-
Notifications
You must be signed in to change notification settings - Fork 2
/
mag_calibration.py
246 lines (213 loc) · 8.15 KB
/
mag_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import pandas as pd
import numpy as np
from data_utils import *
from config_parsers import update_sensor_config
MAG_ID = 3
CALIBRATION_FILE = "Data/Calibration/Mag_Calibration_20201113T1806.txt"
NOISE_FILE = "Data/Calibration/Sensor_Noise_20201113T1842.txt"
SAVE_FILE = "Configs/sensor_config_20201029T1909.xml"
MAG_FIELD = 55.8586 # [uT] Wellington
# Calibration data clip points (ms)
calib_start = 100
calib_end = 3e5
# Noise clip times
noise_start = 1e5
noise_end = 5.5e6
def reconstruct_symmetric_mat(upper_entries):
upper_entries = upper_entries.flatten()
Q = np.zeros((3, 3))
Q[np.triu_indices(3)] = upper_entries[:6]
Q[1:, 0] = Q[0, 1:]
Q[2, 1] = Q[1, 2]
return Q
def levenberg_marquardt(f, df, x, N):
x = x.reshape(-1, 1)
max_iters = 100
tol = 0.01
count = 0
lambd = 0
# Compute initial residuals
prev_residuals = np.sum(f(x) ** 2) / N
while count < max_iters:
count += 1
F = f(x)
J = df(x)
JJ = J.T @ J
A = (JJ + lambd * np.diag(JJ))
b = J.T @ F
try:
x = x + np.linalg.solve(A, b)
except Exception as e:
print("Singular matrix encountered")
lambd = 1
continue
residuals = np.sum(f(x) ** 2) / N
if abs(residuals - prev_residuals) < tol and lambd < 0.8:
return x
prev_residuals = residuals
print(f"Max iterations exceeded")
return x
def compute_calibration_params(mag_data):
data = mag_data.iloc[:, 1:].to_numpy()
H = np.ones((mag_data.shape[0], 1)) * MAG_FIELD
def objective(gamma):
K = reconstruct_symmetric_mat(gamma)
f2 = (data + gamma[6:, 0]) @ K # m * 3
f = np.sqrt(np.sum(f2 * f2, axis=1, keepdims=True)) #mx1
F = H - f
return F
def jacobian(gamma):
gamma = gamma.flatten()
J = np.zeros((data.shape[0], 9))
# Intermediate variables
A = gamma[0] * (data[:, 0:1] + gamma[6]) + gamma[1] * (data[:, 1:2] + gamma[7]) + gamma[2] * (data[:, 2:3] + gamma[8])
B = gamma[1] * (data[:, 0:1] + gamma[6]) + gamma[3] * (data[:, 1:2] + gamma[7]) + gamma[4] * (data[:, 2:3] + gamma[8])
C = gamma[2] * (data[:, 0:1] + gamma[6]) + gamma[4] * (data[:, 1:2] + gamma[7]) + gamma[5] * (data[:, 2:3] + gamma[8])
K = reconstruct_symmetric_mat(gamma[:6])
b = np.linalg.norm(K @ (data + gamma[np.newaxis, 6:]).T, axis=0).reshape(-1, 1)
# Construct Jacobian
J[:, 0:1] = (data[:, 0:1] + gamma[6]) * (A / b)
J[:, 3:4] = (data[:, 1:2] + gamma[7]) * (B / b)
J[:, 5:6] = (data[:, 2:3] + gamma[8]) * (C / b)
J[:, 1:2] = ((data[:, 1:2] + gamma[7]) * A + (data[:, 0:1] + gamma[6]) * B) / b
J[:, 2:3] = ((data[:, 2:3] + gamma[8]) * A + (data[:, 0:1] + gamma[6]) * C) / b
J[:, 4:5] = ((data[:, 2:3] + gamma[8]) * B + (data[:, 1:2] + gamma[7]) * C) / b
J[:, 6:7] = A / b
J[:, 7:8] = B / b
J[:, 8:9] = C / b
return J
gamma0 = np.array([1, 0, 0, 1, 0, 1, 0, 0, 0])
params = levenberg_marquardt(objective, jacobian, gamma0, data.shape[0])
K = reconstruct_symmetric_mat(params[:6])
biases = -params[6:]
return K, biases
def compute_covariance(noise_data):
"""
Commpute the variance for each axis and form a
diagonal covariance matrix
"""
try:
noise_data = noise_data.to_numpy()
except AttributeError:
noise_data = np.array(noise_data)
variances = np.std(noise_data[:, 1:], axis=0) ** 2
covariance = np.diag(variances)
return covariance
def magnetometer_calibration(visualize=True):
"""
Perform a magnetometer calibration using a single datafile
which contains data from randomly rotating the device
"""
print("\nRunning Magnetometer Calibration")
calibration_dict = {}
# Load and visualize calibration data
mag_dict = extract_single_imu_sensor_data(CALIBRATION_FILE, MAG_ID, zero_times=True)
mag_data = pd.DataFrame.from_dict(mag_dict)
