forked from light-dawn/GIAL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
active.py
125 lines (112 loc) · 5.41 KB
/
active.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# encoding=utf-8
import torch
from tqdm import tqdm
import os
from dataset import image_transform
import numpy as np
from PIL import Image
from aft import *
from config import *
import random
def get_uncertainty(models, patch_path, idx):
models['classifier'].eval()
models['module'].eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
with torch.no_grad():
uncertainties = []
for candidate in tqdm(np.array(os.listdir(patch_path))[idx]):
patches_uncertainty = torch.tensor([]).cuda()
for patch in os.listdir(os.path.join(patch_path, candidate)):
image = Image.open(os.path.join(patch_path, candidate, patch))
image_tensor = image_transform(image)
image_tensor.unsqueeze_(0)
image_tensor = image_tensor.to(device)
_, features = models['classifier'](image_tensor)
pred_loss = models['module'](features)
pred_loss = pred_loss.view(pred_loss.size(0))
patches_uncertainty = torch.cat((patches_uncertainty, pred_loss), 0)
candidate_uncertainty = np.mean(patches_uncertainty.cpu().numpy().squeeze())
uncertainties.append(candidate_uncertainty)
return np.array(uncertainties)
def get_diversity(models, patch_root, idx):
candidates_probs = compute_all_probs(models, patch_root, idx)
diversities = []
for probs in candidates_probs:
# 每个candidate会有一个probs数组,第i行第j个元素代表第i个patch在第j个类别上的预测概率
# 计算主导类的索引
dominant_index = find_dominant_class(probs)
# 按照主导类预测概率大小对probs数组进行排序
sorted_probs = sort_probs(probs, dominant_index)
# 传入排好序的probs数组,按照majority selection原则选取其中的一部分
p = majority(sorted_probs)
# 将选择的部分patch的概率数组传入,计算这个candidate的样本价值
diversities.append(compute_diversity(p))
return np.array(diversities)
def get_uncertainty_and_diversity(models, patch_path, idx):
models['classifier'].eval()
models['module'].eval()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
uncertainties = []
diversities = []
all_probs = []
with torch.no_grad():
for candidate in tqdm(np.array(os.listdir(patch_path))[idx]):
candidate_probs = []
patches_uncertainty = torch.tensor([]).cuda()
for patch in os.listdir(os.path.join(patch_path, candidate)):
image = Image.open(os.path.join(patch_path, candidate, patch))
image_tensor = image_transform(image)
image_tensor.unsqueeze_(0)
image_tensor = image_tensor.to(device)
output_tensor, features = models['classifier'](image_tensor)
prob = F.softmax(output_tensor, dim=1)
pred_loss = models['module'](features)
pred_loss = pred_loss.view(pred_loss.size(0))
patches_uncertainty = torch.cat((patches_uncertainty, pred_loss), 0)
candidate_probs.append(prob.cpu().numpy().squeeze())
all_probs.append(np.array(candidate_probs))
candidate_uncertainty = np.mean(patches_uncertainty.cpu().numpy().squeeze())
uncertainties.append(candidate_uncertainty)
for probs in all_probs:
# 每个candidate会有一个probs数组,第i行第j个元素代表第i个patch在第j个类别上的预测概率
# 计算主导类的索引
dominant_index = find_dominant_class(probs)
# 按照主导类预测概率大小对probs数组进行排序
sorted_probs = sort_probs(probs, dominant_index)
# 传入排好序的probs数组,按照majority selection原则选取其中的一部分
p = majority(sorted_probs)
# 将选择的部分patch的概率数组传入,计算这个candidate的样本价值
diversities.append(compute_diversity(p))
return uncertainties, diversities
def active_sampling(strategy, indices, model):
if strategy == 'hybrid':
print("Computing uncertainty and diversity...")
uncertainty, diversity = get_uncertainty_and_diversity(model, PATCH_ROOT, indices)
# 结合两种策略筛选
arg_u = np.argsort(uncertainty)
arg_d = np.argsort(diversity)
assert len(arg_u) == len(arg_d)
rank = [np.argwhere(arg_u == i)[0][0] +
np.argwhere(arg_d == i)[0][0]
for i in range(len(arg_u))]
arg_rank = np.argsort(rank)
# 选择本轮的样本
selected_indices = list(np.array(indices)[arg_rank[-K:]])
elif STRATEGY == 'random':
print("Randomly select samples...")
indices = indices
random.shuffle(indices)
selected_indices = indices[:K]
elif STRATEGY == 'diversity':
print("Computing diversity...")
diversity = get_diversity(model, PATCH_ROOT, indices)
arg_d = np.argsort(diversity)
selected_indices = list(np.array(indices)[arg_d[-K:]])
elif STRATEGY == 'loss':
uncertainty = get_uncertainty(model, PATCH_ROOT, indices)
arg_u = np.argsort(uncertainty)
selected_indices = list(np.array(indices)[arg_u[-K:]])
else:
print("The strategy is not supported. ")
selected_indices = None
return selected_indices