-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMachineStableDomainSearch.py
1591 lines (1358 loc) · 58.3 KB
/
MachineStableDomainSearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# Copyright (c) 2016, Pierre Saikaly ([email protected])
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
#===========================#
# created on 14 april 2016
#===========================#
# Import Python dependencies :
# ----------------------------
import imp
import os
import sys
import numpy as np
from numpy import linalg
import math as m
from math import pi
from math import sqrt
from math import fabs
import random as rand
import time
from operator import attrgetter
import scipy.optimize
from scipy.spatial import ConvexHull
import argparse
# Import Python visualisation libraries :
# ---------------------------------------
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from mpl_toolkits.mplot3d import Axes3D
from itertools import product, combinations
from matplotlib.patches import FancyArrowPatch
from mpl_toolkits.mplot3d import proj3d
from matplotlib.path import Path
# Import custom dependencies :
# -----------------------------
import CreateMachineDomain
# Defining vector visualisation class :
# -------------------------------------
class Arrow3D(FancyArrowPatch):
def __init__(self, xs, ys, zs, *args, **kwargs):
FancyArrowPatch.__init__(self, (0,0), (0,0), *args, **kwargs)
self._verts3d = xs, ys, zs
def draw(self, renderer):
xs3d, ys3d, zs3d = self._verts3d
xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M)
self.set_positions((xs[0],ys[0]),(xs[1],ys[1]))
FancyArrowPatch.draw(self, renderer)
# Data class :
# ------------
class PointBoundary():
"""Define point of boundary in pu and si with its normal"""
def __init__(self,p_input,n_input,unit,P_boundaries,Q_boundaries,U_boundaries):
"""
Define point and normal in both pu and si :
Inputs :
p_input : P,Q,U point
n_input : P,Q,U vector
unit : si or pu
Output :
point_si : P,Q,U in si
point_pu : P,Q,U in pu
normal_si : P,Q,U in si
normal_si : P,Q,U in pu
"""
if unit=="pu":
self.point_pu = p_input
self.normal_pu = n_input
self.point_si = Conversion_pu_si(self.point_pu,P_boundaries,Q_boundaries,U_boundaries)
self.normal_si = Conversion_pu_si(self.normal_pu,P_boundaries,Q_boundaries,U_boundaries)
elif unit=="si":
self.point_si = p_input
self.normal_si = n_input
self.point_pu = Conversion_si_pu(self.point_si,P_boundaries,Q_boundaries,U_boundaries)
self.normal_pu = Conversion_si_pu(self.normal_si,P_boundaries,Q_boundaries,U_boundaries)
else:
print "Specifier l'unite : pu ou si"
class PointDomain():
"""Define point of domain in pu and si"""
def __init__(self,p_input,unit,P_boundaries,Q_boundaries,U_boundaries):
"""
Define point in both pu and si :
Inputs :
p_input : P,Q,U point
unit : si or pu
Output :
point_si : P,Q,U in si
point_pu : P,Q,U in pu
"""
if unit=="pu":
self.point_pu = p_input
self.point_si = Conversion_pu_si(self.point_pu,P_boundaries,Q_boundaries,U_boundaries)
elif unit=="si":
self.point_si = p_input
self.point_pu = Conversion_si_pu(self.point_si,P_boundaries,Q_boundaries,U_boundaries)
else:
print "Specifier l'unite : pu ou si"
def Conversion_pu_si(data_pu,P_boundaries,Q_boundaries,U_boundaries):
"""
Converts data from pu to si :
Inputs :
- data_pu : P,Q,U data in pu
- U_nominal : nominal tension
- P_nominal : nominal power
Output :
- data_si : Converted point in si
Used in :
-
"""
# Creating output :
# -----------------
data_si = np.zeros(3)
# Converting :
# ------------
data_si[0] = (data_pu[0]) * (P_boundaries[1] - P_boundaries[0]) + P_boundaries[0]
