Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

no output. #48

Open
rahul55552003 opened this issue Aug 17, 2024 · 0 comments
Open

no output. #48

rahul55552003 opened this issue Aug 17, 2024 · 0 comments

Comments

@rahul55552003
Copy link

hello, the model training is done successfully. but when i type 'hello', there is no response. i have also changed the line in assistants.py with " self.model.add(InputLayer(input_shape=(X.shape[1],))) " as suggested by some user. can you please help me guys. iam new to this and iam stuck. i dont know how to resolve this. thank you for your patience.

intents.json

`from neuralintents import BasicAssistant
import matplotlib.pyplot as plt
import pandas as pd
import pandas_datareader as web
import mplfinance as mpf
from tensorflow.keras.layers import Dense, Dropout

import pickle
import sys
import datetime as dt

#{

GenericAssistant = BasicAssistant,

#train_model = fit_model,
#request() = process_input().

def myfunction():

pass

mappings = {

'greetings': myfunction

}

# Initialize the assistant with the intents file

assistant = BasicAssistant('intents.json', intent_methods = mappings)

# Train the model using the new method

assistant.fit_model()

# Request user input to interact with the assistant

assistant.process_input()

}

#{ YOU CAN DELETE THIS LINE ONCE THE PORTFOLIO FILE IS CREATED :

portfolio = {'AAPL': 20, 'TSLA': 5, 'GS': 10}

with open('portfolio.pkl', 'wb') as f:

pickle.dump(portfolio, f)

#}

with open('portfolio.pkl', 'rb') as f:
portfolio = pickle.load(f)

#print(portfolio)

def save_portfolio():
with open('portfolio.pkl', 'wb') as f:
pickle.dump(portfolio, f)

def add_portfolio():
ticker = input("Which Stock Do You Want to add: ")
amount = input("How many shares do you want to add: ")

if ticker in portfolio.keys():
    portfolio[ticker] += amount
else:
    portfolio[ticker] = amount

save_portfolio()

def remove_portfolio():
ticker = input("Which stock do you want to sell: ")
amount = input("How many shares do you want to sell: ")

if ticker in portfolio.keys():
    if amount <= portfolio[ticker]:
        portfolio[ticker] -= amount
        save_portfolio()
    else:
        print("You dont have enough shares!")
else:
    print(f"You dont own any shares of {ticker}")

def show_portfolio():
print("Your portfolio: ")
for ticker in portfolio.keys():
print(f"You own {portfolio[ticker]} shares of {ticker}")

def portfolio_worth():
sum = 0
for ticker in portfolio.keys():
data = web.DataReader(ticker, 'yahoo')
price = data['Close'].iloc[-1]
sum += price
print(f"Your portfolio is worth {sum} USD")

def portfolio_gains():
starting_date = input("Enter a date for comparision (YYYY-MM-DD): ")

sum_now = 0
sum_then = 0

try:
    for ticker in portfolio.keys():
        data = web.DataReader(ticker, 'yahoo')
        price_now = data['Close'].iloc[-1]
        price_then = data.loc[data.index == starting_date]['Close'].values[0]
        sum_now += price_now
        sum_then += price_then

    print(f"Relative Gains: {((sum_now - sum_then) / sum_then) * 100}%")
    print(f"Absolute Gains: {sum_now - sum_then} USD")

except IndexError:
    print("There was no trading on this day.")

def plot_chart():
ticker = input("Choose a ticker symbol: ")
starting_string = input("Choose a stating date (DD/MM/YYYY): ")

plt.style.use('dark_background')

start = dt.datetime.strptime(starting_string, "%d/%m/Y")
end = dt.datetime.now()

data = web.DataReader(ticker, 'yahoo', start, end)

colors = mpf.make_marketcolors(up='#00ff00', down='ff0000', wick='inherit', edge='inherit', volume='in')
mpf_style = mpf.make_mpf_style(base_mpf_style='nightclouds', marketcolors=colors)
mpf.plot(data, type='candle', style=mpf_style, volume=True)

def bye():
print("Good Bye")
sys.exit(0)

mappings = {
'plot_chart': plot_chart,
'add_portfolio': add_portfolio,
'remove_portfolio': remove_portfolio,
'show_portfolio': show_portfolio,
'portfolio_worth': portfolio_worth,
'portfolio_gains': portfolio_gains,
'bye': bye
}

Define any custom hidden layers if needed

hidden_layers = [

Dense(128, activation='relu'),

Dropout(0.5),

Dense(64, activation='relu')

]

Correct constructor call

assistant = BasicAssistant('intents.json', model_name="financial_assistant_model")

assistant.fit_model()
assistant.save_model()

while True:
message = input("")
assistant.process_input(message)

# Test the model prediction

test_input = "Add a stock to my portfolio"

predicted_response = assistant.process_input(test_input)

print(predicted_response)

`

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant