forked from kimna4/carla_yaw
-
Notifications
You must be signed in to change notification settings - Fork 17
/
carla_loader_db_auxi_v0.py
225 lines (189 loc) · 7.94 KB
/
carla_loader_db_auxi_v0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python
# coding=utf-8
'''
Sequence Data Loader 및 Augmentation
2019.09.10
N 개의 이미지를 불러와서 그 sequence에는 동일한 transform을 적용하는 버전.
초기에 원하는 것은 한 장의 이미지에 N개의 Action GT를 같기를 계획 하였으므로
이 버전은 잠시 보류
'''
import glob
import numpy as np
import h5py
import torch
from torchvision import transforms
from torch.utils.data import Dataset
import random
from random import randint
from imgaug import augmenters as iaa
from ver0.helper_v0 import RandomTransWrapper, RandomTransWrapper_seqImg
from PIL import Image
import time
class CarlaH5Data():
def __init__(self,
train_folder,
eval_folder,
num_nt=2,
batch_size=4, num_workers=4, distributed=False):
self.loaders = {
"train": torch.utils.data.DataLoader(
CarlaH5Dataset(
data_dir=train_folder,
train_eval_flag="train", num_nt=num_nt),
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
shuffle=True,
collate_fn=collate_data
),
"eval": torch.utils.data.DataLoader(
CarlaH5Dataset(
data_dir=eval_folder,
train_eval_flag="eval", num_nt=num_nt),
batch_size=batch_size,
num_workers=num_workers,
pin_memory=True,
shuffle=False,
collate_fn=collate_data
)}
def collate_data(batch):
batch = list(filter(lambda x:x is not None, batch))
# return batch
imgs = []
target1 = []
target2 = []
target3 = []
for sample in batch:
imgs.append(sample[0])
target1.append(torch.Tensor(sample[1]))
target2.append(torch.Tensor(sample[2]))
target3.append(torch.Tensor(sample[3]))
return torch.stack(imgs, 0), torch.stack(target1, 0), torch.stack(target2, 0), torch.stack(target3, 0)
class CarlaH5Dataset(Dataset):
def __init__(self, data_dir,
train_eval_flag="train", num_nt=2, sequence_len=200):
self.data_dir = data_dir
self.data_list = glob.glob(data_dir + '*.h5')
self.sequnece_len = sequence_len
self.train_eval_flag = train_eval_flag
self.nt = num_nt
self.img_list = []
self.rand_prob_list = []
self.rand_range_list = []
self.build_transform()
def build_transform(self):
if self.train_eval_flag == "train":
self.transform = transforms.Compose([
transforms.RandomOrder([
RandomTransWrapper(
seq=iaa.GaussianBlur(
(0, 1.5)),
p=0.09),
RandomTransWrapper(
seq=iaa.AdditiveGaussianNoise(
loc=0,
scale=(0.0, 0.05),
per_channel=0.5),
p=0.09),
RandomTransWrapper(
seq=iaa.Dropout(
(0.0, 0.10),
per_channel=0.5),
p=0.3),
RandomTransWrapper(
seq=iaa.CoarseDropout(
(0.0, 0.10),
size_percent=(0.08, 0.2),
per_channel=0.5),
p=0.3),
RandomTransWrapper(
seq=iaa.Add(
(-20, 20),
per_channel=0.5),
p=0.3),
RandomTransWrapper(
seq=iaa.Multiply(
(0.9, 1.1),
per_channel=0.2),
p=0.4),
RandomTransWrapper(
# seq=iaa.ContrastNormalization(
seq=iaa.LinearContrast(
(0.8, 1.2),
per_channel=0.5),
p=0.09),
]),
transforms.ToTensor()])
else:
self.transform = transforms.Compose([
transforms.ToTensor(),
])
def __len__(self):
return self.sequnece_len * len(self.data_list)
def __getitem__(self, idx):
data_idx = idx // self.sequnece_len
file_idx = idx % self.sequnece_len
file_name = self.data_list[data_idx]
with h5py.File(file_name, 'r') as h5_file:
lower_idx = file_idx
if file_idx + self.nt >= self.sequnece_len:
# lower_idx = self.sequnece_len - self.nt
return None
img = np.array(h5_file['rgb'])[lower_idx]
img = self.transform(img)
target = np.array(h5_file['targets'])[lower_idx:lower_idx + self.nt]
target = target.astype(np.float32)
game_time = target[:self.nt, 20]
if abs(game_time[self.nt - 1] - game_time[0]) > (self.nt) * 100:
return None
command = int(target[0, 24]) - 2
if command == -2:
command = 0
speed = np.array([np.max(target[0, 10], 0) / 40, ]).astype(np.float32)
# speed = np.array([target[:self.nt, 10] / 40, ]).astype(np.float32)
target_vec_lateral = np.zeros((4, 1), dtype=np.float32)
target_vec_lateral[command, :] = target[0, 0]
mask_vec_lateral = np.zeros((4, 1), dtype=np.float32)
mask_vec_lateral[command, :] = 1
return img, speed, target_vec_lateral.reshape(-1), mask_vec_lateral.reshape(-1)
def vector_transform(vec, angle):
rad_angle = np.deg2rad(angle)
R = np.array([[np.cos(rad_angle), -np.sin(rad_angle)], [np.sin(rad_angle), np.cos(rad_angle)]])
return np.inner(R, vec)
def get_predicted_wheel_location(x, y, steering_angle, yaw, v, time_stamp=0.05):
wheel_heading = np.deg2rad(yaw) + steering_angle
# wheel_traveled_dis = v * (_current_timestamp - vars.t_previous)
wheel_traveled_dis = v * time_stamp
return [x + wheel_traveled_dis * np.cos(wheel_heading), y + wheel_traveled_dis * np.sin(wheel_heading)]
# pred_x is x_t+1
def get_predicted_steering(x, y, pred_x, pred_y, yaw, v, time_stamp=0.05):
# print((pred_x - x)/(v * 0.05), ' ', (pred_y - y)/(v * 0.05))
steering_angle_x = np.arccos((pred_x - x)/(v * time_stamp)) - np.deg2rad(yaw)
steering_angle_y = np.arcsin((pred_y - y)/(v * time_stamp)) - np.deg2rad(yaw)
return [steering_angle_x, steering_angle_y]
def get_predicted_velocity(x, y, pred_x, pred_y, steering_angle, time_stamp=0.05):
v_x = (pred_x - x) / (time_stamp * np.cos(steering_angle))
v_y = (pred_y - y) / (time_stamp * np.sin(steering_angle))
return [v_x, v_y]
def main():
train_dir = "/SSD1/datasets/carla/additional_db/gen_data_brake/"
eval_dir = "/SSD1/datasets/carla/additional_db/val/"
batch_size = 10
workers = 1
carla_data = CarlaH5Data(
train_folder=train_dir,
eval_folder=eval_dir,
num_nt=2,
batch_size=batch_size,
num_workers=workers
)
train_loader = carla_data.loaders["train"]
eval_loader = carla_data.loaders["eval"]
start_time = time.time()
for i, (img, speed, target_vec, mask_vec, target_vec_lat, mask_vec_lat, target_vec_lon, mask_vec_lon, target_vec_trans_x, target_vec_trans_y) in enumerate(train_loader):
pass
# print(i, ' : ', img.shape )
# print("---{}s seconds---".format(time.time()-start_time))
# start_time = time.time()
if __name__ == '__main__':
main()