-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathvectfit.py
240 lines (206 loc) · 7.16 KB
/
vectfit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""
Duplication of the vector fitting algorithm in python (http://www.sintef.no/Projectweb/VECTFIT/)
All credit goes to Bjorn Gustavsen for his MATLAB implementation, and the following papers
[1] B. Gustavsen and A. Semlyen, "Rational approximation of frequency
domain responses by Vector Fitting", IEEE Trans. Power Delivery,
vol. 14, no. 3, pp. 1052-1061, July 1999.
[2] B. Gustavsen, "Improving the pole relocating properties of vector
fitting", IEEE Trans. Power Delivery, vol. 21, no. 3, pp. 1587-1592,
July 2006.
[3] D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter,
"Macromodeling of Multiport Systems Using a Fast Implementation of
the Vector Fitting Method", IEEE Microwave and Wireless Components
Letters, vol. 18, no. 6, pp. 383-385, June 2008.
"""
__author__ = 'Phil Reinhold'
from pylab import *
from numpy.linalg import eigvals, lstsq
def cc(z):
return z.conjugate()
def model(s, poles, residues, d, h):
return sum(r/(s-p) for p, r in zip(poles, residues)) + d + s*h
def vectfit_step(f, s, poles):
"""
f = complex data to fit
s = j*frequency
poles = initial poles guess
note: All complex poles must come in sequential complex conjugate pairs
returns adjusted poles
"""
N = len(poles)
Ns = len(s)
cindex = zeros(N)
# cindex is:
# - 0 for real poles
# - 1 for the first of a complex-conjugate pair
# - 2 for the second of a cc pair
for i, p in enumerate(poles):
if p.imag != 0:
if i == 0 or cindex[i-1] != 1:
assert cc(poles[i]) == poles[i+1], ("Complex poles must come in conjugate pairs: %s, %s" % (poles[i], poles[i+1]))
cindex[i] = 1
else:
cindex[i] = 2
# First linear equation to solve. See Appendix A
A = zeros((Ns, 2*N+2), dtype=np.complex64)
for i, p in enumerate(poles):
if cindex[i] == 0:
A[:, i] = 1/(s - p)
elif cindex[i] == 1:
A[:, i] = 1/(s - p) + 1/(s - cc(p))
elif cindex[i] == 2:
A[:, i] = 1j/(s - p) - 1j/(s - cc(p))
else:
raise RuntimeError("cindex[%s] = %s" % (i, cindex[i]))
A [:, N+2+i] = -A[:, i] * f
A[:, N] = 1
A[:, N+1] = s
# Solve Ax == b using pseudo-inverse
b = f
A = vstack((real(A), imag(A)))
b = concatenate((real(b), imag(b)))
x, residuals, rnk, s = lstsq(A, b, rcond=-1)
residues = x[:N]
d = x[N]
h = x[N+1]
# We only want the "tilde" part in (A.4)
x = x[-N:]
# Calculation of zeros: Appendix B
A = diag(poles)
b = ones(N)
c = x
for i, (ci, p) in enumerate(zip(cindex, poles)):
if ci == 1:
x, y = real(p), imag(p)
A[i, i] = A[i+1, i+1] = x
A[i, i+1] = -y
A[i+1, i] = y
b[i] = 2
b[i+1] = 0
#cv = c[i]
#c[i,i+1] = real(cv), imag(cv)
H = A - outer(b, c)
H = real(H)
new_poles = sort(eigvals(H))
unstable = real(new_poles) > 0
new_poles[unstable] -= 2*real(new_poles)[unstable]
return new_poles
# Dear gods of coding style, I sincerely apologize for the following copy/paste
def calculate_residues(f, s, poles, rcond=-1):
Ns = len(s)
N = len(poles)
cindex = zeros(N)
for i, p in enumerate(poles):
if p.imag != 0:
if i == 0 or cindex[i-1] != 1:
assert cc(poles[i]) == poles[i+1], ("Complex poles must come in conjugate pairs: %s, %s" % poles[i:i+1])
cindex[i] = 1
else:
cindex[i] = 2
# use the new poles to extract the residues
A = zeros((Ns, N+2), dtype=np.complex128)
for i, p in enumerate(poles):
if cindex[i] == 0:
A[:, i] = 1/(s - p)
elif cindex[i] == 1:
A[:, i] = 1/(s - p) + 1/(s - cc(p))
elif cindex[i] == 2:
A[:, i] = 1j/(s - p) - 1j/(s - cc(p))
else:
raise RuntimeError("cindex[%s] = %s" % (i, cindex[i]))
A[:, N] = 1
A[:, N+1] = s
# Solve Ax == b using pseudo-inverse
b = f
A = vstack((real(A), imag(A)))
b = concatenate((real(b), imag(b)))
cA = np.linalg.cond(A)
if cA > 1e13:
print 'Warning!: Ill Conditioned Matrix. Consider scaling the problem down'
print 'Cond(A)', cA
x, residuals, rnk, s = lstsq(A, b, rcond=rcond)
# Recover complex values
x = np.complex64(x)
for i, ci in enumerate(cindex):
if ci == 1:
r1, r2 = x[i:i+2]
x[i] = r1 - 1j*r2
x[i+1] = r1 + 1j*r2
residues = x[:N]
d = x[N].real
h = x[N+1].real
return residues, d, h
def print_params(poles, residues, d, h):
cfmt = "{0.real:g} + {0.imag:g}j"
print "poles: " + ", ".join(cfmt.format(p) for p in poles)
print "residues: " + ", ".join(cfmt.format(r) for r in residues)
print "offset: {:g}".format(d)
print "slope: {:g}".format(h)
def vectfit_auto(f, s, n_poles=10, n_iter=10, show=False,
inc_real=False, loss_ratio=1e-2, rcond=-1, track_poles=False):
w = imag(s)
pole_locs = linspace(w[0], w[-1], n_poles+2)[1:-1]
lr = loss_ratio
init_poles = poles = concatenate([[p*(-lr + 1j), p*(-lr - 1j)] for p in pole_locs])
if inc_real:
poles = concatenate((poles, [1]))
poles_list = []
for _ in range(n_iter):
poles = vectfit_step(f, s, poles)
poles_list.append(poles)
residues, d, h = calculate_residues(f, s, poles, rcond=rcond)
if track_poles:
return poles, residues, d, h, np.array(poles_list)
print_params(poles, residues, d, h)
return poles, residues, d, h
def vectfit_auto_rescale(f, s, **kwargs):
s_scale = abs(s[-1])
f_scale = abs(f[-1])
print 'SCALED'
poles_s, residues_s, d_s, h_s = vectfit_auto(f / f_scale, s / s_scale, **kwargs)
poles = poles_s * s_scale
residues = residues_s * f_scale * s_scale
d = d_s * f_scale
h = h_s * f_scale / s_scale
print 'UNSCALED'
print_params(poles, residues, d, h)
return poles, residues, d, h
if __name__ == '__main__':
test_s = 1j*np.linspace(1, 1e5, 800)
test_poles = [
-4500,
-41000,
-100+5000j, -100-5000j,
-120+15000j, -120-15000j,
-3000+35000j, -3000-35000j,
-200+45000j, -200-45000j,
-1500+45000j, -1500-45000j,
-500+70000j, -500-70000j,
-1000+73000j, -1000-73000j,
-2000+90000j, -2000-90000j,
]
test_residues = [
-3000,
-83000,
-5+7000j, -5-7000j,
-20+18000j, -20-18000j,
6000+45000j, 6000-45000j,
40+60000j, 40-60000j,
90+10000j, 90-10000j,
50000+80000j, 50000-80000j,
1000+45000j, 1000-45000j,
-5000+92000j, -5000-92000j
]
test_d = .2
test_h = 2e-5
test_f = sum(c/(test_s - a) for c, a in zip(test_residues, test_poles))
test_f += test_d + test_h*test_s
vectfit_auto(test_f, test_s)
poles, residues, d, h = vectfit_auto_rescale(test_f, test_s)
fitted = model(test_s, poles, residues, d, h)
figure()
plot(test_s.imag, test_f.real)
plot(test_s.imag, test_f.imag)
plot(test_s.imag, fitted.real)
plot(test_s.imag, fitted.imag)
show()