data_si[1] = (data_pu[1]) * (Q_boundaries[1] - Q_boundaries[0]) + Q_boundaries[0]
data_si[2] = (data_pu[2]) * (U_boundaries[1] - U_boundaries[0]) + U_boundaries[0]
return data_si
def Conversion_si_pu(data_si,P_boundaries,Q_boundaries,U_boundaries):
"""
Converts data from pu to si :
Inputs :
- data_si : P,Q,U data in si
- U_nominal : nominal tension
- P_nominal : nominal power
Output :
- data_pu : Converted point in pu
Used in :
-
"""
# Creating output :
# -----------------
data_pu = np.zeros(3)
# Converting :
# ------------
data_pu[0] = ((data_si[0] - P_boundaries[0]) / (P_boundaries[1] - P_boundaries[0]))
data_pu[1] = ((data_si[1] - Q_boundaries[0]) / (Q_boundaries[1] - Q_boundaries[0]))
data_pu[2] = ((data_si[2] - U_boundaries[0]) / (U_boundaries[1] - U_boundaries[0]))
return data_pu
# Plane fitting from n points :
# -----------------------------
def fitPLaneLTSQ(XYZ):
# Fits a plane to a point cloud,
# Where Z = aX + bY + c ----Eqn #1
# Rearanging Eqn1: aX + bY -Z +c =0
# Gives normal (a,b,-1)
# Normal = (a,b,-1)
[rows,cols] = XYZ.shape
G = np.ones((rows,3))
G[:,0] = XYZ[:,0] #X
G[:,1] = XYZ[:,1] #Y
Z = XYZ[:,2]
(a,b,c),resid,rank,s = np.linalg.lstsq(G,Z)
normal = (a,b,-1)
nn = np.linalg.norm(normal)
normal = normal / nn
return normal
def fitPlaneOptimize(XYZ):
def residiuals(parameter,f,x,y):
return [(f[i] - model(parameter,x[i],y[i])) for i in range(len(f))]
def model(parameter, x, y):
a, b, c = parameter
return a*x + b*y + c
X = XYZ[:,0]
Y = XYZ[:,1]
Z = XYZ[:,2]
p0 = [1., 1.,1.] # initial guess
result = scipy.optimize.leastsq(residiuals, p0, args=(Z,X,Y))[0]
normal = result[0:3]
nn = np.linalg.norm(normal)
normal = normal / nn
return normal
def fitPlaneSVD(XYZ):
[rows,cols] = XYZ.shape
# Set up constraint equations of the form AB = 0,
# where B is a column vector of the plane coefficients
# in the form b(1)*X + b(2)*Y +b(3)*Z + b(4) = 0.
p = (np.ones((rows,1)))
AB = np.hstack([XYZ,p])
[u, d, v] = np.linalg.svd(AB,0)
B = v[3,:]; # Solution is last column of v.
nn = np.linalg.norm(B[0:3])
B = B / nn
return B[0:3]
def fitPlaneSolve(XYZ):
X = XYZ[:,0]
Y = XYZ[:,1]
Z = XYZ[:,2]
npts = len(X)
A = np.array([ [sum(X*X), sum(X*Y), sum(X)],
[sum(X*Y), sum(Y*Y), sum(Y)],
[sum(X), sum(Y), npts] ])
B = np.array([ [sum(X*Z), sum(Y*Z), sum(Z)] ])
normal = np.linalg.solve(A,B.T)
nn = np.linalg.norm(normal)
normal = normal / nn
return normal.ravel()
def fitPlaneEigen(XYZ):
average =sum(XYZ)/XYZ.shape[0]
covariant =np.cov(XYZ - average)
eigenvalues,eigenvectors = np.linalg.eig(covariant)
want_max = eigenvectors[:,eigenvalues.argmax()]
(c,a,b) = want_max[3:6]
normal = np.array([a,b,c])
nn = np.linalg.norm(normal)
return normal / nn
# Program functions :
# -------------------
def Fgroup(X, seqPath, dtaPath, echPath, P_boundaries, Q_boundaries, U_boundaries, U_nominal, P_nominal, precision):
""" Call Eurostag simulator
Inputs :
- X : machine parameters [P,Q,U]
- seqPath : Machine .seq file
- dtaPath : Machine .dta file
- echPath : Machine .ech file
- Study boundaries
- precision
Output :
- alpha : Eurostag status
- X1 : Eurostag stable point
Used in :
- Fexploration
- Fraffinement
"""
# Local Variables :
# -----------------
X1 = np.zeros(shape=3) # The simulation results are stored here
E = np.zeros(shape=3) # normalisation
t2 = 0.5 # Accepted biais
alpha = 0 # Initial indicator
status = 5 # Eurostag status
etat = "ETAT D'EQUILIBRE A 0.10000D-02 VERIFIE POUR LES EQUATIONS MACHINE"
etat2 = "ETAT D'EQUILIBRE A 0.10000D-02 NON VERIFIE DANS LES EQUATIONS SUIVANTES"
# Setting up simulation :
# -----------------------
l.initLF(echPath)
l.runLF()
