-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathLasercut_jigsaw.py
430 lines (401 loc) · 24.3 KB
/
Lasercut_jigsaw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#!/usr/bin/env python3
'''
Copyright (C) 2011 Mark Schafer <neon.mark (a) gmail dot com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
'''
# Build a Jigsaw puzzle for Lasercutting.
# User defines:
# - dimensions,
# - number of pieces in X and Y,
# - notch size,
# - random amount of perturbation for uniqueness,
# - border and rounding for border and inner corners
# - random or random seed for repeats
### 0.1 make basic jigsaw for lasercut - March 2011
### 0.2 add random seed so repeatable, add pieces for manual booleans - May 2011
### 0.3 add some no-knob edges - June 2019
### 0.4
### Todo
# add option to cut pieces:
# - taking two rows(cols) at a time - reverse the second one and concat on end - add z to close
# - taking a row and a col - do intersect = piece.
__version__ = "0.4"
import inkex
import sys, math, random, copy
from lxml import etree
from inkex.paths import Path, CubicSuperPath
def dirtyFormat(path):
return str(path).replace('[','').replace(']','').replace(',','').replace('\'','')
def randomize(x_y, radius, norm=True, absolute=False):
""" return x,y moved by a random amount inside a radius.
use uniform distribution unless
- norm = True - then use a normal distribution
If absolute is true - ensure random is only added to x,y """
# if norm:
# r = abs(random.normalvariate(0.0,0.5*radius))
# else:
# r = random.uniform(0.0,radius)
x, y = x_y
a = random.uniform(0.0,2*math.pi)
x += math.cos(a)*radius
y += math.sin(a)*radius
if absolute:
x = abs(x)
y = abs(y)
return [x, y]
def add_rounded_rectangle(startx, starty, radius, width, height, style, name, parent, mask=False):
line_path = [['M', [startx, starty+radius]]]
if radius > 0.0: # rounded corners
line_path.append(['c', [0, -radius/2, radius/2, -radius, radius, -radius]])
if mask == "Below":
line_path.append(['m', [width-2*radius, 0,]])
else:
line_path.append(['c', [radius/2, 0, width-2*radius-radius/2, 0, width-2*radius,0 ]]) # top line
line_path.append(['c', [radius/2, 0, radius, radius/2, radius, radius]])
line_path.append(['c', [0, radius/2, 0, height-2*radius-radius/2, 0, height-2*radius]]) # RHS line
line_path.append(['c', [0, radius/2, -radius/2, radius, -radius, radius]])
line_path.append(['c', [-radius/2,0, -width+2*radius+radius/2,0, -width+2*radius,0]]) # bottom line
line_path.append(['c', [-radius/2, 0, -radius, -radius/2, -radius, -radius]])
if mask == "Right":
line_path.append(['m', [0, height]])
else:
line_path.append(['c', [0, -radius/2, 0, -height+2*radius+radius/2, 0, -height+2*radius]]) # LHS line
else: # square corners
if mask == "Below":
line_path.append(['m', [width, 0]])
line_path.append(['l', [0, height, -width, 0, 0, -height]])
elif mask == "Right":
line_path.append(['l', [width, 0, 0, height, -width, 0,]])
else: # separate
line_path.append(['l', [width, 0, 0, height, -width, 0, 0, -height]])
#
#sys.stderr.write("%s\n"% line_path)
attribs = {'style':str(inkex.Style(style)), inkex.addNS('label','inkscape'):name, 'd':dirtyFormat(line_path)}
#sys.stderr.write("%s\n"% attribs)
etree.SubElement(parent, inkex.addNS('path','svg'), attribs )
###----------------------
### all for intersection from http://www.kevlindev.com/gui/index.htm
def get_derivative(polynomial):
deriv = []
for i in range(len(polynomial)):
deriv.append(i* polynomial[i])
return deriv
class LasercutJigsaw(inkex.Effect):
def __init__(self):
inkex.Effect.__init__(self)
self.arg_parser.add_argument("-x", "--width", type=float, default=50.0, help="The Box Width - in the X dimension")
self.arg_parser.add_argument("-y", "--height", type=float, default=30.0, help="The Box Height - in the Y dimension")
self.arg_parser.add_argument("-u", "--units", type=str, default="cm", help="The unit of the box dimensions")
self.arg_parser.add_argument("-w", "--pieces_W", type=int, default=11, help="How many pieces across")
self.arg_parser.add_argument("-z", "--pieces_H", type=int, default=11, help="How many pieces down")
self.arg_parser.add_argument("-k", "--notch_percent", type=float, default=0.0, help="Notch relative size. 0 to 1. 0.15 is good")
self.arg_parser.add_argument("-r", "--rand", type=float, default=0.1, help="Amount to perturb the basic piece grid.")
