forked from DiceOwl/StableDiffusionStuff
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloopback_superimpose.py
143 lines (103 loc) · 5.64 KB
/
loopback_superimpose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
from tqdm import trange
import modules.scripts as scripts
import gradio as gr
from PIL import Image
from modules import processing, shared, sd_samplers, images
from modules.processing import Processed
from modules.sd_samplers import samplers
from modules.shared import opts, cmd_opts, state
import modules.images as images
class Script(scripts.Script):
def title(self):
return "Loopback and Superimpose"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
def gr_show(visible=True):
return {"visible": visible, "__type__": "update"}
def change_visibility(show):
return {comp: gr_show(show) for comp in superimpose_extra}
superimpose_extra = []
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4)
superimpose = gr.Slider(minimum=0.0, maximum=0.3, step=0.005, label='Superimpose alpha', value=0.09)
superimpose_toggle_extra = gr.Checkbox(label='Show extra settings', value=False)
with gr.Row(visible=False) as superimpose_extra_row:
superimpose_extra.append(superimpose_extra_row)
with gr.Box() as superimpose_extra_box1:
reuse_seed = gr.Checkbox(label='Reuse seed', value=True, visible=True)
one_grid = gr.Checkbox(label='One grid', value=False, visible=True)
with gr.Box() as superimpose_extra_box2:
denoising_strength_change_factor = gr.Slider(minimum=0.2, maximum=1.5, step=0.01, label='Denoising strength change factor', value=1)
cfg_change_factor = gr.Slider(minimum=0, maximum=1, step=0.01, label='CFG decay factor', value=0)
cfg_change_target = gr.Slider(minimum=1, maximum=30, step=0.5, label='CFG target', value=7)
superimpose_toggle_extra.change(change_visibility, show_progress=False, inputs=[superimpose_toggle_extra], outputs=superimpose_extra)
return [loops, superimpose, reuse_seed, denoising_strength_change_factor, cfg_change_factor, cfg_change_target, one_grid, superimpose_toggle_extra]
def run(self, p, loops, superimpose, reuse_seed, denoising_strength_change_factor, cfg_change_factor, cfg_change_target, one_grid, superimpose_toggle_extra):
processing.fix_seed(p)
batch_count = p.n_iter
#batch_count = 1
p.extra_generation_params = {
"Superimpose alpha": superimpose,
"Loop count": loops
}
p.batch_size = 1
p.n_iter = 1
output_images, info = None, None
initial_seed = None
initial_info = None
grids = []
all_images = []
state.job_count = loops * batch_count
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
cfg_start = p.cfg_scale
cfg_target = cfg_change_target
init_img_bak = p.init_images
history = []
for n in range(batch_count):
history = []
p.init_images = init_img_bak
#cropping not supported
crop_region = None
if crop_region is None:
base_img = images.resize_image(p.resize_mode, p.init_images[0], p.width, p.height)
if crop_region is not None:
base_img = p.init_images[0].crop(crop_region)
base_img = images.resize_image(2, base_img, p.width, p.height)
p.cfg_scale = cfg_start
for i in range(loops):
p.n_iter = 1
p.batch_size = 1
p.do_not_save_grid = True
if opts.img2img_color_correction:
p.color_corrections = initial_color_corrections
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
processed = processing.process_images(p)
if initial_seed is None:
initial_seed = processed.seed
initial_info = processed.info
init_img = Image.blend(processed.images[0], base_img, 1-superimpose)
p.init_images = [init_img]
if not reuse_seed:
p.seed = processed.seed + 1
#p.extra_generation_params["Loop count"] = i+1
p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1)
p.cfg_scale = cfg_target + (p.cfg_scale-cfg_target)*(1-cfg_change_factor)
history.append(processed.images[0])
if not one_grid:
grid = images.image_grid(history, rows=1)
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
grids.append(grid)
all_images += history
p.seed = p.seed + 1
if one_grid:
grid = images.image_grid(all_images, rows=batch_count)
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
grids.append(grid)
if opts.return_grid:
all_images = grids + all_images
p.init_images = init_img_bak
processed = Processed(p, all_images, initial_seed, initial_info)
return processed