-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae.py
668 lines (574 loc) · 33.9 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
import warnings
import gym
import numpy as np
import torch
from torch.nn import functional as F
import torch.nn as nn
from torch.nn.functional import gumbel_softmax
from models.decoder import StateTransitionDecoder, RewardDecoder, TaskDecoder
from models.encoder import Encoder
from utils.helpers import get_task_dim, get_num_tasks
from utils.storage_vae import RolloutStorageVAE
from utils.helpers import device
def gumbel_adjacency_matrix(node_embeddings, similarity_threshold, temperature, hard):
node_norm = torch.norm(node_embeddings, p=2, dim=-1, keepdim=True)
norm_matrix = torch.matmul(node_norm, node_norm.transpose(-2, -1))
similarity_matrix = torch.matmul(node_embeddings, node_embeddings.transpose(-2, -1)) / (norm_matrix + 1e-8)
similarity_matrix = torch.sigmoid(similarity_matrix)
sim_matrix_centered = similarity_matrix - similarity_threshold
adjacency_matrix = gumbel_softmax(sim_matrix_centered, temperature, hard=hard)
adjacency_matrix = adjacency_matrix * (1 - torch.eye(node_embeddings.shape[-2], device=device).unsqueeze(0))
return adjacency_matrix
def sigmoid_adjacency_matrix(node_embeddings, similarity_threshold):
node_norm = torch.norm(node_embeddings, p=2, dim=-1, keepdim=True)
norm_matrix = torch.matmul(node_norm, node_norm.transpose(-2, -1))
similarity_matrix = torch.matmul(node_embeddings, node_embeddings.transpose(-2, -1)) / (norm_matrix + 1e-8)
soft_similarity_matrix = similarity_matrix / -similarity_threshold
soft_adjacency_matrix = torch.sigmoid(soft_similarity_matrix)
adjacency_matrix = soft_adjacency_matrix * (1 - torch.eye(node_embeddings.shape[-2], device=device).unsqueeze(0))
return adjacency_matrix
class CorepVAE:
"""
VAE of Corep:
- has an encoder and decoder
- can compute the ELBO loss
- can update the VAE (encoder+decoder)
"""
def __init__(self, args, logger, get_iter_idx):
self.args = args
self.logger = logger
self.get_iter_idx = get_iter_idx
self.task_dim = get_task_dim(self.args) if self.args.decode_task else None
self.num_tasks = get_num_tasks(self.args) if self.args.decode_task else None
# initialise the encoder
self.encoder = self.initialise_encoder()
# initialise the decoders (returns None for unused decoders)
self.state_decoder, self.reward_decoder, self.task_decoder = self.initialise_decoder()
# initialise rollout storage for the VAE update
# (this differs from the data that the on-policy RL algorithm uses)
self.rollout_storage = RolloutStorageVAE(num_processes=self.args.num_processes,
max_trajectory_len=self.args.max_trajectory_len,
zero_pad=True,
max_num_rollouts=self.args.size_vae_buffer,
state_dim=self.args.state_dim,
action_dim=self.args.action_dim,
vae_buffer_add_thresh=self.args.vae_buffer_add_thresh,
task_dim=self.task_dim
)
# initalise optimiser for the encoder and decoders
decoder_params = []
if not self.args.disable_decoder:
if self.args.decode_reward:
decoder_params.extend(self.reward_decoder.parameters())
if self.args.decode_state:
decoder_params.extend(self.state_decoder.parameters())
if self.args.decode_task:
decoder_params.extend(self.task_decoder.parameters())
self.optimiser_vae = torch.optim.Adam([*self.encoder.parameters(), *decoder_params], lr=self.args.lr_vae)
def initialise_encoder(self):
""" Initialises and returns an encoder """
encoder = Encoder(
args=self.args,
layers_before_gru=self.args.encoder_layers_before_gru,
hidden_size=self.args.encoder_gru_hidden_size,
layers_after_gru=self.args.encoder_layers_after_gru,
latent_dim=self.args.latent_dim,
action_dim=self.args.action_dim,
action_embed_dim=self.args.action_embedding_size,
state_dim=self.args.state_dim,
state_embed_dim=self.args.state_embedding_size,
reward_size=1,
reward_embed_size=self.args.reward_embedding_size,
# new
num_nodes=self.args.num_nodes,
num_heads=self.args.num_heads,
node_feature_dim=self.args.node_feature_dim,
gat_hidden_dim=self.args.gat_hidden_dim,
similarity_threshold=self.args.similarity_threshold,
).to(device)
return encoder
def initialise_decoder(self):
""" Initialises and returns the (state/reward/task) decoder as specified in self.args """
if self.args.disable_decoder:
return None, None, None
latent_dim = self.args.latent_dim
# if we don't sample embeddings for the decoder, we feed in mean & variance
if self.args.disable_stochasticity_in_latent:
latent_dim *= 2
# initialise state decoder for VAE
if self.args.decode_state:
state_decoder = StateTransitionDecoder(
args=self.args,
layers=self.args.state_decoder_layers,
latent_dim=latent_dim,
action_dim=self.args.action_dim,
action_embed_dim=self.args.action_embedding_size,
state_dim=self.args.state_dim,
state_embed_dim=self.args.state_embedding_size,
pred_type=self.args.state_pred_type,
).to(device)
else:
state_decoder = None
# initialise reward decoder for VAE
if self.args.decode_reward:
reward_decoder = RewardDecoder(
args=self.args,
layers=self.args.reward_decoder_layers,
latent_dim=latent_dim,
state_dim=self.args.state_dim,
state_embed_dim=self.args.state_embedding_size,
action_dim=self.args.action_dim,
action_embed_dim=self.args.action_embedding_size,
num_states=self.args.num_states,
multi_head=self.args.multihead_for_reward,
pred_type=self.args.rew_pred_type,
input_prev_state=self.args.input_prev_state,
input_action=self.args.input_action,
).to(device)
else:
reward_decoder = None
# initialise task decoder for VAE
if self.args.decode_task:
assert self.task_dim != 0
task_decoder = TaskDecoder(
latent_dim=latent_dim,
layers=self.args.task_decoder_layers,
task_dim=self.task_dim,
num_tasks=self.num_tasks,
pred_type=self.args.task_pred_type,
).to(device)
else:
task_decoder = None
return state_decoder, reward_decoder, task_decoder
def compute_state_reconstruction_loss(self, latent, prev_obs, next_obs, action, return_predictions=False):
""" Compute state reconstruction loss.
(No reduction of loss along batch dimension is done here; sum/avg has to be done outside) """
state_pred = self.state_decoder(latent, prev_obs, action)
if self.args.state_pred_type == 'deterministic':
loss_state = (state_pred - next_obs).pow(2).mean(dim=-1)
elif self.args.state_pred_type == 'gaussian': # TODO: untested!
state_pred_mean = state_pred[:, :state_pred.shape[1] // 2]
state_pred_std = torch.exp(0.5 * state_pred[:, state_pred.shape[1] // 2:])
m = torch.distributions.normal.Normal(state_pred_mean, state_pred_std)
loss_state = -m.log_prob(next_obs).mean(dim=-1)
else:
raise NotImplementedError
if return_predictions:
return loss_state, state_pred
else:
return loss_state
def compute_rew_reconstruction_loss(self, latent, prev_obs, next_obs, action, reward, return_predictions=False):
""" Compute reward reconstruction loss.
