Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FEAT] finetune loss #218

Merged
merged 2 commits into from
Jan 30, 2024
Merged

[FEAT] finetune loss #218

merged 2 commits into from
Jan 30, 2024

Conversation

cchallu
Copy link
Contributor

@cchallu cchallu commented Jan 29, 2024

  • Added finetune loss parameter.

@cchallu cchallu requested a review from AzulGarza January 29, 2024 21:28
Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

Copy link
Contributor

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.936 199.132 2571.33 10604.2
total_time 3.5226 5.6467 7.5405 0.8038

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 6.7187 9.1196 0.0068 0.0054

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 142.394 196.363 269.23 1331.02
mape 0.0203 0.0234 0.0304 0.1692
mse 63464.7 123119 213677 4.68961e+06
total_time 3.2818 4.6704 1.347 0.8837

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 522.427 353.528 398.956 1119.26
mape 0.069 0.0454 0.0512 0.1583
mse 966294 422332 656723 3.17316e+06
total_time 5.5533 5.5894 0.009 0.0088

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 478.362 361.033 602.926 1340.95
mape 0.0622 0.046 0.0787 0.17
mse 805039 441118 1.61572e+06 6.04619e+06
total_time 5.1671 5.0934 0.0087 0.0079

Plot:

Copy link
Contributor

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.936 199.132 2571.33 10604.2
total_time 7.4567 5.6059 6.9832 0.7746

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.21 4110.79 5928.17 18859.2
total_time 7.8387 4.028 0.0064 0.0053

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 142.394 196.363 269.23 1331.02
mape 0.0203 0.0234 0.0304 0.1692
mse 63464.7 123119 213677 4.68961e+06
total_time 3.3236 2.9452 1.347 0.7172

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 522.427 353.528 398.956 1119.26
mape 0.069 0.0454 0.0512 0.1583
mse 966294 422332 656723 3.17316e+06
total_time 4.2569 3.6693 0.0084 0.008

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 478.362 361.033 602.926 1340.95
mape 0.0622 0.046 0.0787 0.17
mse 805039 441118 1.61572e+06 6.04619e+06
total_time 5.8501 4.3323 0.0085 0.0078

Plot:

Copy link
Member

@AzulGarza AzulGarza left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

awesome @cchallu! 😍

@AzulGarza AzulGarza merged commit 2f5e421 into main Jan 30, 2024
12 checks passed
@AzulGarza AzulGarza deleted the feat/finetune-loss branch January 30, 2024 04:02
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants