diff --git a/elephant/test/test_spike_train_dissimilarity.py b/elephant/test/test_spike_train_dissimilarity.py index 5cff9e987..a378f08d0 100644 --- a/elephant/test/test_spike_train_dissimilarity.py +++ b/elephant/test/test_spike_train_dissimilarity.py @@ -20,38 +20,39 @@ class TimeScaleDependSpikeTrainDissimMeasuresTestCase(unittest.TestCase): def setUp(self): - self.st00 = SpikeTrain([], units='ms', t_stop=1000.0) - self.st01 = SpikeTrain([1], units='ms', t_stop=1000.0) - self.st02 = SpikeTrain([2], units='ms', t_stop=1000.0) - self.st03 = SpikeTrain([2.9], units='ms', t_stop=1000.0) - self.st04 = SpikeTrain([3.1], units='ms', t_stop=1000.0) - self.st05 = SpikeTrain([5], units='ms', t_stop=1000.0) - self.st06 = SpikeTrain([500], units='ms', t_stop=1000.0) - self.st07 = SpikeTrain([12, 32], units='ms', t_stop=1000.0) - self.st08 = SpikeTrain([32, 52], units='ms', t_stop=1000.0) - self.st09 = SpikeTrain([42], units='ms', t_stop=1000.0) - self.st10 = SpikeTrain([18, 60], units='ms', t_stop=1000.0) - self.st11 = SpikeTrain([10, 20, 30, 40], units='ms', t_stop=1000.0) - self.st12 = SpikeTrain([40, 30, 20, 10], units='ms', t_stop=1000.0) - self.st13 = SpikeTrain([15, 25, 35, 45], units='ms', t_stop=1000.0) - self.st14 = SpikeTrain([10, 20, 30, 40, 50], units='ms', t_stop=1000.0) - self.st15 = SpikeTrain([0.01, 0.02, 0.03, 0.04, 0.05], - units='s', t_stop=1000.0) - self.st16 = SpikeTrain([12, 16, 28, 30, 42], units='ms', t_stop=1000.0) - self.st21 = StationaryPoissonProcess(rate=50 * Hz, t_start=0 * ms, - t_stop=1000 * ms - ).generate_spiketrain() - self.st22 = StationaryPoissonProcess(rate=40 * Hz, t_start=0 * ms, - t_stop=1000 * ms - ).generate_spiketrain() - self.st23 = StationaryPoissonProcess(rate=30 * Hz, t_start=0 * ms, - t_stop=1000 * ms - ).generate_spiketrain() + self.st00 = SpikeTrain([], units="ms", t_stop=1000.0) + self.st01 = SpikeTrain([1], units="ms", t_stop=1000.0) + self.st02 = SpikeTrain([2], units="ms", t_stop=1000.0) + self.st03 = SpikeTrain([2.9], units="ms", t_stop=1000.0) + self.st04 = SpikeTrain([3.1], units="ms", t_stop=1000.0) + self.st05 = SpikeTrain([5], units="ms", t_stop=1000.0) + self.st06 = SpikeTrain([500], units="ms", t_stop=1000.0) + self.st07 = SpikeTrain([12, 32], units="ms", t_stop=1000.0) + self.st08 = SpikeTrain([32, 52], units="ms", t_stop=1000.0) + self.st09 = SpikeTrain([42], units="ms", t_stop=1000.0) + self.st10 = SpikeTrain([18, 60], units="ms", t_stop=1000.0) + self.st11 = SpikeTrain([10, 20, 30, 40], units="ms", t_stop=1000.0) + self.st12 = SpikeTrain([40, 30, 20, 10], units="ms", t_stop=1000.0) + self.st13 = SpikeTrain([15, 25, 35, 45], units="ms", t_stop=1000.0) + self.st14 = SpikeTrain([10, 20, 30, 40, 50], units="ms", t_stop=1000.0) + self.st15 = SpikeTrain( + [0.01, 0.02, 0.03, 0.04, 0.05], units="s", t_stop=1000.0 + ) + self.st16 = SpikeTrain([12, 16, 28, 30, 42], units="ms", t_stop=1000.0) + self.st21 = StationaryPoissonProcess( + rate=50 * Hz, t_start=0 * ms, t_stop=1000 * ms + ).generate_spiketrain() + self.st22 = StationaryPoissonProcess( + rate=40 * Hz, t_start=0 * ms, t_stop=1000 * ms + ).generate_spiketrain() + self.st23 = StationaryPoissonProcess( + rate=30 * Hz, t_start=0 * ms, t_stop=1000 * ms + ).generate_spiketrain() self.rd_st_list = [self.st21, self.st22, self.st23] - self.st31 = SpikeTrain([12.0], units='ms', t_stop=1000.0) - self.st32 = SpikeTrain([12.0, 12.0], units='ms', t_stop=1000.0) - self.st33 = SpikeTrain([20.0], units='ms', t_stop=1000.0) - self.st34 = SpikeTrain([20.0, 20.0], units='ms', t_stop=1000.0) + self.st31 = SpikeTrain([12.0], units="ms", t_stop=1000.0) + self.st32 = SpikeTrain([12.0, 12.0], units="ms", t_stop=1000.0) + self.st33 = SpikeTrain([20.0], units="ms", t_stop=1000.0) + self.st34 = SpikeTrain([20.0, 20.0], units="ms", t_stop=1000.0) self.array1 = np.arange(1, 10) self.array2 = np.arange(1.2, 10) self.qarray1 = self.array1 * Hz @@ -75,479 +76,855 @@ def setUp(self): self.t = np.linspace(0, 200, 20000001) * ms def test_wrong_input(self): - self.assertRaises(TypeError, stds.victor_purpura_distance, - [self.array1, self.array2], self.q3) - self.assertRaises(TypeError, stds.victor_purpura_distance, - [self.qarray1, self.qarray2], self.q3) - self.assertRaises(TypeError, stds.victor_purpura_distance, - [self.qarray1, self.qarray2], 5.0 * ms) - - self.assertRaises(TypeError, stds.victor_purpura_distance, - [self.array1, self.array2], self.q3, - algorithm='intuitive') - self.assertRaises(TypeError, stds.victor_purpura_distance, - [self.qarray1, self.qarray2], self.q3, - algorithm='intuitive') - self.assertRaises(TypeError, stds.victor_purpura_distance, - [self.qarray1, self.qarray2], 5.0 * ms, - algorithm='intuitive') - - self.assertRaises(TypeError, stds.van_rossum_distance, - [self.array1, self.array2], self.tau3) - self.assertRaises(TypeError, stds.van_rossum_distance, - [self.qarray1, self.qarray2], self.tau3) - self.assertRaises(TypeError, stds.van_rossum_distance, - [self.qarray1, self.qarray2], 5.0 * Hz) - - self.assertRaises(TypeError, stds.victor_purpura_distance, - [self.st11, self.st13], self.tau2) - self.assertRaises(TypeError, stds.victor_purpura_distance, - [self.st11, self.st13], 