forked from colstone/SOFA_AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
385 lines (332 loc) · 11.1 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import pathlib
import click
import lightning as pl
import numpy as np
import pandas as pd
import textgrid
import torch
import modules.AP_detector
import modules.g2p
from train import LitForcedAlignmentTask
MIN_SP_LENGTH = 0.1
def add_SP(word_seq, word_intervals, wav_length):
word_seq_res = []
word_intervals_res = []
if len(word_seq) == 0:
word_seq_res.append("SP")
word_intervals_res.append([0, wav_length])
return word_seq_res, word_intervals_res
word_seq_res.append("SP")
word_intervals_res.append([0, word_intervals[0, 0]])
for word, (start, end) in zip(word_seq, word_intervals):
if word_intervals_res[-1][1] < start:
word_seq_res.append("SP")
word_intervals_res.append([word_intervals_res[-1][1], start])
word_seq_res.append(word)
word_intervals_res.append([start, end])
if word_intervals_res[-1][1] < wav_length:
word_seq_res.append("SP")
word_intervals_res.append([word_intervals_res[-1][1], wav_length])
if word_intervals[0, 0] <= 0:
word_seq_res = word_seq_res[1:]
word_intervals_res = word_intervals_res[1:]
return word_seq_res, word_intervals_res
def fill_small_gaps(word_seq, word_intervals):
for idx in range(len(word_seq) - 1):
if word_intervals[idx, 1] < word_intervals[idx + 1, 0]:
if word_intervals[idx + 1, 0] - word_intervals[idx, 1] < MIN_SP_LENGTH:
if word_seq[idx] == "AP":
word_intervals[idx, 1] = word_intervals[idx + 1, 0]
elif word_seq[idx + 1] == "AP":
word_intervals[idx + 1, 0] = word_intervals[idx, 1]
else:
mean = (word_intervals[idx, 1] + word_intervals[idx + 1, 0]) / 2
word_intervals[idx, 1] = mean
word_intervals[idx + 1, 0] = mean
return word_seq, word_intervals
def post_processing(predictions):
print("Post-processing...")
res = []
for (
wav_path,
wav_length,
confidence,
ph_seq,
ph_intervals,
word_seq,
word_intervals,
) in predictions:
try:
# fill small gaps
word_seq, word_intervals = fill_small_gaps(word_seq, word_intervals)
ph_seq, ph_intervals = fill_small_gaps(ph_seq, ph_intervals)
# add SP
word_seq, word_intervals = add_SP(word_seq, word_intervals, wav_length)
ph_seq, ph_intervals = add_SP(ph_seq, ph_intervals, wav_length)
res.append(
[
wav_path,
wav_length,
confidence,
ph_seq,
ph_intervals,
word_seq,
word_intervals,
]
)
except Exception as e:
e.args += (wav_path,)
raise e
return res
def save_textgrids(predictions):
print("Saving TextGrids...")
for (
wav_path,
wav_length,
confidence,
ph_seq,
ph_intervals,
word_seq,
word_intervals,
) in predictions:
tg = textgrid.TextGrid()
word_tier = textgrid.IntervalTier(name="words")
ph_tier = textgrid.IntervalTier(name="phones")
for word, (start, end) in zip(word_seq, word_intervals):
word_tier.add(start, end, word)
for ph, (start, end) in zip(ph_seq, ph_intervals):
ph_tier.add(minTime=float(start), maxTime=end, mark=ph)
tg.append(word_tier)
tg.append(ph_tier)
label_path = (
wav_path.parent / "TextGrid" / wav_path.with_suffix(".TextGrid").name
)
label_path.parent.mkdir(parents=True, exist_ok=True)
tg.write(label_path)
def save_htk(predictions):
print("Saving htk labels...")
for (
wav_path,
wav_length,
confidence,
ph_seq,
ph_intervals,
word_seq,
word_intervals,
) in predictions:
label = ""
for ph, (start, end) in zip(ph_seq, ph_intervals):
start_time = int(float(start) * 10000000)
end_time = int(float(end) * 10000000)
label += f"{start_time} {end_time} {ph}\n"
label_path = (
wav_path.parent / "htk" / "phones" / wav_path.with_suffix(".lab").name
)
label_path.parent.mkdir(parents=True, exist_ok=True)
with open(label_path, "w", encoding="utf-8") as f:
f.write(label)
f.close()
label = ""
for word, (start, end) in zip(word_seq, word_intervals):
start_time = int(float(start) * 10000000)
end_time = int(float(end) * 10000000)
label += f"{start_time} {end_time} {word}\n"
label_path = (
wav_path.parent / "htk" / "words" / wav_path.with_suffix(".lab").name
)
label_path.parent.mkdir(parents=True, exist_ok=True)
with open(label_path, "w", encoding="utf-8") as f:
f.write(label)
f.close()
def save_transcriptions(predictions):
print("Saving transcriptions.csv...")
folder_to_data = {}
for (
wav_path,
wav_length,
confidence,
ph_seq,
ph_intervals,
word_seq,
word_intervals,
) in predictions:
folder = wav_path.parent
if folder in folder_to_data:
curr_data = folder_to_data[folder]
else:
curr_data = {
"name": [],
"word_seq": [],
"word_dur": [],
"ph_seq": [],
"ph_dur": [],
}
name = wav_path.with_suffix("").name
word_seq = " ".join(word_seq)
ph_seq = " ".join(ph_seq)
word_dur = []
ph_dur = []
last_word_end = 0
for start, end in word_intervals:
dur = np.round(end - last_word_end, 5)
word_dur.append(dur)
last_word_end += dur
last_ph_end = 0
for start, end in ph_intervals:
dur = np.round(end - last_ph_end, 5)
ph_dur.append(dur)
last_ph_end += dur
word_dur = " ".join([str(i) for i in word_dur])
ph_dur = " ".join([str(i) for i in ph_dur])
curr_data["name"].append(name)
curr_data["word_seq"].append(word_seq)
curr_data["word_dur"].append(word_dur)
curr_data["ph_seq"].append(ph_seq)
curr_data["ph_dur"].append(ph_dur)
folder_to_data[folder] = curr_data
for folder, data in folder_to_data.items():
df = pd.DataFrame(data)
path = folder / "transcriptions"
if not path.exists():
path.mkdir(parents=True, exist_ok=True)
df.to_csv(path / "transcriptions.csv", index=False)
def save_confidence_fn(predictions):
print("saving confidence...")
folder_to_data = {}
for (
wav_path,
wav_length,
confidence,
ph_seq,
ph_intervals,
word_seq,
word_intervals,
) in predictions:
folder = wav_path.parent
if folder in folder_to_data:
curr_data = folder_to_data[folder]
else:
curr_data = {
"name": [],
"confidence": [],
}
name = wav_path.with_suffix("").name
curr_data["name"].append(name)
curr_data["confidence"].append(confidence)
folder_to_data[folder] = curr_data
for folder, data in folder_to_data.items():
df = pd.DataFrame(data)
path = folder / "confidence"
if not path.exists():
path.mkdir(parents=True, exist_ok=True)
df.to_csv(path / "confidence.csv", index=False)
@click.command()
@click.option(
"--ckpt",
"-c",
default=None,
required=True,
type=str,
help="path to the checkpoint",
)
@click.option(
"--folder", "-f", default="segments", type=str, help="path to the input folder"
)
@click.option(
"--mode", "-m", default="force", type=click.Choice(["force", "match"])
) # TODO: add asr mode
@click.option(
"--g2p", "-g", default="Dictionary", type=str, help="name of the g2p class"
)
@click.option(
"--ap_detector",
"-a",
default="LoudnessSpectralcentroidAPDetector", # "NoneAPDetector",
type=str,
help="name of the AP detector class",
)
@click.option(
"--in_format",
"-if",
default="lab",
required=False,
type=str,
help="File extension of input transcriptions. Default: lab",
)
@click.option(
"--out_formats",
"-of",
default="textgrid,htk,trans",
required=False,
type=str,
help="Types of output file, separated by comma. Supported types:"
"textgrid(praat),"
" htk(lab,nnsvs,sinsy),"
" transcriptions.csv(diffsinger,trans,transcription,transcriptions)",
)
@click.option(
"--save_confidence",
"-sc",
is_flag=True,
default=False,
show_default=True,
help="save confidence.csv",
)
@click.option(
"--dictionary",
"-d",
default="dictionary/opencpop-extension.txt",
type=str,
help="(only used when --g2p=='Dictionary') path to the dictionary",
)
def main(
ckpt,
folder,
mode,
g2p,
ap_detector,
in_format,
out_formats,
save_confidence,
**kwargs,
):
if not g2p.endswith("G2P"):
g2p += "G2P"
g2p_class = getattr(modules.g2p, g2p)
grapheme_to_phoneme = g2p_class(**kwargs)
out_formats = [i.strip().lower() for i in out_formats.split(",")]
if not ap_detector.endswith("APDetector"):
ap_detector += "APDetector"
AP_detector_class = getattr(modules.AP_detector, ap_detector)
get_AP = AP_detector_class(**kwargs)
grapheme_to_phoneme.set_in_format(in_format)
dataset = grapheme_to_phoneme.get_dataset(pathlib.Path(folder).rglob("*.wav"))
torch.set_grad_enabled(False)
model = LitForcedAlignmentTask.load_from_checkpoint(ckpt)
model.set_inference_mode(mode)
trainer = pl.Trainer(logger=False)
predictions = trainer.predict(model, dataloaders=dataset, return_predictions=True)
predictions = get_AP.process(predictions)
predictions = post_processing(predictions)
if "textgrid" in out_formats or "praat" in out_formats:
save_textgrids(predictions)
if (
"htk" in out_formats
or "lab" in out_formats
or "nnsvs" in out_formats
or "sinsy" in out_formats
):
save_htk(predictions)
if (
"trans" in out_formats
or "transcription" in out_formats
or "transcriptions" in out_formats
or "transcriptions.csv" in out_formats
or "diffsinger" in out_formats
):
save_transcriptions(predictions)
if save_confidence:
save_confidence_fn(predictions)
print("Output files are saved to the same folder as the input wav files.")
if __name__ == "__main__":
main()