Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add exogenous features support to models table #714

Merged
merged 1 commit into from
Nov 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 32 additions & 32 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -109,77 +109,77 @@ Missing something? Please open an issue or write us in [![Slack](https://img.shi
### Automatic Forecasting
Automatic forecasting tools search for the best parameters and select the best possible model for a group of time series. These tools are useful for large collections of univariate time series.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[AutoARIMA](https://nixtla.github.io/statsforecast/src/core/models.html#autoarima)|✅|✅|✅|✅|✅|
|[AutoETS](https://nixtla.github.io/statsforecast/src/core/models.html#autoets)|✅|✅|✅|✅||
|[AutoCES](https://nixtla.github.io/statsforecast/src/core/models.html#autoces)|✅|✅|✅|✅||
|[AutoTheta](https://nixtla.github.io/statsforecast/src/core/models.html#autotheta)|✅|✅|✅|✅||
|[AutoETS](https://nixtla.github.io/statsforecast/src/core/models.html#autoets)|✅|✅|✅|✅||
|[AutoCES](https://nixtla.github.io/statsforecast/src/core/models.html#autoces)|✅|✅|✅|✅||
|[AutoTheta](https://nixtla.github.io/statsforecast/src/core/models.html#autotheta)|✅|✅|✅|✅||

### ARIMA Family
These models exploit the existing autocorrelations in the time series.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[ARIMA](https://nixtla.github.io/statsforecast/src/core/models.html#arima)|✅|✅|✅|✅|✅|
|[AutoRegressive](https://nixtla.github.io/statsforecast/src/core/models.html#autoregressive)|✅|✅|✅|✅|✅|

### Theta Family
Fit two theta lines to a deseasonalized time series, using different techniques to obtain and combine the two theta lines to produce the final forecasts.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
|[Theta](https://nixtla.github.io/statsforecast/src/core/models.html#theta)|✅|✅|✅|✅||
|[OptimizedTheta](https://nixtla.github.io/statsforecast/src/core/models.html#optimizedtheta)|✅|✅|✅|✅||
|[DynamicTheta](https://nixtla.github.io/statsforecast/src/core/models.html#dynamictheta)|✅|✅|✅|✅||
|[DynamicOptimizedTheta](https://nixtla.github.io/statsforecast/src/core/models.html#dynamicoptimizedtheta)|✅|✅|✅|✅||
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[Theta](https://nixtla.github.io/statsforecast/src/core/models.html#theta)|✅|✅|✅|✅||
|[OptimizedTheta](https://nixtla.github.io/statsforecast/src/core/models.html#optimizedtheta)|✅|✅|✅|✅||
|[DynamicTheta](https://nixtla.github.io/statsforecast/src/core/models.html#dynamictheta)|✅|✅|✅|✅||
|[DynamicOptimizedTheta](https://nixtla.github.io/statsforecast/src/core/models.html#dynamicoptimizedtheta)|✅|✅|✅|✅||

### Multiple Seasonalities
Suited for signals with more than one clear seasonality. Useful for low-frequency data like electricity and logs.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
|[MSTL](https://nixtla.github.io/statsforecast/src/core/models.html#mstl)|✅|✅|✅|✅||
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[MSTL](https://nixtla.github.io/statsforecast/src/core/models.html#mstl)|✅|✅|✅|✅|If trend forecaster supports|

### GARCH and ARCH Models
Suited for modeling time series that exhibit non-constant volatility over time. The ARCH model is a particular case of GARCH.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
|[GARCH](https://nixtla.github.io/statsforecast/src/core/models.html#garch)|✅|✅|✅|✅||
|[ARCH](https://nixtla.github.io/statsforecast/src/core/models.html#arch)|✅|✅|✅|✅||
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[GARCH](https://nixtla.github.io/statsforecast/src/core/models.html#garch)|✅|✅|✅|✅||
|[ARCH](https://nixtla.github.io/statsforecast/src/core/models.html#arch)|✅|✅|✅|✅||


### Baseline Models
Classical models for establishing baseline.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
|[HistoricAverage](https://nixtla.github.io/statsforecast/src/core/models.html#historicaverage)|✅|✅|✅|✅||
|[Naive](https://nixtla.github.io/statsforecast/src/core/models.html#naive)|✅|✅|✅|✅||
|[RandomWalkWithDrift](https://nixtla.github.io/statsforecast/src/core/models.html#randomwalkwithdrift)|✅|✅|✅|✅||
|[SeasonalNaive](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalnaive)|✅|✅|✅|✅||
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[HistoricAverage](https://nixtla.github.io/statsforecast/src/core/models.html#historicaverage)|✅|✅|✅|✅||
|[Naive](https://nixtla.github.io/statsforecast/src/core/models.html#naive)|✅|✅|✅|✅||
|[RandomWalkWithDrift](https://nixtla.github.io/statsforecast/src/core/models.html#randomwalkwithdrift)|✅|✅|✅|✅||
|[SeasonalNaive](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalnaive)|✅|✅|✅|✅||
|[WindowAverage](https://nixtla.github.io/statsforecast/src/core/models.html#windowaverage)|✅|||||
|[SeasonalWindowAverage](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalwindowaverage)|✅|||||

### Exponential Smoothing
Uses a weighted average of all past observations where the weights decrease exponentially into the past. Suitable for data with clear trend and/or seasonality. Use the `SimpleExponential` family for data with no clear trend or seasonality.

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[SimpleExponentialSmoothing](https://nixtla.github.io/statsforecast/src/core/models.html#simpleexponentialsmoothing)|✅|||||
|[SimpleExponentialSmoothingOptimized](https://nixtla.github.io/statsforecast/src/core/models.html#simpleexponentialsmoothingoptimized)|✅|||||
|[SeasonalExponentialSmoothing](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalexponentialsmoothing)|✅|||||
|[SeasonalExponentialSmoothingOptimized](https://nixtla.github.io/statsforecast/src/core/models.html#seasonalexponentialsmoothingoptimized)|✅|||||
|[Holt](https://nixtla.github.io/statsforecast/src/core/models.html#holt)|✅|✅|✅|✅||
|[HoltWinters](https://nixtla.github.io/statsforecast/src/core/models.html#holtwinters)|✅|✅|✅|✅||
|[Holt](https://nixtla.github.io/statsforecast/src/core/models.html#holt)|✅|✅|✅|✅||
|[HoltWinters](https://nixtla.github.io/statsforecast/src/core/models.html#holtwinters)|✅|✅|✅|✅||


### Sparse or Intermittent
Suited for series with very few non-zero observations

|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|
|Model | Point Forecast | Probabilistic Forecast | Insample fitted values | Probabilistic fitted values |Exogenous features|
|:------|:-------------:|:----------------------:|:---------------------:|:----------------------------:|:----------------:|
|[ADIDA](https://nixtla.github.io/statsforecast/src/core/models.html#adida)|✅|||||
|[CrostonClassic](https://nixtla.github.io/statsforecast/src/core/models.html#crostonclassic)|✅|||||
|[CrostonOptimized](https://nixtla.github.io/statsforecast/src/core/models.html#crostonoptimized)|✅|||||
Expand Down
Loading
Loading