# print 'Load Flow succefull !'
savPath = os.path.join("simTest.sav")
l.initDynSimu(seqPath, dtaPath, savPath)
# print 'Dynamic simulation initialised'
MachineName = l.getMachines()
Nodes = l.getNodes()
# print "Machine :", MachineName, "\n"
# print "Nodes :", Nodes, "\n"
X1[2], angle = l.getNodeVoltage('N1 ', 'P')
Unom, angle = l.getNodeVoltage('N2 ', 'P')
X1[0:2] = l.getMachinePower(MachineName[0])
print "P,Q,U INITIALEMENT :", X1
# Checking Eurostag status :
# --------------------------
if etat in open("simTest.out").read():
# Eurostag returns stable
status = 0
l.simulate()
else:
# Eurostag returns unstable :
# ---------------------------
equi_value = np.empty(0)
with open("simTest.out") as outfile:
lines = outfile.readlines()
for i, line in enumerate(lines):
if etat2 in line:
k = i+5
while (lines[k]!="\n"):
value_line = lines[k].split(None)[-2]
value_real = float(value_line.split("D")[0])*10**int(value_line.split("D")[1])
equi_value = np.hstack((equi_value,value_real))
k += 1
# Checking tolerance :
# --------------------
# print equi_value
if (np.amax(abs(equi_value)) < 0.01):
status = 0
l.simulate()
elif (np.amax(abs(equi_value)) > 0.05):
print "Cas problematique :"
status = 1
l.stopDynSimu()
elif (0.01 < np.amax(abs(equi_value)) and np.amax(abs(equi_value)) < 0.5):
status = 2
l.simulate()
else:
print "Cas instable"
status = 1
l.simulate()
# time.sleep(1)
X1[2], angle = l.getNodeVoltage('N1 ', 'P')
X1[0:2] = l.getMachinePower(MachineName[0])
print "P,Q,U FINALEMENT :", X1
print ".... Eurostag status : ", status, " ....\n"
print "#=====================================#"
print "# Fin de la simulation Eurostag #"
print "#=====================================#\n"
# time.sleep(0.01)
# Normalisation :
# ---------------
X_pu = Conversion_si_pu(X,P_boundaries,Q_boundaries,U_boundaries)
X1_pu = Conversion_si_pu(X1,P_boundaries,Q_boundaries,U_boundaries)
E = X_pu - X1_pu
# Returning eurostag status :
# ---------------------------
print "Erreur :", np.linalg.norm(E)
print "Preccs :", precision
# time.sleep(1)
if (np.linalg.norm(E)<precision*1000):
if (status == 0):
alpha = 0
elif (status == 2):
alpha = 1
elif (status == 1):
alpha = 2
else:
alpha = 2
return alpha, X1
def Fexploration(O,B,Esp,seqPath, dtaPath, echPath, U_nominal, P_nominal, P_boundaries, Q_boundaries, U_boundaries, MachineName):
"""
Compute last stable point in a direction :
Inputs :
- O : Stable origin
- B : Boundary point in direction
- Esp : Boundary precision
- Study boundaries
- Machine nominal power and tension
Output :
- A : Last Stable point
Used in :
- FplanTangent
"""
