-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain_async.py
142 lines (111 loc) · 4.26 KB
/
main_async.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import sys
import array
import random
import pickle
import numpy as np
import multiprocessing
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
from individual import Individual, initIndividual
from fitness import Fitness
from mutation import Mutation
from crossover import Crossover
import paralg
from dataset import load_data
from config import Config
from utils import error
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--trainset', help='filename of training set')
parser.add_argument('--testset', help='filename of test set')
parser.add_argument('--id', help='computation id')
parser.add_argument('--checkpoint', help='checkpoint file to load the initial state from')
args = parser.parse_args()
trainset_name = args.trainset
testset_name = args.testset
id = args.id
if id is None:
id = ""
checkpoint_file = args.checkpoint
# for classification fitness is accuracy, for approximation fitness is error
if Config.task_type == "classification":
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
else:
creator.create("FitnessMax", base.Fitness, weights=(-1.0,))
creator.create("Individual", Individual, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
# Structure initializers
toolbox.register("individual", initIndividual, creator.Individual)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
# use multiple processors
#pool = multiprocessing.Pool(5)
#toolbox.register("map", pool.map)
# register operators
fit = Fitness("data/"+trainset_name)
mut = Mutation()
cross = Crossover()
toolbox.register("evaluate", fit.evaluate)
toolbox.register("mate", cross.cxOnePoint)
toolbox.register("mutate", mut.mutate)
toolbox.register("select", tools.selTournament, tournsize=3)
def main(id, checkpoint_name=None):
# random.seed(64)
if checkpoint_name:
# A file name has been given, then load the data from the file
cp = pickle.load(open(checkpoint_name, "rb"))
pop = cp["population"]
start_gen = cp["generation"] + 1
hof = cp["halloffame"]
logbook = cp["logbook"]
random.setstate(cp["rndstate"])
else:
pop = toolbox.population(n=Config.pop_size)
start_gen = 0
hof = tools.HallOfFame(1)
logbook = tools.Logbook()
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max)
pop, log = paralg.myAsyncEA(pop, start_gen, toolbox, cxpb=0.6, mutpb=0.2, ngen=Config.ngen,
stats=stats, halloffame=hof, logbook=logbook, verbose=True,
id=id)
return pop, log, hof
if __name__ == "__main__":
# load the whole data
X_train, y_train = load_data("data/"+trainset_name)
X_test, y_test = load_data("data/"+testset_name)
# set cfg
Config.input_shape = X_train[0].shape
Config.noutputs = y_train.shape[1]
# print(Config.input_shape, Config.noutputs)
if checkpoint_file is None:
pop, log, hof = main(id)
else:
pop, log, hof = main(id, checkpoint_file)
network = hof[0].createNetwork()
network.summary()
print( hof[0] )
print( hof[0].fitness )
# learn on the whole set
#
E_train, E_test = [], []
for _ in range(10):
network = hof[0].createNetwork()
network.fit(X_train, y_train,
batch_size=Config.batch_size, nb_epoch=Config.epochs, verbose=0)
yy_train = network.predict(X_train)
E_train.append(error(yy_train, y_train))
yy_test = network.predict(X_test)
E_test.append(error(yy_test, y_test))
def print_stat(E, name):
print("E_{:6} avg={:.4f} std={:.4f} min={:.4f} max={:.4f}".format(name,
np.mean(E),
np.std(E),
np.min(E),
np.max(E)))
print_stat(E_train, "train")
print_stat(E_test, "test")