Skip to content

Latest commit

 

History

History
113 lines (74 loc) · 3.63 KB

README.md

File metadata and controls

113 lines (74 loc) · 3.63 KB

Unsupervised-Indoor-Depth

This page provides codes, models, and datasets in the paper:

Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue

Jia-Wang Bian, Huangying Zhan, Naiyan Wang, Tat-Jun Chin, Chunhua Shen, Ian Reid

[ArXiv | Project | 中文主页]

Depth and point cloud visulization on 7 Scenes

depth visualization

If you find our work useful in your research please consider citing our paper:

@inproceedings{bian2019depth,
  title={Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video},
  author={Bian, Jia-Wang and Li, Zhichao and Wang, Naiyan and Zhan, Huangying and Shen, Chunhua and Cheng, Ming-Ming and Reid, Ian},
  booktitle= {Thirty-third Conference on Neural Information Processing Systems (NeurIPS)},
  year={2019}
}

@article{bian2020depth,
  title={Unsupervised Depth Learning in Challenging Indoor Video: Weak Rectification to Rescue},
  author={Bian, Jia-Wang and Zhan, Huangying and Wang, Naiyan and Chin, Tat-Jun and Shen, Chunhua and Reid, Ian},
  journal={arXiv preprint arXiv:2006.02708},
  year={2020}
}

Core contributions

  1. We analyze the effects of complicated camera motions on unsupervised depth learning.
  2. We release an rectified NYUv2 dataset for unsupvised learning of single-view depth CNN.

Datasets

Download our pre-processed dataset from the following link:

rectified_nyu (for training) | nyu_test (for evaluation)

Training

  1. Download SC-SfMLearner-Release by
git clone https://github.com/JiawangBian/SC-SfMLearner-Release.git
  1. Run 'scripts/train_nyu.sh'
TRAIN_SET=/media/bjw/Disk/Dataset/rectified_nyu/
python train.py $TRAIN_SET \
--folder-type pair \
--resnet-layers 18 \
--num-scales 1 \
-b16 -s0.1 -c0.5 --epoch-size 0 --epochs 50 \
--with-ssim 1 \
--with-mask 1 \
--with-auto-mask 1 \
--with-pretrain 1 \
--log-output --with-gt \
--dataset nyu \
--name r18_rectified_nyu

Evaluation

  1. Download Pretrained Models.

  2. Run 'scripts/test_nyu.sh'

DISPNET=checkpoints/rectified_nyu_r18/dispnet_model_best.pth.tar

DATA_ROOT=/media/bjw/Disk/Dataset/nyu_test
RESULTS_DIR=results/nyu_self/

#  test 256*320 images
python test_disp.py --resnet-layers 18 --img-height 256 --img-width 320 \
--pretrained-dispnet $DISPNET --dataset-dir $DATA_ROOT/color \
--output-dir $RESULTS_DIR

# evaluate
python eval_depth.py \
--dataset nyu \
--pred_depth=$RESULTS_DIR/predictions.npy \
--gt_depth=$DATA_ROOT/depth.npy 

Results on NYUv2

Visual comparison

Related projects

  • SC-SfMLearner (NeurIPS 2019, scale-consistent depth learning framework.)

  • Depth-VO-Feat (CVPR 2018, trained on stereo videos for depth and visual odometry)

  • DF-VO (ICRA 2020, use scale-consistent depth with optical flow for more accurate visual odometry)