diff --git a/notebook.ipynb b/notebook.ipynb
index a9725d0..0ebcf6a 100644
--- a/notebook.ipynb
+++ b/notebook.ipynb
@@ -60,7 +60,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 115,
"metadata": {},
"outputs": [],
"source": [
@@ -88,241 +88,46 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 116,
"metadata": {},
"outputs": [],
"source": [
"# Loading data\n",
- "data = pd.read_csv(\"dataset\\dataset.csv\", sep=\"\\t\")"
+ "data = pd.read_csv(\"dataset\\dataset.csv\", sep=\"\\t\")\n"
]
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 117,
"metadata": {},
"outputs": [
{
"data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " ClientID | \n",
- " BirthYear | \n",
- " AcademicLevel | \n",
- " RelationshipStatus | \n",
- " AnnualIncome | \n",
- " ChildrenAtHome | \n",
- " TeensAtHome | \n",
- " EnrollmentDate | \n",
- " LastPurchaseDays | \n",
- " WineSpending | \n",
- " ... | \n",
- " WebVisitsMonth | \n",
- " Campaign3Success | \n",
- " Campaign4Success | \n",
- " Campaign5Success | \n",
- " Campaign1Success | \n",
- " Campaign2Success | \n",
- " RecentComplaint | \n",
- " Z_CC | \n",
- " Z_R | \n",
- " LastCampaignResponse | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 5524 | \n",
- " 1957 | \n",
- " Graduation | \n",
- " Single | \n",
- " 58138.0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 04-09-2012 | \n",
- " 58 | \n",
- " 635 | \n",
- " ... | \n",
- " 7 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 3 | \n",
- " 11 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 2174 | \n",
- " 1954 | \n",
- " Graduation | \n",
- " Single | \n",
- " 46344.0 | \n",
- " 1 | \n",
- " 1 | \n",
- " 08-03-2014 | \n",
- " 38 | \n",
- " 11 | \n",
- " ... | \n",
- " 5 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 3 | \n",
- " 11 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 4141 | \n",
- " 1965 | \n",
- " Graduation | \n",
- " Together | \n",
- " 71613.0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 21-08-2013 | \n",
- " 26 | \n",
- " 426 | \n",
- " ... | \n",
- " 4 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 3 | \n",
- " 11 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 6182 | \n",
- " 1984 | \n",
- " Graduation | \n",
- " Together | \n",
- " 26646.0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 10-02-2014 | \n",
- " 26 | \n",
- " 11 | \n",
- " ... | \n",
- " 6 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 3 | \n",
- " 11 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 5324 | \n",
- " 1981 | \n",
- " PhD | \n",
- " Married | \n",
- " 58293.0 | \n",
- " 1 | \n",
- " 0 | \n",
- " 19-01-2014 | \n",
- " 94 | \n",
- " 173 | \n",
- " ... | \n",
- " 5 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 0 | \n",
- " 3 | \n",
- " 11 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
5 rows × 29 columns
\n",
- "
"
- ],
"text/plain": [
- " ClientID BirthYear AcademicLevel RelationshipStatus AnnualIncome \\\n",
- "0 5524 1957 Graduation Single 58138.0 \n",
- "1 2174 1954 Graduation Single 46344.0 \n",
- "2 4141 1965 Graduation Together 71613.0 \n",
- "3 6182 1984 Graduation Together 26646.0 \n",
- "4 5324 1981 PhD Married 58293.0 \n",
- "\n",
- " ChildrenAtHome TeensAtHome EnrollmentDate LastPurchaseDays WineSpending \\\n",
- "0 0 0 04-09-2012 58 635 \n",
- "1 1 1 08-03-2014 38 11 \n",
- "2 0 0 21-08-2013 26 426 \n",
- "3 1 0 10-02-2014 26 11 \n",
- "4 1 0 19-01-2014 94 173 \n",
- "\n",
- " ... WebVisitsMonth Campaign3Success Campaign4Success Campaign5Success \\\n",
- "0 ... 7 0 0 0 \n",
- "1 ... 5 0 0 0 \n",
- "2 ... 4 0 0 0 \n",
- "3 ... 6 0 0 0 \n",
- "4 ... 5 0 0 0 \n",
- "\n",
- " Campaign1Success Campaign2Success RecentComplaint Z_CC Z_R \\\n",
- "0 0 0 0 3 11 \n",
- "1 0 0 0 3 11 \n",
- "2 0 0 0 3 11 \n",
- "3 0 0 0 3 11 \n",
- "4 0 0 0 3 11 \n",
- "\n",
- " LastCampaignResponse \n",
- "0 1 \n",
- "1 0 \n",
- "2 0 \n",
- "3 0 \n",
- "4 0 \n",
- "\n",
- "[5 rows x 29 columns]"
+ "Index(['ClientID', 'BirthYear', 'AcademicLevel', 'RelationshipStatus',\n",
+ " 'AnnualIncome', 'ChildrenAtHome', 'TeensAtHome', 'EnrollmentDate',\n",
+ " 'LastPurchaseDays', 'WineSpending', 'FruitSpending', 'MeatSpending',\n",
+ " 'FishSpending', 'SweetSpending', 'GoldSpending', 'DiscountedPurchases',\n",
+ " 'WebPurchases', 'CatalogPurchases', 'StorePurchases', 'WebVisitsMonth',\n",
+ " 'Campaign3Success', 'Campaign4Success', 'Campaign5Success',\n",
+ " 'Campaign1Success', 'Campaign2Success', 'RecentComplaint', 'Z_CC',\n",
+ " 'Z_R', 'LastCampaignResponse'],\n",
+ " dtype='object')"
]
},
- "execution_count": 16,
+ "execution_count": 117,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Looking at the first five rows\n",
- "data.head(5)"
+ "data.columns"
]
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 118,
"metadata": {},
"outputs": [
{
@@ -534,7 +339,7 @@
"[5 rows x 29 columns]"
]
},
- "execution_count": 17,
+ "execution_count": 118,
"metadata": {},
"output_type": "execute_result"
}
@@ -552,7 +357,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 119,
"metadata": {},
"outputs": [
{
@@ -851,7 +656,7 @@
"[8 rows x 26 columns]"
]
},
- "execution_count": 18,
+ "execution_count": 119,
"metadata": {},
"output_type": "execute_result"
}
@@ -862,7 +667,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 120,
"metadata": {},
"outputs": [
{
@@ -924,7 +729,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 121,
"metadata": {},
"outputs": [],
"source": [
@@ -933,7 +738,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 122,
"metadata": {},
"outputs": [
{
@@ -971,7 +776,7 @@
"dtype: int64"
]
},
- "execution_count": 21,
+ "execution_count": 122,
"metadata": {},
"output_type": "execute_result"
}
@@ -989,7 +794,7 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 123,
"metadata": {},
"outputs": [
{
@@ -1006,7 +811,7 @@
"Name: AnnualIncome, dtype: float64"
]
},
- "execution_count": 22,
+ "execution_count": 123,
"metadata": {},
"output_type": "execute_result"
}
@@ -1017,7 +822,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 124,