# Initialisation des variables internes :
# ---------------------------------------
C = np.zeros(3) # point in unstable part
A = np.zeros(3) # point in stable part
T = np.zeros(3) # test point
X = np.zeros(3) # eurostag point result
d = 0 # distance between stable and unstable point
# Initialisation :
# ----------------
A = O
C = B
T = C
# distance has to be computed in pu !
A_pu = Conversion_si_pu(A,P_boundaries,Q_boundaries,U_boundaries)
C_pu = Conversion_si_pu(C,P_boundaries,Q_boundaries,U_boundaries)
d = np.linalg.norm(A_pu-C_pu)
# Last stable point at Eps biais :
# --------------------------------
while (d > Esp):
print "Distance point stable/instable : ", d, "\n"
it = 0
# writing entry file for eurostag
while (True and it<4):
try:
FeditechFile(T,"simTest",U_nominal, MachineName)
break
except IOError:
it += 1
time.sleep(0.5)
pass
print "Point test :", T
try:
[alpha,X] = Fgroup(T,seqPath, dtaPath, echPath, P_boundaries, Q_boundaries, U_boundaries, U_nominal, P_nominal, Esp)
except:
alpha = 3
pass
print "alpha =", alpha
if (alpha == 0):
#point is on stable side
A = T # New stable point
T = (C+A)/2 # Updating test point
print ".............. Cote Stable .............\n"
else:
#point is on unstable side
C = T # New unstable point
T = (C+A)/2 # Updating test point
print ".............. Cote instable .............\n"
A_pu = Conversion_si_pu(A,P_boundaries,Q_boundaries,U_boundaries)
C_pu = Conversion_si_pu(C,P_boundaries,Q_boundaries,U_boundaries)
D_pu = C_pu - A_pu
d = np.linalg.norm(D_pu)
# Rest time for CPU :
time.sleep(0.00000001)
print "Dernier point stable : ", A, '\n'
print "Dernier point instable : ", C, '\n'
return A
def Fvoisinage(B,P_boundaries,Q_boundaries, U_boundaries, sign1, sign2, precision_vect):
"""
Return points in the vicinity of B
Inputs :
- B : point from which the vinicity is computed
- Boundaries of domain
- sign1/2 : + or -
Output :
- voisins : Point in vicinity of B
Used in :
- FplanTangent
"""
voisins = np.zeros(shape=(3)) # Output
voisins[:] = B # Initialisation
aug_pas = 100. # Bigger step
[pas_P, pas_Q, pas_U] = Conversion_pu_si(precision_vect,P_boundaries,Q_boundaries,U_boundaries) - [P_boundaries[0], Q_boundaries[0], U_boundaries[0]]
# B is on P boundary
if np.any(np.isclose(B[0],P_boundaries)):
voisins[1] += (1+sign1)*pas_Q*aug_pas
voisins[2] += (1+sign2)*pas_U*aug_pas
# B is on Q boundary
elif np.any(np.isclose(B[1],Q_boundaries)):
voisins[0] += (1+sign1)*pas_P*aug_pas
voisins[2] += (1+sign2)*pas_U*aug_pas
# B is on U boundary
elif np.any(np.isclose(B[2],U_boundaries)):
voisins[0] += (1+sign1)*pas_P*aug_pas
voisins[1] += (1+sign2)*pas_Q*aug_pas
# B is not on boundary
else:
return "Le point ", B, " n'est pas sur le bord du domaine"
return voisins
def FplanTangent(O, theta, phi, pt, P_boundaries, Q_boundaries, U_boundaries, Eps, seqPath, dtaPath, echPath, U_nominal, P_nominal, precision_vect, MachineName):
"""
Compute tangent plane at specified point/direction
Inputs :
- O : stable origin
- D : Domain min & max boundaries
- p : number of point allowed for tangent evaluation
Output :
- A : studied point
- n : normal vector
Used in :
- main
"""
#Creating local variables :
#--------------------------
A = np.zeros(shape=(pt,3)) # Storage matrix of stable point
B = np.zeros(shape=(pt,3)) # Storage matrix of unstable point
results = np.zeros(shape=(0,3)) # Results matrix
M = np.zeros(shape=(3,3)) # Centered point matrix
ecart = Eps*10 # Step to compute other points in vicinity
# method used to compute vicinity point :
# 1 -> angle method (less stable)
# 2 -> boundary step method (more stable)
method = 2
# Computing first point on stable domaine boundary :
# --------------------------------------------------
B[0,:] = Fdirection(theta,phi,P_boundaries, Q_boundaries, U_boundaries, O, U_nominal, P_nominal)
A[0,:] = Fexploration(O, B[0,:], Eps, seqPath, dtaPath, echPath, U_nominal, P_nominal, P_boundaries, Q_boundaries, U_boundaries, MachineName)
results = np.vstack((A[0,:],results))
if method == 1 :
# Computing angle step for other points :
# ---------------------------------------
distance = np.linalg.norm(Conversion_si_pu(O - B[0,:],P_boundaries,Q_boundaries,U_boundaries))
epsilon = m.atan(20 * max(precision_vect[0],precision_vect[1]) / distance)
epsilonp = m.atan((20 * precision_vect[2] / distance))
# Computing other directions and stable boundary points :
# -------------------------------------------------------
for i in range(1,9):
signs = "{0:b}".format(i-1).zfill(3) # binary of i with 3 digits
if int(signs[0])==0:
sign1 = int(signs[2])*-2
sign2 = int(signs[1])*-2
else:
sign1 = - (int(signs[2]) + int(signs[1]))
sign2 = int(signs[2]) - int(signs[1]) - 1
it = 0
A_pu0 = Conversion_si_pu(A[0,:], P_boundaries, Q_boundaries, U_boundaries)
A_puT = Conversion_si_pu(A[i,:], P_boundaries, Q_boundaries, U_boundaries)
dist_voisin = np.linalg.norm(A_pu0 - A_puT)
while ((dist_voisin>1.1*ecart) or it<1) and it<=5:
it += 1
B[i,:] = Fdirection(theta + (sign1 + 1)*epsilon,phi + (sign2 + 1)*epsilonp,P_boundaries, Q_boundaries, U_boundaries, O, U_nominal, P_nominal)
A[i,:] = Fexploration(O, B[i,:], Eps, seqPath, dtaPath, echPath, U_nominal, P_nominal, P_boundaries, Q_boundaries, U_boundaries, MachineName)
if it > 1:
A_pu0 = Conversion_si_pu(A[0,:], P_boundaries, Q_boundaries, U_boundaries)
A_puT = Conversion_si_pu(A[i,:], P_boundaries, Q_boundaries, U_boundaries)
dist_voisin = np.linalg.norm(A_pu0 - A_puT)
if 0.5*ecart>dist_voisin:
epsilon += epsilon/2
epsilonp += epsilonp/2
print "Plus de epsilon"
elif dist_voisin>1.1*ecart:
epsilon -= epsilon/2
epsilonp -= epsilonp/2
print "Moins de epsilon"
print "Angles : ", epsilon, epsilonp
print "Distance entre les points : ", dist_voisin
print "Critère : ", ecart
print "pour le point : ", i
if dist_voisin<5*ecart:
results = np.vstack((results,A[i,:]))
if method == 2:
precision_vectin = np.zeros(shape=(3)) # Store precision vector
critere = Eps*100 # Criteria for vicinity point
ecartbis = critere # Step used to computed vicinity point
Obis = O + 0.90*(O-A[0,:]) # New origin for faster exploration
for i in range(1,9):
precision_vectin[:] = precision_vect
Bbis = np.zeros(shape=(1,3)) # Point on boundary domain in the vicinity of B
signs = "{0:b}".format(i-1).zfill(3) # binary of i with 3 digits
if int(signs[0])==0:
sign1 = int(signs[2])*-2
sign2 = int(signs[1])*-2
else:
sign1 = - (int(signs[2]) + int(signs[1]))
sign2 = int(signs[2]) - int(signs[1]) - 1
it = 0
A_pu0 = Conversion_si_pu(A[0,:], P_boundaries, Q_boundaries, U_boundaries)
A_puT = Conversion_si_pu(A[i,:], P_boundaries, Q_boundaries, U_boundaries)
dist_voisin = np.linalg.norm(A_pu0 - A_puT)
while (( (0.5*critere>dist_voisin or dist_voisin>1.5*critere) and it<=10) or it<1):
it += 1
Bbis = Fvoisinage(B[0,:],P_boundaries,Q_boundaries,U_boundaries,sign1,sign2,precision_vectin)
A[i,:] = Fexploration(O, Bbis, Eps, seqPath, dtaPath, echPath, U_nominal, P_nominal, P_boundaries, Q_boundaries, U_boundaries, MachineName)
A_pu0 = Conversion_si_pu(A[0,:], P_boundaries, Q_boundaries, U_boundaries)
A_puT = Conversion_si_pu(A[i,:], P_boundaries, Q_boundaries, U_boundaries)
dist_voisin = np.linalg.norm(A_pu0 - A_puT)
if dist_voisin>1.5*critere:
ecartbis -= ecartbis/2
precision_vectin -= precision_vectin/2.
elif 0.5*critere>dist_voisin:
ecartbis += ecartbis/2
precision_vectin += precision_vectin/2.
print "Point refstable : ", A[0,:]
print "Point etustable : ", A[i,:]
print "Point refinstable : ", B[0,:]
print "Point etuinstable : ", Bbis
print "Ecart : ", precision_vectin
print "Distance entre les points : ", dist_voisin
print "Critère : ", critere
print "pour le point : ", i
# if dist_voisin<5*critere:
results = np.vstack((results,A[i,:]))
