Skip to content

Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

License

Notifications You must be signed in to change notification settings

NingYuanxiang/Mask2Former

 
 

Repository files navigation

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar

[arXiv] [Project] [BibTeX]


Features

  • A single architecture for panoptic, instance and semantic segmentation.
  • Support major segmentation datasets: ADE20K, Cityscapes, COCO, Mapillary Vistas.

Updates

  • Add Google Colab demo.
  • Video instance segmentation is now supported! Please check our tech report for more details.

Installation

See installation instructions.

Getting Started

See Preparing Datasets for Mask2Former.

See Getting Started with Mask2Former.

Run our demo using Colab: Open In Colab

Integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo: Hugging Face Spaces

Replicate web demo and docker image is available here: Replicate

Advanced usage

See Advanced Usage of Mask2Former.

Model Zoo and Baselines

We provide a large set of baseline results and trained models available for download in the Mask2Former Model Zoo.

License

Shield: CC BY-NC 4.0

The majority of Mask2Former is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

CC BY-NC 4.0

However portions of the project are available under separate license terms: Swin-Transformer-Semantic-Segmentation is licensed under the MIT license, Deformable-DETR is licensed under the Apache-2.0 License.

Citing Mask2Former

If you use Mask2Former in your research or wish to refer to the baseline results published in the Model Zoo, please use the following BibTeX entry.

@article{cheng2021mask2former,
  title={Masked-attention Mask Transformer for Universal Image Segmentation},
  author={Bowen Cheng and Ishan Misra and Alexander G. Schwing and Alexander Kirillov and Rohit Girdhar},
  journal={arXiv},
  year={2021}
}

If you find the code useful, please also consider the following BibTeX entry.

@inproceedings{cheng2021maskformer,
  title={Per-Pixel Classification is Not All You Need for Semantic Segmentation},
  author={Bowen Cheng and Alexander G. Schwing and Alexander Kirillov},
  journal={NeurIPS},
  year={2021}
}

Acknowledgement

Code is largely based on MaskFormer (https://github.com/facebookresearch/MaskFormer).

About

Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.3%
  • Cuda 9.5%
  • C++ 1.1%
  • Shell 0.1%