-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmutation_es.py
94 lines (74 loc) · 2.97 KB
/
mutation_es.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import random
import math
from utils import roulette
from individual import Individual, Layer
from strategy import Block
from config import Config
PROB_MUTATE_LAYER = 0.5
PROB_ADD_LAYER = 0.25
PROB_DEL_LAYER = 0.25
PROB_CHANGE_LAYER_SIZE = 0.4
PROB_CHANGE_DROPOUT = 0.3
PROB_CHANGE_ACTIVATION = 0.3
class MutationES:
def __init__(self):
pass
def mutateSize(self, layer, strategy, size):
# strategy coeficients
t = 1.0 / math.sqrt(2. * math.sqrt(size))
t0 = 1.0 / math.sqrt(2. * size)
n = random.gauss(0, 1)
t0_n = t0 * n
# modify strategy
strategy.size *= math.exp(t0_n + t * random.gauss(0, 1))
# modify size
layer.size += round(strategy.size * random.gauss(0, 1))
layer.size = int(layer.size)
if layer.size < Config.MIN_LAYER_SIZE:
layer.size = Config.MIN_LAYER_SIZE
if layer.size > Config.MAX_LAYER_SIZE:
layer.size = Config.MAX_LAYER_SIZE
def mutateDropout(self, layer, strategy, size):
# strategy coeficients
t = 1.0 / math.sqrt(2. * math.sqrt(size))
t0 = 1.0 / math.sqrt(2. * size)
n = random.gauss(0, 1)
t0_n = t0 * n
# modify strategy
strategy.dropout *= math.exp(t0_n + t * random.gauss(0, 1))
# modify dropout
layer.dropout += strategy.dropout * random.gauss(0, 1)
if layer.dropout < 0.0:
layer.dropout = 0
if layer.dropout > 0.9:
layer.dropout = 0.9
def mutateActivation(self, layer, strategy, size):
layer.activation = random.choice(Config.ACTIVATIONS)
def mutateLayer(self, individual):
# select layer random
l = random.randint(0, len(individual.layers)-1)
layer = individual.layers[l]
strategy = individual.strategy.blocks[l]
mutfunc = roulette([self.mutateSize, self.mutateDropout, self.mutateActivation],
[PROB_CHANGE_LAYER_SIZE, PROB_CHANGE_DROPOUT, PROB_CHANGE_ACTIVATION])
if mutfunc:
mutfunc(layer, strategy, len(individual.layers))
return individual,
def addLayer(self, individual):
l = random.randint(0, len(individual.layers)-1)
individual.layers.insert(l, Layer().randomInit())
individual.strategy.blocks.insert(l, Block().randomInit())
return individual,
def delLayer(self, individual):
if len(individual.layers)>1:
l = random.randint(0, len(individual.layers)-1)
del individual.layers[l]
del individual.strategy.blocks[l]
return individual,
def mutate(self, individual):
mutfunc = roulette([self.mutateLayer, self.addLayer, self.delLayer],
[PROB_MUTATE_LAYER, PROB_ADD_LAYER, PROB_DEL_LAYER])
if mutfunc:
return mutfunc(individual)
assert len(individual.layers) == len(individual.strategy.blocks)
return individual,