-
Notifications
You must be signed in to change notification settings - Fork 5
/
keylink_core.py
425 lines (335 loc) · 20.6 KB
/
keylink_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
'''
Created on 27.07.2016 last write 11/11/2021
@author: a.schnepf - G Deckmyn - G Cauwenberg - O Flores
'''
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
import keylink_functions as mf
import random
import matplotlib
import math
import string
def import_pools(filename):
"""Load array from text file"""
return np.loadtxt(filename + '.txt')
def export_pools(filename, array):
"""Save an array in a readable format, compatible with R"""
np.savetxt(filename + '.txt', array)
NrGroups=8
CompetingSpecies=True
pfaec = np.zeros(NrGroups-1)
PVstruct=np.zeros(5)
drainage = 0
runoff = 0
mineralisation=0
B = import_pools('KL_initC_Pools') #initial biomass in each C pool
(GMAXtemp, KS, DEATH, RESP, FAEC, CN, REC, MCN,
MREC, T_MIN, T_OPT, T_MAX, Q10) = import_pools('KL_FaunalParams') #parameters for each functional group, beware GMAX is
#in this version overwritten when calling (depending on the runmode)
iniSOM=B[NrGroups] #initial SOM in g C/m3
B.resize(14+NrGroups,refcheck=False)
(TEMP, SUNH) = import_pools('KL_climateParams') #monthly climate data
d, BD, alpha, n, m, Ksat, pH, litterCN, SOMCN, drainmax, PVstruct[0], PVstruct[1], PVstruct[2], PVstruct[3], PVstruct[4] = import_pools('KL_initSoil') #soil parameters
ratioPVBeng, fPVB, tPVB, PVBmax, frag, pfaec[5], pfaec[6], bioturbRate, moveRate= import_pools('KL_engineerParams') #parameters for engineer activity
# Parameters CNlit=of daily litter, litterCN=total litter pool
tStop, initWater, Nmin, rrg, rootTO, inputLit, CNlit, recLit, CtoMyc, NmyctoPlant, ee = import_pools('KL_runparams')
PW = initWater/100*PVstruct #fraction of pore volume filled with water
Nfauna=sum(B[:NrGroups+1]/CN) #N in food web functional groups
Ntot=Nfauna+Nmin+B[NrGroups]/SOMCN+B[NrGroups+1]/litterCN #initial total N of the system
Nminini=Nmin
Ntotini=Ntot
litterCNini=litterCN
SOMCNini=SOMCN
Bini = B
PWini = PW
PVt = np.zeros(int(tStop))
PWt = np.zeros(int(tStop))
psoln = np.zeros((int(tStop), NrGroups+14))
avail = np.zeros(NrGroups+3)
modt = np.zeros(NrGroups+1)
rRESP = np.zeros(NrGroups+1)
HI=0 #heat index (is calculated with the daily mean temperature of all months)
for m in range(12):
HI = HI + (TEMP[m]/5)**1.514
alfa = 0.000000675*(HI**3) - 0.0000771*(HI**2) + 0.01792*HI + 0.49239 #alpha for Thornthwaite equation
gr = np.array([4000,2000,500,50,0.1]) #graph ranges, for five biomass graphs with ranges from 0 to these values
#graph labels for the populations and C pools
popname = np.array(['Bacteria','Fungi','Mycorrhiza','bacterivores','fungivores','saprotrophs','engineers','herbivores','predators','litter','SOM','roots','CO2'])
#graph colours for the populations and C pools
popcolour = np.array(['blue','red','darkcyan','cyan','orange','purple','darkgreen','magenta','black','brown','grey','chartreuse','yellow'])
t = np.arange(0., tStop)
# function to be integrated daily solving the carbon pools 'B' ifo time
def fEight(B, t, avail, modt, GMAX, litterCN,SOMCN):
(availSOMbact, availSOMfungi, availSOMeng, availSOMsap, availbbvores,
availffvores, availfvorespred, availbvorespred, availhvorespred,
availsappred, availengpred ,SOMunavail) = avail
# Default '10 groups': 0=bact, 1=fungi, 2=myc, 3=bvores, 4=fvores, 5=sap,
# 6=eng, 7=hvores, 8=pred, 9=litter, 10=SOM, 11=roots, 12=CO2
B[13:22]=0 #uesed for aditional output, but if not set to 0 is cummulative (change DB/dt is calculated)
# update GMAX for bacteria, fung and myc GMAX is modified for SOM
# and litter seperately depending on CN (and possibly recalcitrance)
#for bact if CN source too high they can't grow
gmaxblit = mf.calcgmaxmod(CN[0], litterCN, MCN[0], recLit, MREC[0], pH, 1)*GMAX[0] #gmax for bact on litter
gmaxbSOM = mf.calcgmaxmod(CN[0], SOMCN, MCN[0], 0.0, MREC[0], pH, 1)*GMAX[0] #gmax for bact on SOM
gmaxflit = mf.calcgmaxmod(CN[1], litterCN, MCN[1], recLit, MREC[1], pH, 2)* GMAX[1] #gmax for fung on litter
gmaxfSOM = mf.calcgmaxmod(CN[1], SOMCN, MCN[1], 0.0, MREC[1], pH, 2)* GMAX[1] #gmax for fung on SOM
gmaxEng = min(mf.calcgmaxEng(GMAX[6],pH),GMAX[6]) #gmax for engineers
#update faeces for SAP and engineers
faeclitEng = min(1,mf.calcFaec(gmaxEng, FAEC[6], pfaec[6], litterCN, CN[6], rRESP[6]))
faeclitSAP = min(1,mf.calcFaec(GMAX[5], FAEC[5], pfaec[5], litterCN, CN[5], rRESP[5]))
#growth equations (dB/dt) for each functional group and for variations in C pools
bact = (modt[0]*(mf.calcgrowth(B[0], B[10]-SOMunavail, availSOMbact, gmaxbSOM, KS[0])
+ mf.calcgrowth(B[0], B[9], availSOMbact, gmaxblit, KS[0]))
- DEATH[0]*B[0] - rRESP[0]*B[0]
- modt[3]*mf.calcgrowth(B[3], B[0], availbbvores, GMAX[3], KS[3]))
fungi = (modt[1]*(mf.calcgrowth(B[1], B[10]-SOMunavail, availSOMfungi, gmaxfSOM, KS[1])
+ mf.calcgrowth(B[1], B[9], availSOMbact, gmaxflit, KS[1]))
- DEATH[1]*B[1] - rRESP[1]*B[1]
- modt[4]*mf.calcgrowth(B[4], B[1], availffvores, GMAX[4], KS[4]))
myc = (mf.inputCtoMyc(CtoMyc)
+ modt[2]*(mf.calcgrowth(B[2], B[9], availSOMbact, gmaxflit, KS[2])
+ mf.calcgrowth(B[2], B[10]-SOMunavail, availSOMfungi, gmaxfSOM, KS[2]))
- DEATH[2]*B[2] - rRESP[2]*B[2]
- modt[4]*mf.calcgrowth(B[4], B[2], availffvores, GMAX[4], KS[4]))
# myc (being a fungi) has the same availability and gmax than fungi
bvores = (modt[3]*mf.calcgrowth(B[3], B[0], availbbvores, GMAX[3], KS[3])
- modt[8]*(1+FAEC[8])*mf.calcgrowth(B[8], B[3], availbvorespred, GMAX[8], KS[8])
- DEATH[3]*B[3] - rRESP[3]*B[3])
fvores = (modt[4]*(mf.calcgrowth(B[4], B[1], availffvores, GMAX[4], KS[4])
+ mf.calcgrowth(B[4], B[2], availffvores, GMAX[4], KS[4]))
- modt[8]*(1+FAEC[8])*mf.calcgrowth(B[8], B[4], availfvorespred, GMAX[8], KS[8])
- DEATH[4]*B[4] - rRESP[4]*B[4])
sap = (modt[5]*(mf.calcgrowth(B[5], B[9],availSOMbact, GMAX[5], KS[5])
