-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsphere_balloon.cpp
283 lines (254 loc) · 7.96 KB
/
sphere_balloon.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#include "sphere_balloon.h"
/*
*@param Ra Raleigh number
*@return External Nusselt Number according to (1)
*/
double Sphere_balloon::get_Nu_ext(double Ra, double Re, double Pr) const {
double Nu_n;
if(Ra < 1.5E8) {
Nu_n = 2.0 + 0.6*pow(Ra,0.25);
} else {
Nu_n = 0.1*pow(Ra, 0.34);
}
double Nu_f;
if(Re < 5E4) {
Nu_f = 2 + 0.47*sqrt(Re)*pow(Pr, (1./3.));
} else {
Nu_f = (0.0262*pow(Re, 0.8) - 615.)*pow(Pr, (1./3.));
}
return fmax(Nu_f, Nu_n);
}
/*
*@param T_s Surface temperature of sphere (K)
*@param el Elevation (m)
*@return Power transferred from sphere to surrounding atmosphere due to convection(W)
*/
double Sphere_balloon::get_q_ext(double T_s, double el, double v) const {
double T_atm = atm->get_T(el);
double p_atm = atm->get_P(el);
double rho_atm = atm->get_rho(el);
double Pr_atm = atm->get_Pr(T_atm);
double T_avg = 0.5*(T_atm + T_s);
double rho_avg = p_atm/(atm->Rsp_air*T_avg);
double Pr_avg = atm->get_Pr(T_avg);
double exp_coeff = 1./T_avg;
double kin_visc = atm->get_visc(T_avg)/rho_avg;
double Ra = Pr_avg*atm->get_g(el)*fabs(T_s-T_atm)*pow(diameter,3)*exp_coeff/(kin_visc*kin_visc);
double Re = rho_atm*v*diameter/atm->get_visc(T_atm);
double Nu = get_Nu_ext(Ra, Re, Pr_atm);
double k = atm->get_cond(T_avg);
double h = Nu*k/diameter;
return h*surfArea*(T_s-T_atm);
}
/*
*@param q_rad Power input from external radiation (W)
*@param T_S Surface temperature (K)
*@param el Elevation (m)
*@return The sum of power input to the balloon surface (W)
*/
double Sphere_balloon::get_sum_q_surf(double q_rad, double T_s, double el, double v) const {
double q_ce = -get_q_ext(T_s, el, v);
double q_re = -emissEnv*SB_CONST*pow(T_s,4)*surfArea;
return q_rad + q_ce + q_re;
}
/*
*@param q_rad Power input from external radiation (W)
*@param diameter Balloon diameter (m)
*@param Elevation (m)
*@param Balloon velocity (m/s)
*@return Surface temperature (K), solved to steady state using NR method
*/
double Sphere_balloon::solve_T_surf(double q_rad, double el, double v) const {
double dT = 1; //initial guesses
double T_s = atm->get_T(el)+10; //T_s > T_atm
for(int i = 0; i < 10; i++) { //10 iterations should be enough
double q2 = get_sum_q_surf(q_rad, T_s+dT, el, v);
double q1 = get_sum_q_surf(q_rad, T_s, el, v);
double dqdT = (q2-q1)/dT;
dT = q1/dqdT;
T_s -= dT;
if(fabs(dT) < 1E-10) break;
}
return T_s;
}
/*
*@param Ra Internal balloon Raleigh Number
*@return Internal Nusselt number according to (1)
*/
double Sphere_balloon::get_Nu_int(double Ra) const {
if(Ra < 1.35E8) {
return 2.5*(2+0.6*pow(Ra,0.25));
} else {
return 0.325*pow(Ra, 0.333);
}
}
/*
*@param T_s Surface temperature (K)
*@param T_i Internal temperature (K)
*@param el Elevation (m)
*@return The power input from the interior to the surface of the balloon due to convection (W)
*/
double Sphere_balloon::get_q_int(double T_s, double T_i, double el) const {
double p_atm = atm->get_P(el);
double T_avg = 0.5*(T_s+T_i);
double rho_avg = p_atm/(atm->Rsp_air*T_avg);
double Pr = atm->get_Pr(T_avg);
double exp_coeff = 1./T_avg;
double kin_visc = atm->get_visc(T_avg)/rho_avg;
double Ra = Pr*atm->get_g(el)*fabs(T_i-T_s)*pow(diameter,3)*exp_coeff/(kin_visc*kin_visc);
double Nu = get_Nu_int(Ra);
double k = atm->get_cond(T_avg);
double h = Nu*k/diameter;
return h*surfArea*(T_i-T_s);
}
/*
* @param T_s Balloon surface temperature (K)
* @param T_i Internal balloon temperature (K)
* @param el Elevation (m)
* @return The sum of a power inputs to the balloon interior (W)
*/
double Sphere_balloon::get_sum_q_int(double T_s, double T_i, double el) const {
double q_ci = -get_q_int(T_s, T_i, el);
//should there even be IR transfer between internal air & balloon surf?
//i dont think so
//double q_ri = 0*E_int*SB_CONST*(pow(T_s,4)-pow(T_i,4))*surface_area;
return q_ci;// + q_ri;
}
/*
* @param T_s Balloon surface temperature (K)
* @param el Elevation (m)
* @return Internal temperature of balloon using NR method to steady state
* This method is pretty useless as T_i will just go to T_s unless their is
* another heat source inside--but if you add some internal heat source (panels)
* it could come in handy
*/
double Sphere_balloon::solve_T_i(double T_s, double el) const {
double T_i = T_s + 10;
double dT = 1;
for(int i = 0; i < 10; i++) {
double q1 = get_sum_q_int(T_s, T_i, el);
double q2 = get_sum_q_int(T_s, T_i+dT, el);
double dqdT = (q2 - q1)/dT;
dT = q1/dqdT;
T_i -= dT;
if(fabs(dT) < 1E-11) break;
}
return T_i;
}
/*
* @param lat Balloon Lattitude (rad)
* @param el Balloon Elevation (m)
* @param h Solar Hour Angle (rad)
* @return The total power input to the surface of the balloon from radiation (W)
*/
double Sphere_balloon::get_q_rad(double lat, double el, double h) const {
double hca = asin(RE/(RE+el)); //half cone angle
double vf = 0.5*(1. - cos(hca));
double zen = rad->get_zenith(lat, h);
double direct_I = rad->get_direct_SI(zen, el);
double power_direct = direct_I*totAbs*projArea;
double diffuse_I = rad->get_diffuse_SI(zen, el);
double power_diffuse = diffuse_I*totAbs*(1.-vf)*surfArea;
double reflected_I = rad->get_reflected_SI(zen, el);
double power_reflected = reflected_I*totAbs*vf*surfArea;
double earth_IR = rad->get_earth_IR(el);
double power_earth_IR = earth_IR*totAbs*vf*surfArea;
double sky_IR = rad->get_sky_IR(el);
double power_sky_IR = sky_IR*totAbs*(1.-vf)*surfArea;
return power_direct+power_diffuse+power_reflected+power_earth_IR+power_sky_IR;
}
/*
* @return Balloon volume (m^3);
*/
double Sphere_balloon::get_vol() const {
return (4./3.)*PI*pow(0.5*diameter,3);
}
double Sphere_balloon::get_cs_area() const{
return PI*diameter*diameter/4.;
}
/*
* @return Balloon skin thermal mass (J/K)
*/
double Sphere_balloon::get_therm_mass() const {
return massEnv*cpEnv;
}
/*
* @return Total balloon mass (kg)
*/
double Sphere_balloon::get_mass() const {
return massEnv + massPayload;
}
/*
* @return The drag coefficient
*/
double Sphere_balloon::get_Cd(double v, double el) const {
return 0.8;
double Re = atm->get_rho(el)*fabs(v)*diameter/atm->get_visc(atm->get_T(el));
unsigned int i = 0;
for(i = 0; i < cd_arr.size(); i++) {
if(cd_arr[i].Re>Re) break;
}
if(i==0) return cd_arr[0].Cd;
double Cd = (cd_arr[i].Cd - cd_arr[i-1].Cd)/(cd_arr[i].Re - cd_arr[i-1].Re);
Cd *= (Re - cd_arr[i-1].Re);
Cd += cd_arr[i-1].Cd;
return Cd;
}
/*
* @return The virtual mass coefficient
*/
double Sphere_balloon::get_virt_mass() const {
return vmCoeff;
}
void Sphere_balloon::read_balloon_coeffs() {
FILE * in = fopen("balloon.dat", "r");
char line [BUFSIZ];
if(in == NULL) {
printf("missing file: balloon.dat\n");
exit(0);
} else {
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &diameter);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &massPayload);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &rhoEnv);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &envThickness);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &cpEnv);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &vmCoeff);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &radAbs);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &radTrans);
fgets(line, BUFSIZ, in);
sscanf(line, "%lg", &radRef);
}
fclose(in);
in = fopen("drag_sphere.dat", "r");
if(in == NULL) {
printf("missing file: drag_sphere.dat\n");
exit(0);
} else {
while(fgets(line, BUFSIZ, in)) {
drag ref;
sscanf(line, "%lg %lg", &ref.Re, &ref.Cd);
cd_arr.push_back(ref);
}
}
}
Sphere_balloon::Sphere_balloon(Std_atm * _atm, Rad_flux * _rad) {
read_balloon_coeffs();
surfArea = PI*diameter*diameter;
projArea = 0.25*PI*diameter*diameter;
massEnv = surfArea*rhoEnv*envThickness;
atm = _atm;
rad = _rad;
radRef = radRef + radRef*radRef + radRef*radRef*radRef;
emissEnv = radAbs;
totAbs = radAbs + radAbs*radTrans + radAbs*radTrans*radRef;
}
Sphere_balloon::~Sphere_balloon() {
}