self.arg_parser.add_argument("-i", "--innerradius", type=float, default=5.0, help="0 implies square corners")
self.arg_parser.add_argument("-b", "--border", type=inkex.Boolean, default=False, help="Add Outer Surround")
self.arg_parser.add_argument("-a", "--borderwidth", type=float, default=10.0, help="Size of external surrounding border.")
self.arg_parser.add_argument("-o", "--outerradius", type=float, default=5.0, help="0 implies square corners")
self.arg_parser.add_argument("-p", "--pack", type=str, default="Below", help="Where to place backing piece on page")
self.arg_parser.add_argument("-g", "--use_seed", type=inkex.Boolean, default=False, help="Use the kerf value as the drawn line width")
self.arg_parser.add_argument("-s", "--seed", type=int, default=12345, help="Random seed for repeatability")
self.arg_parser.add_argument("-j", "--pieces", type=inkex.Boolean, default=False, help="Make extra pieces for manual boolean separation.")
self.arg_parser.add_argument("-n", "--smooth_edges", type=inkex.Boolean, default=False, help="Allow pieces with smooth edges.")
self.arg_parser.add_argument("-f", "--noknob_frequency", type=float, default=10, help="Percentage of smooth-sided edges.")
# dummy for the doc tab - which is named
self.arg_parser.add_argument("--tab", default="use", help="The selected UI-tab when OK was pressed")
# internal useful variables
self.stroke_width = 0.1 # default for visiblity
self.line_style = {'stroke': '#0000FF', # Ponoko blue
'fill': 'none',
'stroke-width': self.stroke_width,
'stroke-linecap': 'butt',
'stroke-linejoin': 'miter'}
def add_jigsaw_horiz_line(self, startx, starty, stepx, steps, width, style, name, parent):
""" complex version All C smooth
- get ctrl pt offset and use on both sides of each node (negate for smooth)"""
line_path = []
# starts with an M - then C with first point same as M = smooth (also last point still in C but doubled)
line_path.append(['M', [startx, starty]])
clist = [startx, starty] # duplicate 1st point so its smooth
for i in range(1,steps+1):
flip = 1
if random.uniform(0.0,1.0) < 0.5:
flip = -1
do_smooth = False
if self.smooth_edges:
if random.uniform(0.0,100.0) < self.noknob_frequency:
do_smooth = True
if do_smooth:
pt1 = randomize((startx+i*stepx/2+stepx/2*(i-1), starty), self.random_radius/3, True)
rand1 = randomize((0, 0), self.random_radius/4, True, True)
# up to pt1
ctrl1 = (-self.notch_step*1.5, self.notch_step*1.5)
clist.extend([pt1[0]+ctrl1[0]-rand1[0], pt1[1]-ctrl1[1]*flip+rand1[1]*flip])
clist.extend(pt1)
# last ctrl point for next step
clist.extend([pt1[0]-ctrl1[0]+rand1[0], pt1[1]+ctrl1[1]*flip-rand1[1]*flip])
else:
pt1 = randomize((startx-self.notch_step+i*stepx/2+stepx/2*(i-1), starty+self.notch_step/4*flip), self.random_radius/3, True)
pt2 = randomize((startx-self.notch_step+i*stepx/2+stepx/2*(i-1), starty-self.notch_step*flip), self.random_radius/3, True)
# pt3 is foor tip of the notch - required ?
pt4 = randomize((startx+self.notch_step+i*stepx/2+stepx/2*(i-1), starty-self.notch_step*flip), self.random_radius/3, True) #mirror of 2
pt5 = randomize((startx+self.notch_step+i*stepx/2+stepx/2*(i-1), starty+self.notch_step/4*flip), self.random_radius/3, True) # mirror of pt1
# Create random local value for x,y of handle - then reflect to enforce smoothness
rand1 = randomize((0, 0), self.random_radius/4, True, True)
rand2 = randomize((0, 0), self.random_radius/4, True, True)
rand4 = randomize((0, 0), self.random_radius/4, True, True)
rand5 = randomize((0, 0), self.random_radius/4, True, True)
# up to pt1
#ctrl1_2 = (startx+i*stepx/2+(i-1)*stepx/2, starty-self.notch_step/3)
ctrl1 = (self.notch_step/1.2, -self.notch_step/3)
clist.extend([pt1[0]-ctrl1[0]-rand1[0], pt1[1]-ctrl1[1]*flip+rand1[1]*flip])
clist.extend(pt1)
# up to pt2
clist.extend([pt1[0]+ctrl1[0]+rand1[0], pt1[1]+ctrl1[1]*flip-rand1[1]*flip])
ctrl2 = (0, -self.notch_step/1.2)
clist.extend([pt2[0]+ctrl2[0]-rand2[0], pt2[1]-ctrl2[1]*flip+rand2[1]*flip])
clist.extend(pt2)
# up to pt4
clist.extend([pt2[0]-ctrl2[0]+rand2[0], pt2[1]+ctrl2[1]*flip-rand2[1]*flip])
ctrl4 = (0, self.notch_step/1.2)
clist.extend([pt4[0]+ctrl4[0]-rand4[0], pt4[1]-ctrl4[1]*flip+rand4[1]*flip])
clist.extend(pt4)
# up to pt5
clist.extend([pt4[0]-ctrl4[0]+rand4[0], pt4[1]+ctrl4[1]*flip-rand4[1]*flip])
ctrl5 = (self.notch_step/1.2, self.notch_step/3)
clist.extend([pt5[0]-ctrl5[0]+rand5[0], pt5[1]-ctrl5[1]*flip-rand5[1]*flip])
clist.extend(pt5)
# last ctrl point for next step
clist.extend([pt5[0]+ctrl5[0]-rand5[0], pt5[1]+ctrl5[1]*flip+rand5[1]*flip])
#
clist.extend([width, starty, width, starty]) # doubled up at end for smooth curve
line_path.append(['C',clist])
line_style = str(inkex.Style(style))
attribs = { 'style':line_style, 'id':name, 'd':dirtyFormat(line_path)}
etree.SubElement(parent, inkex.addNS('path','svg'), attribs )
def create_horiz_blocks(self, group, gridy, style):
path = lastpath = 0
blocks = []
count = 0
for node in gridy.iterchildren():
if node.tag == inkex.addNS('path','svg'): # which they ALL should because we just made them
path = CubicSuperPath(node.get('d')) # turn it into a global C style SVG path
#sys.stderr.write("count: %d\n"% count)
if count == 0: # first one so use the top border
spath = node.get('d') # work on string instead of cubicpath
lastpoint = spath.split()[-2:]
lastx = float(lastpoint[0])
lasty = float(lastpoint[1])
#sys.stderr.write("lastpoint: %s\n"% lastpoint)
spath += ' %f %f %f %f %f %f' % (lastx,lasty-self.inner_radius, lastx,1.5*self.inner_radius, lastx,self.inner_radius)
spath += ' %f %f %f %f %f %f' % (self.width,self.inner_radius/2, self.width-self.inner_radius/2,0, self.width-self.inner_radius,0)
spath += ' %f %f %f %f %f %f' % (self.width-self.inner_radius/2,0, 1.5*self.inner_radius,0, self.inner_radius, 0)
spath += ' %f %f %f %f %f %f' % (self.inner_radius/2, 0, 0,self.inner_radius/2, 0,self.inner_radius)
spath += 'z'
#sys.stderr.write("spath: %s\n"% spath)
#
name = "RowPieces_%d" % (count)
attribs = { 'style':style, 'id':name, 'd':spath }
n = etree.SubElement(group, inkex.addNS('path','svg'), attribs )
blocks.append(n) # for direct traversal later
