-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
69 lines (61 loc) · 2.22 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from PIL import Image
import torch
from torchvision import transforms
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
import torchvision
import numpy as np
import matplotlib.pyplot as plt
THRESHOLD = 0.8
transform_img = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def get_model_instance_segmentation(num_classes):
model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 256
model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
hidden_layer,
num_classes)
return model
def get_model():
net = get_model_instance_segmentation(2)
net.eval()
net.load_state_dict(torch.load('./models/segment_model.pth', map_location='cpu'), strict=False)
return net
def load_img(path):
img = Image.open(path).convert('RGB')
img_t = transform_img(img).unsqueeze(0)
return img, img_t
def predict(imgs, imgs_t, net, save_image=False, threshold=THRESHOLD):
outputs = net(imgs_t)
predictions = []
for i in range(len(outputs)):
pred_proba = outputs[i]['scores'].detach().numpy()
sub_predictions = []
for j in range(len(pred_proba)):
if pred_proba[j]<threshold:
continue
mask = outputs[i]['masks'][j].detach().numpy()[0]
mask = np.round(mask).astype(int)
coords = outputs[i]['boxes'][j]
coords = np.array(coords.detach(), dtype=np.int32)
img_c = np.array(imgs[i])
img_c = img_c[coords[1]:coords[3],coords[0]:coords[2],:]
mask = mask[coords[1]:coords[3],coords[0]:coords[2]]
mask = np.expand_dims(mask, axis=2)
img_c = np.array(img_c*mask, dtype=np.uint8)
if save_image:
plt.imsave(f'outputs/save_{i}_{j}.jpg', img_c)
sub_predictions.append(img_c)
predictions.append(sub_predictions)
return predictions
def main():
net = get_model()
img, img_t = load_img(path='test/1.jpg')
preds = predict([img], img_t, net, save_image=True)
if __name__ == '__main__':
main()