mag_data = get_subsets_between_times(mag_data, [(calib_start, calib_end)])
time_steps, rates = compute_logging_rates(mag_dict)
print(f"Log size: {mag_data.shape[0]}")
print(f"Time step (ms): min:{min(time_steps)}, max:{max(time_steps)}, avg:{np.mean(time_steps):.2f}")
print(f"Average logging rate (Hz): {1000*np.mean(rates):.2f}")
if visualize:
visualize_3axis_timeseries(mag_data, MAG_ID)
visualize_3D_scatter(mag_data, MAG_ID)
visualize_2D_projection(mag_data, MAG_ID)
# Calibration
scale_inv, biases = compute_calibration_params(mag_data)
calibration_dict["scale"] = scale_inv
calibration_dict["biases"] = biases
# Load and visualize noise data
noise_data = extract_single_imu_sensor_data(NOISE_FILE, MAG_ID, zero_times=True)
noise_data = pd.DataFrame.from_dict(noise_data)
if visualize: visualize_3axis_timeseries(noise_data, MAG_ID)
# Noise
noise_data = get_subsets_between_times(noise_data, [(noise_start, noise_end)])
covariance = compute_covariance(noise_data)
calibration_dict["covariance"] = covariance
# Results Visualization
corrected_data = batch_measurement_correction(mag_data, biases, scale_inv)
if visualize:
visualize_3D_scatter(corrected_data, MAG_ID)
visualize_2D_projection(corrected_data, MAG_ID)
print(f"Covariance: \n{covariance}")
# Saving
save_params = input("Save calibration params?: ")
if save_params.lower() in ("y","yes"):
update_sensor_config(SAVE_FILE, MAG_ID, calibration_dict)
print("Params saved")
def main():
magnetometer_calibration()
if __name__ == "__main__":
main()
# def gauss_newton(f, df, x):
# x = x.reshape(-1, 1)
# max_iters = 100
# tol = 0.1
# count = 0
# x_prev = x + 10 * tol
# while count < max_iters:
# count += 1
# if np.linalg.norm(x - x_prev) < tol:
# print(f"Converge Tolerance: {tol} reached")
# return x
# x_prev = x
# F = f(x)
# DF = df(x)
# A = (DF.T @ DF)
# b = DF.T @ (-F)
# try:
# x = x + np.linalg.solve(A, b)
# except Exception as e:
# print("Singular matrix encountered")
# x = np.array([])
# return x
# final_res = np.linalg.norm(f(x))
# print(f"Max iterations exceeded, final residual: {final_res:.2f}")
# return x
#
#
# def compute_calibration_params(mag_data, params_guess):
# H = np.ones((mag_data.shape[0], 1)) * (MAG_FIELD ** 2)
# XYZ = mag_data.iloc[:, 1:].to_numpy()
#
# def objective(beta):
# ellipse = np.sum(((XYZ - beta[:3].flatten()) / beta[3:].flatten()) ** 2, axis=1, keepdims=True)
# loss = H - ellipse
# return loss
#
# def jacobian(beta):
# J = np.zeros((XYZ.shape[0], 6))
# J[:, :3] = 2 * (XYZ - beta[:3].flatten()) / (beta[3:].flatten() ** 2)
# J[:, 3:] = 2 * ((XYZ - beta[:3].flatten()) ** 2) / (beta[3:].flatten() ** 3)
# return J
#
# cal_params = gauss_newton(objective, jacobian, params_guess)
# P = np.diag(cal_params[3:].flatten())
# bias = cal_params[:3]
# return P, bias
# def compute_calibration_params(mag_data):
# data = mag_data.iloc[:, 1:].to_numpy()
# Y = np.vstack((data[:,0]**2, 2*data[:,0]*data[:,1], 2*data[:,1]*data[:,2], data[:,1]**2, 2*data[:,1]*data[:,2], data[:,2]**2)).T # (M x 6)
# Y = np.concatenate((Y, data, np.ones((data.shape[0], 1))), axis=1)
# H = np.eye(10) # norm constraint
# H[[1, 2, 4], [1, 2, 4]] = np.sqrt(2)
# H_inv = np.linalg.inv(H)
# U, S, Vh = np.linalg.svd(Y @ H_inv, full_matrices=False)
# beta = H_inv @ Vh[-1, :].reshape(-1, 1) # parameters
#
# # Reconstruct quadratic solution
# Q = np.zeros((3, 3))
# Q[np.triu_indices(3)] = beta[:6, 0]
# Q[1:, 0] = Q[0, 1:]
# Q[2, 1] = Q[1, 2]
# q = beta[6:9]
# k = beta[-1,0]
#
# # Specify ellipse params
# biases = (-1 / 2) * np.linalg.solve(Q, q)
# w, V = np.linalg.eig(Q)
# D = np.diag(w)
# alpha = 4 * (MAG_FIELD ** 2) / (4 * k - (q.reshape(1, -1) @ V) @ np.linalg.inv(D) @ (V.T @ q))
# alpha = alpha.item()
# scale_inv = V @ np.sqrt(alpha * D) @ V.T
# return scale_inv, biases