diff --git a/requirements.txt b/requirements.txt index 1438e5ada..2eb988b4d 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ qiskit>=0.23.1 -pennylane>=0.12.0 +git+https://github.com/PennyLaneAI/pennylane.git numpy networkx>=2.2;python_version>'3.5' networkx>=2.2,<2.4;python_version=='3.5' diff --git a/tests/test_integration.py b/tests/test_integration.py index be3cddc01..d82ad9bac 100644 --- a/tests/test_integration.py +++ b/tests/test_integration.py @@ -2,6 +2,7 @@ import numpy as np import pennylane as qml +from pennylane.numpy import tensor import pytest import qiskit import qiskit.providers.aer as aer @@ -311,6 +312,140 @@ def basisstate(): assert np.allclose(np.abs(dev.state) ** 2, np.abs(expected_state) ** 2, **tol) +class TestPLTemplates: + """Integration tests for checking certain PennyLane templates.""" + + def test_random_layers_tensor_unwrapped(self, monkeypatch): + """Test that if random_layer() receives a one element PennyLane tensor, + then it is unwrapped successfully. + + The test involves using RandomLayers, which then calls random_layer + internally. Eventually each gate used by random_layer receives a single + scalar. + """ + dev = qml.device("qiskit.aer", wires=4) + + lst = [] + + # Mock function that accumulates gate parameters + mock_func = lambda par, wires: lst.append(par) + + with monkeypatch.context() as m: + + # Mock the gates used in RandomLayers + m.setattr(qml.templates.layers.random, "RX", mock_func) + m.setattr(qml.templates.layers.random, "RY", mock_func) + m.setattr(qml.templates.layers.random, "RZ", mock_func) + + @qml.qnode(dev) + def circuit(phi=None): + qml.templates.layers.RandomLayers(phi, wires=list(range(4))) + return qml.expval(qml.PauliZ(0)) + + # RandomLayers loops over the random_layer function, with each call to random_layer + # being passed a `np.tensor` scalar. + phi = qml.numpy.tensor([[0.04439891, 0.14490549, 3.29725643, 2.51240058]]) + + # Call the QNode, accumulate parameters + circuit(phi=phi) + + # Check parameters + assert all([isinstance(x, float) for x in lst]) + + def test_tensor_unwrapped_gradient_no_error(self, monkeypatch): + """Tests that the gradient calculation of a circuit that contains a + RandomLayers template taking a PennyLane tensor as differentiable + argument executes without error. + + The main aim of the test is to check that unwrapping a single element + tensor does not cause errors. + """ + dev = qml.device("qiskit.aer", wires=4) + + @qml.qnode(dev) + def circuit(phi): + qml.templates.layers.RandomLayers(phi, wires=list(range(4))) + return qml.expval(qml.PauliZ(0)) + + phi = qml.numpy.tensor([[0.04439891, 0.14490549, 3.29725643, 2.51240058]]) + + # Check that the jacobian executes without errors + qml.jacobian(circuit)(phi) + + def test_single_gate_parameter(self, monkeypatch): + """Test that when supplied a PennyLane tensor, a QNode passes an + unwrapped tensor as the argument to a gate taking a single parameter""" + dev = qml.device("qiskit.aer", wires=4) + + @qml.qnode(dev) + def circuit(phi=None): + for y in phi: + for idx, x in enumerate(y): + qml.RX(x, wires=idx) + return qml.expval(qml.PauliZ(0)) + + phi = tensor([[0.04439891, 0.14490549, 3.29725643, 2.51240058]]) + + with qml._queuing.OperationRecorder() as rec: + circuit(phi=phi) + + for i in range(phi.shape[1]): + # Test each rotation applied + assert rec.queue[0].name == "RX" + assert len(rec.queue[0].parameters) == 1 + + # Test that the gate parameter is not a PennyLane tensor, but a + # float + assert not isinstance(rec.queue[0].parameters[0], tensor) + assert isinstance(rec.queue[0].parameters[0], float) + + def test_multiple_gate_parameter(self): + """Test that a QNode handles passing multiple tensor objects to the + same gate without an error""" + dev = qml.device("qiskit.aer", wires=1) + + @qml.qnode(dev) + def circuit(phi=None): + for idx, x in enumerate(phi): + qml.Rot(*x, wires=idx) + return qml.expval(qml.PauliZ(0)) + + phi = tensor([[0.04439891, 0.14490549, 3.29725643]]) + + circuit(phi=phi) + + def test_multiple_gate_parameter(self): + """Test that when supplied a PennyLane tensor, a QNode passes arguments + as unwrapped tensors to a gate taking multiple parameters""" + dev = qml.device("qiskit.aer", wires=1) + + @qml.qnode(dev) + def circuit(phi=None): + for idx, x in enumerate(phi): + qml.Rot(*x, wires=idx) + return qml.expval(qml.PauliZ(0)) + + phi = tensor([[0.04439891, 0.14490549, 3.29725643]]) + + + with qml._queuing.OperationRecorder() as rec: + circuit(phi=phi) + + # Test the rotation applied + assert rec.queue[0].name == "Rot" + assert len(rec.queue[0].parameters) == 3 + + # Test that the gate parameters are not PennyLane tensors, + # but are instead floats + assert not isinstance(rec.queue[0].parameters[0], tensor) + assert isinstance(rec.queue[0].parameters[0], float) + + assert not isinstance(rec.queue[0].parameters[1], tensor) + assert isinstance(rec.queue[0].parameters[1], float) + + assert not isinstance(rec.queue[0].parameters[2], tensor) + assert isinstance(rec.queue[0].parameters[2], float) + class TestInverses: """Integration tests checking that the inverse of the operations are applied."""