-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
114 lines (97 loc) · 3.61 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import torch
import crafter
import framework
from config.default import register_args
import stable_baselines3 as sb3
from utils import get_fov_types, compute_l_score, llm_template, gpt_template, ACTIONS_NAME
from collections import deque
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
from sentence_transformers import SentenceTransformer
from openai import OpenAI, AzureOpenAI
from tenacity import retry, stop_after_attempt, wait_random_exponential
from utils import API_KEY, BASE_URL
@retry(stop=stop_after_attempt(6), wait=wait_random_exponential(multiplier=1, max=60))
def gpt_generate(prompt, client, model="gpt-4"):
response = client.chat.completions.create(
model=model,
messages=prompt,
temperature=1,
)
return response.choices[0].message.content
def llm_generate(prompt, model, tokenizer):
num_new_tokens = 100
num_prompt_tokens = len(tokenizer(prompt)['input_ids'])
max_length = num_prompt_tokens + num_new_tokens
gen = pipeline('text-generation', model=model, tokenizer=tokenizer, max_length=max_length, return_full_text=False)
result = gen(prompt)
return result[0]['generated_text'].strip()
def main():
# load env
helper = framework.helpers.TrainingHelper(register_args=register_args)
env = crafter.Env()
env = crafter.Recorder(
env,
'./results',
helper,
save_stats=True,
save_video=True,
save_episode=False,
log_every_n_episodes=1,
)
# set gpt
client = OpenAI(
api_key=API_KEY,
base_url=BASE_URL,
)
# load policy
model = sb3.PPO(helper, env)
ckpt = torch.load('./model_files/policy.pth', map_location=torch.device('cuda:0'))
model.policy.load_state_dict(ckpt['model_state_dict'])
# load llm
llm_path = "./model_files/llama-2-7b-crafter"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=getattr(torch, "float16"),
bnb_4bit_use_double_quant=False,
)
llm_model = AutoModelForCausalLM.from_pretrained(
llm_path,
quantization_config=bnb_config,
)
tokenizer = AutoTokenizer.from_pretrained(llm_path)
text_enc = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2')
query_interval = 10
obs = env.reset()
done = False
steps = 0
rew = 0
a_hist_list = deque(maxlen=query_interval)
inst = ''
fov = ''
status = ''
while not done:
a_hist = ', '.join(a_hist_list)
a_last = a_hist_list[-1] if a_hist_list else ''
a_emb = text_enc.encode(a_hist)
inst_emb = text_enc.encode(inst)
l_score = compute_l_score(a_emb, inst_emb)[0]
if steps % query_interval == 0:
# llm generate
llm_prompt = llm_template(fov, status, a_last, inst, l_score)
adapted_prompt = llm_generate(llm_prompt, llm_model, tokenizer)
# gpt generate
gpt_prompt = gpt_template(fov, status, a_last, inst, adapted_prompt)
inst = gpt_generate(gpt_prompt, client)
action, _, _ = model.policy.predict(obs, instruction=inst)
a_hist_list.append(ACTIONS_NAME[action])
obs, reward, done, info = env.step(action)
fov = ', '.join(get_fov_types(info))
status = ', '.join([f"{v} {k}" for k, v in info['inventory'].items() if v > 0])
rew += reward
steps += 1
print(f"Current step: {steps}. Reward: {reward}")
print(f"Episode reward: {rew}")
helper.finish()
if __name__ == '__main__':
main()