-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest-package.nb
4516 lines (4437 loc) · 228 KB
/
test-package.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 232945, 4507]
NotebookOptionsPosition[ 230091, 4407]
NotebookOutlinePosition[ 230682, 4431]
CellTagsIndexPosition[ 230595, 4426]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Test Modes", "Chapter",
CellChangeTimes->{{3.676723039260427*^9, 3.676723050214436*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"imgsize", "=", "800"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"SetDirectory", "@",
RowBox[{"NotebookDirectory", "[", "]"}]}], ";"}]}], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Get", "[", "\"\<../../neupackage/mma/neutrino.wl\>\"",
"]"}]], "Input",
CellChangeTimes->{{3.6725945078959703`*^9, 3.672594509953569*^9}, {
3.675705587330755*^9, 3.675705590587934*^9}}],
Cell[BoxData["$Failed"], "Output",
CellChangeTimes->{
3.676726423037422*^9, {3.6767265611495113`*^9, 3.676726575132374*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Get", "[", "\"\<../../neupackage/mma/neumat.wl\>\"", "]"}]], "Input",\
CellChangeTimes->{{3.672594295880104*^9, 3.672594299034132*^9}, {
3.675705593783924*^9, 3.675705597619895*^9}}],
Cell[BoxData["$Failed"], "Output",
CellChangeTimes->{
3.676726423081346*^9, {3.676726561201007*^9, 3.676726575185012*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Modes", "Subchapter",
CellChangeTimes->{{3.676723151969089*^9, 3.676723152559866*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"deltamsquare13", "=",
RowBox[{"2.6", "*",
RowBox[{"10", "^",
RowBox[{"(",
RowBox[{"-", "15"}], ")"}]}]}]}], ";"}],
RowBox[{"(*",
RowBox[{"MeV", "^", "2"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"energy10", "=", "10"}], ";"}],
RowBox[{"(*",
RowBox[{"Energy", " ", "in", " ", "units", " ", "of", " ", "MeV"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"omegaV", "=",
RowBox[{"OmegaVacuum", "[",
RowBox[{"energy10", ",", "deltamsquare13"}], "]"}]}],
RowBox[{"(*", "MeV", "*)"}],
RowBox[{"(*",
RowBox[{"deltamsquare13", "/",
RowBox[{"(",
RowBox[{"2", " ", "energy20"}], ")"}]}],
RowBox[{"(*", "MeV", "*)"}], "*)"}],
RowBox[{"(*",
RowBox[{"For", " ", "10", " ", "MeV", " ", "neutrinos"}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{"thetaV", "=",
RowBox[{
RowBox[{"ArcSin", "[",
SqrtBox["0.093"], "]"}], "/", "2"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"lambdaM", "=",
RowBox[{"0.5", "*",
RowBox[{"Cos", "[",
RowBox[{"2", "thetaV"}], "]"}], "omegaV"}]}], " ",
RowBox[{"(*", "MeV", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"thetaM", "=",
RowBox[{"Mod", "[",
RowBox[{
RowBox[{
RowBox[{"ArcTan", "[",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"2", "thetaV"}], "]"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{"Cos", "[",
RowBox[{"2", "thetaV"}], "]"}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"lambdaN", "/", "omegaV"}], ")"}], "^", "2"}]}], ")"}]}],
"]"}], "/", "2"}], ",", "Pi"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"omegaM", "=",
RowBox[{"OmegaMatter2", "[",
RowBox[{"lambdaM", ",", "thetaV", ",", "omegaV"}], "]"}]}],
RowBox[{"(*", "MeV", "*)"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"endpointTest", "=",
RowBox[{"2", "*",
RowBox[{"10", "^", "7"}]}]}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"twokList", "=",
RowBox[{"{",
RowBox[{"1", ",",
RowBox[{"1", "/", "200.1"}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"twokList2", "=",
RowBox[{"{",
RowBox[{"1", ",",
RowBox[{"1", "/", "200.2"}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"twoaListStash", "=",
RowBox[{"{",
RowBox[{
RowBox[{"0.02",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"MeVInverse2km", "[",
RowBox[{"2",
RowBox[{"Pi", "/",
RowBox[{"(",
RowBox[{"omegaM", " ",
RowBox[{"twokListKK", "[",
RowBox[{"[", "1", "]"}], "]"}]}], ")"}]}]}], "]"}], "/",
"1500"}], ")"}], "^",
RowBox[{"(",
RowBox[{"5", "/", "3"}], ")"}]}]}], ",",
RowBox[{"0.02",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"MeVInverse2km", "[",
RowBox[{"2",
RowBox[{"Pi", "/",
RowBox[{"(",
RowBox[{"omegaM", " ",
RowBox[{"twokListKK", "[",
RowBox[{"[", "2", "]"}], "]"}]}], ")"}]}]}], "]"}], "/",
"1500"}], ")"}], "^",
RowBox[{"(",
RowBox[{"5", "/", "3"}], ")"}]}]}]}], "}"}]}], "\[IndentingNewLine]",
RowBox[{"twoaList", "=",
RowBox[{"{",
RowBox[{
RowBox[{"twoaListStash", "[",
RowBox[{"[", "1", "]"}], "]"}], ",",
RowBox[{
RowBox[{"twoaListStash", "[",
RowBox[{"[", "2", "]"}], "]"}], "*", "300"}]}],
"}"}]}], "\[IndentingNewLine]",
RowBox[{"twoaList2", "=",
RowBox[{"{",
RowBox[{
RowBox[{"twoaList", "[",
RowBox[{"[", "1", "]"}], "]"}], ",",
RowBox[{
RowBox[{"twoaListStash", "[",
RowBox[{"[", "2", "]"}], "]"}], "*", "320"}]}],
"}"}]}], "\[IndentingNewLine]",
RowBox[{"twophiList", "=",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "Input",
CellChangeTimes->{{3.6767234496725388`*^9, 3.676723608149646*^9}, {
3.676723644149441*^9, 3.6767236486690693`*^9}, {3.6767237579229317`*^9,
3.6767237608829403`*^9}, {3.676723823002914*^9, 3.676723824025032*^9}, {
3.676725887524342*^9, 3.676725937914948*^9}, {3.6767262153963223`*^9,
3.676726252130628*^9}, {3.6767263134209557`*^9, 3.676726409679204*^9}, {
3.676726488096754*^9, 3.6767265738281183`*^9}}],
Cell[BoxData["1.3000000000000002`*^-16"], "Output",
CellChangeTimes->{{3.6767234445941896`*^9, 3.676723492116207*^9}, {
3.676723526520088*^9, 3.676723534498722*^9}, {3.6767235672694597`*^9,
3.676723609079569*^9}, 3.676723649407917*^9, 3.676723761208881*^9,
3.676723824493438*^9, 3.676725891807219*^9, 3.676725938704606*^9, {
3.676726217189376*^9, 3.676726252875038*^9}, {3.676726317058196*^9,
3.676726423121976*^9}, {3.676726490224009*^9, 3.6767265752356987`*^9},
3.676727147706218*^9}],
Cell[BoxData["0.15494769630192953`"], "Output",
CellChangeTimes->{{3.6767234445941896`*^9, 3.676723492116207*^9}, {
3.676723526520088*^9, 3.676723534498722*^9}, {3.6767235672694597`*^9,
3.676723609079569*^9}, 3.676723649407917*^9, 3.676723761208881*^9,
3.676723824493438*^9, 3.676725891807219*^9, 3.676725938704606*^9, {
3.676726217189376*^9, 3.676726252875038*^9}, {3.676726317058196*^9,
3.676726423121976*^9}, {3.676726490224009*^9, 3.6767265752356987`*^9},
3.676727147715535*^9}],
Cell[BoxData["6.190375594420747`*^-17"], "Output",
CellChangeTimes->{{3.6767234445941896`*^9, 3.676723492116207*^9}, {
3.676723526520088*^9, 3.676723534498722*^9}, {3.6767235672694597`*^9,
3.676723609079569*^9}, 3.676723649407917*^9, 3.676723761208881*^9,
3.676723824493438*^9, 3.676725891807219*^9, 3.676725938704606*^9, {
3.676726217189376*^9, 3.676726252875038*^9}, {3.676726317058196*^9,
3.676726423121976*^9}, {3.676726490224009*^9, 3.6767265752356987`*^9},
3.676727147721518*^9}],
Cell[BoxData["7.351037341763407`*^-17"], "Output",
CellChangeTimes->{{3.6767234445941896`*^9, 3.676723492116207*^9}, {
3.676723526520088*^9, 3.676723534498722*^9}, {3.6767235672694597`*^9,
3.676723609079569*^9}, 3.676723649407917*^9, 3.676723761208881*^9,
3.676723824493438*^9, 3.676725891807219*^9, 3.676725938704606*^9, {
3.676726217189376*^9, 3.676726252875038*^9}, {3.676726317058196*^9,
3.676726423121976*^9}, {3.676726490224009*^9, 3.6767265752356987`*^9},
3.676727147727523*^9}],
Cell[BoxData["20000000"], "Output",
CellChangeTimes->{{3.6767234445941896`*^9, 3.676723492116207*^9}, {
3.676723526520088*^9, 3.676723534498722*^9}, {3.6767235672694597`*^9,
3.676723609079569*^9}, 3.676723649407917*^9, 3.676723761208881*^9,
3.676723824493438*^9, 3.676725891807219*^9, 3.676725938704606*^9, {
3.676726217189376*^9, 3.676726252875038*^9}, {3.676726317058196*^9,
3.676726423121976*^9}, {3.676726490224009*^9, 3.6767265752356987`*^9},
3.67672714773351*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.000011255730168726747`", ",", "0.000038761969116192606`"}],
"}"}]], "Output",
CellChangeTimes->{{3.6767234445941896`*^9, 3.676723492116207*^9}, {
3.676723526520088*^9, 3.676723534498722*^9}, {3.6767235672694597`*^9,
3.676723609079569*^9}, 3.676723649407917*^9, 3.676723761208881*^9,
3.676723824493438*^9, 3.676725891807219*^9, 3.676725938704606*^9, {
3.676726217189376*^9, 3.676726252875038*^9}, {3.676726317058196*^9,
3.676726423121976*^9}, {3.676726490224009*^9, 3.6767265752356987`*^9},
3.67672714773978*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.000011255730168726747`", ",", "0.011628590734857782`"}],
"}"}]], "Output",
CellChangeTimes->{{3.6767234445941896`*^9, 3.676723492116207*^9}, {
3.676723526520088*^9, 3.676723534498722*^9}, {3.6767235672694597`*^9,
3.676723609079569*^9}, 3.676723649407917*^9, 3.676723761208881*^9,
3.676723824493438*^9, 3.676725891807219*^9, 3.676725938704606*^9, {
3.676726217189376*^9, 3.676726252875038*^9}, {3.676726317058196*^9,
3.676726423121976*^9}, {3.676726490224009*^9, 3.6767265752356987`*^9},
3.6767271477463083`*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0.000011255730168726747`", ",", "0.012403830117181634`"}],
"}"}]], "Output",
CellChangeTimes->{{3.6767234445941896`*^9, 3.676723492116207*^9}, {
3.676723526520088*^9, 3.676723534498722*^9}, {3.6767235672694597`*^9,
3.676723609079569*^9}, 3.676723649407917*^9, 3.676723761208881*^9,
3.676723824493438*^9, 3.676725891807219*^9, 3.676725938704606*^9, {
3.676726217189376*^9, 3.676726252875038*^9}, {3.676726317058196*^9,
3.676726423121976*^9}, {3.676726490224009*^9, 3.6767265752356987`*^9},
3.676727147752913*^9}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]], "Output",
CellChangeTimes->{{3.6767234445941896`*^9, 3.676723492116207*^9}, {
3.676723526520088*^9, 3.676723534498722*^9}, {3.6767235672694597`*^9,
3.676723609079569*^9}, 3.676723649407917*^9, 3.676723761208881*^9,
3.676723824493438*^9, 3.676725891807219*^9, 3.676725938704606*^9, {
3.676726217189376*^9, 3.676726252875038*^9}, {3.676726317058196*^9,
3.676726423121976*^9}, {3.676726490224009*^9, 3.6767265752356987`*^9},
3.6767271477590933`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"?", "solNList"}], "\[IndentingNewLine]",
RowBox[{"?", "widthNList"}]}], "Input",
CellChangeTimes->{{3.6767231544892893`*^9, 3.676723157981185*^9}, {
3.676723354375916*^9, 3.6767233551734037`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
StyleBox["\<\"solution of a system composed of a given list of n's; \
Parameters taken are \
[listInput_,kNList_,aNList_,phiNList_,thetam_,endpoint_(*,workingprecision_:$\
MachinePrecision,accuracygoal_:0.5$MachinePrecision*)]\"\>", "MSG"]], "Print",\
"PrintUsage",
CellChangeTimes->{3.676726575349483*^9},
CellTags->"Info3676704975-6702627"],
Cell[BoxData[
StyleBox["\<\"\\\"Calculate the width; Example, widthNList[list of n's,list \
of k's,list of a's,list of \[Phi]'s,thetam] and here lists are in the form \
{0.999,0.6,0.4}. Output is in unit of \\!\\(\\*SubscriptBox[\\(\[Omega]\\), \
\\(m\\)]\\) .\\\"\"\>", "MSG"]], "Print", "PrintUsage",
CellChangeTimes->{3.676726575428278*^9},
CellTags->"Info3676704975-6702627"]
}, Open ]]
}, Open ]],
Cell[TextData[{
"Analytically, a mode is described using\n",
Cell[BoxData[
FormBox[
RowBox[{"P", " ", "=", " ",
RowBox[{
FractionBox[
RowBox[{"B", "^", "2"}],
RowBox[{
RowBox[{"B", "^", "2"}], "+",
RowBox[{"g", "^", "2"}]}]],
RowBox[{"sin", "^", "2"}],
RowBox[{"(",
RowBox[{"q", " ",
RowBox[{"x", "/", "2"}]}], ")"}]}]}], TraditionalForm]],
FormatType->"TraditionalForm"],
"\nThe prediction using this equation is, for {1,0} mode"
}], "Text",
CellChangeTimes->{{3.6767231646805677`*^9, 3.676723181750924*^9}, {
3.6767233002523823`*^9, 3.676723333788526*^9}, {3.676723906078248*^9,
3.676723922949669*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"probTheory", "[",
RowBox[{"nlist_", ",", "klist_", ",", "alist_", ",", "x_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"widthNList", "[",
RowBox[{
"nlist", ",", "klist", ",", "alist", ",", "twophiList", ",", "thetaM"}],
"]"}], "^", "2"}], "/",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"widthNList", "[",
RowBox[{
"nlist", ",", "klist", ",", "alist", ",", "twophiList", ",",
"thetaM"}], "]"}], "^", "2"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"nlist", ".", "klist"}], "-", "1"}], ")"}], "^", "2"}]}],
")"}]}],
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"x",
RowBox[{
SqrtBox[
RowBox[{
RowBox[{
RowBox[{"widthNList", "[",
RowBox[{
"nlist", ",", "klist", ",", "alist", ",", "twophiList", ",",
"thetaM"}], "]"}], "^", "2"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"nlist", ".", "klist"}], "-", "1"}], ")"}], "^", "2"}]}]],
"/", "2"}]}], "]"}], "^", "2"}]}]}]], "Input",
CellChangeTimes->{{3.6767240938701067`*^9, 3.676724174131297*^9}, {
3.67672426295022*^9, 3.676724319747795*^9}, {3.676724360050477*^9,
3.676724390432661*^9}, {3.676724476656054*^9, 3.676724478453424*^9},
3.676725004103245*^9, 3.676725438911335*^9, {3.676725592836575*^9,
3.67672571675419*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"probTheory", "[",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",", "twokList", ",", "twoaList", ",",
RowBox[{"10", "^", "6"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6767242961223917`*^9, 3.6767243057783117`*^9}, {
3.676724400419416*^9, 3.676724405760996*^9}, {3.676725721482085*^9,
3.67672572783158*^9}}],
Cell[BoxData["0.023469647536027823`"], "Output",
CellChangeTimes->{{3.676724301143989*^9, 3.676724306191093*^9}, {
3.676724392803424*^9, 3.676724406359292*^9}, 3.6767244799095497`*^9,
3.676725440335905*^9, 3.676725728265748*^9, 3.676726223887354*^9,
3.676726423388839*^9, {3.6767265615021973`*^9, 3.6767265755200243`*^9}}]
}, Open ]],
Cell["\<\
Will the width change a lot if I modify a little bit amplitudes, due to \
Bessel function?\
\>", "Text",
CellChangeTimes->{{3.67672607913062*^9, 3.676726120874062*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"twoaList", "[",
RowBox[{"[", "2", "]"}], "]"}], "/",
RowBox[{"twokList", "[",
RowBox[{"[", "2", "]"}], "]"}]}],
RowBox[{"Cos", "[",
RowBox[{"2", "thetaM"}], "]"}]}]], "Input",
CellChangeTimes->{3.676726462060606*^9}],
Cell[BoxData["2.1451309562060277`"], "Output",
CellChangeTimes->{{3.676726205388247*^9, 3.676726245420719*^9}, {
3.676726385273184*^9, 3.676726423411399*^9}, 3.6767264624371233`*^9,
3.676726496378993*^9, {3.676726536289672*^9, 3.6767265755519648`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"BesselJ", "[",
RowBox[{"0", ",", "x"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.676726437541955*^9, 3.676726453213697*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVlXk8lN8Xx5XsM2Mo28xYMtpQdklyT2lTljZFUZYslSIpkWTJEiWlIpUU
pZUSIb6ufV9nxEyRhOzGTki/5zd/PPN6v86999xzzuf5PCsdPQ44L+Xj4xMg
Hv//fxLgKKh1Msr4+b///3go8eiQ4RGlU6hmzEpinmCueaSXkpIvcpT+sGOI
YO2NDcminGD0YLvUEzbBPrtsKAJKN9DsrxiZjwTnH+m6/M/1NvLp1c66TvCS
zM9jC613kVWr+CULglXy51fPzd9HihVwlELwzlKwnVF8iJKOdjmULvKQW23o
nUmTx4hdKnfLk+Co5uryMdenqKZCtE2S4CMjQgEzO56h1MxOi7d/ifVeb2Sn
W5+jy2fqezYR7Dtt9mnyVApSPSbwrGCBhyL9eOYT8y+QSxAO3ETw+2DdkFHF
12idVk6axDwPFQi2yvM+vkFvA679PTfHQ42RvjnDJu+Qa+T388V/eGj8bsHw
gGs6Oh94v3bvLA8FR2mWTvp/QEeeJn0KmiHOrwuSmNzxEZn2JBS9n+ahx/tV
3o23ZiDSyf6DfZM8lBJ78c9Y0icUaCTOnZ4g8n8t3zl2KhN986sImx8n8tuc
6uTNZyGyd6ld7ygPdTqkSQ8r5qJuoVIh0yEeGkj+5zTUl4toPZodwoPEfXr2
fRz8+AWV8fZ1FfTz0LLTE3sHTPLRn20S3uReHlrtZRDU64pR1/yJKt1OHpL9
tt31gmwhsr23XPZlBw8xrgyTJ/wLkcSX/+LJP4h5/Gd8bHxHEbIOGNbG33hI
f2vn1GhrMapfc+3nOzYPGf668djTqAQFp0U1NzTxkHGItsloUgmyJ0/y9Tfw
0K6ykBjeqVLU88NecLGGh6xNV6uNzJeheGen9owSHrqy/4z9oGIVUmM8it/9
kYcWQ/TlOm5WoXIXRvPDNB4K/LyExfpThSJtdFI63vLQdXq8yRd2NfpEkxI2
fclD0T2lq2+E16LqspcisQk8lOSrMLya14DK7I3sBYJ4SKJl8gB5QyNKC7VJ
SbrKQwc8jmqEn2xEFvPJcZp+PPT12ao+v6ZGFCltHLvhAg99E8y3cXzbhP6m
7FmRfJKHuhr7jLROsJH88uF/HjuIfpy2kHt7n42yO3RUjmzlIRf+zCmVWjZq
XO8gq7OFh/r0rqXJbmpG8o5evlW6PDSUIKXEt/wrwpqtxz2ZPDR9cht/Q3kL
6hH/WPdqcQSJ/HlU5b7hG2Kp2G9oeTeCDMK5fnscviGNNNLx3NQR5CYlo772
3jeU4WQqFft8BJVr3Y3u+vMN8SZ1VFTjR9D10xEHj5Z9R76joiK9wSOIr827
fZdtOyoa1lyTeHgEXel4eVlix0+USLpzYsXMMLr7csf+wOM/kV1F+6260WH0
5mz3Op7PTyS1Xynh6sAw+ja/8nvtm59odu6idXH7MDKQfbIlgtqJpm63Ff4o
GUbT+2KX/vveiQ4W7Bl3jh5G54uv3Rzy6kK1V/i2lTKG0azEvfffo7pQ+XXl
gOtSwyjA4VV9dUoX0le/eNiIMoxu8jVRX7d0odATnX13/w2hV8bK950Nu5GE
HG38e+cQ+vml9MmPJT1oX47rzZ8pQ2jfJ5H0xpjfyJfhfKhWZQhtSIltykzr
R8b5Hx7+JQ2iFfGaM4VV/ejQnT/us0sH0XxUHaOuux99m1S8MjA7gCovCLn1
0AaQ90VHu8zuAeRocmVRKnwATXN2NnbkDaD7vxzVfE4MIsmuEO0EtwG0oKQd
uok6jPo33e4tyetHPRZujA6DUbTt9eyY5p4+FEcLk39mP4EK7Rrdr5v1oE1e
Oen8tdPo4qb8MpmsTlTS+mifx5o59OaEZACl8zvSurloLGv6F9mnfA5XfNaM
dv027NA8wgcbJZdr/AmtQr3rP++YHFoCr+lXfpZc/YyuLNzQyffjBz8P/46n
dbexkETfqUOqAuDgZiRL1i/A0+G2O55qCkBXVV7mqrsF+Pdio9KAvgBsLteV
oo4U4PKh3NZrJgIwMCLxwOYFxmGVUTve2goA531sd3tEIRYM1Fi59LYAWLfY
uTeMFmFB3iVO+oQAjM8IyPullWKBOoFdYv8JgvLgiZtn26sw6exjp/YSQegI
PhwUJlyNV5B1AtOrBYH2qyvlmk41VjG3zz3IEYRDrt6akjeq8fa6L2qPJwSB
7lV6+rN2DQ6u86CuVxWCOoVEw6FrtZivnsu1iBOCndq6S+OXNGDhc57TSolC
UPRVtPL+2gZMpQgtn0gRgqt/Cl+ft2zASha6ZnEZQtAmuOR6yeMGjOqjCzrq
hCD7ScDMb1ojDqg3SfZcJgxt9zJO5HxoxPP1793vnheGt4vq3TsamrBCk8Oj
7ZeFoXLs6ZtdP5vwNrZU9XSAMPTm8e80GGvCka1X1xy7KQzhmaTuHkkWlv1p
/ouZKgw7mr1oXlYsrD82fCSrTRhC12+9atrKwp7LN5hwdonAiaXmqfV1bHxP
6tf5SAsRuChv6JrUxsbZMg+SjKxEwPDarYP2g2y8SF/8m+QoArYltKdvhJvx
LZX6nFNXRWBmnnLdbVszfqN3bsN8hghUnvL5EprRjHuOpMkpKIgCz+171rrQ
r/il9d9iWxVR+DeY8/VnzFfsZmPm/khVFEqfCwpFPP6KB44OFMhuFAX/XO/Y
l5++4lG71SeX7xMF/mdTYiqdX/GCU2KacLAolLvst1HY1IKXe0abTPSIgrRh
Ff+S9hbc7Nk+pDUkCp9Zgpys3y34wXn1B57jouAz7e17dLQFy16o7hteFAWP
8BD5C/ytWOGSYHSfjBj4Sj/BnWtbsap/AKfdVAyoib6anzxb8daIc2cr34vB
YP+lxwqTrZiW0XEkOlMM3mtVCXoutOLJ7/u2HcoTg4TbHpvSlnHwSw0dmZ+V
YrAy4tfk6AoOJrXOFM50icHcScFPt3U5uGVV0Io1NBKIVXN/a3lycLrl+OKQ
EgkEHabjLX04OMLXqT9jDQkOfdpEPhrAwZvrdhQY65HA7r+NRno3OTjJW9Tt
8D4SaCmlfF6WysFnSmLzQsNI4Hxc4ogwl4O3Dy97ufcWCQyv+JmM/+BgBZlL
MRL3SPBh9+aZym4Objxt7fzkGQnUPB5nG41ysL6kvHhWPgmmDSFjiyAXixtF
//ErIUEy5QrvlhgX9zn/64JqErwt65qrpnLxo9zOnNpWElCmrgWK0bmYz+Gl
Y/c4CWo3K7m+3MDF3EgZ8zd/SPBqa46enQ4XZ2RGbPTkI4OeuUobnwEXOwuf
IS2QyeAZrvSZspWLq9M1Pi9fRwZdtczK7Qe4+P5ijojJCTLY0Da1089zMWlN
2bn7zmTwXW3n6+zNxdctm9i9Z8ggqy18NdGHi72S+p/cvEyGjMyaoh9Xudhi
G0275Q4ZPihUecXf4OKy06vj1saTQX3ZW3+7m1xsFKu94JdIBo/XiQsSt7lY
tXtPueJbMjD9nrqY3uNiwbArR0+VkiGlX4Yx/oSLr6aF47xqMrxcdlxcJ4mL
J1tiVShNZIgbOXzD6TkX/1rzbiSjnajnjiUt9iUX2+zLOSjQTZyn+V3v7isu
brxcmnNkgAzxzlqdgW+4GFe1BS9Mk4F24MOoehoX64/39Vr8JcNBkVSbgXQu
TqNNmT3jp8Dzg8ts4z5y8eMzZJmdVArYbOnXL8zk4uX35PzjpSmgkRO4wugz
F0fmr+ocYFDgx+XE+6nZXHyZbPz29joKLC37fdP8Cxfz9PZQf2lQ4FeZo3BE
Hhe7HD98UVefAuYTQtoZ+VzcHub4LcyIAq4+saTa/7j4UPo5xN1Ggb6U6oSv
BVxc0+qXomZKAZ0pv456zMXb+MJFAiyJuIBfe3YhF2vtf8pWtqVAY3gX1aaY
i1/5vjW46EiBXS0rzSRKuFjpefaTCjcKKD06bJZLcFx1yVKaBwVChQNX7C/l
YspEg6v7RQp4u6akcggOpbfVFlyhQJIUS3hfGRcvmPRpSQRT4E+w4uZsgi+4
Tz5wiqDAKY23WynlXDxwj28hK5oC1189UrQi2OE/koPwfQpIhCtyogjm9MiW
H31E3M/97LkMgi0pq9TeP6NA15LSnkqCy/W1Yv6lUuDB+KmtDQRvObFlan8a
BaqH3l8vIzgz3PRoSiYFnjz5nfGWYLUPVnj6CwU607waggh+znFQMS2iQGZp
TvsuguWWnLvxqIIC435rOv8S941Z5zcyXEeBLEe99mSChQ6EHYRmCrT9s/+6
ieAAv7s5d79RwL1csw4T9U89T5Tv+UkBiqxOpR7B7jVvgjf2UsB362LVI6J/
3ROfe28ME/l9NFvGiH4fY5SYtU1QwKTFY3QjwQNnx8az5iiQG94QaltE6AEr
Pry9RByeWPufOUfMS0jCAp0SFodsQcOXZ4l5PnD079kmLg49zFbDo8S8V2W+
iWJIiwNZcv0GXUIPmQJcrWmGOGj/UwydJ/TDeqUX8FpVHPLOJ58/kEv0e85J
JURLHHapakv8IvQ3uvduta2BOLSho2tPEPqk8EakqTvFQb63r2nlJy7eo/cq
/ZKDOAhs8Emuekv4RViL1T43cZjIXIgpe83FbpxlC+s8xOFlqpRSeioXh11x
2N3uLw4HEioN9iZzcXERrdMkXhx29o+OpD7k4v3LTcPln4rDjobQEIk4Lv55
0mf9zAtxiDhr/tuNeJ8XhZp933wSh/KHUes7o7nY0OKWpESDOCj+eO0yG8zF
VU/zcga+isNv3/PUpmtcbD3Wf7y0TRzWHE/NjvPn4ov3dr71GRAH77WF0ryL
RHz430reUipoHIgtLXcl9C0tM3VMkAoOUV6C1JNc3Gu8obJShAp2QdE+u+y5
+FKM7bnnVCpI2K9aEmTNxfd0cr9YKVAh7NczV8XdXGxr23ireCUVLraOc76Z
cDEztNdeYxUVghU4768jwj9bpIRE1KlwetL0SbI+4Se+XgfzN1HBj3Niv7gK
4Y+FakPKVlQgz7gwU+Y5+NfD/ZXXrKlQ6Ci61nGag7Mv+KS0HaOCeVx3ovgY
BzuuKbF94EiFW/mC/wx+E/Hoo3UinlRwvuljXt5AxO1upI1GUmE6tdap6SkH
G2xMjzSPpsKyC60dNx5yMFniq8ubO1RYpbx1q3YsB+eUKimejKfC3pXrWQfC
iLh6zu3WF1QQaVPnaz5DxOd+exYUUmGlwMTOdh0Ojm4mmdNLqTD1TiUtTp2D
ndK0112uoEKXcNClbas4mOIY0KlVTwXjn6w9p6SJeJXUgRffqRBtbN29MNOK
KfHbdW5OE/ELb0RMclqxs97zKRt1CdCdvLwpbH0rjoyWEr+qIQGxr6/mz6m0
4rTeiLVJ2hKQW3Y/1pHRiqcfehz7bSABMmtNjpHEWnHEolGR1w4JeFX1QqGq
twW/qWi9GXVcArTeJM4OJ7bgERuyyn8xEvCmh6dDW9aCfQIuH1CakoAloyv5
ct4247VD/qTwWQl4zvcrc+fTZsyxCSofnpeA7w232irvNmMDvUjDvKWSoKYf
9CHVtxnPDj5SPkyVBMm/Ck8bdzZjPxs8HqUmCW3WkebcH2wcoCsYO+MgCd6T
x7grBNk4dCCWXV8vCQG5v40KdJqwmar4K1LCcvC9F89d31yNb73XLzRzWAHL
Nb7ER30oxtUHkxe8N0nB4f4fzN3tGbiwzuOmOr80+PaJ7P6e4YMzTgdBbTvB
MknSfp8/IIW9yOBcpgyEqtiobU4oRCNFZ/5GZxOcErHPNLsQYYP44vQvMhC9
9z830+ZCZL96zGysUAZ83Ip0FSlF6PmSZAfvOhlQTt94WzGoCK3JEYzy+y0D
rPJt4i4ni5Hmqvr2MFlZsG0yd36uWIpM/tmGPPWXhYgBw5x85wqUFEnr5w+U
hZ3HXKfHAyvQghTHwi1EFsQqDSNXPK5An9UP0rQiZeGa4UkvOVYFWnvU9GNx
nCwYL9kQunZLJSJl6XX0ZMiCpkvisLl4FWo+Tdms3i8LazZGTO9Jrkaa0zVJ
MUPEebacvrq8anQr6IbgFE8WZr8Umhk2V6Od8ctY/03LwqqEbVoNy2pQTtmc
m+UyORA3U+vrPVmDHiv1PvBSlIO37mcVq5Rq0ckWPJ5jJQc5jaLckbA6RO2s
vt9lLQcNWxQMZB7VobzBrwYUWznQ8qeFqabXIcklQwFOjnIwGbi/UqK1DmE1
WTGKhxzQa6y+d66qR7QgT6ZThBwkHMqTCsT1qElt5SFynhx0BuuGXPrVgPz1
1Wc2FsiB+aiS0uBEA1q7dWOCY5EcOB3dUpWytBEFHDb/mV0hB5kwO9i5vBGp
B/m6OzbLwbZq1bAWvUYU0dJ0PXtYDiKVbhW88GlExkHBWQ5KNDB6zdtSMt6I
ZoweO/gzaUBXFODn/WlEH2azyHGrabBZ/XSW+JImxPTsd65Vp8HW7tQWDfEm
JHxin/TGTTRYwxXJH1BtQmwjBR/SARpEmSh+3G3fhG7ObmSusaJBdthDvmKX
JrQzc3/DVmtiv/s1Sc2zTShHLXSNz3EalC8vvDDg24QSaUOtnadpMBg32Nd6
twm5zeYaZIfQgJyPE2KLm9DKTHZ3UxgNakOKZ49UNqFvHsMxQzdoIPFdcIpa
34TMe5X6V8bQ4BVNv9Ce24S0W8If3nxMAwWx1lM+vCb095PVnEMWDVS8nzhf
k2Ohux5jeaReIr+vFBo5yUKt6LHwmQEatJTIVCadYiEGdZdV1TANKBoz73ac
Y6HUD49HQidpoCZpet3Fh4Xyx3at/LeEDgoM1a3LbrDQ7wuJYWMMOnwt3sdK
e81CattN2ZZKdNjnonw57D0Lea6YVExj0iFdY5nLvo8sNJ9pmntalQ4CrhbS
eTksRJ2eHOzaSIeSi64fB8tZyPDy3v0tB+jQJMnWyf3JQtd2Tz/RPUyHXwP6
fFldLFQq+2zgrg0dDL7sEE3+zUKWudMhlvZ0cHBd3mI1xEIn5559rjxLh6Mx
O3ZIz7DQ62oz/jXn6cCUeTCT/IeFRhJmLEO96dBg0dXDXGAh383m/Vuv0KHb
3uLSHB8bRfvP0vMi6PC674zrUlE2Ypslu8ndpMM3W+e5lSQ2kpW3yPK5TYc2
U/5qHQobJf+XbKH7gA4jt7WUNkiyUd8ti0d3H9Lh/vtjqdIr2GjD8T+9o4/p
wF9j5z4mxUY5ixZB75Pp0McK+XhVjo3+1v+pE0ulQ/b3KG0NOhtte5pCO/2G
Dk6KuhMsBhvVoblPqz/SISgpVm9MkY1+Bb74/bSADputuQ0Rq9joUuMTz9Ii
OqQ0nlTKXs1GokoP5vpKifw9k/7cNWykjcMo2jV0KND+aju3jo3KKdfiD9cT
cdGYzllVNjp63Ef5ShMd3PJVLg6qsVHIX1f90lY6FH3+W/NuPVGvuX1h3zc6
+J3vjrmygY3ePbbeQ/5BB9HefldjDTaCoX3NWp10oH8Z3T9FcPNm0+OHu+lw
M/CXZZImG7lFbe3z66XD7+J0R6TFRgvfNnk9HaCDz4JlFIvgGFXthZJhOixN
KKq20WYjFT/VsL5Rot9TIspfCc6pUqaSJ+lw+qje3e06bGQmR0/QmqHD7cXD
jFcE/3RbrnJ4jjh/2Y2ifwR754il+f2lg6XvUPBeXTYSFl5m8JSPAZcPvHaI
IvjxkYWiEn4GyJwdOY4J1kyd3NsnyADxW2NXegkumx76ShJlgJAtL5dfj+jP
zp4TWmQGrHNRo60geOR+e78VlQEMudEnsgQH93y94LecAYWl0TslCJbWq/+b
KM0A67gTUovEeW+ul4eXyDHg0pMisQ6CjZsLJPoYDEjCNLVMglnM7EckJQZ0
FbV6XyXY5UL6Ki0mA/y2ug8YEjxXnJputZoBPzIO3Boi6ouWTNrkt44Bax1J
J+4SrOwYX5KozoBDHisd1An+/DHGvESDAU51Sve/EP3bs+RGa682Ayq2JS0Y
EfxjX5ADSZ8BUs5GDz8R/RcaPX/RyogBj0RPXL5KzOsxOv3PFzHgeB4UNBLz
1LzteCNxG1GP5xSSJdh6w8EnvbsZ4NDF+RtC6GPo6t41JDMG7BB/uOWVOhsF
1pl81LRkgKi0ZWEhoadX7rplvlYMqOoXeVBP6M8oX90y0ZoBihtahkrWslGj
2Cpu8TEG0DetiX5P6PXPG6lhMUcGfEjUzLEj9B09R/bRdCbi235vV1Eh6t0j
uMTKjQEUI7pKhzJRX//0isRzDDAL3vVLS4moz4CXWHyeAQ/Sz5dVKbCRV0Tv
2l5vBihPBPIflmejhDUcI80rDKjr+xu/l8ZGg865J4vDGZAc+8H17XI2IlVv
u60axYAc/sulWIKN1DfU5t6NZsD3WZvwcnE2cp/+QXG6T/SXcWfvWzGi/rBl
ufzJDKhML1FhLSX2D97qOvOSAYdzpEX8CD9Rt5ShNL9mwOuBbPcViyzkLqPq
lPKBAbMfVbES4UdDqZbkHQUMuHbwEy9uhIVIJO7G90UMMP4tt755kIXUPR0d
pcoY4KO2XYC/n9hvcDG7p4bQb+7uewaEHw5XJjiEcRlwsLI8lr+V8Lf+nqyK
SQYUXbI4w8hnIYqFx0+NWQYEtynKXCf8dkPGrGj8PANK6Hsf/chkoXN+YvZu
S+XhYeWuLe6EX4+IaomKUOVh//Yhu4EnLMRT8z++R00erjuX/bjoT/h1jMCN
jA3y0C42v5x8mYU0J6M/0bTloWSq2TXuAuH3+c+EBw3kQeyfdkDoaRYaNavI
iNopD7cFEwcqjhB8VlKozkEeMpU6BAY0WOjE/v5z8yflgaT7iExRY6F63cKW
dW7yMDX4TGHNahZ6N3/2Zdg5Il/xtbMGDBZyu1G1A67IQ+7UGX2OEAv9TAm8
/umePKwtz99NbW9CDd9HliRUyENWR6FZ8LUmZIzLTlVWy0NUKXX1PuJ7++75
46bpOmL9+9pHyy80ochTe54dbJaHW+lXPK/8/3s98wLInfJwvyxpb4NZEyqQ
tLsWOCcPc1d1TW7KNKE005oFl/UK8LFpQSvwRSNS+/HhbKimAqHvzxpaiY3o
ldeDH8k6CuB9raKZ86ARPX/kUPhzkwL0yduokiIa0f3hmZCjOxUg7YxZAv/p
RuR/R0XM4oQC0M26rQzVG9Ee7lU5vTsKUBvhPNV2sAH9dtPU559SgNmiFIWL
MnWIJ5G6y3lWAe6e0c3sX1qHZr/I21TMK4CA2PPKvSO1SIQs5h+1VBEifup9
4JTWIvWPPUXLqYqw7KD/XpnztejCnwRzFTVF6A1nn9Avr0F8kQLOOxwUYW3D
QswFp2pEe/stNrxOEezszAUrzlagEHuv53V7lYDH1V/y6UgRmlmQu7U3VwkW
nIYZ7ocz0dq8uIfVKivh3Qruq6WtD5CeU5mlxI2VEOAwczjK7SkufCwlWzu1
ElzOB+02/JGF1xZKRVocU4b4vKptzj2F2EjOOb7NVhlesjLX2cwX4v1emS9P
H1eGpPJ7YyBRhP1UDpaEOShDjQT/5KBREa6NiFkocFWGH5aS3mmxRfj8fjEP
DW9lGBDk/ftmXIy//OI7RL2lDIH7U2cDo0qwucCQPKtAGQLivOPvzpfhV30h
C0GFyjDhxvPIES/HS2vp37WKleGQ8XBZLbMc59zdG3+nTBnUqJZ5hXvLsbLS
W8n9tcpwcvy5R3NCOZ42PC3UyFUGoewDe5L0KnCiZ99o3aQy3PMb4V2yq8Sz
BwMbrk4T8X4jCyuPSnxwo2za+lllqE/s+KQUVImFF3eduTWvDDNZ7acCUiqx
V1Rqj9lSJrgtmTt0aKAS73rp8q1GnAnFsu6z9l5VePR7d0mVKhM65+xGPl+o
xuMBzCJbdSZUrA3/QwuuxpMrHQt465nQM9Bz+mxMNZ517ciR0mKCmfVfx/Z3
1ZhvkvveYSMT2n0ZP/q6qzGV1BD3x4QJi70RTan7a7CmUe6ZdXZMUO7cdPuB
fC3W7phxyz/OhJDDISJf1tVi3WB9F0t7JvhvD5eq0avFBpWf7C86McHUS6cm
y7wWw6E0q6JTxP4V7aLv/WvxPvdkZHOJCdm1X3nyrbXY4/Gt5TduM+Hf4inb
7qt1uHaJCm/PHSZ0BSW2N0XUYVXXL9WkWCakv6qPS42tw91avUExD5gw8DE5
Uex1HbaugNG4J0zgX/jPIotVh7eNT9S+fEusN79hGLmyHj89EvnK7T0TjL1U
YmdV6/FCvtJ11XQm8K5tqLHQrcfZ4eab0zKI/kJOWcbOeqwun/o6K5cJ0jat
dtan67H07qNhpRVMWNVutVL6fT2+8H7UIayKCcH8rtv5supxo2T4lt01TJDX
FORj5dfjqPZPkzX1TDg6V66lXluP+S6QndhfmWBgYS2X11+P7TjJxvdbmfD3
jm1C52g9/rLFkHaES8xTPSKON1OPLwq7Nn1rY0KLb/ifIoEGPPCkEP3qYgK1
+7kgKDXgXfxH6Ck9TFDP+Sb5fHUDTnEbnnbuZcJ8ZHjIoHoDPqFDS+sfYAKn
tjZcd1MDbq68wBgbY0LV6N+WxH0NWGuD6GzGBBOeVu0v2ny4AUfHJrG9p5iQ
OCj/Fx9rwKbH6yJnZ5nQ3CToEODSgF+WOLl8mWNCxsOdoTlnGvCydXNb/ReY
8Ojp9gmuZwN2iI6RN15kAilg6+tfFxtwwcTqP//+EfNOj3nB8mvA/wMYROPx
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{0, 10}, {-0.4027593745047765, 0.9999999999999896}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.6767264536371937`*^9, 3.676726497669099*^9, {3.676726544510659*^9,
3.676726575598905*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"BesselJ", "[",
RowBox[{"0", ",",
RowBox[{
RowBox[{
RowBox[{"twoaList", "[",
RowBox[{"[", "2", "]"}], "]"}], "/",
RowBox[{"twokList", "[",
RowBox[{"[", "2", "]"}], "]"}]}],
RowBox[{"Cos", "[",
RowBox[{"2", "thetaM"}], "]"}]}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"BesselJ", "[",
RowBox[{"0", ",",
RowBox[{
RowBox[{
RowBox[{"twoaList2", "[",
RowBox[{"[", "2", "]"}], "]"}], "/",
RowBox[{"twokList", "[",
RowBox[{"[", "2", "]"}], "]"}]}],
RowBox[{"Cos", "[",
RowBox[{"2", "thetaM"}], "]"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.676726160885207*^9, 3.676726190347083*^9}}],
Cell[BoxData["0.1410712873499662`"], "Output",
CellChangeTimes->{{3.676726184575395*^9, 3.676726190775835*^9}, {
3.676726228412985*^9, 3.676726259629932*^9}, {3.676726381960187*^9,
3.6767264234467793`*^9}, {3.676726499319434*^9, 3.676726575615922*^9}}],
Cell[BoxData["0.061955344524560745`"], "Output",
CellChangeTimes->{{3.676726184575395*^9, 3.676726190775835*^9}, {
3.676726228412985*^9, 3.676726259629932*^9}, {3.676726381960187*^9,
3.6767264234467793`*^9}, {3.676726499319434*^9, 3.676726575621914*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"widthNList", "[",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",", "twokList", ",", "twoaList", ",",
"twophiList", ",", "thetaM"}], "]"}], "\[IndentingNewLine]",
RowBox[{"widthNList", "[",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",", "twokList", ",", "twoaList2", ",",
