-
Notifications
You must be signed in to change notification settings - Fork 349
/
Copy pathpaddle_inference_eval.py
318 lines (289 loc) · 10.6 KB
/
paddle_inference_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import time
import os
import sys
import cv2
import numpy as np
import paddle
import paddleseg.transforms as T
from paddleseg.cvlibs import Config as PaddleSegDataConfig
from paddleseg.core.infer import reverse_transform
from paddleseg.utils.visualize import get_pseudo_color_map
from paddleseg.utils import metrics
from paddle.inference import create_predictor, PrecisionType
from paddle.inference import Config as PredictConfig
def _transforms(dataset):
transforms = []
if dataset == "human":
transforms.append(T.PaddingByAspectRatio(aspect_ratio=1.77777778))
transforms.append(T.Resize(target_size=[398, 224]))
transforms.append(T.Normalize())
elif dataset == "cityscape":
transforms.append(T.Normalize())
return transforms
def load_predictor(args):
"""
load predictor func
"""
rerun_flag = False
model_file = os.path.join(args.model_path, args.model_filename)
params_file = os.path.join(args.model_path, args.params_filename)
pred_cfg = PredictConfig(model_file, params_file)
pred_cfg.enable_memory_optim()
pred_cfg.switch_ir_optim(True)
if args.device == "GPU":
pred_cfg.enable_use_gpu(100, 0)
else:
pred_cfg.disable_gpu()
pred_cfg.set_cpu_math_library_num_threads(args.cpu_threads)
if args.use_mkldnn:
pred_cfg.enable_mkldnn()
if args.precision == "int8":
pred_cfg.enable_mkldnn_int8({
"conv2d", "depthwise_conv2d", "pool2d", "elementwise_mul"
})
if args.use_trt:
# To collect the dynamic shapes of inputs for TensorRT engine
dynamic_shape_file = os.path.join(args.model_path, "dynamic_shape.txt")
if os.path.exists(dynamic_shape_file):
pred_cfg.enable_tuned_tensorrt_dynamic_shape(dynamic_shape_file,
True)
print("trt set dynamic shape done!")
precision_map = {
"fp16": PrecisionType.Half,
"fp32": PrecisionType.Float32,
"int8": PrecisionType.Int8
}
pred_cfg.enable_tensorrt_engine(
workspace_size=1 << 30,
max_batch_size=1,
min_subgraph_size=4,
precision_mode=precision_map[args.precision],
use_static=True,
use_calib_mode=False, )
else:
pred_cfg.disable_gpu()
pred_cfg.set_cpu_math_library_num_threads(10)
pred_cfg.collect_shape_range_info(dynamic_shape_file)
print("Start collect dynamic shape...")
rerun_flag = True
predictor = create_predictor(pred_cfg)
return predictor, rerun_flag
def predict_image(args):
"""
predict image func
"""
transforms = _transforms(args.dataset)
transform = T.Compose(transforms)
# Step1: Load image and preprocess
im = cv2.imread(args.image_file).astype("float32")
data, _ = transform(im)
data = np.array(data)[np.newaxis, :]
# Step2: Prepare prdictor
predictor, rerun_flag = load_predictor(args)
# Step3: Inference
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[0])
input_handle.reshape(data.shape)
input_handle.copy_from_cpu(data)
warmup, repeats = 0, 1
if args.benchmark:
warmup, repeats = 20, 100
for i in range(warmup):
predictor.run()
start_time = time.time()
for i in range(repeats):
predictor.run()
results = output_handle.copy_to_cpu()
if rerun_flag:
print(
"***** Collect dynamic shape done, Please rerun the program to get correct results. *****"
)
return
total_time = time.time() - start_time
avg_time = float(total_time) / repeats
print(
f"[Benchmark]Average inference time: \033[91m{round(avg_time*1000, 2)}ms\033[0m"
)
# Step4: Post process
if args.dataset == "human":
results = reverse_transform(
paddle.to_tensor(results), im.shape, transforms, mode="bilinear")
results = np.argmax(results, axis=1)
result = get_pseudo_color_map(results[0])
# Step5: Save result to file
if args.save_file is not None:
result.save(args.save_file)
print(f"Saved result to \033[91m{args.save_file}\033[0m")
def eval(args):
"""
eval mIoU func
"""
# DataLoader need run on cpu
paddle.set_device("cpu")
data_cfg = PaddleSegDataConfig(args.dataset_config)
eval_dataset = data_cfg.val_dataset
batch_sampler = paddle.io.BatchSampler(
eval_dataset, batch_size=1, shuffle=False, drop_last=False)
loader = paddle.io.DataLoader(
eval_dataset,
batch_sampler=batch_sampler,
num_workers=0,
return_list=True)
predictor, rerun_flag = load_predictor(args)
intersect_area_all = 0
pred_area_all = 0
label_area_all = 0
input_names = predictor.get_input_names()
input_handle = predictor.get_input_handle(input_names[0])
output_names = predictor.get_output_names()
output_handle = predictor.get_output_handle(output_names[0])
total_samples = len(eval_dataset)
sample_nums = len(loader)
batch_size = int(total_samples / sample_nums)
predict_time = 0.0
time_min = float("inf")
time_max = float("-inf")
print("Start evaluating (total_samples: {}, total_iters: {}).".format(
total_samples, sample_nums))
for batch_id, data in enumerate(loader):
image = np.array(data[0])
label = np.array(data[1]).astype("int64")
ori_shape = np.array(label).shape[-2:]
input_handle.reshape(image.shape)
input_handle.copy_from_cpu(image)
start_time = time.time()
predictor.run()
results = output_handle.copy_to_cpu()
end_time = time.time()
timed = end_time - start_time
time_min = min(time_min, timed)
time_max = max(time_max, timed)
predict_time += timed
if rerun_flag:
print(
"***** Collect dynamic shape done, Please rerun the program to get correct results. *****"
)
return
logit = reverse_transform(
paddle.to_tensor(results),
ori_shape,
eval_dataset.transforms.transforms,
mode="bilinear")
pred = paddle.to_tensor(logit)
if len(
pred.shape
) == 4: # for humanseg model whose prediction is distribution but not class id
pred = paddle.argmax(pred, axis=1, keepdim=True, dtype="int32")
intersect_area, pred_area, label_area = metrics.calculate_area(
pred,
paddle.to_tensor(label),
eval_dataset.num_classes,
ignore_index=eval_dataset.ignore_index)
intersect_area_all = intersect_area_all + intersect_area
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
if batch_id % 100 == 0:
print("Eval iter:", batch_id)
sys.stdout.flush()
_, miou = metrics.mean_iou(intersect_area_all, pred_area_all,
label_area_all)
_, acc = metrics.accuracy(intersect_area_all, pred_area_all)
kappa = metrics.kappa(intersect_area_all, pred_area_all, label_area_all)
_, mdice = metrics.dice(intersect_area_all, pred_area_all, label_area_all)
time_avg = predict_time / sample_nums
print(
"[Benchmark]Batch size: {}, Inference time(ms): min={}, max={}, avg={}".
format(batch_size,
round(time_min * 1000, 2),
round(time_max * 1000, 1), round(time_avg * 1000, 1)))
infor = "[Benchmark] #Images: {} mIoU: {:.4f} Acc: {:.4f} Kappa: {:.4f} Dice: {:.4f}".format(
total_samples, miou, acc, kappa, mdice)
print(infor)
sys.stdout.flush()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path", type=str, help="inference model filepath")
parser.add_argument(
"--model_filename",
type=str,
default="model.pdmodel",
help="model file name")
parser.add_argument(
"--params_filename",
type=str,
default="model.pdiparams",
help="params file name")
parser.add_argument(
"--image_file",
type=str,
default=None,
help="Image path to be processed.")
parser.add_argument(
"--save_file",
type=str,
default=None,
help="The path to save the processed image.")
parser.add_argument(
"--dataset",
type=str,
default="human",
choices=["human", "cityscape"],
help="The type of given image which can be 'human' or 'cityscape'.", )
parser.add_argument(
"--dataset_config",
type=str,
default=None,
help="path of dataset config.")
parser.add_argument(
"--benchmark",
type=bool,
default=False,
help="Whether to run benchmark or not.")
parser.add_argument(
"--use_trt",
type=bool,
default=False,
help="Whether to use tensorrt engine or not.")
parser.add_argument(
"--device",
type=str,
default="GPU",
choices=["CPU", "GPU"],
help="Choose the device you want to run, it can be: CPU/GPU, default is GPU",
)
parser.add_argument(
"--precision",
type=str,
default="fp32",
choices=["fp32", "fp16", "int8"],
help="The precision of inference. It can be 'fp32', 'fp16' or 'int8'. Default is 'fp16'.",
)
parser.add_argument(
"--use_mkldnn",
type=bool,
default=False,
help="Whether use mkldnn or not.")
parser.add_argument(
"--cpu_threads", type=int, default=1, help="Num of cpu threads.")
args = parser.parse_args()
if args.image_file:
predict_image(args)
else:
eval(args)