diff --git a/examples/ai_soulmate/README.md b/examples/ai_soulmate/README.md new file mode 100644 index 00000000..130aafe8 --- /dev/null +++ b/examples/ai_soulmate/README.md @@ -0,0 +1,66 @@ +## NexaAI SDK Demo: AI Soulmate + +### Introduction: + +This project is an AI chatbot that interacts with users via text and voice. The project offers two options for voice output: using the **Bark** model for on-device text-to-speech or the **OpenAI TTS API** for cloud-based text-to-speech. **Bark** will be slow to generate speech without using GPU, but it's on device. The **OpenAI TTS API** has the advantage in terms of speed, but it is cloud-based and requires you to have an OPENAI API KEY. Each option is designed to provide flexibility based on the user's resources and preferences.You can also choose other options according to your preference. + +- Key features: + + - On-device Character AI + - No privacy concerns + +- File structure: + + - `bark_voice_out/app.py`: main Streamlit app using Bark for voice output + - `bark_voice_out/utils/initialize.py`: initializes chat and load model + - `bark_voice_out/utils/gen_avatar.py`: generates avatar for AI Soulmate + - `bark_voice_out/utils/transcribe.py`: handles voice input to text transcription + - `bark_voice_out/utils/gen_response.py`: handles text and voice output + + - `openai_voice_out/app.py`: main Streamlit app using OpenAI TTS API for voice output + - `openai_voice_out/utils/initialize.py`: initializes chat and load model + - `openai_voice_out/utils/gen_avatar.py`: generates avatar for AI Soulmate + - `openai_voice_out/utils/transcribe.py`: handles voice input to text transcription + - `openai_voice_out/utils/gen_response.py`: handles text and voice output + +### Technical Architecture + +

+ Technical Architecture +

+ +### Setup: + +#### Bark Voice Output + +1. Install required packages: + +``` +pip install -r bark_requirements.txt +``` + +2. Usage: + +- Run the Streamlit app: `streamlit run bark_voice_out/app.py` +- Start a chat with text or voice as you like + +#### OpenAI Voice Output + +1. Install required packages: + +``` +pip install -r openai_requirements.txt +``` + +2. Usage: + +- Add your openai key in utils/gen_response.py line 8 +- Run the Streamlit app: `streamlit run openai_voice_out/app.py` +- Start a chat with text or voice as you like + +### Resources: + +- [NexaAI | Model Hub](https://nexaai.com/models) +- [NexaAI | Inference with GGUF models](https://docs.nexaai.com/sdk/inference/gguf) +- [GitHub | BARK](https://github.com/suno-ai/bark) +- [Text to speech - OpenAI API](https://platform.openai.com/docs/guides/text-to-speech) diff --git a/examples/ai_soulmate/bark_requirements.txt b/examples/ai_soulmate/bark_requirements.txt new file mode 100644 index 00000000..5d159df2 --- /dev/null +++ b/examples/ai_soulmate/bark_requirements.txt @@ -0,0 +1,9 @@ +nexaai +sounddevice + +# Bark support +numpy==1.26 +git+https://github.com/suno-ai/bark.git + +# To use GPU: +torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 \ No newline at end of file diff --git a/examples/ai_soulmate/bark_voice_out/app.py b/examples/ai_soulmate/bark_voice_out/app.py new file mode 100644 index 00000000..6d23a8b0 --- /dev/null +++ b/examples/ai_soulmate/bark_voice_out/app.py @@ -0,0 +1,120 @@ +import streamlit as st +from utils.initialize import initialize_chat, load_model +from utils.gen_avatar import generate_ai_avatar +from utils.transcribe import record_and_transcribe +from utils.gen_response import generate_chat_response, generate_and_play_response + +ai_avatar = generate_ai_avatar() +default_model = "llama3-uncensored" + +def main(): + col1, col2 = st.columns([5,5], vertical_alignment = "center") + with col1: + st.title("AI Soulmate") + with col2: + st.image(ai_avatar, width=150) + st.caption("Powered by Nexa AI") + + st.sidebar.header("Model Configuration") + model_path = st.sidebar.text_input("Model path", default_model) + + if not model_path: + st.warning( + "Please enter a valid path or identifier for the model in Nexa Model Hub to proceed." + ) + st.stop() + + if ( + "current_model_path" not in st.session_state + or st.session_state.current_model_path != model_path + ): + st.session_state.current_model_path = model_path + st.session_state.nexa_model = load_model(model_path) + if st.session_state.nexa_model is None: + st.stop() + + st.sidebar.header("Generation Parameters") + temperature = st.sidebar.slider( + "Temperature", 0.0, 1.0, st.session_state.nexa_model.params["temperature"] + ) + max_new_tokens = st.sidebar.slider( + "Max New Tokens", 1, 1000, st.session_state.nexa_model.params["max_new_tokens"] + ) + top_k = st.sidebar.slider("Top K", 1, 100, st.session_state.nexa_model.params["top_k"]) + top_p = st.sidebar.slider( + "Top P", 0.0, 1.0, st.session_state.nexa_model.params["top_p"] + ) + + st.session_state.nexa_model.params.update( + { + "temperature": temperature, + "max_new_tokens": max_new_tokens, + "top_k": top_k, + "top_p": top_p, + } + ) + + initialize_chat() + for message in st.session_state.messages: + if message["role"] != "system": + if message["role"] == "user": + with st.chat_message(message["role"]): + st.markdown(message["content"]) + else: + with st.chat_message(message["role"], avatar=ai_avatar): + st.markdown(message["content"]) + + if st.button("🎙️ Start Voice Chat"): + transcribed_text = record_and_transcribe() + if transcribed_text: + st.session_state.messages.append({"role": "user", "content": transcribed_text}) + with st.chat_message("user"): + st.markdown(transcribed_text) + + with st.chat_message("assistant", avatar=ai_avatar): + response_placeholder = st.empty() + full_response = "" + for chunk in generate_chat_response(st.session_state.nexa_model): + choice = chunk["choices"][0] + if "delta" in choice: + delta = choice["delta"] + content = delta.get("content", "") + elif "text" in choice: + delta = choice["text"] + content = delta + + full_response += content + response_placeholder.markdown(full_response, unsafe_allow_html=True) + response_placeholder.markdown(full_response) + + generate_and_play_response(full_response) + + st.session_state.messages.append({"role": "assistant", "content": full_response}) + + if prompt := st.chat_input("Say something..."): + st.session_state.messages.append({"role": "user", "content": prompt}) + with st.chat_message("user"): + st.markdown(prompt) + + with st.chat_message("assistant", avatar=ai_avatar): + response_placeholder = st.empty() + full_response = "" + for chunk in generate_chat_response(st.session_state.nexa_model): + choice = chunk["choices"][0] + if "delta" in choice: + delta = choice["delta"] + content = delta.get("content", "") + elif "text" in choice: + delta = choice["text"] + content = delta + + full_response += content + response_placeholder.markdown(full_response, unsafe_allow_html=True) + response_placeholder.markdown(full_response) + + generate_and_play_response(full_response) + + st.session_state.messages.append({"role": "assistant", "content": full_response}) + +if __name__ == "__main__": + main() diff --git a/examples/ai_soulmate/bark_voice_out/utils/gen_avatar.py b/examples/ai_soulmate/bark_voice_out/utils/gen_avatar.py new file mode 100644 index 00000000..a6819cde --- /dev/null +++ b/examples/ai_soulmate/bark_voice_out/utils/gen_avatar.py @@ -0,0 +1,27 @@ +import streamlit as st +from nexa.gguf import NexaImageInference + +@st.cache_resource +def generate_ai_avatar(): + try: + image_model = NexaImageInference(model_path="lcm-dreamshaper", local_path=None) + + images = image_model.txt2img( + prompt="A girlfriend with long black hair", + cfg_scale=image_model.params["guidance_scale"], + width=image_model.params["width"], + height=image_model.params["height"], + sample_steps=image_model.params["num_inference_steps"], + seed=image_model.params["random_seed"], + ) + + if images and len(images) > 0: + avatar_path = "ai_avatar.png" + images[0].save(avatar_path) + return avatar_path + else: + st.error("No image was generated.") + return None + except Exception as e: + st.error(f"Error generating AI avatar: {str(e)}") + return None diff --git a/examples/ai_soulmate/bark_voice_out/utils/gen_response.py b/examples/ai_soulmate/bark_voice_out/utils/gen_response.py new file mode 100644 index 00000000..4e44473e --- /dev/null +++ b/examples/ai_soulmate/bark_voice_out/utils/gen_response.py @@ -0,0 +1,62 @@ +from typing import List, Iterator +import numpy as np +from nexa.gguf import NexaTextInference +from bark import