"twophiList", ",", "thetaM"}], "]"}]}], "Input",
CellChangeTimes->{{3.676726122875746*^9, 3.676726152058272*^9}}],
Cell[BoxData["3.076074717451369`*^-7"], "Output",
CellChangeTimes->{{3.676726141118169*^9, 3.676726152450699*^9}, {
3.6767264008300047`*^9, 3.676726423487196*^9}, {3.676726533355744*^9,
3.676726575667506*^9}}],
Cell[BoxData["1.350943005362998`*^-7"], "Output",
CellChangeTimes->{{3.676726141118169*^9, 3.676726152450699*^9}, {
3.6767264008300047`*^9, 3.676726423487196*^9}, {3.676726533355744*^9,
3.676726575674797*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"destructionQOrder", "=",
RowBox[{"Part", "[",
RowBox[{
RowBox[{"qValueOrderdList", "[",
RowBox[{
RowBox[{"listNGenerator", "[",
RowBox[{"2", ",", "10"}], "]"}], ",", "twokList", ",", "twoaList", ",",
"twophiList", ",", "thetamV"}], "]"}], ",",
RowBox[{"1", ";;", "10"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"Grid", "@", "%"}]}], "Input",
CellChangeTimes->{{3.6767233475624733`*^9, 3.6767233739803133`*^9}, {
3.6767236228971567`*^9, 3.676723638975819*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], ",", "0.`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "2"}], "}"}], ",", "613.7013634293156`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "2"}]}], "}"}], ",", "626.0931123122901`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}], ",", "841.1460275168804`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "1"}]}], "}"}], ",", "849.5955104653171`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "3"}], "}"}], ",", "1022.4802690549669`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "3"}]}], "}"}], ",", "1053.606000228634`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "4"}], "}"}], ",", "2675.0113099521077`"}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "4"}]}], "}"}], ",", "2784.1397672678486`"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}], ",", "4049.1582875712274`"}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{
3.676723653684641*^9, 3.676723764686057*^9, 3.676726423529456*^9, {
3.676726561700673*^9, 3.676726575717515*^9}}],
Cell[BoxData[
TagBox[GridBox[{
{
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], "0.`"},
{
RowBox[{"{",
RowBox[{"0", ",", "2"}], "}"}], "613.7013634293156`"},
{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "2"}]}], "}"}], "626.0931123122901`"},
{
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}], "841.1460275168804`"},
{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "1"}]}], "}"}], "849.5955104653171`"},
{
RowBox[{"{",
RowBox[{"0", ",", "3"}], "}"}], "1022.4802690549669`"},
{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "3"}]}], "}"}], "1053.606000228634`"},
{
RowBox[{"{",
RowBox[{"0", ",", "4"}], "}"}], "2675.0113099521077`"},
{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "4"}]}], "}"}], "2784.1397672678486`"},
{
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}], "4049.1582875712274`"}
},
AutoDelete->False,
GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"Grid"]], "Output",
CellChangeTimes->{
3.676723653684641*^9, 3.676723764686057*^9, 3.676726423529456*^9, {
3.676726561700673*^9, 3.6767265757243967`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"solTest", "=",
RowBox[{"solNList", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"1", ",", "0"}], "}"}], "}"}], ",", "twokList", ",", "twoaList",
",", "twophiList", ",", "thetaM", ",", "endpointTest"}],
"]"}]}]], "Input",
CellChangeTimes->{{3.676723667114183*^9, 3.67672370547888*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"neumat`Private`psi1", "\[Rule]",
TagBox[
TemplateBox[{RowBox[{
StyleBox[
TagBox["InterpolatingFunction", "SummaryHead"],
"NonInterpretableSummary"],
StyleBox["[", "NonInterpretableSummary"],
DynamicModuleBox[{Typeset`open$$ = False},
PanelBox[
PaneSelectorBox[{False -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SquarePlusIconMedium"]],
ButtonFunction :> (Typeset`open$$ = True), Appearance ->
None, Evaluator -> Automatic, Method -> "Preemptive"],
Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
GraphicsBox[{{{}, {}, {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1]],
LineBox[CompressedData["
1:eJwB0QMu/CFib1JlAgAAADwAAAACAAAA0HBS9+Wx1T/P///////vP2uIeoNN
5hNB+QKpybP17z9wkoxxjbwkQYY0dbpN0+8/OuyQ0/XOLkHeKcXzcp3vP9KF
zBplVzRB0avQ2GhU7z9nMqGZb7I5QTOFPju77u4/xGSQ8fqxPkFHiLvWBHvu
PwEaqEtTDkJBOVwbk0Xn7T8I84geBLdEQcpRcwoFQO0/8w73XfUxR0Gq+n+N
