-
Notifications
You must be signed in to change notification settings - Fork 349
/
Copy pathrun_uie.py
378 lines (327 loc) · 12.5 KB
/
run_uie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
import sys
import argparse
import json
import functools
from functools import partial
import numpy as np
import shutil
import paddle
import paddle.nn as nn
from paddle.io import Dataset, BatchSampler, DataLoader
from paddlenlp.transformers import AutoModelForTokenClassification, AutoTokenizer
from paddlenlp.datasets import load_dataset
from paddlenlp.data import Stack, Tuple, Pad, Dict
from paddlenlp.data.sampler import SamplerHelper
from paddlenlp.metrics import SpanEvaluator
from paddleslim.common import load_config
from paddleslim.auto_compression.compressor import AutoCompression
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--config_path',
type=str,
default=None,
help="path of compression strategy config.",
required=True)
parser.add_argument(
'--save_dir',
type=str,
default='output',
help="directory to save compressed model.")
parser.add_argument(
'--eval',
type=bool,
default=False,
help="whether validate the model only.")
return parser
def map_offset(ori_offset, offset_mapping):
"""
map ori offset to token offset
"""
for index, span in enumerate(offset_mapping):
if span[0] <= ori_offset < span[1]:
return index
return -1
def convert_example(example,
tokenizer,
max_seq_len,
multilingual=True,
is_test=False):
"""
example: {
title
prompt
content
result_list
}
"""
encoded_inputs = tokenizer(
text=[example["prompt"]],
text_pair=[example["content"]],
truncation=True,
max_seq_len=max_seq_len,
pad_to_max_seq_len=True,
return_attention_mask=True,
return_position_ids=True,
return_dict=False,
return_offsets_mapping=True)
encoded_inputs = encoded_inputs[0]
offset_mapping = [list(x) for x in encoded_inputs["offset_mapping"]]
bias = 0
for index in range(1, len(offset_mapping)):
mapping = offset_mapping[index]
if mapping[0] == 0 and mapping[1] == 0 and bias == 0:
bias = offset_mapping[index - 1][1] + 1 # Includes [SEP] token
if mapping[0] == 0 and mapping[1] == 0:
continue
offset_mapping[index][0] += bias
offset_mapping[index][1] += bias
start_ids = [0.0 for x in range(max_seq_len)]
end_ids = [0.0 for x in range(max_seq_len)]
for item in example["result_list"]:
start = map_offset(item["start"] + bias, offset_mapping)
end = map_offset(item["end"] - 1 + bias, offset_mapping)
start_ids[start] = 1.0
end_ids[end] = 1.0
if multilingual:
if not is_test:
tokenized_output = {
"input_ids": encoded_inputs["input_ids"],
"token_type_ids": encoded_inputs["token_type_ids"],
"start_ids": start_ids,
"end_ids": end_ids
}
else:
tokenized_output = {
"input_ids": encoded_inputs["input_ids"],
"token_type_ids": encoded_inputs["token_type_ids"],
}
else:
if not is_test:
tokenized_output = {
"input_ids": encoded_inputs["input_ids"],
"token_type_ids": encoded_inputs["token_type_ids"],
"pos_ids": encoded_inputs["position_ids"],
"att_mask": encoded_inputs["attention_mask"],
"start_ids": start_ids,
"end_ids": end_ids
}
else:
tokenized_output = {
"input_ids": encoded_inputs["input_ids"],
"token_type_ids": encoded_inputs["token_type_ids"],
"pos_ids": encoded_inputs["position_ids"],
"att_mask": encoded_inputs["attention_mask"],
}
return tokenized_output
def create_data_holder(multilingual=True):
"""
Define the input data holder for the glue task.
"""
return_list = []
input_ids = paddle.static.data(
name="input_ids", shape=[-1, -1], dtype="int64")
return_list = [input_ids]
token_type_ids = paddle.static.data(
name="token_type_ids", shape=[-1, -1], dtype="int64")
return_list.append(token_type_ids)
if not multilingual:
position_ids = paddle.static.data(
name="pos_ids", shape=[-1, -1], dtype="int64")
attention_mask = paddle.static.data(
name="att_mask", shape=[-1, -1], dtype="int64")
return_list.append(position_ids)
return_list.append(attention_mask)
start_ids = paddle.static.data(
name="start_ids", shape=[-1, 1], dtype="float32")
end_ids = paddle.static.data(name="end_ids", shape=[-1, 1], dtype="float32")
return_list.append(start_ids)
return_list.append(end_ids)
return return_list
def reader_proprecess(data_path, max_seq_len=512):
"""
read json
"""
with open(data_path, 'r', encoding='utf-8') as f:
for line in f:
json_line = json.loads(line)
content = json_line['content'].strip()
prompt = json_line['prompt']
# Model Input is aslike: [CLS] Prompt [SEP] Content [SEP]
# It include three summary tokens.
if max_seq_len <= len(prompt) + 3:
raise ValueError(
"The value of max_seq_len is too small, please set a larger value"
)
max_content_len = max_seq_len - len(prompt) - 3
if len(content) <= max_content_len:
yield json_line
else:
result_list = json_line['result_list']
json_lines = []
accumulate = 0
while True:
cur_result_list = []
for result in result_list:
if result['start'] + 1 <= max_content_len < result['end']:
max_content_len = result['start']
break
cur_content = content[:max_content_len]
res_content = content[max_content_len:]
while True:
if len(result_list) == 0:
break
elif result_list[0]['end'] <= max_content_len:
if result_list[0]['end'] > 0:
cur_result = result_list.pop(0)
cur_result_list.append(cur_result)
else:
cur_result_list = [
result for result in result_list
]
break
else:
break
json_line = {
'content': cur_content,
'result_list': cur_result_list,
'prompt': prompt
}
json_lines.append(json_line)
for result in result_list:
if result['end'] <= 0:
break
result['start'] -= max_content_len
result['end'] -= max_content_len
accumulate += max_content_len
max_content_len = max_seq_len - len(prompt) - 3
if len(res_content) == 0:
break
elif len(res_content) < max_content_len:
json_line = {
'content': res_content,
'result_list': result_list,
'prompt': prompt
}
json_lines.append(json_line)
break
else:
content = res_content
for json_line in json_lines:
yield json_line
def reader():
train_ds = load_dataset(
reader_proprecess,
data_path=global_config['train_data'],
max_seq_len=global_config['max_seq_length'],
lazy=False)
dev_ds = load_dataset(
reader_proprecess,
data_path=global_config['dev_data'],
max_seq_len=global_config['max_seq_length'],
lazy=False)
tokenizer = AutoTokenizer.from_pretrained(global_config['model_dir'])
trans_fn = partial(
convert_example,
tokenizer=tokenizer,
max_seq_len=global_config['max_seq_length'],
is_test=True)
train_ds = train_ds.map(trans_fn)
dev_trans_fn = partial(
convert_example,
tokenizer=tokenizer,
max_seq_len=global_config['max_seq_length'],
is_test=False)
dev_ds = dev_ds.map(dev_trans_fn)
batchify_fn = lambda samples, fn=Dict({
'input_ids': Pad(axis=0, pad_val=tokenizer.pad_token_id), # input
'token_type_ids': Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # segment
}): fn(samples)
dev_batchify_fn = lambda samples, fn=Dict({
'input_ids': Pad(axis=0, pad_val=tokenizer.pad_token_id), # input
'token_type_ids': Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # segment
'start_ids': Stack(dtype="int64"),
'end_ids': Stack(dtype="int64")}): fn(samples)
[input_ids, token_type_ids, start_ids, end_ids] = create_data_holder()
train_batch_sampler = paddle.io.DistributedBatchSampler(
dataset=train_ds, batch_size=global_config['batch_size'], shuffle=True)
train_dataloader = paddle.io.DataLoader(
train_ds,
batch_sampler=train_batch_sampler,
return_list=False,
feed_list=[input_ids, token_type_ids],
collate_fn=batchify_fn)
dev_batch_sampler = paddle.io.BatchSampler(
dataset=dev_ds, batch_size=global_config['batch_size'], shuffle=False)
eval_dataloader = paddle.io.DataLoader(
dev_ds,
batch_sampler=dev_batch_sampler,
return_list=False,
feed_list=[input_ids, token_type_ids, start_ids, end_ids],
collate_fn=dev_batchify_fn)
return train_dataloader, eval_dataloader
def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
metric.reset()
for data in eval_dataloader():
logits = exe.run(
compiled_test_program,
feed={
'input_ids': data[0]['input_ids'],
'token_type_ids': data[0]['token_type_ids'],
},
fetch_list=test_fetch_list)
paddle.disable_static()
start_ids = paddle.to_tensor(np.array(data[0]['start_ids']))
end_ids = paddle.to_tensor(np.array(data[0]['end_ids']))
start_prob = paddle.to_tensor(logits[0])
end_prob = paddle.to_tensor(logits[1])
num_correct, num_infer, num_label = metric.compute(
start_prob, end_prob, start_ids, end_ids)
metric.update(num_correct, num_infer, num_label)
paddle.enable_static()
precision, recall, f1 = metric.accumulate()
return f1
def apply_decay_param_fun(name):
if name.find("bias") > -1:
return True
elif name.find("b_0") > -1:
return True
elif name.find("norm") > -1:
return True
else:
return False
def main():
all_config = load_config(args.config_path)
global global_config
assert "Global" in all_config, "Key Global not found in config file."
global_config = all_config["Global"]
if 'TrainConfig' in all_config:
all_config['TrainConfig']['optimizer_builder'][
'apply_decay_param_fun'] = apply_decay_param_fun
global train_dataloader, eval_dataloader
train_dataloader, eval_dataloader = reader()
global metric
metric = SpanEvaluator()
ac = AutoCompression(
model_dir=global_config['model_dir'],
model_filename=global_config['model_filename'],
params_filename=global_config['params_filename'],
save_dir=args.save_dir,
config=all_config,
train_dataloader=train_dataloader,
eval_callback=eval_function,
eval_dataloader=eval_dataloader)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
for file_name in os.listdir(global_config['model_dir']):
if 'json' in file_name or 'txt' in file_name:
shutil.copy(
os.path.join(global_config['model_dir'], file_name),
args.save_dir)
ac.compress()
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
args = parser.parse_args()
main()