forked from prassepaul/mlmed_ranking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathranking_model.py
529 lines (400 loc) · 21.9 KB
/
ranking_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
from scoring_functions import nn_baseline_make_score_fn, paccmann_make_score_fn
import numpy as np
import tensorflow as tf
from tensorflow_serving.apis import input_pb2
import os
import tensorflow_ranking as tfr
def eval_metric_fns():
"""Returns a dict from name to metric functions.
Returns:
A dict mapping from metric name to a metric function with above signature.
"""
metric_fns = {}
metric_fns.update({
"metric/ndcg@%d" % topn: tfr.metrics.make_ranking_metric_fn(
tfr.metrics.RankingMetricKey.NDCG, topn=topn)
for topn in [1, 3, 5, 10, 390]
})
return metric_fns
class Model():
def __init__(self,
scoring="paccmann",
loss="mse",
model_dir="ranking_model_dir",
padding_label=0,
label_feature="relevance",
n_context_feature=2128,
n_example_feature=155,
list_size=390,
cell_wise=True,
smiles_vocabulary_size = 28):
"""
model function for a GDSC ranking model
scoring: str, type of scoring function to use "paccmann" or "nn_baseline"
loss: str, type of loss to use "approx_ndcg" or "mse"
padding_label: int, padding label for shorter context lists (usually should be 0 so that those values are ignored)
label_feature, str, name of the label feature
n_context_feature: int, number of cell features
n_example feature: int, number of drug features
list_size: size of the longest example list, all other lists are padded to that size
model_dir: path were trained model is stored
"""
self.n_context_feature = n_context_feature
self.n_example_feature = n_example_feature
self.padding_label = padding_label
self.list_size = list_size
self.label_feature = label_feature
self.model_dir = model_dir
self.scoring = scoring
self.batch_size = 1 # currently only batch size of 1 possible due to ranking
self.cell_wise = cell_wise
self.smiles_vocabulary_size = smiles_vocabulary_size
# define the loss fn
if (loss == "mse"):
loss = tfr.losses.RankingLossKey.MEAN_SQUARED_LOSS
elif(loss == "approx_ndcg"):
loss = tfr.losses.RankingLossKey.APPROX_NDCG_LOSS
else:
raise(NotImplementedError("loss has to be 'approx_ndcg' or 'mse'"))
self.loss_fn = tfr.losses.make_loss_fn(loss)
def train(self,
learning_rate=0.05,
num_train_steps = 15 * 10000,
train_data_path='data/tfrecords/train.tfrecord',
eval_data_path=None):
# eval data is currently just used for verbose during training
if(eval_data_path is None):
eval_data_path = train_data_path
optimizer = tf.compat.v1.train.AdagradOptimizer(learning_rate=learning_rate)
def context_feature_columns():
"""Returns context feature names to column definitions."""
dtype=tf.dtypes.float32 if self.cell_wise else tf.dtypes.int64
context_feature_column = tf.feature_column.numeric_column(
"query_features", shape= (self.n_context_feature), default_value=None, dtype=dtype
)
return {"query_features": context_feature_column}
def example_feature_columns():
dtype= tf.dtypes.int64 if self.cell_wise else tf.dtypes.float32
example_feature_column = tf.feature_column.numeric_column(
"document_features", shape=(self.n_example_feature), default_value=None, dtype=dtype
)
print("def example feature clolumns")
return {"document_features": example_feature_column}
def make_transform_fn():
def _transform_fn(features, mode):
"""Defines transform_fn."""
context_features, example_features = tfr.feature.encode_listwise_features(
features=features,
context_feature_columns=context_feature_columns(),
example_feature_columns=example_feature_columns(),
mode=mode,
scope="transform_layer")
return context_features, example_features
return _transform_fn
def _train_op_fn(loss):
"""Defines train op used in ranking head."""
update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
minimize_op = optimizer.minimize(
loss=loss, global_step=tf.compat.v1.train.get_global_step())
train_op = tf.group([update_ops, minimize_op])
return train_op
ranking_head = tfr.head.create_ranking_head(
loss_fn=self.loss_fn,
eval_metric_fns=eval_metric_fns(),
train_op_fn=_train_op_fn)
# define the neural network
if(self.scoring == "paccmann"):
self.model_fn = tfr.model.make_groupwise_ranking_fn(
group_score_fn=paccmann_make_score_fn(list_size=self.list_size, cell_wise=self.cell_wise,
smiles_vocabulary_size = self.smiles_vocabulary_size),
transform_fn=make_transform_fn(),
group_size=1,
ranking_head=ranking_head)
elif(self.scoring == "nn_baseline"):
self.model_fn = tfr.model.make_groupwise_ranking_fn(
group_score_fn=nn_baseline_make_score_fn(
hidden_layer_dims = ["64", "32", "16"],
dropout_rate=0.4,
context_feature_columns=context_feature_columns,
example_feature_columns=example_feature_columns,
list_size=self.list_size, cell_wise=self.cell_wise),
transform_fn= make_transform_fn(),
group_size=1,
ranking_head=ranking_head)
else:
raise(NotImplementedError("scoring has to be 'paccmann' or 'nn_baseline'"))
# data input function
def input_fn(path, num_epochs=None):
if self.cell_wise:
context_feature_column = tf.feature_column.numeric_column(
"query_features", shape=(self.n_context_feature), default_value=-0., dtype=tf.dtypes.float32
)
else:
context_feature_column = tf.feature_column.numeric_column(
"query_features", shape=(self.n_context_feature), default_value=0, dtype=tf.dtypes.int64
)
context_feature_spec = tf.feature_column.make_parse_example_spec(
[context_feature_column])
label_column = tf.feature_column.numeric_column(
self.label_feature, dtype=tf.float32, default_value=self.padding_label)
if self.cell_wise:
example_feature_column = tf.feature_column.numeric_column(
"document_features", shape=(self.n_example_feature), default_value=0, dtype=tf.dtypes.int64
)
else:
example_feature_column = tf.feature_column.numeric_column(
"document_features", shape=(self.n_example_feature), default_value=-0., dtype=tf.dtypes.float32
)
example_feature_spec = tf.feature_column.make_parse_example_spec(
[example_feature_column, label_column])
dataset = tfr.data.build_ranking_dataset(
file_pattern=path,
data_format=tfr.data.ELWC,
batch_size=self.batch_size,
list_size=self.list_size,
context_feature_spec=context_feature_spec,
example_feature_spec=example_feature_spec,
reader=tf.data.TFRecordDataset,
shuffle=False,
num_epochs=num_epochs )
features = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
label = tf.squeeze(features.pop(self.label_feature), axis=2)
label = tf.cast(label, tf.float32)
return features, label
def train_and_eval_fn():
"""Train and eval function used by `tf.estimator.train_and_evaluate`."""
run_config = tf.estimator.RunConfig(
save_checkpoints_steps=5000)
ranker = tf.estimator.Estimator(
model_fn=self.model_fn,
model_dir=self.model_dir,
config=run_config)
train_input_fn = lambda: input_fn(train_data_path)
eval_input_fn = lambda: input_fn(eval_data_path)#,num_epochs=1)
train_spec = tf.estimator.TrainSpec(
input_fn=train_input_fn, max_steps=num_train_steps)
eval_spec = tf.estimator.EvalSpec(
name="eval",
input_fn=eval_input_fn,
throttle_secs=15)
return (ranker, train_spec, eval_spec)
ranker, train_spec, eval_spec = train_and_eval_fn()
tf.estimator.train_and_evaluate(ranker, train_spec, eval_spec)
self.ranker = ranker
def predict(self, test_size,
test_data_path = 'data/tfrecords/test.tfrecord'):
def context_feature_columns():
"""Returns context feature names to column definitions."""
dtype=tf.dtypes.float32 if self.cell_wise else tf.dtypes.int64
context_feature_column = tf.feature_column.numeric_column(
"query_features", shape= (self.n_context_feature), default_value=None, dtype=dtype
)
return {"query_features": context_feature_column}
def example_feature_columns():
dtype= tf.dtypes.int64 if self.cell_wise else tf.dtypes.float32
example_feature_column = tf.feature_column.numeric_column(
"document_features", shape=(self.n_example_feature), default_value=None, dtype=dtype
)
print("def example feature clolumns")
return {"document_features": example_feature_column}
def make_transform_fn():
def _transform_fn(features, mode):
"""Defines transform_fn."""
context_features, example_features = tfr.feature.encode_listwise_features(
features=features,
context_feature_columns=context_feature_columns(),
example_feature_columns=example_feature_columns(),
mode=mode,
scope="transform_layer")
return context_features, example_features
return _transform_fn
if not hasattr(self,'ranker'):
# define the neural network
# create dummy optimizer
optimizer = tf.compat.v1.train.AdagradOptimizer(learning_rate=0.03)
ranking_head = tfr.head.create_ranking_head(
loss_fn=self.loss_fn)
if(self.scoring == "paccmann"):
self.model_fn = tfr.model.make_groupwise_ranking_fn(
group_score_fn=paccmann_make_score_fn(list_size=self.list_size, cell_wise=self.cell_wise,
smiles_vocabulary_size = self.smiles_vocabulary_size),
transform_fn=make_transform_fn(),
group_size=1,
ranking_head=ranking_head)
elif(self.scoring == "nn_baseline"):
self.model_fn = tfr.model.make_groupwise_ranking_fn(
group_score_fn=nn_baseline_make_score_fn(
hidden_layer_dims = ["64", "32", "16"],
dropout_rate=0.4,
context_feature_columns=context_feature_columns,
example_feature_columns=example_feature_columns,
list_size=self.list_size, cell_wise=self.cell_wise),
transform_fn= make_transform_fn(),
group_size=1,
ranking_head=ranking_head)
run_config = tf.estimator.RunConfig(
save_checkpoints_steps=5000)
self.ranker = tf.estimator.Estimator(
model_fn=self.model_fn,
model_dir=self.model_dir,
config=run_config)
"""
predict the ranking relevances for a test tfrecord dataset at test_data_path
using the model in the ranking model dir,
returns the predictions
test_size: int, number of test examples
test_data_path: str, path to the test examples
"""
def predict_input_fn(path, num_epochs=None):
dtype_context = tf.dtypes.float32 if self.cell_wise else tf.dtypes.int64
default_context = 0. if self.cell_wise else 0
dtype_examples = tf.dtypes.int64 if self.cell_wise else tf.dtypes.float32
default_examples = 0 if self.cell_wise else 0.
context_feature_column = tf.feature_column.numeric_column(
"query_features", shape=(self.n_context_feature), default_value=default_context, dtype=dtype_context
)
context_feature_spec = tf.feature_column.make_parse_example_spec(
[context_feature_column])
label_column = tf.feature_column.numeric_column(
self.label_feature, dtype=tf.float32, default_value=self.padding_label)
example_feature_column = tf.feature_column.numeric_column(
"document_features", shape=(self.n_example_feature), default_value=default_examples, dtype=dtype_examples
)
example_feature_spec = tf.feature_column.make_parse_example_spec(
[example_feature_column, label_column])
dataset = tfr.data.build_ranking_dataset(
file_pattern=path,
data_format=tfr.data.ELWC,
batch_size=1,
list_size=self.list_size,
context_feature_spec=context_feature_spec,
example_feature_spec=example_feature_spec,
reader=tf.data.TFRecordDataset,
shuffle=False,
num_epochs=num_epochs)
features = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
print(features.keys())
print(self.label_feature)
label = tf.squeeze(features.pop(self.label_feature), axis=2)
return features
predictions = self.ranker.predict(input_fn=lambda: predict_input_fn(test_data_path))
# get the predictions
preds = []
for _ in range(test_size):
x = next(predictions)
assert(len(x) == self.list_size)
preds.append(x)
return(preds)
def predict_intermediate(self, test_size,
test_data_path = 'data/tfrecords/test.tfrecord',
other_output = 'gene_attention'):
def context_feature_columns():
"""Returns context feature names to column definitions."""
dtype=tf.dtypes.float32 if self.cell_wise else tf.dtypes.int64
context_feature_column = tf.feature_column.numeric_column(
"query_features", shape= (self.n_context_feature), default_value=None, dtype=dtype
)
return {"query_features": context_feature_column}
def example_feature_columns():
dtype= tf.dtypes.int64 if self.cell_wise else tf.dtypes.float32
example_feature_column = tf.feature_column.numeric_column(
"document_features", shape=(self.n_example_feature), default_value=None, dtype=dtype
)
print("def example feature clolumns")
return {"document_features": example_feature_column}
def make_transform_fn():
def _transform_fn(features, mode):
"""Defines transform_fn."""
context_features, example_features = tfr.feature.encode_listwise_features(
features=features,
context_feature_columns=context_feature_columns(),
example_feature_columns=example_feature_columns(),
mode=mode,
scope="transform_layer")
return context_features, example_features
return _transform_fn
if not hasattr(self,'ranker'):
# define the neural network
# create dummy optimizer
optimizer = tf.compat.v1.train.AdagradOptimizer(learning_rate=0.03)
ranking_head = tfr.head.create_ranking_head(
loss_fn=self.loss_fn)
if(self.scoring == "paccmann"):
self.model_fn = tfr.model.make_groupwise_ranking_fn(
group_score_fn=paccmann_make_score_fn(list_size=self.list_size, cell_wise=self.cell_wise,
smiles_vocabulary_size = self.smiles_vocabulary_size,
other_output = other_output),
transform_fn=make_transform_fn(),
group_size=1,
ranking_head=ranking_head)
elif(self.scoring == "nn_baseline"):
self.model_fn = tfr.model.make_groupwise_ranking_fn(
group_score_fn=nn_baseline_make_score_fn(
hidden_layer_dims = ["64", "32", "16"],
dropout_rate=0.4,
context_feature_columns=context_feature_columns,
example_feature_columns=example_feature_columns,
list_size=self.list_size),
transform_fn= make_transform_fn(),
group_size=1,
ranking_head=ranking_head)
run_config = tf.estimator.RunConfig(
save_checkpoints_steps=5000)
self.ranker = tf.estimator.Estimator(
model_fn=self.model_fn,
model_dir=self.model_dir,
config=run_config)
"""
predict the ranking relevances for a test tfrecord dataset at test_data_path
using the model in the ranking model dir,
returns the predictions
test_size: int, number of test examples
test_data_path: str, path to the test examples
"""
def predict_input_fn(path, num_epochs=None):
dtype_context = tf.dtypes.float32 if self.cell_wise else tf.dtypes.int64
default_context = 0. if self.cell_wise else 0
dtype_examples = tf.dtypes.int64 if self.cell_wise else tf.dtypes.float32
default_examples = 0 if self.cell_wise else 0.
context_feature_column = tf.feature_column.numeric_column(
"query_features", shape=(self.n_context_feature), default_value=default_context, dtype=dtype_context
)
context_feature_spec = tf.feature_column.make_parse_example_spec(
[context_feature_column])
label_column = tf.feature_column.numeric_column(
self.label_feature, dtype=tf.float32, default_value=self.padding_label)
example_feature_column = tf.feature_column.numeric_column(
"document_features", shape=(self.n_example_feature), default_value=default_examples, dtype=dtype_examples
)
example_feature_spec = tf.feature_column.make_parse_example_spec(
[example_feature_column, label_column])
dataset = tfr.data.build_ranking_dataset(
file_pattern=path,
data_format=tfr.data.ELWC,
batch_size=1,
list_size=self.list_size,
context_feature_spec=context_feature_spec,
example_feature_spec=example_feature_spec,
reader=tf.data.TFRecordDataset,
shuffle=False,
num_epochs=num_epochs)
features = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
print(features.keys())
print(self.label_feature)
label = tf.squeeze(features.pop(self.label_feature), axis=2)
return features
print('ranker: ' + str(self.ranker))
#print('ranker var names: ' + str(self.ranker.get_variable_names()))
predictions = self.ranker.predict(input_fn=lambda: predict_input_fn(test_data_path))
#print('prediction_keys: ' + str(predictions_dict.keys()))
print('predictions')
print(predictions)
print(next(predictions))
print(allo)
# get the predictions
preds = []
for _ in range(test_size):
x = next(predictions)
assert(len(x) == self.list_size)
preds.append(x)
return(preds)