Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

每次识别都会重新加载模型 #10

Open
zhaohaao111 opened this issue Feb 8, 2018 · 2 comments
Open

每次识别都会重新加载模型 #10

zhaohaao111 opened this issue Feb 8, 2018 · 2 comments

Comments

@zhaohaao111
Copy link

我在用你的程序做验证码识别,每次识别都会重新加载模型,有什么办法只让模型加载一次吗?

@sloanyyc
Copy link

同求,需要吧 tf.constant(input_images) 改成 tf.var... 但是不会呀

@sloanyyc
Copy link

已经处理好了,
captcha_model.py 中增加方法

def test(images, keep_prob):
images = tf.reshape(images, [-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])

with tf.variable_scope('conv1') as scope:
    kernel = _weight_variable('weights', shape=[3, 3, 1, 64])
    biases = _bias_variable('biases', [64])
    pre_activation = tf.nn.bias_add(_conv2d(images, kernel), biases)
    conv1 = tf.nn.relu(pre_activation, name=scope.name)

pool1 = _max_pool_2x2(conv1, name='pool1')

with tf.variable_scope('conv2') as scope:
    kernel = _weight_variable('weights', shape=[3, 3, 64, 64])
    biases = _bias_variable('biases', [64])
    pre_activation = tf.nn.bias_add(_conv2d(pool1, kernel), biases)
    conv2 = tf.nn.relu(pre_activation, name=scope.name)

pool2 = _max_pool_2x2(conv2, name='pool2')

with tf.variable_scope('conv3') as scope:
    kernel = _weight_variable('weights', shape=[3, 3, 64, 64])
    biases = _bias_variable('biases', [64])
    pre_activation = tf.nn.bias_add(_conv2d(pool2, kernel), biases)
    conv3 = tf.nn.relu(pre_activation, name=scope.name)

pool3 = _max_pool_2x2(conv3, name='pool3')

with tf.variable_scope('conv4') as scope:
    kernel = _weight_variable('weights', shape=[3, 3, 64, 64])
    biases = _bias_variable('biases', [64])
    pre_activation = tf.nn.bias_add(_conv2d(pool3, kernel), biases)
    conv4 = tf.nn.relu(pre_activation, name=scope.name)

pool4 = _max_pool_2x2(conv4, name='pool4')

with tf.variable_scope('local1') as scope:
    batch_size = 1  # images.get_shape()[0].value
    reshape = tf.reshape(pool4, [batch_size, -1])
    # dim = reshape.get_shape()[1].value
    # dim = 512  # for 26x60
    dim = 2048 # for 52x120
    # dim = 3200 # for 70x160
    weights = _weight_variable('weights', shape=[dim, 1024])
    biases = _bias_variable('biases', [1024])
    local1 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)

local1_drop = tf.nn.dropout(local1, keep_prob)

with tf.variable_scope('softmax_linear') as scope:
    weights = _weight_variable('weights', shape=[1024, CHARS_NUM * CLASSES_NUM])
    biases = _bias_variable('biases', [CHARS_NUM * CLASSES_NUM])
    softmax_linear = tf.add(tf.matmul(local1_drop, weights), biases, name=scope.name)

return tf.reshape(softmax_linear, [-1, CHARS_NUM, CLASSES_NUM])

调用模型

def input_image(image_path, image_height, image_width):
image = Image.open(image_path)
image_gray = image.convert('L')
image_resize = image_gray.resize(size=(image_width, image_height))
image.close()
input_img = np.array(image_resize, dtype='float32')
input_img = np.multiply(input_img.flatten(), 1. / 255) - 0.5
return np.reshape(input_img, (image_height, image_width, 1))

tf.placeholder(tf.float32, [None, image_height, image_width, 1]) # 特征向量
logits = captcha.test(self.X, keep_prob=1)
...
image = input_image(img, self.image_height, self.image_width)
...
predict_result = sess.run(self.predict, feed_dict={self.X: [image]})

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants