This repository has been archived by the owner on Feb 6, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.c
316 lines (250 loc) · 7.78 KB
/
benchmark.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include "network.h"
#include "volume.h"
// Place where test data is stored on instructional machines.
const char* DATA_FOLDER = "/home/ff/cs61c/proj4/cifar-10-batches-bin";
const int DEFAULT_BENCHMARK_SIZE = 1200;
const int PARTEST_SIZE = 1000;
// Function to dump the content of a volume for comparison.
void dump_volume(volume_t* v) {
printf("%d,%d,%d", v->width, v->height, v->depth);
for (int x = 0; x < v->width; x++) {
for (int y = 0; y < v->height; y++) {
for (int z = 0; z < v->depth; z++) {
printf(",%.20lf", volume_get(v, x, y, z));
}
}
}
printf("\n");
}
// Load the snapshot of the CNN we are going to run.
network_t* load_cnn_snapshot() {
network_t* net = make_network();
conv_load(net->l0, "./snapshot/layer1_conv.txt");
conv_load(net->l3, "./snapshot/layer4_conv.txt");
conv_load(net->l6, "./snapshot/layer7_conv.txt");
fc_load(net->l9, "./snapshot/layer10_fc.txt");
return net;
}
// Load an image from the cifar10 data set.
void load_sample(volume_t* v, int sample_num) {
printf("Loading input sample %d...\n", sample_num);
int batch = sample_num / 10000;
int ix = sample_num % 10000;
char file_name[1024];
sprintf(file_name, "%s/data_batch_%d.bin", DATA_FOLDER, batch + 1);
FILE* fin = fopen(file_name, "rb");
assert(fin != NULL);
fseek(fin, ix * 3073, SEEK_SET);
uint8_t data[3073];
assert(fread(data, 1, 3073, fin) == 3073);
int outp = 1;
for (int d = 0; d < 3; d++) {
for (int y = 0; y < 32; y++) {
for (int x = 0; x < 32; x++) {
volume_set(v, x, y, d, ((double)data[outp++]) / 255.0 - 0.5);
}
}
}
fclose(fin);
}
// Load an entire batch of images from the cifar10 data set (which is divided
// into 5 batches with 10,000 images each).
batch_t load_batch(int batch) {
printf("Loading input batch %d...\n", batch);
char file_name[1024];
sprintf(file_name, "%s/data_batch_%d.bin", DATA_FOLDER, batch + 1);
FILE* fin = fopen(file_name, "rb");
assert(fin != NULL);
batch_t batchdata = malloc(sizeof(volume_t*) * 10000);
for (int i = 0; i < 10000; i++) {
batchdata[i] = make_volume(32, 32, 3, 0.0);
uint8_t data[3073];
assert(fread(data, 1, 3073, fin) == 3073);
int outp = 1;
for (int d = 0; d < 3; d++) {
for (int y = 0; y < 32; y++) {
for (int x = 0; x < 32; x++) {
volume_set(batchdata[i], x, y, d, ((double)data[outp++]) / 255.0 - 0.5);
}
}
}
}
fclose(fin);
return batchdata;
}
// Computes the accuracy of our neural network by comparing our predicted values
// with the actual labels.
double get_accuracy(int* samples, int* predictions, int n) {
int num_correct = 0;
char file_name[1024];
// Open all data batch files.
FILE* batch_files[5];
for (int i = 0; i < 5; i++) {
sprintf(file_name, "%s/data_batch_%d.bin", DATA_FOLDER, i + 1);
batch_files[i] = fopen(file_name, "rb");
}
for (int i = 0; i < n; i++) {
int batch = samples[i] / 10000;
int index = samples[i] % 10000;
fseek(batch_files[batch], index * 3073, SEEK_SET);
char label;
fread(&label, 1, 1, batch_files[batch]);
if (label == predictions[i]) {
num_correct += 1;
}
}
// Close all data batch files.
for (int i = 0; i < 5; i++) {
fclose(batch_files[i]);
}
return ((double)num_correct) / n;
}
// Perform the classification (this calls into the functions from network.c)
void run_classification(int* samples, int n, double*** keep_likelihoods) {
printf("Making network...\n");
network_t* net = load_cnn_snapshot();
batch_t batches[50];
for (int i = 0; i < 50; i++) {
batches[i] = NULL;
}
printf("Loading batches...\n");
for (int i = 0; i < n; i++) {
int batch = samples[i] / 10000;
if (batches[batch] == NULL) {
batches[batch] = load_batch(batch);
}
}
volume_t** input = (volume_t**)malloc(sizeof(volume_t*) * n);
for (int i = 0; i < n; i++) {
input[i] = batches[samples[i] / 10000][samples[i] % 10000];
}
double** likelihoods = (double**)malloc(sizeof(double*) * n);
for (int c = 0; c < n; c++) {
likelihoods[c] = (double*)malloc(sizeof(double) * NUM_CLASSES);
}
printf("Running classification...\n");
net_classify(net, input, likelihoods, n);
int predictions[n];
for (int i = 0; i < n; i++) {
int best_class = -1;
double max_likelihood = -INFINITY;
for (int c = 0; c < NUM_CLASSES; c++) {
if (max_likelihood < likelihoods[i][c]) {
max_likelihood = likelihoods[i][c];
best_class = c;
}
}
predictions[i] = best_class;
}
printf("%lf%% accuracy\n", 100 * get_accuracy(samples, predictions, n));
free_network(net);
free(input);
for (int i = 0; i < 50; i++) {
if (batches[i] != NULL) {
for (int j = 0; j < 10000; j++) {
free_volume(batches[i][j]);
}
free(batches[i]);
}
}
if (keep_likelihoods == NULL) {
for (int i = 0; i < n; i++) {
free(likelihoods[i]);
}
free(likelihoods);
} else {
*keep_likelihoods = likelihoods;
}
}
// Run benchmark on a specified number samples (if there is none, then
// DEFAULT_BENCHMARK_SIZE). Returns the number of seconds taken to perform the
// benchmark.
void do_benchmark(int argc, char** argv) {
int num_samples = DEFAULT_BENCHMARK_SIZE;
if (argc > 0) {
num_samples = atoi(argv[0]);
}
printf("RUNNING BENCHMARK ON %d PICTURES...\n", num_samples);
// Pick DEFAULT_BENCHMARK_SIZE random samples, it doesn't matter which.
int* samples = (int*)malloc(sizeof(int) * num_samples);
for (int i = 0; i < num_samples; i++) {
samples[i] = i;
}
struct timeval tv;
gettimeofday(&tv, NULL);
uint64_t start = 1000000L * tv.tv_sec + tv.tv_usec;
run_classification(samples, num_samples, NULL);
gettimeofday(&tv,NULL);
uint64_t end = 1000000L * tv.tv_sec + tv.tv_usec;
printf("%ld microseconds\n", end - start);
free(samples);
}
// Run test of classifying individual samples and check the content of every layer
// against reference output produced by convnet.js.
void do_layers_test(int argc, char** argv) {
int sample_num = 0;
if (argc > 0) {
sample_num = atoi(argv[0]);
}
assert(sample_num >= 0 && sample_num < 50000);
printf("Making network...\n");
network_t* net = load_cnn_snapshot();
batch_t* batch = make_batch(net, 1);
load_sample(batch[0][0], sample_num);
net_forward(net, batch, 0, 0);
for (int i = 0; i < NUM_LAYERS + 1; i++) {
printf("LAYER%d,", i);
dump_volume(batch[i][0]);
}
free_network(net);
free_batch(batch, 1);
}
// Run a large-scale test to catch parallelism errors that do not occur when testing
// on individual examples.
void do_parallel_test(int argc, char** argv) {
int test_size = PARTEST_SIZE;
if (argc > 0) {
test_size = atoi(argv[0]);
}
srand(1234);
int* samples = (int*)malloc(sizeof(int) * test_size);
for (int i = 0; i < test_size; i++) {
samples[i] = (int)((double)rand() / ((double)RAND_MAX + 1) * 50000);
}
double** kept_output;
run_classification(samples, test_size, &kept_output);
for (int i = 0; i < test_size; i++) {
printf("PAR%d,", i);
for (int c = 0; c < NUM_CLASSES - 1; c++) {
printf("%lf,", kept_output[i][c]);
}
printf("%lf\n", kept_output[i][NUM_CLASSES - 1]);
}
free(samples);
}
int main(int argc, char** argv) {
if (argc < 2) {
printf("Usage: ./benchmark <benchmark|test|partest> [args]\n");
return 2;
}
if (!strcmp(argv[1], "benchmark")) {
do_benchmark(argc - 2, argv + 2);
return 0;
}
if (!strcmp(argv[1], "test")) {
do_layers_test(argc - 2, argv + 2);
return 0;
}
if (!strcmp(argv[1], "partest")) {
do_parallel_test(argc - 2, argv + 2);
return 0;
}
printf("ERROR: Unknown command\n");
return 2;
}