# Normalising points :
# --------------------
for i in range(0,results.shape[0]):
results[i,:] = Conversion_si_pu(results[i,:],P_boundaries, Q_boundaries, U_boundaries)
print "Matrice des points : ", results
for i in range(1,results.shape[0]):
print "Distance :", np.linalg.norm(results[i,:] - results[0,:])
# Computing covariance matrix :
# -----------------------------
# M = np.cov(results.T)
M = np.vstack((results[:,0] - np.mean(results,axis=0)[0],
results[:,1] - np.mean(results,axis=0)[1],
results[:,2] - np.mean(results,axis=0)[2]))
# Computing normal vector :
# -------------------------
n1 = np.linalg.svd(M)[0][:,-1]
n2 = fitPLaneLTSQ(results)
# n3 = fitPlaneEigen(A)
n4 = fitPlaneSVD(results)
# n5 = fitPlaneSolve(A)
# n6 = np.cross(A[1,:] - A[0,:],A[2,:] - A[0,:])
# n6 = n6 / np.linalg.norm(n6)
print "Vct norm select n1 : ", n1
print "Vct norm select n2 : ", n2
# print "Vct norm select n3 : ", n3
print "Vct norm select n4 : ", n4
# print "Vct norm select n5 : ", n5
# print "Vct norm select n6 : ", n6
time.sleep(0.0000001)
return results[0,:], n1
def FeditechFile(X,file,U_nominal, MachineName):
"""
Create .ech Eurostag file (input Point of simulation)
Inputs :
- FileName : name of .ech File
- X = [P(MW), Q(Mvar), U(kV)] input point
Output :
- .ech file
Used in :
- Fexploration
"""
#Converting data to string :
#---------------------------
Pin = str(X[0])[:8]
Qin = str(X[1])[:8]
Uin = str(X[2])[:8]
Unom = str(U_nominal)[:8]
#Setting up file path :
#----------------------
filename = file + ".ech"
path = os.path.join("")
filename = os.path.join(path, filename)
with open(filename, 'w') as echfile:
#Writing .ech file :
#------------------
echfile.write("HEADER "+ time.strftime("%d/%m/%y") +" 5.1\n")
echfile.write(" \nB \n \n"
"9 1 0 0 1 1 20 0.005 4 0 100. \n \n"
"AA A \nAA B \n \n")
echfile.write("1A N1 "
+ Unom.rjust(10) +
" 1. 0. 0. 0.\n"
"1B N2 "
+ Unom.rjust(10) +
" 1. 0. 0. 0.\n")
echfile.write(" \n5 N1 0.\n \n"
"6 N1 N2 1 0. 0.\n \n"
"G " + MachineName.rjust(8) + " Y N1 -99999. 0. 99999. -99999. 0. 99999. V"
+ Uin.rjust(9) +
" N1 1. 0. 0.\n \n")
echfile.write("CH CHARGE Y N2 0. 0."
+ Pin.rjust(9) +
" 0. 0."
+ Qin.rjust(9) +
" 0. 0.\n \n")
def FwritedtaFiles(MachinesdtaPath):
"""
Create a specific dta file of each generators present in MachinesdtaPath
*Note : not used (see IndusMachineDomaine.py)
Inputs :
- MachinesdtaPath : location of reference file
Outputs :
- n single machine dta files
"""
path = os.path.join("dtaFiles")
#Opening Reference file :
#------------------------
with open(MachinesdtaPath) as Machinefile:
lines = Machinefile.readlines()
#Looking for machines :
#----------------------
for i, line in enumerate(lines):
if line.startswith("M2 U") or line.startswith("M2 S"):
#Correcting node data :
#----------------------
node = lines[i+1].split(" ", 2)
node[1] = "N1".ljust(len(node[1]))
lines[i+1] = " ".join(node)
#Writing specific machine file :
#--------------------------------
MachineName = lines[i+1].split(None, 1)[0]
filename = MachineName + ".dta"
filename = os.path.join(path, filename)
with open(filename, 'w') as f:
#Writing Header :
#----------------
f.write("HEADER "+ time.strftime("%d/%m/%y") +" 5.1\n \n")
#Writing Machine information :
#-----------------------------
while lines[i]!="\n":
f.write(lines[i])
i += 1
#Writing Regulators information :
#--------------------------------
f.write(" \n")
while (("M2 S") not in lines[i] and ("M2 U") not in lines[i]) and i<len(lines)-1:
if lines[i].startswith("R " + MachineName):
f.write(lines[i])
f.write(lines[i+1])
f.write(" \n \n \n")
i += 1
#Writing Network information :
#-----------------------------
f.write("I1 \nN2 0. 0.02 90. 100. \n \n \nLOADP 1\n 1 1. 1. \n \n \n \n \n"
"CH \n1 W\n \n \n")
def FdomainBoundaries(dtaPath,MachinesDictionnary):
"""
Extract generators caracteristics and create the study field from caracteristics
Inputs :
- dtaPath : location of generator parameters
- MachinesDictionnary : location of dictionnary for generators
Output :
- Study boundaries (MW, Mvar, kV)
- Unom : nominal tension (kV)
- Pnomapp : Apparent nominal Power (MVar)
- MachineName : Name of generator in Eurostag
- MachineRefName : Name of generator in dictionnary file
Used in :
- main
"""
#Creating local variables :
#--------------------------
P_boundaries = np.zeros(2)
Q_boundaries = np.zeros(2)
U_boundaries = np.zeros(2)
MachineRefName = "None"
#Opening specific machine dta file :
#-----------------------------------
with open(dtaPath) as Machinefile:
#Reading file data :
#-------------------
lines = Machinefile.readlines()
#print(lines[3].split())
# print(lines[3].split(" ")[4])
MachineName = lines[3].split()[0]
# Pnomturb = float(lines[6].split()[1])
# Pnomalt = float(lines[6].split()[2])
try:
Pnomapp = float(lines[3].split()[2])
Unom = float(lines[3].split()[3])
except ValueError:
Pnomapp = float(lines[3].split()[3])
Unom = float(lines[3].split()[4])
#Creating machine domain :
#-------------------------
P_boundaries[:] = [-1.5*Pnomapp,1.5*Pnomapp]
Q_boundaries[:] = [-1.5*Pnomapp,1.5*Pnomapp]
U_boundaries[:] = [0.5*Unom,1.5*Unom]
# Finding MachineRefName :
# ------------------------
with open(MachinesDictionnary) as Dicofile:
for line in Dicofile:
# print MachineName
if MachineName == line.split(";")[1]:
MachineRefName = line.split(";")[0]
return P_boundaries, Q_boundaries, U_boundaries, Unom, Pnomapp, MachineName, MachineRefName
def Fdirection(theta, phi, P_boundaries, Q_boundaries, U_boundaries, O, U_nominal, P_nominal):
"""
Compute boundary point in specified direction
Inputs :
- theta : angle (in rad) on the P,Q plane
- phi : angle (in rad) between U axis and direction
Note : Spherical coordinates
- P_boundaries, Q_boundaries, U_boundaries (MW, Mvar, kV) : Study field
- O : Origin stable point of study
Output :
- B (MW, Mvar, kV) : point on domain boundary
Used in :
- FplanTangent
"""
# Creating local vars :
# ---------------------
O_pu = Conversion_si_pu(O, P_boundaries, Q_boundaries, U_boundaries)
#Creating output :
#-----------------
B = np.zeros(3)
# Moving Origin & normalizing :
# -----------------------------
Pmax = 1 - O_pu[0]
Pmin = 0 - O_pu[0]
Qmax = 1 - O_pu[1]
Qmin = 0 - O_pu[1]
Umax = 1 - O_pu[2]
Umin = 0 - O_pu[2]
#Computing direction :
#---------------------
x = m.sin(phi)*m.cos(theta)
y = m.sin(phi)*m.sin(theta)
z = m.cos(phi)
if 0<=x:
k_P = Pmax/x
else:
k_P = abs(Pmin/x)
if 0<=y:
k_Q = Qmax/y
else:
k_Q = abs(Qmin/y)
if 0<=z:
k_U = Umax/z
else:
k_U = abs(Umin/z)
k = min(k_P, k_Q, k_U)
B[:] = [k*x,k*y,k*z]
# Moving back Origin :
# --------------------
B = B + O_pu
# Converting to si from pu :
# --------------------------
B = Conversion_pu_si(B, P_boundaries, Q_boundaries, U_boundaries)
return B
def Fraffinement(domain_data,faces,boundary_data,P_boundaries,Q_boundaries,U_boundaries):
"""
Check if corners need to be refined by projecting them on the convexHull of support points.
The max distance of corner points to the convexHull of support point is also computed.
Inputs :
- domain_date : [n] list of PointDomain class containing corner points
- faces : [n] list of faces class containing information of each faces
- boundary_data : [n] list of PointBoundary class containning support points
- rest : not used
Output :
- corners : Corners to be refined
- origins : projection of corner on ConvexHull
- directions : Direction to reach corner from origin
- error_max : Max distance of corner points to ConvexHull
Used in :
- main (version 1 and 3)
TO DO :
- Correct upper bound of error between Convex hull and tangent planes domain (var : error_max)
"""
# Local variables :
# -----------------
epsilon = 0.0000001 # criteria for belonging in plane
p_plane = np.zeros(shape=(3)) # point in plane
error = 0.
error_max = 0.
