-
Notifications
You must be signed in to change notification settings - Fork 349
/
Copy pathonnxruntime_eval.py
131 lines (110 loc) · 4.03 KB
/
onnxruntime_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import numpy as np
import argparse
import time
import paddle
from ppdet.core.workspace import load_config
from ppdet.core.workspace import create
from ppdet.metrics import COCOMetric
import onnxruntime as ort
from post_process import PPYOLOEPostProcess
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--reader_config',
type=str,
default='configs/picodet_reader.yml',
help="path of compression strategy config.",
required=True)
parser.add_argument(
'--model_path',
type=str,
default='onnx_file/picodet_s_416_npu_postprocessed.onnx',
help="onnx filepath")
parser.add_argument(
'--include_post_process',
type=bool,
default=False,
help="Whether include post_process or not.")
return parser
def eval(val_loader, metric, sess):
inputs_name = [a.name for a in sess.get_inputs()]
predict_time = 0.0
time_min = float("inf")
time_max = float("-inf")
sample_nums = len(val_loader)
for batch_id, data in enumerate(val_loader):
data_all = {k: np.array(v) for k, v in data.items()}
data_input = {}
for k, v in data.items():
if k in inputs_name:
data_input[k] = np.array(v)
start_time = time.time()
outs = sess.run(None, data_input)
end_time = time.time()
timed = end_time - start_time
time_min = min(time_min, timed)
time_max = max(time_max, timed)
predict_time += timed
res = {}
if not FLAGS.include_post_process:
postprocess = PPYOLOEPostProcess(
score_threshold=0.01, nms_threshold=0.6)
res = postprocess(np.array(outs[0]), data_all['scale_factor'])
else:
for out in outs:
v = np.array(out)
if len(v.shape) > 1:
res['bbox'] = v
else:
res['bbox_num'] = v
metric.update(data_all, res)
if batch_id % 100 == 0:
print('Eval iter:', batch_id)
metric.accumulate()
metric.log()
map_res = metric.get_results()
metric.reset()
time_avg = predict_time / sample_nums
print("[Benchmark]Inference time(ms): min={}, max={}, avg={}".format(
round(time_min * 1000, 2),
round(time_max * 1000, 1), round(time_avg * 1000, 1)))
print("[Benchmark] COCO mAP: {}".format(map_res["bbox"][0]))
sys.stdout.flush()
def main():
reader_cfg = load_config(FLAGS.reader_config)
dataset = reader_cfg['EvalDataset']
val_loader = create('EvalReader')(reader_cfg['EvalDataset'],
reader_cfg['worker_num'],
return_list=True)
clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
anno_file = dataset.get_anno()
metric = COCOMetric(
anno_file=anno_file, clsid2catid=clsid2catid, IouType='bbox')
providers = ['CPUExecutionProvider']
sess_options = ort.SessionOptions()
sess_options.optimized_model_filepath = "./optimize_model.onnx"
sess = ort.InferenceSession(
FLAGS.model_path, providers=providers, sess_options=sess_options)
eval(val_loader, metric, sess)
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
# DataLoader need run on cpu
paddle.set_device("cpu")
main()