forked from Dapp-Learning-DAO/Dapp-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ecc_secp256k1.py
112 lines (76 loc) · 3.64 KB
/
ecc_secp256k1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#coding:utf-8
#!/usr/bin/env python
import sys
if sys.version_info < (3,0):
print("Please use python3 version to run the code")
print("请使用 python3 运行代码")
sys.exit()
# Super simple Elliptic Curve Presentation. No imported libraries, wrappers, nothing.
# For educational purposes only.
# Below are the public specs for Bitcoin's curve - the secp256k1
Pcurve = 2**256 - 2**32 - 2**9 - 2**8 - 2**7 - 2**6 - 2**4 -1 # Finite field, 有限域
# 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
N = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 # 群的阶
Acurve = 0; Bcurve = 7 # 椭圆曲线的参数式. y^2 = x^3 + Acurve * x + Bcurve
Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
# 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424
# 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
GPoint = (Gx, Gy) # 椭圆曲线生成点, Base point.
#(Gx**3+7) % Pcurve == (Gy**2) % Pcurve, GPoint在椭圆曲线上, x/y坐标符合椭圆曲线方程
h = 1 # Subgroup cofactor, 子群辅因子为1, 就不参与运算了
# Pcurve, N, GPoint, secp256k1的函数式, 都是严格规定的, 严禁修改 !!!
class ECC256k1:
# 扩展欧几里得算法, https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
# Extended Euclidean Algorithm/'division' in elliptic curves
def inverse_mod(self, a, n=Pcurve):
lm, hm = 1, 0
low, high = a % n, n
while low > 1:
ratio = high //low
nm, new = hm - lm * ratio, high - low * ratio
lm, low, hm, high = nm, new, lm, low
return lm % n
def ECadd(self, a, b): # 椭圆曲线加法
LamAdd = ((b[1] - a[1]) * self.inverse_mod(b[0] - a[0], Pcurve)) % Pcurve
x = (LamAdd * LamAdd - a[0] - b[0]) % Pcurve
y = (LamAdd * (a[0] - x) - a[1]) % Pcurve
return (x,y)
def ECdouble(self, a): # 椭圆曲线倍乘
Lam = ((3 * a[0] * a[0] + Acurve) * self.inverse_mod((2 * a[1]), Pcurve)) % Pcurve
x = (Lam * Lam - 2 * a[0]) % Pcurve
y = (Lam * (a[0] - x) - a[1]) % Pcurve
return (x,y)
def EccMultiply(self, GenPoint, ScalarHex): # Double & Add. Not true multiplication
if ScalarHex == 0 or ScalarHex >= N: raise Exception("Invalid Scalar/Private Key")
ScalarBin = str(bin(ScalarHex))[2:]
Q = GenPoint
for i in range (1, len(ScalarBin)): # EC乘法转为标量乘法进行计算 减少运算量
Q = self.ECdouble(Q)
if ScalarBin[i] == "1":
Q = self.ECadd(Q, GenPoint); # print "ADD", Q[0]; print
return (Q)
def publicKey(self, privKey):
return self.EccMultiply(GPoint, privKey)
def compressedPubkey(self, pubKey):
fill = str(hex(pubKey[0])[2:]).zfill(64)
if pubKey[1] % 2 == 1: # If the Y value for the Public Key is odd.
return ("03" + fill)
else: # Or else, if the Y value is even.
return ("02" + fill)
def uncompressedPubkey(self, pubKey):
return ("04" + "%064x" % pubKey[0] + "%064x" % pubKey[1])
def main():
priv_key = 0x1111111111111111111111111111111111111111111111111111111111111111
ecc = ECC256k1()
PublicKey = ecc.publicKey(priv_key)
print("私钥:")
print(priv_key)
print("未压缩公钥 (坐标):")
print(PublicKey)
print("未压缩公钥 (十六进制):")
print(ecc.uncompressedPubkey(PublicKey))
print("压缩公钥:")
print(ecc.compressedPubkey(PublicKey))
if __name__ == "__main__":
main()