+ mf.calcgrowth(B[5], B[10]-SOMunavail, availSOMsap, GMAX[5], KS[5]))
-modt[8]*(1+FAEC[8])*mf.calcgrowth(B[8], B[5], availsappred, GMAX[8], KS[8])
- DEATH[5]*B[5] - rRESP[5]*B[5])
eng = (modt[6]*(mf.calcgrowth(B[6], B[9], availSOMbact, gmaxEng, KS[6])
+ mf.calcgrowth(B[6], B[10]-SOMunavail, availSOMeng, gmaxEng, KS[6]))
- modt[8]*(1+FAEC[8])*mf.calcgrowth(B[8], B[6], availengpred, GMAX[8], KS[8])
- DEATH[6]*B[6] - rRESP[6]*B[6])
#roots are avaialble because larger than herbivores
hvores = (modt[7]*mf.calcgrowth(B[7], B[11], 1, GMAX[7], KS[7])
- modt[8]*(1+FAEC[8])*mf.calcgrowth(B[8], B[7], availhvorespred, GMAX[8], KS[8])
- DEATH[7]*B[7] - rRESP[7]*B[7])
pred = (modt[8]*(mf.calcgrowth(B[8], B[3], availbvorespred, GMAX[8], KS[8])
+ mf.calcgrowth(B[8], B[4], availfvorespred, GMAX[8], KS[8])
+ mf.calcgrowth(B[8], B[5], availsappred, GMAX[8], KS[8])
+ mf.calcgrowth(B[8], B[6], availengpred, GMAX[8], KS[8])
+ mf.calcgrowth(B[8], B[7], availhvorespred, GMAX[8], KS[8]))
- DEATH[8]*B[8] - rRESP[8]*B[8])
litter = (
-modt[0]*mf.calcgrowth(B[0], B[9], availSOMbact, gmaxblit, KS[0]) #eaten by bact
-modt[1]*mf.calcgrowth(B[1], B[9], availSOMbact, gmaxflit, KS[1]) #eaten by fungi
-modt[2]*mf.calcgrowth(B[2], B[9], availSOMbact, gmaxflit, KS[2]) #eaten by myc
-modt[5]*(1+faeclitSAP)*mf.calcgrowth(B[5], B[9], availSOMbact, GMAX[5], KS[5]) #eaten by SAP
-modt[6]*(1+faeclitEng)*mf.calcgrowth(B[6], B[9], availSOMbact, gmaxEng, KS[6]) # eaten by engineers
+ DEATH[5]*B[5] + DEATH[6]*B[6]+ DEATH[7]*B[7] + DEATH[8]*B[8])
som = (mf.exudation()
- modt[0]*mf.calcgrowth(B[0], B[10]-SOMunavail, availSOMbact, gmaxbSOM, KS[0])
- modt[1]*mf.calcgrowth(B[1], B[10]-SOMunavail, availSOMfungi, gmaxfSOM, KS[1])
- modt[2]*mf.calcgrowth(B[2], B[10]-SOMunavail, availSOMfungi, gmaxfSOM, KS[2])
- modt[5]*mf.calcgrowth(B[5], B[10]-SOMunavail, availSOMsap, GMAX[5], KS[5]) #eaten by SAP
- modt[6]*mf.calcgrowth(B[6], B[10]-SOMunavail, availSOMeng, gmaxEng, KS[6]) # eaten by engineers
+ modt[8]*FAEC[8] * (mf.calcgrowth(B[8], B[3], availbvorespred, GMAX[8], KS[8])
+ mf.calcgrowth(B[8], B[4], availfvorespred, GMAX[8], KS[8])
+ mf.calcgrowth(B[8], B[5], availsappred, GMAX[8], KS[8])
+ mf.calcgrowth(B[8], B[6], availengpred, GMAX[8], KS[8])
+ mf.calcgrowth(B[8], B[7], availhvorespred, GMAX[8], KS[8]))
+ modt[5]*faeclitSAP*mf.calcgrowth(B[5], B[9], availSOMbact, GMAX[5], KS[5])
+ modt[6]*faeclitEng*mf.calcgrowth(B[6], B[9], availSOMbact, gmaxEng, KS[6])
+ modt[7]*FAEC[7]*mf.calcgrowth(B[7], B[11], 1, GMAX[7], KS[7])
+ DEATH[0]*B[0]+DEATH[1]*B[1]+DEATH[2]*B[2]+DEATH[3]*B[3]+DEATH[4]*B[4])
roots = (- modt[7]*(1+FAEC[7])*mf.calcgrowth(B[7], B[11], 1, GMAX[7], KS[7]))
co2 = (rRESP[0]*B[0]+rRESP[1]*B[1]+rRESP[2]*B[2]+rRESP[3]*B[3] #CO2 emissions from respiration
+rRESP[4]*B[4]+rRESP[5]*B[5]+rRESP[6]*B[6]+rRESP[7]*B[7]+rRESP[8]*B[8])
bactResp=rRESP[0]*B[0] #respiration of bacteria
funResp=rRESP[1]*B[1] #respiration of fungi
EMresp=rRESP[2]*B[2] #respiration of mycorrhizal fungi
bactGrowthSOM=modt[0]*mf.calcgrowth(B[0], B[10]-SOMunavail, availSOMbact, gmaxbSOM, KS[0]) #growth of bact from eaten SOM
bactGrowthLit=modt[0]*mf.calcgrowth(B[0], B[9], availSOMbact, gmaxblit, KS[0]) #growth of bact from eaten litter
SOMeaten=modt[0]*mf.calcgrowth(B[0], B[10]-SOMunavail, availSOMbact, gmaxbSOM, KS[0]) #SOM eaten by bact
+ modt[1]*mf.calcgrowth(B[1], B[10]-SOMunavail, availSOMfungi, gmaxfSOM, KS[1]) #eaten by fungi
+ modt[2]*mf.calcgrowth(B[2], B[10]-SOMunavail, availSOMfungi, gmaxfSOM, KS[2]) #eaten by myc
+ modt[5]*mf.calcgrowth(B[5], B[10]-SOMunavail, availSOMsap, GMAX[5], KS[5]) #eaten by SAP
+ modt[6]*mf.calcgrowth(B[6], B[10]-SOMunavail, availSOMeng, gmaxEng, KS[6]) # eaten by engineers
LITeaten=modt[0]*mf.calcgrowth(B[0], B[9], availSOMbact, gmaxblit, KS[0]) #Litter eaten by bact
+modt[1]*mf.calcgrowth(B[1], B[9], availSOMbact, gmaxflit, KS[1]) #eaten by fungi
+modt[2]*mf.calcgrowth(B[2], B[9], availSOMbact, gmaxflit, KS[2]) #eaten by myc
+modt[5]*(1+faeclitSAP)*mf.calcgrowth(B[5], B[9], availSOMbact, GMAX[5], KS[5]) #eaten by SAP
+modt[6]*(1+faeclitEng)*mf.calcgrowth(B[6], B[9], availSOMbact, gmaxEng, KS[6]) # eaten by engineers
LITeatenEng=modt[6]*(1+faeclitEng)*mf.calcgrowth(B[6], B[9], availSOMbact, gmaxEng, KS[6]) #only litter eaten by enginners
return [bact, fungi, myc, bvores, fvores, sap,
eng, hvores, pred, litter, som, roots, co2,
bactResp,funResp,EMresp,bactGrowthSOM,bactGrowthLit, SOMeaten, LITeaten, LITeatenEng,0]
def KeylinkModel(Val):
climatefile=open('PrecipKMIBrass.txt')
titls=climatefile.readline() # first line are titles
std=0 #we are using here dates from climate input file, so there is no need in create a starting date
pv=PVstruct #initialise to structural
GMAX=Val
Nmin=Nminini
Ntot=Ntotini
litterCN=litterCNini
SOMCN=SOMCNini
B = Bini
PW = PWini
pores= np.zeros([int(tStop),5], 'd') #matrix for the daily pore volumes of each size class
# this is the actual core model routine over time steps i
for i in range(int(std), int(std+tStop)):
# calculate PSD (array of % of five size classes of pores) and aggregation
ag = mf.calcAg(B[1], B[2], B[10]) #calculates aggregation fraction
pv = mf.calcPVD(PVstruct, pv, ag, ratioPVBeng, fPVB, tPVB, PVBmax, d, B)
pvd = pv*100/sum(pv)
pores[i,:]=pv
nd = np.array([31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]) # number of days in each month
zip=climatefile.readline().split() #daily meteorological data
year=int(zip[1])
month=(int(zip[2])-1)
ly=0 #it will became 1 in leap-years
if (year%4)==0:
ly=1
if (year%100)==0:
ly=0
if (year%400)==0:
ly=1
if ly==1: #in leap-years, this changes the number of days of february to 29
nd[1]=nd[1]+1
precip=float(zip[4])
temp=float(zip[5])
for j in range (NrGroups+1):
modt[j] = mf.calcmodt(temp, T_OPT[j], T_MIN[j], T_MAX[j])