5.0) - self.assertRaises(TypeError, stds.victor_purpura_distance, - [self.st11, self.st13], self.tau2, - algorithm='intuitive') - self.assertRaises(TypeError, stds.victor_purpura_distance, - [self.st11, self.st13], 5.0, - algorithm='intuitive') - self.assertRaises(TypeError, stds.van_rossum_distance, - [self.st11, self.st13], self.q4) - self.assertRaises(TypeError, stds.van_rossum_distance, - [self.st11, self.st13], 5.0) - - self.assertRaises(NotImplementedError, stds.victor_purpura_distance, - [self.st01, self.st02], self.q3, - kernel=kernels.Kernel(2.0 / self.q3)) - self.assertRaises(NotImplementedError, stds.victor_purpura_distance, - [self.st01, self.st02], self.q3, - kernel=kernels.SymmetricKernel(2.0 / self.q3)) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st02], self.q1, - kernel=kernels.TriangularKernel( - 2.0 / (np.sqrt(6.0) * self.q2)))[0, 1], - stds.victor_purpura_distance( - [self.st01, self.st02], self.q3, - kernel=kernels.TriangularKernel( - 2.0 / (np.sqrt(6.0) * self.q2)))[0, 1]) - self.assertEqual(stds.victor_purpura_distance( + self.assertRaises( + TypeError, + stds.victor_purpura_distance, + [self.array1, self.array2], + self.q3, + ) + self.assertRaises( + TypeError, + stds.victor_purpura_distance, + [self.qarray1, self.qarray2], + self.q3, + ) + self.assertRaises( + TypeError, + stds.victor_purpura_distance, + [self.qarray1, self.qarray2], + 5.0 * ms, + ) + + self.assertRaises( + TypeError, + stds.victor_purpura_distance, + [self.array1, self.array2], + self.q3, + algorithm="intuitive", + ) + self.assertRaises( + TypeError, + stds.victor_purpura_distance, + [self.qarray1, self.qarray2], + self.q3, + algorithm="intuitive", + ) + self.assertRaises( + TypeError, + stds.victor_purpura_distance, + [self.qarray1, self.qarray2], + 5.0 * ms, + algorithm="intuitive", + ) + + self.assertRaises( + TypeError, + stds.van_rossum_distance, + [self.array1, self.array2], + self.tau3, + ) + self.assertRaises( + TypeError, + stds.van_rossum_distance, + [self.qarray1, self.qarray2], + self.tau3, + ) + self.assertRaises( + TypeError, + stds.van_rossum_distance, + [self.qarray1, self.qarray2], + 5.0 * Hz, + ) + + self.assertRaises( + TypeError, + stds.victor_purpura_distance, + [self.st11, self.st13], + self.tau2, + ) + self.assertRaises( + TypeError, + stds.victor_purpura_distance, + [self.st11, self.st13], + 5.0, + ) + self.assertRaises( + TypeError, + stds.victor_purpura_distance, + [self.st11, self.st13], + self.tau2, + algorithm="intuitive", + ) + self.assertRaises( + TypeError, + stds.victor_purpura_distance, + [self.st11, self.st13], + 5.0, + algorithm="intuitive", + ) + self.assertRaises( + TypeError, + stds.van_rossum_distance, + [self.st11, self.st13], + self.q4, + ) + self.assertRaises( + TypeError, stds.van_rossum_distance, [self.st11, self.st13], 5.0 + ) + + self.assertRaises( + NotImplementedError, + stds.victor_purpura_distance, [self.st01, self.st02], - kernel=kernels.TriangularKernel( - 2.0 / (np.sqrt(6.0) * self.q2)))[0, 1], 1.0) - self.assertNotEqual(stds.victor_purpura_distance( + self.q3, + kernel=kernels.Kernel(2.0 / self.q3), + ) + self.assertRaises( + NotImplementedError, + stds.victor_purpura_distance, [self.st01, self.st02], - kernel=kernels.AlphaKernel( - 2.0 / (np.sqrt(6.0) * self.q2)))[0, 1], 1.0) - - self.assertRaises(NameError, stds.victor_purpura_distance, - [self.st11, self.st13], self.q2, algorithm='slow') + self.q3, + kernel=kernels.SymmetricKernel(2.0 / self.q3), + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st01, self.st02], + self.q1, + kernel=kernels.TriangularKernel( + 2.0 / (np.sqrt(6.0) * self.q2) + ), + )[0, 1], + stds.victor_purpura_distance( + [self.st01, self.st02], + self.q3, + kernel=kernels.TriangularKernel( + 2.0 / (np.sqrt(6.0) * self.q2) + ), + )[0, 1], + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st01, self.st02], + kernel=kernels.TriangularKernel( + 2.0 / (np.sqrt(6.0) * self.q2) + ), + )[0, 1], + 1.0, + ) + self.assertNotEqual( + stds.victor_purpura_distance( + [self.st01, self.st02], + kernel=kernels.AlphaKernel(2.0 / (np.sqrt(6.0) * self.q2)), + )[0, 1], + 1.0, + ) + + self.assertRaises( + NameError, + stds.victor_purpura_distance, + [self.st11, self.st13], + self.q2, + algorithm="slow", + ) def test_victor_purpura_distance_fast(self): # Tests of distances of simplest spike trains: - self.assertEqual(stds.victor_purpura_distance( - [self.st00, self.st00], self.q2)[0, 1], 0.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st00, self.st01], self.q2)[0, 1], 1.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st00], self.q2)[0, 1], 1.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st01], self.q2)[0, 1], 0.0) + self.assertEqual( + stds.victor_purpura_distance([self.st00, self.st00], self.q2)[ + 0, 1 + ], + 0.0, + ) + self.assertEqual( + stds.victor_purpura_distance([self.st00, self.st01], self.q2)[ + 0, 1 + ], + 1.0, + ) + self.assertEqual( + stds.victor_purpura_distance([self.st01, self.st00], self.q2)[ + 0, 1 + ], + 1.0, + ) + self.assertEqual( + stds.victor_purpura_distance([self.st01, self.st01], self.q2)[ + 0, 1 + ], + 0.0, + ) # Tests of distances under elementary spike operations - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st02], self.q2)[0, 1], 1.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st03], self.q2)[0, 1], 1.9) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st04], self.q2)[0, 1], 2.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st05], self.q2)[0, 1], 2.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st00, self.st07], self.q2)[0, 1], 2.0) - self.assertAlmostEqual(stds.victor_purpura_distance( - [self.st07, self.st08], self.q4)[0, 1], 0.4) - self.assertAlmostEqual(stds.victor_purpura_distance( - [self.st07, self.st10], self.q3)[0, 1], 0.6 + 2) - self.assertEqual(stds.victor_purpura_distance( - [self.st11, self.st14], self.q2)[0, 1], 1) + self.assertEqual( + stds.victor_purpura_distance([self.st01, self.st02], self.q2)[ + 0, 1 + ], + 1.0, + ) + self.assertEqual( + stds.victor_purpura_distance([self.st01, self.st03], self.q2)[ + 0, 1 + ], + 1.9, + ) + self.assertEqual( + stds.victor_purpura_distance([self.st01, self.st04], self.q2)[ + 0, 1 + ], + 2.0, + ) + self.assertEqual( + stds.victor_purpura_distance([self.st01, self.st05], self.q2)[ + 0, 1 + ], + 2.0, + ) + self.assertEqual( + stds.victor_purpura_distance([self.st00, self.st07], self.q2)[ + 0, 1 + ], + 2.0, + ) + self.assertAlmostEqual( + stds.victor_purpura_distance([self.st07, self.st08], self.q4)[ + 0, 1 + ], + 0.4, + ) + self.assertAlmostEqual( + stds.victor_purpura_distance([self.st07, self.st10], self.q3)[ + 0, 1 + ], + 0.6 + 2, + ) + self.assertEqual( + stds.victor_purpura_distance([self.st11, self.st14], self.q2)[ + 0, 1 + ], + 1, + ) # Tests on timescales - self.assertEqual(stds.victor_purpura_distance( - [self.st11, self.st14], self.q1)[0, 1], - stds.victor_purpura_distance( - [self.st11, self.st14], self.q5)[0, 1]) - self.assertEqual(stds.victor_purpura_distance( - [self.st07, self.st11], self.q0)[0, 1], 6.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st07, self.st11], self.q1)[0, 1], 6.0) - self.assertAlmostEqual(stds.victor_purpura_distance( - [self.st07, self.st11], self.q5)[0, 1], 2.0, 5) - self.assertEqual(stds.victor_purpura_distance( - [self.st07, self.st11], self.q6)[0, 1], 2.0) + self.assertEqual( + stds.victor_purpura_distance([self.st11, self.st14], self.q1)[ + 0, 1 + ], + stds.victor_purpura_distance([self.st11, self.st14], self.q5)[ + 0, 1 + ], + ) + self.assertEqual( + stds.victor_purpura_distance([self.st07, self.st11], self.q0)[ + 0, 1 + ], + 6.0, + ) + self.assertEqual( + stds.victor_purpura_distance([self.st07, self.st11], self.q1)[ + 0, 1 + ], + 6.0, + ) + self.assertAlmostEqual( + stds.victor_purpura_distance([self.st07, self.st11], self.q5)[ + 0, 1 + ], + 2.0, + 5, + ) + self.assertEqual( + stds.victor_purpura_distance([self.st07, self.st11], self.q6)[ + 0, 1 + ], + 2.0, + ) # Tests on unordered spiketrains - self.assertEqual(stds.victor_purpura_distance( - [self.st11, self.st13], self.q4)[0, 1], - stds.victor_purpura_distance( - [self.st12, self.st13], self.q4)[0, 1]) - self.assertNotEqual(stds.victor_purpura_distance( - [self.st11, self.st13], self.q4, - sort=False)[0, 1], - stds.victor_purpura_distance( - [self.st12, self.st13], self.q4, - sort=False)[0, 1]) + self.assertEqual( + stds.victor_purpura_distance([self.st11, self.st13], self.q4)[ + 0, 1 + ], + stds.victor_purpura_distance([self.st12, self.st13], self.q4)[ + 0, 1 + ], + ) + self.assertNotEqual( + stds.victor_purpura_distance( + [self.st11, self.st13], self.q4, sort=False + )[0, 1], + stds.victor_purpura_distance( + [self.st12, self.st13], self.q4, sort=False + )[0, 1], + ) # Tests on metric properties with random spiketrains # (explicit calculation of second metric axiom in particular case, # because from dist_matrix it is trivial) dist_matrix = stds.victor_purpura_distance( - [self.st21, self.st22, self.st23], self.q3) + [self.st21, self.st22, self.st23], self.q3 + ) for i in range(3): for j in range(3): self.assertGreaterEqual(dist_matrix[i, j], 0) if dist_matrix[i, j] == 0: assert_array_equal(self.rd_st_list[i], self.rd_st_list[j]) - assert_array_equal(stds.victor_purpura_distance( - [self.st21, self.st22], self.q3), - stds.victor_purpura_distance( - [self.st22, self.st21], self.q3)) - self.assertLessEqual(dist_matrix[0, 1], - dist_matrix[0, 2] + dist_matrix[1, 2]) - self.assertLessEqual(dist_matrix[0, 2], - dist_matrix[1, 2] + dist_matrix[0, 1]) - self.assertLessEqual(dist_matrix[1, 2], - dist_matrix[0, 1] + dist_matrix[0, 2]) + assert_array_equal( + stds.victor_purpura_distance([self.st21, self.st22], self.q3), + stds.victor_purpura_distance([self.st22, self.st21], self.q3), + ) + self.assertLessEqual( + dist_matrix[0, 1], dist_matrix[0, 2] + dist_matrix[1, 2] + ) + self.assertLessEqual( + dist_matrix[0, 2], dist_matrix[1, 2] + dist_matrix[0, 1] + ) + self.assertLessEqual( + dist_matrix[1, 2], dist_matrix[0, 1] + dist_matrix[0, 2] + ) # Tests on proper unit conversion self.assertAlmostEqual( - stds.victor_purpura_distance([self.st14, self.st16], - self.q3)[0, 1], - stds.victor_purpura_distance([self.st15, self.st16], - self.q3)[0, 1]) + stds.victor_purpura_distance([self.st14, self.st16], self.q3)[ + 0, 1 + ], + stds.victor_purpura_distance([self.st15, self.st16], self.q3)[ + 0, 1 + ], + ) self.assertAlmostEqual( - stds.victor_purpura_distance([self.st16, self.st14], - self.q3)[0, 1], - stds.victor_purpura_distance([self.st16, self.st15], - self.q3)[0, 1]) + stds.victor_purpura_distance([self.st16, self.st14], self.q3)[ + 0, 1 + ], + stds.victor_purpura_distance([self.st16, self.st15], self.q3)[ + 0, 1 + ], + ) self.assertAlmostEqual( - stds.victor_purpura_distance([self.st01, self.st05], - self.q3)[0, 1], - stds.victor_purpura_distance([self.st01, self.st05], - self.q7)[0, 1]) + stds.victor_purpura_distance([self.st01, self.st05], self.q3)[ + 0, 1 + ], + stds.victor_purpura_distance([self.st01, self.st05], self.q7)[ + 0, 1 + ], + ) # Tests on algorithmic behaviour for equal spike times - self.assertAlmostEqual(stds.victor_purpura_distance( - [self.st31, self.st34], self.q3)[0, 1], 0.8 + 1.0) self.assertAlmostEqual( - stds.victor_purpura_distance([self.st31, self.st34], - self.q3)[0, 1], - stds.victor_purpura_distance([self.st32, self.st33], - self.q3)[0, 1]) + stds.victor_purpura_distance([self.st31, self.st34], self.q3)[ + 0, 1 + ], + 0.8 + 1.0, + ) self.assertAlmostEqual( - stds.victor_purpura_distance( - [self.st31, self.st33], self.q3)[0, 1] * 2.0, - stds.victor_purpura_distance( - [self.st32, self.st34], self.q3)[0, 1]) + stds.victor_purpura_distance([self.st31, self.st34], self.q3)[ + 0, 1 + ], + stds.victor_purpura_distance([self.st32, self.st33], self.q3)[ + 0, 1 + ], + ) + self.assertAlmostEqual( + stds.victor_purpura_distance([self.st31, self.st33], self.q3)[0, 1] + * 2.0, + stds.victor_purpura_distance([self.st32, self.st34], self.q3)[ + 0, 1 + ], + ) # Tests on spike train list lengthes smaller than 2 - self.assertEqual(stds.victor_purpura_distance( - [self.st21], self.q3)[0, 0], 0) + self.assertEqual( + stds.victor_purpura_distance([self.st21], self.q3)[0, 0], 0 + ) self.assertEqual(len(stds.victor_purpura_distance([], self.q3)), 0) def test_victor_purpura_distance_intuitive(self): # Tests of distances of simplest spike trains - self.assertEqual(stds.victor_purpura_distance( - [self.st00, self.st00], self.q2, - algorithm='intuitive')[0, 1], 0.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st00, self.st01], self.q2, - algorithm='intuitive')[0, 1], 1.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st00], self.q2, - algorithm='intuitive')[0, 1], 1.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st01], self.q2, - algorithm='intuitive')[0, 1], 0.0) + self.assertEqual( + stds.victor_purpura_distance( + [self.st00, self.st00], self.q2, algorithm="intuitive" + )[0, 1], + 0.0, + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st00, self.st01], self.q2, algorithm="intuitive" + )[0, 1], + 1.0, + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st01, self.st00], self.q2, algorithm="intuitive" + )[0, 1], + 1.0, + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st01, self.st01], self.q2, algorithm="intuitive" + )[0, 1], + 0.0, + ) # Tests of distances under elementary spike operations - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st02], self.q2, - algorithm='intuitive')[0, 1], 1.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st03], self.q2, - algorithm='intuitive')[0, 1], 1.9) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st04], self.q2, - algorithm='intuitive')[0, 1], 2.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st05], self.q2, - algorithm='intuitive')[0, 1], 2.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st00, self.st07], self.q2, - algorithm='intuitive')[0, 1], 2.0) - self.assertAlmostEqual(stds.victor_purpura_distance( - [self.st07, self.st08], self.q4, - algorithm='intuitive')[0, 1], 0.4) - self.assertAlmostEqual(stds.victor_purpura_distance( - [self.st07, self.st10], self.q3, - algorithm='intuitive')[0, 1], 2.6) - self.assertEqual(stds.victor_purpura_distance( - [self.st11, self.st14], self.q2, - algorithm='intuitive')[0, 1], 1) + self.assertEqual( + stds.victor_purpura_distance( + [self.st01, self.st02], self.q2, algorithm="intuitive" + )[0, 1], + 1.0, + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st01, self.st03], self.q2, algorithm="intuitive" + )[0, 1], + 1.9, + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st01, self.st04], self.q2, algorithm="intuitive" + )[0, 1], + 2.0, + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st01, self.st05], self.q2, algorithm="intuitive" + )[0, 1], + 2.0, + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st00, self.st07], self.q2, algorithm="intuitive" + )[0, 1], + 2.0, + ) + self.assertAlmostEqual( + stds.victor_purpura_distance( + [self.st07, self.st08], self.q4, algorithm="intuitive" + )[0, 1], + 0.4, + ) + self.assertAlmostEqual( + stds.victor_purpura_distance( + [self.st07, self.st10], self.q3, algorithm="intuitive" + )[0, 1], + 2.6, + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st11, self.st14], self.q2, algorithm="intuitive" + )[0, 1], + 1, + ) # Tests on timescales - self.assertEqual(stds.victor_purpura_distance( - [self.st11, self.st14], self.q1, - algorithm='intuitive')[0, 1], - stds.victor_purpura_distance( - [self.st11, self.st14], self.q5, - algorithm='intuitive')[0, 1]) - self.assertEqual(stds.victor_purpura_distance( - [self.st07, self.st11], self.q0, - algorithm='intuitive')[0, 1], 6.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st07, self.st11], self.q1, - algorithm='intuitive')[0, 1], 6.0) - self.assertAlmostEqual(stds.victor_purpura_distance( - [self.st07, self.st11], self.q5, - algorithm='intuitive')[0, 1], 2.0, 5) - self.assertEqual(stds.victor_purpura_distance( - [self.st07, self.st11], self.q6, - algorithm='intuitive')[0, 1], 2.0) + self.assertEqual( + stds.victor_purpura_distance( + [self.st11, self.st14], self.q1, algorithm="intuitive" + )[0, 1], + stds.victor_purpura_distance( + [self.st11, self.st14], self.q5, algorithm="intuitive" + )[0, 1], + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st07, self.st11], self.q0, algorithm="intuitive" + )[0, 1], + 6.0, + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st07, self.st11], self.q1, algorithm="intuitive" + )[0, 1], + 6.0, + ) + self.assertAlmostEqual( + stds.victor_purpura_distance( + [self.st07, self.st11], self.q5, algorithm="intuitive" + )[0, 1], + 2.0, + 5, + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st07, self.st11], self.q6, algorithm="intuitive" + )[0, 1], + 2.0, + ) # Tests on unordered spiketrains - self.assertEqual(stds.victor_purpura_distance( - [self.st11, self.st13], self.q4, - algorithm='intuitive')[0, 1], - stds.victor_purpura_distance( - [self.st12, self.st13], self.q4, - algorithm='intuitive')[0, 1]) - self.assertNotEqual(stds.victor_purpura_distance( - [self.st11, self.st13], self.q4, - sort=False, algorithm='intuitive')[0, 1], - stds.victor_purpura_distance( - [self.st12, self.st13], self.q4, - sort=False, algorithm='intuitive')[0, 1]) + self.assertEqual( + stds.victor_purpura_distance( + [self.st11, self.st13], self.q4, algorithm="intuitive" + )[0, 1], + stds.victor_purpura_distance( + [self.st12, self.st13], self.q4, algorithm="intuitive" + )[0, 1], + ) + self.assertNotEqual( + stds.victor_purpura_distance( + [self.st11, self.st13], + self.q4, + sort=False, + algorithm="intuitive", + )[0, 1], + stds.victor_purpura_distance( + [self.st12, self.st13], + self.q4, + sort=False, + algorithm="intuitive", + )[0, 1], + ) # Tests on metric properties with random spiketrains # (explicit calculation of second metric axiom in particular case, # because from dist_matrix it is trivial) dist_matrix = stds.victor_purpura_distance( - [self.st21, self.st22, self.st23], - self.q3, algorithm='intuitive') + [self.st21, self.st22, self.st23], self.q3, algorithm="intuitive" + ) for i in range(3): for j in range(3): self.assertGreaterEqual(dist_matrix[i, j], 0) if dist_matrix[i, j] == 0: assert_array_equal(self.rd_st_list[i], self.rd_st_list[j]) - assert_array_equal(stds.victor_purpura_distance( - [self.st21, self.st22], self.q3, - algorithm='intuitive'), - stds.victor_purpura_distance( - [self.st22, self.st21], self.q3, - algorithm='intuitive')) - self.assertLessEqual(dist_matrix[0, 1], - dist_matrix[0, 2] + dist_matrix[1, 2]) - self.assertLessEqual(dist_matrix[0, 2], - dist_matrix[1, 2] + dist_matrix[0, 1]) - self.assertLessEqual(dist_matrix[1, 2], - dist_matrix[0, 1] + dist_matrix[0, 2]) + assert_array_equal( + stds.victor_purpura_distance( + [self.st21, self.st22], self.q3, algorithm="intuitive" + ), + stds.victor_purpura_distance( + [self.st22, self.st21], self.q3, algorithm="intuitive" + ), + ) + self.assertLessEqual( + dist_matrix[0, 1], dist_matrix[0, 2] + dist_matrix[1, 2] + ) + self.assertLessEqual( + dist_matrix[0, 2], dist_matrix[1, 2] + dist_matrix[0, 1] + ) + self.assertLessEqual( + dist_matrix[1, 2], dist_matrix[0, 1] + dist_matrix[0, 2] + ) # Tests on proper unit conversion - self.assertAlmostEqual(stds.victor_purpura_distance( - [self.st14, self.st16], self.q3, - algorithm='intuitive')[0, 1], - stds.victor_purpura_distance( - [self.st15, self.st16], self.q3, - algorithm='intuitive')[0, 1]) - self.assertAlmostEqual(stds.victor_purpura_distance( - [self.st16, self.st14], self.q3, - algorithm='intuitive')[0, 1], - stds.victor_purpura_distance( - [self.st16, self.st15], self.q3, - algorithm='intuitive')[0, 1]) - self.assertEqual(stds.victor_purpura_distance( - [self.st01, self.st05], self.q3, - algorithm='intuitive')[0, 1], - stds.victor_purpura_distance( - [self.st01, self.st05], self.q7, - algorithm='intuitive')[0, 1]) + self.assertAlmostEqual( + stds.victor_purpura_distance( + [self.st14, self.st16], self.q3, algorithm="intuitive" + )[0, 1], + stds.victor_purpura_distance( + [self.st15, self.st16], self.q3, algorithm="intuitive" + )[0, 1], + ) + self.assertAlmostEqual( + stds.victor_purpura_distance( + [self.st16, self.st14], self.q3, algorithm="intuitive" + )[0, 1], + stds.victor_purpura_distance( + [self.st16, self.st15], self.q3, algorithm="intuitive" + )[0, 1], + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st01, self.st05], self.q3, algorithm="intuitive" + )[0, 1], + stds.victor_purpura_distance( + [self.st01, self.st05], self.q7, algorithm="intuitive" + )[0, 1], + ) # Tests on algorithmic behaviour for equal spike times - self.assertEqual(stds.victor_purpura_distance( - [self.st31, self.st34], self.q3, - algorithm='intuitive')[0, 1], - 0.8 + 1.0) - self.assertEqual(stds.victor_purpura_distance( - [self.st31, self.st34], self.q3, - algorithm='intuitive')[0, 1], - stds.victor_purpura_distance( - [self.st32, self.st33], self.q3, - algorithm='intuitive')[0, 1]) - self.assertEqual(stds.victor_purpura_distance( - [self.st31, self.st33], self.q3, - algorithm='intuitive')[0, 1] * 2.0, - stds.victor_purpura_distance( - [self.st32, self.st34], self.q3, - algorithm='intuitive')[0, 1]) + self.assertEqual( + stds.victor_purpura_distance( + [self.st31, self.st34], self.q3, algorithm="intuitive" + )[0, 1], + 0.8 + 1.0, + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st31, self.st34], self.q3, algorithm="intuitive" + )[0, 1], + stds.victor_purpura_distance( + [self.st32, self.st33], self.q3, algorithm="intuitive" + )[0, 1], + ) + self.assertEqual( + stds.victor_purpura_distance( + [self.st31, self.st33], self.q3, algorithm="intuitive" + )[0, 1] + * 2.0, + stds.victor_purpura_distance( + [self.st32, self.st34], self.q3, algorithm="intuitive" + )[0, 1], + ) # Tests on spike train list lengthes smaller than 2 - self.assertEqual(stds.victor_purpura_distance( - [self.st21], self.q3, - algorithm='intuitive')[0, 0], 0) - self.assertEqual(len(stds.victor_purpura_distance( - [], self.q3, algorithm='intuitive')), 0) + self.assertEqual( + stds.victor_purpura_distance( + [self.st21], self.q3, algorithm="intuitive" + )[0, 0], + 0, + ) + self.assertEqual( + len( + stds.victor_purpura_distance( + [], self.q3, algorithm="intuitive" + ) + ), + 0, + ) def test_victor_purpura_algorithm_comparison(self): assert_array_almost_equal( - stds.victor_purpura_distance([self.st21, self.st22, self.st23], - self.q3), - stds.victor_purpura_distance([self.st21, self.st22, self.st23], - self.q3, algorithm='intuitive')) + stds.victor_purpura_distance( + [self.st21, self.st22, self.st23], self.q3 + ), + stds.victor_purpura_distance( + [self.st21, self.st22, self.st23], + self.q3, + algorithm="intuitive", + ), + ) def test_victor_purpura_matlab_comparison_float(self): - repo_path =\ + repo_path = ( r"unittest/spike_train_dissimilarity/victor_purpura_distance/data" + ) files_to_download = [ ("times_float.npy", "ed1ff4d2c0eeed4a2b50a456803656be"), - ("matlab_results_float.npy", "a17f049e7ad0ddf7ca812e86fdb92646")] + ("matlab_results_float.npy", "a17f049e7ad0ddf7ca812e86fdb92646"), + ] downloaded_files = {} for filename, checksum in files_to_download: downloaded_files[filename] = { - 'filename': filename, - 'path': download_datasets(repo_path=f"{repo_path}/{filename}", - checksum=checksum)} - - times_float = np.load(downloaded_files['times_float.npy']['path']) - mat_res_float = np.load(downloaded_files[ - 'matlab_results_float.npy']['path']) - - r_float = SpikeTrain(times_float[0], units='ms', t_start=0, - t_stop=1000 * ms) - s_float = SpikeTrain(times_float[1], units='ms', t_start=0, - t_stop=1000 * ms) - t_float = SpikeTrain(times_float[2], units='ms', t_start=0, - t_stop=1000 * ms) + "filename": filename, + "path": download_datasets( + repo_path=f"{repo_path}/{filename}", checksum=checksum + ), + } + + times_float = np.load(downloaded_files["times_float.npy"]["path"]) + mat_res_float = np.load( + downloaded_files["matlab_results_float.npy"]["path"] + ) + + r_float = SpikeTrain( + times_float[0], units="ms", t_start=0, t_stop=1000 * ms + ) + s_float = SpikeTrain( + times_float[1], units="ms", t_start=0, t_stop=1000 * ms + ) + t_float = SpikeTrain( + times_float[2], units="ms", t_start=0, t_stop=1000 * ms + ) vic_pur_result_float = stds.victor_purpura_distance( [r_float, s_float, t_float], - cost_factor=1.0 / ms, kernel=None, - sort=True, algorithm='intuitive') + cost_factor=1.0 / ms, + kernel=None, + sort=True, + algorithm="intuitive", + ) assert_array_almost_equal(vic_pur_result_float, mat_res_float) def test_victor_purpura_matlab_comparison_int(self): - repo_path =\ + repo_path = ( r"unittest/spike_train_dissimilarity/victor_purpura_distance/data" + ) files_to_download = [ ("times_int.npy", "aa1411c04da3f58d8b8913ae2f935057"), - ("matlab_results_int.npy", "7edd32e50edde12dc1ef4aa5f57f70fb")] + ("matlab_results_int.npy", "7edd32e50edde12dc1ef4aa5f57f70fb"), + ] downloaded_files = {} for filename, checksum in files_to_download: downloaded_files[filename] = { - 'filename': filename, - 'path': download_datasets(repo_path=f"{repo_path}/{filename}", - checksum=checksum)} - - times_int = np.load(downloaded_files['times_int.npy']['path']) - mat_res_int = np.load(downloaded_files['matlab_results_int.npy']['path']) - - r_int = SpikeTrain(times_int[0], units='ms', t_start=0, - t_stop=1000 * ms) - s_int = SpikeTrain(times_int[1], units='ms', t_start=0, - t_stop=1000 * ms) - t_int = SpikeTrain(times_int[2], units='ms', t_start=0, - t_stop=1000 * ms) + "filename": filename, + "path": download_datasets( + repo_path=f"{repo_path}/{filename}", checksum=checksum + ), + } + + times_int = np.load(downloaded_files["times_int.npy"]["path"]) + mat_res_int = np.load( + downloaded_files["matlab_results_int.npy"]["path"] + ) + + r_int = SpikeTrain( + times_int[0], units="ms", t_start=0, t_stop=1000 * ms + ) + s_int = SpikeTrain( + times_int[1], units="ms", t_start=0, t_stop=1000 * ms + ) + t_int = SpikeTrain( + times_int[2], units="ms", t_start=0, t_stop=1000 * ms + ) vic_pur_result_int = stds.victor_purpura_distance( [r_int, s_int, t_int], - cost_factor=1.0 / ms, kernel=None, - sort=True, algorithm='intuitive') + cost_factor=1.0 / ms, + kernel=None, + sort=True, + algorithm="intuitive", + ) assert_array_equal(vic_pur_result_int, mat_res_int) def test_van_rossum_distance(self): # Tests of distances of simplest spike trains - self.assertEqual(stds.van_rossum_distance( - [self.st00, self.st00], self.tau2)[0, 1], 0.0) - self.assertEqual(stds.van_rossum_distance( - [self.st00, self.st01], self.tau2)[0, 1], 1.0) - self.assertEqual(stds.van_rossum_distance( - [self.st01, self.st00], self.tau2)[0, 1], 1.0) - self.assertEqual(stds.van_rossum_distance( - [self.st01, self.st01], self.tau2)[0, 1], 0.0) + self.assertEqual( + stds.van_rossum_distance([self.st00, self.st00], self.tau2)[0, 1], + 0.0, + ) + self.assertEqual( + stds.van_rossum_distance([self.st00, self.st01], self.tau2)[0, 1], + 1.0, + ) + self.assertEqual( + stds.van_rossum_distance([self.st01, self.st00], self.tau2)[0, 1], + 1.0, + ) + self.assertEqual( + stds.van_rossum_distance([self.st01, self.st01], self.tau2)[0, 1], + 0.0, + ) # Tests of distances under elementary spike operations - self.assertAlmostEqual(stds.van_rossum_distance( - [self.st01, self.st02], self.tau2)[0, 1], - float(np.sqrt(2 * (1.0 - np.exp(-np.absolute( - ((self.st01[0] - self.st02[0]) / - self.tau2).simplified)))))) - self.assertAlmostEqual(stds.van_rossum_distance( - [self.st01, self.st05], self.tau2)[0, 1], - float(np.sqrt(2 * (1.0 - np.exp(-np.absolute( - ((self.st01[0] - self.st05[0]) / - self.tau2).simplified)))))) - self.assertAlmostEqual(stds.van_rossum_distance( - [self.st01, self.st05], self.tau2)[0, 1], - np.sqrt(2.0), 1) - self.assertAlmostEqual(stds.van_rossum_distance( - [self.st01, self.st06], self.tau2)[0, 1], - np.sqrt(2.0), 20) - self.assertAlmostEqual(stds.van_rossum_distance( - [self.st00, self.st07], self.tau1)[0, 1], - np.sqrt(0 + 2)) - self.assertAlmostEqual(stds.van_rossum_distance( - [self.st07, self.st08], self.tau4)[0, 1], - float(np.sqrt(2 * (1.0 - np.exp(-np.absolute( - ((self.st07[0] - self.st08[-1]) / - self.tau4).simplified)))))) + self.assertAlmostEqual( + stds.van_rossum_distance([self.st01, self.st02], self.tau2)[0, 1], + float( + np.sqrt( + 2 + * ( + 1.0 + - np.exp( + -np.absolute( + ( + (self.st01[0] - self.st02[0]) / self.tau2 + ).simplified + ) + ) + ) + ) + ), + ) + self.assertAlmostEqual( + stds.van_rossum_distance([self.st01, self.st05], self.tau2)[0, 1], + float( + np.sqrt( + 2 + * ( + 1.0 + - np.exp( + -np.absolute( + ( + (self.st01[0] - self.st05[0]) / self.tau2 + ).simplified + ) + ) + ) + ) + ), + ) + self.assertAlmostEqual( + stds.van_rossum_distance([self.st01, self.st05], self.tau2)[0, 1], + np.sqrt(2.0), + 1, + ) + self.assertAlmostEqual( + stds.van_rossum_distance([self.st01, self.st06], self.tau2)[0, 1], + np.sqrt(2.0), + 20, + ) + self.assertAlmostEqual( + stds.van_rossum_distance([self.st00, self.st07], self.tau1)[0, 1], + np.sqrt(0 + 2), + ) + self.assertAlmostEqual( + stds.van_rossum_distance([self.st07, self.st08], self.tau4)[0, 1], + float( + np.sqrt( + 2 + * ( + 1.0 + - np.exp( + -np.absolute( + ( + (self.st07[0] - self.st08[-1]) / self.tau4 + ).simplified + ) + ) + ) + ) + ), + ) f_minus_g_squared = ( - (self.t > self.st08[0]) * np.exp( - -((self.t - self.st08[0]) / self.tau3).simplified) + - (self.t > self.st08[1]) * np.exp( - -((self.t - self.st08[1]) / self.tau3).simplified) - - (self.t > self.st09[0]) * np.exp( - -((self.t - self.st09[0]) / self.tau3).simplified)) ** 2 - distance = np.sqrt(2.0 * spint.cumulative_trapezoid( - y=f_minus_g_squared, x=self.t.magnitude)[-1] / - self.tau3.rescale(self.t.units).magnitude) - self.assertAlmostEqual(stds.van_rossum_distance( - [self.st08, self.st09], self.tau3)[0, 1], distance, 5) - self.assertAlmostEqual(stds.van_rossum_distance( - [self.st11, self.st14], self.tau2)[0, 1], 1) + (self.t > self.st08[0]) + * np.exp(-((self.t - self.st08[0]) / self.tau3).simplified) + + (self.t > self.st08[1]) + * np.exp(-((self.t - self.st08[1]) / self.tau3).simplified) + - (self.t > self.st09[0]) + * np.exp(-((self.t - self.st09[0]) / self.tau3).simplified) + ) ** 2 + distance = np.sqrt( + 2.0 + * spint.cumulative_trapezoid( + y=f_minus_g_squared, x=self.t.magnitude + )[-1] + / self.tau3.rescale(self.t.units).magnitude + ) + self.assertAlmostEqual( + stds.van_rossum_distance([self.st08, self.st09], self.tau3)[0, 1], + distance, + 5, + ) + self.assertAlmostEqual( + stds.van_rossum_distance([self.st11, self.st14], self.tau2)[0, 1], + 1, + ) # Tests on timescales self.assertAlmostEqual( stds.van_rossum_distance([self.st11, self.st14], self.tau1)[0, 1], - stds.van_rossum_distance([self.st11, self.st14], self.tau5)[0, 1]) + stds.van_rossum_distance([self.st11, self.st14], self.tau5)[0, 1], + ) self.assertAlmostEqual( stds.van_rossum_distance([self.st07, self.st11], self.tau0)[0, 1], - np.sqrt(len(self.st07) + len(self.st11))) + np.sqrt(len(self.st07) + len(self.st11)), + ) self.assertAlmostEqual( stds.van_rossum_distance([self.st07, self.st14], self.tau0)[0, 1], - np.sqrt(len(self.st07) + len(self.st14))) + np.sqrt(len(self.st07) + len(self.st14)), + ) self.assertAlmostEqual( stds.van_rossum_distance([self.st07, self.st11], self.tau1)[0, 1], - np.sqrt(len(self.st07) + len(self.st11))) + np.sqrt(len(self.st07) + len(self.st11)), + ) self.assertAlmostEqual( stds.van_rossum_distance([self.st07, self.st14], self.tau1)[0, 1], - np.sqrt(len(self.st07) + len(self.st14))) + np.sqrt(len(self.st07) + len(self.st14)), + ) self.assertAlmostEqual( stds.van_rossum_distance([self.st07, self.st11], self.tau5)[0, 1], - np.absolute(len(self.st07) - len(self.st11))) + np.absolute(len(self.st07) - len(self.st11)), + ) self.assertAlmostEqual( stds.van_rossum_distance([self.st07, self.st14], self.tau5)[0, 