-
Notifications
You must be signed in to change notification settings - Fork 349
/
Copy pathfine_tune.py
executable file
·124 lines (109 loc) · 3.9 KB
/
fine_tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import numpy as np
import argparse
import paddle
from paddleslim.common import load_config, load_onnx_model
from paddleslim.quant import quant_post_static
from paddleslim.quant import quant_recon_static
from dataset import COCOTrainDataset
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--config_path',
type=str,
default=None,
help="path of post training quantization config.",
required=True)
parser.add_argument(
'--save_dir',
type=str,
default='ptq_out',
help="directory to save compressed model.")
parser.add_argument(
'--devices',
type=str,
default='gpu',
help="which device used to compress.")
parser.add_argument(
'--algo', type=str, default='avg', help="post quant algo.")
parser.add_argument('--gpu', type=int, default=0, help='gpu index')
parser.add_argument(
'--recon_level',
type=str,
default='layer-wise',
help='reconstruction level')
parser.add_argument(
'--simulate_activation_quant',
type=bool,
default=False,
help='simulate activation quant')
parser.add_argument(
'--epochs', type=int, default=20, help='steps to reconstruct')
parser.add_argument(
'--lr', type=float, default=0.1, help='learning rate of reconstruct')
parser.add_argument(
'--limit', type=int, default=5, help='size of each region')
return parser
def main():
global config
config = load_config(FLAGS.config_path)
input_name = 'x2paddle_image_arrays' if config[
'arch'] == 'YOLOv6' else 'x2paddle_images'
dataset = COCOTrainDataset(
dataset_dir=config['dataset_dir'],
image_dir=config['val_image_dir'],
anno_path=config['val_anno_path'],
input_name=input_name)
train_loader = paddle.io.DataLoader(
dataset, batch_size=1, shuffle=True, drop_last=True, num_workers=0)
place = paddle.CUDAPlace(
FLAGS.gpu) if FLAGS.devices == 'gpu' else paddle.CPUPlace()
exe = paddle.static.Executor(place)
# since the type pf model converted from pytorch is onnx,
# use load_onnx_model firstly and rename the model_dir
load_onnx_model(config["model_dir"])
inference_model_path = config["model_dir"].rstrip().rstrip(
'.onnx') + '_infer'
quant_recon_static(
executor=exe,
model_dir=inference_model_path,
quantize_model_path=FLAGS.save_dir,
data_loader=train_loader,
model_filename='model.pdmodel',
params_filename='model.pdiparams',
batch_size=32,
batch_nums=10,
algo=FLAGS.algo,
hist_percent=0.999,
is_full_quantize=False,
bias_correction=False,
onnx_format=False,
weight_quantize_type='channel_wise_abs_max',
recon_level=FLAGS.recon_level,
simulate_activation_quant=FLAGS.simulate_activation_quant,
regions=None,
region_weights_names=None,
epochs=FLAGS.epochs,
lr=FLAGS.lr,
limit=FLAGS.limit)
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
paddle.set_device(FLAGS.devices)
main()