub date datediff day dayname dayofmonth dayofweek dayofyear extract from_days from_unixtime hour last_day localtime localtimestamp makedate maketime microsecond minute month monthname now period_add period_diff quarter sec_to_time second str_to_date subdate subtime sysdate time_format time_to_sec time timediff timestamp timestampadd timestampdiff to_days unix_timestamp utc_date utc_time utc_timestamp week weekday weekofyear year yearweek'
function_other='max min count avg sum first last ucase lcase mid len round format field upper lower sqrt rand concat isnull nvl ifnull replace trim version user dataset substring elt group_concat concat_ws extractvalue updatexml sleep make_set benchmark extractvalue cast'
Orcal_words='exp power mod ceil floor sign aprt ascii chr instr length substr ltrim rtrim soundex initcap add_months mouths_between current_date to_char to_date to_blob to_clob to_number decode coalesce trunc next_day lpad rpad nlssort abs greatest vsize regexp_substr regexp_instr repeat'
# ------------------ words for other attacks
others='data text plain php input phpinfo proc self cmdline stat status fd fckeditor access_log access log error_log error stats_log license_log login_log mysql bin slow pure ftpd purftpd mainlog paniclog rejectlog mailog conf bin logs sbin base64_decode utility convert sysobject java lang wget curl redirect shal regexp master ping exec system exe'
add='shell_exec passthru pcntl_exec popen proc_open echo src cookie case'
all_words = Html_word+' '+Script_word+' '+Script_function+' '+Reserved_word + ' ' + function_time + ' ' + function_other + ' ' + Orcal_words+' '+others+' '+add
all_dicts = CreateDict(all_words)
# dict_out='./keywords.csv'
file=open(file_in,'r', errors='ignore')
for line in file:
line=line.strip()
line=line.split(' ')
for i in range(len(line)):
if line[i]!='' and line[i] in all_dicts:
all_dicts[line[i]] += 1
sorted_dicts = sorted(all_dicts.items(),key=lambda item:item[1],reverse = True)
all_num=len(sorted_dicts)
sorted_freq= [word[1] for word in sorted_dicts[0:all_num]]
num=0
for i in range(all_num):
if sorted_freq[i]==0:
num=i
break
print('key words number:', num-20)
# --------- save the dicts
# file2 = open(dict_out,'wt')
# for pairs in sorted_dicts:
# line=str(pairs)
# file2.writelines(line+'\n')
# --------------- extract xx words from the sorted dicts
small_dicts = [word[0] for word in sorted_dicts[0:num-20]] # delete the space
allkey_words=all_words.split(' ')
smallkey_words=" ".join(small_dicts)
file_save=open(file_keywords,'wt')
file_save.writelines(smallkey_words)
if '' in small_dicts:
print (1)
# print (small_dicts)
return small_dicts,allkey_words
def Replace_words_New(files_in,files_out,samllkey_words,allkey_words):
'''
Repalce words those are not in keywords and Punctuations below.
Arg:
files_in: the file of the data
files_out: the file to save those data replaced
'''
# words=Find_keywords()
Punctuations=['/','+','?','&',';','=',',','\'','\"','(',')','<','>','*','!','$','#','|','^','{','}','\\','--','%','~','@','.','`','[',']',':']
# key_words=Find_keywords('change')
# print (key_words)
all_keywords=Punctuations+allkey_words
file0=open(files_in,'r',errors='ignore')
file1=open(files_out,'wt')
for line in file0:
New_line=[]
line=line.strip()
line=line.split(' ')
for i in range(len(line)):
if line[i] =='':
continue
if line[i] in (Punctuations+samllkey_words):
New_line.append(line[i])
elif line[i] in all_keywords :
New_line.append('Sen_words')
else:
if line[i].isdigit():
New_line.append('Numbers')
elif is_Pure_strings(line[i]):
New_line.append('PureString')
else:
New_line.append('MixString')
# elif line[i] not in (samllkey_words+Punctuations) and line[i] !=' ' :
# print(1)
# if line[i].isdigit():
# line[i]='Sen_Numbers'
# if is_Pure_strings(line[i]):
# line[i]='Sen_PureString'
# else:
# line[i]='Sen_MixString'
newline=' '.join(New_line)
file1.writelines(newline+'\n')
# --------------
def Random_Num(index,number):
'''
Generate a list of index from index randomly
index : the index of files
number : the length of list generated
return : a list of index
'''
return random.sample(list(index),number)
def Disorder(file_in,file_out,total_num):
'''
disorder the data
Arg:
total_num: the number of the data
'''
index=[n for n in range(total_num)]
index_random=Random_Num(index,total_num)
# file0=open(file_in,'r')
file1=open(file_out,'wt',encoding='utf-8',errors='replace')
for i in range(total_num):
j=index_random[i]
line=linecache.getline(file_in,j+1)
file1.writelines(line)
# file_in='Extract-Source/Replace-normal.csv'
# file_out='Extract-Source/Replace-disorder-normal.csv'
# total_num=10375
# Disorder(file_in,file_out,total_num)
def Data_mix(file1_in,file2_in,total_number,normal_number,file_out,label_out):
'''
Mix two files (normal and anomalous) into one
------
Arg:
file1_in: the normal data (label: 0,1)
file2_in: the anomalous data (label: 1,0)
total_number: the total number of the two files
normal_number: the number of the normal data
file_out: the mixed data
label_out: the mixed label
'''
file0=open(file_out,'wt',encoding='utf-8',errors='replace')
file1=open(label_out,'wt',encoding='utf-8',errors='replace')
index=[n for n in range(total_number)]
index_randm=Random_Num(index,normal_number)
index_randm=sorted(index_randm)
index_randm.append(0)
print (len(index_randm))
j=0
k=0
for i in range(total_number):
if i==index_randm[j]:
line=linecache.getline(file1_in,j+1)
file0.writelines(line)
j=j+1
file1.writelines('0,1\n')
else:
# print(i)
line=linecache.getline(file2_in,k+1)
file0.writelines(line)
k=k+1
file1.writelines('1,0\n')
print('j:',j)
print('k:',k)
def Extract_Train_Test(file_in,label_in,file_train,labe_train,file_test,label_test,number):
'''
Extract train and test data from mixed data.
Arg:
file_in: the mixed data
label_in: the mixed labels
file_train: the train data
label_train: the train labels
file_test: the test data
label_test: the test labels
number: the number of train data
'''
file0=open(file_in,'r',encoding='utf-8',errors='replace')
label0=open(label_in,'r',encoding='utf-8',errors='replace')
file1=open(file_train,'wt',encoding='utf-8',errors='replace')
label1=open(labe_train,'wt',encoding='utf-8',errors='replace')
fiel2=open(file_test,'wt',encoding='utf-8',errors='replace')
label2=open(label_test,'wt',encoding='utf-8',errors='replace')
num_data=0
num_label=0
for line in file0:
if num_data< number:
file1.writelines(line)
else:
fiel2.writelines(line)
num_data+=1
for label in label0:
if num_label< number:
label1.writelines(label)
else:
label2.writelines(label)
num_label+=1
def Word_2vec_Save(files_in,models_out,min_count,size,iters):
'''
Word2vec Model : input sentences in which words are pulled together with ' '
The input sentence is a list in a [] --> [list,list2,list3,......] and save the model.
Arg:
files_in: the tokenized txt data
models_out: the path to save the model
min_count: the threshold of frequency, if a word's frequency is smaller than it, the word will be drop
size: the size of output vector of words
iters: the times for training
'''
txt_file=open(files_in,'r')
sentences=[]
for line in txt_file:
# print (line)
line=line.strip()
line=line.split(' ')
sentences.append(line)
# Train the networks
model=gensim.models.Word2Vec(sentences,min_count=min_count,size=size,iter=iters,window=7)
model.save(models_out)
def FastText_Save(files_in,models_out,min_count,size,iters):
'''
FastText Model : input sentences in which words are pulled together with ' '
The input sentence is a list in a [] --> [list,list2,list3,......] and save the model.
Arg:
files_in: the tokenized txt data
models_out: the path to save the model
min_count: the threshold of frequency, if a word's frequency is smaller than it, the word will be drop
size: the size of output vector of words
iters: the times for training
// vocabulary: vocab=(model.wv.vocab).keys()
'''
txt_file=open(files_in,'r')
sentence=[]
for line in txt_file:
line=line.strip()
line=line.split(' ')
sentence.append(line)
# Train the networks
model=FastText(sentence,min_count=min_count,size=size,iter=iters,window=5)
model.save(models_out)
def count_max_min(file_name,max_len=0,min_len=50):
files_in=open(file_name,'r')
for line in files_in :
line=line.split(' ')
length=len(line)
if length > max_len:
max_len=length
if length < min_len:
min_len=length
print('max: ',max_len,'min: ',min_len )
def count_stage(file_name,threshold):
num_lower=0
num_higher=0
files_in=open(file_name,'r')
for line in files_in :
line=line.split(' ')
length=len(line)
if length >=threshold:
num_higher+=1
else:
num_lower+=1
print('bigger: ',num_higher,'lower: ',num_lower )
def encode(model_file,type_model,source_file,files_out,thres_num=80,vec_length=48):
'''
Encoding the splitted data into a matrix with shape of 80*48 by word2vec algorithm
the num
Arg:
model_file: the path of the model of word2vec or FastText
source_file: the path of the data which is read to be encoded
files_out: the path to save the encoded data
type_model: 1——Word2vec others: FastText
'''
if type_model==1:
model=gensim.models.Word2Vec.load(model_file)
else:
model=FastText.load(model_file)
file_in=open(source_file,'r')
file_out=open(files_out,'wt')
zeros=np.zeros([vec_length])
for line in file_in:
# print(line)
line=line.strip()
data_senten=[]
line=line.split(' ')
if '' in line:
print (line)
length=len(line)
if length < thres_num:
for i in range(length):
data_senten=np.append(data_senten,model[line[i]])
for i in range (thres_num-length):
data_senten=np.append(data_senten,zeros)
if length >= thres_num:
for i in range (thres_num):
data_senten=np.append(data_senten,model[line[i]])
data_senten=np.reshape(data_senten,(-1,thres_num*vec_length))
# data_senten
# print(np.shape(data_senten))
np.savetxt(file_out,data_senten,delimiter=',',fmt='%f')
# this function is for three classes experiment.
def Data_mix_sqli_norm_xss(file1_in,file2_in,label1_in,label2_in,total_number,xss_number,file_out,label_out):
'''
Mix two files (xss and sql+normal ) into one
------
Arg:
file1_in: the xss data
file2_in: the sql+normal data
total_number: the total number of the two files
xss_number: the number of the xss data
file_out: the mixed data
label_out: the mixed label
'''
file0=open(file_out,'wt',errors='replace')
file1=open(label_out,'wt')
index=[n for n in range(total_number)]
index_randm=Random_Num(index,xss_number)
index_randm=sorted(index_randm)
index_randm.append(0)
print (len(index_randm))
j=0
k=0
for i in range(total_number):
if i==index_randm[j]:
line=linecache.getline(file1_in,j+1)
labels=linecache.getline(label1_in,j+1)
file0.writelines(line)
j=j+1
file1.writelines(labels)
else:
# print(i)
line=linecache.getline(file2_in,k+1)
labels=linecache.getline(label2_in,k+1)
file0.writelines(line)
k=k+1
file1.writelines(labels)
print('j:',j)
print('k:',k)
if __name__ == "__main__":
Root_folder='ALL-New-V2/'
# step 2 ------------------------ mix anomalous and normal data -----------------------
normal_data=Root_folder+'Unique-data/Normal3.csv'
anomalous_data=Root_folder+'Unique-data/Anomalous3.csv'
total_num=131909
normal_num=73663
mixed_out=Root_folder+'Train&Test/Mixed.csv'
label_out=Root_folder+'Train&Test/Label-mixed.csv'
Data_mix(normal_data,anomalous_data,total_num,normal_num,mixed_out,label_out)
# ---------------------------- end ------------------------
# step 5 --------------- divide mixed data into train and test data -----------------------
file_in=Root_folder+'Train&Test/Mixed.csv'
label_in=Root_folder+'Train&Test/Label-mixed.csv'
file_train=Root_folder+'Train&Test/data_train.csv'
label_train=Root_folder+'Train&Test/label_train.csv'
file_test=Root_folder+'Train&Test/data_test.csv'
label_test=Root_folder+'Train&Test/label_test.csv'
Extract_Train_Test(file_in,label_in,file_train,label_train,file_test,label_test,number=79146)
# ---------------------------- end ------------------------------
# step 6 ------------------ find key words -------------------
file_in=Root_folder+'Train&Test/data_train.csv'
file_keywords=Root_folder+'Replace-data/keyword.csv'
smallkey_words,allkeywords=Find_keywords_New(file_in,file_keywords)
# ------------------------- Replace words --------------------------------
file_in=Root_folder+'Train&Test/data_train.csv'
file_out=Root_folder+'Replace-data/Replace_train.csv'
Replace_words_New(file_in,file_out,smallkey_words,allkeywords)
file_in=Root_folder+'Train&Test/data_test.csv'
file_out=Root_folder+'Replace-data/Replace_test.csv'
Replace_words_New(file_in,file_out,smallkey_words,allkeywords)
# step 6 -------------- train the word2vec model (Only use train data)---------------------
file_in=Root_folder+'Replace-data/Replace_train.csv'
models_out=Root_folder+'Model-Word2vec/word2vec'
Word_2vec_Save(file_in,models_out,0,48,100)
# model=gensim.models.Word2Vec.load(models_out)
# print (model.most_similar('<'))
# ------------------------------------- end ------------------
# step 6 -------------- train the FastText model (Only use train data)---------------------
# file_in=Root_folder+'Replace-data/Replace_train.csv'
# models_out=Root_folder+'Model-Fast/fasttext'
# FastText_Save(file_in,models_out,0,48,100)
# ------------------------------------------
# model=FastText.load(models_out)
# print (model.most_similar('<'))
# step 7 -------------- count the length of every URL ------------------
# file_name='Extract-Source-New/Train&Test/data-mixed.csv'
# count_max_min(file_name)
# count_stage(file_name,80) #set vector as 80*48
# step 8 -------------- encoding --------------------------
# ----- train
file_name=Root_folder+'Replace-data/Replace_train.csv'
models=Root_folder+'Model-Word2vec/word2vec'
files_out=Root_folder+'Encode-data/encode_train.csv'
encode(models,1,file_name,files_out)
# ----- test
file_name=Root_folder+'Replace-data/Replace_test.csv'
models=Root_folder+'Model-Word2vec/word2vec'
files_out=Root_folder+'Encode-data/encode_test.csv'
encode(models,1,file_name,files_out)
# ------------------------ end ---------------------