# Outputs :
# ---------
directions = np.empty(shape=(0,2)) # directions in theta and phi
origins = np.empty(shape=(0,3)) # origins for the direction
corners = np.empty(shape=(0,3)) # corresponding corner in direction
for i in range(0,len(domain_data)):
# Finds which face includes point :
# ---------------------------------
index = [] # index of three closest support point
index_ns = [] # index of all faces including point
for j in range(0,len(faces)):
if np.all(np.isclose(faces[j].points,domain_data[i].point_pu),1).any():
index_ns.append(j) # Storing index
index_ns = np.arange(0,len(boundary_data))
if len(index_ns)>=3:
# Computing closest boundary points to corner :
# ---------------------------------------------
closest_points = []
for k in range(0,len(index_ns)):
closest_points.append([index_ns[k], np.linalg.norm(domain_data[i].point_pu - boundary_data[index_ns[k]].point_pu)])
closest_points = sorted(closest_points, key=lambda closest_points: closest_points[1])
index.append(closest_points[0][0])
index.append(closest_points[1][0])
index.append(closest_points[2][0])
# Creating plane from boundary points :
# -------------------------------------
n_plane = np.cross((boundary_data[index[1]].point_pu-boundary_data[index[0]].point_pu),(boundary_data[index[2]].point_pu-boundary_data[index[0]].point_pu))
n_plane = n_plane/np.linalg.norm(n_plane)
# Computing projection point :
# ----------------------------
d_plane = abs(np.dot(n_plane,domain_data[i].point_pu) - np.dot(n_plane,boundary_data[index[0]].point_pu))
p_plane = PointDomain(domain_data[i].point_pu - d_plane*n_plane, 'pu', P_boundaries,Q_boundaries,U_boundaries)
# finding real projection
if abs(np.dot(p_plane.point_pu-boundary_data[index[0]].point_pu,n_plane))<epsilon:
p_plane = PointDomain(domain_data[i].point_pu - d_plane*n_plane, 'pu', P_boundaries,Q_boundaries,U_boundaries)
else:
p_plane = PointDomain(domain_data[i].point_pu + d_plane*n_plane, 'pu', P_boundaries,Q_boundaries,U_boundaries)
d_plane = np.linalg.norm((domain_data[i].point_pu-p_plane.point_pu))
error = d_plane
# Checking if projection is in triangle :
# ---------------------------------------
aire = np.linalg.norm(np.cross(boundary_data[index[2]].point_pu - boundary_data[index[1]].point_pu
, boundary_data[index[2]].point_pu - boundary_data[index[0]].point_pu))/2
alpha = np.linalg.norm(np.cross(boundary_data[index[2]].point_pu - p_plane.point_pu
, boundary_data[index[1]].point_pu - p_plane.point_pu))/(2*aire)
beta = np.linalg.norm(np.cross(boundary_data[index[2]].point_pu - p_plane.point_pu
, boundary_data[index[0]].point_pu - p_plane.point_pu))/(2*aire)
gamma = 1 - alpha - beta
if ~(0<=alpha<=1 and 0<=beta<=1 and 0<=gamma<=1):
# Computing gravitycentre :
# -------------------------
a = np.linalg.norm(boundary_data[index[2]].point_pu - boundary_data[index[1]].point_pu)
b = np.linalg.norm(boundary_data[index[2]].point_pu - boundary_data[index[0]].point_pu)
c = np.linalg.norm(boundary_data[index[0]].point_pu - boundary_data[index[1]].point_pu)
p_plane = PointDomain(boundary_data[index[0]].point_pu*a/(a+b+c)
+ boundary_data[index[1]].point_pu*b/(a+b+c)
+ boundary_data[index[2]].point_pu*c/(a+b+c)
, "pu",P_boundaries,Q_boundaries,U_boundaries)
d_plane = np.linalg.norm((domain_data[i].point_pu-p_plane.point_pu))
print "Coin : ", domain_data[i].point_pu
print "Proj : ", p_plane.point_pu
print "Erreur first : ", error
if d_plane>epsilon:
# Computing direction :
# ---------------------
if (domain_data[i].point_pu[1]-p_plane.point_pu[1])>=0:
theta = m.acos((domain_data[i].point_pu[0]-p_plane.point_pu[0])
/ sqrt((domain_data[i].point_pu[0]-p_plane.point_pu[0])**2
+ (domain_data[i].point_pu[1]-p_plane.point_pu[1])**2))
else:
theta = 2*pi - m.acos((domain_data[i].point_pu[0]-p_plane.point_pu[0])
/ sqrt((domain_data[i].point_pu[0]-p_plane.point_pu[0])**2
+ (domain_data[i].point_pu[1]-p_plane.point_pu[1])**2))
# theta = m.atan((domain_data[i].point_pu[1]-p_plane.point_pu[1])/(domain_data[i].point_pu[0]-p_plane.point_pu[0]))
# if theta<0:
# theta = pi/2 - theta
phi = m.acos((domain_data[i].point_pu[2]-p_plane.point_pu[2])/np.linalg.norm(p_plane.point_pu - domain_data[i].point_pu))
# Storing outputs :
# -----------------
directions = np.vstack((directions, [theta,phi]))
origins = np.vstack((origins, p_plane.point_si))
corners = np.vstack((corners, domain_data[i].point_si))
error = FcomputeError(domain_data[i].point_pu,boundary_data,error)
if (error_max < error):
error_max = error
print "Erreur check : ", error_max
return directions, origins, corners, error_max
def FquickDomainVisualisation(A, N, P_boundaries, Q_boundaries, U_boundaries,O,corners, origins):