(No reduction of loss along batch dimension is done here; sum/avg has to be done outside) """
if self.args.multihead_for_reward:
rew_pred = self.reward_decoder(latent, None)
if self.args.rew_pred_type == 'categorical':
rew_pred = F.softmax(rew_pred, dim=-1)
elif self.args.rew_pred_type == 'bernoulli':
rew_pred = torch.sigmoid(rew_pred)
env = gym.make(self.args.env_name)
state_indices = env.task_to_id(next_obs).to(device)
if state_indices.dim() < rew_pred.dim():
state_indices = state_indices.unsqueeze(-1)
rew_pred = rew_pred.gather(dim=-1, index=state_indices)
rew_target = (reward == 1).float()
if self.args.rew_pred_type == 'deterministic': # TODO: untested!
loss_rew = (rew_pred - reward).pow(2).mean(dim=-1)
elif self.args.rew_pred_type in ['categorical', 'bernoulli']:
loss_rew = F.binary_cross_entropy(rew_pred, rew_target, reduction='none').mean(dim=-1)
else:
raise NotImplementedError
else:
rew_pred = self.reward_decoder(latent, next_obs, prev_obs, action.float())
if self.args.rew_pred_type == 'bernoulli': # TODO: untested!
rew_pred = torch.sigmoid(rew_pred)
rew_target = (reward == 1).float() # TODO: necessary?
loss_rew = F.binary_cross_entropy(rew_pred, rew_target, reduction='none').mean(dim=-1)
elif self.args.rew_pred_type == 'deterministic':
loss_rew = (rew_pred - reward).pow(2).mean(dim=-1)
else:
raise NotImplementedError
if return_predictions:
return loss_rew, rew_pred
else:
return loss_rew
def compute_task_reconstruction_loss(self, latent, task, return_predictions=False):
""" Compute task reconstruction loss.
(No reduction of loss along batch dimension is done here; sum/avg has to be done outside) """
task_pred = self.task_decoder(latent)
if self.args.task_pred_type == 'task_id':
env = gym.make(self.args.env_name)
task_target = env.task_to_id(task).to(device)
# expand along first axis (number of ELBO terms)
task_target = task_target.expand(task_pred.shape[:-1]).reshape(-1)
loss_task = F.cross_entropy(task_pred.view(-1, task_pred.shape[-1]),
task_target, reduction='none').view(task_pred.shape[:-1])
elif self.args.task_pred_type == 'task_description':
loss_task = (task_pred - task).pow(2).mean(dim=-1)
else:
raise NotImplementedError
if return_predictions:
return loss_task, task_pred
else:
return loss_task
def compute_kl_loss(self, latent_mean, latent_logvar, elbo_indices):
# -- KL divergence
if self.args.kl_to_gauss_prior:
kl_divergences = (- 0.5 * (1 + latent_logvar - latent_mean.pow(2) - latent_logvar.exp()).sum(dim=-1))
else:
gauss_dim = latent_mean.shape[-1]
# add the gaussian prior
all_means = torch.cat((torch.zeros(1, *latent_mean.shape[1:]).to(device), latent_mean))
all_logvars = torch.cat((torch.zeros(1, *latent_logvar.shape[1:]).to(device), latent_logvar))
# https://arxiv.org/pdf/1811.09975.pdf
# KL(N(mu,E)||N(m,S)) = 0.5 * (log(|S|/|E|) - K + tr(S^-1 E) + (m-mu)^T S^-1 (m-mu)))
mu = all_means[1:]
m = all_means[:-1]
logE = all_logvars[1:]
logS = all_logvars[:-1]
kl_divergences = 0.5 * (torch.sum(logS, dim=-1) - torch.sum(logE, dim=-1) - gauss_dim + torch.sum(
1 / torch.exp(logS) * torch.exp(logE), dim=-1) + ((m - mu) / torch.exp(logS) * (m - mu)).sum(dim=-1))
# returns, for each ELBO_t term, one KL (so H+1 kl's)
if elbo_indices is not None:
batchsize = kl_divergences.shape[-1]
task_indices = torch.arange(batchsize).repeat(self.args.vae_subsample_elbos)
kl_divergences = kl_divergences[elbo_indices, task_indices].reshape((self.args.vae_subsample_elbos, batchsize))
return kl_divergences
def compute_loss(self, latent_mean, latent_logvar, vae_prev_obs, vae_next_obs, vae_actions,
vae_rewards, vae_tasks, trajectory_lens, stable_adj, flexible_adj):
"""
Computes the VAE loss for the given data.
Batches everything together and therefore needs all trajectories to be of the same length.
(Important because we need to separate ELBOs and decoding terms so can't collapse those dimensions)
"""
num_unique_trajectory_lens = len(np.unique(trajectory_lens))
assert (num_unique_trajectory_lens == 1) or (self.args.vae_subsample_elbos and self.args.vae_subsample_decodes)
assert not self.args.decode_only_past
# cut down the batch to the longest trajectory length
# this way we can preserve the structure
# but we will waste some computation on zero-padded trajectories that are shorter than max_traj_len
max_traj_len = np.max(trajectory_lens)
latent_mean = latent_mean[:max_traj_len + 1]
latent_logvar = latent_logvar[:max_traj_len + 1]
vae_prev_obs = vae_prev_obs[:max_traj_len]
vae_next_obs = vae_next_obs[:max_traj_len]
vae_actions = vae_actions[:max_traj_len]
vae_rewards = vae_rewards[:max_traj_len]
# take one sample for each ELBO term
if not self.args.disable_stochasticity_in_latent:
latent_samples = self.encoder._sample_gaussian(latent_mean, latent_logvar)
else:
latent_samples = torch.cat((latent_mean, latent_logvar), dim=-1)
num_elbos = latent_samples.shape[0]
num_decodes = vae_prev_obs.shape[0]
batchsize = latent_samples.shape[1] # number of trajectories
# subsample elbo terms
# shape before: num_elbos * batchsize * dim
# shape after: vae_subsample_elbos * batchsize * dim
if self.args.vae_subsample_elbos is not None:
# randomly choose which elbo's to subsample
if num_unique_trajectory_lens == 1:
elbo_indices = torch.LongTensor(self.args.vae_subsample_elbos * batchsize).random_(0, num_elbos) # select diff elbos for each task
else:
# if we have different trajectory lengths, subsample elbo indices separately
# up to their maximum possible encoding length;
# only allow duplicates if the sample size would be larger than the number of samples
elbo_indices = np.concatenate([np.random.choice(range(0, t + 1), self.args.vae_subsample_elbos,
replace=self.args.vae_subsample_elbos > (t+1)) for t in trajectory_lens])
if max_traj_len < self.args.vae_subsample_elbos:
warnings.warn('The required number of ELBOs is larger than the shortest trajectory, '
'so there will be duplicates in your batch.'
'To avoid this use --split_batches_by_elbo or --split_batches_by_task.')
task_indices = torch.arange(batchsize).repeat(self.args.vae_subsample_elbos) # for selection mask
latent_samples = latent_samples[elbo_indices, task_indices, :].reshape((self.args.vae_subsample_elbos, batchsize, -1))
num_elbos = latent_samples.shape[0]
else:
elbo_indices = None
# expand the state/rew/action inputs to the decoder (to match size of latents)
# shape will be: [num tasks in batch] x [num elbos] x [len trajectory (reconstrution loss)] x [dimension]
dec_prev_obs = vae_prev_obs.unsqueeze(0).expand((num_elbos, *vae_prev_obs.shape))
dec_next_obs = vae_next_obs.unsqueeze(0).expand((num_elbos, *vae_next_obs.shape))
dec_actions = vae_actions.unsqueeze(0).expand((num_elbos, *vae_actions.shape))
dec_rewards = vae_rewards.unsqueeze(0).expand((num_elbos, *vae_rewards.shape))
# subsample reconstruction terms
if self.args.vae_subsample_decodes is not None:
# shape before: vae_subsample_elbos * num_decodes * batchsize * dim
# shape after: vae_subsample_elbos * vae_subsample_decodes * batchsize * dim
# (Note that this will always have duplicates given how we set up the code)
indices0 = torch.arange(num_elbos).repeat(self.args.vae_subsample_decodes * batchsize)
if num_unique_trajectory_lens == 1:
indices1 = torch.LongTensor(num_elbos * self.args.vae_subsample_decodes * batchsize).random_(0, num_decodes)
else:
indices1 = np.concatenate([np.random.choice(range(0, t), num_elbos * self.args.vae_subsample_decodes,
replace=True) for t in trajectory_lens])
indices2 = torch.arange(batchsize).repeat(num_elbos * self.args.vae_subsample_decodes)
dec_prev_obs = dec_prev_obs[indices0, indices1, indices2, :].reshape((num_elbos, self.args.vae_subsample_decodes, batchsize, -1))
dec_next_obs = dec_next_obs[indices0, indices1, indices2, :].reshape((num_elbos, self.args.vae_subsample_decodes, batchsize, -1))
dec_actions = dec_actions[indices0, indices1, indices2, :].reshape((num_elbos, self.args.vae_subsample_decodes, batchsize, -1))
dec_rewards = dec_rewards[indices0, indices1, indices2, :].reshape((num_elbos, self.args.vae_subsample_decodes, batchsize, -1))
num_decodes = dec_prev_obs.shape[1]
# expand the latent (to match the number of state/rew/action inputs to the decoder)
# shape will be: [num tasks in batch] x [num elbos] x [len trajectory (reconstrution loss)] x [dimension]
dec_embedding = latent_samples.unsqueeze(0).expand((num_decodes, *latent_samples.shape)).transpose(1, 0)
if self.args.decode_reward:
# compute reconstruction loss for this trajectory (for each timestep that was encoded, decode everything and sum it up)
# shape: [num_elbo_terms] x [num_reconstruction_terms] x [num_trajectories]
rew_reconstruction_loss = self.compute_rew_reconstruction_loss(dec_embedding, dec_prev_obs, dec_next_obs,
dec_actions, dec_rewards)
# avg/sum across individual ELBO terms
if self.args.vae_avg_elbo_terms:
rew_reconstruction_loss = rew_reconstruction_loss.mean(dim=0)
else:
rew_reconstruction_loss = rew_reconstruction_loss.sum(dim=0)
# avg/sum across individual reconstruction terms
if self.args.vae_avg_reconstruction_terms:
rew_reconstruction_loss = rew_reconstruction_loss.mean(dim=0)
else:
rew_reconstruction_loss = rew_reconstruction_loss.sum(dim=0)
# average across tasks
rew_reconstruction_loss = rew_reconstruction_loss.mean()
else:
rew_reconstruction_loss = 0
if self.args.decode_state:
state_reconstruction_loss = self.compute_state_reconstruction_loss(dec_embedding, dec_prev_obs,
dec_next_obs, dec_actions)
# avg/sum across individual ELBO terms
if self.args.vae_avg_elbo_terms:
state_reconstruction_loss = state_reconstruction_loss.mean(dim=0)
else:
state_reconstruction_loss = state_reconstruction_loss.sum(dim=0)
# avg/sum across individual reconstruction terms
if self.args.vae_avg_reconstruction_terms:
state_reconstruction_loss = state_reconstruction_loss.mean(dim=0)
else:
state_reconstruction_loss = state_reconstruction_loss.sum(dim=0)
# average across tasks
state_reconstruction_loss = state_reconstruction_loss.mean()
else:
state_reconstruction_loss = 0
if self.args.decode_task:
task_reconstruction_loss = self.compute_task_reconstruction_loss(latent_samples, vae_tasks)
# avg/sum across individual ELBO terms
if self.args.vae_avg_elbo_terms:
task_reconstruction_loss = task_reconstruction_loss.mean(dim=0)
else:
task_reconstruction_loss = task_reconstruction_loss.sum(dim=0)
# sum the elbos, average across tasks
task_reconstruction_loss = task_reconstruction_loss.sum(dim=0).mean()
else:
task_reconstruction_loss = 0
if not self.args.disable_kl_term:
# compute the KL term for each ELBO term of the current trajectory
# shape: [num_elbo_terms] x [num_trajectories]
kl_loss = self.compute_kl_loss(latent_mean, latent_logvar, elbo_indices)
# avg/sum the elbos
if self.args.vae_avg_elbo_terms:
kl_loss = kl_loss.mean(dim=0)
else:
kl_loss = kl_loss.sum(dim=0)
# average across tasks
kl_loss = kl_loss.sum(dim=0).mean()
else:
kl_loss = 0
graph_loss = torch.mean(torch.abs(stable_adj - flexible_adj), dim=(-2, -1))
graph_loss = graph_loss.sum(dim=0)
graph_loss = graph_loss.mean()
stable_sparsity_loss = torch.mean(torch.abs(stable_adj), dim=(-2, -1))
flexible_sparsity_loss = torch.mean(torch.abs(flexible_adj), dim=(-2, -1))
sparsity_loss = stable_sparsity_loss + flexible_sparsity_loss
sparsity_loss = sparsity_loss.sum(dim=0)
sparsity_loss = sparsity_loss.mean()
stable_mag_loss = torch.mean(torch.abs(stable_adj - torch.transpose(stable_adj, -2, -1)), dim=(-2, -1))
flexiible_mag_loss = torch.mean(torch.abs(flexible_adj - torch.transpose(flexible_adj, -2, -1)), dim=(-2, -1))
mag_loss = stable_mag_loss + flexiible_mag_loss
mag_loss = mag_loss.sum(dim=0)
mag_loss = mag_loss.mean()
return rew_reconstruction_loss, state_reconstruction_loss, task_reconstruction_loss, kl_loss, graph_loss, sparsity_loss, mag_loss
def compute_loss_split_batches_by_elbo(self, latent_mean, latent_logvar, vae_prev_obs, vae_next_obs, vae_actions,
vae_rewards, vae_tasks, trajectory_lens):
"""
Loop over the elvo_t terms to compute losses per t.
Saves some memory if batch sizes are very large,
or if trajectory lengths are different, or if we decode only the past.
"""
rew_reconstruction_loss = []
state_reconstruction_loss = []
task_reconstruction_loss = []
assert len(np.unique(trajectory_lens)) == 1
n_horizon = np.unique(trajectory_lens)[0]
n_elbos = latent_mean.shape[0] # includes the prior
# for each elbo term (including one for the prior)...
for idx_elbo in range(n_elbos):
# get the embedding values (size: traj_length+1 * latent_dim; the +1 is for the prior)
curr_means = latent_mean[idx_elbo]
curr_logvars = latent_logvar[idx_elbo]
# take one sample for each task
if not self.args.disable_stochasticity_in_latent:
curr_samples = self.encoder._sample_gaussian(curr_means, curr_logvars)
else:
curr_samples = torch.cat((latent_mean, latent_logvar))
# if the size of what we decode is always the same, we can speed up creating the batches
if not self.args.decode_only_past:
# expand the latent to match the (x, y) pairs of the decoder
dec_embedding = curr_samples.unsqueeze(0).expand((n_horizon, *curr_samples.shape))
dec_embedding_task = curr_samples
dec_prev_obs = vae_prev_obs
dec_next_obs = vae_next_obs
dec_actions = vae_actions
dec_rewards = vae_rewards
# otherwise, we unfortunately have to loop!
# loop through the lengths we are feeding into the encoder for that trajectory (starting with prior)
# (these are the different ELBO_t terms)
else:
# get the index until which we want to decode
# (i.e. eithe runtil curr timestep or entire trajectory including future)
if self.args.decode_only_past:
dec_from = 0
dec_until = idx_elbo
else:
dec_from = 0
dec_until = n_horizon
if dec_from == dec_until:
continue
# (1) ... get the latent sample after feeding in some data (determined by len_encoder) & expand (to number of outputs)
# num latent samples x embedding size
dec_embedding = curr_samples.unsqueeze(0).expand(dec_until - dec_from, *curr_samples.shape)
dec_embedding_task = curr_samples
# (2) ... get the predictions for the trajectory until the timestep we're interested in
dec_prev_obs = vae_prev_obs[dec_from:dec_until]
dec_next_obs = vae_next_obs[dec_from:dec_until]
dec_actions = vae_actions[dec_from:dec_until]
dec_rewards = vae_rewards[dec_from:dec_until]
if self.args.decode_reward:
# compute reconstruction loss for this trajectory (for each timestep that was encoded, decode everything and sum it up)
# size: if all trajectories are of same length [num_elbo_terms x num_reconstruction_terms], otherwise it's flattened into one
rrc = self.compute_rew_reconstruction_loss(dec_embedding, dec_prev_obs, dec_next_obs, dec_actions,
dec_rewards)
# sum up the reconstruction terms; average over tasks
rrc = rrc.sum(dim=0).mean()
rew_reconstruction_loss.append(rrc)
if self.args.decode_state:
src = self.compute_state_reconstruction_loss(dec_embedding, dec_prev_obs, dec_next_obs, dec_actions)
# sum up the reconstruction terms; average over tasks
src = src.sum(dim=0).mean()
state_reconstruction_loss.append(src)
if self.args.decode_task:
trc = self.compute_task_reconstruction_loss(dec_embedding_task, vae_tasks)
# average across tasks
trc = trc.mean()
task_reconstruction_loss.append(trc)
# sum the ELBO_t terms
if self.args.decode_reward:
rew_reconstruction_loss = torch.stack(rew_reconstruction_loss)
rew_reconstruction_loss = rew_reconstruction_loss.sum()
else:
rew_reconstruction_loss = 0
if self.args.decode_state:
state_reconstruction_loss = torch.stack(state_reconstruction_loss)
state_reconstruction_loss = state_reconstruction_loss.sum()
else:
state_reconstruction_loss = 0
if self.args.decode_task:
task_reconstruction_loss = torch.stack(task_reconstruction_loss)
task_reconstruction_loss = task_reconstruction_loss.sum()
else:
task_reconstruction_loss = 0
if not self.args.disable_kl_term:
# compute the KL term for each ELBO term of the current trajectory
kl_loss = self.compute_kl_loss(latent_mean, latent_logvar, None)
# sum the elbos, average across tasks
kl_loss = kl_loss.sum(dim=0).mean()
else:
kl_loss = 0
return rew_reconstruction_loss, state_reconstruction_loss, task_reconstruction_loss, kl_loss
def compute_vae_loss(self, update=False, pretrain_index=None, freeze=False):
""" Returns the VAE loss """
if not self.rollout_storage.ready_for_update():
return 0
if self.args.disable_decoder and self.args.disable_kl_term:
return 0
# get a mini-batch
vae_prev_obs, vae_next_obs, vae_actions, vae_rewards, vae_tasks, \
trajectory_lens = self.rollout_storage.get_batch(batchsize=self.args.vae_batch_num_trajs)