else: # internal line - concat a reversed version with the last one
thispath = copy.deepcopy(path)
for i in range(len(thispath[0])): # reverse the internal C pairs
thispath[0][i].reverse()
thispath[0].reverse() # reverse the entire line
lastpath[0].extend(thispath[0]) # append
name = "RowPieces_%d" % (count)
attribs = { 'style':style, 'id':name, 'd':dirtyFormat(lastpath) }
n = etree.SubElement(group, inkex.addNS('path','svg'), attribs )
blocks.append(n) # for direct traversal later
n.set('d', n.get('d')+'z') # close it
#
count += 1
lastpath = path
# do the last row
spath = node.get('d') # work on string instead of cubicpath
lastpoint = spath.split()[-2:]
lastx = float(lastpoint[0])
lasty = float(lastpoint[1])
#sys.stderr.write("lastpoint: %s\n"% lastpoint)
spath += ' %f %f %f %f %f %f' % (lastx,lasty+self.inner_radius, lastx,self.height-1.5*self.inner_radius, lastx,self.height-self.inner_radius)
spath += ' %f %f %f %f %f %f' % (self.width,self.height-self.inner_radius/2, self.width-self.inner_radius/2,self.height, self.width-self.inner_radius,self.height)
spath += ' %f %f %f %f %f %f' % (self.width-self.inner_radius/2,self.height, 1.5*self.inner_radius,self.height, self.inner_radius, self.height)
spath += ' %f %f %f %f %f %f' % (self.inner_radius/2, self.height, 0,self.height-self.inner_radius/2, 0,self.height-self.inner_radius)
spath += 'z'
#
name = "RowPieces_%d" % (count)
attribs = { 'style':style, 'id':name, 'd':spath }
n = etree.SubElement(group, inkex.addNS('path','svg'), attribs )
blocks.append(n) # for direct traversal later
#
return(blocks)
def create_vert_blocks(self, group, gridx, style):
path = lastpath = 0
blocks = []
count = 0
for node in gridx.iterchildren():
if node.tag == inkex.addNS('path','svg'): # which they ALL should because we just made them
path = CubicSuperPath(node.get('d')) # turn it into a global C style SVG path
#sys.stderr.write("count: %d\n"% count)
if count == 0: # first one so use the right border
spath = node.get('d') # work on string instead of cubicpath
lastpoint = spath.split()[-2:]
lastx = float(lastpoint[0])
lasty = float(lastpoint[1])
#sys.stderr.write("lastpoint: %s\n"% lastpoint)
spath += ' %f %f %f %f %f %f' % (lastx+self.inner_radius/2,lasty, self.width-1.5*self.inner_radius,lasty, self.width-self.inner_radius, lasty)
spath += ' %f %f %f %f %f %f' % (self.width-self.inner_radius/2,lasty, self.width,self.height-self.inner_radius/2, self.width,self.height-self.inner_radius)
spath += ' %f %f %f %f %f %f' % (self.width,self.height-1.5*self.inner_radius, self.width, 1.5*self.inner_radius, self.width,self.inner_radius)
spath += ' %f %f %f %f %f %f' % (self.width,self.inner_radius/2, self.width-self.inner_radius/2,0, self.width-self.inner_radius,0)
spath += 'z'
#sys.stderr.write("spath: %s\n"% spath)
#
name = "ColPieces_%d" % (count)
attribs = { 'style':style, 'id':name, 'd':spath }
n = etree.SubElement(group, inkex.addNS('path','svg'), attribs )
blocks.append(n) # for direct traversal later
else: # internal line - concat a reversed version with the last one
thispath = copy.deepcopy(path)
for i in range(len(thispath[0])): # reverse the internal C pairs
thispath[0][i].reverse()
thispath[0].reverse() # reverse the entire line
lastpath[0].extend(thispath[0]) # append
name = "ColPieces_%d" % (count)
attribs = { 'style':style, 'id':name, 'd':dirtyFormat(lastpath) }
n = etree.SubElement(group, inkex.addNS('path','svg'), attribs )
blocks.append(n) # for direct traversal later
n.set('d', n.get('d')+'z') # close it
#
count += 1
lastpath = path
# do the last one (LHS)
spath = node.get('d') # work on string instead of cubicpath
lastpoint = spath.split()[-2:]
lastx = float(lastpoint[0])
lasty = float(lastpoint[1])
#sys.stderr.write("lastpoint: %s\n"% lastpoint)
spath += ' %f %f %f %f %f %f' % (lastx-self.inner_radius,lasty, 1.5*self.inner_radius, lasty, self.inner_radius,lasty)
spath += ' %f %f %f %f %f %f' % (self.inner_radius/2,lasty, 0,lasty-self.inner_radius/2, 0,lasty-self.inner_radius)
spath += ' %f %f %f %f %f %f' % (0,lasty-1.5*self.inner_radius, 0,1.5*self.inner_radius, 0,self.inner_radius)
spath += ' %f %f %f %f %f %f' % (self.inner_radius/2,0, self.inner_radius,0, 1.5*self.inner_radius, 0)
spath += 'z'
#
name = "ColPieces_%d" % (count)
attribs = { 'style':style, 'id':name, 'd':spath }
n = etree.SubElement(group, inkex.addNS('path','svg'), attribs )
blocks.append(n) # for direct traversal later
#
return(blocks)
def create_pieces(self, jigsaw, gridx, gridy):
""" Loop through each row """
# Treat outer edge carefully as border runs around. So special code the edges
# Internal lines should be in pairs -with second line reversed and appended to first. Close with a 'z'
# Create new group
g_attribs = {inkex.addNS('label','inkscape'):'JigsawPieces:X' + \
str( self.pieces_W )+':Y'+str( self.pieces_H ) }
jigsaw_pieces = etree.SubElement(jigsaw, 'g', g_attribs)
line_style = str(inkex.Style(self.line_style))
#
xblocks = self.create_horiz_blocks(jigsaw_pieces, gridy, line_style)
#sys.stderr.write("count: %s\n"% dir(gridx))
yblocks = self.create_vert_blocks(jigsaw_pieces, gridx, line_style)
#
# for each xblock intersect it with each Y block
#for x in range(len(xblocks)):
# for y in range(len(yblocks)):
# delete the paths in xblocks and yblocks
# transform them out of the way for now
for node in xblocks:
node.set('transform', 'translate(%f,%f)' % (self.width, 0))
node.apply_transform()
for node in yblocks:
node.set('transform', 'translate(%f,%f)' % (self.width, 0))
node.apply_transform()
###--------------------------------------------
### The main function called by the Inkscape UI
def effect(self):
# document dimensions (for centering)
docW = self.svg.unittouu(self.document.getroot().get('width'))
docH = self.svg.unittouu(self.document.getroot().get('height'))
# extract fields from UI
self.width = self.svg.unittouu( str(self.options.width) + self.options.units )
self.height = self.svg.unittouu( str(self.options.height) + self.options.units )
self.pieces_W = self.options.pieces_W
self.pieces_H = self.options.pieces_H
average_block = (self.width/self.pieces_W + self.height/self.pieces_H) / 2
self.notch_step = average_block * self.options.notch_percent / 3 # 3 = a useful notch size factor
self.smooth_edges = self.options.smooth_edges
self.noknob_frequency = self.options.noknob_frequency
self.random_radius = self.options.rand * average_block / 5 # 5 = a useful range factor