rRESP[j]=mf.calcresp(temp, T_OPT[j], RESP[j], Q10[j])
#calculate the Potential Evapotranspiration (pet)
pet = mf.PET(temp, nd[month], SUNH[month], HI, alfa)
# water calculations
# (pvd (pore volume density = array of % filled of each porse size class)
SatW = sum(pv[0:4])/(d-(pv[4])/sum(pv[0:5])) #saturated water content (excluding macropores)
PW, drainage, runoff = mf.calcPW(pv, precip, PW, drainmax,d, (pv[0]/d), SatW, alpha, n, m, Ksat)
PWt[i-std] = sum(PW) #soil water content in the current day
PVt[i-std] = sum(pv) #total soil porosity in the current day
#calculate availability of each pool to each relevant biota
avail = mf.calcAvail(pv, PW, iniSOM)
#update litter CN
litterCN=(B[9]+mf.inputLitter(inputLit, CNlit)[0]+mf.rootTurnover(B[11],rootTO))/(B[9]/litterCN+(mf.inputLitter(inputLit, CNlit)[0]+mf.rootTurnover(B[11],rootTO))/CNlit)
#add litter (plant and root) and update total soil N
B[9]=B[9]+mf.inputLitter(inputLit, CNlit)[0]+mf.rootTurnover(B[11],rootTO)
Ntot=Ntot+(mf.inputLitter(inputLit, CNlit)[0]+mf.rootTurnover(B[11],rootTO))/CNlit
#root growth
B[11]=B[11]+mf.rootgrowth(rrg)-mf.rootTurnover(B[11],rootTO)
#interaction between mycorrhizal fungi and plants
B[2]=B[2]+mf.inputCtoMyc(CtoMyc)
#update soil C and N in soil
CNsoil=(B[9]+B[10])/(B[9]/litterCN+B[10]/SOMCN)
Ntot=Ntot-mf.mycNtoPlant(NmyctoPlant, CtoMyc, litterCN, CtoMyc, CNsoil)
if mf.mycNtoPlant(NmyctoPlant, CtoMyc, litterCN, CtoMyc, CNsoil)<Nmin: #mycorrhisae take up mineral N first
Nmin=Nmin-mf.mycNtoPlant(NmyctoPlant, CtoMyc, litterCN, CtoMyc, CNsoil)
else:
Nmin=0 #it will need to come from SOM in this case
#plant N uptake
Ntot=Ntot-min(mf.plantNuptake(litterCN, inputLit, NmyctoPlant), Nmin)
Nmin=Nmin-min(mf.plantNuptake(litterCN, inputLit, NmyctoPlant), Nmin)
# Call the ODE solver for day i
if CompetingSpecies==True:
day = odeint(mf.fCompSpecies, B, [i, i+1], args=(avail, modt, GMAX, litterCN,SOMCN, mf, CN, MCN, MREC, pH, recLit, FAEC, pfaec, rRESP,
KS, DEATH, CtoMyc))
else:
day = odeint(fEight, B, [i, i+1], args=(avail, modt, GMAX, litterCN, SOMCN))
# Second column is end value for day i, start value for day i + 1
psoln[i-std] = day[1, :]
B = day[1, :]
et = ee*pet #evapotranspiration (rate of effective evapotranspiration * potential evapotranspiration)
PW = mf.wl(PW,et) # water lost by evapotranspiration: we do this at the end of the day (otherwise soil is always dry)
# close N for bact: (bactgrowthsom/CNsom, bactgrowthlit/CNlit = 'gain' goes into min if not needed to grow
mineralisation=(B[16]/litterCN+B[17]/SOMCN-(B[16]+B[17]-B[13])/CN[0]) # adding bact resp - growth /CN for lit and SOM
Nmin=Nmin+mineralisation
if Nmin<0: #Bact use more N then they 'eat' this needs to come from somewhere so from SOM (but needs to be corrected)
Nneg=Nmin
Nmin=0
else:
Nneg=0
Nfauna=sum(B[0:9]/CN)
NSOM=Ntot-Nfauna-Nmin+Nneg
if NSOM<0: #Bact use more N then they 'eat' this needs to come from somewhere so from SOM (but needs to be corrected)
NSOM=-NSOM
print('error NSOM<0')
SOMCN=B[10]/NSOM
#move SOM by engineers
SOMdown=mf.calcBioturb(B[6], bioturbRate, B[10])
B[10]=B[10]-SOMdown
Ntot=Ntot-SOMdown/SOMCN
#move litter by engineers
Litdown=mf.calcLittermove(B[6], moveRate, B[9])
B[9]=B[9]-Litdown
Ntot=Ntot-Litdown/litterCN
#fragmentation
B[9]=B[9]-frag*psoln[i,21]
B[10]=B[10]+frag*psoln[i,21] #LITeatenEng
for s in range (0, 11):
if B[s]<=0: #security codes to avoid errors by negative biomasses
B[s]=0.001
climatefile.close
return (psoln, PWt, PVt, pores) #save the Cpools, water and porevolumes's on all days days
'''
Plot population size as a function of time
'''
def show_plot(soln, pwt, pvt):
plt.clf()
plt.subplot(2, 1, 1)
plt.plot(t, pwt, label="SW")
plt.plot(t, pvt, label="porosity")
plt.ylabel('Water, l/m2')
plt.ylim(0,400)
plt.legend(loc=(1.01, 0), shadow=True) #loc='upper right',
plt.subplot(2, 1, 2)
for p in range(13): # it only shows populations with max biomass value higher than gr[1]
if max(soln[:,p])>gr[1]:
plt.plot(t, soln[:, p], label=popname[p], c=popcolour[p])
plt.xlabel('Time,days')
plt.ylabel('Biomass, gC/m3')
plt.ylim(0, gr[0])
plt.legend(loc=(1.01, 0), shadow=True)
plt.show()
plt.clf()
plt.subplot(2, 1, 1)
for p in range(13): # shows populations with maximum or mean biomass values between gr[1] and gr[2]
maxvalue=(max(soln[:,p]))
meanvalue=((sum(soln[:,p]))/tStop)
if ((maxvalue>gr[2]) and (maxvalue<gr[1])) or (meanvalue>gr[2] and meanvalue<gr[1]):
plt.plot(t, soln[:, p], label=popname[p], c=popcolour[p])
plt.ylabel('Biomass, gC/m3')
plt.ylim(0, gr[1])
plt.legend(loc=(1.01, 0), shadow=True)
plt.subplot(2, 1, 2)
for p in range(13): # shows populations with maximum or mean biomass values between gr[2] and gr[3]
maxvalue=(max(soln[:,p]))
meanvalue=((sum(soln[:,p]))/tStop)
if ((maxvalue>gr[3]) and (maxvalue<gr[2])) or (meanvalue>gr[3] and meanvalue<gr[2]):
plt.plot(t, soln[:, p], label=popname[p], c=popcolour[p])
plt.xlabel('Time,days')
plt.ylabel('Biomass, gC/m3')
plt.ylim(0, gr[2])
plt.legend(loc=(1.01, 0), shadow=True)
plt.show()
plt.clf()
plt.subplot(2, 1, 1)
for p in range(13): # shows populations with maximum or mean biomass values between gr[3] and gr[4]
maxvalue=(max(soln[:,p]))
meanvalue=((sum(soln[:,p]))/tStop)
if ((maxvalue>gr[4]) and (maxvalue<gr[3])) or (meanvalue>gr[4] and meanvalue<gr[3]):
plt.plot(t, soln[:, p], label=popname[p], c=popcolour[p])
plt.ylabel('Biomass, gC/m3')
plt.ylim(0, gr[3])
plt.legend(loc=(1.01, 0), shadow=True)
plt.subplot(2, 1, 2)
te=(tStop-int(round((tStop/5))))
# shows populations with last 20% days mean biomass values lower than gr[4] (assumed local extinction)
for p in range(13):
extvalue=((sum(soln[te:tStop,p]))/(tStop-te))
if (extvalue<gr[4]):
plt.plot(t, soln[:, p], label=popname[p], c=popcolour[p])
plt.xlabel('Time,days')
plt.ylabel('Biomass, gC/m3')
plt.ylim(0, gr[4])
plt.legend(loc=(1.01, 0), shadow=True)
plt.show()