-
Notifications
You must be signed in to change notification settings - Fork 349
/
Copy patheval.py
129 lines (111 loc) · 4.3 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import random
import paddle
import numpy as np
from tqdm import tqdm
from paddleseg.cvlibs import Config as PaddleSegDataConfig
from paddleseg.utils import worker_init_fn
from paddleseg.core.infer import reverse_transform
from paddleseg.utils import metrics
def parse_args():
parser = argparse.ArgumentParser(description='Model evaluation')
parser.add_argument(
'--model_dir',
type=str,
default=None,
help="inference model directory.")
parser.add_argument(
'--model_filename',
type=str,
default=None,
help="inference model filename.")
parser.add_argument(
'--params_filename',
type=str,
default=None,
help="inference params filename.")
parser.add_argument(
'--dataset_config',
type=str,
default=None,
help="path of dataset config.")
return parser.parse_args()
def eval(args):
exe = paddle.static.Executor(paddle.CUDAPlace(0))
inference_program, feed_target_names, fetch_targets = paddle.static.load_inference_model(
args.model_dir,
exe,
model_filename=args.model_filename,
params_filename=args.params_filename)
data_cfg = PaddleSegDataConfig(args.dataset_config)
eval_dataset = data_cfg.val_dataset
batch_sampler = paddle.io.BatchSampler(
eval_dataset, batch_size=1, shuffle=False, drop_last=False)
loader = paddle.io.DataLoader(
eval_dataset,
batch_sampler=batch_sampler,
num_workers=1,
return_list=True, )
total_iters = len(loader)
intersect_area_all = 0
pred_area_all = 0
label_area_all = 0
print("Start evaluating (total_samples: {}, total_iters: {})...".format(
len(eval_dataset), total_iters))
for (image, label) in tqdm(loader):
label = np.array(label).astype('int64')
ori_shape = np.array(label).shape[-2:]
image = np.array(image)
logits = exe.run(inference_program,
feed={feed_target_names[0]: image},
fetch_list=fetch_targets,
return_numpy=True)
paddle.disable_static()
logit = logits[0]
logit = reverse_transform(
paddle.to_tensor(logit),
ori_shape,
eval_dataset.transforms.transforms,
mode='bilinear')
pred = paddle.to_tensor(logit)
if len(
pred.shape
) == 4: # for humanseg model whose prediction is distribution but not class id
pred = paddle.argmax(pred, axis=1, keepdim=True, dtype='int32')
intersect_area, pred_area, label_area = metrics.calculate_area(
pred,
paddle.to_tensor(label),
eval_dataset.num_classes,
ignore_index=eval_dataset.ignore_index)
intersect_area_all = intersect_area_all + intersect_area
pred_area_all = pred_area_all + pred_area
label_area_all = label_area_all + label_area
class_iou, miou = metrics.mean_iou(intersect_area_all, pred_area_all,
label_area_all)
class_acc, acc = metrics.accuracy(intersect_area_all, pred_area_all)
kappa = metrics.kappa(intersect_area_all, pred_area_all, label_area_all)
class_dice, mdice = metrics.dice(intersect_area_all, pred_area_all,
label_area_all)
infor = "[EVAL] #Images: {} mIoU: {:.4f} Acc: {:.4f} Kappa: {:.4f} Dice: {:.4f}".format(
len(eval_dataset), miou, acc, kappa, mdice)
print(infor)
if __name__ == '__main__':
rank_id = paddle.distributed.get_rank()
place = paddle.CUDAPlace(rank_id)
args = parse_args()
paddle.enable_static()
eval(args)