-
Notifications
You must be signed in to change notification settings - Fork 3
/
batch.py
450 lines (427 loc) · 16.7 KB
/
batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
"""
OEvent: Oscillation event detection and feature analysis.
batch.py - runs analysis on a set of files
Written by Sam Neymotin ([email protected]) & Idan Tal ([email protected])
References: Taxonomy of neural oscillation events in primate auditory cortex
https://doi.org/10.1101/2020.04.16.045021
"""
from pylab import *
import sys,os,numpy,subprocess
from math import ceil
import multiprocessing
import matplotlib.gridspec as gridspec
import shutil
from subprocess import Popen, PIPE, call
import pickle
myhost = os.uname()[1]
defQSZ = 1 # default queue size for batch
if myhost == 'cycle': defQSZ = 3 # if on cycle, have more RAM so bigger qsz
if myhost == 'a1dat': defQSZ = 32 # if on gcp a1dat have more RAM (3.75 TB)
# append line s to filepath fn
def appline (s,fn):
fp = open(fn,"a"); fp.write(s + "\n"); fp.close()
# check that the batch dir exists
def checkdir (d):
try:
if not os.path.exists(d): os.mkdir(d)
return True
except:
print("could not create directory :",d)
return False
# make a list of the sims that have already had their output saved, can then
# pass it into batchRun to skip those sims
def getSkipList (whichParams):
lsec,lopt,lval = whichParams()
sidx,lskip = -1,[]
for i in range(len(lopt[0])):
if lopt[0][i] == 'simstr':
sidx = i
break
if sidx == -1:
print("no simstr found!")
return None
for i in range(len(lval)):
if os.path.exists("./data/" + lval[i][sidx] + "_.npz"):
lskip.append(i)
return lskip
# run a batch using multiprocessing - which calls mpiexec - single simulation then split across nodes
# based on http://www.bryceboe.com/2011/01/28/the-python-multiprocessing-queue-and-large-objects/
def batchRun (lmyargs,blog,skip=[],qsz=defQSZ,bdir="./batch",pyf="load.py"):
if not checkdir(bdir): return False
jobs = multiprocessing.Queue()
shutil.copy(pyf, bdir) # make a backup copy of py file -- but use local copy since has dependencies
def myworker (jobs):
while True:
scomm = jobs.get()
if scomm == None: break
print("worker starting : " , scomm)
os.system(scomm) # worker function, invoked in a process.
for i in range(len(lmyargs)):
if i in skip: continue
cmd = "python3 " + pyf + " ";
args = lmyargs[i]
for arg in args: cmd += arg + ' '
print('command is',cmd)
appline(cmd,blog)
jobs.put(cmd)
workers = []
for i in range(qsz):
jobs.put(None)
tmp = multiprocessing.Process(target=myworker, args=(jobs,))
tmp.start()
workers.append(tmp)
for worker in workers: worker.join()
return jobs.empty()
#
def getfilesext (basedir,ext):
lfn = os.listdir(basedir)
lfn = [os.path.join(basedir,x) for x in lfn if x.endswith(ext)]
return lfn
def eventbatch (useMUA=False,outbasedir='data/nhpdat/spont/A1/oscoutnew/'):
print('running batch')
lmedthresh = [4.0]
lwinsz = [10]
loverlapth = [0.5]
lbipolar = [0] # [0, 1]
llarg = []
lfnA = getfilesext('data/nhpdat/spont/A1','.mat')
#lfnB = getfilesext('data/nhpdat/spont/Thal','.mat')
lfn = [x for x in lfnA]
#for x in lfnB: lfn.append(x)
freqmin = 0.25 #0.5
freqmax = 250.0
freqstep = 0.25 #0.5
useDynThresh = 0
dorun = doquit = 1
endfctr = 0.5
mspecwidth = 7.0
dolaggedcoh = docfc = dolaggedcohnoband = dosim = 0
for overlapth in loverlapth:
for medthresh in lmedthresh:
for winsz in lwinsz:
for bipolar in lbipolar:
for fn in lfn:
larg = [fn,str(bipolar),str(medthresh),str(winsz),str(overlapth),\
str(freqmin),str(freqmax), str(freqstep), str(useDynThresh),\
str(dorun), str(doquit), str(dolaggedcoh), str(mspecwidth),str(docfc),str(dolaggedcohnoband),\
str(endfctr),str(dosim),str(useMUA),outbasedir]
llarg.append(larg)
batchRun(llarg,'batch.log')
def simbatch (): # not used currently - did not finish setup of load.py for this
print('running batch')
lmedthresh = [4.0]
lwinsz = [10]
loverlapth = [0.5]
lbipolar = [0]
llarg = []
lfnA = getfilesext('data/nhpdat/spont/A1','.mat')
lfn = [x for x in lfnA]
freqmin = 0.25
freqmax = 250.0
freqstep = 0.25
useDynThresh = 0
dorun = doquit = 1
for overlapth in loverlapth:
for medthresh in lmedthresh:
for winsz in lwinsz:
for bipolar in lbipolar:
for fn in lfn:
larg = [fn,str(bipolar),str(medthresh),str(winsz),str(overlapth),\
str(freqmin),str(freqmax), str(freqstep), str(useDynThresh),\
str(dorun), str(doquit)]
llarg.append(larg)
batchRun(llarg,'batch.log')
def laggedcohbatch ():
# lagged coherence batch
medthresh = 4.0
winsz = 10
overlapth = 0.5
llarg = []
lfnA = getfilesext('data/nhpdat/spont/A1','.mat')
lfnB = getfilesext('data/nhpdat/spont/Thal','.mat')
lfn = [x for x in lfnA]
for x in lfnB: lfn.append(x)
freqmin = 0.5
freqmax = 250.0
freqstep = 0.5
useDynThresh = 0
dorun = doquit = dolaggedcoh = 1
bipolar = 0
for fn in lfn:
larg = [fn,str(bipolar),str(medthresh),str(winsz),str(overlapth),\
str(freqmin),str(freqmax), str(freqstep), str(useDynThresh),\
str(dorun), str(doquit), str(dolaggedcoh)]
llarg.append(larg)
batchRun(llarg,'batch.log',qsz=defQSZ)
def laggedcohnobandbatch ():
# lagged coherence without frequency bands (narrowband) batch
medthresh = 4.0
winsz = 10
overlapth = 0.5
llarg = []
lfnA = getfilesext('data/nhpdat/spont/A1','.mat')
lfnB = getfilesext('data/nhpdat/spont/Thal','.mat')
lfn = [x for x in lfnA]
for x in lfnB: lfn.append(x)
freqmin = 0.5
freqmax = 250.0
freqstep = 0.5
useDynThresh = 0
dorun = doquit = 1
dolaggedcoh = 0
mspecwidth = 7.0
docfc = 0
dolaggedcohnoband = 1
bipolar = 0
for fn in lfn:
larg = [fn,str(bipolar),str(medthresh),str(winsz),str(overlapth),\
str(freqmin),str(freqmax), str(freqstep), str(useDynThresh),\
str(dorun), str(doquit), str(dolaggedcoh),str(mspecwidth),str(docfc),str(dolaggedcohnoband)]
llarg.append(larg)
batchRun(llarg,'batch.log',qsz=int(defQSZ*1.5))
#
def loadddcv2 (skipcsd=False,skipbipolar=False,lar=['A1','STG'],basedir='data/nhpdat/spont/oscout'):
from nhpdat import getflayers
ddcv2={}
for ar in lar:
ddcv2[ar]={}
if ar == 'A1' or ar == 'Thal':
bdir = 'data/nhpdat/spont/A1/oscoutnew/'+ar
else:
bdir = 'data/hecog/spont/oscout/'
lfn = os.listdir(bdir)
for fn in lfn:
if fn.endswith('ddcv2.pkl'):
if skipbipolar and fn.count('bipolar_True') > 0: continue
if skipcsd and fn.count('bipolar_False') > 0: continue
if ar == 'A1':
fnorig = 'data/nhpdat/spont/'+ar + '/' + fn.split('_bipolar')[0]
#print(fnorig)
s2,g,i1 = getflayers(fnorig,abbrev=True)
if s2 == -1: continue
ddcv2[ar][fn] = pickle.load(open(bdir+'/'+fn,'rb'))
return ddcv2
#
def plotddcv2byband (ddcv2,ar,dkey,skipbipolar=True,clr='k',bins=30,xlab=r'$CV^2$',xl=(0,3),histtype='bar',lw=4):
lband = ['delta','theta','alpha','beta','lgamma','gamma','hgamma']
lval = []
for bdx,b in enumerate(lband):
v = []
for k in ddcv2[ar].keys():
if type(k)==str:
if skipbipolar and k.count('bipolar_True') > 0: continue
dcv2 = ddcv2[ar][k]
lchan = list(dcv2.keys())
lchan.sort()
for c in lchan:
if type(dcv2[c][b][dkey])==list:
if len(dcv2[c][b][dkey])>0 and type(dcv2[c][b][dkey][0])==list:
for l in dcv2[c][b][dkey]:
for x in l:
if not isnan(x):
v.append(x)
else:
for x in dcv2[c][b][dkey]:
if not isnan(x):
v.append(x)
else:
if not isnan(dcv2[c][b][dkey]):
v.append(dcv2[c][b][dkey])
ax = subplot(3,3,bdx+1)
hist(v,density=True,bins=bins,color=clr,histtype=histtype,linewidth=lw)
s = ar + ' ' + b + '\nmedian:' + str(round(median(v),2))+ ' mean:' + str(round(mean(v),2))
title(s)#,fontsize=45)
if xl is not None: xlim(xl)
mv = mean(v)
plot([mv,mv],[0,ax.get_ylim()[1]],'r--')
md = median(v)
plot([md,md],[0,ax.get_ylim()[1]],'b--')
if b == 'gamma' or b == 'hgamma': xlabel(xlab)#,fontsize=45)
lval.append(v)
return lval
#
def plotddcv2bybandchan (ddcv2,ar,dkey,skipbipolar=True,clr='k',bins=30,xlab=r'$CV^2$',xl=(0,3),histtype='bar',lw=4):
lband = ['delta','theta','alpha','beta','lgamma','gamma','hgamma']
for bdx,b in enumerate(lband):
v = []
print(ddcv2[ar].keys())
for chan in ddcv2[ar].keys():
dcv2 = ddcv2[ar][chan]
print(b,chan,dkey,dcv2.keys())
if type(dcv2[b][dkey])==list:
for x in dcv2[b][dkey]:
if not isnan(x):
v.append(x)
else:
if not isnan(dcv2[b][dkey]):
v.append(dcv2[b][dkey])
subplot(3,2,bdx+1)
hist(v,normed=True,bins=bins,color=clr,histtype=histtype,linewidth=lw)
s = ar + ' ' + b + ' median:' + str(round(median(v),2))+ ' mean:' + str(round(mean(v),2))
title(s)
xlim(xl)
if b == 'gamma' or b == 'hgamma': xlabel(xlab)
#
def loaddframebyarband (lcol,skipbipolar=True,skipcsd=False,FoctTH=1.5,ERPscoreTH=0.8,ERPDurTH=[75,300]):
# loads the pandas data frames split up by frequency band
lar = ['A1', 'Thal']
based = 'data/nhpdat/spont/oscout/'
ddf = {'A1':{'s2':{},'g':{},'i1':{}},'Thal':{'Th':{}}}
for ar,lschan in zip(lar,[['s2','g','i1'],['Th']]):
for schan in lschan:
for b in lband:
ddf[ar][schan][b]={k:[] for k in lcol}
for ar in lar:
for fn in os.listdir(based+ar):
if getorigsampr('data/nhpdat/spont/'+ar+'/'+fn.split('_')[0]) != 44e3: continue
if not fn.endswith('dframe.pkl'): continue
if skipbipolar and fn.count('bipolar_True')>0: continue
if skipcsd and fn.count('bipolar_False')>0: continue
df = pickle.load(open(based+ar+'/'+fn,'rb'))
print(fn)
lchan = list(set(df['chan']))
lchan.sort()
if ar == 'A1':
s2,g,i1 = lchan
lschan = ['s2','g','i1']
else:
th = lchan[0]
lschan = ['Th']
for band in lband:
for chan,schan in zip(lchan,lschan):
dfs = df[(df.band==band) & (df.Foct<FoctTH) & (df.chan==chan) & ((df.ERPscore<ERPscoreTH)|(df.dur<ERPDurTH[0])|(df.dur>ERPDurTH[1]))]
for k in lcol:
lx = dfs[k]
for x in lx: ddf[ar][schan][band][k].append(x)
return ddf
# plot
def plotdframebyarband (ddf,kcol,lband=['delta','theta','alpha','beta','lgamma','gamma','hgamma'],\
lar=['A1','STG'],llschan=[['s2','g','i1'],['104']],\
llclr=[['r','g','b'],['c']],\
llab=['A1 supragran','A1 gran','A1 infragran','Human STG'],lcflat=['r','g','b','c'],drawlegend=True,ylab=None,msz=40):
import matplotlib.patches as mpatches
dtitle = {b:'' for b in lband}
dlm = {ar:{ch:[] for ch in lsch} for ar,lsch in zip(lar,llschan)} # 'A1':{'s2':[],'g':[],'i1':[]},'Thal':{'Th':[]}}
dls = {ar:{ch:[] for ch in lsch} for ar,lsch in zip(lar,llschan)}
from nhpdat import dbands
xfreq = [(dbands[k][1]+dbands[k][0])/2. for k in dbands.keys()]
for ar,lsch,lclr in zip(lar,llschan,llclr):
for schan in lsch:
for bdx,b in enumerate(lband):
dlm[ar][schan].append(mean(ddf[ar][schan][b][kcol]))
dls[ar][schan].append(std(ddf[ar][schan][b][kcol])/sqrt(len(ddf[ar][schan][b][kcol])))
for ar,lsch,lclr in zip(lar,llschan,llclr):
for schan,clr in zip(lsch,lclr):
plot(xfreq,np.array(dlm[ar][schan])-dls[ar][schan],clr+'--')
plot(xfreq,np.array(dlm[ar][schan])+dls[ar][schan],clr+'--')
plot(xfreq,dlm[ar][schan],clr)
plot(xfreq,dlm[ar][schan],clr+'o',markersize=msz)
xlabel('Frequency (Hz)');
if ylab is None:
ylabel(kcol)
else:
ylabel(ylab)
ax=gca()
lpatch = [mpatches.Patch(color=c,label=s) for c,s in zip(lcflat,llab)]
if drawlegend: ax.legend(handles=lpatch,handlelength=1)
return dlm,dls
# plot
def plotdframebyarbandhist (ddf,kcol,lband=['delta','theta','alpha','beta','lgamma','gamma','hgamma'],xl=None,xlab=None,ylab=None,\
lar=['A1','Thal'],llschan=[['s2','g','i1'],['Th']],\
llclr=[['r','g','b'],['c']],\
llab=['A1 supragran','A1 gran','A1 infragran','Thal'],lcflat=['r','g','b','c'],bins=20):
import matplotlib.patches as mpatches
dtitle = {b:'' for b in lband}
dlm = {ar:{ch:[] for ch in lsch} for ar,lsch in zip(lar,llschan)} # mean
dls = {ar:{ch:[] for ch in lsch} for ar,lsch in zip(lar,llschan)} # standard error
dlmin = {ar:{ch:[] for ch in lsch} for ar,lsch in zip(lar,llschan)} # min
dlmax = {ar:{ch:[] for ch in lsch} for ar,lsch in zip(lar,llschan)} # max
dlmed = {ar:{ch:[] for ch in lsch} for ar,lsch in zip(lar,llschan)} # median
dlN = {ar:{ch:[] for ch in lsch} for ar,lsch in zip(lar,llschan)} # median
from nhpdat import dbands
xfreq = [(dbands[k][1]+dbands[k][0])/2. for k in dbands.keys()]
for ar,lsch,lclr in zip(lar,llschan,llclr):
for schan,clr in zip(lsch,lclr):
for bdx,b in enumerate(lband):
subplot(3,2,bdx+1); title(b)
hist(ddf[ar][schan][b][kcol],density=True,histtype='step',linewidth=10,color=clr,bins=bins)
if xl is not None: xlim(xl)
if xlab is not None: xlabel(xlab)
if ylab is not None: ylabel(ylab)
dlm[ar][schan].append(mean(ddf[ar][schan][b][kcol]))
dls[ar][schan].append(std(ddf[ar][schan][b][kcol])/sqrt(len(ddf[ar][schan][b][kcol])))
dlmin[ar][schan].append(min(ddf[ar][schan][b][kcol]))
dlmax[ar][schan].append(max(ddf[ar][schan][b][kcol]))
dlmed[ar][schan].append(median(ddf[ar][schan][b][kcol]))
dlN[ar][schan].append(len(ddf[ar][schan][b][kcol]))
print(ar,schan,clr,b,kcol,dlN[ar][schan][-1],dlmin[ar][schan][-1],dlmax[ar][schan][-1],dlmed[ar][schan][-1],dlm[ar][schan][-1],dls[ar][schan][-1])
ax=gca()
lpatch = [mpatches.Patch(color=c,label=s) for c,s in zip(lcflat,llab)]
ax.legend(handles=lpatch,handlelength=1)
return dlm,dls,dlmin,dlmax,dlmed,dlN
#
def loaddlcoh (lband = ['delta','theta','alpha','beta','gamma','hgamma'], skipbipolar = True,\
ar='A1', bdir='data/nhpdat/spont/laggedcoh/A1',origdir='data/nhpdat/spont/A1/',lschan=['s2','g','i1']):
# loads lagged coherence output into dictionaries
from nhpdat import getorigsampr
ddlcoh = {}
ddlcoh[ar] = {}
lfn = os.listdir(bdir)
for fn in lfn:
if skipbipolar and fn.count('bipolar_True') > 0: continue
origfn = origdir+fn.split('_')[0]
if ar == 'A1' and getorigsampr(origfn) < 44e3: continue
if fn.endswith('.pkl'): ddlcoh[ar][fn] = pickle.load(open(bdir+'/'+fn,'rb'))
dlcoh = {ar:{schan:{} for schan in lschan}}
for c in lschan:
for b in lband:
dlcoh[ar][c][b]=[]
for k in ddlcoh[ar].keys():
for chan,schan in zip(ddlcoh[ar][k].keys(),lschan):
for b in lband:
for x in ddlcoh[ar][k][chan][b]: dlcoh[ar][schan][b].append(x)
return ddlcoh,dlcoh
def plotdlcoh (dlcoh,lband=['delta','theta','alpha','beta','gamma','hgamma'],\
ar='A1',lschan=['s2','g','i1'],lclr=['r','g','b'],dolegend=True):
# plot lagged coherence output as line plot
import matplotlib.patches as mpatches
dlm = {ar:{schan:[] for schan in lschan}}
dls = {ar:{schan:[] for schan in lschan}}
from nhpdat import dbands
xfreq = [(dbands[k][1]+dbands[k][0])/2. for k in dbands.keys()]
for ar,lsch,lclr in zip([ar],[lschan],[lclr]):
for schan in lsch:
for bdx,b in enumerate(lband):
dlm[ar][schan].append(mean(dlcoh[ar][schan][b]))
dls[ar][schan].append(std(dlcoh[ar][schan][b])/sqrt(len(dlcoh[ar][schan][b])))
for ar,lsch,lclr in zip([ar],[lschan],[lclr]):
for schan,clr in zip(lsch,lclr):
plot(xfreq,np.array(dlm[ar][schan])-dls[ar][schan],clr+'--')
plot(xfreq,np.array(dlm[ar][schan])+dls[ar][schan],clr+'--')
plot(xfreq,dlm[ar][schan],clr)
plot(xfreq,dlm[ar][schan],clr+'o',markersize=40)
xlabel('Frequency (Hz)',fontsize=45); ylabel('Lagged Coherence',fontsize=45)
if dolegend:
ax=gca()
lpatch = [mpatches.Patch(color=c,label=s) for c,s in zip(lclr,['NHP A1 supragranular','NHP A1 granular','NHP A1 infragranular'])]
ax.legend(handles=lpatch,handlelength=1)
return dlm,dls
if __name__ == "__main__":
batchty = 0
useMUA = 0
outbasedir = 'data/nhpdat/spont/A1/oscoutnew/'
if len(sys.argv) > 1: batchty = int(sys.argv[1])
if len(sys.argv) > 2: useMUA = int(sys.argv[2])
if len(sys.argv) > 3: outbasedir = sys.argv[3]
if batchty == 0:
print('eventbatch',batchty,useMUA,outbasedir)
eventbatch(useMUA=useMUA,outbasedir=outbasedir)
elif batchty == 1:
print('laggedcohbatch')
laggedcohbatch()
elif batchty == 2:
print('laggedcohnobandbatch')
laggedcohnobandbatch()
elif batchty == 3:
print('simbatch')
simbatch()