-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path__init__.py
executable file
·64 lines (63 loc) · 2.52 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
import pandas as pd
from pandas import HDFStore
store = HDFStore("storeTraffic.h5")
workload_actual = pd.Series.from_csv("10min_workload.csv",header=None,index_col=None)
def get_training(n_input,n_periodic=0):
# n_row = 578
# group du lieu
data = store["connTrain"]
dataTest = store["connTest"]
raw_data = store["raw_data_conn"]
n_row = data.shape[0]
print "Generate X_traing, y_traing"
print "X_training loading..."
# X_training = np.asarray([[data.iloc[t-i-1] for i in range(0,n_input)]
# for t in np.arange(n_input,n_row)])
X_training = []
max_val = float(store["raw_conn_train"].max())
min_val = float(store["raw_conn_train"].min())
for t in range(n_input,n_row):
temp = []
for i in range(0,n_input):
temp.append(data.iloc[t-i-1])
for j in range(1,n_periodic+1):
start_idx = data.index[t]
norVal = (workload_actual[start_idx-142*j]-min_val)/(max_val-min_val)
temp.append(norVal)
X_training.append(temp)
print "y_training loading..."
y_training = np.asarray(data.iloc[n_input:n_row])
print "X_test..."
n_sample2 = X_training
print "y_test..."
n_test2 = np.asarray(dataTest.iloc[n_input:dataTest.shape[0]])
return np.asarray(X_training), y_training,np.asarray(n_sample2),n_test2
# def get_training_periodic(n_input,n_periodic):
# print "Hello"
# # n_row = 578
# # group du lieu
# # data = store["connTrain"]
# # dataTest = store["connTest"]
# # raw_data = store["raw_data_conn"]
# # n_row = data.shape[0]
# # print "Generate X_traing, y_traing"
# # print "X_training loading..."
# # X_training = np.asarray([[data.iloc[t-i-1] for i in range(0,n_input)]
# # for t in np.arange(n_input,n_row)])
# # X_training = []
# # for t in range(n_input,n_row):
# # print t
# # # temp = []
# # # for i in range(0,n_input):
# # # temp.append(data.iloc[t-i-1])
# # # for j in range(1,n_periodic+1):
# # # temp.append(raw_data[raw_data.index[t]-142*j])
# # print "y_training loading..."
# # y_training = np.asarray(data.iloc[n_input:n_row])
# # print "X_test..."
# # n_sample2 = np.asarray([[dataTest.iloc[t-i-1] for i in range(0,n_input)]
# # for t in np.arange(n_input,dataTest.shape[0])])
# # print "y_test..."
# # n_test2 = np.asarray(dataTest.iloc[n_input:dataTest.shape[0]])
# # return X_training, y_training,n_sample2,n_test2