-
Notifications
You must be signed in to change notification settings - Fork 0
/
goodman_kruskal.m
103 lines (91 loc) · 3.47 KB
/
goodman_kruskal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
function di = goodman_kruskal(D, classes)
% Computes the Goodman-Kruskal clustering index.
%
% This file is part of the HUB TOOLBOX available at
% http://ofai.at/research/impml/projects/hubology.html
% https://github.com/OFAI/hub-toolbox-matlab/
% (c) 2013, Dominik Schnitzer <[email protected]>
% (c) 2016, Roman Feldbauer <[email protected]>
%
% The Goodman-Kruskal index is a
% clustering quality measure that relates the number of concordant ($Q_c$) and
% discordant (Q_d) tuples (d_{i,j}, d_{k,l}) of a distance matrix.
% * A tuple is concordant if its items i, j are from the same class,
% items k, l are from different classes and d_{i,j} < d_{k,l}.
% * A tuple is discordant if its items i, j are from the same class,
% items k, l are from different classes and d_{i,j} > d_{k,l}.
% * A tuple is not counted if it is neither concordant nor discordant,
% that is, if d_{i,j} = d_{k,l}.
%
% The Goodman-Kruskal Index ($I_{GK}$) is defined as:
% I_{GK} = \frac{Q_c - Q_d}{Q_c + Q_d}.
%
% I_{GK} is bounded to the interval [-1, 1], and the higher I_{GK}, the
% more concordant and fewer discordant quadruples are present in the data set.
% Thus a large index value indicates a good clustering (in terms of
% pairwise stability.
%
% Usage:
% goodman_kruskal(D, classes) - Where D is an NxN distance matrix and
% classes is a vector with the class labels as integers.
Qc = 0;
Qd = 0;
cls = unique(classes);
n = length(classes);
% D_kl pairs in different classes
D_other = D(triu(repmat(classes', n, 1) ~= repmat(classes, 1, n)))';
for c = 1:length(cls)
sel = classes == cls(c);
if (sum(sel) > 1)
selD = false(size(D));
selD(sel, sel) = true;
% D_ij pairs within same class
D_self = D(triu(selD, 1))';
else
% skip if there is only one item per class
continue;
end
% D_kl pairs in different classes (D_other) are computed once for all c
D_full = [D_self D_other];
self_size = length(D_self);
other_size = length(D_other);
[~, full_idx] = sort(D_full);
% Calc number of quadruples with equal distance
n_equidistant = 0;
sdf = sort(D_full);
equi_mask = logical(zeros(size(sdf)));
% Positions with repeated values
equi_mask(2:end) = sdf(2:end) == sdf(end:-1:2);
equi_dist = sdf(equi_mask);
% How often does each value occur in self/other:
uniq_equi_dist = unique(equi_dist);
for i = 1:length(uniq_equi_dist)
dist = uniq_equi_dist(i);
equi_arg = find(D_full == dist);
self_equi = sum(equi_arg < self_size);
other_equi = length(equi_arg) - self_equi;
% Number of dc that are actually equal
n_equidistant = n_equidistant + self_equi * other_equi;
end
% Calc number of concordant quadruples
cc = 0;
ccsize = other_size;
for i = 1:length(full_idx)
if (full_idx(i) <= self_size)
cc = cc + ccsize;
else
ccsize = ccsize - 1;
end
end
% Calc number of discordant quadruples
dc = self_size*other_size - cc - n_equidistant;
Qc = Qc + cc;
Qd = Qd + dc;
end
% Calc Goodman-Kruskal's gamma
if (Qc+Qd == 0)
di = 0;
else
di = (Qc-Qd)/(Qc+Qd);
end
end