SAMPLE_RATE, generate_audio, preload_models +from bark.api import semantic_to_waveform, generate_text_semantic +import streamlit as st +import sounddevice as sd + +def split_text(text: str, max_length: int = 200) -> List[str]: + words = text.split() + chunks = [] + chunk = [] + + for word in words: + if len(" ".join(chunk + [word])) > max_length: + chunks.append(" ".join(chunk)) + chunk = [word] + else: + chunk.append(word) + + if chunk: + chunks.append(" ".join(chunk)) + + return chunks + +def generate_and_play_response(response_text: str): + text_chunks = split_text(response_text) + + silence = np.zeros(int(0.25 * SAMPLE_RATE)) + GEN_TEMP = 0.6 + SPEAKER = "v2/en_speaker_9" + + pieces = [] + for sentence in text_chunks: + semantic_tokens = generate_text_semantic( + sentence, + history_prompt=SPEAKER, + temp=GEN_TEMP, + min_eos_p=0.05 + ) + audio_array = semantic_to_waveform(semantic_tokens, history_prompt=SPEAKER) + pieces.append(audio_array) + pieces.append(silence.copy()) + + combined_audio = np.concatenate(pieces) + play_audio(SAMPLE_RATE, combined_audio) + +def play_audio(sample_rate, audio_array): + sd.play(audio_array, sample_rate) + sd.wait() + +def generate_chat_response(nexa_model: NexaTextInference) -> Iterator: + messages = st.session_state.messages + response = nexa_model.create_chat_completion( + messages=messages, + temperature=nexa_model.params["temperature"], + max_tokens=nexa_model.params["max_new_tokens"], + top_k=nexa_model.params["top_k"], + top_p=nexa_model.params["top_p"], + stream=True + ) + return response diff --git a/examples/ai_soulmate/bark_voice_out/utils/initialize.py b/examples/ai_soulmate/bark_voice_out/utils/initialize.py new file mode 100644 index 00000000..ad215158 --- /dev/null +++ b/examples/ai_soulmate/bark_voice_out/utils/initialize.py @@ -0,0 +1,23 @@ +import streamlit as st +from nexa.gguf import NexaTextInference + +initial_prompt = """ +# You are Claudia, my perfect soul mate. You're empathetic, kind, and a great listener. Start by introuducing yourself briefly. You can't say more than 35 words in a sentence. +""" + +def initialize_chat(): + if "messages" not in st.session_state or not st.session_state.messages: + st.session_state.messages = [{"role": "system", "content": initial_prompt}] + +@st.cache_resource +def load_model(model_path): + st.session_state.messages = [] + nexa_model = NexaTextInference( + model_path=model_path, + local_path=None, + temperature=0.9, + max_new_tokens=256, + top_k=50, + top_p=1.0, + ) + return nexa_model \ No newline at end of file diff --git a/examples/ai_soulmate/bark_voice_out/utils/transcribe.py b/examples/ai_soulmate/bark_voice_out/utils/transcribe.py new file mode 100644 index 00000000..3a53a0b0 --- /dev/null +++ b/examples/ai_soulmate/bark_voice_out/utils/transcribe.py @@ -0,0 +1,31 @@ +import streamlit as st +import sounddevice as sd +from scipy.io.wavfile import write +from tempfile import NamedTemporaryFile +from nexa.gguf import NexaVoiceInference + +voice_model = NexaVoiceInference( + model_path="faster-whisper-base", + local_path=None, + beam_size=5, + task="transcribe", + temperature=0.0, + compute_type="default", +) + +def record_and_transcribe(duration=5, fs=16000): + info_placeholder = st.empty() + info_placeholder.info("Recording...") + + recording = sd.rec(int(duration * fs), samplerate=fs, channels=1) + sd.wait() + + info_placeholder.empty() + + with NamedTemporaryFile(delete=False, suffix=".wav") as f: + write(f.name, fs, recording) + audio_path = f.name + + segments, _ = voice_model.model.transcribe(audio_path) + transcription = "".join(segment.text for segment in segments) + return transcription diff --git a/examples/ai_soulmate/openai_requirements.txt b/examples/ai_soulmate/openai_requirements.txt new file mode 100644 index 00000000..4c909357 --- /dev/null +++ b/examples/ai_soulmate/openai_requirements.txt @@ -0,0 +1,5 @@ +nexaai +sounddevice + +# OpenAI API support +openai \ No newline at end of file diff --git a/examples/ai_soulmate/openai_voice_out/app.py b/examples/ai_soulmate/openai_voice_out/app.py new file mode 100644 index 00000000..fdb2d03f --- /dev/null +++ b/examples/ai_soulmate/openai_voice_out/app.py @@ -0,0 +1,139 @@ +import streamlit as st +import base64 +from utils.initialize import initialize_chat, load_model +from utils.gen_avatar import generate_ai_avatar +from utils.transcribe import record_and_transcribe +from utils.gen_response import generate_chat_response, generate_and_play_response + +ai_avatar = generate_ai_avatar() +default_model = "llama3-uncensored" + +def main(): + col1, col2 = st.columns([5,5], vertical_alignment = "center") + with col1: + st.title("AI Soulmate") + with col2: + st.image(ai_avatar, width=150) + st.caption("Powered by Nexa AI") + + st.sidebar.header("Model Configuration") + model_path = st.sidebar.text_input("Model path", default_model) + + if not model_path: + st.warning( + "Please enter a valid path or identifier for the model in Nexa Model Hub to proceed." + ) + st.stop() + + if ( + "current_model_path" not in st.session_state + or st.session_state.current_model_path != model_path + ): + st.session_state.current_model_path = model_path + st.session_state.nexa_model = load_model(model_path) + if st.session_state.nexa_model is None: + st.stop() + + st.sidebar.header("Generation Parameters") + temperature = st.sidebar.slider( + "Temperature", 0.0, 1.0, st.session_state.nexa_model.params["temperature"] + ) + max_new_tokens = st.sidebar.slider( + "Max New Tokens", 1, 1000, st.session_state.nexa_model.params["max_new_tokens"] + ) + top_k = st.sidebar.slider("Top K", 1, 100, st.session_state.nexa_model.params["top_k"]) + top_p = st.sidebar.slider( + "Top P", 0.0, 1.0, st.session_state.nexa_model.params["top_p"] + ) + + st.session_state.nexa_model.params.update( + { + "temperature": temperature, + "max_new_tokens": max_new_tokens, + "top_k": top_k, + "top_p": top_p, + } + ) + + initialize_chat() + for message in st.session_state.messages: + if message["role"] != "system": + if message["role"] == "user": + with st.chat_message(message["role"]): + st.markdown(message["content"]) + else: + with st.chat_message(message["role"], avatar=ai_avatar): + st.markdown(message["content"]) + + if st.button("🎙️ Start Voice Chat"): + transcribed_text = record_and_transcribe() + if transcribed_text: + st.session_state.messages.append({"role": "user", "content": transcribed_text}) + with st.chat_message("user"): + st.markdown(transcribed_text) + + with st.chat_message("assistant", avatar=ai_avatar): + response_placeholder = st.empty() + full_response = "" + for chunk in generate_chat_response(st.session_state.nexa_model): + choice = chunk["choices"][0] + if "delta" in choice: + delta = choice["delta"] + content = delta.get("content", "") + elif "text" in choice: + delta = choice["text"] + content = delta + + full_response += content + response_placeholder.markdown(full_response, unsafe_allow_html=True) + response_placeholder.markdown(full_response) + + audio_path = generate_and_play_response(full_response) + + with open(audio_path, "rb") as audio_file: + audio_bytes = audio_file.read() + audio_base64 = base64.b64encode(audio_bytes).decode("utf-8") + st.markdown(f""" + + """, unsafe_allow_html=True) + + st.session_state.messages.append({"role": "assistant", "content": full_response}) + + if prompt := st.chat_input("Say something..."): + st.session_state.messages.append({"role": "user", "content": prompt}) + with st.chat_message("user"): + st.markdown(prompt) + + with st.chat_message("assistant", avatar=ai_avatar): + response_placeholder = st.empty() + full_response = "" + for chunk in generate_chat_response(st.session_state.nexa_model): + choice = chunk["choices"][0] + if "delta" in choice: + delta = choice["delta"] + content = delta.get("content", "") + elif "text" in choice: + delta = choice["text"] + content = delta + + full_response += content + response_placeholder.markdown(full_response, unsafe_allow_html=True) + response_placeholder.markdown(full_response) + + audio_path = generate_and_play_response(full_response) + + with open(audio_path, "rb") as audio_file: + audio_bytes = audio_file.read() + audio_base64 = base64.b64encode(audio_bytes).decode("utf-8") + st.markdown(f""" + + """, unsafe_allow_html=True) + + st.session_state.messages.append({"role": "assistant", "content": full_response}) + +if __name__ == "__main__": + main() diff --git a/examples/ai_soulmate/openai_voice_out/utils/gen_avatar.py b/examples/ai_soulmate/openai_voice_out/utils/gen_avatar.py new file mode 100644 index 00000000..a6819cde --- /dev/null +++ b/examples/ai_soulmate/openai_voice_out/utils/gen_avatar.py @@ -0,0 +1,27 @@ +import streamlit as st +from nexa.gguf import NexaImageInference + +@st.cache_resource +def generate_ai_avatar(): + try: + image_model = NexaImageInference(model_path="lcm-dreamshaper", local_path=None) + + images = image_model.txt2img( + prompt="A girlfriend with long black hair", + cfg_scale=image_model.params["guidance_scale"], + width=image_model.params["width"], + height=image_model.params["height"], + sample_steps=image_model.params["num_inference_steps"], + seed=image_model.params["random_seed"], + ) + + if images and len(images) > 0: + avatar_path = "ai_avatar.png" + images[0].save(avatar_path) + return avatar_path + else: + st.error("No image was generated.") + return None + except Exception as e: + st.error(f"Error generating AI avatar: {str(e)}") + return None diff --git a/examples/ai_soulmate/openai_voice_out/utils/gen_response.py b/examples/ai_soulmate/openai_voice_out/utils/gen_response.py new file mode 100644 index 00000000..cfdd9fbd --- /dev/null +++ b/examples/ai_soulmate/openai_voice_out/utils/gen_response.py @@ -0,0 +1,32 @@ +import streamlit as st +from typing import Iterator +from typing import Iterator +from nexa.gguf import NexaTextInference +from pathlib import Path +from openai import OpenAI + +client = OpenAI(api_key="YOUR_OPENAI_API_KEY") + + +def generate_and_play_response(response_text: str): + speech_file_path = Path(__file__).parent / "speech.mp3" + response = client.audio.speech.create( + model="tts-1", + voice="shimmer", + input=response_text + ) + + response.stream_to_file(speech_file_path) + return str(speech_file_path) # Return the path as a string + +def generate_chat_response(nexa_model: NexaTextInference) -> Iterator: + messages = st.session_state.messages + response = nexa_model.create_chat_completion( + messages=messages, + temperature=nexa_model.params["temperature"], + max_tokens=nexa_model.params["max_new_tokens"], + top_k=nexa_model.params["top_k"], + top_p=nexa_model.params["top_p"], + stream=True + ) + return response diff --git a/examples/ai_soulmate/openai_voice_out/utils/initialize.py b/examples/ai_soulmate/openai_voice_out/utils/initialize.py new file mode 100644 index 00000000..e50314da --- /dev/null +++ b/examples/ai_soulmate/openai_voice_out/utils/initialize.py @@ -0,0 +1,23 @@ +import streamlit as st +from nexa.gguf import NexaTextInference + +initial_prompt = """ +# You are Claudia, my perfect soul mate. You're empathetic, kind, and a great listener. Start by introuducing yourself briefly. +""" + +def initialize_chat(): + if "messages" not in st.session_state or not st.session_state.messages: + st.session_state.messages = [{"role": "system", "content": initial_prompt}] + +@st.cache_resource +def load_model(model_path): + st.session_state.messages = [] + nexa_model = NexaTextInference( + model_path=model_path, + local_path=None, + temperature=0.9, + max_new_tokens=256, + top_k=50, + top_p=1.0, + ) + return nexa_model \ No newline at end of file diff --git a/examples/ai_soulmate/openai_voice_out/utils/transcribe.py b/examples/ai_soulmate/openai_voice_out/utils/transcribe.py new file mode 100644 index 00000000..f27c8b7c --- /dev/null +++ b/examples/ai_soulmate/openai_voice_out/utils/transcribe.py @@ -0,0 +1,31 @@ +import streamlit as st +import sounddevice as sd +from scipy.io.wavfile import write +from tempfile import NamedTemporaryFile +from nexa.gguf import NexaVoiceInference + +voice_model = NexaVoiceInference( + model_path="faster-whisper-tiny", + local_path=None, + beam_size=5, + task="transcribe", + temperature=0.0, + compute_type="default", +) + +def record_and_transcribe(duration=5, fs=16000): + info_placeholder = st.empty() + info_placeholder.info("Recording...") + + recording = sd.rec(int(duration * fs), samplerate=fs, channels=1) + sd.wait() + + info_placeholder.empty() + + with NamedTemporaryFile(delete=False, suffix=".wav") as f: + write(f.name, fs, recording) + audio_path = f.name + + segments, _ = voice_model.model.transcribe(audio_path) + transcription = "".join(segment.text for segment in segments) + return transcription