-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathops.cpp
98 lines (73 loc) · 3.39 KB
/
ops.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include <algorithm>
#include <cassert>
#include <cmath>
#include <stdexcept>
#include "ggml.h"
#include "ops.h"
static int get_extra_padding_for_conv_1d(struct ggml_tensor *inp, float kernel_size,
float stride, float padding_total) {
float length = inp->ne[0];
float n_frames = (length - kernel_size + padding_total) / stride + 1.0f;
int ideal_length = (ceilf(n_frames) - 1) * stride + (kernel_size - padding_total);
return ideal_length - length;
}
struct ggml_tensor *pad_1d(struct ggml_context *ctx0, struct ggml_tensor *inp,
int padding_left, int padding_right) {
int length = inp->ne[0];
int dim = inp->ne[1];
const int max_pad = std::max(padding_left, padding_right);
int extra_pad = 0;
if (length <= max_pad) {
extra_pad = max_pad - length + 1;
// constant padding
struct ggml_tensor *out = ggml_new_tensor_2d(ctx0, inp->type, length + extra_pad, dim);
out = ggml_set_2d(ctx0, out, inp, out->nb[1], 0);
}
struct ggml_tensor *padded = ggml_pad_reflect_1d(ctx0, inp, padding_left, padding_right);
const int end = padded->ne[0] - extra_pad;
struct ggml_tensor *dest = ggml_view_2d(ctx0, padded, end, dim, padded->nb[1], 0);
return dest;
}
struct ggml_tensor *unpad_1d(struct ggml_context *ctx0, struct ggml_tensor *inp,
int padding_left, int padding_right) {
int length = inp->ne[0];
int dim = inp->ne[1];
assert(padding_left >= 0);
assert(padding_right >= 0);
assert(padding_left + padding_right <= length);
int end = length - padding_right;
int offset = padding_left * inp->nb[1];
struct ggml_tensor *dst = ggml_view_2d(ctx0, inp, end, dim, inp->nb[1], offset);
return dst;
}
struct ggml_tensor *strided_conv_1d(struct ggml_context *ctx0, struct ggml_tensor *inp,
struct ggml_tensor *conv_w, struct ggml_tensor *conv_b,
int stride) {
int kernel_size = conv_w->ne[0];
int padding_total = kernel_size - stride;
int extra_padding = get_extra_padding_for_conv_1d(inp, kernel_size, stride, padding_total);
struct ggml_tensor *padded_inp = pad_1d(ctx0, inp, padding_total, extra_padding);
struct ggml_tensor *dst = ggml_conv_1d(ctx0, conv_w, padded_inp, stride, 0, 1);
// add bias
dst = ggml_transpose(ctx0, dst);
dst = ggml_add(ctx0, ggml_repeat(ctx0, conv_b, dst), dst);
dst = ggml_cont(ctx0, ggml_transpose(ctx0, dst));
return dst;
}
struct ggml_tensor *strided_conv_transpose_1d(struct ggml_context *ctx0, struct ggml_tensor *inp,
struct ggml_tensor *conv_w, struct ggml_tensor *conv_b,
int stride) {
struct ggml_tensor *dst = ggml_conv_transpose_1d(
ctx0, conv_w, inp, stride, 0 /* p0 */, 1 /* d0 */);
// add bias
dst = ggml_transpose(ctx0, dst);
dst = ggml_add(ctx0, ggml_repeat(ctx0, conv_b, dst), dst);
dst = ggml_cont(ctx0, ggml_transpose(ctx0, dst));
int kernel_size = conv_w->ne[0];
int padding_total = kernel_size - stride;
int padding_right = ceilf(padding_total);
int padding_left = padding_total - padding_right;
struct ggml_tensor *unpadded = unpad_1d(ctx0, dst, padding_left, padding_right);
unpadded = ggml_cont(ctx0, unpadded);
return unpadded;
}