-
Notifications
You must be signed in to change notification settings - Fork 90
/
_pkgdown.yml
277 lines (271 loc) · 7.18 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
template:
params:
bootswatch: cosmo
development:
mode: auto
development: docs/dev
home:
links:
- text: Ask a question
href: http://forums.ohdsi.org
navbar:
structure:
left:
- home
- intro
- videos
- reference
- articles
- tutorial
- benchmarks
- predictors
- bestpractice
- clinicalmodels
- news
right: [hades, github]
components:
home:
icon: fa-home fa-lg
href: index.html
reference:
text: Reference
href: reference/index.html
intro:
text: Get started
href: articles/InstallationGuide.html
videos:
text: Videos
href: articles/Videos.html
bestpractice:
text: Best Practices
href: articles/BestPractices.html
clinicalmodels:
text: Clinical Models
href: articles/ClinicalModels.html
benchmarks:
text: Benchmarks
href: articles/BenchmarkTasks.html
predictors:
text: Predictors
href: articles/ConstrainedPredictors.html
news:
text: Changelog
href: news/index.html
tutorial:
text: Tutorial
href: https://www.ohdsi.org/past-events/patient-level-prediction/
github:
icon: fa-github fa-lg
href: https://github.com/OHDSI/PatientLevelPrediction
hades:
text: hadesLogo
href: https://ohdsi.github.io/Hades
reference:
- title: "Extracting data from the OMOP CDM database"
desc: >
Functions for getting the necessary data from the database in Common Data Model and saving/loading.
contents:
- createDatabaseDetails
- createRestrictPlpDataSettings
- getPlpData
- savePlpData
- loadPlpData
- getCohortCovariateData
- title: "Settings for designing a prediction models"
desc: >
Design settings required when developing a model.
contents:
- createStudyPopulationSettings
- createDefaultSplitSetting
- createSampleSettings
- createFeatureEngineeringSettings
- createPreprocessSettings
- title: "Optional design settings"
desc: >
Settings for optional steps that can be used in the PLP pipeline
contents:
- createCohortCovariateSettings
- createRandomForestFeatureSelection
- createUnivariateFeatureSelection
- createSplineSettings
- createStratifiedImputationSettings
- title: "External validation"
contents:
- createValidationDesign
- validateExternal
- createValidationSettings
- recalibratePlp
- recalibratePlpRefit
- title: "Execution settings when developing a model"
desc: >
Execution settings required when developing a model.
contents:
- createLogSettings
- createExecuteSettings
- createDefaultExecuteSettings
- title: "Binary Classification Models"
desc: >
Functions for setting binary classifiers and their hyper-parameter search.
contents:
- setAdaBoost
- setDecisionTree
- setGradientBoostingMachine
- setKNN
- setLassoLogisticRegression
- setMLP
- setNaiveBayes
- setRandomForest
- setSVM
- setIterativeHardThresholding
- setLightGBM
- title: "Survival Models"
desc: >
Functions for setting survival models and their hyper-parameter search.
contents:
- setCoxModel
- title: "Single Patient-Level Prediction Model"
desc: >
Functions for training/evaluating/applying a single patient-level-prediction model
contents:
- runPlp
- externalValidateDbPlp
- savePlpModel
- loadPlpModel
- savePlpResult
- loadPlpResult
- diagnosePlp
- title: "Multiple Patient-Level Prediction Models"
desc: >
Functions for training mutliple patient-level-prediction model in an efficient way.
contents:
- createModelDesign
- runMultiplePlp
- validateMultiplePlp
- savePlpAnalysesJson
- loadPlpAnalysesJson
- diagnoseMultiplePlp
- title: "Individual pipeline functions"
desc: >
Functions for running parts of the PLP workflow
contents:
- createStudyPopulation
- splitData
- preprocessData
- fitPlp
- predictPlp
- evaluatePlp
- covariateSummary
- title: "Saving results into database"
desc: >
Functions for saving the prediction model and performances into a database.
contents:
- insertResultsToSqlite
- createPlpResultTables
- addMultipleRunPlpToDatabase
- addRunPlpToDatabase
- createDatabaseSchemaSettings
- createDatabaseList
- addDiagnosePlpToDatabase
- addMultipleDiagnosePlpToDatabase
- extractDatabaseToCsv
- insertCsvToDatabase
- insertModelDesignInDatabase
- migrateDataModel
- title: "Shiny Viewers"
desc: >
Functions for viewing results via a shiny app
contents:
- viewPlp
- viewMultiplePlp
- viewDatabaseResultPlp
- title: "Plotting"
desc: >
Functions for various performance plots
contents:
- plotPlp
- plotSparseRoc
- plotSmoothCalibration
- plotSparseCalibration
- plotSparseCalibration2
- plotDemographicSummary
- plotF1Measure
- plotGeneralizability
- plotPrecisionRecall
- plotPredictedPDF
- plotPreferencePDF
- plotPredictionDistribution
- plotVariableScatterplot
- outcomeSurvivalPlot
- title: "Learning Curves"
desc: >
Functions for creating and plotting learning curves
contents:
- createLearningCurve
- plotLearningCurve
- title: "Simulation"
desc: >
Functions for simulating cohort method data objects.
contents:
- simulatePlpData
- plpDataSimulationProfile
- title: "Data manipulation functions"
desc: >
Functions for manipulating data
contents:
- toSparseM
- MapIds
- title: "Helper/utility functions"
contents:
- listAppend
- listCartesian
- createTempModelLoc
- configurePython
- setPythonEnvironment
- title: "Evaluation measures"
contents:
- accuracy
- averagePrecision
- brierScore
- calibrationLine
- computeAuc
- f1Score
- falseDiscoveryRate
- falseNegativeRate
- falseOmissionRate
- falsePositiveRate
- ici
- modelBasedConcordance
- negativeLikelihoodRatio
- negativePredictiveValue
- positiveLikelihoodRatio
- positivePredictiveValue
- sensitivity
- specificity
- computeGridPerformance
- diagnosticOddsRatio
- getCalibrationSummary
- getDemographicSummary
- getThresholdSummary
- getThresholdSummary_binary
- getPredictionDistribution
- getPredictionDistribution_binary
- title: "Saving/loading models as json"
desc: >
Functions for saving or loading models as json
contents:
- sklearnFromJson
- sklearnToJson
- title: "Load/save for sharing"
desc: >
Functions for loading/saving objects for sharing
contents:
- savePlpShareable
- loadPlpShareable
- loadPrediction
- savePrediction
- title: "Feature importance"
contents:
- pfi
- title: "Other functions"
contents:
- predictCyclops