self.inner_radius = self.options.innerradius
if self.inner_radius < 0.01: self.inner_radius = 0.0 # snap to 0 for UI error when setting spinner to 0.0
self.border = self.options.border
self.borderwidth = self.options.borderwidth
self.outer_radius = self.options.outerradius
if self.outer_radius < 0.01: self.outer_radius = 0.0 # snap to 0 for UI error when setting spinner to 0.0
self.pack = self.options.pack
# pieces
self.pieces = self.options.pieces
# random function
if not self.options.use_seed:
random.seed(self.options.seed)
#
# set up the main object in the current layer - group gridlines
g_attribs = {inkex.addNS('label','inkscape'):'Jigsaw:X' + \
str( self.pieces_W )+':Y'+str( self.pieces_H ) }
jigsaw_group = etree.SubElement(self.svg.get_current_layer(), 'g', g_attribs)
#Group for X grid
g_attribs = {inkex.addNS('label','inkscape'):'X_Gridlines'}
gridx = etree.SubElement(jigsaw_group, 'g', g_attribs)
#Group for Y grid
g_attribs = {inkex.addNS('label','inkscape'):'Y_Gridlines'}
gridy = etree.SubElement(jigsaw_group, 'g', g_attribs)
# Draw the Border
add_rounded_rectangle(0,0, self.inner_radius, self.width, self.height, self.line_style, 'innerborder', jigsaw_group)
# Do the Border
if self.border:
add_rounded_rectangle(-self.borderwidth,-self.borderwidth, self.outer_radius, self.borderwidth*2+self.width,
self.borderwidth*2+self.height, self.line_style, 'outerborder', jigsaw_group)
# make a second copy below the jigsaw for the cutout BG
if self.pack == "Below":
add_rounded_rectangle(-self.borderwidth,self.borderwidth+ self.height, self.outer_radius, self.borderwidth*2+self.width,
self.borderwidth*2+self.height, self.line_style, 'BG', jigsaw_group, self.pack)
elif self.pack == "Right":
add_rounded_rectangle(self.width+self.borderwidth,-self.borderwidth, self.outer_radius, self.borderwidth*2+self.width,
self.borderwidth*2+self.height, self.line_style, 'BG', jigsaw_group, self.pack)
else: # Separate
add_rounded_rectangle(self.width+self.borderwidth*2,-self.borderwidth, self.outer_radius, self.borderwidth*2+self.width,
self.borderwidth*2+self.height, self.line_style, 'BG', jigsaw_group)
# Step through the Grid
Xstep = self.width / (self.pieces_W)
Ystep = self.height / (self.pieces_H)
# Draw Horizontal lines on Y step with Xstep notches
for i in range(1, self.pieces_H):
self.add_jigsaw_horiz_line(0, Ystep*i, Xstep, self.pieces_W, self.width, self.line_style, 'YDiv'+str(i), gridy)
# Draw Vertical lines on X step with Ystep notches
for i in range(1, self.pieces_W):
self.add_jigsaw_horiz_line(0, Xstep*i, Ystep, self.pieces_H, self.height, self.line_style, 'XDiv'+str(i), gridx)
# Rotate lines into pos
# actualy transform can have multiple transforms in it e.g. 'translate(10,10) rotate(10)'
for node in gridx.iterchildren():
if node.tag == inkex.addNS('path','svg'):
node.set('transform', 'translate(%f,%f) rotate(90)' % (self.width, 0))
# center the jigsaw
jigsaw_group.set('transform', 'translate(%f,%f)' % ( (docW-self.width)/2, (docH-self.height)/2 ) )
# pieces
if self.pieces:
self.create_pieces(jigsaw_group, gridx,gridy)
# needs manual boolean ops until that is exposed or we get all the commented code working up top :-(
if __name__ == '__main__':
e = LasercutJigsaw()
e.run()