# vae_prev_obs will be of size: max trajectory len x num trajectories x dimension of observations
# pass through encoder (outputs will be: (max_traj_len+1) x number of rollouts x latent_dim -- includes the prior!)
_, latent_mean, latent_logvar, _, stable_graphs, flexible_graphs = self.encoder(actions=vae_actions,
states=vae_next_obs,
rewards=vae_rewards,
hidden_state=None,
return_prior=True,
detach_every=self.args.tbptt_stepsize if hasattr(self.args, 'tbptt_stepsize') else None,
freeze=freeze
)
stable_adj = sigmoid_adjacency_matrix(stable_graphs, self.args.similarity_threshold)
flexible_adj = sigmoid_adjacency_matrix(flexible_graphs, self.args.similarity_threshold)
if self.args.split_batches_by_task:
raise NotImplementedError
losses = self.compute_loss_split_batches_by_task(latent_mean, latent_logvar, vae_prev_obs, vae_next_obs,
vae_actions, vae_rewards, vae_tasks,
trajectory_lens, len_encoder)
elif self.args.split_batches_by_elbo:
losses = self.compute_loss_split_batches_by_elbo(latent_mean, latent_logvar, vae_prev_obs, vae_next_obs,
vae_actions, vae_rewards, vae_tasks,
trajectory_lens)
else:
losses = self.compute_loss(latent_mean, latent_logvar, vae_prev_obs, vae_next_obs, vae_actions,
vae_rewards, vae_tasks, trajectory_lens, stable_adj, flexible_adj)
rew_reconstruction_loss, state_reconstruction_loss, task_reconstruction_loss, kl_loss, graph_loss, sparsity_loss, mag_loss = losses
# VAE loss = KL loss + reward reconstruction + state transition reconstruction
# take average (this is the expectation over p(M))
loss = (self.args.rew_loss_coeff * rew_reconstruction_loss +
self.args.state_loss_coeff * state_reconstruction_loss +
self.args.task_loss_coeff * task_reconstruction_loss +
self.args.kl_weight * kl_loss +
self.args.graph_loss_coeff * graph_loss +
self.args.sparsity_loss_coeff * sparsity_loss +
self.args.mag_loss_coeff * mag_loss
).mean()
# make sure we can compute gradients
if not self.args.disable_kl_term:
assert kl_loss.requires_grad
if self.args.decode_reward:
assert rew_reconstruction_loss.requires_grad
if self.args.decode_state:
assert state_reconstruction_loss.requires_grad
if self.args.decode_task:
assert task_reconstruction_loss.requires_grad
# overall loss
elbo_loss = loss.mean()
if update:
self.optimiser_vae.zero_grad()
elbo_loss.backward()
# clip gradients
if self.args.encoder_max_grad_norm is not None:
nn.utils.clip_grad_norm_(self.encoder.parameters(), self.args.encoder_max_grad_norm)
if self.args.decoder_max_grad_norm is not None:
if self.args.decode_reward:
nn.utils.clip_grad_norm_(self.reward_decoder.parameters(), self.args.decoder_max_grad_norm)
if self.args.decode_state:
nn.utils.clip_grad_norm_(self.state_decoder.parameters(), self.args.decoder_max_grad_norm)
if self.args.decode_task:
nn.utils.clip_grad_norm_(self.task_decoder.parameters(), self.args.decoder_max_grad_norm)
# update
self.optimiser_vae.step()
self.log(elbo_loss, rew_reconstruction_loss, state_reconstruction_loss, task_reconstruction_loss, kl_loss,
graph_loss, sparsity_loss, pretrain_index)
return elbo_loss
def log(self, elbo_loss, rew_reconstruction_loss, state_reconstruction_loss, task_reconstruction_loss, kl_loss,
graph_loss, sparsity_loss, pretrain_index=None):
if pretrain_index is None:
curr_iter_idx = self.get_iter_idx()
else:
curr_iter_idx = - self.args.pretrain_len * self.args.num_vae_updates_per_pretrain + pretrain_index
if curr_iter_idx % self.args.log_interval == 0:
if self.args.decode_reward:
self.logger.add('vae_losses/reward_reconstr_err', rew_reconstruction_loss.mean(), curr_iter_idx)
if self.args.decode_state:
self.logger.add('vae_losses/state_reconstr_err', state_reconstruction_loss.mean(), curr_iter_idx)
if self.args.decode_task:
self.logger.add('vae_losses/task_reconstr_err', task_reconstruction_loss.mean(), curr_iter_idx)
if not self.args.disable_kl_term:
self.logger.add('vae_losses/kl', kl_loss.mean(), curr_iter_idx)
self.logger.add('vae_losses/sum', elbo_loss, curr_iter_idx)
self.logger.add('vae_losses/graph_loss', graph_loss.mean(), curr_iter_idx)
self.logger.add('vae_losses/sparsity_loss', sparsity_loss.mean(), curr_iter_idx)