forked from colstone/SOFA_AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinarize.py
405 lines (351 loc) · 15.3 KB
/
binarize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import pathlib
import warnings
import click
import h5py
import numpy as np
import pandas as pd
import torch
import yaml
from tqdm import tqdm
from modules.utils.get_melspec import MelSpecExtractor
from modules.utils.load_wav import load_wav
class ForcedAlignmentBinarizer:
def __init__(
self,
data_folder,
valid_set_size,
valid_set_preferred_folders,
data_augmentation,
ignored_phonemes,
melspec_config,
max_length,
):
self.data_folder = pathlib.Path(data_folder)
self.valid_set_size = valid_set_size
self.valid_set_preferred_folders = valid_set_preferred_folders
self.data_augmentation = data_augmentation
self.data_augmentation["key_shift_choices"] = np.array(
self.data_augmentation["key_shift_choices"]
)
self.ignored_phonemes = ignored_phonemes
self.melspec_config = melspec_config
self.scale_factor = melspec_config["scale_factor"]
self.max_length = max_length
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.sample_rate = self.melspec_config["sample_rate"]
self.frame_length = self.melspec_config["hop_length"] / self.sample_rate
self.get_melspec = MelSpecExtractor(**melspec_config, device=self.device)
@staticmethod
def get_vocab(data_folder_path, ignored_phonemes):
print("Generating vocab...")
phonemes = []
trans_path_list = data_folder_path.rglob("transcriptions.csv")
for trans_path in trans_path_list:
if trans_path.name == "transcriptions.csv":
df = pd.read_csv(trans_path)
ph = list(set(" ".join(df["ph_seq"]).split(" ")))
phonemes.extend(ph)
phonemes = set(phonemes)
for p in ignored_phonemes:
if p in phonemes:
phonemes.remove(p)
phonemes = sorted(phonemes)
phonemes = ["SP", *phonemes]
vocab = dict(zip(phonemes, range(len(phonemes))))
vocab.update(dict(zip(range(len(phonemes)), phonemes)))
vocab.update({i: 0 for i in ignored_phonemes})
vocab.update({"<vocab_size>": len(phonemes)})
print(f"vocab_size is {len(phonemes)}")
return vocab
def process(self):
vocab = self.get_vocab(self.data_folder, self.ignored_phonemes)
with open(self.data_folder / "binary" / "vocab.yaml", "w") as file:
yaml.dump(vocab, file)
# load metadata of each item
meta_data_df = self.get_meta_data(self.data_folder, vocab)
# split train and valid set
valid_set_size = int(self.valid_set_size)
meta_data_valid = (
meta_data_df[meta_data_df["label_type"] != "no_label"]
.sample(frac=1)
.sort_values(by="preferred", ascending=False)
.iloc[:valid_set_size, :]
)
meta_data_train = meta_data_df.drop(meta_data_valid.index).reset_index(
drop=True
)
meta_data_valid = meta_data_valid.reset_index(drop=True)
# binarize valid set
self.binarize(
"valid",
meta_data_valid,
vocab,
self.data_folder / "binary",
False,
)
# binarize train set
self.binarize(
"train",
meta_data_train,
vocab,
self.data_folder / "binary",
self.data_augmentation["size"] > 0,
)
def binarize(
self,
prefix: str,
meta_data: pd.DataFrame,
vocab: dict,
binary_data_folder: str,
enable_data_augmentation: bool,
):
print(f"Binarizing {prefix} set...")
h5py_file_path = pathlib.Path(binary_data_folder) / (prefix + ".h5py")
h5py_file = h5py.File(h5py_file_path, "w")
h5py_meta_data = h5py_file.create_group("meta_data")
items_meta_data = {"label_types": [], "wav_lengths": []}
h5py_items = h5py_file.create_group("items")
label_type_to_id = {"no_label": 0, "weak_label": 1, "full_label": 2}
idx = 0
total_time = 0.0
for _, item in tqdm(meta_data.iterrows(), total=meta_data.shape[0]):
try:
# input_feature: [data_augmentation.size+1,input_dim,T]
waveform = load_wav(item.wav_path, self.device, self.sample_rate)
input_feature = self.get_melspec(waveform)
wav_length = len(waveform) / self.sample_rate
T = input_feature.shape[-1] * self.scale_factor
if wav_length > self.max_length:
print(
f"Item {item.wav_path} has a length of {wav_length}s, which is too long, skip it."
)
continue
else:
h5py_item_data = h5py_items.create_group(str(idx))
items_meta_data["wav_lengths"].append(wav_length)
idx += 1
total_time += wav_length
if enable_data_augmentation:
input_features = [input_feature]
key_shifts = np.random.choice(
self.data_augmentation["key_shift_choices"],
self.data_augmentation["size"],
replace=False,
)
for key_shift in key_shifts:
input_features.append(
self.get_melspec(waveform, key_shift=key_shift)
)
input_feature = torch.stack(input_features, dim=0)
else:
input_feature = input_feature.unsqueeze(0)
input_feature = (
input_feature - input_feature.mean(dim=[1, 2], keepdim=True)
) / input_feature.std(dim=[1, 2], keepdim=True)
h5py_item_data["input_feature"] = (
input_feature.cpu().numpy().astype("float32")
)
# label_type: []
label_type_id = label_type_to_id[item.label_type]
if label_type_id == 2:
if len(item.ph_dur) != len(item.ph_seq):
label_type_id = 1
if len(item.ph_seq) == 0:
label_type_id = 0
h5py_item_data["label_type"] = label_type_id
items_meta_data["label_types"].append(label_type_id)
if label_type_id == 0:
# ph_seq: [S]
ph_seq = np.array([]).astype("int32")
# ph_edge: [scale_factor * T]
ph_edge = np.zeros([T], dtype="float32")
# ph_frame: [scale_factor * T]
ph_frame = np.zeros(T, dtype="int32")
# ph_mask: [vocab_size]
ph_mask = np.ones(vocab["<vocab_size>"], dtype="int32")
elif label_type_id == 1:
# ph_seq: [S]
ph_seq = np.array(item.ph_seq).astype("int32")
ph_seq = ph_seq[ph_seq != 0]
# ph_edge: [scale_factor * T]
ph_edge = np.zeros([T], dtype="float32")
# ph_frame: [scale_factor * T]
ph_frame = np.zeros(T, dtype="int32")
# ph_mask: [vocab_size]
ph_mask = np.zeros(vocab["<vocab_size>"], dtype="int32")
ph_mask[ph_seq] = 1
ph_mask[0] = 1
elif label_type_id == 2:
# ph_seq: [S]
ph_seq = np.array(item.ph_seq).astype("int32")
not_sp_idx = ph_seq != 0
ph_seq = ph_seq[not_sp_idx]
# ph_edge: [scale_factor * T]
ph_dur = np.array(item.ph_dur).astype("float32")
ph_time = np.array(np.concatenate(([0], ph_dur))).cumsum() / (
self.frame_length / self.scale_factor
)
ph_interval = np.stack((ph_time[:-1], ph_time[1:]))
ph_interval = ph_interval[:, not_sp_idx]
ph_seq = ph_seq
ph_time = np.unique(ph_interval.flatten())
if ph_time[-1] >= T:
ph_time = ph_time[:-1]
ph_edge = np.zeros([T], dtype="float32")
if len(ph_seq) > 0:
if ph_time[-1] + 0.5 > T:
ph_time = ph_time[:-1]
if ph_time[0] - 0.5 < 0:
ph_time = ph_time[1:]
ph_time_int = np.round(ph_time).astype("int32")
ph_time_fractional = ph_time - ph_time_int
ph_edge[ph_time_int] = 0.5 + ph_time_fractional
ph_edge[ph_time_int - 1] = 0.5 - ph_time_fractional
ph_edge = ph_edge * 0.8 + 0.1
# ph_frame: [scale_factor * T]
ph_frame = np.zeros(T, dtype="int32")
if len(ph_seq) > 0:
for ph_id, st, ed in zip(
ph_seq, ph_interval[0], ph_interval[1]
):
if st < 0:
st = 0
if ed > T:
ed = T
ph_frame[int(np.round(st)) : int(np.round(ed))] = ph_id
# ph_mask: [vocab_size]
ph_mask = np.zeros(vocab["<vocab_size>"], dtype="int32")
if len(ph_seq) > 0:
ph_mask[ph_seq] = 1
ph_mask[0] = 1
else:
raise ValueError("Unknown label type.")
h5py_item_data["ph_seq"] = ph_seq.astype("int32")
h5py_item_data["ph_edge"] = ph_edge.astype("float32")
h5py_item_data["ph_frame"] = ph_frame.astype("int32")
h5py_item_data["ph_mask"] = ph_mask.astype("int32")
# print(
# h5py_item_data["input_feature"].shape,
# np.array(h5py_item_data["label_type"]),
# h5py_item_data["ph_seq"].shape,
# h5py_item_data["ph_edge"].shape,
# h5py_item_data["ph_frame"].shape,
# h5py_item_data["ph_mask"].shape,
# )
# print(
# h5py_item_data["input_feature"].shape[-1] * 4,
# h5py_item_data["ph_edge"].shape[0],
# h5py_item_data["ph_frame"].shape[0],
# )
# assert (
# h5py_item_data["input_feature"].shape[-1] * 4
# == h5py_item_data["ph_edge"].shape[0]
# )
# assert (
# h5py_item_data["input_feature"].shape[-1] * 4
# == h5py_item_data["ph_frame"].shape[0]
# )
except Exception as e:
e.args += (item.wav_path,)
print(e)
continue
for k, v in items_meta_data.items():
h5py_meta_data[k] = np.array(v)
h5py_file.close()
full_label_ratio = items_meta_data["label_types"].count(2) / len(
items_meta_data["label_types"]
)
weak_label_ratio = items_meta_data["label_types"].count(1) / len(
items_meta_data["label_types"]
)
no_label_ratio = items_meta_data["label_types"].count(0) / len(
items_meta_data["label_types"]
)
print(
"Data compression ratio: \n"
f" full label data: {100 * full_label_ratio:.2f} %,\n"
f" weak label data: {100 * weak_label_ratio:.2f} %,\n"
f" no label data: {100 * no_label_ratio:.2f} %."
)
print(
f"Successfully binarized {prefix} set, "
f"total time {total_time:.2f}s, saved to {h5py_file_path}"
)
def get_meta_data(self, data_folder, vocab):
path = data_folder
trans_path_list = [
i
for i in path.rglob("transcriptions.csv")
if i.name == "transcriptions.csv"
]
if len(trans_path_list) <= 0:
warnings.warn(f"No transcriptions.csv found in {data_folder}.")
print("Loading metadata...")
meta_data_df = pd.DataFrame()
for trans_path in tqdm(trans_path_list):
df = pd.read_csv(trans_path, dtype=str)
df["wav_path"] = df["name"].apply(
lambda name: str(trans_path.parent / "wavs" / (str(name) + ".wav")),
)
df["preferred"] = df["wav_path"].apply(
lambda path_: (
True
if any(
[
i in pathlib.Path(path_).parts
for i in self.valid_set_preferred_folders
]
)
else False
),
)
df["label_type"] = df["wav_path"].apply(
lambda path_: (
"full_label"
if "full_label" in path_
else "weak_label" if "weak_label" in path_ else "no_label"
),
)
if len(meta_data_df) >= 1:
meta_data_df = pd.concat([meta_data_df, df])
else:
meta_data_df = df
no_label_df = pd.DataFrame(
{"wav_path": [i for i in (path / "no_label").rglob("*.wav")]}
)
meta_data_df = pd.concat([meta_data_df, no_label_df])
meta_data_df["label_type"].fillna("no_label", inplace=True)
meta_data_df.reset_index(drop=True, inplace=True)
meta_data_df["ph_seq"] = meta_data_df["ph_seq"].apply(
lambda x: ([vocab[i] for i in x.split(" ")] if isinstance(x, str) else [])
)
if "ph_dur" in meta_data_df.columns:
meta_data_df["ph_dur"] = meta_data_df["ph_dur"].apply(
lambda x: (
[float(i) for i in x.split(" ")] if isinstance(x, str) else []
)
)
meta_data_df = meta_data_df.sort_values(by="label_type").reset_index(drop=True)
return meta_data_df
@click.command()
@click.option(
"--config_path",
"-c",
type=str,
default="configs/binarize_config.yaml",
show_default=True,
help="binarize config path",
)
def binarize(config_path: str):
with open(config_path, "r") as f:
config = yaml.safe_load(f)
global_config = {
"max_length": config["max_length"],
"melspec_config": config["melspec_config"],
"data_augmentation_size": config["data_augmentation"]["size"],
}
with open(pathlib.Path("data/binary/") / "global_config.yaml", "w") as file:
yaml.dump(global_config, file)
ForcedAlignmentBinarizer(**config).process()
if __name__ == "__main__":
binarize()