"metadata": {},
"outputs": [
{
@@ -1026,7 +831,7 @@
"7500.0"
]
},
- "execution_count": 23,
+ "execution_count": 124,
"metadata": {},
"output_type": "execute_result"
}
@@ -1038,7 +843,7 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 125,
"metadata": {},
"outputs": [
{
@@ -1078,7 +883,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 126,
"metadata": {},
"outputs": [
{
@@ -1464,7 +1269,7 @@
"[2240 rows x 29 columns]"
]
},
- "execution_count": 25,
+ "execution_count": 126,
"metadata": {},
"output_type": "execute_result"
}
@@ -1476,7 +1281,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 127,
"metadata": {},
"outputs": [],
"source": [
@@ -1485,7 +1290,7 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 128,
"metadata": {},
"outputs": [
{
@@ -1537,7 +1342,7 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 129,
"metadata": {},
"outputs": [
{
@@ -1551,7 +1356,7 @@
"Name: EnrollmentDate, dtype: object"
]
},
- "execution_count": 28,
+ "execution_count": 129,
"metadata": {},
"output_type": "execute_result"
}
@@ -1569,7 +1374,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 130,
"metadata": {},
"outputs": [
{
@@ -1594,7 +1399,7 @@
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 131,
"metadata": {},
"outputs": [
{
@@ -1608,7 +1413,7 @@
"Name: EnrollmentDate, dtype: datetime64[ns]"
]
},
- "execution_count": 30,
+ "execution_count": 131,
"metadata": {},
"output_type": "execute_result"
}
@@ -1626,7 +1431,7 @@
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 132,
"metadata": {},
"outputs": [],
"source": [
@@ -1657,7 +1462,7 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 133,
"metadata": {},
"outputs": [],
"source": [
@@ -1668,7 +1473,7 @@
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 134,
"metadata": {},
"outputs": [],
"source": [
@@ -1680,7 +1485,7 @@
},
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": 135,
"metadata": {},
"outputs": [],
"source": [
@@ -1691,7 +1496,7 @@
},
{
"cell_type": "code",
- "execution_count": 35,
+ "execution_count": 136,
"metadata": {},
"outputs": [],
"source": [
@@ -1701,7 +1506,7 @@
},
{
"cell_type": "code",
- "execution_count": 36,
+ "execution_count": 137,
"metadata": {},
"outputs": [],
"source": [
@@ -1712,7 +1517,7 @@
},
{
"cell_type": "code",
- "execution_count": 37,
+ "execution_count": 138,
"metadata": {},
"outputs": [],
"source": [
@@ -1722,7 +1527,7 @@
},
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": 139,
"metadata": {},
"outputs": [],
"source": [
@@ -1732,7 +1537,7 @@
},
{
"cell_type": "code",
- "execution_count": 39,
+ "execution_count": 140,
"metadata": {},
"outputs": [],
"source": [
@@ -1745,7 +1550,7 @@
},
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": 141,
"metadata": {},
"outputs": [],
"source": [
@@ -1755,7 +1560,7 @@
},
{
"cell_type": "code",
- "execution_count": 41,
+ "execution_count": 142,
"metadata": {},
"outputs": [],
"source": [
@@ -1765,7 +1570,7 @@
},
{
"cell_type": "code",
- "execution_count": 42,
+ "execution_count": 143,
"metadata": {},
"outputs": [],
"source": [
@@ -1775,7 +1580,7 @@
},
{
"cell_type": "code",
- "execution_count": 43,
+ "execution_count": 144,
"metadata": {},
"outputs": [],
"source": [
@@ -1791,7 +1596,7 @@
},
{
"cell_type": "code",
- "execution_count": 44,
+ "execution_count": 145,
"metadata": {},
"outputs": [
{
@@ -1996,7 +1801,7 @@
"[5 rows x 36 columns]"
]
},
- "execution_count": 44,
+ "execution_count": 145,
"metadata": {},
"output_type": "execute_result"
}
@@ -2014,13 +1819,509 @@
},
{
"cell_type": "code",
- "execution_count": 45,
+ "execution_count": 146,
"metadata": {},
"outputs": [],
"source": [
"# Plots For The Engineered Features"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Engineered features :- ['Age', 'TotalSpent', 'Children',\n",
+ " 'CustomerSince', 'TotalPurchases', 'TotalSuccessfulCampaignsSuccess',\n",
+ " 'Is_Parent' ,'AnnualIncome' ]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 147,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABveUlEQVR4nO3deXyU9bn///c9a/ZJSMgGIYAgsokWcG9FRRS3trZVa23xVPu1WrVUra3Heoqeiue0Fj1Hq23P8bjUWvV3jlqtFsW1RbQiyo6AypI9ELJvM5n5/P6YzEhkS0Iy9yyv5+NxPyT33DNzzU3AO2+uz3VbxhgjAAAAAAAAIIYcdhcAAAAAAACA1EMoBQAAAAAAgJgjlAIAAAAAAEDMEUoBAAAAAAAg5gilAAAAAAAAEHOEUgAAAAAAAIg5QikAAAAAAADEHKEUAAAAAAAAYo5QCgAAAAAAADFHKAUgoTzyyCOyLEvvv/9+n/27d+/WrFmzlJWVpWXLlkmSFi1aJMuyoltGRoZGjx6ts846S/fdd59aW1v3ef3LL7+8z3M+vx3K2LFj+xyflZWl448/Xo899lif4+bMmaM5c+YM6hwsXrxYzz333KCeCwAAElvkWmjvbeTIkZozZ47+8pe/2F2epPD10OWXXz7g53V0dGjRokV68803h7wmAPHJZXcBAHC4KisrdeaZZ6qurk6vvvqqTjjhhD6PL126VD6fT36/X9XV1Xrttdd0880361e/+pVeeOEFzZgxo8/x6enpev311wddz8knn6y77747Wtvdd9+tBQsWqL29XVdfffWgXzdi8eLF+vrXv66vfOUrh/1aAAAgMT388MM66qijZIxRbW2t7r//fp1//vl6/vnndf7559td3qB0dHTo9ttvl6RB/+MdgMRCKAUgoW3dulVz585VIBDQW2+9penTp+9zzMyZM1VQUBD9+pJLLtG1116rU089VRdccIG2bNkir9cbfdzhcOwTbA1Ebm5un+fPnTtX5eXlWrJkyZCEUgAAANOmTdOsWbOiX5999tnKy8vTn/70p4QNpQCkHpbvAUhYq1ev1imnnCKXy6Xly5fvN5A6kBkzZujWW2/Vzp079dRTTw1jleGQatKkSdqxY8dBj9uzZ4+uueYajRo1Sh6PR+PHj9ett96q7u7u6DGWZam9vV2PPvpotGWff0kEAABpaWnyeDxyu93RfYe6tujq6tKxxx6rCRMmqLm5Ofq82tpaFRcXa86cOQoGg5LCIw6ysrK0YcMGnXHGGcrMzNTIkSN17bXXqqOj45D17dy5U5dddpkKCwvl9Xo1efJk/frXv1YoFJIkbd++XSNHjpQk3X777dHrnMEsAwSQOAilACSk5cuXa86cOSosLNTy5cs1fvz4Ab/GBRdcIEn629/+ts9jPT09+2yRi6aBCgQC2rFjR/RCa3+6urp02mmn6bHHHtMNN9ygF198UZdddpl++ctf6sILL4we98477yg9PV3nnHOO3nnnHb3zzjt64IEHBlUXAABIXMFgUD09PQoEAqqsrNTChQvV3t6uSy+9VFL/ri3S0tL09NNPq76+Xt/97nclSaFQSN/61rdkjNGf/vQnOZ3O6HsGAgGdc845OuOMM/Tcc8/p2muv1e9+9ztdfPHFB611165dOumkk/TKK6/oX//1X/X8889r7ty5uummm3TttddKkkpKSrR06VJJ0hVXXBG9zrntttuG/NwBiB8s3wOQkH70ox/J5/Pp9ddfP2jYczDl5eWSpOrq6j7729vb+/wrY8QZZ5yhV1999ZCva4xRT0+PpPBMqUWLFqm+vl4//vGPD/icRx99VGvXrtXTTz+tb3zjG5KkM888U1lZWfrJT36iZcuW6cwzz9QJJ5wgh8OhkSNHHtYSQwAAkNg+fx3g9Xp1//3366yzzpLU/2uLiRMn6r//+7918cUX6z/+4z+0Z88evfnmm1q6dKlKSkr6vIff79eNN96o66+/Pvp6brdbt956q95++22dfPLJ+611yZIlqqqq0j/+8Q8dd9xxkqSzzjpLwWBQv/3tb7Vw4UIdeeSRmjlzpiRp9OjRXOcAKYJOKQAJ6YILLlBzc7MWLlwYbSsfKGPMfvenp6dr5cqV+2z97Uh66aWX5Ha75Xa7NW7cOD399NO67rrr9Itf/OKAz3n99deVmZmpr3/96332R1rWX3vttf59KAAAkBIee+yx6DXKX//6Vy1YsEA/+MEPdP/990sa2LXFRRddpKuvvlo//vGP9Ytf/EL//M//rDPPPHO/7/utb32rz9eRzqw33njjgLW+/vrrmjJlSjSQ2rsWY8xh3WAGQGKjUwpAQrrtttt0zDHH6I477lAoFNLjjz/ep728PyIznkpLS/vsdzgcfQaHDtQpp5yie+65R5ZlKSMjQ0cccYQ8Hs9Bn9PQ0KDi4mJZltVnf2FhoVwulxoaGgZdDwAASD6TJ0/eZ9D5jh07dPPNN+uyyy4b8LXFd7/7XT344IPyeDzRTqjPc7lcys/P77OvuLhYkg56rdLQ0KCxY8fusz9yDcZ1DpC66JQCkLBuv/12/fznP9eTTz6pSy+9NLpkrr+ef/55SUN/y2Gfz6dZs2Zp5syZmjx58iEDKUnKz89XXV3dPt1b9fX16unp6XP3QAAAgP05+uij1dnZqS1btgzo2qK9vV3f/va3deSRRyo9PV1XXnnlfl+/p6dnnwCptrZWkvYJq/aWn5+vmpqaffZHRihwnQOkLkIpAAlt0aJFuv322/X0008PKJhas2aNFi9erLFjx+qiiy4a5ioP7YwzzlBbW5uee+65Pvsfe+yx6OMRXq9XnZ2dsSwPAAAkgNWrV0uSRo4cOaBri+9///vauXOnnnnmGT300EN6/vnndc899+z3Pf74xz/2+fqJJ56QdPB/5DvjjDO0ceNGffDBB/vUYlmWTjvtNEnhaxxJXOcAKYTlewAS3r/8y7/I4XDotttui94pxuX67K+3VatWyefzKRAIqLq6Wq+99pr+8Ic/qLCwUC+88MI+nUyhUEjvvvvuft/r2GOPjV4wDaXvfOc7+s1vfqMFCxZo+/btmj59upYvX67FixfrnHPO0dy5c6PHTp8+XW+++aZeeOEFlZSUKDs7W5MmTRrymgAAQPxav3599B/jGhoa9Mwzz2jZsmX66le/qnHjxvX72uK///u/9fjjj+vhhx/W1KlTNXXqVF177bX6yU9+opNPPrnPHCiPx6Nf//rXamtr0+zZs7VixQr94he/0Pz583XKKaccsNYf/ehHeuyxx3TuuefqjjvuUHl5uV588UU98MADuvrqq3XkkUdKkrKzs1VeXq4///nPOuOMMzRixAgVFBTsd+kfgCRhACCBPPzww0aSWbly5T6P3XnnnUaSufDCC43f7zc///nPjaTo5vV6TUlJiZk3b575j//4D9PS0rLPayxYsKDPcz6/bd269aD1lZeXm3PPPfeQn+PUU081p556ap99DQ0N5vvf/74pKSkxLpfLlJeXm1tuucV0dXX1OW716tXm5JNPNhkZGUbSPq8DAACSV+RaaO/N5/OZY445xixZsqTPdcOhri3Wrl1r0tPTzYIFC/q8R1dXl5k5c6YZO3asaWxsNMaEr5EyMzPN2rVrzZw5c0x6eroZMWKEufrqq01bW1uf55eXl+/zmjt27DCXXnqpyc/PN26320yaNMn86le/MsFgsM9xr776qjn22GON1+s1kvZ5HQDJxTLmALefAgAAAABA4Tvl/e///q/a2trsLgVAEmGmFAAAAAAAAGKOUAoAAAAAAAAxx/I9AAAAAAAAxBydUgAAAAAAAIg5QikAAAAAAADEHKEUAAAAAAAAYs5ldwHxIBQKqbq6WtnZ2bIsy+5yAABAEjLGqLW1VaWlpXI47Pt3Qa57AADAcOvvdQ+hlKTq6mqVlZXZXQYAAEgBFRUVGj16tG3vz3UPAACIlUNd9xBKScrOzpYUPlk5OTk2VwMAAJJRS0uLysrKotcdduG6BwAADLf+XvcQSknR1vWcnBwuzgAAwLCye8kc1z0AACBWDnXdw6BzAAAAAAAAxByhFAAAAAAAAGKOUAoAAAAAAAAxRygFAAAAAACAmCOUAgAAAAAAQMwRSgEAAAAAACDmCKUAAAAAAAAQc4RSAAAAAAAAiDlCKQAAAAAAAMQcoRQAAAAAAABijlAKAAAAAAAAMUcoBQAAAAAAgJgjlAIAAAAAAEDMEUoBAAAAAAAg5gilAAAAAAAAEHOEUgAAAAAAAIg5QikAAAAAAADEHKEUAAAAAAAAYo5QCgAAAAAAADFHKAUAAAAAAICYc9ldAJCojDGDep5lWUNcCQAAAAAAiYdOKWAQjDEqG1Muh8MxoK1sTPmgwywAAAAAAJIJnVLAIFVVVujupZv63flkjNFNZ08e5qoAAAAAAEgMhFLAYbAsi+V4AAAAAAAMAsv3AAAAAAAAEHOEUgAAAAAAAIg5QikAAAAAAADEHKEUAAAAAAAAYo5QCgAAAAAAADFHKAUAAAAAAICYI5QCAAAAAABAzBFKAQAAAAAAIOYIpQAAAAAAABBzhFIAAAAAAACIOUIpAAAAAAAAxByhFAAAAAAAAGKOUAoAAAAAAAAxRygFAAAAAACAmCOUAgAAAAAAQMwRSgEAAAAAACDmCKUAAAAAAAAQc4RSAAAAAAAAiDlCKQAAAAAAAMScy+4CgKFmjBnU8yzLGuJKAAAAAADAgdAphaRijFHZmHI5HI4BbWVjygcdZgEAAAAAgIGjUwpJp6qyQncv3dTvzidjjG46e/IwVwUAAAAAAPZGKIWkZFkWy/EAAEDSMsbI7/fHTQ0ejyfprr2S8TMBQLwhlAJ6DWT5Hkv9AACAnfx+v2644Qa7y0hqS5YskdfrtbsMAEhqhFJIecYYyXLI6XQO5tmS+Bc0AAAAAAAGilAKkCQT0t1LN8qy+jf7PxQK6cfzpwxzUQAAAId21MVflsMV+8v6UE+PPnrqz7bWMNT2/kwAgOGX+P/nAIbIQOZQMV8AAADEC4fLJYfb3sv6eKgBAJB4+tcWAgAAAAAAAAwhQikAAAAAAADEHKEUAAAAAAAAYo5QCgAAAAAAADFHKAUAAAAAAICYI5QCAAAAAABAzBFKAQAAAAAAIOYIpQAAAAAAABBzhFIAAAAAAACIOUIpAAAAAAAAxByhFAAAAAAAAGKOUAoAAAAAAAAxRygFAAAAAACAmCOUAgAAAAAAQMwRSgEAAAAAACDmCKUAAAAAAAAQc4RSAAAAAAAAiDlCKQAAAAAAAMQcoRQAAAAAAABijlAKAAAAAAAAMUcoBQAAAAAAgJgjlAIAAAAAAEDMEUoBAAAAAAAg5gilAAAAAAAAEHOEUgAAAAAAAIg5QikAAAAAAADEHKEUAAAAAAAAYo5QCgAAAAAAADFHKAUAAAAAAICYI5QCAAAAAABAzBFKAQAAAAAAIOZcdhcAxKMOf48a2wNyOix53Q7lprtlWZbdZQEAAAAAkDQIpYC9GGO0trJZyz/erZ6Qie4fX5CpM6cUKc3ttLE6AAAAAACSB8v3gF6d/qCeXV2lN7fsUk/IKMvrUnaaSw5L+nR3u/703k7Vt3TZXSYAAAAAAEmBTilAkmTp5Y11qtjTKZfD0ikTCnT0aJ8sy1J9S5deXFejlq4e/d8HVfrW8WOU5aVjCgAAAACAw0GnFCAp57ivaGdvIHXRrDLNKMuNzpAqzEnTN48bo6Icr/zBkF7fXC9jzCFeEQAAAAAAHAyhFFJeXUuXcr+0QJJ06pEjNTLbu88xaW6n5k0pltNhaUdDhzbXtcW6TAAAAAAAkgqhFFJaKGS0bFO9LKdLE0ZmamppzgGPHZHp0fHjRkiS/r51txwZuTGqEgAAAACA5GNrKHXXXXdp9uzZys7OVmFhob7yla9o8+bNfY4xxmjRokUqLS1Venq65syZow0bNvQ5pru7W9ddd50KCgqUmZmpCy64QJWVlbH8KEhQW+vb1NgRULCzRacfNTK6ZO9AvjAmTyOzvOrqCcl34kUxqhIAAAAAgORjayj11ltv6Qc/+IHeffddLVu2TD09PZo3b57a29ujx/zyl7/UkiVLdP/992vlypUqLi7WmWeeqdbW1ugxCxcu1LPPPqsnn3xSy5cvV1tbm8477zwFg0E7PhYShDFGK7fvkSS1vv+80tyHHl7udFg6eUK+JClr+lx194SGtUYAAAAAAJKVraHU0qVLdfnll2vq1KmaMWOGHn74Ye3cuVOrVq2SFA4N7r33Xt1666268MILNW3aND366KPq6OjQE088IUlqbm7WQw89pF//+teaO3eujj32WD3++ONat26dXn31VTs/HuLcp7vb1dDul9tpqXXVC/1+3pgRGcrLcMvhzdCmmpZhrBAAAAAAgOQVVzOlmpubJUkjRoTn9mzbtk21tbWaN29e9Biv16tTTz1VK1askCStWrVKgUCgzzGlpaWaNm1a9JjP6+7uVktLS58NqWXvLqmjR/kU6m4/xDM+Y1mWZoz2SZLWVLZwJz4AAAAAAAYhbkIpY4xuuOEGnXLKKZo2bZokqba2VpJUVFTU59iioqLoY7W1tfJ4PMrLyzvgMZ931113yefzRbeysrKh/jiIc5WNnapr6ZbLYemYMt+Anz+pKFuhrjY1dwa0vaFjGCoEAAAAACC5xU0ode2112rt2rX605/+tM9jnx8+bYw55EDqgx1zyy23qLm5ObpVVFQMvnAkpI29y+4ml+Qow+Ma8PM9Lofa1i6TJK2uaBrK0gAAAAAASAlxEUpdd911ev755/XGG29o9OjR0f3FxcWStE/HU319fbR7qri4WH6/X42NjQc85vO8Xq9ycnL6bEgdgWBIn+xqkyRNLske9Ou0fvAXSdLOPR1q7+4ZktoAAAAAAEgVtoZSxhhde+21euaZZ/T6669r3LhxfR4fN26ciouLtWzZsug+v9+vt956SyeddJIkaebMmXK73X2Oqamp0fr166PHAHv7ZFebAkEjX7pbxTlpg36dnuY6FeV4o68JAAAAAAD6b+DrlobQD37wAz3xxBP685//rOzs7GhHlM/nU3p6uizL0sKFC7V48WJNnDhREydO1OLFi5WRkaFLL700euwVV1yhG2+8Ufn5+RoxYoRuuukmTZ8+XXPnzrXz4yFOba5tlSRNKs6WZVmHNah8wshM1bV06+P6Nh09OneIKgQAAAAAIPnZGko9+OCDkqQ5c+b02f/www/r8ssvlyTdfPPN6uzs1DXXXKPGxkYdf/zxeuWVV5Sd/dmyq3vuuUcul0sXXXSROjs7dcYZZ+iRRx6R0+mM1UdBgujw92jHnvBg8qOKB790L2JCYZbe/mSPKps61RkIKt3N9xwAAAAAAP1hayjVnw4Vy7K0aNEiLVq06IDHpKWl6b777tN99903hNUhGW2ta5MxUmG2V3kZnsN+PV+6WyOzvNrV1q1Pd7VpaunA7+QHAAAAAEAqiotB50CsbK4LL90bii6piAmFWZKkj+uZKwUAAAAAQH8RSiFldPh7VNPcJUmaWDj0oVTFnk519wSH7HUBAAAAAEhmhFJIGTt7Z0kVZHmUlTZ0K1dHZHqUl+FW0Bht390xZK8LAAAAAEAyI5RCytjREA6MyvMzh/y1x48Md0vt2NM+5K8NAAAAAEAyIpRCSjDGREOpsfkZQ/76Y0aEX7NiT2e/BvgDAAAAAJDqCKWQEupbu9UZCMrjdKjElz7kr1/qS5PTYamtu0dNHYEhf30AAAAAAJINoRRSQqRLqmxEupwOa8hf3+V0qMSXJkna2chcKQAAAAAADoVQCilhe0N41lP5iKGfJxXx2RI+QikAAAAAAA6FUApJrysQVG1zlySpfBjmSUWU5fWGUo2dCjFXCgAAAACAgyKUQtKraOyQkZSX4VZOunvY3qcwxyuPyyF/T0j1Ld3D9j4AAAAAACQDQikkveqmcJdUpJNpuDgsS2V54SHqFcyVAgAAAADgoAilkPSqmzolSaW5Q3/Xvc+LBF87mSsFAAAAAMBBEUohqfl7QtrVGl5KV5qbNuzvV9Y77LymuUvBEHOlAAAAAAA4EEIpJLWa5k4ZSdlpLmWnDd88qYi8DLfS3A4FQ0b1rV3D/n4AAAAAACQqQikktereu+7FYumeJFmWpRJf+L1qmgilAAAAAAA4EEIpJLXIPKlRvtiEUpJU6gsvE6xu7ozZewIAAAAAkGgIpZC0giGj2min1PDPk4qIdGVVN3XJGOZKAQAAAACwP4RSSFq7WrvVEzLyuhwakemJ2fsWZnvltCx1BoJq7gzE7H0BAAAAAEgkhFJIWpHlc6W56bIsK2bv63I6VJjj7a2BuVIAAAAAAOwPoRSSVmSeVCyX7kWURoedM1cKAAAAAID9IZRC0orMkyqJ4ZDziJLcyLBzOqUAAAAAANgfQikkpbbuHrX7g7IUnvEUayW9d+Db0+5XVyAY8/cHAAAAACDeEUohKdW3dEuSRmR65HbG/ts8w+NSboZbklRDtxQAAAAAAPsglEJSqm8NB0GRgeN2iHRL1RJKAQAAAACwD0IpJKW61nCnVFF27IecRxTlpPXWQigFAAAAAMDnEUohKUWW70WCITtEQ6nmLhljbKsDAAAAAIB4RCiFpOPMHqnOQFAOSyrI8thWR0GWR07LUldPSC1dPbbVAQAAAABAPCKUQtLxlEyQJOVneeWyYch5hMvhUEF2OBRjrhQAAAAAAH0RSiHpeIsnSpKKsu0bch7BXCkAAAAAAPaPUApJx1MSDqUKbZwnFbH3XCkAAAAAAPAZQikkFWOMPHHUKVXcG0rVt3YrFGLYOQAAAAAAEYRSSCo793TImZYlhxWeKWW3vAy3PE6HekJGezr8dpcDAAAAAEDcIJRCUllf3SJJKsjyyumwbK5GsixLhb0dW3Ut3TZXAwAAAABA/CCUQlLZVPNZKBUviny9c6VamCsFAAAAAEAEoRSSyqaaVknSyCyPzZV8pohOKQAAAAAA9kEohaTyUW38dko1tHfLcsVPWAYAAAAAgJ0IpZA0mjsCqm4KL5EriKNOqWyvS+lup0JGcheOt7scAAAAAADiAqEUksam3i6pnuY6ed1Om6v5jGVZKu7tlvKWTLS5GgAAAAAA4gOhFJJGZMi5v36bzZXsKzJXylNypM2VAAAAAAAQHwilkDSiodSu7fYWsh+RuVLeYjqlAAAAAACQCKWQRCJ33gvEZadUOJRy549WS2fA5moAAAAAALAfoRSSQk8wpC114VAqHpfvpXucyklzSZLWVjXbXA0AAAAAAPYjlEJS2N7Qru6ekDI8TvU01thdzn4V5YS7pdZWNtlbCAAAAAAAcYBQCklhY+/SvUlF2ZKMvcUcQFFOeNj5mgo6pQAAAAAAIJRCUogMOT+qJNvmSg7ss04pQikAAAAAAAilkBQ+6g2lJhfn2FzJgRVme2VCQdW2dKmupcvucgAAAAAAsBWhFJLClro2SdKk4vjtlHI7HQrs3ilJWlPRZG8xAAAAAADYjFAKCa+9u0dVTZ2SpImFWTZXc3D+2q2SWMIHAEhOxhh1d3eru7tbxsTnjEcA9uPvCgARhFJIeB/Xh7ukCrI8ysv02FzNwXXXhEOpNdyBDwCQhPx+v2644QbdcMMN8vv9dpcDIE7xdwWACEIpJLytvaHUxML4XboX4a/ZIincKcW/CgEAAAAAUhmhFBLe1rpWSdLEovheuidJ/l075HE51NwZ0I6GDrvLAQAAAADANoRSSHjRTqmi+O+UUqhHU0rCdwhkCR8AAAAAIJURSiHhbYl0SsX5kPOIo0f7JDHsHAAAAACQ2gilkNA6/D2qbEyMO+9FfBZKNdlbCAAAAAAANiKUQkL7pL5dkpSf6VF+ltfmavpnxuhcSdL6qhb1BEP2FgMAAAAAgE0IpZDQIkv3JiRIl5QkjS/IVJbXpc5AUB/varO7HAAAAAAAbEEohYQWGXJ+ZCIMOe/lcFiaPiq8hG9NRZO9xQAAAAAAYBNCKSS0rZEh50WJ0yklSUeX9YZSDDsHAAAAAKQoQikktEinVCIt35M+mytFpxQAAAAAIFURSiFhdfqDqmjskJRYy/ck6ZiyXEnSR7Wt6vQH7S0GAAAAAAAbEEohYX2yq03GSHkZbuVneuwuZ0BKfGkqyvEqGDJaV8USPgAAAABA6iGUQsLaWh+ZJ5Uty7JsrmZgLMvSsWV5kqTVFY02VwMAAAAAQOwRSiFhbakLz5OamGDzpCKOHZMrSfpwZ9NBjzPGDGoDAAAAACCeEUohYW1N8FAqMlfqYKGUMUZlY8rlcDgGtJWNKSeYAgAAAADENZfdBQCD9XHv8r1EG3IeMX20T06HpdqWLtU0d6rEl77f46oqK3T30k39XqJojNFNZ08eylIBAAAAABhydEohIXUFgtqxJ3znvQlFidkpleFx6ajicKB2qCV8lmUNaAMAAAAAIN4RSiEhRe68l5vh1sgsr93lDFpkrtTqiiZb6wAAAAAAINYIpZCQPq7/bJ5UIncGHdN7B74Pd3IHPgAAAABAaiGUQkLaUheeJzWhMDHnSUVEOqXWVjYrEAzZWwwAAAAAADFEKIWEFLnz3pEJOk8qYlx+pnzpbnX3hLSppsXucgAAAAAAiBlCKSSkrdHle4ndKeVwWPpCb7fU+9tZwgcAAAAASB2EUkg4XYGgdjS0S0r8TilJmjV2hCTp/R17bK4EAAAAAIDYIZRCwtm2u10hI+WkuTQyO3HvvBcxuzeUem9bo4wxNlcDAAAAAEBsEEoh4USGnE8syk7oO+9FHD3aJ4/Tod1t3drR0GF3OQAAAAAAxAShFBLOx/XJMeQ8Is3t1NGjfZKkldtZwgcAAAAASA2EUkg4kU6pCQk+5HxvkblShFIAAAAAgFRBKIWEszXJOqUk6bhxeZK4Ax8AAAAAIHUQSiGhdPcEo3OXJiZRp9TMMeFOqU93t2tXa7fN1QAAAAAAMPwIpZBQtu1uVzBklO11qSgn8e+8F+HLcGtSUThkW7WDJXwAAAAAgORHKIWEsrUuvHRvYlFWUtx5b2+ze5fwrWQJHwAAAAAgBRBKIaFs7R1ynkxL9yJm9w47f/fTBpsrAQAAAABg+BFKIaFEhpxPTKIh5xEnjs+XJG2saVFju9/magAAAAAAGF6EUkgon4VSydcpVZiTpomFWTKGbikAAAAAQPIjlELC8PeEtH13uyRpYmHydUpJ0klHhLulVnxCKAUAAAAASG6EUkgY2xva1RMyyvK6VOJLs7ucYXHShAJJ0tuf7La5EgAAAAAAhhehFBJG5M57EwqT7857ESeMz5fDkj7d1a7a5i67ywEAAAAAYNgQSiFhbIneeS85l+5Jki/drWmjfJKkFXRLAQAAAACSGKEUEsbHvUPOj0zCIed7O+mI8BI+5koBAAAAAJIZoRQSRqRTakJR8nZKSXsNO/94t4wxNlcDAAAAAMDwIJRCQggEQ9rWe+e9ZO+Umj12hDxOh6qbu6KfGQAAAACAZEMohYSwo/fOe5kep0qT9M57Eekep2aNzZMkvbWFuVIAAAAAgORkayj1t7/9Teeff75KS0tlWZaee+65Po9ffvnlsiyrz3bCCSf0Oaa7u1vXXXedCgoKlJmZqQsuuECVlZUx/BSIhS0pcOe9vZ02qVCS9ObmepsrAQAAAABgeNgaSrW3t2vGjBm6//77D3jM2WefrZqamuj20ksv9Xl84cKFevbZZ/Xkk09q+fLlamtr03nnnadgMDjc5SOGtvaGUhOTfOlexGlHjZQkvbttjyy31+ZqAAAAAAAYei4733z+/PmaP3/+QY/xer0qLi7e72PNzc166KGH9Ic//EFz586VJD3++OMqKyvTq6++qrPOOmvIa4Y9ttSHh5xPLEzuIecRR4zM0ui8dFU2diptzNF2l7Nfgx3CngqdbgAAAACAQ4v7mVJvvvmmCgsLdeSRR+p73/ue6us/W860atUqBQIBzZs3L7qvtLRU06ZN04oVK+woF8Pk495OqWQfch5hWVZ0CV/6+Fk2V7MvY4zKxpTL4XAMaCsbU84dBQEAAAAAkmzulDqU+fPn6xvf+IbKy8u1bds23XbbbTr99NO1atUqeb1e1dbWyuPxKC8vr8/zioqKVFtbe8DX7e7uVnd3d/TrlpaWYfsMOHw9wZA+3f3ZTKlUcdpRI/WHd3co/YhZMsbEXYdRVWWF7l66qd91GWN009mTh7kqAAAAAECiiOtQ6uKLL47+etq0aZo1a5bKy8v14osv6sILLzzg8w71A/xdd92l22+/fUhrxfDZ3tChQNAo3e3UqNx0u8uJmRPHF8jjcki+Iu3pCKggK/5mS0VuQAAAAAAAwEDF/fK9vZWUlKi8vFxbt26VJBUXF8vv96uxsbHPcfX19SoqKjrg69xyyy1qbm6ObhUVFcNaNw7Px5F5UkVZcjhSJwBJ9zh14vh8SdKOhnabqwEAAAAAYGglVCjV0NCgiooKlZSUSJJmzpwpt9utZcuWRY+pqanR+vXrddJJJx3wdbxer3JycvpsiF9b6lJv6V7EnEnhu/B9uotQCgAAAACQXGwNpdra2rR69WqtXr1akrRt2zatXr1aO3fuVFtbm2666Sa988472r59u958802df/75Kigo0Fe/+lVJks/n0xVXXKEbb7xRr732mj788ENddtllmj59evRufEh8W+tTa8j53uZNCXf8VTd3qb27x+ZqAAAAAAAYOrbOlHr//fd12mmnRb++4YYbJEkLFizQgw8+qHXr1umxxx5TU1OTSkpKdNppp+mpp55SdvZn4cQ999wjl8uliy66SJ2dnTrjjDP0yCOPyOl0xvzzYHhsretdvpeCnVKluenqrt4ib+mR+nR3u6aP8tldEgAAAAAAQ8LWUGrOnDkHvT38yy+/fMjXSEtL03333af77rtvKEtDnOgJhqJL1yYWpl6nlCR1bFkhb+mR+mRXG6EUAAAAACBpJNRMKaSenXs65A+GlOZ2aHRe6tx5b28dW1ZIkir2dKg7ELS5GgAAAAAAhgahFOJaZJ7UhMLUuvPe3noaqzUi06OQkbZxFz4AAAAAQJIglEJci8yTOjJFl+5FTBiZKUn6uDekAwAAAAAg0RFKIa5tqevtlCpKvSHnexs/Mvz5dzR0KBAM2VwNAAAAAACHj1AKcW1zbbhT6qji1O6UGpnlkS/drZ6Q0bbdLOEDAAAAACQ+QinELX9PSJ/sCndKTSrOsbkae1mWpSN7u8UiQR0AAAAAAImMUApx65NdbeoJGWWnuVTqS7O7HNtNKgp3i21vaFcXd+EDAAAAACQ4QinErUhH0KSibFlWat55b2/5WV4VZIXvwsfAcwAAAABAoiOUQtz6KBJKpfg8qb1FzgVL+AAAAAAAiY5QCnFrc22LJIac7+3I3iV8lU2dau0K2FwNAAAAAACDRyiFuBW9815Jag8531tOmlulueH5WlvqWMIHAAAAAEhchFKIS82dAVU3d0n6rDsIYUcVhUO6jTUtMsbYXA0AAAAAAINDKIW4tKUu3CVV6kuTL91tczXx5ciiLDkdlva0+1XX0m13OQAAAAAADAqhFOISQ84PzOt2akJhlqRwtxQAAAAAAImIUApxKTLkfFIx86T2Z2rvnK3Nta0KBEM2VwMAAAAAwMARSiEuRYec0ym1X6Pz0pWT5pI/GNInuxh4DgAAAABIPIRSiDvGGJbvHYJlWZrS2y21oZolfAAAAACAxEMohbhT3dyl1q4euRyWjhiZZXc5cWtyaTiUqmzsVGOH3+ZqAAAAAAAYGEIpxJ0NVc2SpIlF2fK4+BY9kJw0t8bmZ0iS1lU221wNAAAAAAADw0/8iDuR5WhTSxlyfihHj86VFL4LHwPPAQAAAACJhFAKcYdQqv/G5mfIl+5Wd08oOhweAAAAAIBEQCiFuLOxOrwUbWqpz+ZK4p9lWZo+Knye1lY2yxhjc0UAAAAAAPQPoRTiSmO7X9XNXZKkySXcea8/ppbmyOmwtKutWzW95w4AAAAAgHhHKIW4Elm6V56foew0t83VJIY0t1OTisIB3ocVTfYWAwAAAABAPxFKIa5siC7dY57UQBw7JleS9HF9m5o6/PYWAwAAAABAPxBKIa58NuSceVIDUZDl1dj8DEnSBzub7C0GAAAAAIB+IJRCXNlYEw6lptApNWCzxo6QFD6Hzsw8m6s5MGPMgDcAAAAAQPIhlELc6PQH9emuNkks3xuMUbnpKvGlKWSk7FkX2F3OPowxkuWQ0+mUw+Ho91Y2ppxgCgAAAACSkMvuAoCITbUtCpnwUrTC7DS7y0lIs8rz9MLaGmUfe672tPuVn+W1u6S+TEh3L90oy+pfHm6M0U1nTx7mogAAAAAAdqBTCnHjs3lSdEkN1riCTI3M8srhzdBv3vjY7nL2y7KsAW0AAAAAgOQ0qFBq/Pjxamho2Gd/U1OTxo8ff9hFITWtrwzfeW/aKEKpwbIsSydPyJck/eHdHarY02FzRQAAAAAA7N+gQqnt27crGAzus7+7u1tVVVWHXRRS05rKJknSjNG5ttaR6MaMyFDn9g8VCBrd/crmmLynMUZdgaB6QqGYvB8AAAAAIPENaKbU888/H/31yy+/LJ/PF/06GAzqtdde09ixY4esOKSO9u4ebalrlSQdU5ZrbzFJoOnNR5R++bH68+pqXXnKeE0f7Tv0kwbK6dLG6hZtb+hQTUun2rvDQbXH6VB+lkfTR/k0sTBLLierhAEAAAAA+xpQKPWVr3xFUniJ0IIFC/o85na7NXbsWP36178esuKQOtZXNStkpBJfmgpzGHJ+uPx1n+jLM0r15zXVuvn/1urPPzhZHtfQhENdgaAeXbFdo656SK9+VL/vewdDqmnuUk1zl/6+dbe+NLFAR5WwJBMAAAAA0NeAQqlQ79KccePGaeXKlSooKBiWopB6Vlc0Sdp36Z4xZkCvM9Djk9mt507W37bu0qaaFt33+lbdOG/SYb/mmoom3fT/rdHW+ja5svOV6XVq+iifRudmaGS2VyFj1OEP6pNdbVpb2ay27h69vLFO1c1d+mLvrCsAAAAAAKRBzpTatm0bgRSGVGSe1DFjcqP7jDEqG1Muh8PR783pdEaeHfPPEG9GZnt151enS5IeePMTrekN/gajuyeoX738kS58cIW21repIMuj3S/9hy4/cayOH5evUXnp8rgcSnM7NSLTo9ljR+ifThqr48aNkCStq2rWs6urZbm8Q/HRAAAAAABJYECdUnt77bXX9Nprr6m+vj7aQRXxP//zP4ddGFLLmorwnfc+3ylVVVmhu5dukmVZ/XqdUCikH8+fMtTlJaxzppfo/BmlemFNta5/8kP9f98/UYXZA1seub6qWTc+vUabe2d+XTCjVIvOn6L82+bJ6Tjw74vDYenE8fkqzknT0g21qmnuUsH5NylkjJz9++0EAAAAACSxQXVK3X777Zo3b55ee+017d69W42NjX02YCDqW7tU1dQpy9J+B3JbljWgDX3dccFUjcpN146GDn3noffU1OHv1/P8PSEtWbZFX/7N29pc16r8TI8e/NYX9J/fPFZ5mZ5+v/+4gkxdMKNUToeljCNP1N+3NrDMEgAAAAAwuE6p3/72t3rkkUf07W9/e6jrQQpa29slNbEwS1neQTfv4QDyMj3645XH6xu/e0cf1bZqwf+8p/9aMOugHVNrKpr002fWaVNNiyTp3OkluuPLU5WfNbjld6Ny03Xm5EIt3VCnNZXNKsj2alrpMNwREAAAAACQMAbVKeX3+3XSSScNdS1IUZEh58eU5dpaRzIbW5CpP155vPIy3FpT2awz7n5LDy3fpkDws6W3wZDRqh2NuvLRlfryb97WppoW5WW4df+lx+o33/rCoAOpiImFWWp861FJ0t+37FZrV+CwXg8AAAAAkNgG1ZZy5ZVX6oknntBtt9021PUgBUWGnM8glBpWRxZl68n/d6J+/L9rtLayWf/6l43696Uf6YiRWcpOc2lDVbPa/UFJksOSvnLMKN1yzmSNzB664eQt//g/TT7//6m2pVuvfVSvL88oZcklAAAAAKSoQYVSXV1d+v3vf69XX31VRx99tNxud5/HlyxZMiTFIfmFQiZ6V7jPDznH0JtUnK1nrzlZT79fobtf3qyGdn90iZ4kZXicOmtqsa49fYKOGJk19AWYkOZOLtSfVlZqR0OHPqpt1eSSnKF/HwAAAABA3BtUKLV27Vodc8wxkqT169f3eYyuBwzE1vo2tXT1KN3t1KTibLvLSQlOh6VvHjdGF80qU2Vjh7bWtam5M6Cpo3I0sTD7oHfUGwojMj06ftwIrfikQX/bukvjR2bK63IO63sCAAAAAOLPoEKpN954Y6jrQIp6b/seSdIXynPldg5qxBkGyemwVJ6fqfL8zJi/98wxedpU06LGjoA+3NmkE8bnx7wGAAAAAIC9SAFgq5XbwqHU7LEjbK4k+RhjBrTFksNh6cTeIOqDnY3q7J1lBQDonwceeEDjxo1TWlqaZs6cqb///e92lwQAAPph3bp1uu2227Ru3bqD7ot1DXYZVKfUaaeddtBleq+//vqgC0LqMMZoZW+n1HGEUkPGGCNZDjmd/V8SN2p0mSp27ojp8tsJhVkqzPaqvrVb7+/Yoy9OHBmz9waARPbUU09p4cKFeuCBB3TyySfrd7/7nebPn6+NGzdqzJgxdpcHAAAOwO/368knn1RTU5OefPJJTZo0SZL22efxeGJaw3C+36EMKpSKzJOKCAQCWr16tdavX68FCxYMRV1IAVVNnapp7pLLYemYMbl2l5NcTEh3L90oyzp0M6QxRjedPTkGRfVlWZZOPCJff15drTWVzTq2LE9Zafv/K2kwnVzMtwOQrJYsWaIrrrhCV155pSTp3nvv1csvv6wHH3xQd911l83VAQCAA3n55ZfV3NwsSWpubtYrr7wiY8w++84777yY1jCc73cogwql7rnnnv3uX7Rokdra2g6rIKSOSJfU1FE+ZXgG9a2Ig7AsK+6DmfIRGSrNTVN1U5c+rGjcp1tqMF1fkj2dXwAQC36/X6tWrdJPf/rTPvvnzZunFStW2FTVZ/b+R4Tu7m4bK0l+e5/fWC/DT2Z8D8cG379IRfX19dEQSgp/77/88svRX0f++8orr+i4445TYWFhTGoYzvfrjyFNAi677DIdd9xxuvvuu4fyZZEkPv8/nPei86Ty9vs/I/4Hlfwsy9Ks8hF6vqlaG6pbdML4/H0H3g+g60uyr/MLAGJh9+7dCgaDKioq6rO/qKhItbW1+31Od3d3nx8AW1pahq0+v98f/fUtt9wybO+DvkwwKMltdxlJIXwuw/gejg2/36+0tDS7ywCGlTFGTz/99D77Q6HQAY/9wQ9+MKT/yH6gGobr/fprSAedv/POO/yFgv0yxqhsTLkcDkd0e/SltyVJixd+t8/+yPZZdwzhVDIbm58hX7pb3T0hbarZ/w9Kka6v/m4AkOw+/3edMeaAf//ddddd8vl80a2srCwWJQIAgF51dXXatGnTfkOozwuFQtq0aZPq6upiUsNwvV9/DapT6sILL+zztTFGNTU1ev/993XbbbcNSWFIPlWVFbp76SZZlqVOf1D/tXybJOnWe/9H6e59l2eFQiH9eP6UWJeJGLMsS8eU5eqtLbu0uqJJ00f5CJYA4AAKCgrkdDr36Yqqr6/fp3sq4pZbbtENN9wQ/bqlpWXYgqm9B6Xedddd8nq9w/I+CHfARTp5rAEuc8eB7X0u+R4ePnt//9o5YBmIlaKiIk2ePFmbN28+ZDDlcDh01FFHHfD/60Ndw3C9X38NKpTy+Xx9vnY4HJo0aZLuuOMOzZs3b0gKQ3KKdLLUtHRJkkZkeg44T4pgInVMLsnWO580qLEjoJ17OlSen2l3SQAQlzwej2bOnKlly5bpq1/9anT/smXL9OUvf3m/z/F6vTH7wXrv/3fH8n1THddMQ4fv4djj+xepwLIsXXTRRfrXf/3XPvsdjvDitb1DosixQ/1n40A1DNf79degQqmHH354qOtAiqls7JQkleay3BOS1+XUlNIcra5o0ocVTYRSAHAQN9xwg7797W9r1qxZOvHEE/X73/9eO3fu1Pe//327SwMAAAdQWFioefPm6eWXX44uuz/rrLOiA88j++bNm6eRI0ce+gWHqIbhfL/+OKxB56tWrdKmTeHlWFOmTNGxxx47VHUhye3c0yFJGpOXYXMliBczRvu0uqJJOxs61NbVo6w07sgIAPtz8cUXq6GhQXfccYdqamo0bdo0vfTSSyovL7e7NAAAcBBnnXWW3n33XTU1Ncnn80VXmu1vX6xrsMugBp3X19fr9NNP1+zZs3X99dfr2muv1cyZM3XGGWdo165dQ10jkkxbV4/2tIfvzlM2glAKYbkZHpXmpslI+qhu+O4MBQDJ4JprrtH27dvV3d2tVatW6Utf+pLdJQEAgEPweDy65JJLNGLECF1yySXyeDz73RfrGuw0qFaE6667Ti0tLdqwYYMmTw7fen3jxo1asGCBrr/+ev3pT38a0iKRXHY2hrukinK8StvPgHOkrsnFOapu6tKmmlbNHJNndzkAAAAAMKSmT5+u6dOnH3JfrGuwy6A6pZYuXaoHH3wwGkhJ0pQpU/Sb3/xGf/3rX4esOCSnyNK9Mpbu4XMmFmXJ6bC0p92vXa3ddpcDAAAAABhGgwqlQqGQ3G73Pvvdbvchb2+I1GaMUUVknhRL9/A5XpdT4wvCQ8431bbaXA0AAAAAYDgNKpQ6/fTT9cMf/lDV1dXRfVVVVfrRj36kM844Y8iKQ/JpaPerwx+Uy2GphDvvYT8ml+RIkjbXtioYMjZXAwAAAAAYLoMKpe6//361trZq7NixOuKIIzRhwgSNGzdOra2tuu+++4a6RiSRyNK9UXnpcjkG9e2HJDdmRIbS3U51BoLR7xcAAAAAQPIZ1KDzsrIyffDBB1q2bJk++ugjGWM0ZcoUzZ07d6jrQ5Kp2NMpiaV7ODCnw9KRRVlaU9msT3e3210OAAAAAGCYDKhV5fXXX9eUKVPU0hK+XfuZZ56p6667Ttdff71mz56tqVOn6u9///uwFIrEZ7k8qmoilMKhHTEyS5LCoZRFRx0AAAAAJKMB/bR377336nvf+55ycnL2eczn8+mqq67SkiVLhqw4JJe08hnqCRlleV3Kz/TYXQ7i2KjcdKW5HOoKhOQdPdXucgAAAAAAw2BAodSaNWt09tlnH/DxefPmadWqVYddFJJT+oTjJEnjCzJlWZbN1SCeORyWxo0M34Uv48gTba4GAAAAADAcBhRK1dXVye12H/Bxl8ulXbt2HXZRSD6hkFH6EeFQKhI2AAczoXcJX8aRJ8gY7sIHAAAAAMlmQKHUqFGjtG7dugM+vnbtWpWUlBx2UUg+66ub5crOl9tpaXReut3lIAGMGZEht9OSK6dQ9a3ddpcDAAAAABhiAwqlzjnnHP3Lv/yLurq69nmss7NTP//5z3XeeecNWXFIHq9tqpcUDhpcDgZX49BcTkd0IP4nu7gLHwAAAAAkG9dADv7Zz36mZ555RkceeaSuvfZaTZo0SZZladOmTfrNb36jYDCoW2+9dbhqRQJ77aNwKDWugKV76L8jCjL1ya52fbq7XSdPGGl3OQAAAACAITSgUKqoqEgrVqzQ1VdfrVtuuSU658WyLJ111ll64IEHVFRUNCyFInHVNHdqQ3WLjAlpbD6hFPpvTH6GTCioPe1Sa1dA2WkHnmkHAAAAAEgsAwqlJKm8vFwvvfSSGhsb9fHHH8sYo4kTJyovL2846kMSeHVjnSSpu+ojZXiOtLkaJJJ0t1P+2q3ylh6lHXs6NK3UZ3dJAAAAAIAhMujhPnl5eZo9e7aOO+44Aikc1IvraiRJHVvesbkSJKLOTz+QJO1o6LC5EgAAAADAUGLiNAbFGNOvrb6lS//YtkeS1LF5uc1VIxF1bguHUhV7OhQKGZurAQAAAAAMFUIpDJgxRmVjyuVwOA65HTHnazJG6q7erGDLLkmEChgYf80WeV0OdfeEVNe6750/AQAAAACJacAzpQBJqqqs0N1LN8myrIMe938fVKqqqUunf/FEPfGHGBWH5GJCKhuRro/r27W9oUMlvnS7KwIAAAAADAE6pTBolmUddOvwB1XVFO5smVCYZXO1SGTlIzIkSTuZKwUAAAAASYNQCsPm4/o2SVJxTppy0tw2V4NENqY3lKpt6VJnIGhzNQAAAACAoUAohWGztTeUmkiXFA5TdppL+ZkeSVLlHrqlAAAAACAZEEphWLR2BVTV1ClJmlBEKIXDNzovPEuqsvf7CgAAAACQ2AilMCw217VKkkblprN0D0NidF54CV9VI6EUAAAAACQDQikMi49qw6HUUcXZNleCZDEqN9wp1dDuV4e/x+ZqAAAAAACHi1AKQ25Xa7ca2vxyWhZ33cOQSfc4lZ8VnitFtxQAAAAAJD5CKQy5yNK9sQUZSnM7ba4GyWR0b7dUFXOlAAAAACDhEUphSBljtDm6dC/H5mqQbEZFhp3TKQUAAAAACY9QCkOqsrFTbd098rocGpufYXc5SDLMlQIAAACA5EEohSG1qbZFkjSxMEsuJ99eGFoZHpfyM3vnSrGEDwAAAAASGqkBhoy/J6SP69skSZNLWLqH4RFZwsewcwAAAABIbIRSGDIf72pTIGiUm+5WiS/N7nKQpBh2DgAAAADJgVAKQ2ZTdXjp3uTSHFmWZXM1SFYlkblSbX519wRtrgYAAAAAMFiEUhgSzZ0BVfZ2rkwuzra5GiSzLK9LOWkuGUl1Ld12lwMAAAAAGCRCKQyJTTXhLqmyEenKTnPbXA2SXYkv3C1VwxI+AAAAAEhYhFI4bMaYaCg1hQHniIHIzLKa5i6bKwEAAAAADBahFA5bdVOXWrp65HE6dMTILLvLQQooyf0slDLG2FwNAAAAAGAwbA2l/va3v+n8889XaWmpLMvSc8891+dxY4wWLVqk0tJSpaena86cOdqwYUOfY7q7u3XdddepoKBAmZmZuuCCC1RZWRnDT4GNvV1SE4uy5HaSc2L4FWR65XZa8gdDamj3210OAAAAAGAQbE0Q2tvbNWPGDN1///37ffyXv/yllixZovvvv18rV65UcXGxzjzzTLW2tkaPWbhwoZ599lk9+eSTWr58udra2nTeeecpGOSuXLEQCIa0tT78+zGZpXuIEYfDUlEOS/gAAAAAIJG57Hzz+fPna/78+ft9zBije++9V7feeqsuvPBCSdKjjz6qoqIiPfHEE7rqqqvU3Nyshx56SH/4wx80d+5cSdLjjz+usrIyvfrqqzrrrLNi9llS1cf1bQoEjXzpbpX2zvkBYqHUl67Kxk7VNHdq+iif3eUAAAAAAAYobtdabdu2TbW1tZo3b150n9fr1amnnqoVK1ZIklatWqVAINDnmNLSUk2bNi16zP50d3erpaWlz4bBiSzdm1ySLcuybK4Gh8MYM6DNbgw7BwAAAIDEFrehVG1trSSpqKioz/6ioqLoY7W1tfJ4PMrLyzvgMftz1113yefzRbeysrIhrj41tHQGVNnYKUmaXMzSvURljJEsh5xOpxwOR782p9MZebZtdRf3hlJNHQF1+lmuCwAAAACJxtble/3x+e4bY8whO3IOdcwtt9yiG264Ifp1S0sLwdQgbK4Lz5IanZeunHS3zdXgsJiQ7l66UZbVv5w6FArpx/OnDHNRB5fmdmpEhkd7OvyqaenU+ALu/AgAAAAAiSRuO6WKi4slaZ+Op/r6+mj3VHFxsfx+vxobGw94zP54vV7l5OT02TBwH9WGQ6mjirNtrgRDwbKsAW3xoMjnlSTVtXTbXAkAAAAAYKDiNpQaN26ciouLtWzZsug+v9+vt956SyeddJIkaebMmXK73X2Oqamp0fr166PHYHh4io5QY0dAToelCYV0qMAekTvw1bUwVwoAAAAAEo2ty/fa2tr08ccfR7/etm2bVq9erREjRmjMmDFauHChFi9erIkTJ2rixIlavHixMjIydOmll0qSfD6frrjiCt14443Kz8/XiBEjdNNNN2n69OnRu/FheGROPU2SNL4gU16X8xBHA8Nj71CqP0t7AQAAAADxw9ZQ6v3339dpp50W/Toy52nBggV65JFHdPPNN6uzs1PXXHONGhsbdfzxx+uVV15RdvZny8XuueceuVwuXXTRRers7NQZZ5yhRx55ZK9BzBhqPcGQMiZ/SRJL92CvgiyPnJalrkBILV098jHbDAAAAAAShq2h1Jw5cw56a3nLsrRo0SItWrTogMekpaXpvvvu03333TcMFWJ/VnzSIFfWCKW5HSrPz7S7HKQwl8OhgmyP6lq6VdvcRSgFAAAAAAkkbmdKIX49t7pakjSxMFtOB8ulYK/oEr5W5koBAAAAQCIhlMKAdPh79MqG8B0RjypmwDnsVxwJpZoJpQAAAAAgkRBKYUCWbaxTuz+oQGNNNAwA7BTplKpv7VYodODlwAAAAACA+EIohQF57sMqSVL7xje409kgGWMGtOHg8jLc8jgd6gkZNbT77S4HAAAAANBPhFLot91t3frb1t2SpPYNb9pbTAIyxkiWQ06nUw6Ho1/bZ3eRJJw6EMuyVJjjlSTVtbCEDwAAAAASha1330Ni+cuaagVDRjNG+7SjsdruchKTCenupRtlWf3Lg0OhkH48f8owF5X4inLSVNnYqbqWLk0tzbG7HAAAAABAP9AphX57tveue185dpTNlSQ2y7IGtOHQino7pepbu22uBAAAAADQX4RS6Jdtu9u1pqJJToel844usbscoI/C7PCw84Y2v4IMOwcAAACAhEAohX55cW24S+rkCQUqyPLaXA3QV06aSx6XQ0FjtIdh5wAAAACQEAil0C8vrquVJJ07vdjmSoB9WZalwt6wdBdL+AAAAAAgIRBK4ZA+3dWmTTUtcjoszZtCKIX4NDIyV6qNUAoAAAAAEgGhFA7ppXU1kqSTjshXXqbH5mqA/aNTCgAAAAASC6EUDimydI8B54hnI7PDodTutm7J4q82AAAAAIh3/OSGg9q2u52le0gIeZkeuRyWAkEjVx4BKgAAAADEO0IpHBRL95AoHJYVvTOkp+gIm6sBAAAAABwKoRQOaun68NK9c6bTeYL4V5hNKAUAAAAAiYJQCgdU3dSpdVXNsizpzClFdpcDHNJIQikAAAAASBiEUjigZRvrJEkzx+RFl0UB8eyzTqnxMsbYXA0AAAAA4GAIpXBAkVBq3lS6pJAYRmR55LAkZ3qOqpq67C4HAAAAAHAQhFLYr+aOgN79tEGSdCZ33UOCcDkcGtE7kH9DdbPN1QAAAAAADoZQCvv1xuZ69YSMjizK0riCTLvLAfotsoRvQ3WLzZUAAAAAAA6GUAr79crG8F33GHCORBMZdr6hik4pAAAAAIhnhFLYR1cgqLc275IkzWPpHhLMyN6h/Btq6JQCAAAAgHhGKIV9vPtpg9r9QRXleDV9lM/ucoABKcjyypiQ6lq6tau12+5yAAAAAAAHQCiFfbzZ2yV1+lGFcjgsm6sBBsbjcqhnT5Ukhp0DAAAAQDwjlEIfxhi9/lG9JGnOpEKbqwEGx1/3iSSGnQMAAABAPCOUQh+f7m7Xzj0d8jgdOmVCgd3lAIPyWShFpxQAAAAAxCtCKfTxRm+X1PHjRyjT67K5GmBw/HWfSpLWV9EpBQAAAADxilAKfUSW7p3G0j0ksEin1M49HWruDNhcDQAAAABgfwilENXaFdDK7XskSacdRSiFxBXqatOo3HRJ0kbmSgEAAABAXCKUQtTbH+9WIGg0riBT4woy7S4HOCzTRuVIYq4UAAAAAMQrQilEvfHRLknSnEkjba4EOHxTSiKhFJ1SAAAAABCPCKUgSTLG6O9bI6EUS/eQ+KaWhkMplu8BAAAAQHwilIIk6ZNd7apu7pLH5dBxY0fYXQ5w2Cb3dkp9sqtNXYGgzdUAAAAAAD6PUAqSFO2SOm7sCKV7nDZXAxy+El+acjPc6gkZfVzfZnc5AAAAAIDPIZSCJOnvW3dLkr44scDmSoChYVlWdK4US/gAAAAAIP4QSkH+npDe/bRBkvTFiQw5R/KIhlI1hFIAAAAAEG8IpaAPdjaqwx9UQZZXRxVn210OMGSmlBJKAQAAAEC8IpRCdJ7UFycWyOGwbK4GGDqRYeebqltkjLG5GgAAAADA3gilwDwpJK0jRmbJ43SotbtHlY2ddpcDAAAAANgLoVSSMcYMaNvT1q11Vc2SpFMmEEohuXhcDk0sypIkbWDYOQAAAADEFUKpJGKMUdmYcjkcjn5vZTNPlzHSxMIsFeak2f0RgCHHsHMAAAAAiE8uuwvA0KqqrNDdSzfJsvo3G+qNzfVaV9Wik47IH+bKAHtE50oRSgEAAABAXCGUSkKWZfU7lIrM2SGUQrKK3oGP5XsAAAAAEFdYvpfC2rt71NgRkDEhHT+eUArJKdIpVdXUqeaOgM3VAAAAAAAiCKVSWEVjhyTJX/epfOlum6sBhocv3a3ReemSmCsFAAAAAPGEUCqFRZbude1YY3MlwPBirhQAAAAAxB9CqRQWDaV2rrO5EmB4cQc+AAAAAIg/DDpPUS2dATV3BmRZUnflBrvLAYYVw84BIDY8Ho+WLFkS/TUA7A9/VwCIIJRKUZF5UkXZadru77S5GmB4RTqltta3yt8TksdFkygADAfLsuT1eu0uA0Cc4+8KABH8ZJaiqnqX7kUGQAPJbHReurLTXAoEjT7Z1WZ3OQAAAAAAEUqlrKqmcCg1KjfN5kqA4WdZVnTYOUv4AAAAACA+EEqloLauHrV09ciSVOyjUwqpgWHnAAAAABBfCKVSUKRLamS2V15m6yBFMOwcAAAAAOILiUQKqu4NpUpz6ZJC6ti7U8oYY3M1AAAAAABCqRRU1RwJpZgnhdQxsShLLoel5s6Aapq77C4HAAAAAFIeoVSK6QoE1dDmlySV7jVPyhgzoA1INF6XUxMKsySxhA8AAAAA4gGhVIqp7u2Sys1wK9PrCgdMlkNOp1MOh6Nfm9Pp7H01wikkFoadAwAAAED8cNldAGKrujG8bGnU3vOkTEh3L90oy+pfRhkKhfTj+VOGozxgWE0pzdEzH1bRKQUAAAAAcYBQKsVUHWDIuWVZsiyrX6/R3+OAeDO5t1NqUy2hFAAAAADYjeV7KSQQDKm+dT+dUkCKiIRSOxo61NoVsLkaAAAAAEhthFIppLa5SyEjZXqdykmjSQ6pZ0SmRyW+8F0nP6pttbkaAAAAAEhthFIppLp36d4oXzpL8JCyosPOmSsFAAAAALYilEohVc37nycFpJLJhFIAAAAAEBcIpVJEKGRU2xyeJ0UohVQ2pZRh5wAAAAAQDwilUkR9W7cCQSOvy6GCLI/d5QC2iSzf+6i2VT3BkM3VAAAAAEDqIpRKEZF5UiW+NOZJIaWNGZGhTI9T/p6QPt3dbnc5AAAAAJCyCKVSRHTIOUv3kOIcDou5UgAAAAAQBwilUoAxRtVN4XlSo/IIpYBIKLWphlAKAAAAAOxCKJUCGjsC6gwE5XJYKsxOs7scwHaRYecbCaUAAAAAwDaEUimgqnfpXnFOmpwO5kkBkWHnG6pbZIyxuRoAAAAASE2EUimgpjeUKmWeFCBJmlScLafD0p52v+pauu0uBwAAAABSEqFUCqhpDs+TKvGxdA+QpDS3UxNGZkmS1lU121wNAAAAAKQmQqkk1+HvUVNnQJJUTCgFRE0b5ZNEKAUAAAAAdiGUSnK1vV1SIzI8SnM7ba4GiB/TR/XOlSKUAgAAAABbEEolucjSPbqkgL6mj6ZTCgAAAADsRCiV5KLzpHIJpYC9TS7JkcOS6lu7Vd/SZXc5AAAAAJByCKWSWDBkVNf7w3ZJDqEUsLcMj0tH9A47X19NtxQAAAAAxBqhVBLb3datnpCR1+XQiEyP3eUAcWd6ZNh5ZYvNlQAAAABA6iGUSmJ7z5OyLMvmaoD4M5U78AEAAACAbQilklhNc6ckqYQh58B+RTqlNrB8DwAAAABijlAqiUWHnPvSba4EiE9TS3NkWeE/K7vbuu0uBwAAAABSCqFUkmrr7lFrV48sSUU5XrvLAeJSptel8QWZkljCBwAAAACxRiiVpCJL9/KzPPK6nDZXA8Svab1L+NZXEkoBAAAAQCwRSiWpWpbuAf0SmSu1nrlSAAAAABBThFJJ6rN5Ugw5Bw4m2ilV1WJzJQAAAACQWgilklBPyKi+JTy0mVAKOLgppTmSpKqmTu1p99tcDQAAAACkDkKpJLSrtUtBY5TudsqX7ra7HCCu5aS5Na532Pl6hp0DAAAAQMwQSiWhvZfuWZZlczVA/Iss4eMOfAAAAAAQO4RSSYh5UsDATOtdwkenFAAAAADEDqFUEuLOe8DAcAc+AAAAAIg9Qqkk48wZqXZ/UA5LKszx2l0OkBCm9oZSFXs61dTBsHMAAAAAiIW4DqUWLVoky7L6bMXFxdHHjTFatGiRSktLlZ6erjlz5mjDhg02Vmw/76jJkqSCLK/czrj+7QXihi/drfL8DEnS+qoWm6sBAAAAgNQQ96nF1KlTVVNTE93WrVsXfeyXv/yllixZovvvv18rV65UcXGxzjzzTLW2ttpYsb28pUdJkkpZuocUZ4wZ0DY1MleKJXwAAAAAEBMuuws4FJfL1ac7KsIYo3vvvVe33nqrLrzwQknSo48+qqKiIj3xxBO66qqrYl1qXIh0ShUz5BwpyhgjWQ45nc4BPW/0vCvkPPar3IEPAAAAAGIk7kOprVu3qrS0VF6vV8cff7wWL16s8ePHa9u2baqtrdW8efOix3q9Xp166qlasWLFQUOp7u5udXd3R79uaUmO5Tod/h55isZLkkpyCaWQwkxIdy/dKMvqXzOoMUY/u+oSFR37Ve7ABwAAAAAxEtfL944//ng99thjevnll/Vf//Vfqq2t1UknnaSGhgbV1tZKkoqKivo8p6ioKPrYgdx1113y+XzRraysbNg+QyytrWyW5XAq0+NUtjfu80ZgWH1+Ht2hNn/dJ5KkHQ0dDDsHAAAAgBiI61Bq/vz5+trXvqbp06dr7ty5evHFFyWFl+lFWJbV5znGmH32fd4tt9yi5ubm6FZRUTH0xdvgw51NkqQSX9ohzwGAvkJdbRrbO+x8TSXdUgAAAAAw3OI6lPq8zMxMTZ8+XVu3bo3Omfp8V1R9ff0+3VOf5/V6lZOT02dLBqt2NkpinhQwWDPKciVJq3sDXgAAAADA8EmoUKq7u1ubNm1SSUmJxo0bp+LiYi1btiz6uN/v11tvvaWTTjrJxirtYYzZq1OKO+8Bg3FMbyi1prLJ1joAAAAAIBXE9eChm266Seeff77GjBmj+vp6/eIXv1BLS4sWLFggy7K0cOFCLV68WBMnTtTEiRO1ePFiZWRk6NJLL7W79Jjb3tChPe1+mZ6ARmZ77S4HSEgzRudKklZXNPVrKTAAAAAAYPDiOpSqrKzUN7/5Te3evVsjR47UCSecoHfffVfl5eWSpJtvvlmdnZ265ppr1NjYqOOPP16vvPKKsrOzba489j7YEV661127VS7HZJurARLTlNJsuZ2W9rT7VdnYqbIRGXaXBAAAAABJK65DqSeffPKgj1uWpUWLFmnRokWxKSiOReZJdVd/JOkCe4sBEpTX5dSUkhytqWzWhxVNhFIAAAAAMIwSaqYUDizaKVW1yeZKgMR2DMPOAQAAACAmCKWSQEtXQJvrWiVJ/qqPbK4GSGwzGHYOAAAAADFBKJUEPtjRKGOk8hEZCrY32l0OkNAinVLrq5oVCIbsLQYAAAAAkhihVBJY1bt0b2Z5ns2VAIlvbH6mctJc6u4JaXNtq93lAAAAAEDSIpRKAiu375EkzRpLKAUcLofDii7h+3AnnYcAAAAAMFwIpRJcIBjS6oomSdLssSPsLQZIEl8YEw54P2DYOQAAAAAMG0KpBLehukVdgZByM9waX5BpdzlAUogshY0sjQUAAAAADD1CqQT3fmTpXnmeHA7L5mqA5HDMmFxZlrRzT4fqW7vsLgcAAAAAkhKhVIJ7f3tkyDlL94ChkpPm1qSibEnSBzua7C0GAAAAAJIUoVQCM8bo/R3hTqnZDDkHhtQXyiNzpVjCBwAAAADDgVAqgW1v6NDuNr88Loemj/bZXQ6QVGaOYa4UAAAAAAwnQqkEFpkndfQon7wup83VAMklMux8XWWzunuCNlcDAAAAAMmHUCqBReZJzRrLPClgqJXnZyg/0yN/MKT1VS12lwMAAAAASYdQKoExTwoYWsaY6CZ9Nldq1Y49fR77/HEAAAAAgIEjlEpQe9r9+mRXu6TPlhkBGBxjjGQ55HQ65XA4otvTv7lLknTrPQ/12R/ZysaUE0wBAAAAwCC57C4AgxMZvjyxMEu5GR6bqwGSgAnp7qUbZVmfZfXVTZ363w+qVDDtS/rp978jy7I+O9wY3XT2ZDsqBQAAAICkQKdUgooMOZ/F0j1gyFiW1WcrykmT02GpMxBUc1fPPo8DAAAAAAaPUCpBrYyEUuUMOQeGi8vpUHFOmiSpqrHT5moAAAAAILkQSiWgrkBQ66qaJUmzufMeMKxG5aZLkqqaCKUAAAAAYCgRSiWgtZXNCgSNRmZ7VTYi3e5ygKQ2Ko9QCgAAAACGA6FUAnp/R3jp3uyxecy1AYZZiS9NDktq7epRS2fA7nIAAAAAIGkQSiWg97eH77w3k3lSwLBzOx0qzO6dK0W3FAAAAAAMGUKpBBMMmeiQ89nceQ+ICZbwAQAAAMDQI5RKMJtqWtTa1aNsr0tTS312lwOkhOiwc+7ABwAAAABDhlAqwbzzSYMk6bhxI+R0ME8KiIXS3PDyvabOgNq7e2yuBgAAAACSA6FUgnn303AodcL4fJsrAVKH1+XUyGyvJKmSbikAAAAAGBKEUgkkGDJ6b1t4nhShFBBbo3uX8FU2dthcCQAAAAAkB0KpOGaM6bNtqG5Wa3ePstNcmlySvc/jxhi7SwaSVtmIDEnSzj2EUgAAAAAwFAil4pQxRmVjyuVwOKLbF7/2XUlS3bq35XY5+zzmcDjkdDojz7avcCBJjcpNl8OSWrp61NwZsLscAAAAAEh4LrsLwIFVVVbo7qWbZFnhgebPr6nW9oYOzZt/jr5w1bf2OT4UCunH86fEukwgJXhcDhXlpKmmuUsVezo0tTTH7pIAAAAAIKHRKRXnLMuSZVkyRqpu6pIkleVlRPd/fgMwfCJL+CqYKwUAAAAAh41QKkHsauuWPxiS1+VQQe9dwADE1pi83lBqTycz3AAAAADgMBFKJYjIcOXwXBs6ogA7FPvS5HJY6gwE1dDut7scAAAAAEhohFIJIhJKjeldPgQg9pwOS6Py0iWFu6UAAAAAAINHKJUAAsGQanrnSY3JJ5QC7FSWx1wpAAAAABgKhFIJoKqpU0FjlJ3mUm662+5ygJQW6VasauqUnNzAFAAAAAAGi1AqAey9dI877AH2KsjyKNPjVCBolDZ6qt3lAAAAAEDCIpRKAMyTAuKHZVkqz8+UJKUfMdvmagAAAAAgcRFKxbn27h41tIXv8hWZZQPAXmN7Z7ulj59pcyUAAAAAkLgIpeJcRWP4Dl+F2V6le5w2VwNAiiylldz5Zapk4DkAAAAADAqhVJyLLN0rY+keEDe8bqdKctIkSW9u3mVzNQAAAACQmAil4pqlHQ3hUKqcUAqIK+W9S/je3EIoBQAAAACDQSgVxzwlE9UZCMrjdKg0N93ucgDsZWzvsPMVHzeoKxC0uRoAAAAASDwuuwvAgUXu7FWenyGnw7K5GgB7K8jyqKe1QZ3Z+Xpv2x596ciRdpcEAEhRoZ4e29/XrhqGWrJ8DgBIFIRScSwSSo0tyLS5EgCfZ1mWOj9ZqexjztayjXWEUgAA23z01J/tLiEuagAAJB6W78Wp2uYueYsnSPrs9vMA4kvH1nclScs21ikUMjZXAwAAAACJhU6pOPXG5npJUnGOVxkefpuAeNS1Y40yPU7VtnRpXVWzZpTl2l0SACBFeDweLVmyxNYajDHy+/3ReiwrucZNeDweu0sAgKRH2hGnXv8oHEqNY+keEL+CAZ06aaReWlerVzbWEkoBAGLGsix5vV67y1BaWprdJQAAEhjL9+JQVyCotz9ukPTZHb4AxKezphRLkl7ZUGdzJQAAAACQWAil4tDbH+9WZyConpZdKsiibRiIZ3OOGim309LW+jZ9uqvN7nIAAAAAIGEQSsWhl9bVSpI6tryTdGvzgWSTk+bWCePzJUmvbKRbCgAAAAD6i1Aqzvh7Qlq2sTeU2vy2zdUA6I95U8NL+Jaur7W5EgAAAABIHIRScWbFJ7vV0tWjkdledVdtsrscAP1w1tQiOSxpdUWTKvZ02F0OAAAAACQEQqk489K6GknhH3JlQjZXA6A/CrPTdOIR4SV8z6+ptrkaAAAAAEgMhFJxJBAMRWfSnDOtxOZqAAzEBTNKJUkvEEoBAAAAQL8QSsWRdz9tUFNHQPmZHs0em2d3OQAG4OypJXI7LX1U26otda12lwMAAAAAcY9QKo5El+5NK5bLyW8NkEh8GW6deuRISXRLAQAAAEB/kHzEia5AUH9ZGw6lzpvO0j0gEZ3fu4Tv+TXVMsbYXA0AAAAAxDdCqTixbGOdWrt6VOpL0wnj8+0uB8AgzJ1cpDS3QzsaOrS6osnucgAAAAAgrhFKxYn/+6BSknThF0bL4bBsrgbAYGR6XTp7arEk6en3K22uBgAAAADiG6FUHKhv6dLftuySJF34hVE2VwPgcFw0u0xSeK5Uh7/H5moAAAAAIH4RSsWBZz+sUshIXxiTq/Ejs+wuB8BhOGFcvsrzM9TW3aOX1tXaXQ4AAAAAxC1CKZsZY6JL974+s8zmagAcLofD0kWzwn+Wn1q50+ZqAAAAACB+EUrZbHVFk7bUtcnjcujco7nrHpAMvvaF0XJY0srtjfpkV5vd5QAAAABAXCKUstmjK7ZLks47ukS+dLe9xQAYEsW+NM2ZVChJenplhc3VAAAAAEB8IpSy0a7Wbr24rkaSdPlJY+0tBsCQuqR34PlT71eo0x+0uRoAAAAAiD+EUjb603s7FQgaHTsmV0ePzrW7HACDYIzZ73b6UYUqy0tXU0dAz3xQ2ecxAAAAAAChlG0CwZD++I8dkuiSAhKRMUayHHI6nXI4HPtsbpdTa/73PyRJNz/0Vzkc4ePKxpQTTAEAAACAJJfdBaSqpetrVdfSrZHZXs2fxoBzICGZkO5eulGWtf98v7snpP95e5uUX6brnnhf5SMydNPZk2NcJAAAAADEJzqlbGCM0e//9qkk6dLjxsjj4rcBSFSWZR1wS3M7NbXUJ0laU9Esy7JsrhYAAAAA4gdpiA3e3LxL66qaleFxagFL94CkdkxZriRpx54O7W7rtrcYAAAAAIgjhFIxZozRva9tlSR9+4Ryjcj02FwRgOHkS3drYmGWJOkf2/bYXA0AAAAAxA9CqRj729bdWlPRpDS3Q1d+cbzd5QCIgePHjZAkfbKrXe7CcTZXAwAAAADxgVAqhowx+s/eLqlvHV+ukdlemysCEAv5WV4dWRTulso9+VKbqwEAAACA+EAoFSPGGL2ysU6rdjTK43Lo/31xnIwxB90AJI/jx+VLkjKOPFEbqpttrgYAAAAA7EcoFQPGGJWNPULf/c8XJEm7/v6kinMz5HA4Drg5nc7Is+0rHMCQGZHp0aTebql/++tmgmcAAAAAKc9ldwGporX4C8rLK1Wmx6nv/+Sn8tz6zwc9PhQK6cfzp8SoOgCxcPy4fH1U1ajlH+/WKxvrdNbUYrtLAgAAAADb0CkVA7tau+U76WJJ0skTCuR1O2VZ1iE3AMklN8OtlveekST96182qisQtLkiAAAAALAPoVQM/OrlzXJ4M1SU49VRxdl2lwPARs3vPq0SX5oqGzv1u7c+tbscAAAAALANoVQMHD9uhHra9uhLEwvogAJSnAl065/PmSxJeuDNj/XJrjabKwIAAAAAexBKxcDXZo5W1W+/qxJfut2lAIgD504v1hcnFqi7J6QfPbVagWDI7pIAAAAAIOYIpWIl2GN3BQDihGVZ+tXXZ8iX7tbaymb952tb7S4JAAAAAGKOUAoAbFDsS9Pir06XJP3mjY/13rY9NlcEAAAAALFFKAUANjn36BJdeOwohYx09eOrVLGnw+6SAAAAACBmCKUAwEa/+Oo0TS3NUUO7X999ZKVaugJ2lwQAAAAAMUEoBQA2yvC49NCC2SrK8WprfZuuefwDdQWCdpcFAAAAAMOOUAoAbFbsS9NDC2Yrw+PU8o93658eXqn2bm6OAAAAACC5EUoBQByYNsqnhy+frSyvS+982qDLHvqHmjr8dpcFAAAAAMOGUAoA4sTx4/P1xyuPly/drQ93Nunc/1yuD3c22l0WAAAAAAwLQikAiCMzynL19FUnqjw/Q1VNnfrGb9/Rb9/6RIFgyO7SAAAAAGBIEUoBQJyZVJytF647RedOL1FPyOjf/vqR5v/H3/X3rbvsLg0AAAAAhkzShFIPPPCAxo0bp7S0NM2cOVN///vf7S4JAPbLGHPILdvr0n3fPEb//rXpGpHp0cf1bfr2Q+/p6w+u0NL1NQqGjN0fAxi0/vwZ2N8GAACA5OKyu4Ch8NRTT2nhwoV64IEHdPLJJ+t3v/ud5s+fr40bN2rMmDF2lwcAksI/iMtyyOl0Duh5o8Ydqe/d+4we/8cOvb+jUe/vaFRhtlfzpxXr7Gkl+kJ5rryugb0mYBdjjMrGlKuqsmLfBy2H5HDKcrokE5IJ9kihoCRp1OgyVezcIcuyYlwxAAAAhktShFJLlizRFVdcoSuvvFKSdO+99+rll1/Wgw8+qLvuusvm6gBgLyaku5dulGX1r1HVGKObzp6sfzl/iq6ec4T+8O4OPf7uDtW3duvRd3bo0Xd2yOty6Atj8nR0mU9HFWdrYmG2SnxpysvwyOHgB3jETjBk1NbVo6ZOv5o6Amrs8Ku5M6DGdr+aOgPRfYETr9DsGSeruyekrkBQgWBIB2v+czosBTrbNPvOV5XhcSnD41S6xxn+rzv89d77Mjwupbud8rodclqWnA5LDsuS0xF+Lcuy5LQsORyWnJbkiPzaYakw26tJxTmxO2kAAAApLOFDKb/fr1WrVumnP/1pn/3z5s3TihUrbKoKAA7MsqxBdXsU5qTpxnmTdO3pE/T2x7v14tpavbm5Xg3tfr3zaYPe+bShz/Fup6XC7DQV5XhVkOVVltelDK8z+kN9mtspV/SH9b22vb52OCw5LMnS4MKtw2lqGao47fNZx+dXgZm9jtj3sc8/9+BLyA722vt93Ox97MHfa593Huh77fP6B36+MeGAqbsnKH9PSP6ekLp7N38wpC5/UC1dPWrpCqilM6DWrp7wf7t7Pl/lfqWPn6X61u5+HSuFa3F4M7W7zS/J3+/nDUZo2z+048nb6cgCAACIgYQPpXbv3q1gMKiioqI++4uKilRbW7vf53R3d6u7+7OL4ebmZklSS0vLsNQY+cGis6213xe5oVBor+f0r6OC5/CcwTwnXuviOWGRvz+am5v7/P0xsyRNM0vG6rZ55dq2u13v72zUlppWba1v0/aGdu1pD6hbUkVHuyrq+vVWwJBJ9zjkS3PLl+FRbrpbvnSXfOlu+dI98qW79M83LdSlP7pdae7ecNTpkNMRDmwdVrh7ySgcRoW3kO6+5kK9/c4/1BkIqTMQVKc/vHX0BNXlD6qjO6jOns/2d/p79OwLL+moWV9USEbGhF8zPJ+q768lKdT76+2VW9XS0jIsoVTkOsPu+ViR9x+u6x4AAID+XvdYxu4ro8NUXV2tUaNGacWKFTrxxBOj+++880794Q9/0EcffbTPcxYtWqTbb789lmUCAABIkioqKjR69Gjb3r+yslJlZWW2vT8AAEgdh7ruSfhOqYKCAjmdzn26ourr6/fpnoq45ZZbdMMNN0S/DoVC2rNnj/Lz82nXPwwtLS0qKytTRUWFcnKYxxFLnHv7cO7txfm3D+d+4Iwxam1tVWlpqa11lJaWqqKiQtnZ2Vz3HAb+DNiHc28fzr29OP/24dwPXH+vexI+lPJ4PJo5c6aWLVumr371q9H9y5Yt05e//OX9Psfr9crr9fbZl5ubO5xlppScnBz+oNqEc28fzr29OP/24dwPjM/ns7sEORwOWzu1kg1/BuzDubcP595enH/7cO4Hpj/XPQkfSknSDTfcoG9/+9uaNWuWTjzxRP3+97/Xzp079f3vf9/u0gAAAAAAALAfSRFKXXzxxWpoaNAdd9yhmpoaTZs2TS+99JLKy8vtLg0AAAAAAAD7kRShlCRdc801uuaaa+wuI6V5vV79/Oc/32dpJIYf594+nHt7cf7tw7lHquPPgH049/bh3NuL828fzv3wSfi77wEAAAAAACDxOOwuAAAAAAAAAKmHUAoAAAAAAAAxRygFAAAAAACAmCOUwqDdddddsixLCxcujO4zxmjRokUqLS1Venq65syZow0bNthXZJKpqqrSZZddpvz8fGVkZOiYY47RqlWroo9z/odPT0+Pfvazn2ncuHFKT0/X+PHjdccddygUCkWP4fwPjb/97W86//zzVVpaKsuy9Nxzz/V5vD/nubu7W9ddd50KCgqUmZmpCy64QJWVlTH8FInpYOc+EAjoJz/5iaZPn67MzEyVlpbqO9/5jqqrq/u8BuceyYrrntjjusceXPPEFtc99uG6Jz4QSmFQVq5cqd///vc6+uij++z/5S9/qSVLluj+++/XypUrVVxcrDPPPFOtra02VZo8GhsbdfLJJ8vtduuvf/2rNm7cqF//+tfKzc2NHsP5Hz7//u//rt/+9re6//77tWnTJv3yl7/Ur371K913333RYzj/Q6O9vV0zZszQ/fffv9/H+3OeFy5cqGeffVZPPvmkli9frra2Np133nkKBoOx+hgJ6WDnvqOjQx988IFuu+02ffDBB3rmmWe0ZcsWXXDBBX2O49wjGXHdE3tc99iHa57Y4rrHPlz3xAkDDFBra6uZOHGiWbZsmTn11FPND3/4Q2OMMaFQyBQXF5t/+7d/ix7b1dVlfD6f+e1vf2tTtcnjJz/5iTnllFMO+Djnf3ide+655rvf/W6ffRdeeKG57LLLjDGc/+EiyTz77LPRr/tznpuamozb7TZPPvlk9JiqqirjcDjM0qVLY1Z7ovv8ud+f9957z0gyO3bsMMZw7pGcuO6xB9c99uGaxz5c99iH6x770CmFAfvBD36gc889V3Pnzu2zf9u2baqtrdW8efOi+7xer0499VStWLEi1mUmneeff16zZs3SN77xDRUWFurYY4/Vf/3Xf0Uf5/wPr1NOOUWvvfaatmzZIklas2aNli9frnPOOUcS5z9W+nOeV61apUAg0OeY0tJSTZs2jd+LIdbc3CzLsqKdC5x7JCOue+zBdY99uOaJH1z3xBeue4aHy+4CkFiefPJJffDBB1q5cuU+j9XW1kqSioqK+uwvKirSjh07YlJfMvv000/14IMP6oYbbtA///M/67333tP1118vr9er73znO5z/YfaTn/xEzc3NOuqoo+R0OhUMBnXnnXfqm9/8piS+/2OlP+e5trZWHo9HeXl5+xwTeT4OX1dXl37605/q0ksvVU5OjiTOPZIP1z324brHPlzzxA+ue+IH1z3Dh1AK/VZRUaEf/vCHeuWVV5SWlnbA4yzL6vO1MWaffRi4UCikWbNmafHixZKkY489Vhs2bNCDDz6o73znO9HjOP/D46mnntLjjz+uJ554QlOnTtXq1au1cOFClZaWasGCBdHjOP+xMZjzzO/F0AkEArrkkksUCoX0wAMPHPJ4zj0SEdc99uK6xz5c88QfrnvsxXXP8GL5Hvpt1apVqq+v18yZM+VyueRyufTWW2/pP//zP+VyuaIJ/udT4fr6+n3SfQxcSUmJpkyZ0mff5MmTtXPnTklScXGxJM7/cPnxj3+sn/70p7rkkks0ffp0ffvb39aPfvQj3XXXXZI4/7HSn/NcXFwsv9+vxsbGAx6DwQsEArrooou0bds2LVu2LPqvhRLnHsmF6x57cd1jH6554gfXPfbjumf4EUqh38444wytW7dOq1evjm6zZs3St771La1evVrjx49XcXGxli1bFn2O3+/XW2+9pZNOOsnGypPDySefrM2bN/fZt2XLFpWXl0uSxo0bx/kfRh0dHXI4+v6V6XQ6o7dH5vzHRn/O88yZM+V2u/scU1NTo/Xr1/N7cZgiF2Zbt27Vq6++qvz8/D6Pc+6RTLjusRfXPfbhmid+cN1jL657YsSe+epIFnvfhcYYY/7t3/7N+Hw+88wzz5h169aZb37zm6akpMS0tLTYV2SSeO+994zL5TJ33nmn2bp1q/njH/9oMjIyzOOPPx49hvM/fBYsWGBGjRpl/vKXv5ht27aZZ555xhQUFJibb745egznf2i0traaDz/80Hz44YdGklmyZIn58MMPo3c66c95/v73v29Gjx5tXn31VfPBBx+Y008/3cyYMcP09PTY9bESwsHOfSAQMBdccIEZPXq0Wb16tampqYlu3d3d0dfg3COZcd0TO1z32Idrntjiusc+XPfEB0IpHJbPX5yFQiHz85//3BQXFxuv12u+9KUvmXXr1tlXYJJ54YUXzLRp04zX6zVHHXWU+f3vf9/ncc7/8GlpaTE//OEPzZgxY0xaWpoZP368ufXWW/v8T4nzPzTeeOMNI2mfbcGCBcaY/p3nzs5Oc+2115oRI0aY9PR0c95555mdO3fa8GkSy8HO/bZt2/b7mCTzxhtvRF+Dc49kxnVPbHHdYw+ueWKL6x77cN0THyxjjBneXiwAAAAAAACgL2ZKAQAAAAAAIOYIpQAAAAAAABBzhFIAAAAAAACIOUIpAAAAAAAAxByhFAAAAAAAAGKOUAoAAAAAAAAxRygFAAAAAACAmCOUAgAAAAAAQMwRSgEAAAAAACDmCKUA4HNWrFghp9Ops88+2+5SAAAAACBpWcYYY3cRABBPrrzySmVlZem///u/tXHjRo0ZM8bukgAAAAAg6dApBQB7aW9v19NPP62rr75a5513nh555JE+jz///POaOHGi0tPTddppp+nRRx+VZVlqamqKHrNixQp96UtfUnp6usrKynT99dervb09th8EAAAAAOIcoRQA7OWpp57SpEmTNGnSJF122WV6+OGHFWko3b59u77+9a/rK1/5ilavXq2rrrpKt956a5/nr1u3TmeddZYuvPBCrV27Vk899ZSWL1+ua6+91o6PAwAAAABxi+V7ALCXk08+WRdddJF++MMfqqenRyUlJfrTn/6kuXPn6qc//alefPFFrVu3Lnr8z372M915551qbGxUbm6uvvOd7yg9PV2/+93voscsX75cp556qtrb25WWlmbHxwIAAACAuEOnFAD02rx5s9577z1dcsklkiSXy6WLL75Y//M//xN9fPbs2X2ec9xxx/X5etWqVXrkkUeUlZUV3c466yyFQiFt27YtNh8EAAAAABKAy+4CACBePPTQQ+rp6dGoUaOi+4wxcrvdamxslDFGlmX1ec7nm01DoZCuuuoqXX/99fu8PgPTAQAAAOAzhFIAIKmnp0ePPfaYfv3rX2vevHl9Hvva176mP/7xjzrqqKP00ksv9Xns/fff7/P1F77wBW3YsEETJkwY9poBAAAAIJExUwoAJD333HO6+OKLVV9fL5/P1+exW2+9VS+99JKeeeYZTZo0ST/60Y90xRVXaPXq1brxxhtVWVmppqYm+Xw+rV27VieccIL+6Z/+Sd/73veUmZmpTZs2admyZbrvvvts+nQAAAAAEH+YKQUACi/dmzt37j6BlBTulFq9erUaGxv1v//7v3rmmWd09NFH68EHH4zefc/r9UqSjj76aL311lvaunWrvvjFL+rYY4/VbbfdppKSkph+HgAAAACId3RKAcBhuPPOO/Xb3/5WFRUVdpcCAAAAAAmFmVIAMAAPPPCAZs+erfz8fL399tv61a9+pWuvvdbusgAAAAAg4RBKAcAAbN26Vb/4xS+0Z88ejRkzRjfeeKNuueUWu8sCAAAAgITD8j0AAAAAAADEHIPOAQAAAAAAEHOEUgAAAAAAAIg5QikAAAAAAADEHKEUAAAAAAAAYo5QCgAAAAAAADFHKAUAAAAAAICYI5QCAAAAAABAzBFKAQAAAAAAIOYIpQAAAAAAABBz/z+EMOzIUZSyawAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "