-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
47 lines (36 loc) · 1.59 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from __future__ import print_function
import argparse
import os
import torch
import torchvision.transforms as transforms
from utils import is_image_file, load_img, save_img
# Testing settings
parser = argparse.ArgumentParser(description='pix2pix-pytorch-implementation')
parser.add_argument('--dataset', required=True, help='facades')
parser.add_argument('--direction', type=str, default='b2a', help='a2b or b2a')
parser.add_argument('--nepochs', type=int, default=200, help='saved model of which epochs')
parser.add_argument('--cuda', action='store_true', help='use cuda')
opt = parser.parse_args()
print(opt)
device = torch.device("cuda:0" if opt.cuda else "cpu")
model_path = "checkpoint/{}/netG_model_epoch_{}.pth".format(opt.dataset, opt.nepochs)
net_g = torch.load(model_path).to(device)
if opt.direction == "a2b":
image_dir = "dataset/{}/test/a/".format(opt.dataset)
else:
image_dir = "dataset/{}/test/b/".format(opt.dataset)
image_dir = 'test/'
image_filenames = [x for x in os.listdir(image_dir) if is_image_file(x)]
transform_list = [transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
transform = transforms.Compose(transform_list)
for image_name in image_filenames:
img = load_img(image_dir + image_name)
img = transform(img)
input = img.unsqueeze(0).to(device)
out = net_g(input)
out_img = out.detach().squeeze(0).cpu()
print(out_img.shape)
if not os.path.exists(os.path.join("result", opt.dataset)):
os.makedirs(os.path.join("result", opt.dataset))
save_img(out_img, "result/{}/{}".format(opt.dataset, image_name))