1], - np.absolute(len(self.st07) - len(self.st14))) + np.absolute(len(self.st07) - len(self.st14)), + ) self.assertAlmostEqual( stds.van_rossum_distance([self.st07, self.st11], self.tau6)[0, 1], - np.absolute(len(self.st07) - len(self.st11))) + np.absolute(len(self.st07) - len(self.st11)), + ) self.assertAlmostEqual( stds.van_rossum_distance([self.st07, self.st14], self.tau6)[0, 1], - np.absolute(len(self.st07) - len(self.st14))) + np.absolute(len(self.st07) - len(self.st14)), + ) # Tests on unordered spiketrains self.assertEqual( stds.van_rossum_distance([self.st11, self.st13], self.tau4)[0, 1], - stds.van_rossum_distance([self.st12, self.st13], self.tau4)[0, 1]) + stds.van_rossum_distance([self.st12, self.st13], self.tau4)[0, 1], + ) self.assertNotEqual( - stds.van_rossum_distance([self.st11, self.st13], - self.tau4, sort=False)[0, 1], - stds.van_rossum_distance([self.st12, self.st13], - self.tau4, sort=False)[0, 1]) + stds.van_rossum_distance( + [self.st11, self.st13], self.tau4, sort=False + )[0, 1], + stds.van_rossum_distance( + [self.st12, self.st13], self.tau4, sort=False + )[0, 1], + ) # Tests on metric properties with random spiketrains # (explicit calculation of second metric axiom in particular case, # because from dist_matrix it is trivial) dist_matrix = stds.van_rossum_distance( - [self.st21, self.st22, self.st23], self.tau3) + [self.st21, self.st22, self.st23], self.tau3 + ) for i in range(3): for j in range(3): self.assertGreaterEqual(dist_matrix[i, j], 0) @@ -555,50 +932,66 @@ def test_van_rossum_distance(self): assert_array_equal(self.rd_st_list[i], self.rd_st_list[j]) assert_array_equal( stds.van_rossum_distance([self.st21, self.st22], self.tau3), - stds.van_rossum_distance([self.st22, self.st21], self.tau3)) - self.assertLessEqual(dist_matrix[0, 1], - dist_matrix[0, 2] + dist_matrix[1, 2]) - self.assertLessEqual(dist_matrix[0, 2], - dist_matrix[1, 2] + dist_matrix[0, 1]) - self.assertLessEqual(dist_matrix[1, 2], - dist_matrix[0, 1] + dist_matrix[0, 2]) + stds.van_rossum_distance([self.st22, self.st21], self.tau3), + ) + self.assertLessEqual( + dist_matrix[0, 1], dist_matrix[0, 2] + dist_matrix[1, 2] + ) + self.assertLessEqual( + dist_matrix[0, 2], dist_matrix[1, 2] + dist_matrix[0, 1] + ) + self.assertLessEqual( + dist_matrix[1, 2], dist_matrix[0, 1] + dist_matrix[0, 2] + ) # Tests on proper unit conversion self.assertAlmostEqual( stds.van_rossum_distance([self.st14, self.st16], self.tau3)[0, 1], - stds.van_rossum_distance([self.st15, self.st16], self.tau3)[0, 1]) + stds.van_rossum_distance([self.st15, self.st16], self.tau3)[0, 1], + ) self.assertAlmostEqual( stds.van_rossum_distance([self.st16, self.st14], self.tau3)[0, 1], - stds.van_rossum_distance([self.st16, self.st15], self.tau3)[0, 1]) + stds.van_rossum_distance([self.st16, self.st15], self.tau3)[0, 1], + ) self.assertEqual( stds.van_rossum_distance([self.st01, self.st05], self.tau3)[0, 1], - stds.van_rossum_distance([self.st01, self.st05], self.tau7)[0, 1]) + stds.van_rossum_distance([self.st01, self.st05], self.tau7)[0, 1], + ) # Tests on algorithmic behaviour for equal spike times f_minus_g_squared = ( - (self.t > self.st31[0]) * np.exp( - -((self.t - self.st31[0]) / self.tau3).simplified) - - (self.t > self.st34[0]) * np.exp( - -((self.t - self.st34[0]) / self.tau3).simplified) - - (self.t > self.st34[1]) * np.exp( - -((self.t - self.st34[1]) / self.tau3).simplified)) ** 2 - distance = np.sqrt(2.0 * spint.cumulative_trapezoid( - y=f_minus_g_squared, x=self.t.magnitude)[-1] / - self.tau3.rescale(self.t.units).magnitude) - self.assertAlmostEqual(stds.van_rossum_distance([self.st31, self.st34], - self.tau3)[0, 1], - distance, 5) - self.assertEqual(stds.van_rossum_distance([self.st31, self.st34], - self.tau3)[0, 1], - stds.van_rossum_distance([self.st32, self.st33], - self.tau3)[0, 1]) - self.assertEqual(stds.van_rossum_distance([self.st31, self.st33], - self.tau3)[0, 1] * 2.0, - stds.van_rossum_distance([self.st32, self.st34], - self.tau3)[0, 1]) + (self.t > self.st31[0]) + * np.exp(-((self.t - self.st31[0]) / self.tau3).simplified) + - (self.t > self.st34[0]) + * np.exp(-((self.t - self.st34[0]) / self.tau3).simplified) + - (self.t > self.st34[1]) + * np.exp(-((self.t - self.st34[1]) / self.tau3).simplified) + ) ** 2 + distance = np.sqrt( + 2.0 + * spint.cumulative_trapezoid( + y=f_minus_g_squared, x=self.t.magnitude + )[-1] + / self.tau3.rescale(self.t.units).magnitude + ) + self.assertAlmostEqual( + stds.van_rossum_distance([self.st31, self.st34], self.tau3)[0, 1], + distance, + 5, + ) + self.assertEqual( + stds.van_rossum_distance([self.st31, self.st34], self.tau3)[0, 1], + stds.van_rossum_distance([self.st32, self.st33], self.tau3)[0, 1], + ) + self.assertEqual( + stds.van_rossum_distance([self.st31, self.st33], self.tau3)[0, 1] + * 2.0, + stds.van_rossum_distance([self.st32, self.st34], self.tau3)[0, 1], + ) # Tests on spike train list lengthes smaller than 2 - self.assertEqual(stds.van_rossum_distance( - [self.st21], self.tau3)[0, 0], 0) + self.assertEqual( + stds.van_rossum_distance([self.st21], self.tau3)[0, 0], 0 + ) self.assertEqual(len(stds.van_rossum_distance([], self.tau3)), 0) -if __name__ == '__main__': +if __name__ == "__main__": unittest.main()