nJDsP055TcR24klBHY09NMO96z+NJjGXOGVMQbgbNlYT5uo/NMUValXbTkEz
VB5egQHqPyVZ8TGBw1BBXeKHAv326D8icR7ldwJSQZBJBBeW7ec/V7C/qzZc
U0FX4GFCd7zmP0BoYfKir1RBctR5uyKA5T+bwUlvL+xVQYJVLrPuSuQ/LkKm
/4NDV0FwxA5jAO3iPzNkScb4g1hBaFTRXZWZ4T9wrWCgNd9ZQUZi7CjgHOA/
YW94+h80W0EhNSpLLzbdP8TS1ooqclxBhD3wUulS2j9fXaku/cpdQRTrSVtX
Htc/bInCCPAMX0FieBOzaBDUPxcXbjFIJGBBGP+CIf8E0T8U/TRofM9gQeys
rSyvVss/yjMfukBvYUGFzLkTggPFPxx+wxVpHGJBpDFSHLwyvD/IBGgxaMZi
Qa6a4TNJFK0/LdwvaPdkY0GAqemOii98Py7HsajqEGRBmdBQHPEyqL/oAlcE
brFkQVDHyB/mAbm//Hr8H8hOZUH/4/BDtszCv6wGXEWG+WVBLi3g1COUyb8V
496F1JhmQb38OwZX1s+/GtMb0IZFZ0FAu//89UPTv9gTfDXJ5mdB+svEieFW
1r/wkNxa4oRoQRf7If0RTNm/pCH3iV8waUGI+uDILW/cvxEDNdRs0GlBJTdD
SZxJ378a+Cwo3n1qQZpljicQJeG/fSklPCYoa0GlXZnmk5Hiv5mrQGv+xmtB
qoD2IE/Z479RQRakOnNsQfZcyq9ELuW/wicP+AYUbUGibPV3NF7mv41KCAyq
sW1Bmgop9ep557/0gLspsVxuQXI5G4jynOi/FAiSYkj8bkFXkT2SDJzpv9Ci
IqVDqW9BfvEzmNGd6r/zvNnTiilwQWDLnuo1h+u/29Cz4rt4cEFvwN8Lvk7s
v5HuavaeznBBUyvPsLoS7b+jtLMXyh5xQeXc8IoEtu2/g4TZPad1cUHup6Jp
DlHuv5By/8PvynFBfrUnVKnS7r/6CLdXgBpyQZPyd5YMN++/MqlL8MJwckFx
hjL0M43vv8bxcZZNwXJBdP5g0x3I77+ChpP6zxJzQWJGAHls7u+/nIzjyQ==
"]]}}}, {
DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]],
FrameTicks -> {{None, None}, {None, None}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}],
Method -> {
"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" ->
None}, PlotRange -> {{0., 2.*^7}, {-0.9978544581701494,
0.9999999999999946}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.1],
Scaled[0.1]}, {
Scaled[0.1],
Scaled[0.1]}}, Ticks -> {Automatic, Automatic}}],
GridBox[{{
RowBox[{
TagBox["\"Domain: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox[
RowBox[{"{",
RowBox[{"{",
RowBox[{"0.`", ",", "2.`*^7"}], "}"}], "}"}],
"SummaryItem"]}]}, {
RowBox[{
TagBox["\"Output: \"", "SummaryItemAnnotation"],
"\[InvisibleSpace]",
TagBox["\"scalar\"", "SummaryItem"]}]}},
GridBoxAlignment -> {
"Columns" -> {{Left}}, "Rows" -> {{Automatic}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {
"Columns" -> {{2}}, "Rows" -> {{Automatic}}},
BaseStyle -> {
ShowStringCharacters -> False, NumberMarks -> False,
PrintPrecision -> 3, ShowSyntaxStyles -> False}]}},
GridBoxAlignment -> {"Rows" -> {{Top}}}, AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
BaselinePosition -> {1, 1}], True -> GridBox[{{
PaneBox[
ButtonBox[
DynamicBox[
FEPrivate`FrontEndResource[
"FEBitmaps", "SquareMinusIconMedium"]],
ButtonFunction :> (Typeset`open$$ = False), Appearance ->
None, Evaluator -> Automatic, Method -> "Preemptive"],
Alignment -> {Center, Center}, ImageSize ->
Dynamic[{
Automatic, 3.5 CurrentValue["FontCapHeight"]/
AbsoluteCurrentValue[Magnification]}]],
GraphicsBox[{{{}, {}, {
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1]],
LineBox[CompressedData["
1:eJwB0QMu/CFib1JlAgAAADwAAAACAAAA0HBS9+Wx1T/P///////vP2uIeoNN
5hNB+QKpybP17z9wkoxxjbwkQYY0dbpN0+8/OuyQ0/XOLkHeKcXzcp3vP9KF
zBplVzRB0avQ2GhU7z9nMqGZb7I5QTOFPju77u4/xGSQ8fqxPkFHiLvWBHvu
PwEaqEtTDkJBOVwbk0Xn7T8I84geBLdEQcpRcwoFQO0/8w73XfUxR0Gq+n+N
nJDsP055TcR24klBHY09NMO96z+NJjGXOGVMQbgbNlYT5uo/NMUValXbTkEz
VB5egQHqPyVZ8TGBw1BBXeKHAv326D8icR7ldwJSQZBJBBeW7ec/V7C/qzZc
U0FX4GFCd7zmP0BoYfKir1RBctR5uyKA5T+bwUlvL+xVQYJVLrPuSuQ/LkKm
/4NDV0FwxA5jAO3iPzNkScb4g1hBaFTRXZWZ4T9wrWCgNd9ZQUZi7CjgHOA/
YW94+h80W0EhNSpLLzbdP8TS1ooqclxBhD3wUulS2j9fXaku/cpdQRTrSVtX
Htc/bInCCPAMX0FieBOzaBDUPxcXbjFIJGBBGP+CIf8E0T8U/TRofM9gQeys
rSyvVss/yjMfukBvYUGFzLkTggPFPxx+wxVpHGJBpDFSHLwyvD/IBGgxaMZi
Qa6a4TNJFK0/LdwvaPdkY0GAqemOii98Py7HsajqEGRBmdBQHPEyqL/oAlcE
brFkQVDHyB/mAbm//Hr8H8hOZUH/4/BDtszCv6wGXEWG+WVBLi3g1COUyb8V
496F1JhmQb38OwZX1s+/GtMb0IZFZ0FAu//89UPTv9gTfDXJ5mdB+svEieFW
1r/wkNxa4oRoQRf7If0RTNm/pCH3iV8waUGI+uDILW/cvxEDNdRs0GlBJTdD
SZxJ378a+Cwo3n1qQZpljicQJeG/fSklPCYoa0GlXZnmk5Hiv5mrQGv+xmtB
qoD2IE/Z479RQRakOnNsQfZcyq9ELuW/wicP+AYUbUGibPV3NF7mv41KCAyq
sW1Bmgop9ep557/0gLspsVxuQXI5G4jynOi/FAiSYkj8bkFXkT2SDJzpv9Ci
IqVDqW9BfvEzmNGd6r/zvNnTiilwQWDLnuo1h+u/29Cz4rt4cEFvwN8Lvk7s
v5HuavaeznBBUyvPsLoS7b+jtLMXyh5xQeXc8IoEtu2/g4TZPad1cUHup6Jp
DlHuv5By/8PvynFBfrUnVKnS7r/6CLdXgBpyQZPyd5YMN++/MqlL8MJwckFx
hjL0M43vv8bxcZZNwXJBdP5g0x3I77+ChpP6zxJzQWJGAHls7u+/nIzjyQ==
"]]}}}, {
DisplayFunction -> Identity, AspectRatio -> 1,
Axes -> {False, False}, AxesLabel -> {None, None},
AxesOrigin -> {0, 0}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}},
FrameLabel -> {{None, None}, {None, None}}, FrameStyle ->
Directive[
Opacity[0.5],
Thickness[Tiny],
RGBColor[0.368417, 0.506779, 0.709798]],
FrameTicks -> {{None, None}, {None, None}},